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Lines of invariant physics in the isotropic phase of the discotic 
Gay-Berne model 
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a “Glass and Time”, IMFUFA, Dept. of Science and Environment, Roskilde University, P. O. Box 260, DK-4000 Roskilde, Denmark 
b Bundesanstalt für Materialforschung und -Prüfung, Unter den Eichen 87, 12205 Berlin, Germany  

A B S T R A C T   

The Gay-Berne model is studied numerically with a choice of parameters allowing for the formation of a discotic liquid crystal at low temperatures. We show that the 
model has strong virial potential-energy correlations in the isotropic phase at high temperatures, i.e., it obeys the criterion for the existence of isomorphs, which are 
curves of approximately invariant structure and dynamics. These properties are demonstrated to be approximately invariant in reduced units along the isomorph 
studied. The isomorph is described well by the constant density-scaling exponent 11.5, a number that is significantly larger than the density-scaling exponents of 
various Lennard-Jones models that are always below 6.   

1. Introduction 

Liquid crystals constitute an intriguing family of materials with 
properties in-between the standard liquid and crystalline phases [1–3]. 
When the molecules are rod shaped, three main phases are typically 
found: isotropic, nematic, and smectic. The isotropic phase mimics the 
ordinary fluid phase with no long-range positional or orientational 
ordering. The nematic phase is characterized by long-range orientational 
order, but only short-range translational order. This phase is liquid in 
the sense of being able to flow freely, described by a viscosity that is not 
simply a scalar quantity. Optical properties of the nematic phase are 
likewise anisotropic, which is the basis for the use of this phase for ap-
plications in displays, etc. The smectic phase involves additional 
ordering by forming distinct layers, i.e., a partial positional order is 
introduced. There are different smectic phases, the most important ones 
being the smectic A phase in which the molecules are directionally or-
dered perpendicular to the layers and the smectic C phase involving 
molecules that are tilted relative to the layers. Both of these phases are 
positionally disordered in the layers. Other phases that may be 
encountered – depending on the molecule in question – are the chole-
steric phase found only for chiral molecules and the so-called blue phase 
consisting of cubic structures of defects. As for any other first-order 
phase transition, it is possible to supercool the isotropic phase by cool-
ing it fast below the transition temperatures of the partially ordered 
phases. 

When the molecules instead of being rod-like are disc shaped, the 
system is termed a discotic liquid crystal [4–9]. Discotic liquid crystals 

can display various mesophases, the most common being the discotic 
columnar and nematic phases. The discotic nematic phase is similar to 
the standard nematic phase; here the short axes of the discs are aligned 
in one preferred direction. In the columnar phase the discs stack on top 
of each other into columns that organize into hexagonal or rectangular 
order. This phase is of interest for optoelectronic applications. 

A standard model for numerical studies of rod-like liquid crystals is 
the Gay-Berne (GB) model [10–15]. This model has also been studied in 
other contexts than those relevant for liquid-crystal formation. Thus 
Angell and coworkers [16] in 2013 used the GB model to elucidate the 
possible existence of ideal glassformers, which are systems that vitrify 
upon cooling before becoming metastable with respect to crystal for-
mation. This would imply that glasses may also form in the equilibrium 
liquid phase, contradicting the prevailing opinion that glasses always 
form from liquids that are supercooled with respect to the freezing 
transition. While the paper by Angell et al. [16] did not prove that this is 
possible, it presented a convincing case by reporting “that in the aspect 
range of maximum ellipsoid packing efficiency, various GB crystalline 
states that cannot be obtained directly from the liquid disorder spon-
taneously near 0 K and transform to liquids without any detectable 
enthalpy of fusion.” This definitely suggests that the GB model (for 
certain aspect ratios) may be an ideal glassformer. 

This paper presents a GB-model study which, like the 2013 paper by 
Angell et al., does not focus on liquid-crystal properties. We study the GB 
model for a set of parameters that allows for the formation of a discotic 
liquid-crystal phase at low temperatures. The focus is on the model’s 
high-temperature isotropic phase with a view to investigate the possible 
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existence of isomorphs. The motivation is the finding reported below 
that the high-temperature isotropic phase has strong virial potential- 
energy correlations, the condition for the existence of isomorphs, 
which are lines in the thermodynamic phase diagram of approximately 
invariant reduced-unit structure and dynamics [17–20]. 

2. Simulation methodology 

2.1. The Gay-Berne potential 

The GB potential was proposed as a simple model for rod-like mol-
ecules [10]. The potential takes the form of a Lennard-Jones interaction 
with characteristic length and energy scales that depend on the two 
molecules’ orientations relative to one another. The pair potential is 
given by 

v
(

r̂ij, êi,êj
)
= 4ε
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+ σs. (1b)  

Here rij is the distance between the centers of the molecules i and j, r̂ij is 
the unit vector along rij = ri − rj, and ̂ei and ̂ej are unit vectors along the 
major axes of each molecule. The GB model is characterized by 
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êi⋅r̂ij + êj⋅r̂ij
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κ2 + 1

and κ = σe

/

σs. (2b)  

Here χ is a shape-anisotropy parameter and κ quantifies the elongation 
of the molecule. The case κ=1, χ=0 corresponds to spherical particles, κ 
→  ∞ , χ → 1 corresponds to very long rods, and κ → 0, χ →  − 1 cor-
responds to very thin disks. 

The energy term appearing in the GB potential is given by 
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Here the “energy anisotropy parameter” χ′ is defined by 

χ ′

=
κ′ 1/μ

− 1
κ′ 1/μ

+ 1
, with κ′

= ∈ss

/

∈ee (3d) 

The parameters ϵss and ϵee are the well depth of the potential in the 
side-to-side and end-to-end configurations, respectively, while ν and μ 
are exponents. In the original GB paper, rod-like molecules were simu-
lated with parameters in the notation GB(κ, κ′, μ, ν) = GB(3,5,2,1). 

2.2. The discotic GB model 

To mimic a discotic liquid-crystal using the GB potential one replaces 
σs by σe: 

v
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)
[(

σe

ρij

)12

−

(
σe

ρij

)6
]

(4a) 
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+ σe, (4b)  

keeping everything else the same. This choice avoids the unphysical 

effects [21] previously described by Bates and Luckhurst [12] and used 
by Cienega-Cacerez et al. [22] to obtain a discogen phase diagram for GB 
(0.345,0.2,1,2). The parameter σe defines the thickness of the discogen. 

2.3. Simulation details 

The system studied consists of N = 2048 disks. The potential is 
truncated, but not shifted, at rc=1.6σs following the above-mentioned 
paper. Units are defined by putting σs = 1 and ε0 = 1. We use the 
standard Nosé-Hoover NVT algorithm for the center-of-mass motion 
[23] and the IMP algorithm of Fincham for the rotational motion [24] 
with 10 iterations per step. We find that the latter algorithm, although 
not rigorously time reversible, conserves the energy very well. NVT 
simulations for the rotational motion follow the “Toxvaerd” version of 
the Finchham algorithm [25] (not the Berendsen version outlined in 
Ref. [24]). Two independent thermostats were applied for translation 
and rotational motion (using a single thermostat did not give noticeable 
differences). The moment of inertia of the discs was I = 1. Equilibration 
and production runs consisted of 5 × 106 time steps each with 
Δt=0.0005. The GB implementation was compared to the literature 
comprising also, e.g., quaternion algorithms for the standard GB model; 
full agreement was established for time-correlation functions, etc. 

2.4. Isomorphs 

We study in this paper an isomorph in the high-temperature isotropic 
phase. Isomorphs are defined as curves of constant excess entropy Sex. 
They can be generated numerically by utilizing the following general 
statistical-mechanical identity in which ρ is the particle density and T is 
the temperature [18]. 

γ ≡

(
∂lnT
∂lnρ

)

Sex

=
〈ΔUΔW〉
〈
(ΔU)2

〉 (5)  

Here U is the potential energy and W is the virial. This equation is used 
as follows. At a given state point (ρ, T) one calculates the fluctuation 
average on the right hand side from an NVT simulation. If, for instance, 
this results in γ=3, Eq. (5) implies that if density is increased by 1%, 
temperature should be increased by 3% to keep the excess entropy 
constant. In this way one can step-by-step trace out an isomorph in the 
thermodynamic phase diagram. We used the fourth-order Runge-Kutta 
algorithm to do this numerically, which is more accurate than the simple 
Euler algorithm [26]. We increased the density by 1% at each step and 
covered an overall density variation of 20%. 

The dynamical behavior along the isomorph is analyzed in terms of 
time-autocorrelation functions defined by 

ϕA

(

t
)

=
〈A(t0)⋅A(t0 + t)〉
〈A(t0)⋅A(t0)〉

(6)  

where A(t) is a vector dynamical property referring to a given molecule 
at time t. We evaluate below ϕA(t) for A being the velocity of the mol-
ecule’s center-of-mass, as well as the angular velocity. To study the 
orientational motion we calculate the self-particle orientational corre-
lation functions, 

ϕl(t) = 〈Pl(êi(t0)⋅êi(t0 + t))〉 (7)  

where Pl is a Legendre polynomial (l=1 and 2) and i is a particle index. In 
the above expressions, the angular brackets imply an average over 
particles and time origins. The spatial orientational correlation function 
is defined as follows 

G2
(
r
)
≡
〈
P2
(

êi⋅êj
)〉

(8)  

in which the average involves the pairs of particles i and j that are the 
distance r apart. 
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Fig. 1. Snapshots of the discotic GB model in thermal equilibrium at three state points (schematic drawings). (a) shows the isotropic liquid phase at (ρ, T) = (0.6,2.6); 
(b) shows the nematic phase at (ρ, T) = (2.3,2.6); (c) shows the columnar phase at (ρ, T) = (3.0,2.6). 

Fig. 2. The phase diagram of the discotic GB(0.345,0.2,1,2) model with R values (Eq. (9)) given by the color code to the right. The triangular symbols delimit the 
phase boundaries [22]. I stands for the isotropic, N for the nematic, and C for the columnar phase. The red filled circle is the isomorph reference state point (ρ, T) =
(2.3,5.0), the white curve is the isomorph (which is studied up to T=43). 
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2.5. Units 

As mentioned, quantities are reported using the length unit σs and the 
energy unit ε0 (MD units). We apply, however, also the “macroscopic” 
unit system based on the length unit ρ− 1/3 and the energy unit kBT. Note 
that these so-called reduced units vary with state point. Isomorph 
invariance of structure and dynamics applies only when the quantities in 
question are given in reduced units [18], which is marked below by a 
tilde. 

3. Phase diagram of the discotic GB model 

Fig. 1 shows snapshots from simulations of the discotic GB model in 
the isotropic, nematic, and columnar phases, respectively. The pictures 
represent typical thermal equilibrium configurations. Each simulation 
was started from a perfect crystal at unit density after which density and 
temperature were changed to gradually reach the required values. To 
ensure that the system at the density and temperature aimed for is in 
equilibrium, similar simulations were performed starting from a high 
density and temperature and gradually decreasing those to the desired 
values. 

The thermodynamic phase diagram of the model is investigated in 
Fig. 2 reporting the virial potential-energy correlation coefficient R 
defined [17] by 

R =
〈ΔUΔW〉

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅〈
(ΔU)2

〉〈
(ΔW)2

〉√ (9)  

Here Δ denotes the deviation from the thermal average and the sharp 
brackets denote equilibrium canonical constant-volume (NVT) averages. 
The condition defining “strong UW correlations” is R>0.9. This is the 
pragmatic criterion used for identifying regions of the phase diagram in 
which a given system is expected to have isomorphs, implying approx-
imately invariant reduced-unit structure and dynamics [18]. 

In the figure, the letters “I”, “N”, and “C” denote the isotropic, 
nematic, and columnar phases, delimited by the triangular symbols 
(data taken from Ref. 22). The color coding reflects the value of R. We 
see that for temperatures above 5 and densities above about 2.4, i.e., 
well into the high-temperature isotropic phase, R is large enough to 
qualify for strong virial potential-energy correlation. The isomorph 
studied in this paper (white line) was generated as described in Sec. 2.3 

starting from the reference state point (ρ, T) = (2.3,5.0). We proceed to 
investigate how different probes of structure and dynamics vary along 
this isomorph. 

4. Comparing the isomorph to the ρ¼2.3 isochore 

The discotic GB model has more structural and dynamic signatures 
than a simple liquid for which there is basically just the radial distri-
bution function (RDF) g(r) and the time-dependent mean-square 
displacement (MSD). This section investigates to which degree structure 
and dynamics are invariant along the isomorph (white line in Fig. 2). 
Quantities are reported in reduced units (Sec. II.E). In order to put the 
isomorph findings into perspective, we compare to the variation of the 
same quantities along the ρ=2.3 isochore over the same temperature 
range as along the isomorph (5<T<43). Table 1 gives data for the 
isomorph state points studied. 

Table 1 
The density ρ, temperature T, correlation coefficient R (Eq. (9)), and density- 
scaling exponent γ (Eq. (5)) of the state points studied along the isomorph. At 
each step density was increased by 1%. For the ρ=2.3 isochore we used same 
temperatures as in the table.  

ρ T R γ 

2.300 5.000 0.8919 10.72 
2.323 5.569 0.9087 10.99 
2.346 6.222 0.9236 11.25 
2.370 6.964 0.9354 11.41 
2.393 7.805 0.9449 11.53 
2.417 8.753 0.9511 11.56 
2.441 9.821 0.9567 11.58 
2.466 11.02 0.9598 11.57 
2.491 12.36 0.9626 11.56 
2.515 13.87 0.9646 11.53 
2.541 15.55 0.9657 11.48 
2.566 17.43 0.9672 11.46 
2.592 19.53 0.9676 11.43 
2.618 21.88 0.9678 11.41 
2.644 24.50 0.9677 11.37 
2.670 27.43 0.9673 11.33 
2.697 30.71 0.9673 11.32 
2.724 34.36 0.9673 11.30 
2.751 38.45 0.9668 11.28 
2.779 43.01 0.9662 11.26  

Fig. 3. Comparing the reduced-unit MSD along the isochore and the isomorph. 
At short times both figures exhibit a ballistic regime where the MSD is pro-
portional to t2; by the definition of reduced units the ballistic regime is the same 
at all state points. At long times both figures exhibit a diffusive regime where 
the MSD is proportional to t. Only along the isomorph do the data collapse in 
both regimes. Data are shown for 20 state points with 2.30<ρ<2.78 
and 5<T<43. 

Fig. 4. Upper panel: center-of-mass velocity autocorrelation function as a 
function of the reduced time. Lower panel: angular velocity autocorrela-
tion function. 
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4.1. Dynamics 

Fig. 3 compares the reduced-unit MSD along the isochore and the 
isomorph. Only along the isomorph is there invariance. Such data are 
typical for systems with isomorphs, so-called R-simple systems, and the 
data confirm the prediction of invariant dynamics along an isomorph 
[18]. One can think of an isomorph as a line in the phase diagram along 
which all physics relating to the positions and motion of the particles 
relative to one another is the same. Thus if one imagines filming the 
molecules at two different state points on a given isomorph, the same 
movie is recorded except for a scaling of space and time. This is the 
prediction for perfect isomorphs which, however, only exist in systems 
for which the potential-energy function is homogenous (implying R=1). 
For more realistic systems, isomorph invariance is approximate. 

Fig. 4 gives data for two different velocity autocorrelation functions. 
The upper row shows the reduced center-of-mass velocity autocorrela-
tion function along the isochore (left) and along the isomorph (right). 
We see data collapse along the latter, but not along the former. This is 
not surprising in view of Fig. 3 because the velocity autocorrelation 
function is two times the second derivative of the MSD. The two lower 
figures report the angular velocity autocorrelation functions, a quantity 
that has no analog in the standard Lennard-Jones model. Again we 

observe dynamic invariance along the isomorph, but not along the 
isochore. 

Fig. 5 shows data for the first- and second-order orientational time- 
autocorrelation functions. In all cases, the function is unity at short 
times and decays to zero at long times. Only along the isomorph is the 
decay invariant to a good approximation. 

We conclude that the reduced-unit dynamic characteristics are 
approximately invariant along the isomorph, but not along an isochore 
with the same temperature variation. This confirms the isomorph-theory 
prediction. 

4.2. Structure 

Next we report data for the reduced-unit structure. The upper panel 
of Fig. 6 shows the ordinary center-of-mass RDF along the isochore and 
the isomorph. The data are more invariant along the latter, but this time 
the difference is less striking. A similar observation is made for the 
spatial orientational correlation function (Eq. (8)) plotted in the lower 
figures. 

Isomorph invariance of the isotropic phase of the discotic GB model 
is more pronounced for the dynamics than for the structure. A similar 
observation has been made in some liquids for which the height of the 
first peak of the radial distribution function may vary along an isomorph 
if the density-scaling exponent varies significantly [27]. This is consis-
tent with the recent finding that the so-called bridge function is 
isomorph invariant [28], because an invariant bridge function implies 
that the RDF cannot be rigorously invariant. 

5. Applying the constant-exponent density-scaling framework 

Turning back to the dynamics, we now seek to interpret it in terms of 
density-scaling in its classical version for which the density-scaling 
exponent γ is assumed to be a material constant, i.e., not to vary with 
state point [29,30]. In this version, dynamic quantities are predicted to 
be a unique function of ργ/T when plotted in reduced units. 

In isomorph theory γ is the generally state-point-dependent quantity 
defined in Eq. (5). Fig. 7 shows how this γ and the virial potential-energy 
correlation coefficient R vary along the isomorph. The correlation co-
efficient increases as temperature and density are increased moving 
toward the upper right corner. At the same time, γ increases and goes 
through a maximum. 

We calculated the average value of the isomorph-theory density- 
scaling exponent (Eq. (5)) along the four isochores given by ρ=2.2, 
ρ=2.3, ρ=2.4, and ρ=2.5 with temperatures obeying T ∈ [5,43],[4,32], 
[10,32],and[11,43], respectively. The results is 

Fig. 5. First order (upper panel) and second order (lower panel) orientational 
autocorrelation functions (Eq. (7)). 

Fig. 6. Radial distribution function and orientational correlation function 
plotted as functions of the reduced distance along the isochore and 
the isomorph. 

Fig. 7. Plot of γ versus R along the isomorph. The lower left corner is the 
reference state point (ρ, T) = (2.3,5.0); moving to higher temperatures and 
densities corresponds to moving to the upper right. 
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γ = 11.5. (10)  

This number is much larger than the density-scaling exponents found in 
standard Lennard-Jones models, which are never above 6 [17,18,31]. 
This emphasizes how different the GB model is from point-particle 
Lennard-Jones models, which also have isomorphs [32]. We conclude 
that the existence of isomorphs of the GB model is not inherited in a 
trivial way from the standard Lennard-Jones model. 

Fig. 8(a) shows the average relaxation time of the angular autocor-
relation function identified as the time at which this has reached the 
value 0.2, plotted as a function of the temperature along four isochores. 
Fig. 8(b) tests the constant-exponent version of density scaling with the 
average γ of Eq. (10). We find a good collapse for most data, with de-
viations at the longest relaxation times (lowest temperatures). This is 
where the density-scaling exponent deviates most from its average value 
11.5, compare Fig. 7, i.e., where the constant-exponent approximation is 
expected to work less well. 

Fig. 9 shows a similar figure for the center-of-mass diffusion coeffi-
cient D (with the additional isochore ρ = 2.1), extracted from the long- 
time behavior of the MSD. Fig. 9(a) shows the data for D as a function of 
the temperature and (b) shows the reduced-unit diffusion coefficient as a 
function of ρ11.5/T. We again see a good data collapse. 

6. Discussion 

This paper has demonstrated the applicability of isomorph theory to 
the high-temperature isotropic phase of the discotic Gay-Berne model. 
We have traced out an isomorph and shown that along it the reduced- 

unit dynamics is invariant to a good approximation, while it is not 
invariant along an isochore with the same temperature variation. Dy-
namic invariance applies not only for the standard mean-square 
displacement and velocity autocorrelation functions as a function of 
the reduced time (note that these are not independent quantities), 
invariance applies also for the first- and second-order orientational time- 
autocorrelation functions. The reduced-unit structure quantified by the 
radial distribution function and the corresponding spatial orientational 
correlation function are also isomorph invariant to a good approxima-
tion, although these quantities vary relatively little even along the 
isochore. 

The isomorph-theory density-scaling exponent γ varies between 10.7 
and 11.6, with the majority of exponents found close to 11.6 when 
studied along, e.g., the ρ=2.5 isochore. The density-scaling exponent 
averaged over the four isochores is 11.5. It is not clear why this value is 
so much larger than density-scaling exponents of the standard and 
various binary Lennard-Jones models. Constant-exponent density 
scaling applies with this value of γ, i.e., a good collapse is observed when 
the reduced-unit angular relaxation time and the reduced-unit diffusion 
coefficient are plotted as functions of ρ11.5/T. 

This paper presented the first application of isomorph theory to a 
liquid-crystal model. Future works will focus on other GB models and on 
the possibility of extending isomorph theory to ordered phases such as 
the nematic phase. In Ref. 14 density scaling was shown to apply for the 
GB model in the nematic phase with parameters corresponding to rod- 
like particles. For the current GB discotic liquid-crystal model we 
needed to go to high temperatures to find strong virial potential-energy 
correlations, but the fact that density scaling applies for the ordered 

Fig. 8. (a) Average angular relaxation time as a function of temperature along four isochores with density varying from ρ=2.2 to ρ=2.5. (b) The same data for the 
average angular relaxation time plotted in reduced units as a function of the constant-exponent density-scaling variable ργ/T with γ=11.5. 

Fig. 9. (a) Diffusion coefficient as a function of temperature along five isochores with density varying from ρ=2.1 to ρ=2.5. (b) The same data plotted in reduced 
units as a function of the density-scaling variable ργ/T with γ=11.5. 
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phases of the GB model for other parameters than those studied here 
suggests that isomorphs may also exist in the model’s ordered phases. 
This is the subject of an ongoing investigation. 

7. Conclusion 

We have demonstrated the existence of isomorphs in the isotropic 
phase of the Gay-Berne liquid-crystal model. This shows that the model 
has the hidden-scale-invariance symmetry [33] that basically removes 
one dimension from the two-dimensional thermodynamic phase dia-
gram. In other systems like supercooled molecular liquids, the existence 
of isomorphs implies specific predictions of how the system behaves 
under high pressure [34]; we expect that similar predictions can be 
made for high-pressure experiments on liquid crystals. 
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