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A B S T R A C T

The intracranial pressure (ICP) curve with its different peaks has been comprehensively studied, but the
exact physiological mechanisms behind its morphology has not been revealed. If the pathophysiology behind
deviations from the normal ICP curve form could be identified, it could be vital information to diagnose
and treat each single patient. A mathematical model of the hydrodynamics in the intracranial cavity over
single heart cycles was developed. A Windkessel model approach was generalized but the unsteady Bernoulli
equation was utilized for blood flow and CSF flow. This is a modification of earlier models using the extended
and simplified classical Windkessel analogies to a model that is based on mechanisms rooted in the laws of
physics. The improved model was calibrated with patient data for cerebral arterial inflow, venous outflow,
cerebrospinal fluid (CSF), and ICP over one heart cycle from 10 neuro-intensive care unit patients. A priori
model parameter values were obtained by considering patient data and values taken from earlier studies.
These values were used as an initial guess for an iterated constrained-ODE (ordinary differential equation)
optimization problem with cerebral arterial inflow data as input into the system of ODEs. The optimization
routine found patient-specific model parameter values that produced model ICP curves that showed excellent
agreement with clinical measurements while model venous and CSF flow were within a physiologically
acceptable range. The improved model and the automated optimization routine gave better model calibration
results compared to previous studies. Moreover, patient-specific values of physiologically important parameters
like intracranial compliance, arterial and venous elastance, and venous outflow resistance were determined.
The model was used to simulate intracranial hydrodynamics and to explain the underlying mechanisms of
the ICP curve morphology. Sensitivity analysis showed that the order of the three main peaks of the ICP
curve was affected by a decrease in arterial elastance, a large increase in resistance to arteriovenous flow,
an increase in venous elastance, or a decrease in resistance to CSF flow in the foramen magnum; and the
frequency of oscillations were notably affected by intracranial elastance. In particular, certain pathological peak
patterns were caused by these changes in physiological parameters. To the best of our knowledge, there are
no other mechanism-based models associating the pathological peak patterns to variation of the physiological
parameters.
1. Introduction

Continuous monitoring of ICP in humans was introduced by Guil-
laume and Janny (1951) and the progress into a clinical application
was done by Lundberg (1960). Since then, it has been an important
monitoring procedure in the treatment of hydrocephalus (Eide and
Brean, 2006; Kim et al., 2009), traumatic brain injury (Hu et al., 2010;
Daouk et al., 2016), subarachnoid hemorrhage (Balédent et al., 2018),
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and other brain diseases. The physiology behind the morphology of the
ICP curve is, however, not fully understood (Unnerbäck et al., 2018,
2020). Several studies involving ICP pulse amplitude have been done in
specific clinical settings but the causes underlying ICP curve morphol-
ogy are still uncertain (Balédent et al., 2018) even though intracranial
compliance is involved. Intracranial compliance is a vague concept
and with an incompressible brain tissue being the sum (maybe non-
algebraic) of three: the compliance of the venous pool, the compliance
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of the cerebrospinal fluid (CSF) pool, and the compliance of the arterial
pool (Czosnyka and Citerio, 2012).

Obtaining knowledge on the parameters constituting the intracra-
nial compliance is challenging, both in practical and ethical aspects
(Unnerbäck et al., 2020). In humans, arterial inflow and venous outflow
in the cranium as well as CSF flow over the foramen magnum can
be measured through cine phase contrast MRI (Balédent et al., 2001;
Alperin et al., 2005; Stoquart-ElSankari et al., 2009) and ICP measured
invasively with high time resolution (Unnerbäck et al., 2020). Recently,
these parameters were measured simultaneous in 10 neuro-intensive
care patients (Unnerbäck et al., 2018). It was conjectured that such
approach would lead to an increase in knowledge of the underlying
pathophysiology in brain diseases (Balédent et al., 2018).

Through a mathematical model, we can take into account dif-
ferent features of intracranial dynamics simultaneously and access
information that were otherwise challenging to obtain experimentally
[Ottesen (2011)]. An original mathematical model of the human long-
term changes in intracranial hydrodynamics was suggested by Ursino
(1988). Different properties of the intracranial system were also ex-
plored using mathematical models [Marmarou et al. (1978); Ursino
and Lodi (1997); Stevens (2000); Linninger et al. (2005, 2009)]. In
particular, Marmarou et al. (1978) used a mathematical model based on
a Windkessel analogy to improve the analysis of intracranial dynamic
properties, Czosnyka et al. (1990) designed a computer system for the
cerebrospinal compensatory model identification, Eklund et al. (2007)
presented a mathematical model for determining intracranial dynamic
properties with specific focus on CSF outflow resistance, and Støverud
et al. (2013) examined CSF flow using the Bernoulli equation and
Navier–Stokes equation. Recently, a mathematical model based on
known physiological properties of the intracranial compartment, look-
ing at changes over a single heartbeat, was presented [Unnerbäck et al.
(2020)]. The model was able to mimic ICP measured in vivo based on
arterial intracranial inflow and the compensatory mechanisms taking
place in the intracranial cavity.

The goal of the present study was to develop an improved
mechanistic-mathematical model of cerebral blood flow (CBF) and then
to calibrate it with patient-specific data using an optimization routine.
After which, variation of the model parameter values helped us identify
the mechanisms intrinsic in changes in the ICP curve morphology. In
order to achieve our goal, we asked the following questions. What
compartments and state variables were needed to be considered? What
formulation of CBF and CSF were suitable? What pressure–volume
relation should be utilized? Could ICP data be used to estimate reliable
model parameters? Would the established optimal parameters give rise
to realistic intracranial dynamics? Could intracranial compliance be
measured directly using estimated model parameters and could the
model simulation be an alternative to measure intracranial compliance
by response to injection/removal of CSF? Finally, which parameters
governed the ICP curve morphology and what insights it can provide?

2. Methods

2.1. Data

Data for arterial inflow, venous outflow, CSF flow, and ICP from 10
neuro-intensive care unit patients at Skåne University Hospital, Lund
were used. These data have been previously published in Unnerbäck
et al. (2020) but new analyses are made here, which resulted to new
findings. The average age of the patients was 49 ± 11 years old. The
main diagnoses of the patients were 6 with traumatic brain injury,
2 with subarachnoid haemorrhage, 1 with meningitis, and 1 with
obstructive hydrocephalus. Cerebral arterial inflow, venous outflow,
and CSF flow were obtained through flow sensitive slices just under the
skullbase with cine-phase contrast MRI while ICP was measured with
an 8-F tunneled intraventricular catheter placed through a cranial burr
hole. For a full and detailed description of the method see Unnerbäck
et al. (2020).
2

Fig. 1. Block diagram of cerebral blood and CSF flow. The letters in the diagram stand
for volume (𝑉 ), pressure (𝑃 ), flow (𝑄), inertia (𝐿), and Bernoulli/resistance parameter
(𝐵). The subscripts represent arteries (𝑎), veins (𝑣), intracranial (𝑐), spine (𝑠), tissue
(𝑡), and exit (𝑒). CBF is through the arterial and venous compartments and CSF flows
back and forth from the intracranial cavity to the spinal canal through the foramen
magnum.

2.2. Model formulation

The model formulation started with a compartmental visualization
of CBF and CSF flow given in Fig. 1. This is a novel way of looking at the
compartments in the intracranial cavity as proposed by Unnerbäck et al.
(2020). We extend this model by improving the simplified classical
Windkessel analogies to a model that uses the unsteady Bernoulli
equation for flow and a mono-exponential pressure–volume relation for
nonnegative transmural pressure.

The idea was to look at a compartment containing compartments.
Instead of considering a separate compartment for the intracranial CSF,
we looked at a larger compartment. We denoted it as the intracranial
compartment, which contains the intracranial arterial, venous, and CSF
compartments. This simplified the inclusion of the intracranial CSF
compartment in the model without having to deal with its different
borders. This formulation made it possible to avoid direct determi-
nation of the compliance of the intracranial CSF compartment and
the pressure outside this compartment. Note that the compliance of
the intracranial CSF compartment is a function of the compliances of
the arterial, venous, and brain tissue compartments. Furthermore, the
pressure in the intracranial compartment is the ICP and the compliance
of this compartment can be thought of as the intracranial compliance.
To separate the brain tissue compartment is natural because it was
presumed not to take in or give off fluid to the other compartments
during a heartbeat.

In the following, we build the model equations based on known
physiological relations. The letters in the equations stand for volume
(𝑉 ), pressure (𝑃 ), flow (𝑄), inertance (𝐿), and Bernoulli parameter (𝐵).
The subscripts stand for arteries (𝑎), veins (𝑣), intracranial (𝑐), spine (𝑠),
tissue (𝑡), exit (𝑒), and unstressed (𝑢).

Change in volumes. A conservation law was used to describe the
rate of change of volume in a compartment. This states that the time
derivative of volume in a compartment at time 𝑡 is equal to the
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difference between the flow in and flow out of the compartment. In
symbols, �̇� (𝑡) = 𝑄𝑖𝑛(𝑡)−𝑄𝑜𝑢𝑡(𝑡), where dot on the top of a symbol denote
the time derivative of the corresponding quantity. If we let the stressed
volume be given by 𝛥𝑉 then 𝛥𝑉 (𝑡) ∶= 𝑉 (𝑡) − 𝑉𝑢(𝑡), where 𝑉𝑢 denotes
the unstressed volume. This implies that 𝛥�̇� (𝑡) = �̇� (𝑡) = 𝑄𝑖𝑛(𝑡) −𝑄𝑜𝑢𝑡(𝑡),
assuming that 𝑉𝑢(𝑡) is constant over a single heart beat. Thus,

𝛥�̇�𝑎(𝑡) = 𝑄𝑎(𝑡) −𝑄𝑣(𝑡) (1)

𝛥�̇�𝑣(𝑡) = 𝑄𝑣(𝑡) −𝑄𝑒(𝑡) (2)

𝛥�̇�𝑐 (𝑡) = 𝑄𝑎(𝑡) −𝑄𝑠(𝑡) −𝑄𝑒(𝑡) (3)

𝛥�̇�𝑠(𝑡) = 𝑄𝑠(𝑡) (4)

Arteriovenous flow, CSF flow, and venous outflow. The arteriove-
nous flow, CSF flow, and flow out of cranium was assumed to be
governed by the unsteady Bernoulli equation (Grimes et al., 1995;
Domogo and Ottesen, 2021).

�̇�𝑣(𝑡) =
1
𝐿𝑣

[𝑃𝑎(𝑡) − 𝑃𝑣(𝑡) − 𝐵𝑣|𝑄𝑣(𝑡)|𝑄𝑣(𝑡)] (5)

�̇�𝑠(𝑡) =
1
𝐿𝑠

[𝑃𝑐 (𝑡) − 𝑃𝑠(𝑡) − 𝐵𝑠|𝑄𝑠(𝑡)|𝑄𝑠(𝑡)] (6)

�̇�𝑒(𝑡) =
1
𝐿𝑒

[𝑃𝑣(𝑡) − 𝑃𝑒(𝑡) − 𝐵𝑒|𝑄𝑒(𝑡)|𝑄𝑒(𝑡)] (7)

Pressure–volume relations. The relation between pressure and vol-
ume in a compartment was based on blood vessel compliance. This
states that the volume in a compartment is an increasing function of
pressure. In terms of elastance, the reciprocal of compliance, this says
that the difference between pressure inside and outside of the compart-
ment is an increasing function of volume. In simplified cases, as in the
Windkessel model, a linear relation is assumed. However, we used the
more general monoexponential relationship between cerebral arterial
blood volume and cerebral arterial transmural pressure (Bergel, 1961;
Hayashi et al., 1980) and similarly with CSF volume and ICP (Mar-
marou et al., 1978; Avezaat et al., 1979). This assumption can also
be made for the relationship between cerebral venous blood volume
and cerebral venous transmural pressure (Ursino, 1988). Due to the
incidence of venous collapse, we only assumed the monoexponential
relationship for nonnegative transmural pressure. For negative trans-
mural pressure, we chose a function that can mimic the behavior of
the pressure–volume relation in collapsible tubes as given in Rideout
(1991).

𝑃𝑐 (𝑡) = 𝑃𝑐0(𝑒𝐾𝑐𝛥𝑉𝑐 (𝑡) − 1) + 𝑃𝑡 (8)

𝑃𝑎(𝑡) = 𝑃𝑎0(𝑒𝐾𝑎𝛥𝑉𝑎(𝑡) − 1) + 𝑃𝑐 (9)

𝑃𝑣(𝑡) =

{

𝑃𝑣0(𝑒𝐾𝑣𝛥𝑉𝑣(𝑡) − 1) + 𝑃𝑐 if 𝛥𝑉𝑣(𝑡) ≥ 0
(𝑃𝑣0𝐾𝑣𝑉𝑣𝑢)(

𝛥𝑉𝑣(𝑡)
𝛥𝑉𝑣(𝑡)+𝑉𝑣𝑢

) + 𝑃𝑐 if 𝛥𝑉𝑣(𝑡) < 0 (10)

𝑃𝑠(𝑡) = 𝑃𝑠0(𝑒𝐾𝑠𝛥𝑉𝑠(𝑡) − 1) + 𝑃𝑠,𝑜𝑢𝑡 (11)

n the equations given in (8)–(11), we see that zero transmural pressure
orresponds to stressed volume being zero and the venous relation
ulfill a smoothness demand at 𝛥𝑉𝑣 = 0. We also emphasize, lineariz-
ng the mono-exponential expressions result in the usual Windkessel
pproximation.

In summary, the model was described by 7 ODEs given by Eqs. (1)–
7), 4 algebraic equations given by Eqs. (8)–(11), and 18 model pa-
ameters given by the elastance coefficients 𝐾𝑐 , 𝐾𝑎, 𝐾𝑣, 𝐾𝑠, 𝑃𝑐0, 𝑃𝑎0,
𝑃𝑣0, and 𝑃𝑠0, pressure parameters 𝑃𝑒, 𝑃𝑡, and 𝑃𝑠,𝑜𝑢𝑡, inertances 𝐿𝑣, 𝐿𝑠,
and 𝐿𝑒, Bernoulli parameters 𝐵𝑣, 𝐵𝑠, and 𝐵𝑒, and unstressed volume in
the veins 𝑉𝑣𝑢. In the following, we do not include in the notation the
dependence of the equations on time for a neater presentation.

Brain tissue movement. The skull is rigid, consequently, its volume
is constant. That is, 𝑉𝑐 + 𝑉𝑡 = 𝑉𝑠𝑘𝑢𝑙𝑙 is constant, by the Monro-Kellie
doctrine �̇�𝑐 + �̇�𝑡 = 𝛥�̇�𝑐 + 𝛥�̇�𝑡 = 0. Using this conservation formula, the
light compression of the brain tissue follows 𝛥�̇�𝑡 = −𝛥�̇�𝑐 .

Change in CSF volume in the cranium. Note that CSF production
is slow and (relatively) steady at about 0.35 ml/min (McArdle et al.,
3

2006). Furthermore, we assumed that CSF production was equal to
its absorption and elimination. Thus, the total volume of CSF, de-
noted by 𝑉𝑐𝑠𝑓 , was constant over the period of one heart beat. Hence,
𝑉𝑐𝑠𝑓 (𝑖𝑛𝑡𝑟𝑎𝑐𝑟𝑎𝑛𝑖𝑎𝑙) + 𝑉𝑠 = 𝑉𝑐𝑠𝑓 and �̇�𝑐𝑠𝑓 (𝑖𝑛𝑡𝑟𝑎𝑐𝑟𝑎𝑛𝑖𝑎𝑙) + �̇�𝑠 = 𝛥�̇�𝑐𝑠𝑓 (𝑖𝑛𝑡𝑟𝑎𝑐𝑟𝑎𝑛𝑖𝑎𝑙) +
𝛥�̇�𝑠 = 0. How the intracranial CSF changes through a heart cycle could
then be observed using 𝛥�̇�𝑐𝑠𝑓 (𝑖𝑛𝑡𝑟𝑎𝑐𝑟𝑎𝑛𝑖𝑎𝑙) = −𝛥�̇�𝑠.

Compliance of the compartments. The compliance of the com-
partments could be obtained through their respective pressure–volume
relationship. For the arterial compartment, the pressure–volume rela-
tion is given by Eq. (9). Expressing this equation as volume in terms of
pressure,

𝑉𝑎 − 𝑉𝑎𝑢 =
1
𝐾𝑎

ln (𝑃𝑎 − 𝑃𝑐 + 𝑃𝑎0) −
1
𝐾𝑎

ln𝑃𝑎0. (12)

Hence, the compliance of the arterial compartment, 𝐶𝑎, is given by

𝐶𝑎 =
𝑑𝑉𝑎

𝑑(𝑃𝑎 − 𝑃𝑐 )
= 1

𝐾𝑎(𝑃𝑎 − 𝑃𝑐 + 𝑃𝑎0)
= 1

𝐾𝑎𝑃𝑎0
𝑒−𝐾𝑎𝛥𝑉𝑎 (13)

Similarly, the compliance of the other compartments are

𝐶𝑐 =
𝑑𝑉𝑐

𝑑(𝑃𝑐 − 𝑃𝑡)
= 1

𝐾𝑐 (𝑃𝑐 − 𝑃𝑡 + 𝑃𝑐0)
= 1

𝐾𝑐𝑃𝑐0
𝑒−𝐾𝑐𝛥𝑉𝑐 , (14)

𝑠 =
𝑑𝑉𝑠

𝑑(𝑃𝑠 − 𝑃𝑠,𝑜𝑢𝑡)
= 1

𝐾𝑠(𝑃𝑠 − 𝑃𝑠,𝑜𝑢𝑡 + 𝑃𝑠0)
= 1

𝐾𝑠𝑃𝑠0
𝑒−𝐾𝑠𝛥𝑉𝑠 , (15)

and

𝐶𝑣 =
𝑑𝑉𝑣

𝑑(𝑃𝑣 − 𝑃𝑐 )
=

⎧

⎪

⎨

⎪

⎩

1
𝐾𝑣(𝑃𝑣−𝑃𝑐+𝑃𝑣0)

= 1
𝐾𝑣𝑃𝑣0

𝑒−𝐾𝑣𝛥𝑉𝑣 if 𝛥𝑉𝑣 ≥ 0

𝑃𝑣0𝐾𝑣𝑉 2
𝑣𝑢

(𝑃𝑣−𝑃𝑐−𝑃𝑣0𝐾𝑣𝑉𝑣𝑢)2
= (𝛥𝑉𝑣+𝑉𝑣𝑢)2

𝑃𝑣0𝐾𝑣𝑉 2
𝑣𝑢

if 𝛥𝑉𝑣 < 0
.

(16)

Notice the elastances become linearly increasing function of the
transmural pressure or an exponential function of stressed volume,
except in the case of venous collapse. That is,

𝑒𝑎 = 𝐾𝑎(𝑃𝑎 − 𝑃𝑐 ) +𝐾𝑎𝑃𝑎0 = 𝐾𝑎𝑃𝑎0𝑒
𝐾𝑎𝛥𝑉𝑎 , (17)

𝑒𝑐 = 𝐾𝑐 (𝑃𝑐 − 𝑃𝑡) +𝐾𝑐𝑃𝑐0 = 𝐾𝑐𝑃𝑐0𝑒
𝐾𝑐𝛥𝑉𝑐 , (18)

𝑒𝑠 = 𝐾𝑠(𝑃𝑠 − 𝑃𝑠,𝑜𝑢𝑡) +𝐾𝑠𝑃𝑠0 = 𝐾𝑠𝑃𝑠0𝑒
𝐾𝑠𝛥𝑉𝑠 , (19)

𝑒𝑣 =

{

𝐾𝑣(𝑃𝑣 − 𝑃𝑐 ) +𝐾𝑣𝑃𝑣0 = 𝐾𝑣𝑃𝑣0𝑒𝐾𝑣𝛥𝑉𝑣 if 𝛥𝑉𝑣 ≥ 0
1

𝑃𝑣0𝐾𝑣𝑉 2
𝑣𝑢
(𝑃𝑣 − 𝑃𝑐 − 𝑃𝑣0𝐾𝑣𝑉𝑣𝑢)2 =

𝑃𝑣0𝐾𝑣𝑉 2
𝑣𝑢

(𝛥𝑉𝑣+𝑉𝑣𝑢)2
if 𝛥𝑉𝑣 < 0

. (20)

From the elastance expressions, we may term the 𝐾 ′
𝑖 𝑠 as the stressed

lastance parameters and (𝑃𝑖0𝐾𝑖)′𝑠 the unstressed elastance parameters.

.3. Parameter estimation

The objective of this section is to find parameter values that will
ive intracranial pressure curve that conforms with given data. Addi-
ionally, we wanted the system to be in a periodic state, which is the
odel equivalent of the stable condition of the patients (i.e. Homeo-

tatic resting conditions) when the data was collected. The parameter
stimation process started with (1) an a priori parameter estimation
ollowed by (2) an iterated optimization. Note that arterial inflow data
ere used as input to the model, ICP data were used in the optimization
roblem, while venous outflow and CSF flow in the foramen magnum
ere used as control values for comparison with model output.

In the a priori estimation, available data and related literature were
sed to calculate parameter values for the model. For the iterated
ptimization, we used the a priori parameter values as initial guess
or a minimization problem. The minimization problem was solved
umerically in Matlab using the 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 function. The objective cost
f this minimization problem is given by

Obj. Cost =
𝑁−1
∑

𝑖=0

{𝑃𝑐 (𝑡𝑖) − 𝑃 ∗
𝑐 (𝑡𝑖)

𝑃 ∗
𝑐 (𝑡𝑖)

}2
+𝑤

∑

𝑖∈𝐽

{𝑃𝑐 (𝑡𝑖) − 𝑃 ∗
𝑐 (𝑡𝑖)

𝑃 ∗
𝑐 (𝑡𝑖)

}2

+𝛾1
∑

{

𝛥𝑉𝑠(𝑡𝑖)
}2

+ 𝛾2
∑

{

𝛥𝑉𝑖(𝑇 ) − 𝛥𝑉𝑖(0)
}2

.

𝑖∈𝐾 𝑖=𝑎,𝑣,𝑐,𝑠
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The first term of the objective cost function is the sum of squares of
the relative error between intracranial pressure from model simulation
and data. 𝑃𝑐 (𝑡𝑖) is the intracranial pressure from model simulation while
𝑃 ∗
𝑐 (𝑡𝑖) is the intracranial pressure from data. The 𝑡′𝑖𝑠 are 𝑁 equally

spaced time instances from 0 to 𝑇 (duration of a heart cycle where
ata exist). The second term was added to give more weight, 𝑤, to the
eaks and valleys of the intracranial pressure data whose indices are
ontained in set 𝐽 . The third and fourth terms are penalty terms, where
1 and 𝛾2 are sufficiently large values. Since the spinal compartment
as assumed not be compressed, the third term was added so that the
ptimization avoids parameter values that give negative values for 𝛥𝑉𝑠.
n this term, 𝐾 is the index set containing all 𝑖 ∈ {0, 1,… , 𝑁 − 1} such

that 𝛥𝑉𝑠(𝑡𝑖) < 0. The fourth term was added so that the optimization
favors parameter values that give rise to a periodic state. We note that if
the stressed volumes are periodic then the pressures and flows become
periodic.

2.3.1. A priori parameter estimation

Elastance parameters
For the elastance parameters, we took 𝐾𝑎 = 3.68 and 𝐾𝑣 = 0.31

per ml from Ursino (1988). We assumed that 𝐾𝑐 = 3 and 𝐾𝑠 = 2
per ml since the intracranial compartment is not a very compliant
compartment and the spinal compartment is a little more compliant.
The elastance of cerebral arteries is 12.66 mmHg/ml (Ellwein et al.,
2008) and the cerebral veins is 0.43 mmHg/ml (Olufsen et al., 2005).
Using Eqs. (17) and (20) and assuming zero transmural pressure, we
have that 𝑃𝑎0 = 𝑒𝑎∕𝐾𝑎 and 𝑃𝑣0 = 𝑒𝑣∕𝐾𝑣. In this case, 𝑃𝑎0 = 3.44 mmHg
and 𝑃𝑣0 = 1.38 mmHg. We assumed 𝑃𝑐0 = 10 mmHg and 𝑃𝑠0 = 5 mmHg
since the craniospinal compartment is not very compliant.

Pressure Parameters
In Eq. (8) we see that 𝑃𝑐 = 𝑃𝑡 when the stressed volume in the

intracranial compartment is zero. We used this to estimate initial value
of 𝑃𝑡 as the minimum ICP value from patient data. We assumed that
the initial outside pressure in the spinal compartment, 𝑃𝑠,𝑜𝑢𝑡, is equal
to 𝑃𝑡. The initial external venous pressure 𝑃𝑒 = 4.0 mmHg was taken
from Ursino (1988).

Inertance Parameters
The a priori estimate for 𝐿𝑠 = 0.1 mmHg s2/ml and 𝐿𝑒 = 0.14

mmHg s2/ml were taken from Unnerbäck et al. (2020). We assumed
that 𝐿𝑣 = 0.001 mmHg s2/ml, which is a relatively smaller value
because inertia in smaller blood vessels with low pressure gradients is
less dominant in comparison to their resistance (Westerhof et al., 2005).

Bernoulli Parameters
In Unnerbäck et al. (2020), the formulation for change in flow

between two compartments 𝑖 and 𝑗 is given by �̇� = 1
𝐿 (𝑃𝑖 − 𝑃𝑗 − 𝑅𝑄),

where 𝑅 is the classical resistance to flow. To agree with the Bernoulli
formulation, 𝑅 becomes flow dependent, that is, 𝑅 = 𝐵|𝑄|. We used
this idea to obtain an a priori estimate for the Bernoulli parameters
𝐵𝑠, 𝐵𝑒, and 𝐵𝑣. We have data for 𝑄𝑠 and 𝑄𝑒 and we know 𝑅𝑠 = 0.6,
𝑅𝑣 = 12.54, and 𝑅𝑒 = 0.54 (Unnerbäck et al., 2020). From here, we
take 𝐵𝑠 = 𝑅𝑠∕|𝑄𝑠|, 𝐵𝑒 = 𝑅𝑒∕|𝑄𝑒|, and 𝐵𝑣 = 𝑅𝑣∕|𝑄𝑣|, where |𝑄𝑣| was
pproximated by 𝑄𝑎 from data. We used the maximum data value of
𝑠, 𝑄𝑒, and 𝑄𝑎 as the single value for the flows to get the a priori
ernoulli parameters.
Unstressed Volume Parameters
Blood volume in the intracranial cavity is 60–80 ml (Unnerbäck

t al., 2018), of which, 15 ml is in the arteries (Hua et al., 2019).
his gives 45 to 65 ml venous blood volume, of which, 80% is un-
tressed (Ellwein et al., 2008). Using this, we took 𝑉𝑣𝑢 = 40 ml as a
riori value.
Initial Values
The initial values for the system of ODEs were given as follows. The

nitial values for the stressed volumes 𝛥𝑉𝑎(0), 𝛥𝑉𝑣(0), 𝛥𝑉𝑐 (0), and 𝛥𝑉𝑠(0)
ere all set to zero corresponding to a steady state. The initial values
4

or the flows 𝑄𝑠(0) and 𝑄𝑒(0) were taken from initial CSF flow data and
nitial venous outflow data, respectively, while 𝑄𝑣(0) was approximated
y initial arterial flow data.

The a priori parameter values for the patients were calculated using
he above formulas or values. They were used as an initial guess in the
ptimization process. However, the calculated optimal parameters for
ome patients were utilized as a priori parameters for other patients
hen they led to better model fit.

.3.2. Optimization
The a priori parameters were used as initial guess for an iterated

ptimization. Here, we optimized all model parameters together with
nitial conditions except for 𝐿𝑣, 𝑉𝑣𝑢, 𝑄𝑠(0), and 𝑄𝑒(0). Post sensitivity
nalysis showed that 𝐿𝑣 and 𝑉𝑣𝑢 were not sensitive while 𝑄𝑠(0) and
𝑒(0) were fixed values from data. Notice the objective cost is a

unction of the parameter values and the change in stressed volume and
low output of the model. The state variables appearing in the objective
ost are the stressed volumes but they are part of a system of ODEs.
ence, dependence on the other model output (flow state variables)

s indirect. Now, if 𝑋(𝑝𝑎𝑟) is the change in stressed volume and flow
utput given the input parameters 𝑝𝑎𝑟, we have that

bjective Cost = 𝑓 (𝑝𝑎𝑟,𝑋(𝑝𝑎𝑟)).

ur goal was to minimize the objective cost in a given physiologically
ccepted region. We note that the initial guess to the minimization
roblem was the approximated a priori parameter values. These values
ay be away from the optimal values in different magnitude. We

ssumed that moving 50% above and below the initial parameters were
uitable boundary values except for the initial stressed volumes. We
ssumed that 𝛥𝑉𝑎(0) ∈ [0, 1.5], 𝛥𝑉𝑣(0) ∈ [−1, 1], 𝛥𝑉𝑐 (0) ∈ [0, 1], and
𝑉𝑠(0) ∈ [0, 1]. 𝛥𝑉𝑎(0), 𝛥𝑉𝑐 (0), and 𝛥𝑉𝑠(0) are nonnegative because

their respective compartments are not compressed with 𝛥𝑉𝑐 (0) and
𝛥𝑉𝑠(0) having a lesser upper bound since these compartments are not
so compliant. On the other hand, 𝛥𝑉𝑣(0) is from [−1, 1] to incorporate
possible compression. In addition, the bounds were not large because
the magnitude of the input arterial flow does not presumably make the
initial stressed volume values go beyond the given bounds.

The Matlab functions 𝑓𝑚𝑖𝑛𝑐𝑜𝑛 and 𝑂𝐷𝐸15𝑠 were used to solve
for the minimizer of 𝑓 and system of ODEs, respectively. Since the
minimization scheme was local in nature, we explored other minimizers
about a neighborhood of a determined minimizer through the following
iterative scheme adopted from Domogo and Ottesen (2021). We used
the optimal parameters as initial guess for the next iterate of the
minimization problem.

Initialization:
𝑖𝑛𝑖𝑡_𝑝𝑎𝑟 = a priori parameters
𝑜𝑏𝑗_𝑐𝑜𝑠𝑡_𝑜𝑙𝑑 = ∞
𝑜𝑝𝑡_𝑝𝑎𝑟 = 𝑎𝑟𝑔_𝑚𝑖𝑛 of 𝑓 , where 𝑝𝑎𝑟 ∈ [𝐿𝐵,𝑈𝐵]
𝑜𝑏𝑗_𝑐𝑜𝑠𝑡 = 𝑓 (𝑜𝑝𝑡_𝑝𝑎𝑟,𝑋(𝑜𝑝𝑡_𝑝𝑎𝑟))
while |𝑜𝑏𝑗_𝑐𝑜𝑠𝑡 − 𝑜𝑏𝑗_𝑐𝑜𝑠𝑡_𝑜𝑙𝑑|∕𝑜𝑏𝑗_𝑐𝑜𝑠𝑡 < 𝑡𝑜𝑙 do:

𝑜𝑏𝑗_𝑐𝑜𝑠𝑡_𝑜𝑙𝑑 = 𝑜𝑏𝑗_𝑐𝑜𝑠𝑡
𝑖𝑛𝑖𝑡_𝑝𝑎𝑟 = 𝑜𝑝𝑡_𝑝𝑎𝑟
𝑜𝑝𝑡_𝑝𝑎𝑟 = 𝑎𝑟𝑔_𝑚𝑖𝑛 of 𝑓 , where 𝑝𝑎𝑟 ∈ [𝐿𝐵,𝑈𝐵]
𝑜𝑏𝑗_𝑐𝑜𝑠𝑡 = 𝑓 (𝑜𝑝𝑡_𝑝𝑎𝑟,𝑋(𝑜𝑝𝑡_𝑝𝑎𝑟))

Furthermore, once the iterative scheme terminated, we used the
optimal parameters to get a numerical solution to the system of ODEs
for one period. We then used the terminal values of the state variables
to replace their initial values and ran the iterative scheme again.
We performed this perturbation a finite number of times or until the
objective cost did vary less than a predefined tolerance. This additional
perturbation helped the minimization process in looking for a periodic
state, which is in accordance to the homeostatic state of the patients
when the data was collected.

In the Matlab function 𝑓𝑚𝑖𝑛𝑐𝑜𝑛, we used the default Interior Point
Algorithm. This option looked for minimizers through a sequence of
approximate minimization problems involving barrier functions. The

approximate minimization problems were then solved by searching in
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Fig. 2. The ICP curves for 10 patients. The blue lines are the ICP curves from the model and the red circles are data.
he direction of a Newton step in each iteration. If the Newton step
ailed, the function searched using a Conjugate Gradient step in a trust
egion (The Mathworks Inc., 2021). The codes for the optimization and
ystem of ODEs are given in Supplementary F.

.4. Model modification for ICP response

The effect of addition or leak of fluid in the intracranial com-
artment, 𝑉𝑐 , can be simulated. To do this, we modified Eq. (3) by
dding a flow term, 𝑄𝑙, representing an addition or a leak. This resulted
o Eq. (21).

�̇�𝑐 = 𝑄𝑎 −𝑄𝑠 −𝑄𝑒 +𝑄𝑙 (21)

f 𝑄𝑙 is positive then it represents an addition of volume into the in-
racranial compartment. Correspondingly, a negative 𝑄𝑙 represents re-
oval of volume out of the intracranial compartment. The ICP response

o an addition/withdrawal of CSF from the intracranial compartment
an be investigated by letting 𝑄𝑙 ≠ 0 for a fixed time and then observing
he changes in ICP at succeeding cycles.

. Results

.1. Model fit, optimal parameter values, and simulations

The simulated model curves showed that the model was able to
apture the dynamics of cerebral blood flow and intracranial pressure.
hrough optimization, the model could be calibrated well to ICP data
hile also displaying venous outflow and CSF flow over the foramen
agnum that were within acceptable physiological range.

Fig. 2 displays the calculated ICP curves from the calibrated model
nd ICP data for all patients. Here, we observed that the model was
ble to capture the individual ICP behavior from data as they can be
alibrated well from patients with low, normal, and high ICP. The mean
standard deviation (SD) for the sum of squared errors (SSE) and 𝑅2
5

or all patients was 4.02 ± 2.11 mmHg and 0.92 ± 0.04, respectively.
Table 1
Mean ± SD for the values of the optimal parameters for all patients and the optimal
parameter values for Patient 1.

Parameters Mean ± SD Patient 1 Units

𝑃𝑎0 4.06 ± 2.36 6.96 mmHg
𝑃𝑣0 5.68 ± 1.65 3.78 mmHg
𝑃𝑐0 8.92 ± 3.19 10.30 mmHg
𝑃𝑠0 4.13 ± 1.98 3.82 mmHg
𝐾𝑎 0.77 ± 0.56 0.58 ml−1

𝐾𝑣 2.15 ± 0.30 1.87 ml−1

𝐾𝑐 2.43 ± 0.63 2.23 ml−1

𝐾𝑠 1.83 ± 0.52 1.50 ml−1

𝑃𝑒 6.64 ± 3.44 5.55 mmHg
𝑃𝑡 6.03 ± 4.47 4.39 mmHg
𝑃𝑠,𝑜𝑢𝑡 7.22 ± 5.33 4.82 mmHg
𝐿𝑒 0.06 ± 0.04 0.04 mmHg s2/ml
𝐿𝑠 0.09 ± 0.06 0.04 mmHg s2/ml
𝐵𝑒 0.0178 ± 0.0113 0.0025 mmHg s2/ml2
𝐵𝑠 0.11 ± 0.04 0.16 mmHg s2/ml2
𝐵𝑣 0.16 ± 0.09 0.06 mmHg s2/ml2

Fig. 3 presents the model curves for CSF flow and venous outflow
for two patients, Patient 1 and 10. We observed that the model behaves
as in data for the venous outflow. For the CSF flow, we saw a slightly
higher peak flow, a fast decrease in flow after the peak, and some
oscillation of flow towards the end of the period.

The model curves for volume changes, pressure changes, and flow
in and between the compartments for all patients are given in Sup-
plementary B. The mean and SD of optimal parameter values for all
patients and the individual parameter values for Patient 1 are given in
Table 1 and the individual parameter values for all patients are given
in Supplementary A. Patient 1 was chosen as ICP was within normal in
range and profile.

Using the optimal parameter values for Patient 1, we simulated
the model to picture different intracranial dynamics. Fig. 4 shows the
temporal evolution of ICP, arterial inflow, venous outflow, CSF flow,

slight compression of the brain tissue, and venous collapse in one
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Fig. 3. The venous outflow (𝑄𝑒) curves and CSF flow (𝑄𝑠) curves for two patients. The blue lines are the curves from the model and the red circles are data. For 𝑄𝑒, the value
of 𝑅2 were 0.75 and 0.85 for Patient 1 and 10, respectively. For 𝑄𝑠, the value of 𝑅2 was low and the average of the data gave a better fit. We note that CSF flow measurements
were subject to relatively large uncertainties. Also, flow data were average values over 2 min (around 120 heart cycles), hence, they appeared smoother than flow over one heart
cycle. Nevertheless, average CSF flow from model and data were close and model CSF flow were within a physiologically acceptable range.

Fig. 4. Temporal plots of ICP, arterial inflow (𝑄𝑎), venous outflow (𝑄𝑒), CSF flow (𝑄𝑠), slight compression of the brain tissue (−𝛥𝑉𝑐 ), and venous collapse (𝑉𝑣) over one period.
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Fig. 5. (Left:) Pressure–volume curve in the intracranial compartment for low pressure and addition of small volumes, where the curve was fairly linear. (Right:) Pressure–volume
curve in the intracranial compartment, which was projected for up to 1 ml change in stressed volume to show exponential nature.
Fig. 6. The ICP response curves in relation to introduction of fluid with volume 1, 3, 5, and 7 ml into the intracranial compartment. The introduction/injection was given at a
rate of 1∕𝑇 , 3∕𝑇 , 5∕𝑇 , and 7∕𝑇 , respectively, for one heart cycle (third period).
period. Fig. 5 presents the pressure–volume curve in the intracranial
compartment.

In Fig. 6, the ICP response to an addition of fluid volume equal to
1, 3, 5, and 7 ml to the intracranial compartment are presented. The
introduction/injection was given at a rate of 1∕𝑇 , 3∕𝑇 , 5∕𝑇 , and 7∕𝑇 ,
respectively, for one heart cycle.

In Fig. 7, the withdrawal of CSF volume equal to 1, 2, 3, and 4 ml
from the intracranial compartment is simulated. The withdrawal rate,
𝑄𝑙, was −1∕𝑇 , −2∕𝑇 , −3∕𝑇 , and −4∕𝑇 ml∕𝑠 for one period.

We simulated the ICP response when CSF was not absorbed into
the venous system. In particular, Fig. 8 (Left) shows the effect of a
continuous accumulation of CSF, 𝑄𝑙 = 0.35 ml/min, around 10, 20, and
30 min after it started. Furthermore, the ICP response to a CSF leak out
of the cranium greater than its production was simulated. Fig. 8 (Right)
presents the effect of a continuous leak of CSF, 𝑄𝑙 = −0.06 ml/min,
around 10, 20, and 30 min after it started.
7

3.2. Sensitivity

In this section, we examined different parameter variation and the
resulting effect on the model ICP. Here, we took note of the model
parameters that affect the ordering of ICP curve peaks according to
height and the frequency of ICP curve oscillations. We did this by
observing the changes in the ICP curve (over one period) when we
varied a given parameter from a 95% reduction of its optimal value
to a 95% increase of its optimal value for Patient 1 (see Table 1). We
note that Patient 1 had a normal range of ICP values and profile. We
observed the effects of the variation at the fifth cycle of the ICP curve
where it had already attained a periodic behavior. The two-dimensional
and three-dimensional sensitivity plots for ICP on variations of all
the optimized model parameters are given in Supplementary C and
Supplementary D, respectively.
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Fig. 7. The ICP response curves in relation to withdrawal of fluid of volume −1, −2, −3, and −4 ml from the intracranial compartment. The withdrawal rate was −1/T, −2/T,
−3/T, and −4/T ml/s for one heart cycle (third period).
Fig. 8. (Left) The ICP response curves in relation to continuous build up of CSF (𝑄𝑙 = 0.35 ml/min) into the cranial compartment at 10, 20, and 30 min after the start of the
accumulation. (Right) The ICP response curves in relation to continuous leak (𝑄𝑙 = −0.06 ml/min) out of the cranial compartment at 10, 20, and 30 min after the start of the leak.
We found that a large decrease in 𝑃𝑎0 or 𝐾𝑎, a large increase in 𝑃𝑣0
or 𝐾𝑣, a decrease in 𝐵𝑠, or a large increase in 𝐵𝑣 influenced the order
of the peaks in terms of height. We illustrate these in Fig. 9.

We observed that the change in frequency of oscillations in the
ICP was due to change in wavelength or due to merging of waves.
The change in frequency of oscillations due to change in wavelength
was most notable in a directly proportional change in 𝑃𝑐0 or 𝐾𝑐 . Small
changes in wavelength could also be observed with a change in 𝑃𝑣0,
𝐾𝑣, 𝑃𝑡, or 𝐵𝑠. As an illustration, we show the sensitivity plots for 𝐾𝑐
and 𝑃𝑡 in Fig. 10. The decrease in frequency due to merging of waves
could be observed for large increase 𝑃 , 𝐾 , or 𝐵 , increase in 𝑃 , or
8

𝑠0 𝑠 𝑣 𝑒
decrease in 𝑃𝑠,𝑜𝑢𝑡, 𝐿𝑠, or 𝐿𝑒. As an illustration, we show the sensitivity
plots for 𝐾𝑠 and 𝐿𝑒 in Fig. 11.

3.3. ICP curve categorization

In this section, we categorized two-parameter changes in accor-
dance to how they affect the order in terms of height of the 3 main
peaks of the ICP curve. Theoretically, we have 6 configurations: P123,
P132, P213, P231, P321, and P312. In the notation, the first number
after ‘P’ denotes the highest peak, followed by the next number, then
the last number being the lowest peak. For example, P312 means that
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Fig. 9. Sensitivity plot for ICP on variations in 𝑃𝑎0, 𝑃𝑣0, 𝐾𝑎, 𝐾𝑣, 𝐵𝑠, and 𝐵𝑣 where the parameters were varied from a 95% reduction of their optimal value up to a 95% increase.
he red curve corresponds to the ICP at their respective optimal values.
Fig. 10. Sensitivity plot for ICP on variations in 𝐾𝑐 and 𝑃𝑡 where the parameters were varied from a 95% reduction of their optimal value up to a 95% increase of their optimal
alue. The red curve corresponds to the ICP at their respective optimal values.
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he third peak is the highest followed by the first peak then the second
eak. Furthermore, there was the case of merging among the 3 main
eaks, which may lead to only 2 main peaks or one. We denote P21
nd P12 for two peaks and P1 for one.

From the sensitivity analysis, we saw that the parameters affecting
he order of the dominant peaks were mainly 𝑃 , 𝐾 , 𝑃 , 𝐾 , 𝐵 , and
9

𝑎0 𝑎 𝑣0 𝑣 𝑠 i
𝑣. We varied these parameters two at a time and observed their effect
n the order of the peaks. In Fig. 12, we present the classification of the
rder of the peaks relative to changing the elastance parameters in the
rterial and venous compartment. We saw 4 qualitative classes for the
hange in arterial elastance parameters while we saw 2 for the change
n venous elastance parameters. When arterial elastance parameters
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Fig. 11. Sensitivity plot for ICP on variations in 𝐾𝑠 and 𝐿𝑒 where the parameters were varied from a 95% reduction of their optimal value up to a 95% increase of their optimal
value. The red curve corresponds to the ICP at their respective optimal values.
Fig. 12. Color map representation of the change in order of the peaks as the elastance parameters in the arterial compartment (left panel) and venous compartment (right panel)
were changed. The color red corresponds to P123, blue to P213, black to P231, and yellow to P321. The boundaries can be approximated by curves of the form 𝑦 = 𝑎𝑥𝑏 + 𝑐. The
values for 𝑎, 𝑏, and 𝑐 for the boundary curves are given in Supplementary E.
Fig. 13. Color map representation of the change in order of the peaks for 𝐾𝑎 vs 𝐾𝑣 (left panel) and 𝐾𝑎 vs 𝐵𝑠 (right panel). The color red corresponds to P123, blue to P213,
green to P132, black to P231, yellow to P321, magenta to 312, white to P21, and cyan to P12.
were decreased, pathological peak patterns appeared while an increase
in venous elastance parameters led to a potentially pathological peak
pattern. In Fig. 13, we present the classes when we changed elastance
parameters in the arterial and venous compartments at the same time.
In this case, we observed more classes of peak patterns. We saw that a
70% decline in 𝐾𝑎 transformed the state into a highly sensitive region.
The color maps for the effect of the variations in the other parameters
are given in Supplementary E.

4. Discussion

Our current knowledge of human CBF was attained through studies
using single measurements. From these studies we know that the nor-
mal brain adjusts blood flow to meet the metabolism (Lassen, 1959) a
mechanism fairly independent of blood pressure variations (Meng and
Gelb, 2015). These features are called metabolic coupling and cerebral
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autoregulation, feature securing optimal perfusion to the brain tissue,
avoiding both edema and ischemia. In most acute brain catastrophes,
the metabolic coupling and/or cerebral autoregulation are malfunction-
ing making it vital for the treating physician to optimize CBF under
these pathologic situations. Such patients are routinely monitored with
online ICP. The ICP curve is a constellation of intracranial arterial
inflow and the compensatory venous and CSF reaction. Theoretically a
mathematical model can describe this interplay and the ICP curve form
can then provide information about the intracranial arterial, venous
and CSF system status, vital information to the treating physician in
order to optimize the handling of each single patient.

A mechanism-based model of ICP was proposed and calibrated to
data. We have shown that a simple CBF model was able to capture
the complex dynamics of blood flow, CSF flow, volume changes, and
pressure changes in the intracranial cavity. Through the model, we
were able to present the dynamics of CBF over the course of one
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heart cycle. A sensitivity analysis on the changes in ICP provided a
deeper understanding and classification of the ICP curve morphology in
terms of parameter changes. The model also presents a quantification of
intracranial compliance and the ability to simulate leak/accumulation
of fluid in the intracranial cavity.

4.1. Model development

We utilized stressed volume in the compartments and flow between
compartments as state variables. In the original mathematical model
on human intracranial hydrodynamics by Ursino (1988), the system
differential equations were in terms of change in pressure, 𝑑𝑃∕𝑑𝑡. This
was also the case in Olufsen et al. (2005), presenting a compartmental
model involving CBF. The expression for 𝑑𝑃∕𝑑𝑡 was obtained from
taking the derivative of the linear relation of volume and pressure,
𝑉 = 𝑐𝑃 , where 𝑐 is compliance. The derivative being
𝑑𝑉
𝑑𝑡

= 𝑐 𝑑𝑃
𝑑𝑡

+ 𝑃 𝑑𝑐
𝑑𝑡

= 𝑄𝑖𝑛 −𝑄𝑜𝑢𝑡. (22)

For models involving non-constant or state-dependent compliance, as
in the case of our model, taking the rate of change of compliance
adds more complexity. However, using volume in the compartments as
state variables is a simpler alternative (Domogo and Ottesen, 2021).
Moreover, using stressed volume instead; we further simplified the
system by having less parameters to optimize. This comes with the sim-
plification that unstressed volumes in the compartments were assumed
constant. Since our focus was the dynamics in a period of one heart
cycle this was reasonable. With these, we were able to incorporate a
state dependent compliance, inherent to the model, without having to
deal with its derivative. State dependent compliance was used in former
ICP models in Marmarou et al. (1978), Unnerbäck et al. (2020), Ursino
(1988) but a constant compliance (Olufsen et al., 2005) was a simplifi-
cation. To the best of our knowledge, there is no CBF model involving
state dependent compliance inherent from a general mono-exponential
pressure–volume relation in the arterial, intracranial, and spinal com-
partments and pressure–volume relation as in collapsible tubes in the
venous compartment. In relation to flow, the use of the unsteady
Bernoulli equation was advantageous because of 3 features. First, it
involves inertance. This brings about delay in the hydrodynamic effects
of pressure changes within the intracranial compartments, which may
cause oscillations in the ICP curve (Unnerbäck et al., 2020). Indeed,
we observed from the sensitivity analysis in Section 3.2 that letting the
venous outflow inertance go to zero leads to the loss of oscillations
(see Fig. 11). Second, it incorporates a state dependent resistance. A
large change in arterial pressure does not change CBF (Guyton and
Hall, 2016). In our model, this was captured by the resistance itself
being proportional to the flow. Finally, it captured the two-directional
flow between the intracranial cavity and the spine through the foramen
magnum.

4.2. ICP curve morphology

The physiological causes of the ICP curve morphology have been a
continuing discussion for years (Balédent et al., 2018). Earlier studies
have been looking at the relation of ICP and the intracranial arterial
blood pressure (Unnerbäck et al., 2020). Recently, studies pointed to
the dynamics of blood flow and CSF flow as an explanation of the ICP
curve morphology (Alperin et al., 2000; Unnerbäck et al., 2018). In
particular, the peaks may be the product of the natural physiological
properties in the intracranial cavity that depend on intracranial arterial
blood inflow and intracranial compensatory mechanisms (Unnerbäck
et al., 2020). In general, the shape of the ICP curve was shown to be the
result of dynamics between arterial, venous, and CSF flow compensated
by elasticity of the intracranial cavity (Nornes et al., 1977; Avezaat and
van Eijndhoven, 1986; Balédent et al., 2006).

Our model was able to capture the interaction of blood flow and CSF
flow moderated by compliance of the intracranial cavity. Moreover,
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the model gave a visualization of these dynamics through the course
of one heart cycle. In Fig. 4, we observed that surge in arterial inflow
is in conjunction with ICP increase that oscillates back to its original
value. The rapid arterial inflow was compensated by increase in venous
outflow, increase in CSF flow, and a slight compression of the brain
tissue (Greitz et al., 1992; Unnerbäck et al., 2020). Note that the
small volume oscillations in 𝑉𝑐 compress the brain tissue, 𝑉𝑡, only
insignificantly. We noticed the collapse of the veins at increased ICP,
which suggests that this is one way of compensatory behavior that helps
increase venous outflow. Note that the collapse of the cerebral venous
bed is influenced by ICP (Ursino, 1988). Now, one of the main role
of the CSF is to cushion the brain within the hard skull (Guyton and
Hall, 2016). In relation to this, we observed that after compression the
brain tissue oscillates back to its original state. Notice that this is in
conjunction with the oscillatory behavior of the CSF flow after reaching
its climax. This oscillatory dampening of the decompression of the brain
tissue may be attributed to the cushioning effect of CSF.

Furthermore, we uncovered the parameters that predominantly af-
fect ICP morphology. From the sensitivity analysis in Section 3.2, we
identified the order in terms of height of the 3 main peaks of the
ICP curve, which was affected by a sufficient decrease in arterial
elastance, a sufficient large increase in resistance to arteriovenous flow,
a sufficient large increase in venous elastance, or a sufficient decrease
in resistance to CSF flow in the foramen magnum. Frequency of oscil-
lations in the ICP curve was most sensitive to change in intracranial
elastance.

Finally, we classified the order of the peaks according to two pa-
rameters simultaneously varied. Note that the ICP curve over one heart
cycle is formed by 3 main peaks, denoted as P1, P2, and P3 (Carrera
et al., 2010). Also, the shape of the ICP is used to guide management
of brain diseases. In Nucci et al. (2016), they have identified normal,
potentially pathological, likely pathological, pathological cases based
on the arrangement of the 3 main peaks of ICP. In Section 3.3, we
provided a visual classification of the different order of the 3 main
peaks of the ICP curve. We showed the evolution of the peaks brought
about by simultaneous changes in two parameters and classified which
configuration occur with these parameter changes. We observed that
the changes in order of the 3 main peaks were mainly influenced by
a decrease in arterial elastance. At decreased arterial elastance, small
perturbation in venous elastance, CSF flow resistance, or arteriovenous
flow resistance led to different configurations.

4.3. Intracranial compliance

What is intracranial compliance really? Theoretically, it is a function
relating change in ICP to a change in corresponding volume of the
intracranial contents. The Monro-Kellie doctrine (Czosnyka and Citerio,
2012) states that the sum of intracranial volumes, brain tissue, CSF,
arterial and venous blood, is constant. The intracranial compliance
concept is particularly complex as an increase in one of the above
mentioned volumes should cause a compensatory reciprocal decrease
in either one or both of the remaining where each volume have its own
specific in- and outflow pattern. Different methods have been presented
in order to assess intracranial compliance (Szewczykowski et al., 1977;
Cardoso et al., 1983; Robertson et al., 1989; Czosnyka et al., 1996,
1997). None of these methods directly describe intracranial compliance
fully. Thus, using them to deduce changes in brain compliance must be
done with utmost care (Czosnyka and Citerio, 2012).

Through the compartmentalization of the intracranial cavity intro-
duced in Unnerbäck et al. (2020) and adapted in our model, we were
able to quantify the change in volume and change in pressure of the
compartment containing the arterial, venous, and CSF compartments.
In our model, we denoted it as the intracranial compartment. We used
a mono-exponential function to represent the pressure and volume
relationship in this compartment as suggested in Marmarou et al.
(1978), Avezaat et al. (1979) and used in Ursino (1988). Thus, the
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compliance of this compartment is nonconstant. In Eq. (14), we see
that the compliance of the intracranial compartment is an exponential
decaying function of stressed volume. That is, the intracranial com-
partment becomes more noncompliant as stressed volume increases.
In Fig. 5, we observed that the pressure–volume curve in intracranial
compartment is almost linear in the normal range. This means that a
constant compliance maybe a good approximation. This is in agreement
with observations that the increase in intracranial elastance in man
is fairly linear up to 30mmHg but afterward the increase becomes
steeper (Friden and Ekstedt, 1983). Hence, considering brain diseases,
e.g. causing edema, in the cranium, a constant compliance may not be
suitable.

In clinical practice, compliance can be measured by withdrawal
of a fixed CSF volume from the intracranial cavity and observing
the change in diastolic ICP before and after withdrawal. Through the
model, this compliance measurement could also be obtained. In Fig. 7
for example, we can divide the volume of fluid taken out of the
intracranial compartment by the change in diastolic ICP before and
after withdrawal.

4.4. ICP response simulations

We simulated the effect of addition or leak of fluid in the intracra-
nial compartment Vc. Experimentally, this is done by fluid injection or
removal of CSF, which are invasive maneuvers. This can be performed
in neurological practice to gain information on intracranial dynamics
and determine the value of physiologically important parameters like
intracranial compliance and CSF outflow resistance [Ursino (1988)].
Through our model, we simulated these invasive operations without
any risk to human safety. Specifically, we simulated the effect of
cerebral edema, hydrocephalus, or intracranial hypotension on the ICP
curve over one heart cycle. We note that simulations of infusion of
artificial CSF into the intracranial compartment using a mathematical
model were also done in Eklund et al. (2007).

In Fig. 6, the ICP response to an addition volume of 1, 3, 5, and
7 ml are observed. We observed that ICP attains a periodic behavior
after 2 cycles and potentially pathological peak pattern appeared as
greater volume of fluid was introduced, which were similarly observed
in Eklund et al. (2007) during Bolus infusion. This simulation could be
representative of an edema of size, e.g. 5 ml, which has formed in the
period of 1 heart cycle.

In comparison to injection of fluid into the intracranial cavity,
the extraction of fluid to determine intracranial elastance is a more
common clinical practice. Both are invasive maneuvers but injection
of fluid presents a greater threat to patient safety [Unnerbäck et al.
(2019)]. In Fig. 7, we simulated the withdrawal of CSF volume equal
to 1, 2, 3, and 4 ml and observed the same effect as in experiments.

The production of CSF is approximately 0.35 ml/min. In the event
that these are not absorbed into the venous system then it will accumu-
late in the intracranial cavity, as in the case of hydrocephalus. In Fig. 8
(Left), we looked at the ICP response when CSF was not absorbed. We
observed the increase in ICP and the formation of potentially patholog-
ical peak patterns as time went by, which is also similarly recorded
during constant rate infusion of artificial CSF (Eklund et al., 2007;
Andersson et al., 2011). On the other hand, intracranial hypotension
is caused by a CSF leaking out of the cranium at a rate greater than
its production. In Fig. 8 (Right), we observed the decrease in ICP and
flattening of the ICP curve as CSF leaks out of the intracranial cavity.

4.5. Limitations

In this study, the optimized model parameter values were obtained
through numerical methods. These optimal parameter values represent
a local solution to the optimization problem, which may not be guar-
anteed to be within the physiological range. Also, it may be possible
to find different sets of parameter values that provide similar model
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states (Pope et al., 2011). We addressed these considerations by deriv-
ing initial parameter values from related studies and patient-specific
data. To a certain extent, this guaranteed that our local solution was
near the true solution. Also, the model had been calibrated well with
ICP data from 10 persons where obtained optimal values were within
acceptable variation. Furthermore, the obtained venous outflow and
CSF flow in the foramen magnum curves were within a physiologically
accepted range. The deviation between venous outflow and CSF flow
over time could be due to model simplification. Note that blood is a
non-Newtonian fluid with rheological properties, so it is more viscous
compared to Newtonian fluids. But in modeling studies, non-Newtonian
rheology is seldom considered at the systemic level. Instead, blood is
commonly described as a Newtonian fluid for less complexity (Domogo
and Ottesen, 2021). Also, viscosity, which is not factored into the
unsteady Bernoulli equation, affects CSF flow (Støverud et al., 2013).
Although the Bernoulli equation may be sufficient to characterize CSF
flow in persons without obstructed subarachnoid spaces, it was shown
that for patients with obstruction it is more precise to use the Navier–
Stokes equation (Støverud et al., 2013; Ringstad et al., 2017; Sartoretti
et al., 2019). But, the deviations may also reflect measurement errors.
Flow and ICP were measured in very small time intervals (of length
around 30 ms). This may cause complications in calibrating time for
the various measurements, which may lead to errors. The flow was
calculated from CMRi scans over the period of 2 min (around 120
heart cycles) at homeostatic stable condition. From this, flow over
1 heart cycle is calculated, giving an average flow curve. Hence, a
smoother curve is observed from data compared to model output.
Note that CSF flow in the cerebral aqueduct is oscillatory, which is
dependent on breathing and heart beat (Markenroth Bloch et al., 2018).
Also, it may be the case that the small magnitudes of the CSF flow
measurements are accompanied by relative large uncertainties (Unner-
bäck et al., 2020). Furthermore, venous flow measured in the jugular
veins, as in the case of data, is different from venous flow at the
point of exit in the cranial cavity (Stoquart-Elsankari et al., 2009).
Compared to most modeling using simple models of complex systems
the validation of model generated CSF flow and venous outflow by
experimentally obtained values is adequate in the sense that earlier
studies are only able to perform validation with average values (Gadda
et al., 2016). If we instead add more details in the model (which may
be more speculative or less certain than desired) then more unknown
parameters would be introduced. With more unknown parameters, we
may achieve greater model accuracy but the reliability of the findings
would decrease. For this study, we strike a balance between model
accuracy and reliability but we recognize that further work is needed
to understand the deviations.

In CBF modeling, autoregulation is a very important mechanism and
it plays a crucial role over timespan longer than one heart beat. In the
current paper, we study the faster oscillatory patterns during a single
heart beat where autoregulation plays an insignificant role (Klein et al.,
2019; Panerai, 2008). Hence, autoregulation is not incorporated in the
model. In future work we expect to study the dynamics over several
heart beats by extending the present model to incorporate autoreg-
ulation, among others. Moreover, the compliance of the intracranial
compartment does not always change exponentially. It is linear for
low pressures, then it becomes exponential for increased pressures,
and it deflects to the right when ICP causes cerebral arterioles and
arteries to collapse. However, for low pressures the exponential is well
approximated by a linear relation and we are not in the range of
extremely high pressures where deflection are seen, that is, we have
arterial pressure that is always greater than ICP. Hence, the mono-
exponential pressure–volume relation is a simple way of capturing
the compliance of the intracranial compartment while unnecessarily
introducing additional parameters and complexity in the model.

Another mechanism that is important over longer timespan is CSF
production and absorption. In future work, where study the dynamics
over several heart beats, we may add more details into the model by
incorporating CSF production and absorption as given in Eklund et al.
(2007). This may improve the deviations between CSF flow from the

model and data.
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5. Conclusion

In conclusion, we have developed a simple mechanistic and patient-
specific compartmental model of CBF involving the cerebral arteries
and veins, CSF, and the brain tissue. We were able to take into account
different features of intracranial dynamics simultaneously. Specifically,
we used a mono-exponential pressure–volume relationship in the in-
tracranial compartments, pressure–volume relation in collapsible tubes
in veins, and the unsteady Bernoulli equation to represent fluid flow.
Through an iterated constrained-ODE optimization routine, the model
was calibrated well with ICP data from 10 patients over the period of a
heart cycle while at the same time providing venous outflow and CSF
flow in the foramen magnum that were within acceptable physiological
range. Moreover, we determined patient-specific model parameter val-
ues, e.g., physiologically important parameter values like intracranial
compliance, arterial elastance, venous elastance, and venous outflow
resistance. Through sensitivity analysis, we identified the parameters
that affected the order of the 3 main peaks and frequency of oscillations
in the ICP curve. In particular, decrease of arterial elastance or large
increase in resistance to arteriovenous flow led to pathological peak
patterns. Increase in venous elastance or large decrease in CSF flow
resistance led to potentially pathological peak patterns. Furthermore,
the compliance of the intracranial compartment had a notable effect
on the frequency of oscillations in the ICP curve. We presented an
alternative to invasive maneuvers used to measure ICP response to
injection/removal of CSF through model simulations. In this illustra-
tion, ICP response over one heart cycle during the onset of brain
edema, hydrocephalus, and intracranial hypotension was simulated.
Through the mechanistic model, which could be calibrated to different
patients, pathological peak patterns were clarified by the values of
model physiological parameters or the accumulation/leak of fluid in the
intracranial cavity. This presents an approach for medical doctors and
the pharmaceutical industry to help them address the causes underlying
patient-specific intracranial conditions instead of treating observed
symptoms.
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