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Abstract: The natural stilbenoid dehydro-δ-viniferin, containing a benzofuran core, has been re-
cently identified as a promising antimicrobial agent. To define the structural elements relevant
to its activity, we modified the styryl moiety, appended at C5 of the benzofuran ring. In this pa-
per, we report the construction of stilbenoid-derived 2,3-diaryl-5-substituted benzofurans, which
allowed us to prepare a focused collection of dehydro-δ-viniferin analogues. The antimicrobial
activity of the synthesized compounds was evaluated against S. aureus ATCC29213. The simpli-
fied analogue 5,5′-(2-(4-hydroxyphenyl)benzofuran-3,5-diyl)bis(benzene-1,3-diol), obtained in three
steps from 4-bromo-2-iodophenol (63% overall yield), emerged as a promising candidate for further
investigation (MIC = 4 µg/mL).

Keywords: viniferin derivatives; stilbenoids; benzofuran nucleus; antimicrobials

1. Introduction

Resveratrol-derived natural products, belonging to the class of polyphenolic stilbenes,
have increasingly attracted the attention of the scientific community because of their di-
verse biological activities and intriguing molecular architectures [1–3]. Nonetheless, the
growing interest in the pharmacological potential of this class of molecules derives from
the poor understanding of the in vivo mechanisms of action of their parent compound
resveratrol, which severely limits its therapeutic use [4] and the necessity to increase its
low bioavailability and in vivo stability. Over the last years, several efforts were made
towards the synthesis of complex natural resveratrol oligomers, by biomimetic and de
novo approaches [1,5–9]. However, only few research groups have focused on the syn-
thesis of new resveratrol-derived chemical scaffolds with improved pharmacodynamics
and pharmacokinetics with respect to the natural precursors [6,10–14]. In this scenario,
we planned to set up a versatile and efficient synthetic strategy for the construction of
dimeric resveratrol-derived benzofurans. Benzo[b]furan-containing molecules, present in
numerous bioactive natural compounds, have been extensively studied because of their
wide array of biological activities, including anticancer, antimicrobial, immunomodula-
tory, antioxidant, and anti-inflammatory properties [15–18]. It is noteworthy that, in the
last years, the benzofuran motif has been revealed to be a pharmacophore of choice for
the design of new antimicrobial agents [19,20]. We have recently reported the synthesis
and the antimicrobial activity evaluation of a collection of resveratrol-derived monomers
(i.e., resveratrol, pterostilbene, and piceatannol) and dimers (i.e., trans-δ-viniferin, trans-
ε-viniferin, pallidol, dehydro-δ-viniferin, and viniferifuran) against a series of foodborne
pathogens [21].
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2. Results and Discussion

Dehydro-δ-viniferin (1, Figure 1), containing a benzofuran core, was identified as a
promising compound against Gram-positive bacteria. In particular, it was shown to exert
its antimicrobial activity on the foodborne pathogen Listeria monocytogenes Scott A, used
as model of Gram-positive microorganisms (MIC and MBC values of 4.42 and 35.3 µM,
respectively) [21]. The compound causes significant cytoplasmic membrane damage, by
membrane depolarization, loss of membrane integrity, and severe morphological changes.
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A previous SAR study performed by our group on simplified analogues of 1 (com-
pounds 2, 3, 4) [22], which were obtained by the selective removal of the moieties linked
in positions two, three, and five of the benzofuran core, showed that none of the struc-
turally simplified compounds resulted to be more active than the precursor (Figure 1). In
particular, a drastic drop of the antibacterial activity, due to the fatal lack of ring B, was
observed for the derivative 3 (MIC value of 743 µM against 4.42 µM of dehydro-δ-viniferin),
thus suggesting the fundamental role of the aryl ring in position three of the benzofuran
core. An important loss of antimicrobial activity, albeit to a lesser extent, was observed
for compounds 2 and 4, obtained by the removal of the styryl group at position five and
of the aryl ring in position two, respectively (MIC values of 50.3 µM (2) and 44.5 µM (4),
vs. 4.42 µM (1)) (Figure 1).

Thus, we planned to prepare a novel set of dehydro-δ-viniferin analogues and isosteres,
obtained by modifying the styryl moiety A (Figure 1), while maintaining the unaltered
rings B and C. In particular, a removal of the double bond or its replacement with moieties
such as an amide, alkyne or a saturated chain, could clarify the role of the geometry and
stereoelectronic effects for the antimicrobial activity. In addition, we planned to synthesize
dehydro-δ-viniferin analogues that maintained the stilbene double bond, having, however,
aromatic rings that were different from the resorcinol moiety.

In this perspective, we needed a versatile strategy to construct the 2,3-diaryl benzofu-
ran ring bearing on C-5 a proper functional group (X) for the insertion of the appropriate
fragment (Figure 2).

Among the various methods to access stilbenoid-derived 2,3-diaryl-5-substituted
benzofurans [23–28], palladium catalysed reactions have proven to be rapid and conve-
nient. In particular, an efficient one-pot method developed by Cacchi and coworkers [29]
and successively implemented by Markina and coworkers [30], involves a Sonogashira
coupling between an ortho-iodophenol and an aryl-substituted terminal alkyne to generate,
at room temperature, the corresponding internal alkyne. The alkynylphenol obtained as an
intermediate undergoes a simultaneous cyclization with the adjacent phenol group and
an oxidative addition with the aryl-iodide-palladium complex with CuI, in acetonitrile at
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100 ◦C, under microwave irradiation. Using this approach, we obtained C5-substituted
2,3-diarylbenzofurans in a three-component one-pot reaction in 48–72% yields.
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Figure 2. Retrosynthetic analysis for the obtainment of desired compounds.

Specifically, we generated the bromo functionalized intermediate 8 by reaction of
4-bromo-2-iodophenol 5, 4-ethynylanisole 6 and 3,5-dimethoxy-1-iodobenzene 7 (Scheme 1).
Compound 8 underwent a Suzuki-coupling with (3,5-dimethoxyphenyl)boronic acid with
Pd(PPh3)4 and aqueous 1 M Cs2CO3 in a mixture DMF/EtOH (1:1), under microwave irra-
diation, for 20 min at 120 ◦C [30] to afford compound 9 in 91% yield. Final demethylation
with BBr3 provided 10, as a simplified analogue of our hit compound 1, lacking the stilbene
double bond.
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(ii) ACN, 100 ◦C, MW, 25 min, 72%; (b) (3,5-dimethoxyphenyl)boronic acid, Pd(PPh3)4, DMF/EtOH
1:1, aq 1 M CssCO3, 120 ◦C, 20 min, MW, 91%; (c) BBr3 1 M DCM, DCM, −78 ◦C to rt, overnight, 96%.

Then, we focused on the synthesis of the isosteres bearing an amide in place of the
double bond. Amide isosteres of resveratrol have shown activity similar to the parent
compound [31]. The amide linkage should allow to maintain the transoid architecture of
the trans-stilbene, conferring however improved solubility and increased polarity [32,33]
as well as differences in electronic perturbations [32,33]. Therefore, analogue 15 was
synthesized (Scheme 2). The Sonogashira/Cacchi type cyclization of the commercially
available methyl 4-hydroxy-3-iodobenzoate 11, 4-ethynylanisole 6 and 3,5-dimethoxy-1-
iodobenze 7 gave the desired benzofuran 12 in 66% yield. Hydrolysis of the ester 12 was
performed with LiOH·H2O in a mixture of THF/water 1:1 for 24 h. The resulting carboxylic
acid 13 was reacted with 3,5-dimethoxyaniline, in presence of EDC·HCl and HOBt, to give
amide 14, which was demethylated with BBr3 to afford compound 15 in 73% yield.
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The ester 12 was envisaged as a versatile intermediate for the preparation of a set of
dehydro-δ-viniferin derivatives, differently substituted on ring A (Scheme 3). Reduction
with LiAlH4 gave, quantitatively, compound 16, which was converted into the correspond-
ing bromide derivative with PBr3. Reaction with triethyl phosphite at 130 ◦C overnight,
which afforded the phosphonate 17 in 80% yield over two steps. The HWE reaction with
4-methoxybenzaldehyde provided the desired stilbene 18, only as a trans isomer, in 86%
yield. Unfortunately, attempts to deprotect the methyl groups with BBr3 at −78 ◦C in dry
DCM, following the usual procedure, gave only degradation products.

Several troublesome efforts in the demethylation process confirmed that this step is
an Achilles’ heel in the synthesis of stilbenoids-derived compounds [6,10,14,22].

Methyl groups are convenient protecting groups for phenolic moieties because of the
availability of their starting reagents and their high stability to a wide variety of reaction
conditions. However, as a not-negligible drawback, their high robustness requires harsh
conditions in the deprotection step, often resulting in poor yields and product degradation
in the presence of highly reactive double bonds [5,6,10,22].

As stilbenoids are known to form dimers and polymers with a variety of acids, includ-
ing BBr3 [34,35], alternative protocols were investigated. We first attempted to obtain the
desired compound 19 by the initial deprotection of bromoderivative 8, followed by a direct
insertion of the p-hydroxystyryl moiety via the Heck reaction. However, the reaction gave
a mixture of 19 and its isomer 20, coeluted in column chromatography (Scheme 3).

In another synthetic route, 2-iodo-4-methylphenol 22, prepared in excellent yields from
para-cresol (21) with N-iodosuccinimide and para-toluenesulfonic acid in acetonitrile [36],
was used as the starting material (Scheme 4). In the one-pot-Sonogashira-Cacchi reaction
conditions, the obtained intermediate gave the desired benzofuran derivative 23 in 48%
yield. Intermediate 23 was smoothly demethylated to afford compound 24 in 90% yield.
The protection of hydroxy groups with tert-butyldimethylsilylchloride and imidazole was
performed in 1,2-dichloroethane at 60 ◦C, to give compound 25 in a good yield (86%) [8].
Then, a radical bromination of the methyl group with NBS and AIBN as a radical initiator at
reflux in CCl4 gave a brominated intermediate, which was converted into the corresponding
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phosphonate 26 with triethyl phosphite at 130 ◦C (84% yield). The intermediate 26 was
reacted with the properly protected 3,4-bis((tert-butyldimethylsilyl)oxy)benzaldehyde
in presence of LDA in THF in 16% yield. The use of NaH increased the yield to 52%.
Eventually, the deprotection of silyl groups was performed with tetrabutylammonium
fluoride (TBAF) at 0 ◦C in THF, to afford compound 28 with a catechol on the styryl moiety
(60% yield).
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PBr3, cat pyridine, Et2O, rt to reflux, 2 h, (c) P(OEt)3, 130 ◦C, overnight, 80% over two steps;
(d) 4-methoxybenzaldehyde, NaH, 120 ◦C, 30 min, MW, 86%; (e) BBr3 1 M DCM, DCM, −78 ◦C to rt,
overnight, 87%; (f) 4-hydroxystirene, TEA, dppp (1,3-bis(diphenylphosphino)propane), Pd(OAc)2,
dry DMF, 120 ◦C, 48 h.
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Scheme 4. Reagents and conditions: (a) (i) p-TsOH·H2O, ACN, rt, 10 min; (ii) NIS, rt, overnight, 97%;
(b) (i) 4-ethynianisole, PdCl2(PPh3)2·DCM, CuI, THF/TEA 1:3, rt, MW, 30 min, (ii) 3,5-dimethoxy-1-
iodobenzene, ACN, 100 ◦C, MW, 25 min, 48%; (c) BBr3 1 M DCM, DCM, −78 ◦C to rt, overnight, 90%;
(d) TBDMSCl, imidazole, DCE, 60 ◦C, 8 h, 86%; (e) NBS, AIBN, CCl4, reflux, 8 h, 37%; (f) P(OEt)3,
130 ◦C, overnight, 84%; (g) 4-bis((tert-butyldimethylsilyl)oxy)benzaldehyde, NaH, THF, 0 ◦C to rt,
24 h, 52%; (h) TBAF, THF, 0 ◦C to rt, 2 h, 60%.

The protection of phenol groups as t-butyldimethylsilylethers was applied also to
the synthesis of the alkyne derivative 32 (Scheme 5). The high-yield demethylation of
brominated intermediate 8 was thus followed by protection of the hydroxy groups as
tert-butyldimethylsilyl ethers (28).
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(b) TBDMSCl, imidazole, DMF, 0 ◦C to rt, overnight, 81%; (c) TBDMSCl, imidazole, DMF, 0 ◦C
to rt, overnight, 74%; (d) CBr4, PPh3, DCM, 0 ◦C to rt, 1 h, 83%, (e) LDA, THF, −78 ◦C, 1 h, 91%;
(f) Pd(PPh3)4, CuI, TEA, 90 ◦C, 8 h; (g) KF, MeOH/THF, rt, overnight, 38% over 2 steps.

The alkyne 31 was obtained starting from 3,5-dihydroxybenzaldehyde 29, which was
properly protected and then subjected to Corey-Fuchs conditions [37] to give the terminal
dibromoalkene 30, which underwent lithium-halogen exchange and α-elimination with
LDA to afford 31 in excellent yield.

The final Sonogashira coupling was performed with Pd(PPh3)4 and CuI in triethy-
lamine at reflux for 8 h. The crude compound obtained was directly deprotected with KF
to give the desired alkyne 32 in 38% yield, over two steps.

Finally, compound 33, having a saturated chain in place of the stilbene double bond,
was obtained in a quantitative yield by the hydrogenation of dehydro-δ-viniferin 1 with
Pd/C in ethanol at room temperature for 3 h (Scheme 6). Hydrogenation of δ-viniferin 34,
applying the same protocol, led to a dihydrobenzofuran ring cleavage (compound 35) [38].
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The model compound 1 and the novel derivatives 10, 15, 27, 32, 33, and 35 were
tested against S. aureus ATCC29213, and the minimum inhibition concentration (MIC)
and minimal bactericidal concentration (MBC) were determined. The concentration range
was 0.25–512 µg/mL for the synthesized compounds and 0.5–64 µg/mL for the reference
compound tobramycin. The results are reported in Table 1. The MIC was evaluated
using two different growth media: Mueller Hilton Broth, cation adjusted (MHB-II 212322,
Becton Dickinson and Company, 7 Loveton Circle Spark, MD, USA), and Tryptic Soy Broth
(22092-500 G, MERCK, Vandtårnsvej 62A, 5 sal. Søborg, Denmark).
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Table 1. Susceptibility testing of S. aureus towards model compound 1 and newly synthesized analogues.

S. aureus ATCC29213

MHB-II TSB

Compounds Structure MIC
(µg/mL)

MBC
(µg/mL)

MIC
(µg/mL)

MBC
(µg/mL)

1
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compounds was observed in the TSB medium. These results could be explained, 
considering a self-aggregation process of the tested compounds in the solvent system. 

In the MHB-II medium, the MICs of tested compounds ranged from 2 to 256 µg/mL. 
The majority of compounds showed detectable antimicrobial activity in the MIC range of 
2–16 µg/mL. The removal of the double bond (compound 10; MIC 4 µg/mL), as well as 
the reduction of the double bond (compounds 33; MIC 2 µg/mL) and the replacement with 
the triple bond (compound 32; MIC 4 µg/mL), gave compounds which maintained a 
significant activity. Conversely, the replacement of the double bond with an amide group 
(compound 15) was deleterious (MIC 16 µg/mL). Also, the replacement of ring A with a 
catechol was not successful in terms of activity, as compound 27 had a MIC of 16 µg/mL. 
Compound 35, obtained by opening the benzofuran system, showed a very high MIC (256 
µg/mL). This result confirmed that the heterocyclic ring plays an essential role for 
antimicrobial activity. 

Table 1. Susceptibility testing of S. aureus towards model compound 1 and newly synthesized 
analogues. 

  S. aureus ATCC29213 
  MHB-II TSB 

Compounds Structure MIC 
(µg/mL) 

MBC 
(µg/mL) 

MIC 
(µg/mL) 

MBC 
(µg/mL) 

1 

 

2 * ≥512 ≥512 ≥512 

10 

 

4 * ≥512 32 * ≥512 

15 

 

16 * ≥512 32 * ≥512 

27 

 

16 * ≥512 16 * 16 * 

2 * ≥512 ≥512 ≥512

10
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* The bacteria were able to grow at high concentrations of the tested compounds (see main text). 

3. Materials and Methods 
Synthesis. All chemicals used were of analytical grade. Procedures for the synthesis 

and characterization data for the various derivatives and intermediates are detailed in the 
Supplementary Materials. 

Determination of minimum inhibition concentration (MIC) and minimum 
bactericidal concentration (MBC). The minimum inhibition concentration (MIC) of 
compounds was determined for S. aureus ATCC29213. The concentration range of the 
compounds were 0.25–512 µg/mL. Tobramycin (T2503, TCI Europe N.V) was used as a 
control with a concentration range of 0.5–64 µg/mL. One colony of S. aureus was 
inoculated in 5 mL growth media and incubated overnight in a water bath at 37 °C, 180 
rmp. Three biological replicas were used. The overnight cultures were diluted 1:50 and 
grown to exponential phase at OD600~0.4, either in MHB-II and in TSB. The bacterial 
culture was diluted 1:500 and transferred to a microdilution plate together with the 
compounds. The plate was then sealed and incubated overnight at 37 °C. After incubation, 
the plates were examined for microbial growth. A CFU assay was performed to estimate 
the final concentration of the 1:500 diluted culture. The expected concentration range was 
2 × 105–8 × 105 CFU/mL. The results were obtained 24 h after incubation. To determine the 
MBC, 10 µL of each compound concentration from the MIC, was transferred to LB (L3022 
Sigma Aldrich) agar plates. The plates were incubated overnight at 37 °C. After 
incubation, the concentration at which no visible microbial growth was found was 
considered as the MBC. 

4. Conclusions 
The resveratrol dimer dehydro-δ-viniferin, containing a benzofuran core, has been 

identified as a promising antimicrobial compound. As part of the research for new 
antimicrobials, our recent interest has been directed to the synthesis of new dehydro-δ-
viniferin analogues, to gain insights into the structural determinants for their activity. We 
investigated various protocols to access stilbenoid-derived 2,3-diaryl-5-substituted 
benzofurans, evidencing critical steps such as the demethylation of phenolic groups. 
Following these strategies, we prepared a focused collection of analogues, which were 
tested to evaluate their antimicrobial activity. Because of the modular nature of the 
synthetic approaches, ready access to diversity-oriented libraries of stilbenoid derived-
benzofurans could be available. 

Our study has evidenced that the styryl moiety, appended at C5 of the benzofuran 
ring, can be modified without affecting the antimicrobial activity of the compounds. 
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the final concentration of the 1:500 diluted culture. The expected concentration range was 
2 × 105–8 × 105 CFU/mL. The results were obtained 24 h after incubation. To determine the 
MBC, 10 µL of each compound concentration from the MIC, was transferred to LB (L3022 
Sigma Aldrich) agar plates. The plates were incubated overnight at 37 °C. After 
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The resveratrol dimer dehydro-δ-viniferin, containing a benzofuran core, has been 

identified as a promising antimicrobial compound. As part of the research for new 
antimicrobials, our recent interest has been directed to the synthesis of new dehydro-δ-
viniferin analogues, to gain insights into the structural determinants for their activity. We 
investigated various protocols to access stilbenoid-derived 2,3-diaryl-5-substituted 
benzofurans, evidencing critical steps such as the demethylation of phenolic groups. 
Following these strategies, we prepared a focused collection of analogues, which were 
tested to evaluate their antimicrobial activity. Because of the modular nature of the 
synthetic approaches, ready access to diversity-oriented libraries of stilbenoid derived-
benzofurans could be available. 

Our study has evidenced that the styryl moiety, appended at C5 of the benzofuran 
ring, can be modified without affecting the antimicrobial activity of the compounds. 

256 ≥512 ≥512 ≥512

Tobramycin <0.5 <0.5 <0.5 <0.5
* The bacteria were able to grow at high concentrations of the tested compounds (see main text).

It has been shown that the growth media play an important role in the outcome of bac-
terial susceptibility to different charged peptides. Antimicrobial assays were performed in
MHB cation-adjusted medium, a complex growth medium [39], and also in the less complex
medium TSB [21]. In TSB we achieved approximately equal susceptibility results, uniform
growth, and less variation in the repeated independent experiments. Unexpectedly, in both
sets of experiments we noticed that at high concentrations the active compounds lost their
ability to inhibit the growth of the microorganism. In particular, in the MHB-II medium,
compound 1 lost its activity at concentrations higher than 8 µg/mL, compounds 10, 15,
27, and 32 at concentrations higher than 32 µg/mL, and compound 33 at concentrations
higher than 16 µg/mL. A similar behaviour for all the compounds was observed in the
TSB medium. These results could be explained, considering a self-aggregation process of
the tested compounds in the solvent system.

In the MHB-II medium, the MICs of tested compounds ranged from 2 to 256 µg/mL.
The majority of compounds showed detectable antimicrobial activity in the MIC range
of 2–16 µg/mL. The removal of the double bond (compound 10; MIC 4 µg/mL), as well
as the reduction of the double bond (compounds 33; MIC 2 µg/mL) and the replacement
with the triple bond (compound 32; MIC 4 µg/mL), gave compounds which maintained a
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significant activity. Conversely, the replacement of the double bond with an amide group
(compound 15) was deleterious (MIC 16 µg/mL). Also, the replacement of ring A with a
catechol was not successful in terms of activity, as compound 27 had a MIC of 16 µg/mL.
Compound 35, obtained by opening the benzofuran system, showed a very high MIC
(256 µg/mL). This result confirmed that the heterocyclic ring plays an essential role for
antimicrobial activity.

3. Materials and Methods

Synthesis. All chemicals used were of analytical grade. Procedures for the synthesis
and characterization data for the various derivatives and intermediates are detailed in the
Supplementary Materials.

Determination of minimum inhibition concentration (MIC) and minimum bactericidal
concentration (MBC). The minimum inhibition concentration (MIC) of compounds was
determined for S. aureus ATCC29213. The concentration range of the compounds were
0.25–512 µg/mL. Tobramycin (T2503, TCI Europe N.V) was used as a control with a
concentration range of 0.5–64 µg/mL. One colony of S. aureus was inoculated in 5 mL
growth media and incubated overnight in a water bath at 37 ◦C, 180 rmp. Three biological
replicas were used. The overnight cultures were diluted 1:50 and grown to exponential
phase at OD600~0.4, either in MHB-II and in TSB. The bacterial culture was diluted 1:500
and transferred to a microdilution plate together with the compounds. The plate was then
sealed and incubated overnight at 37 ◦C. After incubation, the plates were examined for
microbial growth. A CFU assay was performed to estimate the final concentration of the
1:500 diluted culture. The expected concentration range was 2 × 105–8 × 105 CFU/mL.
The results were obtained 24 h after incubation. To determine the MBC, 10 µL of each
compound concentration from the MIC, was transferred to LB (L3022 Sigma Aldrich) agar
plates. The plates were incubated overnight at 37 ◦C. After incubation, the concentration at
which no visible microbial growth was found was considered as the MBC.

4. Conclusions

The resveratrol dimer dehydro-δ-viniferin, containing a benzofuran core, has been
identified as a promising antimicrobial compound. As part of the research for new antimi-
crobials, our recent interest has been directed to the synthesis of new dehydro-δ-viniferin
analogues, to gain insights into the structural determinants for their activity. We investi-
gated various protocols to access stilbenoid-derived 2,3-diaryl-5-substituted benzofurans,
evidencing critical steps such as the demethylation of phenolic groups. Following these
strategies, we prepared a focused collection of analogues, which were tested to evaluate their
antimicrobial activity. Because of the modular nature of the synthetic approaches, ready
access to diversity-oriented libraries of stilbenoid derived-benzofurans could be available.

Our study has evidenced that the styryl moiety, appended at C5 of the benzofuran ring,
can be modified without affecting the antimicrobial activity of the compounds. Notably,
the removal of the double bond (compound 10) andits conversion into a rigid linear
triple bond (compound 32), or into a more flexible saturated chain (compound 33), gave
compounds which were still endowed with significant antimicrobial activity. In this
context, the simplified analogue 10 could represent a promising model compound for
further development and investigation.

Supplementary Materials: The following are available online. Synthesis and characterization of
compounds 1, 10, 15, 27, 32, 33, 35 [40,41].
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