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and Universidad Politécnica de Madrid (UPM), Madrid, Spain
(e-mail: manuel.hermenegildo@imdea.org)

ALBERTO PETTOROSSI
CNR-IASI, Rome, Italy

and DICII, University of Rome ‘Tor Vergata’, Rome, Italy
(e-mail: pettorossi@info.uniroma2.it)

MAURIZIO PROIETTI
CNR-IASI, Rome, Italy

(e-mail: maurizio.proietti@iasi.cnr.it)

submitted 2 August 2020; revised 2 August 2021; accepted 9 August 2021

Abstract

This paper surveys recent work on applying analysis and transformation techniques that orig-
inate in the field of constraint logic programming (CLP) to the problem of verifying software
systems. We present specialization-based techniques for translating verification problems for dif-
ferent programming languages, and in general software systems, into satisfiability problems for
constrained Horn clauses (CHCs), a term that has become popular in the verification field to re-
fer to CLP programs. Then, we describe static analysis techniques for CHCs that may be used for
inferring relevant program properties, such as loop invariants. We also give an overview of some
transformation techniques based on specialization and fold/unfold rules, which are useful for
improving the effectiveness of CHC satisfiability tools. Finally, we discuss future developments
in applying these techniques.

KEYWORDS: Program verification, program analysis, program transformation, constrained
Horn clauses, constraint logic programming.
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2 E. De Angelis et al.

1 Introduction

Program analysis and transformation has been an active research area since the early
days of logic programming. The attention to the topic in logic programming was origi-
nally due to the fact that program specifications are usually written as logical formulas
and from those formulas one can derive logic programs that are correct “by construction.”
When the implementation of efficient Prolog programming systems became a central is-
sue, the main focus of program analysis and transformation shifted toward the discovery
of program properties based on program semantics and their use for optimising program
execution. Indeed, in many cases, logic programs can be transformed into new, efficient
ones, by exploiting suitable program analyses, as done by some advanced logic program-
ming systems. However, it was realized early on that analysis and transformation were
useful also in program verification and static debugging, as illustrated by the Ciao Prolog
system1.

During the past two decades, the application of these techniques to verification has
expanded beyond logic programming to a large variety of other programming languages,
including imperative, functional, object-oriented, and concurrent ones. The main reason
is that logic programming, and more specifically constraint logic programming (CLP), is
effective as a language for specifying program semantics and program properties.

For verification applications, the term constrained Horn clauses (CHCs) is often used
in the literature instead of CLP when dealing with clauses that encode verification prob-
lems, but are not intended to be directly executed as programs. Despite this pragmatic
difference, CHCs are syntactically and semantically the same as constraint logic pro-
grams. The underlying constraint theories of CHCs are typically those that axiomatize
data structures used in programming, such as booleans, integer numbers, real numbers,
bit vectors, arrays, heaps, and recursively defined data structures such as lists and trees.
Effective solvers for checking satisfiability of sets of CHCs have been developed during
the last years. These solvers focus on constructing models in the theory of constraints;
however, proof-theoretic notions from CLP such as derivation trees, resolution, and refu-
tation are still applicable to CHCs.

The first step in CHC-based software verification is the encoding of a verification
problem in CHC form. Consider, for instance, the program fragment consisting of the
function definition in Figure 1. After the assignment sum= sum upto(m), the location
sum will store the sum of the integers in the interval [0,m], if m≥0, and 0, if m<0:

Suppose that we want to prove the validity of the Hoare triple {m≥0}
sum= sum upto(m) {sum≥m}, stating that, if m≥0 and the assignment sum=sum upto(m)

terminates, then sum is assigned a value larger than or equal to m. This triple is valid if
and only if the following set of clauses, collectively called the verification conditions, is
satisfiable.
1. false :- M>Sum, M>=0, sum upto(M,Sum).
2. sum upto(X,R) :- R0=0, while(X,R0,R).
3. while(X1,R1,R) :- X1>0, R2=R1+X1, X2=X1-1, while(X2,R2,R).
4. while(X1,R1,R) :- X1=<0, R=R1.

Note that, in clause 1 above, we have that: (i) M>=0 is the precondition of the Hoare
triple, (ii) sum upto(M,Sum) holds if and only if the evaluation of the function sum upto

1 https://ciao-lang.org/ (Hermenegildo et al. 2012)
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Analysis and Transformation of CHCs for Program Verification 3

Fig. 1. The function sum upto.

on the input integer M terminates and returns the integer Sum, and (iii) the constraint
M>Sum is the negation of the postcondition of the triple. As we will show later, CHC
solvers can show that this set of CHCs is indeed satisfiable and hence the validity of the
Hoare triple is proven.

In this paper, we survey and discuss various aspects of this scenario, including the
derivation of the CHCs from imperative programs and Hoare triples, and techniques for
automatically checking their satisfiability. Since satisfiability of CHCs is undecidable,
a terminating automatic solver yields one of three answers: satisfiable, unsatisfiable or
unknown. An important goal of the techniques we discuss is to return a definite answer
(satisfiable or unsatisfiable) in as many cases as possible. We will show that many well-
established analysis and transformation techniques developed for CLP, as well as new
CHC-based approaches proposed in recent years to address verification problems, are
effective for achieving this goal.

The paper is structured as follows. In Section 2, we present preliminary notions about
constraints, CHCs, their models, and some basic techniques for checking their satisfia-
bility, relating these techniques to the proof-theoretic and model-theoretic semantics of
CHCs. Much of this background was established in the field of CLP.

In Section 3, we present various CHC semantics-preserving transformation techniques,
based on CHC fold/unfold rules and specialization transformations. Fold/unfold trans-
formations have been extensively studied in logic programming, and specifically in CLP.
They play an important role in verification due to the fact that such transformations
preserve satisfiability. Specialization is a transformation that preserves satisfiability with
respect to a particular goal.

In Section 4, we present techniques for generating CHCs that encode verification prob-
lems in other languages, focussing on imperative programming languages. We describe an
approach based on specialization of semantics-based interpreters, and also survey other
approaches that have been applied in CHC solving tools.

In Section 5, we describe techniques for CHC analysis applied to verification. These
are derived mainly from the CLP literature, and in some cases directly yield a proof
of satisfiability or unsatisfiability; in other cases, analyses help with inferring relevant
program properties such as loop invariants. Static analysis also plays an important role
in guiding some CHC transformations, especially specialization.

Section 6 covers particular applications of transformation for verification. These include
constraint propagation and strengthening. The section also presents transformations for
predicate pairing, with application to relational verification and verification problems
for abstract data types. We also summarize other transformation techniques such as
tree-automata based refinement and control-flow refinement.

In Section 7, we give a brief overview of the use of analysis and transformation tech-
niques in some areas related to software verification, such as model checking of infinite
state systems and constraint-based automated testing.
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4 E. De Angelis et al.

Finally, in Section 8, we discuss some developments in the area of CHC analysis and
transformation, which we believe worthy of future investigation.

2 Constrained Horn clauses

CHCs are a class of first-order logic formulas where the Horn clause format is extended
by the use of formulas of an arbitrary, possibly non-Horn, constraint theory. A set of
CHCs is also known as a program in CLP (Jaffar and Lassez 1987, Jaffar and Maher
1994). As already mentioned, the term constrained Horn clause and the acronym CHC
are often used in the verification context (Bjørner et al. 2015), where the focus is mainly
on the logical meaning, and in particular, on the construction of models for the clauses,
while the term CLP program refers additionally to the notion of execution which is based
on the procedural semantics of the clauses. In this survey, we will adhere to the CHC
terminology, although we will occasionally make use of the CLP terminology, especially
when referring to techniques that have been proposed in the CLP field.

In this section, we will recall the basic notions of constraints (Section 2.1), CHCs
(Section 2.2), and their models (Section 2.3). We will also present some techniques for
checking CHC satisfiability (Section 2.4). We assume some familiarity with the elemen-
tary concepts of first-order predicate logic (Enderton 1972, Mendelson 1997). For logic
programming notions not defined here, we refer to standard publications (Apt 1990,
Lloyd 1987).

2.1 Constraint domains

Let L be a first-order language with equality. Let the set of terms and formulas in L, be
denoted by T and F , respectively. They are constructed, as usual, starting from a set V
of variables, a set of function and predicate symbols (with arity), the logical connectives,
and the quantifiers. A function symbol of arity 0 is also called a constant. Given a formula
ϕ ∈ F , by vars(ϕ) we denote the set of the free variables occurring in ϕ. If vars(ϕ)=∅,
we say that ϕ is a closed formula. If all variables occurring in ϕ are free, we say that ϕ

is a quantifier-free formula. We denote by ∃(ϕ) the existential closure of ϕ, and by ∀(ϕ)
the universal closure of ϕ. Let a substitution be a finite mapping from a set of variables
{X1, . . . ,Xm} ⊆ V to a set of terms {t1, . . . , tm} ⊆ T , written as {X1/t1, . . . ,Xm/tm}. We
assume that, for i = 1, . . . ,m, Xi is different from ti.

A constraint domain D consists of the following components (Jaffar and Maher 1994).
(1) A signature Σ, that is, the subset of the function and predicate symbols of L used

in D. We assume that the signature of any constraint domain D includes the predicate
symbols true, false, and the equality symbol =. The terms of L using function symbols
in Σ and variables are called Σ-terms. The formulas of L using symbols in Σ, variables,
logical connectives, and quantifiers, are called Σ-formulas. Here we will omit the
association of sorts to the symbols of Σ, as this issue is not relevant for the topics
addressed in this paper. However, in some contexts, the use of many-sorted signatures
is the standard (Barrett and Tinelli 2018).

(2) A subset C of Σ-formulas, called constraints. We assume that the atomic constraints
true, false, and equalities between terms are in C. We also assume that C is closed
under conjunction and existential quantification.
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Analysis and Transformation of CHCs for Program Verification 5

(3) A constraint theory A, that is, a set of closed Σ-formulas, called axioms.
(4) A fixed constraint interpretation D for the symbols in the signature Σ. As usual, D

consists of a set U, called universe, together with functions and relations (with suit-
able arities) on U that interpret the function and predicate symbols of Σ, respectively.
The equality symbol is always interpreted as the identity on U. We assume that D

is a model for A, and thus, for every closed Σ-formula ϕ, if A |= ϕ, then D |= ϕ. In
many constraint domains, we will also have that, if D |= ϕ, then A |= ϕ (and hence
A is a complete, decidable theory).

(5) Functions for constraint satisfiability, entailment, and projection, defined as follows.
− A constraint solver, that is, a computable partial function, call it solv, which tests

satisfiability of any constraint c in D, that is, solv tells us whether or not D |= ∃(c)
holds. We assume that solv is a total function whenever satisfiability is decidable.

− An entailment function, that is, a computable partial function, called entail, which
tests whether or not, for any two constraints c1 and c2, D |= ∀(c1 → c2) holds.

− A projection function, that is, a computable partial function, called proj, which,
given a constraint c and a finite set V ⊆ V of variables, computes the new constraint
proj(c,V ), called the projection of c onto V , such that D |= ∀((∃X1, . . . ,Xm.c) ↔
proj(c,V )), where {X1, , . . . ,Xm} = vars(c)\V . We assume that proj(c,V ) is a quan-
tifier-free formula whenever the constraint domain D admits quantifier elimination.

Now we present some of the constraint domains which are used in practice. In the liter-
ature, one can find slightly different, yet equivalent, presentations of those domains. As
already stated, we assume that the signature Σ of every constraint domain includes the
predicate symbols true, false, and =.

Example 1
The constraint domain Bool of the Boolean constraints is defined as follows. The signa-
ture Σ includes the function symbols 0,1,∼, ∗, +. For instance, ∼1 = x+0 is an atomic
constraint. The axioms of Bool are those of the Boolean algebra freely generated by 0
and 1. For instance, ∀x,y. x∗y = y∗x is the commutativity axiom for ∗. The constraint
interpretation B of Bool has the universe U={false, true}. The symbols 0, 1, ∼, ∗, and +
are interpreted as false, true, negation, conjunction and disjunction, respectively. Satis-
fiability and entailment are decidable and they are tested as usual in Boolean algebras.
Projection is a total function. For instance, we have that B |= ∃x.(∼1=x+0) holds, and
proj(∼y =x+1,{y}) is the constraint y =0.

Example 2
The constraint domain Integer of integer arithmetic is as follows. The signature Σ in-
cludes the following function symbols: all integer numbers, +,−,×, and the predicate
symbols �= and ≤. The axioms of Integer are Σ-formulas that can be derived from the ax-
ioms of Peano arithmetic (see, for instance, the paper by Wybraniec-Skardowska (2019))
and the references therein). The interpretation of the symbols of Integer is defined as
expected over the universe Z of the integer numbers. Satisfiability of constraints is un-
decidable, as they include the Diophantine equations (Matiyasevich 1970).

The constraint domain LIA of linear integer arithmetic is derived from the domain
Integer by requiring that at least one of the two operands of × is an integer constant. The
fully quantified Σ-formulas of LIA are decidable, by extending Presburger’s algorithm.
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6 E. De Angelis et al.

The time complexity of the decision procedure is superexponential with respect to the
size of the formula. The problem of checking satisfiability of quantifier-free formulas of
LIA is an NP-complete problem (Bradley and Manna 2007).

Example 3
The constraint domain FD of finite domains is related to the constraint domain LIA
and is defined as follows (Jaffar and Maher 1994). The signature Σ of FD includes all
integer numbers, the binary function symbols +, −, the infinitely many unary predicate
symbols “∈ [m,n]” (one for each pair 〈m,n〉 of integers, with m at most n), and the
binary predicate symbols �= and ≤. The interpretation of the atomic constraint x ∈ [m,n]
over the universe Z is x∈{m,m+1, . . . ,n}. For instance, x �=4 ∧ x∈ [2,5] is a constraint
in FD. As for LIA, we have that for FD the fully quantified Σ-formulas are decidable
and satisfiability of the quantifier-free Σ-formulas is NP-complete.

Example 4
The constraint domain Real of real arithmetic is defined as follows. The signature Σ
includes the following function symbols: all rational numbers, +,−,×, and the predicate
symbols < and ≤. The axioms of Real are those of an ordered, real closed field (Shoenfield
1967). The interpretation of the function and predicate symbols of Real is the expected
one over the universe R of the real numbers. Satisfiability is decidable and there exists a
constraint solver for Real (Jaffar et al. 1992, Barrett and Tinelli 2018).

The constraint domain LRA of linear real arithmetic is derived from the domain Real
by requiring that at least one of the two operands of × is a rational constant. Satisfiability
of LRA constraints can be computed using Fourier–Motzkin elimination (Schrijver 1998).
If we consider the universe Q of the rational numbers, instead of R, from the domain
Real we get the domain Q of rational arithmetic, and from the domain LRA we get the
domain LQA of linear rational arithmetic. LRA and LQA are two elementary equivalent
structures (Shoenfield 1967), and thus a solver for LRA is also a solver for LQA, and
vice versa.

Example 5
The constraint domain EUF of Equality of Uninterpreted Functions is a domain defined as
follows. The signature Σ includes a set {f0, . . . ,fk} of function symbols and the predicate
symbol �= 2. The axioms are those for =, that is, reflexivity, symmetry, transitivity, and
function congruence (that is, ∀x,y. x=y → f(x)=f(y)), together with the axiom for �= :
∀x,y. x �= y ↔ ¬(x = y). The universe of the interpretation is the set T of finite trees.
The 0-ary function symbol a is interpreted as a tree made out of the single node a,
and the n-ary (with n>0) function symbol f is interpreted as the mapping that, given
the trees that are the interpretations of the n arguments of f , returns a tree having f

as root and the n trees as children of the root. The satisfiability of conjunctions of
quantifier-free Σ-formulas of EUF can be decided in polynomial time by congruence
closure algorithms (Jaffar and Maher 1994, Bradley and Manna 2007). For instance, we
have that T �|= f(f(f(a))) = a ∧ f(f(a)) = a ∧ f(a) �= a. Indeed, the first two conjuncts
imply f(a)=a.

2 We can do without extra predicate symbols in favour of new function symbols as indicated by Barrett
and Tinelli (2018).
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Analysis and Transformation of CHCs for Program Verification 7

Example 6
The constraint domain Term is defined as follows. The signature Σ includes a given set of
function symbols. The axioms of Term are the usual ones for = (see Example 5), together
with the axioms specific of the Clark Equality Theory (Clark 1978)). In particular, (i) for
all distinct function symbols f and g, for all tuples u and v of terms, ¬(f(u)=g(v)), and
(ii) for all terms t and t′, if t is a proper subterm of t′, then ¬(t= t′). As for EUF , the
universe of the interpretation is the set of finite trees. The unification algorithm defines
a total constraint solver for quantifier-free formulas in the domain Term (Apt 1990).

There is a variant of the constraint domain Term that takes as universe, instead of
the set of finite trees, the set of rational trees, that is, the set of all (finite or infinite)
trees, each tree having a finite set of (finite or infinite) subtrees (Colmerauer 1982). This
extension of the domain Term from finite trees to rational trees, call it TermRat , has been
the first step made toward the integration of a constraint domain into logic programming.
Indeed, when performing unification between atoms, the equalities between rational trees
are manipulated as constraints in CHCs. In TermRat , satisfiability of quantifier-free
formulas is decidable and a constraint solver is a unification algorithm that does not
perform the occur-check (Jaffar 1984). In particular, the unification between a variable x

and a non-variable term containing x always succeeds.

Example 7
The constraint domain Array is the domain of the arrays as commonly used in program-
ming. The signature of Array includes the read and write function symbols for denoting,
respectively, the reading of an array at an index position, and the writing of an element
in an array at an index position. The axioms of Array are the usual ones for equality
between indexes and equality between elements, together with the following two axioms:
for all arrays a, elements v, indexes i and j,
(1) i = j → read(write(a,i,v), j) = v, and (2) i �= j → read(write(a,i,v), j) = read(a,j)
Satisfiability of fully quantified formulas in the Array domain is undecidable. However,
there are suitably restricted classes of Array formulas in which it is decidable (Bradley
and Manna 2007, Alberti et al. 2015).

Since in practice many verification problems deal with programs that manipulate dif-
ferent data types, an important theoretical and practical aspect of the use of constraint
domains is the combination of solvers relative to different constraint domains (Nelson
and Oppen 1979, Barrett and Tinelli 2018)

Many Prolog systems support constraint solving by including selectable solvers as li-
braries, in the CLP(X ) spirit, such as FD (B-Prolog, Ciao, ECLiPSe, GNU, SICStus, and
SWI), Bool (B-Prolog, GNU, SICStus, SWI), Q and Real (Ciao, ECLiPSe, SICStus, SWI,
XSB), and Sets (B-Prolog, ECLiPSe), among others. Also, many Prolog systems (e.g.
Ciao, ECLiPSe, SICStus, SWI, XSB, YAP) support Constraint Handling Rules (CHR), a
committed-choice rule-based language designed for writing constraint solvers (Frühwirth
1998). This brings support for additional constraint domains or alternative implementa-
tions. Finally, the Parma Polyhedral Library (Bagnara et al. 2008) provides several Prolog
systems (Ciao, GNU, SICStus, SWI, XSB, Yap) with the implementation of primitives,
such as widening and convex-hull, for constraint manipulation over various subdomains of
the domain Real, including boxes, bounded differences, octagons, and convex polyhedra.
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8 E. De Angelis et al.

Constraint solvers for several constraint domains have also been developed using tech-
niques of Satisfiability Modulo Theories (SMT), which build upon various decision proce-
dures for first-order theories and very efficient algorithms for propositional satisfiability
(Barrett and Tinelli 2018). Constraint solvers based on that approach are called SMT
solvers, and have their main applications in the field of program verification. For that
reason they focus on constraint domains that formalize data types often used in pro-
gramming, such as Booleans, integer and floating point numbers, bit vectors, and arrays.
Among other SMT solvers, we have CVC4 (Barrett et al. 2011), Eldarica (Hojjat and
Rümmer 2018), MathSAT (Cimatti et al. 2013), Yices (Dutertre 2014), and Z3 (de Moura
and Bjørner 2008, Komuravelli et al. 2013). An important initiative is SMT-LIB (Barrett
et al. 2016), which has the goals of proposing common languages and interfaces for SMT
solvers and constructing a library of benchmarks.

2.2 Syntax of CHCs

Let D be a constraint domain with signature Σ, subset of the first-order language L. Let
Predu be a set of the predicate symbols of L which do not belong to Σ. Predu is called the
set of the user-defined predicate symbols. Let C be the set of constraints of D. An atom is
an atomic formula p(t1, . . . , tm), where p is a predicate symbol in Predu and t1, . . . , tm are
Σ-terms. Let Atom be the set of all atoms. A constrained Horn clause (CHC) (or simply, a
clause) is a universally quantified implication of the form: ∀(c∧A1 ∧ . . .∧An → H) whose
premise (or body) is the conjunction of a constraint c and n(≥ 0) atoms A1, . . . ,An,
and whose conclusion (or head) H is either an atom or false. We will use the logic
programming notation and we will write a clause as H ← c,A1, . . . ,An. In the examples
we will also adopt the usual Prolog notation and, in particular, the symbol “←” will be
replaced by “:-”.

A constrained goal (or simply, a goal) is a clause of the form: false ← c,A1, . . . ,An.
A definite clause is a clause whose conclusion is an atom. A constrained fact (or simply,
a fact) is a definite clause of the form: H ← c. A clause D (or a set P of clauses) is said
to be over C in case we want to stress that the constraints occurring in D (or in P )
belong to the set C of constraints. A clause H ← c,A1, . . . ,An is said to be linear if n ≤ 1,
and nonlinear otherwise. Given a set P of clauses, we say that predicate p immediately
depends on a predicate q if in P there is a clause of the form: p(...) ← c, A1, . . . ,An such
that q occurs in one of the atoms A1, . . . ,An. The relation depends on between predicates
is the transitive closure of the relation immediately depends on.

2.3 Models of CHCs

Let D be a constraint domain, where D is the fixed interpretation for the constraint
signature Σ and U is the universe of D. Without loss of generality, we assume that
for every element in U there is a corresponding constant in the signature Σ and in L
(indeed, we can always extend Σ and L by adding new constants). A valuation σ for D is
a mapping from V to U, and its extension that maps terms to U and formulas to closed
formulas, based on the replacement of every free variable occurrence X by σ(X). The
D-base for L, denoted BD, is the set {σ(A) | A ∈ Atom and σ is a valuation for D}.
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A D-interpretation is an interpretation of L that agrees with the interpretation D on
the symbols of Σ. A D-interpretation I can be identified with the following subset of BD:

{p(a1, . . . ,am) ∈ BD | pI(a1, . . . ,am) holds in I}
where pI denotes the m-ary relation on Um that interprets the symbol p in I. Given any
set F of formulas, a D-interpretation M is a D-model of F , written M |= F , if, for all
formulas ϕ ∈ F , M |= ϕ holds, that is, ϕ is true in M. F is D-satisfiable if it has a D-
model. We will often say satisfiable, instead of D-satisfiable, when the specific constraint
domain D is irrelevant or understood from the context. We write D |= F if, for every
D-interpretation M, M |= F holds.

Every set P of definite CHCs is D-satisfiable and has a least (with respect to set
inclusion) D-model, denoted lm(P,D) (Jaffar and Maher 1994). Thus, if Q is any set of
constrained goals, then P ∪Q is D-satisfiable if and only if lm(P,D) |= Q.

When presenting satisfiability procedures, it will be convenient to consider false as a
user-defined predicate, so that P ∪ Q is a set of definite CHCs, and hence lm(P ∪ Q,D)
exists. Thus, we will say, with a slight abuse of language, that P ∪Q is satisfiable if and
only if false does not belong to lm(P ∪Q,D), written false �∈ lm(P ∪Q,D).

If the constraint theory A of D is complete, we also have that P ∪Q is D-satisfiable if
and only if P ∪Q∪A �� false.

A D-interpretation I is represented by a set Î of constrained facts if, for all predicates p∈
Predu, p(a1, . . . ,am) ∈ I if and only if, for some constrained fact p(X1, . . . ,Xm) ← c in Î, we
have that D |= σ(proj(c,{X1, . . . ,Xm})), where σ is a valuation that maps X1, . . . ,Xm to
a1, . . . ,am. In general, a D-interpretation may be represented by more than one (finite or
infinite) set of constrained facts. On the other hand, a set of constrained facts represents
a unique D-interpretation. We will extend the terminology and notation defined for
D-interpretations to their representation as sets of constrained facts. In particular, we
define Î ⊆ Ĵ if I ⊆ J.

For instance, given the following CHCs over LIA :
p(X):- X=0.
p(X):- X=Y+1, p(Y).

The least LIA-model of these CHCs is the infinite set {p(0), p(1),...}, which is
represented by the set {p(X):- X>=0.} of one constrained fact only.

Most of the satisfiability techniques work on D-interpretations that can be represented
by finite sets of constrained facts. Such interpretations are said to be D-definable (Bjørner
et al. 2015). If a set S of CHCs has a D-definable model, then S is said to be solvable, and
the model is said to be a solution for S. Clearly, if S is solvable, then S is D-satisfiable.
In general, the converse does not hold: there exist sets of CHCs that are D-satisfiable,
and yet they do not have any D-definable models (see Section 6.2 for an example).

2.4 Satisfiability

The reasoning task for CHCs which is most relevant to program verification applications is
checking their satisfiability. We call CHC solvers the tools implementing methods for solv-
ing this task. Unfortunately, as a consequence of classical computability results (Tärnlund
1977), the problem of checking the satisfiability of a set of CHCs is undecidable, and
hence only incomplete methods can be found. Here we will briefly present two kinds of
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procedures which are the basis of many methods for checking satisfiability: (i) bottom-up
procedures and (ii) top-down procedures.

2.4.1 Bottom-up procedures

Given a constraint domain D, a set P of definite CHCs over D, and a set Q of constrained
goals over D, we have that P ∪ Q is D-satisfiable if and only if the set Q of constrained
goals holds in the least D-model lm(P,D) (see Section 2.3).

Bottom-up procedures for checking the satisfiability of P ∪ Q are based on the least
fixpoint characterization of the least D-model of P , which allows us to construct lm(P,D)
as the least upper bound of a sequence of D-interpretations that under-approximate
lm(P,D), starting from the empty set, by making forward inferences (that is, using clauses
as implications for inferring new atoms to be added to the current D-interpretation).

Indeed, the least D-model lm(P,D) can be computed as the least fixpoint of a func-
tion, denoted T D

P , which given a D-interpretation returns a new D-interpretation. This
function is called the immediate consequence operator for P , and it is defined as follows:

T D
P (I) = {σ(H) | H ← c,A1, . . . ,An ∈ P ∧ σ is a valuation for D ∧ D |= σ(c) ∧

∧ {σ(A1), . . . ,σ(An)} ⊆ I}
Since T D

P is a continuous function on the complete partial order (2BD ,⊆), it has a least
fixpoint lfp(T D

P ) (Tarski 1955). This fixpoint is the least upper bound
⋃

i≥0 T D
P ↑ i of the

sequence T D
P ↑0 ⊆ T D

P ↑1 ⊆ T D
P ↑2 ⊆ . . . of D-interpretations, also called a Kleene sequence,

where T D
P ↑ i stand for (T D

P )i(∅), for all i≥0.
It can be shown that lfp(T D

P ) = lm(P,D) (Jaffar et al. 1998).

Example 8
Let D be the constraint domain Integer and let P be the following set of clauses over D:
C1. p(X+3,X):- X<3.
C2. p(X+3,Y):- X>3, p(X,Y).

It can be shown by induction that the bottom-up computation of lfp(T D
P ) constructs the

following Kleene sequence of D-interpretations:
T D

P ↑0 = ∅
T D

P ↑1 = {p(X+3,X) | X<3}
T D

P ↑(k+1)= {p(X+3(k+1),X) | 0<X<3} ∪ T D
P ↑k for all k>0

whose least upper bound is
lfp(T D

P ) = {p(X+3,X) | X<3} ∪ ⋃
k>0 {p(X+3(k+1),X) | 0<X<3} = lm(P,D).

The construction of lfp(T D
P ) can be used as the basis for checking the satisfiability of

P ∪ Q. By the continuity of T D
P , any goal in Q is false in lfp(T D

P ) if and only if it is
false in T D

P ↑ i, for some i≥0. Thus, a bottom-up procedure which computes lfp(T D
P ) by

constructing the Kleene sequence, is sound and complete for showing the unsatisfiability
of P ∪ Q. However, if P ∪ Q is satisfiable, then the construction of the Kleene sequence
may not terminate (recall that satisfiability is not even semidecidable). In this case,
in order to prove satisfiability, one should prove that Q is true in T D

P ↑ i, for i ≥ 0, by
some method different from direct inspection of lfp(T D

P ), for example, by the abstract
interpretation methods presented in Section 5, which compute an over-approximation of
lfp(T D

P ). In the next example, we use a method based on induction on i.
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Example 9
Let D be the constraint domain Integer . Let us consider the following CHCs over D we
have introduced in Section 1:
1. false :- M>Sum, M>=0, sum upto(M,Sum).
2. sum upto(X,R) :- R0=0, while(X,R0,R).
3. while(X1,R1,R) :- X1>0, R2=R1+X1, X2=X1-1, while(X2,R2,R).
4. while(X1,R1,R) :- X1=<0, R=R1.

As already mentioned, (i) these clauses encode the verification problem for the program
fragment of Figure 1 in the sense that the triple {m≥0} sum= sum upto(m) {sum≥m}
holds if and only if they are D-satisfiable and (ii) these clauses are D-satisfiable if and
only if goal 1 holds in lfp(T D

P ), where P is the set made out of clauses 2–4.
It can be shown by induction that the bottom-up computation of lfp(T D

P ) constructs
the following Kleene sequence of D-interpretations:

T D
P ↑0 = ∅

T D
P ↑1 = {while(X,R1,R) | X=<0,R=R1}

T D
P ↑2 = {while(X,R1,R) | X=1,R=R1+1} ∪ {sum upto(X,R) | X=<0,R=0} ∪ T D

P ↑1
T D

P ↑(k+1) = {while(X,R1,R) | X=k,R=R1+(k(k+1)/2)}
∪ {sum upto(X,R) | X=k-1,R=(k-1)k/2} ∪ T D

P ↑ k for all k>1

Now, in order to check that goal 1 holds in lfp(T D
P ) (which is equal to

⋃
k≥0 T D

P ↑k), we
reason as follows. First, we have that lfp(T D

P ) is equal to:
{while(X,R1,R) | X=<0,R=R1} ∪ {while(X,R1,R) | X=1,R=R1+1}

∪
⋃
k>1{while(X,R1,R) | X=k,R=R1+(k(k+1)/2)}

∪ {sum upto(X,R) | X=<0,R=0}
∪

⋃
k>1{sum upto(X,R) | X=k-1,R=(k-1)k/2} (†)

(Note that for all integers k>1, we have that k(k+1)/2 and (k-1)k/2 are integer numbers,
and thus the constraints in the above expression of lfp(T D

P ) are all in the domain Integer .)
Then, with reference to the constraint X=k-1,R=(k-1)k/2 in Expression (†), we can
show by induction that, for all k≥1, we have that k-1≤(k-1)k/2, which implies that
X≤R. Thus, no atom in lfp(T D

P ) with predicate sum upto(M,Sum) satisfies the constraint
M>Sum,M>=0 in goal 1, and we get that goal 1 is true in lfp(T D

P ). Hence, P ∪{goal 1} is
D-satisfiable and the validity of the Hoare triple is proved.

2.4.2 Top-down procedures

The top-down approach to check satisfiability is based on the extension of SLD-resolution
(Kowalski and Kuehner 1971, Lloyd 1987, Apt 1990) to CHCs, which is used to define
the operational semantics of CLP languages (Jaffar and Lassez 1987, Jaffar et al. 1998).
The core of this approach is the proof-theoretic notion of a top-down derivation. In a
derivation of that kind, in order to check whether or not the atom false can be derived
from a given initial constrained goal and a given set of definite CHCs, one proceeds
by making backward inferences, that is, replacing an atom which is unifiable (modulo
satisfiability of constraints) with the head of a clause by the corresponding body of the
clause.
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Similarly to the bottom-up case, given a set Q of constrained goals and a set P of
definite CHCs over a constraint domain D, we will present a top-down procedure which
is sound and complete for showing unsatisfiability, but it may not terminate if P ∪ Q is
satisfiable.

Without loss of generality, we may assume that Q consists of a single goal G, as P ∪Q

is satisfiable if and only if for every constrained goal G∈Q, P ∪{G} is satisfiable. Let us
also assume that goal G is of the form: false ← d,A1, . . . , An.

In this case, a top-down procedure for satisfiability checking can be formalized by first
defining a rewriting system (a similar approach is followed by Jaffar and Maher (1994)).
At every rewriting step, a pair of the form 〈B,e〉, where B is a multiset of atoms and e

is a constraint in D, is rewritten into either a new pair 〈B′,e′〉 or fail, as we now specify.
There are two kinds of rewritings: (i) the r-rewriting, which makes use of a computation

rule and a search rule and (ii) the c-rewriting. They are defined as follows, starting from
a given pair 〈B,e〉.

(i) The r-rewriting, denoted −→r. Assume that B �=∅ and e is a satisfiable constraint.
Let p(u1, . . . ,uk) be an atom which is selected among those in B by the computation
rule. Then, the search rule selects in P a (renamed apart) clause, if any, of the form:
p(v1, . . . ,vk) ← f,C. If that clause exists, then we have the following r-rewriting:

〈B, e〉 −→r 〈B′, e ∧ u1 =v1 ∧ . . .∧ uk =vk ∧ f〉 (1)
where B′ is the multiset of atoms obtained from B by deleting the atom p(u1, . . . ,uk)
and adding the atoms in C.
If that clause does not exist, we have the rewriting:

〈B, e〉 −→r fail (2)

(ii) The c-rewriting, denoted −→c. Assume that e is an unsatisfiable constraint. (B may
be ∅ or not.) We have the rewriting:

〈B, e〉 −→c fail (3)

For all i≥0, by −→i
r we denote the i-fold composition of −→r. As usual, by −→+

r and
−→∗

r we denote the relation
⋃

i>0 −→i
r and

⋃
i≥0 −→i

r, respectively.
A top-down derivation (or simply, a derivation) for the goal false ← d,A1, . . . , An and

the set P of definite CHCs, is a (finite or infinite) maximally extended sequence of
r-rewritings or c-rewritings that starts from the pair 〈{A1, . . . , An}, d〉.

A derivation is successful if it is finite and its last pair is of the form 〈∅,e〉, where e is a
satisfiable constraint, and it is failed if it is finite and its last element is fail. A derivation is
fair if either it is failed or every atom which occurs in a pair of the derivation is rewritten
in some later rewriting. A computation rule is fair if it gives rise to fair derivations only.
A goal G is finitely failed if every derivation from G which uses a fair computation rule,
is failed.

The choices made by the search rule give rise to the notion of derivation tree for a
goal G: false ← d,A1, . . . , An, a set P of definite CHCs, and a computation rule. The root
of the derivation tree is 〈{A1, . . . , An}, d〉, and every path starting from the root is a
derivation for G and P , according to the given computation rule.

In a derivation tree, every node 〈B,e〉, where e is a satisfiable constraint,
has the children 〈B1,e1〉, . . . ,〈Bk,ek〉, if, for i = 1, . . . ,k, there exists the rewriting
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Fig. 2. Derivation tree for the goal false :- p(5,X) and the set {C1,C2} of CHCs.

〈B,e〉 −→r 〈Bi,ei〉 for any search rule. Every node 〈B,e〉 such that 〈B, e〉 −→r fail or
〈B, e〉 −→c fail has the single child fail.

A derivation tree for a goal G: false ← d,A1, . . . , An and a set P of definite CHCs is
fair if all its paths from the root are fair derivations. It is finitely failed if it is fair and
all its paths from the root are failed derivations.

In order to know whether or not a constraint is satisfiable (and thus, to know whether
we will perform an r-rewriting or a c-rewriting), we use the function solv associated
with the constraint domain at hand. We may assume that, if the constraint e is satisfi-
able, solv(e) returns a constraint equivalent to e presented in a suitably defined normal
form (such as the solved form for a set of equations (Apt 1990)). Moreover, during an
r-rewriting step (see (1) above), after the modification of the current constraint, one
could invoke solv and, if the modified constraint is unsatisfiable, one could immediately
derive fail without performing a successive c-rewriting. We will not discuss further these
issues concerning the application of the function solv, as they are not relevant for the
topic of the present paper.

Example 10
Let P be the set of clauses over the Integer domain we have considered in Example 8 of
Section 2.4.1. Those clauses are: C1. p(X+3,X):- X<3.

C2. p(X+3,Y):- X>3, p(X,Y).

In Figure 2, we have depicted the derivation tree for the goal false:- p(5,X) and P .
The constraint X<3,5=X+3 in the left child of the root can be replaced by the equivalent
constraint X=2 by an application of a suitable version of the function solv.

The success set of a set P of definite CHCs over the constraint domain D is the set of
all elements of the D-base BD, each of which occurs in the starting pair of a successful
derivation, that is:

SS(P )D = {p(a1, . . . ,an) ∈ BD | 〈p(a1, . . . ,an), true〉 −→+
r 〈∅,d〉 ∧ d is satisfiable}

Recall that in our case by Predu we denote the set of the predicates symbols occurring
in the heads of the clauses of P . A representation of SS(P )D as a set of constrained facts
is as follows:

SS(P )D = {p(X1, . . . ,Xn) ← d | p ∈ Predu ∧ 〈p(X1, . . . ,Xn), true〉 −→+
r 〈∅,d′〉 ∧

∧ d′ is satisfiable ∧ d = proj(d′,{X1, . . . ,Xn})}
The fundamental result for top-down procedures is that the success set coincides with the
least D-model, that is, SS(P )D = lm(P,D) (Jaffar and Maher 1994, Jaffar et al. 1998).

Given a set P of definite CHCs over a constraint domain D, a basic top-down procedure
for the computation of SS(P )D can be defined as follows. First, we introduce the success
set up to depth k for P , denoted SS(P )k

D, as follows:
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SS(P )k
D = {p(a1, . . . ,an) ∈ BD | 〈p(a1, . . . ,an), true〉 −→i

r 〈∅,d〉 ∧ d is satisfiable ∧
∧ 0<i≤k}

We have that SS(P )0
D = ∅. A top-down procedure computes SS(P )D as the least upper

bound
⋃

k≥0 SS(P )k
D of the sequence SS(P )0

D ⊆ SS(P )1
D ⊆ SS(P )2

D ⊆ . . .

Example 11
Let D be the constraint domain Integer . Let us consider the set P = {C1, C2} of clauses
considered in Example 10 and the goal false :- p(A,X). It can be shown by induction
that the top-down procedure constructs the following sequence of sets of atoms:

SS(P )0
D = ∅

SS(P )1
D = {p(A,X) | A=X+3,X<3}

SS(P )k+1D = {p(A,X) | A=X+3(k+1),0<X<3} ∪ SS(P )kD for all k>0

Thus, we have that:
SS(P )D = {p(A,X)| A=X+3,X<3} ∪

⋃
k>0{p(A,X) | A=X+3(k+1),0<X<3} = lm(P,D).

Let us consider a derivation tree for goal G: false ← d,A1, . . . ,An and a set P of
definite CHCs. We have that P ∪{G} is satisfiable if and only if no successful derivation
for G exists in that tree. Thus, in the case where the satisfiability of constraints in D
is decidable, a sound and complete method for showing unsatisfiability is to search for
a successful derivation for G. On the contrary, in order to show satisfiability one should
prove that no such a derivation exists. In the particular case where the derivation tree
for G and P is finitely failed, then P ∪{G} is satisfiable. However, when the derivation tree
is infinite, more sophisticated techniques for showing the absence of successful derivations
should be used. For instance, one can apply memoization (or tabling) (Warren 1992, Cui
and Warren 2000) or top-down techniques for CHC analysis, which construct suitable
over-approximations of SS(P )D (see Section 5.2).

Now we present an example of program verification based on the construction of
SS(P )D.

Example 12
Let D be the constraint domain Integer and let P be the set of definite CHCs over D
that we have considered in Example 9. It can be shown by induction that the top-down
procedure computes the following sequence of sets of atoms:

SS(P )0
D = ∅

SS(P )1
D = {while(X,R1,R) | X=<0,R=R1}

SS(P )2
D = {while(X,R1,R) | X=1,R=R1+1} ∪ {sum upto(X,R) | X=<0,R=0} ∪SS(P )1

D
SS(P )k+1D = {while(X,R1,R) | X=k,R=R1+(k(k+1)/2)}

∪ {sum upto(X,R) | X=k-1,R=(k-1)k/2} ∪SS(P )kD for all k>1

Thus, the set of the sum upto atoms in SS(P )D is equal to:
{sum upto(X,R) | X=<0,R=0} ∪

⋃
k>1{sum upto(X,R) | X=k-1,R=(k-1)k/2}

as expected from the value of lm(P,D) shown in Example 9. Now we have that in SS(P )D
there is no atom of the form sum upto(M,Sum) that satisfies the constraint M>Sum,M>=0
occurring in goal 1. Hence, by using the top-down procedure, we have that there is no
successful derivation for goal 1. We conclude that goal 1 is true in SS(P )D and the
validity of the Hoare triple is proved.
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In practical verification systems, one can use the atom false “with arguments”, and
instead of the clause 1, one might consider the clause:
1’. false(M,Sum) :- M>Sum, M>=0, sum upto(M,Sum).

In this case, if a successful derivation starting from the pair 〈false(M,Sum), true〉 is
found, then one could know the values of M and Sum which invalidate the triple.

3 Semantics preserving transformations

Program transformation is a technique that modifies the text of a program while preserv-
ing its semantics. Various programming languages and formal semantics can be consid-
ered, and also the notion of preservation can be defined depending on the applications.
The transformation-based approach we will consider in this paper derives from two main
streams of work that gained popularity starting from the 1970s. The first stream of
work is on rule-based program transformation, which has been first proposed in the field
of functional programming (Burstall and Darlington 1977) and later extended to logic
programming (Tamaki and Sato 1984) and CLP (Etalle and Gabbrielli 1996). A second
stream of work is on program specialization techniques, such as partial evaluation and,
in the case of (constraint) logic programming, partial deduction. Various surveys of early
developments can be found in the literature (Jones et al. 1993, Gallagher 1993, Leuschel
and Bruynooghe 2002).

The transformation techniques developed for CLP, with respect to its logical semantics,
can also be applied to CHCs. In this paper, we will survey a number of these transforma-
tion techniques, whose objective is to transform a set of CHCs into a new set for which
satisfiability may be easier to check.

A transformation of a set S of CHCs into a new set S′ is a pair, denoted S �→ S′.
Often, the CHC transformation S �→ S′ is obtained in several steps, by constructing a
transformation sequence S0 �→ S1 �→ . . . �→ Sn, such that S0=S and Sn=S′. The semantics
of interest is defined in terms of D-models (see Section 2.3), and we are mainly interested
in the preservation of D-satisfiability.

Definition 1
A CHC transformation S �→ S′ is said to be: (i) sound if the D-satisfiability of S′ im-
plies the D-satisfiability of S, and (ii) complete if the D-satisfiability of S implies the
D-satisfiability of S′.

Note that in the above definition, S and S′ may contain constrained goals, and these
goals may be modified by the transformation.

3.1 Fold/Unfold transformations

CHC transformation rules, such as fold/unfold rules, can be used to perform a sequence
of small modifications at clause level, which may result in a radical restructuring of
the whole set of clauses by changing their pattern of recursion. In the context of logic
programming and CLP, many papers have addressed the problem of showing that the
transformation rules preserve a large variety of semantics defined in terms of least Her-
brand models, finite failure, computed answers (Pettorossi and Proietti 1994, Tamaki and
Sato 1984), least D-models (Etalle and Gabbrielli 1996), and many others, by taking into
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consideration also extra language features, such as negation as (finite or infinite) failure
(Fioravanti et al. 2004, Roychoudhury et al. 2002, Seki 1991) and co-induction (Seki
2012).

We now present some transformation rules usually considered in the literature, with
the help of an example, which also motivates their usefulness for program verification.
Let us consider the following set S of CHCs over a particular instance of the constraint
domain Array in which the array indexes and the array elements are assumed to be
integers (see Section 2.1).
1. all pos(A,I,N):- I=N.
2. all pos(A,I,N):- 0=<I, I<N, X>0, J=I+1, X=read(A,I), all pos(A,J,N).
3. asum(A,I,N,S):- I=N, S=0.
4. asum(A,I,N,S):- 0=<I,I<N,J=I+1, S=S1+X, X=read(A,I), asum(A,J,N,S1).
5. false:- S<N-I, I>=0, asum(A,I,N,S), all pos(A,I,N).

The predicate all pos(A,I,N) holds iff either I=N or, if I<N, all elements of array A from
index I to index N-1 are positive integers. The predicate asum(A,I,N,S) holds if and
only if either (I=N and S=0) or, if I<N, S is the sum of the elements of A from I to N-1.
The constrained goal, that is, clause 5, states the property that if all elements of A from
I (≥0) to N-1 are positive, then their sum is not smaller than N-I. We may assume that,
similarly to the example in the introduction, these clauses have been generated from an
imperative program acting on arrays that defines a function asum, and the specification
is given by the Hoare triple {all pos(a,i,n)} s=asum(a,i,n) {s≥n-i}. In order to
construct a model of clauses 1–5 that is definable in the constraint domain, a CHC
solver needs to extend the Array constraint domain by array formulas with quantifiers
over index variables (Bradley and Manna 2007). We will transform clauses 1–5 in such
a way that this type of quantified constraints is no longer needed.

The transformation sequence starts off by applying the definition rule, which allows
us to introduce a new predicate defined in terms of already existing predicates. In our
example, the new predicate newa is defined as the body of clause 5:
6. newa(A,I,N,S):- S<N-I, I>=0, asum(A,I,N,S), all pos(A,I,N).

The objective of the subsequent transformation steps is to derive a recursive definition
of newa. First, we apply the unfolding rule which, given a set Si of CHCs and a clause
C: H ← c,B1,A,B2 in Si, where A is any selected atom in the body and B1,B2 are
conjunctions of atoms, replaces C by the set of all resolvents (with respect to A) of C

and the clauses in Si whose head is unifiable with A (modulo the theory of constraints).
In our example, we unfold clause 6 selecting the atom asum(A,I,N,S), and by resolving
that clause with respect to clauses 3 and 4, we get the following two clauses:
7. newa(A,I,N,S):- S<N-I, I>=0, I=N, S=0, all pos(A,I,N).
8. newa(A,I,N,S):- S<N-I, I>=0, I<N, J=I+1, S=S1+X, X=read(A,I),

asum(A,J,N,S1), all pos(A,I,N).

The constraint in the body of clause 7 is unsatisfiable, and hence, by applying the clause
deletion rule, we may remove that clause, which is true in all Array-interpretations. Now,
we unfold clause 8 selecting all pos(A,I,N) and, by applying again the clause deletion
rule and replacing constraints by equivalent ones, we get the new clause:
9. newa(A,I,N,S):- S<N-I, I>=0, I<N, X>0, J=I+1, S=S1+X, X=read(A,I),

asum(A,J,N,S1), all pos(A,J,N).
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Now, we apply the folding rule, which consists in using a clause H ← d,B (where B

is a conjunction of atoms) introduced by the definition rule, and replacing a clause
K ← c,B1,B ρ,B2, where ρ is a variable renaming, by the new clause K ← c,B1,H ρ,B2,
provided that c entails dρ in the constraint domain at hand (some extra conditions on ρ

are needed if vars(H) ⊂ vars(B)). Since the constraint S<N-I, I>=0, I<N, X>0, J=I+1,
S=S1+X in the body of clause 9 entails the constraint S1<N-J, J>=0, which is a variant
of the constraint occurring in the body of the definition clause 6, we fold clause 9 using
clause 6, and we derive:
10. newa(A,I,N,S):- S<N-I, I>=0, I<N, X>0, J=I+1, S=S1+X, X=read(A,I),

newa(A,J,N,S1).

We can also fold clause 5 using clause 6 and derive the new constrained goal:
11. false :- S<N-I, I>=0, newa(A,I,N,S).

Finally, we apply another instance of the clause deletion rule, which consists in deleting
any clause C from a set Si when no predicate in the constrained goals of Si depends on the
head predicate of C. By this rule we can delete clauses 1–4, as the predicate newa depends
on neither asum nor all pos. The final set of clauses is S′ = {clause 10, clause 11}. It is
trivially satisfiable in the constraint domain Array because it does not contain any con-
strained fact for newa, and its least Array-model is the empty Array-interpretation. The
following general result (De Angelis et al. 2018a, Etalle and Gabbrielli 1996) guarantees
that also the initial set S of CHCs is satisfiable in the domain Array.

Theorem 1 (Soundness and Completeness of Fold/Unfold Transformations)
Let S0 �→ S1 �→ . . . �→ Sn be a transformation sequence of CHCs over a constraint do-
main D. Suppose that, for i = 0, . . . ,n−1, Si+1 is derived from Si by an application of
one of the following rules: definition, unfolding, folding, clause deletion, and replacement
of constraints which are equivalent in D. Suppose also that each clause used for folding
has been unfolded in a previous step of the sequence. Then,

(i) S0 is D-satisfiable if and only if Sn is D-satisfiable; and
(ii) if S0 has a D-definable model, then Sn has a D-definable model.

Note that, in the case where both S0 and Sn are satisfiable, they may have different
D-models, simply because they may contain different predicate symbols. However, their
least D-models agree on common predicates (Etalle and Gabbrielli 1996). Point (ii) of
Theorem 1 is important because, as already mentioned, many CHC solvers work by look-
ing for D-definable models, and fold/unfold transformations guarantee the preservation
of the existence of such models (De Angelis et al. 2018a). However, by the fold/unfold
rules we may derive, from a set S0 of satisfiable CHCs that do not have any D-definable
model, for a given constraint domain D, a new set Sn with a D-definable model that can
be computed by a CHC solver (see also an example of this transformation in Section 6.2.1
where a set of satisfiable clauses with no LIA-definable model are transformed into a set
of clauses with a LIA-definable model).

To understand why the condition on folding in Theorem 1 is indeed needed, let us
observe that, in particular, it disallows self-folding. For instance, consider the following
unsatisfiable set of clauses:
1. p. 2. false:- p.

By introducing the new predicate
3. q:- p.
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and then folding clauses 2 and 3 using clause 3 itself, we get the following set of
clauses:
1. p. 4. false:- q. 5. q:- q.

which is satisfiable.
Besides semantics preservation, a very relevant issue for fold/unfold transformations

is the design of strategies that guide the application of the transformation rules for the
achievement of a specific objective. In particular, the introduction of new predicates via
the definition rule (see, for instance, the introduction of predicate newa in the example
above), also known as eureka step in the transformation literature (Burstall and Dar-
lington 1977), often needs ingenious techniques to achieve automation. In the context of
CHC verification, several fully automated strategies have been designed with the objec-
tive of deriving clauses whose satisfiability can be checked in a more efficient, effective
way by CHC solvers. In Section 6, we will present some of those strategies through ap-
plication examples, and we will point to the relevant literature for the detailed technical
presentations.

3.2 CHC specialization

Program specialization is a transformation that customizes a program with respect to
its context of use, often identified by a set of partially known input data (Jones et al.
1993). In the field of logic programming, program specialization (and in particular, partial
evaluation, also called partial deduction) has been formalized in a proof-theoretic way,
by building upon the notion of incomplete SLD(NF)-tree (Lloyd and Shepherdson 1991).
Such tree represents a set of partial computations starting from an atomic goal that
constitutes the context of use of the program. From a set of incomplete SLD(NF)-trees,
one can extract new clauses specialized to the atomic goals of interest. A similar approach
has been extended to CLP (Leuschel and De Schreye 1998).

An alternative, equivalent presentation, which we will follow here for CHCs, is based
on fold/unfold transformations (Proietti and Pettorossi 1993, Sahlin 1993). Indeed, CHC
specialization can be viewed as a strategy for applying the transformation rules we have
introduced in Section 3.1. The definition of a sound and complete CHC specialization will
be an instance of Definition 1 in the following sense. Given a set P of definite CHCs and
an atomic goal false ← c,A, where A is an atom, a sound and complete CHC specialization
yields a set P ′ of clauses and an atomic goal false ← c′,A′ such that P ∪ {false ← c,A}
is D-satisfiable if and only if P ′ ∪{false ← c′,A′} is D-satisfiable.

From a technical point of view, the main restriction of CHC specialization with re-
spect to general fold/unfold transformations, is that the new predicates introduced by
specialization are defined by clauses whose body has a single atom, and not a conjunc-
tion of two or more atoms. Thus, each new definition introduces a specialized version of
a given predicate, and in particular, a specialized version of the predicate occurring in
the atom A. However, this characterization of CHC specialization should be taken with
some flexibility, as there are techniques like conjunctive partial deduction (De Schreye
et al. 1999), which similarly to the general fold/unfold rules, transform logic programs
by producing specialized predicates that correspond to conjunctions of atoms.

Let us show how specialization works with the help of an example. Let us consider the
following set of CHCs over the constraint domain LIA:
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1. false :- X=0, p(X,[0]).
2. p(X,C) :- X=Y+1, p(Y,C).
3. p(X,[N|T]) :- X>N.
4. p(X,[N|T]) :- N>0, q(X,T).

where predicate q is defined by a set of clauses not shown here. We want to specialize
the clauses with respect to derivations of the atom false. Thus, by looking at goal 1,
we use the definition rule and we introduce a specialized predicate sp(X) for the atom
p(X,[0]).
5. sp(X) :- p(X,[0]).

In this first step, we might have introduced a different specialized predicate, for example,
by taking into account the constraint X=0. The key issue of controlling the introduction of
new predicates will be discussed later. Now, by unfolding clause 5, we explore all possible
one-step derivations from p(X,[0]).
6. sp(X) :- X=Y+1, p(Y,[0]).
7. sp(X) :- X>0.
8. sp(X) :- 0>0, q(X,[]).

Clause 8 can be deleted because the constraint in its body is unsatisfiable. By folding
clauses 1 and 6 using clause 5, which defines the specialized predicate sp, we derive our
final set of clauses:
1f. false :- X=0, sp(X).
6f. sp(X) :- X=Y+1, sp(Y).
8. sp(X) :- X>0.

It is easy to see that this set of clauses is satisfiable. Indeed, its least LIA-model is
{sp(X) :- X>0.}, which can be computed in two iterations of the immediate conse-
quence operator.

This example suggests some of the potential advantages of CHC specialization. First
of all, specialization computes a portion of the CHCs that is relevant to the goal of
interest. For instance, the predicate q, which might require a complex computation when
checking satisfiability, has been discarded. Another interesting effect is that lists have
been removed, and hence the specialized CHCs can be solved on the LIA domain, instead
of the more complex domain that combines Term and LIA.

Two main control issues must be tackled for automating CHC specialization (Leuschel
and Bruynooghe 2002). The first one is local control, that is, the control of the unfolding
process starting from a given definition of a specialized predicate. The specialization
algorithm should: (i) select an atom in the body of a clause to be unfolded (trivial in our
example because all clauses are linear) and (ii) decide when to stop unfolding (after one
step in our example).

The second issue is global control (Martens and Gallagher 1995), that is, the introduc-
tion of suitable definitions of specialized predicates. When we stop unfolding, we may
want to replace (by folding) a constrained atom by a specialized predicate, as done in
the above example by folding clause 6 using clause 5. To perform this folding we may
need to introduce a new specialized predicate definition, which in turn must be unfolded,
thus generating new constrained atoms to be folded. In order to terminate the whole
process, we need to introduce a finite number of new definitions by which we are able
to fold all atoms in the body of the clauses derived by unfolding (this is related to
the closedness and coveredness conditions introduced by Lloyd and Shepherdson (1991)
and Leuschel and De Schreye (1998), respectively). In most specialization algorithms for
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20 E. De Angelis et al.

CLP and CHCs, this set of definitions is constructed via suitable generalization techniques
(Peralta and Gallagher 2003, Fioravanti et al. 2013a), which compare the various spe-
cialized versions of the same predicate introduced during transformation, and compute
a finite set that generalizes them all by using, for instance, widening operators on con-
straints derived from the field of abstract interpretation (Cousot and Cousot 1977, Cousot
and Halbwachs 1978). More details on widening and generalization will be given in Sec-
tions 5 and 6.

3.3 Redundant argument removal

Redundant argument removal in a set of clauses P with respect to a goal G is a pro-
gram transformation that removes an argument from a predicate in all its occurrences in
P ∪{G}. Let us call the resulting clauses and goal, after deleting the argument, P ′ and G′,
respectively. Algorithms, called RAF (Redundant Argument Filtering, for top-down elim-
ination with respect to a goal) and FAR (for bottom-up goal-independent elimination),
which remove redundant arguments, were formulated by Leuschel and Sørensen (1996).
The RAF and FAR algorithms determine sound and complete transformations from
P ∪ {G} to P ′ ∪ {G′}. Similar algorithms for CLP have been presented by De Angelis
et al. (2017b). Removing redundant arguments can be a useful preprocessing step since
removing variables leads to the elimination of constraints, and can greatly reduce the
complexity of constraint solving operations. The RAF and FAR algorithms are related
to classical liveness analysis, as shown by Henriksen and Gallagher (2006), while the
relation to the well-known notion of slicing was discussed by Leuschel and Vidal (2005).

Consider the following simple example (Leuschel and Sørensen 1996, adapted from
Example 8), which illustrates how the combination of argument removal and constraint
simplification can result in the removal of constraints. It is common for verification con-
ditions to include a goal of the form false ← c, p(X1, . . . ,Xn), where p(X1, . . . ,Xn) rep-
resents the state of the computation at some program point, and c is a constraint on a
small subset of the state variables X1, . . . ,Xn. In such cases, redundant argument removal
can often lead to the elimination of constraints involving the remaining variables of the
predicate p in other clauses, whose values do not affect c.

Example 13
Let us consider the clauses:
false :- X>0, q(X,Y).
q(X,Y) :- X<Y.

Applying the algorithm RAF with respect to the goal false :- X>0, q(X,Y) results
in the following clauses in which the second argument of q is removed. Intuitively, the
argument Y is not “used” in the goal.
false :- X>0, q1(X).
q1(X) :- X<Y.

The constraint X<Y can then be replaced in the clause body by true. Applying the FAR
algorithm to the resulting clauses further eliminates the remaining argument of q1, after
which the constraint X>0 can be replaced by true and we are left with the clauses
false :- q2.
q2 :- true.
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Note that the RAF algorithm can be reconstructed as an application of the fold/unfold
transformation rules (by introducing a new predicate defined by q1(X):-q(X,Y), in
our example), while, in general, FAR cannot, in a straightforward way, as it exploits
information derived from the constrained facts, rather than from the clause where the
predicate we want to transform occurs.

3.4 Query-answer transformations

Query-answer transformations were originally inspired by the magic-set transformation
from deductive databases and the language Datalog (Bancilhon et al. 1986, Rohmer et al.
1986). The typical form of the query-answer (QA) transformation is as follows: given a
set P of definite clauses and an atom A, let {p1, . . . ,pn} be the predicates occurring in
P ∪{A}. For each predicate pi, with 1≤i≤ n, define an answer predicate pa

i and a query
predicate pq

i . Let the atom Aa (resp. Aq) be the same as atom A with the predicate p

replaced by pa (resp. pq). The transformed clauses consist of the union of two sets of
clauses, called the answer clauses P a and the query clauses P q (Kafle and Gallagher
2017a). Given a set P of definite clauses and a goal false ← c,A, then for each clause
H ← c,A1, . . . ,An (n ≥ 0) in P , we have that:
(i) P a contains the answer clause Ha ← c,Hq,Aa

1 , . . . ,Aa
n, and

(ii) P q contains the query clauses Aq
j ← c,Hq,Aa

1 , . . . ,Aa
j−1, for 1 ≤ j ≤ n.

In addition to the above clauses, P q contains the query clause Aq ← c.
The relevant correctness property of the transformation is that P ∪ {false ← c,A}

is satisfiable if and only if P a ∪ P q ∪ {false ← c,Aa} is satisfiable. The purpose of the
QA transformation is to simulate a top-down derivation (see Section 2.4.2) with left-to-
right computation rule; the query predicates capture the calls in a top-down, left-to-right
derivation of A, and the answer predicates represent the result of successful calls within
the derivation.

Example 14
Let D be the constraint domain Integer . Consider the following goal and definite clauses
over D:
1. false :- X=0, p(X).
2. p(X) :- X=1.
3. p(X) :- X>1, Y=X+1, p(Y).

Applying the QA transformation with respect to p(X) results in the following goal 4 and
set R = {5,6,7,8} of definite clauses:
4. false :- X=0, p a(X).
5. p a(X) :- X=1, p q(X).
6. p a(X) :- X>1, Y=X+1, p q(X), p a(Y).
7. p q(Y) :- X>1, Y=X+1, p q(X).
8. p q(X) :- X=0.

The bottom-up procedure for the set R of CHCs (see Section 2.4.1) yields the following
sequence of two interpretations T D

R ↑0 ⊆ T D
R ↑1, where T D

R ↑0 = ∅ and T D
R ↑1 = {p q(0)} =

lfp(T D
R ). We have that the finite D-interpretation {p q(0)} satisfies R ∪ {4}, and hence

the original set {1,2,3} of clauses is satisfiable. However, note that the least model
of the set of the original set of clauses {2,3} is infinite. Furthermore, the top-down
derivation from goal 1 in the original clauses yields a finite computation, failing after a call
to p(0).
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Applying the QA transformation to linear clauses yields clauses in which the an-
swer predicates depend on the query predicates, but not vice versa. However, in the
case of nonlinear CHCs, QA transformation gives clauses in which answer predicates
and query predicates are mutually dependent. For example, for a clause of the form
p(X) ← c, r(Y ), p(Z) (with a left-to-right computation rule), pq depends on ra (via query
clause pq(Z) ← c, pq(X), ra(Y )), which depends on rq (via answer clause of the form
ra(X) ← rq(X), . . .), which in turn depends on pq (via query clause rq(Y ) ← c, pq(X)).

The use of QA transformations is entirely pragmatic; they allow bottom-up analysis
tools (see Section 5.1) to achieve the constraint propagation and thereby analysis preci-
sion that would otherwise require top-down analysis frameworks (see the paper by Codish
et al. (1997) for a related discussion on the precision of goal-dependent analyses versus
goal-independent analyses). Frameworks for goal-dependent analyses making use of such
transformations were developed (Kanamori 1993, Debray and Ramakrishnan 1994, Nils-
son 1995). Examples of practical implementations of logic program analysis using QA
transformations include the work of Codish and Demoen (1995) for modes and simple
types and Gallagher and de Waal (1994) for regular approximations.

4 From programs to constrained Horn clauses

CHCs have been used to represent a wide variety of systems and programs in other
languages. These include imperative, functional and object-oriented programs (at differ-
ent compilation levels, including bytecode, LLVM-IR, or machine instructions) (Peralta
et al. 1998, Henriksen and Gallagher 2006, Méndez-Lojo et al. 2007, Navas et al. 2008,
Gómez-Zamalloa et al. 2009, Grebenshchikov et al. 2012, Liqat et al. 2016, Gurfinkel
et al. 2015, De Angelis et al. 2015, Kahsai et al. 2016, López-Garćıa et al. 2018, Pérez-
Carrasco et al. 2020). Apart from programming languages, Section 7 mentions other
formalisms that have been translated into CHCs for the purpose of verification.

In this section, we summarize different approaches to translating programs, focussing
on the translation of imperative programs, together with properties to be proved, into a
set of CHCs to be tested for satisfiability.

4.1 Semantics-driven translation of imperative languages

An imperative program defines a relation 〈s,σ0〉 =⇒ σ1, which means that if statement s

is executed in initial state σ0, then σ1 is the state after execution of s, assuming that
the execution halts. In this discussion, a program state is just a mapping from variables
to values; see examples later in the section. The relation =⇒, closely related to the well-
known notion of a Hoare triple (Hoare 1969), can be specified by Horn clauses, using
the operational semantics of the language of s, in two main styles: small-step (structural
operational semantics) (Plotkin 1981) or big-step (natural semantics) (Kahn 1987), or a
mixture of the two. Let the predicate exec(S,St0,St1) represent the relation, where S,
St0, and St1 are first-order terms representing s,σ0, and σ1, respectively.

4.1.1 Small-step specification

In the small-step style, the exec relation is specified as a chain of steps. In a single step
〈s0,σ0〉 ⇒ 〈s1,σ1〉, s0 is executed in state σ0, leaving the remaining statement s1 to be

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000211
Downloaded from https://www.cambridge.org/core. Copenhagen University Library ( Royal Danish Library), on 08 Dec 2021 at 10:12:54, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000211
https://www.cambridge.org/core


Analysis and Transformation of CHCs for Program Verification 23

Fig. 3. Small-step (left) and big-step (right) rules for statement composition.

executed in state σ1; this is represented by the relation step(S0,St0,S1,St1) in which
S0, St0, S1, and St1 are representations of s0,σ0,s1, and σ1, respectively. The chain of
steps, or run, is defined by the recursively defined relation run(S0,St0,S1,St1), which
specifies the reflexive, transitive closure ⇒∗. A complete execution is a run that reaches
a halt statement (from which no steps are possible); that is, 〈s0,σ0〉 =⇒ σn if and only
if 〈s0,σ0〉 ⇒∗ 〈halt,σn〉.
exec(S,St0,St1):- run(S,St0,halt,St1).
run(S,St,S,St):- true.
run(S0,St0,S2,St2):- step(S0,St0,S1,St1), run(S1,St1,S2,St2).

The small step for a simple statement such as an assignment of the form x := e, repre-
sented asg(var(X),E), evaluates the expression e in state σ0 (using predicate eval),
computes state σ1 by replacing the value of x with the result of the evaluation (using
predicate replace) and moves to the halt statement.
step(asg(var(X),E),S0,halt,S1):- eval(E,S0,V), replace(X,V,S0,S1).

Let the term seq(S1,S2) represent the compound statement s1;s2, where S1 and S2

represent the component statements s1 and s2, respectively. Then a small step on s1;s2
is specified as follows.
step(seq(S1,S2),St0,S2,St1):- step(S1,St0,halt,St1).
step(seq(S1,S2),St0,seq(S11,S2),St1):- step(S1,St0,S11,St1), S11�=halt.

For program analysis and transformation, both big-step and small-step styles have ad-
vantages and disadvantages. Clauses derived using small-step semantics are often simpler,
and essentially represent transition systems; thus they are amenable to well established
model-checking techniques. Big-step predicates allow compositional analysis since each
program component is represented by an input-output predicate; however, this means
that predicates have a greater number of arguments than small-step predicates, which
can increase the complexity of analysis algorithms.

4.1.2 Big-step specification

In the big-step style, the exec relation is defined by structural decomposition of
statements. For instance, the complete execution of x := e and s1;s2 are specified as
follows.
exec(asg(var(X),E),St0,St1):- eval(E,St0,V), replace(X,V,St0,St1).
exec(seq(S1,S2),St0,St2):- exec(S1,St0,St1), exec(S2,St1,St2).

These logical formulations of big- and small-step semantics are direct translations of
the semantic rules to be found in textbooks, for example, (Nielson and Nielson 1992)
(see Figure 3). The close connection between semantic judgments and Horn clauses was
first noted by Kahn and exploited in semantics-based tools (Kahn 1987, Donzeau-Gouge
et al. 1984). More complex semantic rules than the simple ones considered above can
be represented, such as the Clight big-step specifications for a subset of the language
C (Blazy and Leroy 2009).
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Derivation of small-step CHCs from big-step CHCs, and vice versa, can also be defined
Gallagher et al. (2020). Big-step and small-step styles can be mixed; for example, a
procedure call in the small-step style can be defined as a single step that completely
executes the procedure body, such as is done in De Angelis et al. (2017b). The following
clause omits parameter passing, for simplicity, and we assume that def(F,FDef) encodes
the relation between the procedure name F and its definition.
step(call(F),St0,halt,St1):- def(F,FDef), run(FDef,St0,halt,St1).

4.1.3 Translation by specialization

Let I be the set of CHCs defining the exec relation, introduced in Section 4.1.1,
for the language of statement (or program) s, that is, exec(S,St0,St1) holds
iff 〈s,σ0〉 =⇒ σ1. Then, we can apply CLP specialization (Section 3.2) to I ∪
{false:-exec(S,St0,St1)}, yielding a specialized version of the exec relation for S.
This is an instance of the first Futamura projection (Futamura 1971); an interpreter
specialized (by partial evaluation) with respect to a source program P can be seen as a
compilation of P into the language of the interpreter, which in our case is the language
of constrained Horn clauses. By suitable choice of renaming definitions, the syntactic
structure of P and the state representations can be removed, leaving predicates whose
arguments are the values of the program variables.

Example 15
Let the source program consist of the assignment sum=sum upto(m), together with the
function in Figure 1. Using a big-step semantics specification of exec, we obtain by
partial evaluation the following CHCs3:
asg1(M,Sum1):- sum upto(M,E), Sum1=E.
sum upto(A,C):- D=A, E=0, while4(D,E,F,C).
while4(A,B,E,F):- A>0, H=B+A, I=A-1, while4(I,H,E,F).
while4(A,B,A,B):- A=<0.

The predicate asg1(M,Sum1) is a renamed version of the goal which was specialized,
using the following new definition:
asg1(M,Sum1):- exec(asg(var(sum),call(sum upto,[var(m)])),

[(m,M),(sum,Sum)], [(m,M1),(sum,Sum1)]).

The term asg(var(sum),call(sum upto,[var(m)])) is the representation of the state-
ment sum=sum upto(m), whereas [(m,M),(sum,Sum)], and [(m,M1),(sum,Sum1)] rep-
resent the states before and after execution; the states are lists of pairs relating program
variables to their values, but the renaming version retains only the values. Furthermore
the variable Sum is a redundant argument (Leuschel and Sørensen 1996) (see Section 3.3),
and M1 is detected during specialization to be equal to M. After partial evaluation, ev-
ery statement of the source program results in a corresponding call to exec; trivial
calls to exec are then unfolded. These clauses can be run as a logic program with goal
asg1(M,Sum1) (assuming standard procedures for evaluating arithmetic predicates) with
some specific input value of M, simulating the execution of the given source program and
returning the result Sum1.

3 The big-step interpreter is available at https://github.com/jpgallagher/Semantics4PE and
the partial evaluation was performed using Logen (Leuschel et al. 2006)
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A similar translation based on a small-step semantics can also be performed. Variations
of this are described in the literature (Peralta et al. 1998, Henriksen and Gallagher 2006,
De Angelis et al. 2015). Calls to the step predicate can be completely unfolded, leaving
linear clauses of the form:
run(s0,st0,S2,St2):- c, run(s1,st1,S2,St2).

where s0,st0,s1,st1 are terms and c is a constraint on the variables occur-
ring in those terms. The predicate run can then be renamed as in the big-step
translation.

The main advantage of translation by specialization of a semantics-based interpreter
is that the correctness of translation follows from the correctness of the interpreter and
of the partial evaluator. The correctness of semantics-based interpreters is established
by reference to the formal semantic rules of which the interpreter is composed. The
correctness of the partial evaluator can be demonstrated once and for all, and can then
be applied to many different interpreters.

4.1.4 Generating verification conditions from semantics-based interpreters

Consider a Hoare triple {Pre} s {Post}, where we have predicates on states pre(St)

and post(St) defining Pre and Post, respectively, and error(St) defining the negation
of Post. We also assume that the statement s is given using a fact prog(S). The Hoare
triple is expressed by a goal:
false:- pre(St0), prog(S), exec(S,St0,St1), error(St1).

For instance, the verification problem presented in Section 1 is to show that the Hoare
triple {m≥0} sum= sum upto(m) {sum≥m} is valid. Let pre, post, and error be defined
as follows:
pre([(m,M),(sum,Sum)]):- M>=0.
post([(m,M),(sum,Sum)]):- Sum>=M.
error([(m,M),(sum,Sum)]):- M>Sum.

The Hoare triple is then expressed by the implication:
pre(St0)∧exec(asg(var(sum),call(sum upto,[var(m)])),St0,St1) → post(St1)

which is equivalent to the following goal g:
false:- pre(St0), error(St1), (g)

exec(asg(var(sum),call(sum upto,[var(m)])),St0,St1).

Specialization of T ∪ {g}, where T denotes the set of clauses defining pre, exec, and
error, yields the set of clauses T ′ ∪ {g’}, where the goal g’ is:
false:- M>Sum, M>=0, asg1(M,Sum). (g’)

and T ′ is the set of clauses shown in Example 15, which is essentially the same set of
verification conditions (see clauses 1–4) shown in Section 1. (Note, in fact, that the third
argument of predicate while4 in T ′ is redundant.)

Reachability-style verification conditions. Assume now that the exec predicate is spec-
ified using small-step semantics, using the clauses for exec, run, and step shown in
Section 4.1.1. We derive reachability-style verification conditions by an unfold-fold trans-
formation of the semantics-based formulation of the verification of a Hoare triple. By
unfolding exec, we obtain the following clauses whose satisfiability has to be checked
(together with the clauses defining step):

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000211
Downloaded from https://www.cambridge.org/core. Copenhagen University Library ( Royal Danish Library), on 08 Dec 2021 at 10:12:54, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000211
https://www.cambridge.org/core


26 E. De Angelis et al.

false :- pre(St0), prog(S), run(S,St0,halt,St1), error(St1).
run(S,St,S,St):- true.
run(S0,St0,S2,St2):- step(S0,St0,S1,St1), run(S1,St1,S2,St2).

Introduce the following new definition:
error reach(S0,St0):- run(S0,St0,halt,St1), error(St1).

Unfolding the definition of error reach and folding twice, we obtain the following
clauses:
false :- pre(St), prog(S), error reach(S,St).
error reach(halt,St):- error(St).
error reach(S0,St0):- step(S0,St0,S1,St1), error reach(S1,St1).

After specializing these clauses for the instances of pre, error, and S from Section 1
(in particular, S is asg(var(sum),call(sum upto,[var(m)])), we obtain the following
different set of verification conditions than the ones shown previously:
false :- M>=0, assign error(M).
assign error(M):- X=M, Sum=0, while error(X,M,Sum).
while error(X,M,Sum):- X=<0, M>Sum.
while error(X,M,Sum):- X>0, Sum1=Sum+X, X1=X-1, while error(X1,M,Sum1).

This set of conditions has some potential advantages over the previous ones. The predicate
arguments relate to only one state at a time, rather than both an initial and a final state
as encoded in the exec or run predicates. Second, small-step semantics gives linear
clauses that are closely related to the transition systems handled by model checkers and
techniques for reachability analysis.

The above clauses encode backward reachability; the base case of the error reach

relation is the error state and the goal is the initial state. A similar unfold-fold trans-
formation can be performed to yield verification conditions based on forwards reachabil-
ity, or else the Reversal transformation discussed in Section 6.1 can be applied to the
backwards reachability clauses shown above. The resulting set of clauses (shown in the
following subsection) is essentially the same as the schema for proving safety properties
of transition systems given by Grebenshchikov et al. (2012).

4.2 Translation via proof rules

Although the semantics-based approach provides a comprehensive framework for deriving
CHCs and verification conditions from imperative programs, other techniques are often
used in the literature. Rather than translating the source language, some works translate
a verification problem for some source language into CHCs indirectly, by encoding the
proof rules and semantic model of the system as CHCs.

A comprehensive presentation of CHC-based verification was given by Grebenshchikov
et al. (2012); in that work, it is assumed that imperative procedures are represented as
transition systems, and CHCs are then constructed from the transitions themselves and
from CHC schemata for proof rules from the literature on program verification, such as
rely-guarantee rules, procedure summarization rules (Reps et al. 1995), and termination
proof rules. For instance, the following scheme is used to formulate proofs of safety of
a transition system, where tr(St0,St1) represents a transition from state St0 to state
St1, init(St) states that St is the initial state, reach(St) states that St is reachable
from the initial state, and error(St) states that St is an error state.
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false :- reach(St), error(St).
reach(St):- init(St).
reach(St1):- reach(St), tr(St,St1).

Essentially the same scheme was derived in the previous section from semantic definitions
and unfold-fold transformations. Other proof-based approaches are briefly presented in
Section 7.

4.3 Abstract compilation

A variation on the approach described above is obtained when the semantics-based in-
terpreter is an abstract interpreter written as a set of CHCs, which is then specialized
with respect to a given source program. The resulting CHCs represent an abstraction of
the original source program. This technique, and its application to program analysis, is
called abstract compilation (Warren et al. 1988, Hermenegildo et al. 1992). The aim is to
generate from an original source program P an abstract set of clauses P ′ whose execution
yields the analysis results corresponding to the abstraction encoded in the interpreter.
An example is the generation of size-change transitions for termination analysis, where
the abstract interpreter computes the size of data structures rather than their values
(Verschaetse and De Schreye 1992).

4.4 Compiler-based translation

Translating from general-purpose programming languages such as C or Java to CHCs
is a challenge due to the complexity of the source language. A pragmatic approach is
to rely on a compiler from the source language into an intermediate language such as
three-address code, LLVM, or Java bytecode, and then translate from there into CHCs.

Indeed, it has been argued that constrained Horn clauses provide many advantages
as an intermediate compiler representation language (Méndez-Lojo et al. 2007, Gange
et al. 2015), naturally incorporating features such as SSA form, reduction of all itera-
tive constructs to a single one (recursion), clarification of variable scope, built-in cap-
ture and representation of alternative executions paths and non-determinism, and so
on. A CHC representation facilitates analysis and optimisation of compiled code using
solvers, analysers, and transformation tools available for CHCs. These arguments ap-
ply to all CHC-based representations of imperative code, not only those intended for
compilation.

SeaHorn, a verification framework for C based on CHCs, uses a compiler front-end
and then “takes as input the optimized LLVM bitcode and emits verification condi-
tions as Constrained Horn Clauses (CHC)” (Gurfinkel et al. 2015). JayHorn, a trans-
lator for Java, follows a similar approach (Kahsai et al. 2016); the description of the
translation to CHCs states that “most steps of the translation from Java into logic
are implemented as bytecode transformations, with the implication that their sound-
ness can be tested easily”. Thus, it is argued that the translation from intermediate
languages is simpler than translating the source program. Neither of the above cited
works provides a formal proof of correctness of the translation, relying on the correct-
ness of the compiler to reduce the source to a form where the translation is relatively
straightforward.
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4.5 Translation of source language annotations

Some programming languages and systems provide facilities for adding annotations to the
source code, supporting software engineering methods such as design by contract (Meyer
1988, Leavens et al. 2006), or as a part of an advanced program development environment
integrating debugging, analysis, and static and dynamic verification (Hermenegildo et al.
1999; 2005; Puebla et al. 2000).

Such languages and systems include assertions such as assume(A) and check(A). For
example, a procedure contract in Eiffel or JML might contain in the procedure body the
precondition assume(x>0), where x is a parameter of the procedure, meaning that the
procedure call is assumed to satisfy that condition. Similarly, at the end of the procedure
the assertion check(x <w) means that if the precondition holds when the procedure starts,
and the procedure terminates, then at termination we should have x <w. In a constraint
logic programming language with assertions, such as Ciao (Hermenegildo et al. 2012),
similar check-style literals can be used at any program point, but there is also a specific
form for stating conditions on the execution of an atom. For instance, we may have:
:- check calls p(X,W) : X>0. (1)
:- check success p(X,W) : X>0 => X<W. (2)

where assertion (1) is a condition X>0 on the call constraints for the atom p(X,W) and
assertion (2) is a condition X<W on the success (answer) constraints for the same atom,
for calls that meet the call constraint X>0. There may be several of these assertions for
a given atom.

In general, verification conditions for such procedure contracts are essentially the same
as for a Hoare triple and can be generated from the language semantics as discussed above.

Conditions to be checked may be inserted at arbitrary program points, and a general
scheme for generating CHC verification conditions is to assume that for each program
point k there is a predicate reachk(St), such that St is the state when point k is reached.
Then, the verification condition for some property ϕ that should hold at point k is the
goal false ← reachk(St), error(St), where error(St) is a predicate defining the negation
of the desired property ϕ on state St.

As we will see in Section 5.2, static analyses can produce information directly at
all program points k, without explicitly generating predicates reachk(St), for each k.
Program point assertions can be checked directly against this inferred information.

An additional proof requirement in the above precondition/postcondition scenario may
consist in checking that all calls to a procedure satisfy a given precondition. For example,
the Ciao calls assertion as (1) above, does require this. If this precondition cannot be
proved statically, before running the program (and this may always happen because
of undecidability limitations), then a dynamic, run-time check will be introduced for it,
issuing a warning or calling an exception handling routine if the check fails (Hermenegildo
et al. 1999, Puebla et al. 2000).

5 Analysis for verification

In this section we review techniques for CHC analysis applied to verification. These
techniques, derived mainly from the CLP literature, in some cases directly yield a proof
of satisfiability (or unsatisfiability), while in others, they help with inferring relevant
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program properties such as loop invariants. Static analysis also plays an important role
in guiding some CHC transformations, especially specialization.

The main technique used in these approaches is Abstract Interpretation (Cousot and
Cousot 1977), a technique for static program analysis in which execution of the program
is simulated on an abstract domain (Dα) which is simpler than the concrete domain (D).
Values in the abstract domain and values in the concrete domain are related via a pair
of monotonic mappings 〈α,γ〉: the abstraction α : D → Dα, and the concretisation γ :
Dα → D, which form a Galois connection. An abstract value d ∈ Dα approximates a
concrete value c ∈ D if α(c) � d, where � is the partial ordering on Dα. We refer to
these abstract values also as descriptions. The correctness of abstract interpretation
guarantees that the descriptions inferred (by computing a fixpoint through a Kleene
sequence (Tarski 1955)) approximate all the actual values which occur during any possible
execution of the program, and that this fixpoint computation process will terminate
given some conditions on the abstract domains (such as being finite, or of finite height,
or without infinite ascending chains) or by the use of a widening operator (Cousot and
Cousot 1977). Guaranteed termination implies one of the fundamental characteristics
of abstract interpretation-based analyses: automation. Given an abstract domain and,
if needed, a widening operator, analysis does not require user intervention. This comes
at the price of some loss in precision, determined by the abstraction used. Abstraction
also brings about scalability, since it makes it possible to trade off precision for efficiency.
These two characteristics enable the use of abstract interpretation in practical automated
tools.

In the following we review the two main techniques used for CHC analysis applied to
verification, which are based on abstracting respectively the bottom-up and top-down
satisfiability procedures of Section 2.4.

5.1 Bottom-up semantics-based analysis

The bottom-up approach to logic program analysis was first proposed by Marriott and
Søndergaard (1988) and further elaborated by Codish et al. (1994). The approach is
based on the bottom-up semantics discussed in Section 2.4.1, in which the least model
of a set P of clauses is computed as the least fixpoint of the function T D

P : 2BD → 2BD ,
that is, the least upper bound of the sequence ∅ ⊆ T D

P ↑ 1 ⊆ T D
P ↑ 2 ⊆ . . .

Bottom-up analysis using abstract interpretation involves approximating the func-
tion T D

P by a new continuous function UP : A → A, where the abstract domain A is
a complete lattice with bottom element ⊥, partial order �, and concretisation func-
tion γ : A → 2BD . The condition T D

P ◦γ ⊆ γ ◦UP ensures that the sequence ⊥ � UP (⊥) �
U2

P (⊥) � . . . converges to an over-approximation of lfp(T D
P ), that is, lfp(T D

P ) ⊆ γ(lfp(UP )).
If the lattice A has no infinite ascending chain, lfp(UP ) is reached in a finite number of
steps; otherwise a widening (Cousot and Cousot 1992) is used to construct a sequence
⊥ � M1 � M2 � . . ., such that for all i≥1, U i

P (⊥) � Mi and the sequence is ultimately
stationary; that is, for some finite k, Mk = Mk+1 = Mk+2 = . . . In both cases we obtain in
a finite number of steps some over-approximation L of lfp(UP ). Thus, information about
the least model of P can be inferred and hence satisfiability can be checked; in particular,
if a goal false ← c,B1, . . . ,Bn is true in γ(L), then it is also true in lfp(T D

P ) and hence
P ∪{false ← c,B1, . . . ,Bn} is satisfiable. An early example of bottom-up analysis was the
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type analysis by Barbuti and Giacobazzi (1992). Mode analyses using a bottom-up anal-
ysis framework were also developed by Corsini et al. (1994) and Gallagher et al. (1995).

Example 16
Consider again the clauses of Example 9 on the constraint domain Integer .
They are:
1. false :- M>Sum, M>=0, sum upto(M,Sum).
2. sum upto(X,R) :- R0=0, while(X,R0,R).
3. while(X1,R1,R) :- X1>0, R2=R1+X1, X2=X1-1, while(X2,R2,R).
4. while(X1,R1,R) :- X1=<0, R=R1.

A bottom-up analysis using the abstract domain of convex polyhedra over real num-
bers (Cousot and Halbwachs 1978) is applied to these clauses. This kind of analysis was
first introduced into logic programming by Benoy and King (1997). For each predicate
p(X1, . . . ,Xn), where X1, . . . ,Xn range over reals, a convex polyhedron is represented by
a constrained fact p(X1, . . . ,Xn) ← c, where c is a linear constraint over X1, . . . ,Xn rep-
resenting a convex polyhedron. An element of the abstract domain for the set of CHCs at
hand is thus a set of constrained facts, one for each predicate. The concretisation func-
tion maps a set of constrained facts to the set of atoms p(d1, . . . ,dn) such that the point
(d1, . . . ,dn) is inside the polyhedron for p. The function UP is defined as any function on
the tuple of polyhedra for the predicates, satisfying T D

P ◦γ ⊆ γ ◦UP ; a suitable implemen-
tation of UP makes use of well-established libraries for manipulating convex polyhedra
such as the Parma Polyhedra Library (Bagnara et al. 2008). The abstract domain has
infinite ascending chains and so, in general, a widening operation on polyhedra is needed
to force convergence of the sequence ⊥ � UP (⊥) � U2

P (⊥) � . . .

In the following sequence of approximations, we first compute the approximation of
the model of the recursive predicate while; this is reached in Step 4 after applying a
widening from Step 3 to Step 4, which (in particular) discards the potentially infinite
sequence of constraints X=<1, X=<2, . . . In Step 5, the approximation of the model of the
non-recursive predicate sum upto is obtained in one step.
1. {while(X,R1,R) | X=<0, R=R1}
2. {while(X,R1,R) | R>=R1, X=<1, R>=X+R1}
3. {while(X,R1,R) | R>=R1, X=<2, R>=X+R1}
4. {while(X,R1,R) | R>=R1, R>=X+R1}
5. {while(X,R1,R) | R>=R1, R>=X+R1} ∪ {sum upto(X,R) | R>=X, R>=0}

The goal false:- M>Sum, M>=0, sum upto(M,Sum) is true in the concretisation of
the model computed at Step 5, and hence we can conclude that clauses 1--4 are
satisfiable.

5.2 Top-down semantics-based analysis

Top-down analyses represent another class of CHC-based program analyses, and were first
used in analysers such as MA3 and Ms (Warren et al. 1988), PLAI (Muthukumar and
Hermenegildo 1990; 1992, Garćıa de la Banda et al. 1996), GAIA (Le Charlier and Van
Hentenryck 1994), or the CLP(R) analyser (Kelly et al. 1998). This style of analysis was
extended early on to CLP/CHCs by Garćıa de la Banda and Hermenegildo (1993) and
Garćıa de la Banda et al. (1996). These techniques have also been applied to the analysis
of functional, imperative, and object-oriented programs (Méndez-Lojo et al. 2007, Albert
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et al. 2007, Navas et al. 2008; 2009, Liqat et al. 2014; 2016, López-Garćıa et al. 2018,
Pérez-Carrasco et al. 2020), by transforming the original program into CHCs as explained
in Section 4. Such transformations often use the big-step semantics approach.

Basic top-down analysis. Top-down analyses are based on the top-down semantics of
CHCs presented in Section 2.4.2 or variations thereof.

A basic top-down analysis using abstract interpretation can be derived from this se-
mantics, in a similar way to the bottom-up analysis, as we now specify. Recall that
the top-down semantics is given by a rewriting system on a set S, whose elements
are the pairs 〈B,e〉, where B is a multiset of atoms and e is a constraint on a given
constraint domain D, together with the distinguished element fail. Every element of
S can be viewed as a constrained goal, being fail any unsatisfiable goal. A rewriting
step on S, denoted −→, is either an r-rewriting (−→r) or a c-rewriting (−→r). Given a
set Q of goals in S, we define the one-step top-down function tdQ : 2S → 2S , as follows:
tdQ(T ) = Q ∪ {G′ | G ∈ T, G −→ G′}. Then, we have that the set of goals reachable by
a (possibly infinite) sequence of rewritings from Q is equal to lfp(tdQ).

To construct an abstract interpretation, we assume as before an abstract domain A

which is a complete lattice with bottom element ⊥ and concretisation function:
γ : A → 2S . Thus, an element of A denotes a set of goals. Let I in A be an abstract goal.
An abstract top-down function is a function tdα

I : A → A, satisfying tdγ(I) ◦ γ ⊆ γ ◦ tdα
I .

This condition ensures that tdα
I has a least fixpoint and lfp(tdγ(I)) ⊆ γ(lfp(tdα

I )).

And-trees and call-success semantics. For top-down analysis, it is useful to structure
derivations as trees, rather than sequences of rewritings. This will allow us to identify
the call and (possibly) success constraints for each atom occurring in a derivation,
and this information that can be directly related to atoms in the CHCs. First, we
need the following notion. Given a set P of CHCs, an and-tree for P is defined as
follows.

1. Each node is a triple 〈A,c,C〉, where A is an atom (possibly the atom true), c is a
constraint whose free variables are a subset of vars(A), and C is a clause in P . The
component C is empty for leaf nodes.

2. In each non-leaf node, the C component is a clause A ← c′,B1, ...,Bk (with k≥1) in P

which is renamed so that: (i) the head A is identical to the atom of the node, and
(ii) the variables which occur in the body of the clause and not in the head, do not
occur outside the subtree at that node. Constrained facts are written as A ← c′, true.

3. A non-leaf node 〈A, c, A ← c′,B1, . . . ,Bk〉 has k ≥1 ordered children,
〈B1,proj(c∧ c′,vars(B1)),C1〉, · · · , 〈Bk,proj(c∧ c′,vars(Bk)),Ck〉

with possibly empty clauses components C1, . . . ,Ck.

Let t be an and-tree and constr(t) be the set of all constraint components of the
nodes of t. Then t is feasible if constr(t) is satisfiable; t is successful if it is feasi-
ble and all leaf nodes have atom true; t is failed if it has a leaf node with constraint
false. When understood from the context we will feel free to say “tree”, instead of
“and-tree”.
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Call constraints and answer constraints in an and-tree. For each successful and-
tree t with root 〈A,c,C〉, the answer constraint of the root is proj(constr(t),vars(A)).
Non-successful and-trees have no answer constraint of the root. We can also compute call
constraints for nodes of an and-tree, corresponding to the leftmost selection rule. A node
N = 〈A,c,C〉 has a call constraint if the subtrees t1, . . . , tj (j ≥0) rooted at the sibling
nodes to the left of N are successful, and have answer constraints c1, . . . , cj , respectively.
In this case the call constraint is proj(c∧ c1 ∧ . . .∧ cj ,vars(A)).

The analysis graph approach. Many practical top-down abstract interpreters adopt a
particular approach that is based on computing an analysis graph. This approach was first
proposed in PLAI and is followed in other analysers, like GAIA, or the CLP(R) analyser.
The graph inferred is a finite, abstract object whose concretisation approximates the
(possibly infinite) set of (possibly infinite) maximal and-trees of the concrete semantics.

This approach separates the abstraction of the structure of the trees (i.e. the paths in
the concrete trees) from the abstraction of the constraints at the nodes in the concrete
trees. Thus, the abstract domain is made out of two abstractions. The first one, called Tα,
is typically built-in (even if there may be several choices for it), and is the abstract domain
of the analysis graph, which finitely approximates the shapes of the concrete and-trees,
independently of the contents of the nodes.

The Tα abstraction is parametric on a second abstraction domain, called Dα. Elements
of Dα are used as labels in the nodes of the analysis graph, and represent the sets of call
constraints and success constraints of the nodes of the concrete and-trees. Using the same
Tα abstraction, many Dα domains have been developed to use Tα for inferring modes,
sharing (variable aliasing), types, numerical constraints, arrays, definiteness, determinacy,
non-failure, resources, etc. Each such Dα domain has its concretisation function γ and its
basic operations on the domain lattice (such as least upper bound, greatest lower bound,
and, optionally, widening), a few additional instrumental operations such as projection
and extension, and the semantics (transfer functions) of any built-ins (basic operations)
of the language (see, e.g. the papers by Muthukumar and Hermenegildo (1992), Garćıa
de la Banda et al. (1996), and Hermenegildo et al. (2000)).

The input to the analysis is a set P of CHCs, an abstract domain Dα, and a set Qα

of abstract goals 4 〈Ai,λi〉, where each Ai is an atom with variables as arguments and
λi ∈Dα. The set Qα defines the (possibly infinite) set of concrete goals for which that
the analysis should be performed: Q = {〈A,d〉 | d ∈ γ(λ) ∧ 〈A,λ〉 ∈ Qα}. The concrete
semantics to be safely approximated is then the set of all and-trees that have an element
of Q as root. The result of the analysis is an analysis graph, where every node is of the
form 〈A,λc,λs〉, where {λc,λs} ⊆ Dα (note that the component λ of a node has been
split into a call component λc and a success component λs).

Correctness of the analysis requires that if there are one or more nodes in the concrete
trees of the form 〈A,dc,ds〉 (also for concrete nodes the constraint components is split
into two), then there exists a node 〈A,λc,λs〉 in the analysis graph such that dc ∈ γ(λc)

4 For reasons of simplicity, in what follows, we will feel free not to write the third component, that
is the clause, of the nodes of and-trees. That clause is common to the abstract and concrete
nodes.
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and ds ∈ γ(λs). This means that the analysis graph must capture all the call–success
pairs in all the nodes of the and-trees of the concrete semantics. For a given predicate A,
the analysis graph can contain more than one node, with different call descriptions.
A node 〈A,λc,⊥〉 indicates that calls to predicate A with description d ∈ γ(λc) either fail
or do not terminate. An edge in the analysis graph 〈A,λc,λs〉 �→ 〈B,μc,μs〉 represents
that calling A with calling description λc generates an atom B to be called with calling
description μc. Correctness requires that if in any concrete tree there is a node 〈A,dc〉
with a child 〈B,ec〉, then there exists an edge 〈A,λc,λs〉 �→ 〈B,μc,μs〉 in the graph such
that dc ∈γ(λc) and ec ∈γ(μc).

Generating the analysis graph consists essentially in following the construction of the
and-tree with two main differences: (i) instead of the concrete operations for the con-
straints, the operations from Dα should be used, and (ii) in the construction of the
graph, call descriptions are tabulated so that, if the abstract call constraint of a node
is equal to (or, optionally, subsumed by) that of a node already present, the graph is
not extended and, instead, an edge is introduced pointing to that node (see, node C in
Figure 4). The success label is initialized to ⊥ and the iteration for constructing a fix-
point for the labels is started. For domains with infinite ascending chains the widening
operator is applied to limit the number of call and success descriptions considered. Ad-
ditional details and optimisations of the particular algorithms used can be found in the
references given above. Also, many variants have been proposed and among them, let us
mention the incremental analyses (Puebla and Hermenegildo 1996, Hermenegildo et al.
2000, Garćıa-Contreras et al. 2020a;b). In all cases by the fundamental results of abstract
interpretation one has that (i) termination is guaranteed, and (ii) the concretisation of
the analysis graph is a safe over-approximation of the and-trees generated by the concrete
semantics.

Example 17
Figure 4 (Garćıa-Contreras et al. 2020a) shows a possible analysis graph (center of figure)
for a set of CHCs (left of figure) that encodes the computation of the parity of a binary
message using the exclusive or, denoted xor. For instance, the parity of the message
[1,0,1] is 0. We take the abstract domain (right of figure) with the following abstract
values: (i) ⊥ such that γ(⊥) = ∅, (ii) z (for zero) such that γ(z) = {0}, (iii) o (for one) such
that γ(o) = {1}, (iv) b (for bit) such that γ(b) = {0,1}, and (v) � such that γ(�) is the
set of all concrete values, and initial abstract goal Gα = 〈main(Msg,P), (Msg/�, P/�)〉,
i.e, where the arguments of main can be bound to any concrete value (see node A in the
figure). Node B = (〈par(Msg,X,P), (Msg/�, X/z, P/�), (Msg/�, X/z, P/b)〉) captures
the fact that par may be called with X bound to 0 in γ(z) and, if par succeeds, the third
argument P will be bound to any value in γ(b) = {0,1}. Note that node C captures the
fact that, after this call, there are other calls to par where X/b. Edges in the graph
stem from the 〈A,λc,λs〉 �→ 〈B,μc,μs〉 relation. For example, two such edges exist from
node B, denoting that par may call xor (edge from B to D) or par itself with a different
call description (edge from B to C). In this example we have used a simple, non-relational
abstract domain. In the following example we will use a relational domain over the
integers.
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Fig. 4. A set of CHCs for computing parity (left) and a possible analysis graph (right).

Example 18
The following is an encoding of the sum upto example in Ciao 5

:- module( ,[sum upto/2],[assertions,nativeprops]).
:- check calls sum upto(M,Sum) : M>=0.
:- check success sum upto(M,Sum) : M>=0 => Sum>=M.
sum upto(X,R):- R0=0, while(X,R0,R).
while(X1,R1,R):- X1>0, R2=R1+X1, X2=X1-1, while(X2,R2,R).
while(X1,R1,R):- X1=<0, R=R1.

The check calls assertion instructs the system to check that M>=0 holds for calls to
sum upto and, similarly, check success asks for a check that Sum>=M holds after suc-
cessful derivations starting from 〈{sum upto(M,Sum)}, M>=0〉 (see also Section 4.5).

The output from (top-down) analysis in Ciao for this module, taken in isolation, with
the domain of convex polyhedra (Cousot and Halbwachs 1978), using the Parma Poly-
hedra Library (Bagnara et al. 2008), yields:6
:- module(_,[sum_upto/2],[assertions,nativeprops]).
:- check calls sum_upto(M,Sum) : M>=0.
:- checked success sum_upto(M,Sum) : M>=0 => Sum>=M.
:- true success sum_upto(M,Sum) : M>=0 =>

(M>=0, Sum>=M, Sum>=2*M-1, Sum>=3*M-3, Sum>=4*M-6).
sum_upto(X,R) :- R0=0, while(X,R0,R).

:- true pred while(X1,R1,R) : (X1>-1, R1>=0) => (X1>-1, R1>=0,
R>=R1, R>=X1+R1, R>=2*X1-1, R>=3*X1-R1-3, R>=4*X1-2*R1-6).

while(X1,R1,R) :- X1=<0, R=R1.
while(X1,R1,R) :- X1>0, R2=R1+X1, X2=X1-1, while(X2,R2,R).

The true assertions contain (part of) the information inferred (i.e. the abstract values)
for each of the two predicates. They represent as assertions the nodes of the analysis graph
and the call and success constraints in each of those nodes. The (true) pred assertion
is a shorthand for a pair of assertions consisting of an identical success assertion and a
calls assertion with the same precondition as the pred, that is:

5 Modulo the syntax convention adopted in the paper. For instance, for constraints we use > and =,
instead of .>. and .=., respectively.

6 This output is a simplification of the information inferred by the analyser: it combines, using the least
upper bound operator, the information contained in the different versions inferred (see later).
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:- true calls while(X1,R1,R) : (X1>-1, R1>=0).
:- true success while(X1,R1,R) : (X1>-1, R1>=0) => (X1>-1, R1>=0,

R>=R1, R>=X1+R1, R>=2*X1-1, R>=3*X1-R1-3, R>=4*X1-2*R1-6).

The checked success assertion for sum upto is the result of comparing (reducing,
using abstract specialization) the original check success and the true assertion in-
ferred, and it indicates that the postcondition Sum>=M has been proven for the assump-
tion M>=0 (Bueno et al. 1997, Puebla et al. 2000). However, since this assumption cannot
be proven to hold without context information (i.e. without knowing how this module
will be called), the check calls assertion remains in check status and a run-time test
will be generated for it. If this module is analysed in the context of other modules that
call it, perhaps inter-modular analysis allows this condition to be discharged and the
run-time test eliminated.

The analysis graph also contains abstract information at all points in the bodies of
the CHCs, which can also be printed out as assertions, for example, for the sum upto

predicate:
sum_upto(X,R) :- true(X>=0), R0=0, true((X>=0,R0=0)), while(X,R0,R),

true((X>=0, R0=0, R>=X, R>=2*X-1, R>=3*X-3, R>=4*X-6)).

where the true literals are program point assertions which state properties that hold at
those points (for a left-to-right computation rule).

Polyvariance (context- and path-sensitivity). The analysis graph approach allows
representing the different call descriptions encountered during the execution, separating
the cases in which such calls differ, even if some of them subsume others. This feature
is traditionally referred to as polyvariance (or multivariance) in the context of logic
program analysis, and, in our context, it serves two purposes:

1. Precision: Different calling descriptions for the same predicate can be recorded
depending on which exact clause and literal this predicate is called from and with
which call description. This idea of storing multiple calling contexts in this way
is used in recent implementations of context sensitivity in imperative program
analyses (Khedker and Karkare 2008, Thakur and Nandivada 2020) where it is
referred to as keeping multiple value contexts.

2. Efficiency: For the same literal and clause in the CHCs, storing different calling de-
scriptions allows keeping the fixpoint computation localized to only those descriptions
that change.

In addition, the different call descriptions for and paths to a given predicate that the
analysis graph encodes in a compact way are really representing different possible ver-
sions of that predicate. These versions, which are implicit in the analysis graph, can be
materialized in a process called polyvariant specialization (Bulyonkov 1984, Jacobs et al.
1990, Giannotti and Hermenegildo 1991, Jones et al. 1993, Puebla and Hermenegildo
1999), which is essentially the abstract version of traditional predicate specialization
(see Sections 3.2 and 6.1), allowing additional optimisations. An instrumental concept
for the latter is abstract executability (Giannotti and Hermenegildo 1991, Puebla and
Hermenegildo 1999), that is, the partial evaluation of concrete code with respect to ab-
stract values.
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Example 19
As an example of polyvariant specialization, the graph in Figure 4 contains the two
versions par 1 and par 2 for predicate par and the two versions xor 1 and xor 2 for
xor. Invoking version materialisation produces the following specialization:
main(Msg,P) :- par 1(Msg,0,P).
par 1([],P,P).
par 1([C|Cs],P0,P) :- xor 1(C,P0,P1), par 2(Cs,P1,P).

par 2([],P,P).
par 2([C|Cs],P0,P) :- xor 2(C,P0,P1), par 2(Cs,P1,P).

xor 1(0,0,0). xor 1(0,1,1). xor 1(1,0,1). xor 1(1,1,0).

xor 2(0,0,0). xor 2(0,1,1). xor 2(1,0,1). xor 2(1,1,0).

Example 20
The following are all the versions (the abstract polyvariant specialization) generated
during analysis by the Ciao analyser for the sum upto example, assuming as before the
precondition M>=0, and using again the domain of convex polyhedra:
:- module(_,[sum_upto/2],[assertions,nativeprops]).
:- check calls sum_upto(M,Sum) : M>=0.
:- checked success sum_upto(M,Sum) : M>=0 => Sum>=M.

:- true pred sum_upto(M,Sum) : M>=0
=> (M>=0, Sum>=M, Sum>=2*M-1, Sum>=3*M-3, Sum>=4*M-6).

sum_upto(X,R) :- R0=0, while_1(X,R0,R).

:- true pred while_1(X1,R1,R) : (X1>=0, R1=0)
=> (X1>=0, R1=0, R>=X1, R>=2*X1-1, R>=3*X1-3, R>=4*X1-6).

while_1(X1,R1,R) :- X1=<0, R=R1.
while_1(X1,R1,R) :- X1>0, R2=R1+X1, X2=X1-1, while_2(X2,R2,R).

:- true pred while_2(X1,R1,R) : (X1>-1, R1=X1+1)
=> (X1>-1, R1=X1+1, R>=X1+1, R>=2*X1+1, R>=3*X1, R>=4*X1-2).

while_2(X1,R1,R) :- X1=<0, R=R1.
while_2(X1,R1,R) :- X1>0, R2=R1+X1, X2=X1-1, while_3(X2,R2,R).

:- true pred while_3(X1,R1,R) : (X1>-1, R1>=X1+1, R1=<2*X1+3)
=> (X1>-1, R1>=X1+1, R1=<2*X1+3, R>=R1, R>=X1+R1,R>=2*X1+R1-1).

while_3(X1,R1,R) :- X1=<0, R=R1.
while_3(X1,R1,R) :- X1>0, R2=R1+X1, X2=X1-1, while_4(X2,R2,R).

:- true pred while_4(X1,R1,R) : (X1>-1, R1>=X1)
=> (X1>-1, R1>=X1+1, R>=R1, R>=X1+R1).

while_4(X1,R1,R) :- X1=<0, R=R1.
while_4(X1,R1,R) :- X1>0, R2=R1+X1, X2=X1-1, while_4(X2,R2,R).

The last version, predicate while 4, is obtained after a widening step, reaching a fix-
point expressed by the constraint X1>-1, R1>=X1+1, R>=R1, R>=X1+R1, which holds for
call description X1>-1, R1>=X1. Note that this fixpoint denotes a subset of the model
computed at Step 4 of Example 16 in which a bottom-up analysis is performed.

In addition to polyvariant specialization, other, more powerful combinations of top-
down analysis and partial evaluation have been proposed (Puebla et al. 1999; 2006). In
particular, the interleaving method of combining top-down analysis and partial evaluation
of Puebla et al. (2006) has been proved to be strictly more powerful than any bounded
sequence of applications of abstract interpretation and partial evaluation procedures.
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Finally, note that the analysis graph, through the 〈A,λc,λs〉 �→ 〈B,μc,μs〉 relation,
provides an abstraction of the paths followed by the concrete executions represented by
the concrete trees. The analysis graph generalizes the way in which the call-stack is
represented in the popular call-strings method by Sharir and Pnueli (1981) (this method
has been used in recent work (Khedker and Karkare 2008, Thakur and Nandivada 2020)).
Indeed, the call-string method only keeps track of the callers of the abstracted call,
whereas the analysis graph allows us to infer, as a tree all the procedures executed before
that call and not only its direct callers or a limited-depth sequence.

5.3 Abstraction refinement

Previous sections have shown how abstraction (Cousot and Cousot 1977, Jhala and Ma-
jumdar 2009) can be effectively used within bottom-up and top-down procedures to check
satisfiability of CHCs and infer useful properties from them.

Abstraction also enables the design of hybrid approaches that combine bottom-up and
top-down procedures to compute an over-approximation of the least D-model of a set P

of CHCs. Indeed, in some cases, such an over-approximation S, where S ⊇ lm(P,D), can
be computed in a finite number of steps as a D-definable interpretation by using these
procedures enhanced with abstraction (Sections 5.1 and 5.2 present two effective ways for
computing S). If a constrained goal G is true in S ⊇ lm(P,D), then G is true in lm(P,D)
and hence P ∪{G} is satisfiable. However, if G is false in S, a derivation for G may or may
not exist. If such a derivation can be constructed, then P ∪ {G} is indeed unsatisfiable.
Otherwise, a spurious counterexample is used to refine the over-approximation S.

Predicate abstraction (Graf and Säıdi 1997) with Counterexample Guided Abstrac-
tion Refinement (CEGAR) (Clarke et al. 2003), and Property Directed Reachability
(PDR) (Een et al. 2011) (we use this terminology to refer to all those verification methods
originated from the hardware model checking algorithm IC3 (Bradley 2011)), represent
the mainstream (software) model checking approaches, based on abstraction and its re-
finements, that have been successfully applied to the problem of checking satisfiability of
CHCs (see, for instance, the CHC-COMP-20 report (Rümmer 2020)).

The well-established combination of predicate abstraction and CEGAR refinement is
implemented by Eldarica (Hojjat and Rümmer 2018) and HSF-QARMC (Grebenshchikov
et al. 2012). Specifically, given a predicate symbol p occurring in a set of CHCs and
a set Pred of predicates, predicate abstraction maps p into a boolean combination of
the predicates in Pred. Starting from a possibly empty set Pred, this approach makes
use of spurious counterexamples to extend Pred with additional predicates, and thereby
obtain more precise over-approximations. Craig interpolation (Craig 1957) is widely used
as a tool for deriving additional predicates from spurious counterexamples (Jhala and
Majumdar 2009, McMillan and Rybalchenko 2013, Demyanova et al. 2017).

Interpolation is also used as a generalization technique to improve efficiency of tabling
(Jaffar et al. 2009) for CLP programs and to enhance program verification techniques.
In particular, interpolants are computed as generalizations of the constraints encoun-
tered during the construction of the derivation trees. The computed interpolants avoid
redundant exploration of subtrees rooted at constraints that are subsumed by the cor-
responding tabled interpolant. Improvements and extensions of this approach have been
effectively used to perform program verification (Jaffar et al. 2012, Gange et al. 2013).
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Abstraction and refinement are also the basic building blocks of PDR. In presenting
this approach, we build upon Hoder and Bjørner (2012) as a basis to recast the PDR
algorithm in terms of the definitions introduced in the previous sections and the following
additional technical notions.

The index of an atom in a derivation is inductively defined as follows. All atoms in
the initial pair of the derivation have index 0. If in the derivation there is a rewriting
〈B, e〉 −→r 〈B′, e′〉, where B′ is the multiset of atoms obtained from B by replacing an
atom A with index k by a multiset of atoms C, then the index of the atoms in C is k +1
and the index of all other atoms in B′ is the same as their index in B. Given a (successful
or failed) derivation 〈A, c〉 −→∗

r 〈B, d〉 −→x L (where x is either r or c and L is either
〈∅, e〉 or fail), the depth of the derivation is m+1, where m is the maximal index of an
atom in B.

Given a set P ∪ {G} of CHCs, where P is a set of definite CHCs and G is a con-
strained goal, PDR incrementally constructs, by extension and refinement, a sequence σ

of interpretations of the form: 〈I0, ...,In−1,In〉, such that I0 = T D
P (∅), where T D

P is the im-
mediate consequence operator defined in Section 2.4.1, and for k=0, . . . ,n−1, (i) Ik |= G,
(ii) Ik ⊆ Ik+1 and (iii) T D

P (Ik) ⊆ Ik+1 (that is, Ik+1 is an over-approximation of T D
P (Ik)).

PDR terminates the construction of σ at the smallest n where we have In ⊆ In−1 (in
which case T D

P (In) ⊆ In and therefore lm(P,D) ⊆ In), or a successful derivation of G is
found. Hence, upon termination we have that either In |= G, in which case P ∪ {G} is
satisfiable, or there exists a derivation of G, in which case P ∪{G} is unsatisfiable.

Now we present a high-level account of the mechanism for extending σ = 〈I0, ...,Ik〉
by appending a new interpretation Ik+1 or refining σ. This process starts by gener-
ating any Ik+1 that satisfies T D

P (Ik) ⊆ Ik+1. In the case where Ik+1 �|= G, PDR pro-
ceeds by attempting to construct a successful derivation of depth k + 1 for G. If such
a derivation is found, then PDR terminates reporting that P ∪ {G} is unsatisfiable.
Otherwise, assuming that G is false ← c,A1, . . . ,Aq, there exists a failed derivation
〈{A1, . . . ,Aq}, c〉 −→∗

r 〈B, d〉 −→∗
r . . . −→c fail of depth 1 ≤ j ≤ k, and there is

an atom A in B such that Ij |= ∃(A∧d) and T D
P (Ij−1) �|= ∃(A∧d) (meaning that Ij repre-

sents a too coarse over-approximation of T D
P (Ij−1)). This failed derivation is also called

a spurious counterexample. In this last case, PDR refines σ by replacing Ij by a different
one, say Ĩj , such that Ĩj �|= ∃(A∧d); then the construction of σ resumes from Ĩj .

PDR guarantees that whenever a new over-approximation Ik+1 is added to σ, all spuri-
ous counterexamples of depth k+1 have been removed (that is, Ik+1 |= G), making PDR
a complete procedure for showing unsatisfiability. Of course, the effectiveness of PDR-
based algorithms highly relies on the underlying strategy for searching for (successful
or failed) derivations of G, and the interpolation procedure used to get rid of spurious
counterexamples.

The PDR solving approach presented in Hoder and Bjørner (2012) has been imple-
mented on top of Z3 (de Moura and Bjørner 2008), and called Generalized PDR (GPDR)
to stress the fact that it can deal with general, nonlinear CHCs. Indeed, the IC3 algo-
rithm, which gave rise to the PDR solving approaches, has been introduced for performing
model checking of transition systems, which correspond to linear CHCs.

Currently, Z3 provides the SPACER solving engine (Komuravelli et al. 2016) that
further extends GPDR by computing under-approximations to improve the strategy for
deriving counterexamples.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000211
Downloaded from https://www.cambridge.org/core. Copenhagen University Library ( Royal Danish Library), on 08 Dec 2021 at 10:12:54, subject to the Cambridge Core

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000211
https://www.cambridge.org/core


Analysis and Transformation of CHCs for Program Verification 39

Example 21
Now we show how a PDR-based algorithm works for checking the satisfiability of the
clauses 1–4 presented in Section 1. Recall that the satisfiability of these clauses shows that
the Hoare triple {m≥ 0} sum= sum upto(m) {sum ≥ m} holds for the program fragment of
Figure 1. Note that the computation of T LIA

P without abstraction does not terminate (see
Example 9). For reasons of simplicity, we consider a simplified version of those clauses,
where we have unfolded the atom sum upto(M,Sum) occurring in goal 1, thereby deriving
the following set of clauses:
5. while(X,R1,R2):- X>0, R=R1+X, X1=X-1, while(X1,R,R2).
6. while(X,R1,R2):- X=<0, R2=R1.
7. false :- X>R2, X>=0, R1=0, while(X,R1,R2).

Let P be the set {clause 5, clause 6} and G be goal 7.
The algorithm starts off by setting the first interpretation I0 to T LIA

P (∅), that is,
I0 = {while(X,R1,R2):- X=<0, R1=R2}. I0 |= G. PDR proceeds by introducing a new
interpretation I1 = {while(X,R1,R2):- true} (specifically, the whole BLIA), which is
the coarsest over-approximation of T LIA

P (I0).
Now I1 �|= G, so PDR attempts to construct a derivation for G and discovers that

T LIA
P (I0) = I0 ∪{while(X,R1,R2):- X=1, R2=R1+X} and T LIA

P (I0) |= G. Hence, I1 rep-
resents a too coarse over-approximation of T LIA

P (I0), and PDR proceeds by refining it.
This process essentially requires finding a constraint F to restrain the current interpre-
tation for the predicate while in I1, that is, finding a clause while(X,R1,R2):- F,
such that the following two properties hold: (a) T LIA

P (I0) ⊆ {while(X,R1,R2):- F},
and (b) {while(X,R1,R2):- F} |= G. This task easily translates into solving an inter-
polation problem over LIA. Indeed, property (a) requires that (X=<0,R1=R2) → F and
(X=1,R2=R1+X) → F, while property (b) requires that the conjunction of F and the con-
straint “X>R2,X>=0,R1=0” is unsatisfiable.

Note that there is some freedom in choosing such a constraint F and, in particular, we
can take F as (X=<0,R1=R2)∨(X=1,R2=R1+X), which is equivalent to T LIA

P (I0). However,
by doing so, the refinement process would produce an infinite sequence σ of interpreta-
tions. Indeed, in order to help the convergence of σ to In ⊆ In−1, PDR refines I1 in a
more gradual manner by trying to find a constraint that satisfies these additional two
conditions: (c) all constraints occurring in constrained facts in P entail F, and (d) the
interpretation I|F refined using F is a subset of T D

P (I|F). A constraint enjoying these prop-
erties is R2>=R1+X. Hence, we can use R2>=R1+X to refine the current over-approximation
of the predicate while in I1, thereby getting I1 = {while(X,R1,R2):- R2>=R1+X}.

Now I1 satisfies goal 7. Hence, PDR keeps going on by introducing a new interpreta-
tion I2, that is, {while(X,R1,R2):- true}. Now, the algorithm performs exactly the
same steps performed from the introduction of I1. This process leads to the refinement
of I2 and we get I2 = I1, and thus PDR terminates computing an over-approximation of
lm(P,LIA). Since I1 satisfies goal 7, we conclude, as desired, that the Hoare triple is
valid. Note that in Example 9 the proof of validity of the Hoare triple makes use of an
induction principle.

6 Transformation for verification

We recall from Section 4 that a program verification problem can often be reduced to
the problem of checking the satisfiability of a set P ∪ Q of CHCs, called the verification
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conditions. The set P consists of clauses whose heads are atoms with user-defined predi-
cate symbols (that is, definite clauses) and Q consists of clauses whose head is false (that
is, constrained goals). In Section 4, we have also surveyed some techniques, based on the
specialization of interpreters, by which P ∪Q can be generated from: (i) a program text
written in a language whose semantics is specified by an interpreter, and (ii) a property
to be verified for that program.

More transformations can be applied to the set P ∪ Q of CHCs, with the objective
of easing the satisfiability check. That is, we can transform P ∪ Q to a new set P ′ ∪ Q′,
and then attempt to check satisfiability of P ′ ∪ Q′ using any of the techniques summa-
rized in previous sections such as those based on bottom-up, or top-down, or abstraction-
refinement approaches. Transformations can be sound and/or complete (see Definition 1).
Using a sound transformation P ∪Q �→ P ′ ∪Q′, a proof of satisfiability of P ′ ∪Q′ implies
the satisfiability of P ∪ Q. Using a complete transformation, a proof of satisfiability of
P ∪Q implies the satisfiability of P ′ ∪Q′. By contraposition, this means that, if a coun-
terexample to satisfiability exists in P ′ ∪ Q′ obtained by a complete transformation, a
counterexample to satisfiability also exists in P ∪Q. Transformations that are sound and
complete preserve both satisfiability and unsatisfiability.

CHC transformations can often take advantage of the analysis techniques described in
Section 5, which may help infer over- and under-approximations of the least D-model
of P . These combinations of CHC analysis and transformation can be applied as a pre-
processing step, with the aim of enhancing the effectiveness of subsequent applications
of CHC solvers, but they can also be part of the satisfiability checking algorithm itself.

In the rest of the section, we will first focus on the use of CHC specialization, and other
supporting analysis and transformation techniques, for propagating the constraints ap-
pearing in P ∪ Q and deriving a set of more specific clauses. We will show that this
specialization often aids the verification of satisfiability. Then, we will present techniques
based on fold/unfold transformation rules, which extend CHC specialization by allowing
the introduction of new predicates defined as constrained conjunctions of atoms, instead
of constrained atoms only (see Section 3). This extended ability is very helpful for rela-
tional verification and for the verification of programs manipulating inductively defined
data structures. Finally, we will briefly recall various refinements and applications of the
above mentioned techniques.

6.1 Constraint propagation by specialization

In order to check the satisfiability of the set P ∪ Q of CHCs, different approaches have
been proposed in the literature (see Section 2.4). Among these, CHC solvers based on
abstraction refinement implement a hybrid bottom-up and top-down approach. They
try to compute an over-approximation of lm(P,D) where all goals in Q are true (that
is, the bodies of the goals Q are all false). This over-approximation is constructed in a
bottom-up fashion, by applying some abstraction operator to the T D

P immediate conse-
quence operator. The search for such over-approximation is guided, through refinement,
by looking at the goals in Q, and by interleaving the bottom-up procedure with the
attempt to construct a successful top-down derivation of one of those goals which would
show the unsatisfiability of P ∪Q.
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A weakness of this family of satisfiability procedures is that they may fail to derive
from Q a refinement which is inductive, that is, which is preserved by an application of
T D

P . In many cases we may mitigate this weakness by preprocessing the set of clauses
and propagating constraints from Q into the clauses of P , so that information about
the goals can be carried over during the bottom-up construction. Constraint propagation
from goals can be achieved by CHC specialization, as we explain with the help of an
example.

Let us consider the following clauses with constraints in the domain LRA of Linear
Real Arithmetic:
1. false :- X=0, Y=0, p(X,Y,N).
2. p(X,Y,N) :- X>=N, X>Y.
3. p(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, p(X1,Y1,N).

The clauses are satisfiable, but the CHC solvers Eldarica and Spacer/Z3 (with default set-
tings) fail to terminate on this simple example. A specialization of the above clauses can
be obtained by applying the fold/unfold transformation rules as described in Section 3.2.
We introduce a specialized predicate
4. sp(X,Y,N) :- X>=0, Y>=0, p(X,Y,N).

whose constraint is a generalization of the one occurring in the body of the goal clause 1.
Then, by unfolding clause 4, we get
5. sp(X,Y,N) :- X>=0, Y>=0, X>=N, X>Y.
6. sp(X,Y,N) :- X>=0, Y>=0, X<N, X1=X+1, Y1=X1+Y, p(X1,Y1,N).

The constraint in the body of clause 6 implies X1>=0, Y1>=0, and hence we can
fold this clause using clause 4. By also folding the goal clause 1 and simplifying the
constraints, we derive the following specialized set of clauses
7. false :- X=0, Y=0, sp(X,Y,N).
8. sp(X,Y,N) :- Y>=0, X>=N, X>Y.
9. sp(X,Y,N) :- X>=0, Y>=0, X<N, X1=X+1, Y1=X1+Y, sp(X1,Y1,N).

Thus, the effect of specialization has been to add the constraint X>=0,Y>=0 to both
the recursive clause 9 and the constrained fact 8. Now, Eldarica (and Spacer/Z3) easily
computes the following model for the derived specialized clauses 7–9:

sp(X,Y,N) :- X>=Y+1, Y>=0.

Several algorithms have been proposed to mechanize CHC specialization (Craig and
Leuschel 2003, Fioravanti et al. 2001a, Peralta and Gallagher 2003). As already mentioned
in Section 3.2, these algorithms control the application of the unfolding rule (local control)
and, more crucially, the introduction of suitable specialized predicates (global control).
We refer to the original papers for a detailed presentation of those algorithms. Here we
will only discuss the role of constraint generalization for global control.

Some specialization algorithms manage the global control by maintaining a set Defs
(possibly structured as a tree that records the various transformation paths) of special-
ized predicate definitions, that is, a set of clauses of the form sp(X) ← c,A(X), where:
(i) sp is a new predicate symbol not occurring in P ∪ Q ∪ Defs, (ii) X is a tuple of
variables, and (iii) A(X) denotes an atom whose variables are the components of the
tuple X.

New predicate definitions are introduced by means of generalization functions acting
on clauses. These functions use generalization operators acting on constraints as we now
indicate.
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Definition 2 (Generalization)
Given two constraints c and d in D, we say that d is more general than c, written c �D d,
if D |= ∀(c → d), where D is the constraint interpretation of D. A generalization of two
constraints c1 and c2 is a constraint, denoted ω(c1, c2), such that: (i) c1 �D ω(c1, c2), and
(ii) c2 �D ω(c1, c2). The function ω is called a generalization operator on D. (In general,
ω may be non-commutative.)

We say that an infinite sequence g0 �D g1 �D . . . of constraints stabilizes if there exists
n > 0 such that gn �D gn−1. The generalization operator ω is a widening operator if,
for every infinite sequence c0, c1, . . . of constraints, the infinite sequence g0,g1, . . ., where:
(1) g0 =c0, and (2) for all i≥0, gi+1 =ω(gi, ci+1), stabilizes.

Given two clauses C: sp1(X) ← c, A(X) and D: sp2(X) ← d, A(X) (modulo the order
of the variables in the tuple X), a generalization of C and D, denoted gen(C,D), is the
clause sp-gen(X) ← ω(proj(c,X),proj(d,X)), A(X), and gen is called a generalization
function.

Widening operators on the LRA constraint domain have been first introduced in
the field of abstract interpretation (Cousot and Cousot 1977) (see also Section 5) and
later used for the specialization of constraint logic programs (Fioravanti et al. 2001a,
Craig and Leuschel 2003, Peralta and Gallagher 2003). Widening is often combined with
the computation of the convex-hull of a disjunction of linear constraints (Cousot and
Halbwachs 1978), which may help discover relations among variables.

Many specialization algorithms achieve termination by using a generalization operator
that is based on a widening operator on constraints. Indeed, any sequence of clauses
obtained by repeatedly applying such an operator is necessarily finite.

A simple example of a widening operator in the LRA constraint domain, is defined as
follows. Let c1 = a1 ∧ . . . ∧ an be a constraint, where a1, . . . ,an are atomic constraints of
the form p≥0 or p>0, and p is a linear polynomial. Given a constraint c2, the widening
of c1 with respect to c2, denoted c1∇c2, is

∧n
i=1{ai | c2 �LRA ai}. This widening operator

can also be extended to the case when some of the ai’s are equalities, by first splitting
them into conjunctions of inequalities.

Now, we see how, in our example, the generalization operator based on the widening ∇,
determines the introduction of the predicate sp. We start off from the goal clause 1, and
we define a new predicate whose body is exactly the body of that goal:
10. sp1(X,Y,N) :- X=0, Y=0, p(X,Y,N).

Then, by unfolding clause 10, we get
11. sp1(X,Y,N) :- X=0, Y=0, X>=N, X>Y.
12. sp1(X,Y,N) :- X=0, Y=0, X<N, X1=X+1, Y1=X1+Y, p(X1,Y1,N).

Clause 11 has an unsatisfiable body and is deleted. Clause 12 is simplified as follows:
13. sp1(X,Y,N) :- X=0, Y=0, 0<N, X1=1, Y1=1, p(X1,Y1,N).

Thus, we introduce a new specialized predicate defined as follow:
14. sp2(X,Y,N) :- 0<N, X=1, Y=1, p(X,Y,N).

whose body has a constraint that is the projection of the constraint of clause 13 onto
the variables of atom p(X1,Y1,N) (we have renamed the variables). The comparison
of clauses 10 and 14 shows that, by iterating the unfolding and projection opera-
tions, the specialization would generate an infinite sequence of specialized predicate
definitions.
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Some specialization algorithms avoid nontermination by applying the generalization
function gen to pairs of clauses (C,D), where C is an ancestor of D in the tree Defs
of specialized predicate definitions, and the two clauses have the same atom in their
body. In our example, clause 10 is the parent of clause 14 in Defs. Thus, we apply the
generalization function gen based on the widening operator ∇ to the pair (clause 10,
clause 14). The value of gen is computed by applying the operator ∇ to the constraints
appearing in the two clauses, as follows:

(
(X>=0, X=<0, Y>=0, Y=<0) ∇ (0<N, X=1, Y=1)

)
= (X>=0, Y>=0)

where the left operand has been obtained by splitting the equalities of clause 10 into
conjunctions of inequalities. Thus, the result of applying gen to (clause 10, clause 14) is
clause 4, which defines predicate sp.

In some cases, in order to verify the satisfiability of P ∪ Q, it is useful to specialize
the clauses by propagating constraints occurring in the constrained facts of P . Various
approaches can be followed. In the case where all clauses in P ∪Q are linear, we can apply
the Reversal transformation (De Angelis et al. 2014a), which, for each clause, interchanges
its head with its body. The Reversal transformation is related to the transformation of
regular grammars from right recursive to left recursive (and vice versa) (Brough and
Hogger 1991). For instance, the clauses for reachability presented in Section 4.2 can be
transformed from:
reach(St) :- init(St).
reach(St1) :- reach(St), tr(St,St1).
false :- reach(St), error(St).

to
false :- init(St), reach(St).
reach(St) :- tr(St,St1), reach(St1).
reach(St) :- error(St).

and vice versa. Note that in the original set of clauses the predicate reach holds for
the states that are reachable from the initial ones, while in the clauses obtained after
Reversal reach holds for the states from which error states are reachable. Reversal is a
sound and complete transformation. After Reversal we can specialize the clauses with
respect to the constrained goal and propagate the constraint defining init(St).

As mentioned above, also the QA transformation has the effect of simulating bottom-
up evaluation through standard top-down execution. Thus, a technique for propagating
constraints from constrained facts is to specialize a set of clauses with respect to the
constrained goals, after applying the QA transformation to the original clauses. An ad-
vantage of the QA transformation over Reversal is that it can be applied to nonlinear
clauses. However, the QA transformation may transform a linear clause into a nonlinear
one, while Reversal preserves linearity.

Constraint strengthening is another transformation technique that has been proposed
for propagating constraints from constrained goals and constrained facts (Kafle and Gal-
lagher 2017a). A strengthening of a clause H ← c,A1, . . . ,An is a clause H ← c′,A1, . . . ,An,
such that c′ �D c. Note that replacing c′ by false is strengthening. Constraint strength-
ening of clauses is a complete transformation in the sense of Definition 1, and thus can be
used to check unsatisfiability. However, in general, constraint strengthening is not sound,
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as it can transform a set of unsatisfiable clauses into a set of satisfiable clauses (for
example, {false:-p., p.} can be transformed into {false:-false,p., p.}).

One way to achieve a sound and complete constraint strengthening of a set P ∪ Q of
CHCs is to add constraints that are a consequence of the body of the clause where the
strengthening is realized. Let us see how we can obtain such a constraint strengthening.
Consider a predicate p in P , and suppose that lm(P,D) |= ∀(p(X) → d). Then, every clause
in P of the form p(X) ← c,B, can be replaced by p(X) ← c,d,B, and every clause in P ∪Q

of the form H ← c,p(X),B, where H may be false, can be replaced by H ← c,d,p(X),B.
If P ′ ∪Q′ is obtained by all these applications of constraint strengthening, then P ∪Q is
satisfiable if and only if P ′ ∪Q′ is satisfiable.

Properties of the form lm(P,D) |= ∀(p(X) → d) to be used for strengthening P ∪Q, can
be discovered by applying abstract interpretation techniques (see Section 5). A strategy
proposed by Kafle and Gallagher (2017a) consists in transforming P ∪Q by the following
three steps, where, without loss of generality, we assume that Q consists of a single goal
false ← e,A (we can always get to this case by introducing a new predicate defined in
terms of the goals in Q).
Step (1). Apply the QA transformation to P ∪ {false ← e,A}, and derive a new set of
clauses P a ∪P q ∪{false ← e,Aa} (see Section 3.4);
Step (2). Apply Convex Polyhedral Analysis (CPA) (Cousot and Halbwachs 1978, Benoy
and King 1997) to construct an over-approximation M of lm(P a ∪P q,D).
Step (3). Since CPA computes a convex over-approximation for each predicate, without
loss of generality, we may assume that M has a single constrained fact pa(X) ← g, for the
answer predicate pa, and by the soundness and completeness of the QA transformation,
p(X) ← g is also an over-approximation of the atoms for p that are true in lm(P,D),
that is, {p(a) | p(a) ∈ lm(P,D)} ⊆ {p(a) | D |= ∃(g{X/a})}. Thus, lm(P,D) |= ∀(p(X) →
proj(g,X)). The QA transformation at Step (1), enforces that the CPA bottom-up con-
struction performed at Step (2) simulates top-down, goal-directed constraint propagation.

For example, consider again clauses 1-3 above. We rewrite them here for the reader’s
convenience.
1. false :- X=0, Y=0, p(X,Y,N).
2. p(X,Y,N) :- X>=N, X>Y.
3. p(X,Y,N) :- X<N, X1=X+1, Y1=X1+Y, p(X1,Y1,N).

At Step (1) the QA transformation derives the following new set of clauses, which is
satisfiable if and only if clauses 1--3 are satisfiable:
false :- X=0, Y=0, p_a(X,Y,N).
p_a(X,Y,N) :- p_q(X,Y,N), X>=N, X>Y.
p_a(X,Y,N) :- p_q(X,Y,N), X<N, X1=X+1, Y1=X1+Y, p_a(X1,Y1,N).
p_q(X,Y,N) :- X>=N, X>Y.
p_q(X1,Y1,N) :- X<N, X1=X+1, Y1=X1+Y, p_q(X,Y,N).

At Step (2) CPA derives the following model:
p_q(X,Y,N) :- X>=N, X>Y.
p_a(X,Y,N) :- X>=N, X>Y.

which allows us to infer that lm({2,3},LRA) |= ∀X,Y,N. p(X,Y,N) → X>=N, X>Y.
At Step (3), by constraint strengthening, we get:
1’. false :- X=0, Y=0, X>=N, X>Y, p(X,Y,N).
2’. p(X,Y,N) :- X>=N, X>Y, X>=N, X>Y.
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3’. p(X,Y,N) :- X>=N, X>Y, X<N, X1=X+1, Y1=X1+Y,
X1>=N, X1>Y1, p(X1,Y1,N).

where we have underlined the added constraints. Now, the constraint appearing in the
body of clause 1’ is unsatisfiable, and hence the set {1’,2’,3’} of clauses is trivially
satisfiable.

The dual transformation to constraint strengthening is constraint weakening, that is,
the replacement of the clause constraint c by c′ such that c �D c′. Constraint weakening
applied to the clauses of P ∪Q is a sound transformation but, in general, it is not complete.
Thus, if the weakened set P ′ ∪Q′ of CHCs is satisfiable, so is the original set. Constraint
weakening is related to abstraction techniques, as every D-model of P ′ ∪Q′ (where false is
considered as a user-defined predicate symbol) is an over-approximation of lm(P ∪Q,D).

Finally, we point out that, as long as CHC transformations are sound and complete,
we can compose any number of them while preserving both satisfiability and unsatisfi-
ability. This opens the way to the design of (un)satisfiability checking algorithms that
incorporate CHC transformations as building blocks. Some of these transformation-based
algorithms are implemented in the CHC solvers VeriMAP (De Angelis et al. 2014b) and
RAHFT (Kafle et al. 2016).

VeriMAP generates verification conditions by specializing an interpreter for the small-
step semantics of (a fragment of) the C language with respect to a given program, a
precondition, and an error property (see Section 4). The tool generates linear CHCs.
Then VeriMAP iterates the following three steps. (i) The specialization of the CHCs
with respect to constrained goals. (ii) The analysis of the specialized CHCs, based on
unfolding and clause deletion, to determine whether or not there is a derivation of false.
If such a derivation is found, then the clauses are unsatisfiable, else if the analysis is able
to discover that such a derivation is impossible, because false does not depend on any
predicate with constrained facts, then the clauses are satisfiable. Otherwise, the analysis
is inconclusive. (iii) The reversal of the CHCs, in the case when the analysis at Step (2) is
inconclusive. Reversal enables us to alternate the propagation of the constraints occurring
in the goals with the propagation of those occurring in the facts.

RAHFT (Refinement of Abstraction in Horn clauses using Finite Tree automata) com-
bines: (1) the preprocessing of the input CHCs by constraint strengthening, as recalled
above, (2) the construction of an over-approximation of the least model of the clauses,
based on Convex Polyhedral Analysis, and (3) the CHC refinement based on Finite Tree
Automata (FTA) techniques (Kafle and Gallagher 2017a), which in the case where the
over-approximation computed at Step (2) allows for unfeasible derivations of false (i.e.
spurious counterexamples), transforms the CHCs in such a way that the new clauses
avoid those unfeasible derivations (see Section 6.3 for more details). Steps (1)–(3) can be
iterated until a conclusive result is reported.

6.2 Predicate pairing

CHC specialization is able to produce specialized versions of an existing predicate by
introducing a new predicate defined in terms of a constrained atom. In some applications
it is very useful to exploit the full power of fold/unfold transformations, which allow us to
introduce a new predicate defined as a constrained conjunction of atoms (see Section 3).
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This technique is called predicate pairing (De Angelis et al. 2018a), and is an adapta-
tion to CHC verification of fold/unfold transformation strategies previously proposed for
combining two or more predicates with similar recursive definitions into a single new
predicate (Burstall and Darlington 1977, Pettorossi and Proietti 1994). In essence, pred-
icate pairing is also equivalent to conjunctive partial deduction (De Schreye et al. 1999),
which indeed extends partial deduction by enabling the specialization of conjunctions of
atoms.

Algorithms and implementations of predicate pairing, also enhanced with constraint
propagation techniques such as the ones described in Section 6.1, have been presented in
the literature (De Angelis et al. 2016; 2017a; 2018a). In particular, we refer to those papers
for the issue of introducing in a fully automated way the new predicate definitions needed
for fold/unfold transformations. Here, we will show through examples two applications
of predicate pairing for relational verification and for the verification of properties of
programs that compute on Algebraic Data Types.

6.2.1 Relational verification

Relational program properties are properties that relate two different programs or two
executions of the same program. The verification of relational program properties, also
called relational verification, is useful during the process of software development, where
the programmer often produces several versions of the same program, and may want to
formally prove relations between old and new program versions. Relational properties
that have been studied in the literature include various forms of program equivalence,
relational cost analysis (in terms of computation time or any other resource consumption),
noninterference for software security, and relative correctness (Barthe et al. 2011, Benton
2004, Churchill et al. 2019, Çiçek et al. 2017, Godlin and Strichman 2008, Lahiri et al.
2013, Lopes and Monteiro 2016, Zaks and Pnueli 2008).

Many relational program properties can be specified by extending pre/postconditions
in the style of Hoare triples to pairs of programs, rather than a single program (Barthe
et al. 2011). Given two imperative programs P and Q, with disjoint tuples, say x and y,
respectively, of global variables and two formulas ϕ(x,y), ψ(x,y), the relational property
{ϕ(x,y)}P ∼ Q{ψ(x,y)} holds if the following holds: if the inputs of P and Q satisfy the
pre-relation ϕ(x,y) and P and Q both terminate, then the outputs of P and Q satisfy
the post-relation ψ(x,y).

Several papers have advocated the formalization of relational verification problems in
CHCs and the use of a CHC solver, possibly enhanced by ad hoc solving techniques (Chen
et al. 2019, De Angelis et al. 2016; 2018a, Felsing et al. 2014, Mordvinov and Fedyukovich
2017; 2019, Shemer et al. 2019, Zhou et al. 2019).

The relational property {ϕ(x,y)}P ∼ Q{ψ(x,y)} has the following straightforward
translation into CHCs:

false ← notpost(X2,Y 2), pre(X1,Y 1), p(X1,X2), q(Y 1,Y 2) (RelProp)

where (i) X1 and Y 1 are the values of x and y, respectively, before execution of P and Q,
(ii) X2 and Y 2 are the values of x and y, respectively, after execution of P and Q,
(iii) pre(X1,Y 1) is the translation of ϕ(x,y) into a CHC predicate, (iv) notpost(X2,Y 2)
is the translation of ¬ψ(x,y) into a CHC predicate, (v) p(X1,X2) and q(Y 1,Y 2) are the
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input/output relations of programs P and Q, respectively, derived by one of the methods
described in Section 4 (for instance, by specializing the interpreter of the imperative
language with respect to the two programs). The order of the constraints and atoms in
the body of (RelProp) is not significant from a logical point of view but, as usual, we
write constraints before atoms. The relational property {ϕ(x,y)}P ∼ Q{ψ(x,y)} holds if
and only if the set of CHCs consisting of (RelProp) together with the clauses for notpost,
pre, p, and q, is satisfiable.

Many relational properties can be defined by using constraints as pre/postconditions.
For instance, program equivalence is simply translated as

false ← X2 �= Y 2, X1 = Y 1, p(X1,X2), q(Y 1,Y 2) (Equiv)

Noninterference, a property that guarantees information-flow security (Goguen and
Meseguer 1982), is another relational property that can be easily expressed in CHCs.
Let us consider a program P whose variables are partitioned into a set of public vari-
ables (or low security variables) and a set of private variables (or high security variables).
We say that P satisfies the noninterference property if any two terminating executions
of P , starting with the same initial values of the public variables, but possibly with dif-
ferent values of the private variables, compute the same values of the public variables.
Thus, if a program satisfies the noninterference property, an attacker cannot acquire in-
formation about the private variables by observing the input/output relation between
the public variables, which are functionally dependent on the public input variables only.

The noninterference property for program P is translated into the following goal:

false ← OutL �=OutL1, L=L1, p(L,H,OutL), p(L1,H1,OutL1) (NonInt)

where: (i) the predicate p(L,H,OutL) is the input/output relation of P , (ii) L and H are
the tuples of values of the public and private variables, respectively, before the execution
of P , and (iii) OutL is the tuple of values of the public variables upon termination of P .

Unfortunately, it is often the case that the straightforward translation of relational
properties into CHCs is not sufficient to allow verification using state-of-the-art solvers.
Indeed, the strategies for checking satisfiability employed by those solvers deal with the
sets of clauses encoding the semantics of each of the two programs in an independent
way, thereby failing to take full advantage of the interrelations between the two sets of
clauses. Let us illustrate this limitation through an example.

Let us consider the two programs of Figure 5. Program Sum upto rec computes the
sum of the first x1 positive integers and program Prod computes the product of x2 by y2

by summing up x2 times the value of y2.
We want to verify that the following relational property holds:

{x1=x2,x2≤y2} Sum upto rec ∼ Prod {z1≤z2} (Leq)

meaning that, if x1=x2,x2≤y2 holds before the execution of Sum upto rec and Prod,
then z1≤z2 holds after their execution. Property Leq cannot directly be proved using
techniques based on structural similarity of programs (Barthe et al. 2011, Felsing et al.
2014), because Sum upto rec is a (non-tail) recursive program and Prod is an iterative
program.
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Fig. 5. The programs Sum upto rec and Prod.

Fig. 6. LeqCHCs: Translation into CHCs of the relational property Leq.

By interpreter specialization (see Section 4) and constraint propagation, the relational
property Leq is translated into the set of CHCs over LIA shown in Figure 6.

As mentioned above, CHCs solvers using linear integer arithmetic are unable to prove
the satisfiability of the set of clauses in Figure 6. This is due to the fact that those solvers
look for a LIA-definable model, and no such a model exists.

In order to deal with this limitation one could consider CHCs with solvers for the theory
of nonlinear integer arithmetic constraints (Borralleras et al. 2012). Indeed, one way to
prove that LeqCHCs is satisfiable is to discover quadratic relations among predicate
variables, such as (X1=<0,Z1=0) ∨ (X1>=1,Z1=X1×(X1-1)/2) for sur(X1,Z1), and
(X2=<0,Z2=0) ∨ (X2>=1,Z2=X2×Y2) for pr(X2,Y2,Z2). However, this extension has to
cope with the additional problem that the satisfiability problem for nonlinear constraints
is, in general, undecidable (Matiyasevich 1970) (see also Section 2).

An alternative approach is based on applying fold/unfold transformations according
to the predicate pairing strategy (De Angelis et al. 2016; 2018a). This transformation
strategy introduces new predicates defined as conjunctions of already existing predicates,
and then derives (possibly recursive) clauses for the new predicates by applying the
unfolding and folding rules, along with clause deletion and constraint replacement.

In our example, by predicate pairing, we introduce a new predicate fg, defined as the
conjunction of f and g as follows:
fg(X1,Z1,Y2,W,Z2) :- f(X1,Z1), g(X1,Y2,W,Z2).

and then, by unfolding and folding, the clauses of Figure 6 are transformed into the ones
shown in Figure 7.

The effect of predicate pairing is that it often enables the inference of linear relations
among the variables occurring in conjunctions of predicates in a direct way, without hav-
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Fig. 7. LeqPP: Clauses derived from LeqCHCs by predicate pairing.

ing to derive nonlinear relations with other variables as an intermediate step. Indeed, in
our example, state-of-the-art solvers for CHCs with LIA are able to prove the satisfia-
bility of the clauses of Figure 7 obtained by predicate pairing, and hence the validity of
the relational property Leq. In particular, Eldarica computes the following model:
fg(X1,Z1,Y2,W,Z2) :- Z2-W>=Z1, Z1>=0, W>=0.

6.2.2 Solving CHCs over algebraic data types

Constraint solving techniques have been applied to the verification of programs ma-
nipulating recursively defined data structures, such as lists and trees and, in general,
algebraic data types (ADTs). In most applications, constraint solvers (and, in particular,
SMT solvers), are used as a back-end by program verifiers, such as Boogie (Barnett et al.
2006), Leon (Suter et al. 2011), Why3 (Filliâtre and Paskevich 2013), Dafny (Leino
2013), and Stainless (Hamza et al. 2019), to translate and check program assertions
provided by the programmer.

Many constraint solvers implement techniques for checking the satisfiability of con-
straints on ADTs (see, for instance, https://rise4fun.com/Z3/tutorial/guide for
Z3). However, when we consider CHCs over ADTs with user-defined predicates, similarly
to the case of CHCs on other domains, the satisfiability problem becomes undecidable and
we need to develop incomplete solving methods. While methods based on resolution work
well for proving unsatisfiability (indeed, they are sound and complete for unsatisfiability,
as mentioned in Section 2), they are not as effective for proving satisfiability.

One recent line of research has proposed the extension of CHC (and SMT) solving
over ADTs with inductive reasoning (Reynolds and Kunčak 2015, Suter et al. 2011,
Unno et al. 2017) by incorporating methods derived from the field of automated theorem
proving (Bundy 2001).

An alternative approach to the extension of CHC solvers with induction is based
on the application of fold/unfold transformations with the objective of removing data
structures while preserving satisfiability. The transformation-based approach is related to
techniques for improving the efficiency of execution of functional and logic programs, such
as deforestation (Wadler 1990), unnecessary variable elimination (Proietti and Pettorossi
1995), and conjunctive partial deduction with redundant argument filtering (De Schreye
et al. 1999).

Recent work has shown that methods for removing data structures are also very effec-
tive for improving CHC solvers (De Angelis et al. 2018b). The advantage of this approach
is that it allows us to separate the reasoning on inductively defined data structures from
the reasoning on clause satisfiability over basic types, such as booleans or integers. For
instance, when dealing with CHCs over trees of integers, the transformation attempts to
derive an equisatisfiable set of clauses with constraints on integers only, which can then
be solved by using, for instance, the approximation-based methods of Section 5.
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As an example of application of the transformation-based approach to the verification
of call-by-value functional programs, we consider the following Tree-Processing program,
which we write according to the OCaml syntax (Leroy et al. 2017).

type tree = Leaf |||| Node of int ∗ tree ∗ tree ;;
let min x y = if x<y then x else y ;;
let rec min-leafdepth t = match t with

|||| Leaf – > 0
|||| Node(x, l,r) – > 1+min (min-leafdepth l) (min-leafdepth r) ;;

let rec left-drop n t = match t with
|||| Leaf – > Leaf
|||| Node(x, l,r) – > if n<=0 then Node(x, l,r) else left-drop (n−1) l ;;

In this program: (i) tree is the type of the binary trees with integers at the internal nodes,
(ii) (min-leafdepth t) returns the length of a shortest path from the root of the tree t

to a leaf node, and (iii) (left-drop n t) returns the subtree of t rooted at the n-th node
along the leftmost path from the root of t, if the length of that path is at least n, and
Leaf otherwise. For instance, we have that:

min-leafdepth (Node(5,(Node(8,Leaf,Leaf)),Leaf)) = 1, and
left-drop 1 Node(5,(Node(8,Leaf,Leaf)),Leaf)) = Node(8,Leaf,Leaf).

Let us also consider the following property Prop, which we would like to verify for the
Tree-Processing program:

∀n,t. n≥0 ⇒ ((min-leafdepth (left-drop n t))+n) ≥ (min-leafdepth t). (Prop)

The direct translation into CHCs of a first-order functional program with the call-by-
value semantics is straightforward (Unno et al. 2017), although one could also follow the
approach based on interpreter specialization. We get the following set of clauses:
false :- N>=0, M+N<K,

left_drop(N,T,U), min_leafdepth(U,M), min_leafdepth(T,K).
left_drop(N,leaf,leaf).
left_drop(N,node(X,L,R),node(X,L,R)) :- N=<0.
left_drop(N,node(X,L,R),T) :- N>=1, N1=N-1, left_drop(N1,L,T).
min_leafdepth(leaf,M) :- M=0.
min_leafdepth(node(X,L,R),M) :- M=M3+1,

min_leafdepth(L,M1), min_leafdepth(R,M2), min(M1,M2,M3).
min(X,Y,Z) :- X<Y, Z=X.
min(X,Y,Z) :- X>=Y, Z=Y.

where a predicate f(X,Y) is the translation of the relation “fx evaluates to y”.
This set of CHCs is satisfiable iff Prop holds for Tree-Processing. However, CHC solvers

without induction (e.g. Eldarica and Spacer/Z3) are not able to check satisfiability, be-
cause of the presence of variables ranging over trees.

To solve this problem, we can apply the Elimination Algorithm (De Angelis et al.
2018b), which automatically introduces two new predicates:
new1(N,M,K) :- left_drop(N,T,U), min_leafdepth(U,M),

min_leafdepth(T,K).
new2(M) :- min_leafdepth(L,M).

and by applying fold/unfold transformations, derives the following equisatisfiable set of
clauses without tree variables, whose constraints are in LIA only:
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false:- N>=0, M+N<K, new1(N,M,K).
new1(N,M,K) :- M=0, K=0.
new1(N,M,K) :- N=<0, M=M3+1, K=M, new2(M1), new2(M2), min(M1,M2,M3).
new1(N,M,K) :- N>=1, N1=N-1, K=K3+1,

new1(N1,M,K1), new2(K2), min(K1,K2,K3).
new2(M) :- M=0.
new2(M) :- M=M3+1, new2(M1), new2(M2), min(M1,M2,M3).

Now, state of the art solvers for CHCs on LIA constraints are able to prove the satisfi-
ability of these clauses. In particular, Eldarica computes the following model:
new1(A,B,C) :- A+(B-C)>=0.
new1(A,B,C) :- B>=C.
new2(A) :- true.

In some cases, in order to remove inductively defined ADTs from CHCs, fold/unfold
transformations need to be complemented by the discovery of suitable intermediate lem-
mas, which allow the replacement of subconjunctions occurring in the body of a clause
by a new one. This is not surprising, as the need for lemma discovery has long been
recognized as a key factor for the automation of inductive proofs (Bundy 2001). A recent
transformation technique uses the idea that lemmas can be generated by means of the
so-called difference predicates, based on the impossibility of applying the folding rule (De
Angelis et al. 2020).

6.3 Other transformation-based techniques

In this section we summarize other satisfiability-preserving transformations of CHCs that
have been developed for specific applications. Their correctness in most cases follows from
the general principles of semantics-preserving transformations presented in Section 3
although the transformation algorithms are not presented in that style.

6.3.1 Refinement based on tree automata

Recall that an and-tree represents a top-down derivation (see Section 5.2). The success
set of a set of CHCs P , SS(P )D, can be identified with the set of successful and-trees
of P . We say that t is a successful and-tree for A if t is successful and has root 〈A, true,C〉.

SS(P )D = {A ← proj(constr(t),vars(A)) | t is a successful and-tree for A}
Kafle and Gallagher (2017b) develop a transformation preserving the set of successful
and-trees for a set of CHCs. The transformation is achieved by associating a tree automa-
ton AP with a set P of CHCs, such that the set of trees recognized by AP , called L(AP ),
is the set of and-trees (both successful and failed) for P . If a spurious counterexample is
discovered while attempting to show satisfiability of P (such as in abstraction-refinement
procedures, see Section 5.3), then we can construct the corresponding failed and-tree t.
A tree automaton for the difference language L(AP )\{t} is then constructed; from this
a new set P ′ of CHCs can be derived from this tree automaton. The set of feasible and-
trees of P is preserved in P ′, since only one infeasible tree was removed; thus P ′ has the
same success set as P . Hence the transformation from P to P ′ is sound and complete.

That work generalized the approach of refinement by trace abstraction (Heizmann
et al. 2009) from string traces to tree traces. Interpolation techniques can be applied to
generalize an infeasible and-tree t to a set At of infeasible and-trees (Wang and Jiao
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2016), and the difference L(AP ) \ At is then computed, instead of L(AP ) \ {t}. Tree-
automata based refinement was applied in the RAHFT CHC verification tool (Kafle
et al. 2016).

6.3.2 Control-flow refinement by specialization

A useful application of constraint propagation is control-flow refinement (Doménech et al.
2019), which transforms a set of clauses by specializing with respect to internal constraints
rather than constrained goals or constrained facts. The effect is to produce different spe-
cialized versions of predicates arising from different instances that are obtained in deriva-
tions, and hence control-flow refinement is a form of polyvariant specialization (Bulyonkov
1984, Jacobs et al. 1990, Giannotti and Hermenegildo 1991, Jones et al. 1993, Puebla and
Hermenegildo 1999), as discussed in Section 5.2 (see Figure 4 and Example 20). Polyvari-
ant specialization is often crucial in applications to program verification (Gulwani et al.
2009), allowing the inference of disjunctive invariants, which cannot be discovered, for
instance, by a direct application of convex polyhedral analysis (Fioravanti et al. 2012,
De Angelis et al. 2014a, Kafle et al. 2018). Control-flow refinement is especially useful
for termination and complexity analysis, when it allows complex loops to be decomposed
into simpler ones, thus enabling the discovery of more precise loop invariants or simpler
ranking functions (Doménech et al. 2019). Polyvariant specialization introduces the ad-
ditional issue of controlling the set of specialized versions of the same predicate so as
to achieve maximal precision and, at the same time, avoid the explosion in size of the
transformed set of clauses (Doménech et al. 2019, Fioravanti et al. 2013, Kafle et al.
2018, Puebla and Hermenegildo 1999, Ochoa et al. 2006, Leuschel et al. 1998).

Example 22
Let P be the following set of clauses.
main :- while(X,Y,M).
while(X,Y,M) :- X>0, Y<M, Y1=Y+1, while(X,Y1,M).
while(X,Y,M) :- X>0, Y>=M, X1=X-1, while(X1,Y,M).
while(X,Y,M) :- X=<0.

These clauses represent a while loop whose body contains a branch. Proof of program
properties, in particular termination of the loop, is hampered by the branch which ne-
cessitates inference of a lexicographical ranking function. After control-flow refinement,
we obtain the following clauses.
main :- while0(X,Y,M).
while0(X,Y,M) :- X>0, Y<M, Y1=Y+1, while1(X,Y1,M).
while0(X,Y,M) :- X>0, Y>=M, X1=X-1, while2(X1,Y,M).
while0(X,Y,M) :- X=<0.
while1(X,Y,M) :- X>0, Y<M, Y1=Y+1, while1(X,Y1,M).
while1(X,Y,M) :- X>0, Y>=M, X1=X-1, while2(X1,Y,M).
while2(X,Y,M) :- X>0, Y>=M, X1=X-1, while2(X1,Y,M).
while2(X,Y,M) :- X=<0.

The original while loop has been refined into three versions:
while0(X,Y,M) :- while(X,Y,M).
while1(X,Y,M) :- X>0, while(X,Y,M).
while2(X,Y,M) :- Y>=M, while(X,Y,M).

This yields separate loops (while1 and while2), each of which has a simple ranking
function (and the predicate while0 becomes a simple branch), and thus termination is
easily proved for the transformed clauses.
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7 Related CHC-based techniques

As already mentioned in Section 4, constrained Horn clauses have recently been applied
for modelling programs written in many different programming languages. Besides pro-
grams, CHCs have also been used for encoding more abstract computational models of
various kinds, including Petri nets (Fribourg and Olsén 1997, Leuschel and Lehmann
2000), timed automata (Jaffar et al. 2004), linear hybrid automata (Banda and Gal-
lagher 2009), concurrent systems (Delzanno and Podelski 1999, Fioravanti et al. 2001b;
2013a), parameterized systems (Roychoudhury et al. 2000), process algebras (Fioravanti
et al. 2013b), and business processes (De Angelis et al. 2019).

Constraints ease the modelling of systems whose state space is infinite, as data or time
values can be represented using variables ranging over infinite domains. Usually, these
systems are represented as transition systems encoded as CHCs, and it is argued that the
CHCs generate the same transition system as the one defined by the source system. The
predicates defining the corresponding transition relation range from a simple collection of
constrained facts to more sophisticated operational semantics (in the latter case program
specialization can be used for removing intermediate data structures).

The most common application of CHCs in verification is proving (or disproving) safety
properties, that is, that “something bad never happens” during computation. Notable
examples of safety properties are partial correctness (Hoare triples), deadlock freedom
(the program does not enter a state from which it cannot make progress), and mutual
exclusion (no two processes, or threads, are in their critical sections at the same time).
However, CHCs have also been used for modelling other kinds of properties such as
liveness properties stating that “something good will eventually happen”. Among them,
there are program termination and starvation freedom.

Safety and liveness properties can be specified using temporal logics such as the
μ-calculus or the Computation Tree Logic (CTL) (Clarke et al. 1999), that can be en-
coded using CHCs. Different methods have been developed for proving these properties
based on explicit fixpoint construction (Delzanno and Podelski 2001), tabled resolution
(Roychoudhury et al. 2000), and co-induction (Gupta et al. 2007).

A proof-based approach using logic programming is followed by Leuschel and Massart
(2000), where verification of CTL properties is performed by combining tabulation and
partial evaluation. An extension to CLP based on program specialization of a CTL in-
terpreter is presented by Fioravanti et al. (2001b; 2013a). In both cases, the extension
of logic programs with negation as (finite or infinite) failure (Apt and Bol 1994) plays
a central role in the proof procedures. Leuschel and Massart (2000) handle negation by
using under-approximations of the answers of predicate calls as safe over-approximations
of their negation, while Fioravanti et al. (2001b; 2013a) use transformation rules that
preserve the perfect model semantics of clauses with locally stratified negation.

Termination properties constitute a particular class of liveness properties, but they are
often treated separately and proved using specialized techniques. Termination analysis of
Java bytecode programs based on constraint logic programs has been studied by Albert
et al. (2008) and Spoto et al. (2010). Termination properties are also proved by applying
CEGAR techniques on Horn-like clauses with existentially quantified variables in their
head (Beyene et al. 2013), and by reducing the termination problem to a safety problem
and using syntax-guided synthesis (Fedyukovich et al. 2018).
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Automatic complexity and resource analysis is closely related to CHC verification and
has been an important subject of investigation in the CLP context (Debray et al. 1990;
1997, Debray and Lin 1993, Navas et al. 2007, Albert et al. 2011, López-Garćıa et al.
2012; 2016, Serrano et al. 2014, Klemen et al. 2018). Some of these analyses have been
developed for analyzing CLP/CHC programs directly and also for analyzing imperative
programs, by translation to CHCs, using different representation levels as starting point,
such as source, bytecode, compiler intermediate representations (e.g. LLVM-IR), or ma-
chine code. An area of particular interest in this context has been static analyses for
bounding the energy consumption of programs (Navas et al. 2008; 2009, Liqat et al.
2014; 2016, López-Garćıa et al. 2015; 2018).

Recently, CHCs have been used for modeling the operational semantics of time-aware
business processes (De Angelis et al. 2019), whose activities have durations that are ei-
ther controllable (that is, determined by the organization that executes the process), or
uncontrollable (determined by the environment). Controllability properties, which guar-
antee process completion independently of the values of the uncontrollable durations, are
encoded using reachability formulas with existential and universal quantifiers, and are
verified by combining resolution and constraint solving in LIA.

Techniques for the verification of higher-order functional programs have been developed
using machine learning (Champion et al. 2020) or extending CHCs to higher-order logic
(Burn et al. 2018). Other extensions of CHCs, such as existential and universal CHCs,
have been studied by Bjørner et al. (2015).

Further applications of Horn clauses include verification of smart contracts and secu-
rity protocols. Indeed, several approaches to verification and analysis of smart contracts
for the Ethereum cryptocurrency are based on CHCs and use abstraction (Grishchenko
et al. 2018, Kalra et al. 2018, Tsankov et al. 2018), possibly combined with partial
evaluation (Tsankov et al. 2018, Schneidewind et al. 2020). Moreover, abstract models
of security protocols are represented through Horn clauses in the automatic symbolic
verifier ProVerif (Blanchet 2016), that uses resolution with free selection for verifying
properties of these protocols, such as secrecy, authentication, and process equivalence.

Verification is not the only validation task that can be conveniently carried out us-
ing CHCs. It is well known that constraints can be effectively and efficiently used for
software testing (Gotlieb et al. 1998, Godefroid et al. 2005, Meudec 2001), and vari-
ous CHC-based techniques have been developed for test case generation (TCG) using
different approaches.

White-box TCG has been performed by means of bounded symbolic execution (Gómez-
Zamalloa et al. 2010), after applying partial evaluation to derive CHCs from object-
oriented or bytecode programs (Albert et al. 2010). The approach has been extended to
TCG for concurrent programs (Albert et al. 2018) by integrating partial-order reduction
techniques for mitigating state space explosion. Concolic testing (Godefroid et al. 2005),
combining concrete and symbolic execution for TCG, has recently been applied to CLP
programs (Mesnard et al. 2020).

A CLP-based approach exploiting unification and constraint solving (Senni and Fio-
ravanti 2012), combined with program transformation (Fioravanti et al. 2015), has been
applied to Bounded-Exhaustive Testing (BET) (Coppit et al. 2005), where the task is
that of generating all input data satisfying a given property, and has shown to be very
competitive with respect to other approaches to BET.
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Some recent papers use CHCs for Property-Based Testing (PBT) (Claessen and Hughes
2000), where inputs are randomly generated so that input and output pairs satisfy some
given properties. The idea of using properties defined by predicates as generators for
testing arises naturally in the CLP/CHC context, since calls to predicates with free
variables will instantiate (or constrain) those variables to values that will eventually
cover all the success set, as shown in Section 2.4.2. In particular, the Ciao assertion
framework (Hermenegildo et al. 1999; 2005, Puebla et al. 2000) implements assertion-
based testing: the properties that appear in assertions are defined using predicates, and
then the preconditions of such assertions act as generators that are used to drive the
run-time testing of those parts of assertions that are not discharged at compile time,
essentially embodying the PBT approach. Recent work (Casso et al. 2019) shows how
this generation process can be performed for complex properties and random values
by executing the predicates defining such properties under different search rules (e.g.
breadth-first, iterative deepening, random), available in the Ciao system.

Other work is aimed more specifically at PBT, such as PrologCheck (Amaral et al.
2014), which provides custom test data generators and a predicate specification language
for PBT of Prolog programs. When the input consists of data structures that must
satisfy complex properties, such as sorted lists or AVL trees, naive generation is not
always suitable and programmers may have to write custom generators. The ProSyT
tool (De Angelis et al. 2019) relieves programmers from writing such generators for PBT
of Erlang programs. Inputs are automatically generated from functional specifications
by interleaving (via coroutining) symbolic data structure generation, constraint solving,
and random variable instantiation.

8 Future directions

The idea that CHCs provide a common logical framework (or lingua franca) for program
verification problems has gained traction in recent years (McMillan 2013, Bjørner et al.
2015) and has been boosted by the development of powerful satisfiability checkers for a
range of constraint domains. The roots of the idea can be traced to the early years of
(constraint) logic programming, and many works in the field of CLP in the past three
decades have exploited the expressiveness of CHCs and their model- and proof-theoretic
properties for verification problems (see the many references to the work on analysis,
transformation, and verification of CLP programs surveyed in this paper). Continued
progress depends on research in several areas.

Transformation of verification problems to CHCs. The translation of a verification prob-
lem from a source language into CHCs needs to be scalable to large problems in main-
stream languages, and verifiable with respect to the language semantics. Most existing
approaches are lacking in scalability or rigour. One area for research is to exploit exist-
ing logical frameworks and semantic specification languages, such as the rewriting-based
K Framework (Rosu and Serbanuta 2010) or constructive logic proof assistants (Barras
et al. 1997, Nipkow et al. 2002), which have previously been used to specify a variety of
languages. An interpretive approach based on semantic rules expressed as CHCs, com-
bined with CHC specialization, as discussed in Section 4, is one possible strategy. Another
strategy is compiler-based translation, in which a validated compiler is applied, leaving a
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“simpler” intermediate language to translate into CHCs. Effective and scalable transla-
tions to and from SMT-LIB representations to CHCs can also play an important role in
interfacing with existing translation tools and solvers. Translators from program verifiers
based on pre/post-condition specifications (Barnett et al. 2006, Filliâtre and Paskevich
2013, Hamza et al. 2019, Leino 2013) could also be useful for generating verification con-
ditions in CHC format that can be handled by CHC-based tools. In addition, research is
needed on formalising and translating other languages and systems to which CHC veri-
fication has not previously been applied, in particular popular languages which are not
strongly typed (e.g. Javascript, Python), machine learning systems, and heterogeneous
distributed systems.

Advances in CHC solvers. As with verification tools in general, CHC solvers face the
challenges of automation and scalability. As regards automation, some techniques, such
as abstract interpretation (see Section 5), are indeed automatic. Moreover, various prac-
tical tools are based on algorithmic strategies for applying the techniques discussed in
this paper and for making the so-called eureka steps (see Section 3.1). Some such strate-
gies were presented through examples in Section 6. Scalability is addressed in two ways:
firstly, large problems are tackled, whenever possible, by divide-and-conquer approaches,
including, for example, modularity and incrementality (within abstract interpretation,
we refer to the paper by Garćıa-Contreras et al. (2020b) and the references therein);
and, secondly, abstract interpretation (as mentioned in Section 5) offers the possibil-
ity of trading off scalability for precision, less precise analyses being, in general, more
scalable; hence strategies for choosing and refining abstractions are crucial. An annual
competition for CHC solvers (https://chc-comp.github.io/) motivates progress and
provides evidence of the increasing effectiveness of the solvers.

As impressive as recent progress is, much research is still needed on the scalability and
expressiveness of CHC solvers. On the one hand, as shown in this survey, most existing
techniques are for numerical constraint domains, with extensions for arrays, and ADTs
for standard data structures such as lists and trees. On the other, new domains are being
developed to handle strings, heaps, bit-vectors, floating point numbers and other such
typical constructs that arise in program verification applications (see, for instance, (Brain
et al. 2014, Brummayer and Biere 2009, Liang et al. 2016, Madhusudan et al. 2011)).
Furthermore, progress in solving numerical constraint problems requires techniques for
effective handling of nonlinear constraints, both through decision procedures for selected
theories (Jovanovic and de Moura 2012), and abstract domains for safe approximation of
nonlinear problems (Jeannet and Miné 2009). Apart from constraint domains themselves,
research and experimentation is needed on verification strategies combining analysis and
transformation with refined techniques for generalization and counterexample-based re-
finement. Novel verification strategies such as Newtonian iteration (Esparza et al. 2010)
are also being investigated from the perspective of CHC verification (Kafle et al. 2018).

Applications. Advances in general CHC solving techniques, as just discussed, will en-
able existing application areas to be addressed more effectively and at larger scale. By
contrast, some applications require conceptual advances to find effective ways to express
them as CHC verification problems. One such area is the automatic verification of prop-
erties of concurrent systems, which has been the subject of intensive research for many
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years. Approaches that simultaneously exploit the power of CHC solvers and techniques
developed for model checking, such as partial order reduction (Clarke et al. 2003, Flana-
gan and Godefroid 2005), are needed. The approach described by Grebenshchikov et al.
(2012), in which proof rules for concurrency properties (such as Owicki-Gries rules and
rely-guarantee rules) are encoded as CHCs, provides a promising direction for future
research. Verification of co-inductive program properties, arising in concurrency, type
theory and elsewhere, can exploit the greatest fixpoint semantics of CHCs. The litera-
ture contains initial work in this area (Basold et al. 2019, Gupta et al. 2007, Seki 2012).

A new challenging field of application for CHC-based techniques is the verification of
security properties of computations executing in cryptographic currency systems on top
of the highly decentralized and distributed blockchain structure. Indeed, the usefulness
of CHCs for specifying the formal semantics and for the static analysis of smart contracts
has been advocated by recent papers (Grishchenko et al. 2018, Kalra et al. 2018, Tsankov
et al. 2018, Schneidewind et al. 2020, Pérez-Carrasco et al. 2020).

Probabilistic program verification problems arise either from probabilistic programs,
which include random choices, or from deterministic programs where a probability dis-
tribution is provided for inputs, and the problem is to verify the probability of reaching
a specified state. This is becoming an active research topic, with applications in ma-
chine learning and real-time systems among others. CHCs can be given probabilistic
interpretations (Sato and Kameya 1997, Kimmig et al. 2011) which can provide the ba-
sis for probabilistic reasoning. Recent work on probabilistic Horn clause verification is
described by Albarghouthi (2017); probabilistic abstract interpretations have also been
considered (Monniaux 2000, Kirkeby 2019).

Automatic analysis of the resource consumption of programs is also a very important
and active area, where CHC-based techniques play a very relevant role. Of particular
interest are static (or combined static and dynamic) analyses for bounding the energy
consumption of programs (Navas et al. 2008; 2009, Liqat et al. 2014; 2016, López-Garćıa
et al. 2015; 2018) This application area is of increasing importance as, on one hand, the
global energy consumption of software systems grows rapidly, and on the other hand,
wearable, implantable, and portable systems need to minimize energy consumption in
order to maximize battery life.
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Filliâtre, J. C. and Paskevich, A. 2013. Why3 — Where programs meet provers. In
ESOP 2013. LNCS 7792. Springer, 125–128.

Fioravanti, F., Pettorossi, A., Proietti, M. and Senni, V. 2013. Controlling polyvariance
for specialization-based verification. Fundamenta Informaticae 124, 4, 483–502.

Fioravanti, F., Pettorossi, A. and Proietti, M. 2001a. Automated strategies for special-
izing constraint logic programs. In LOPSTR 2000. LNCS 2042. Springer, 125–146.

Fioravanti, F., Pettorossi, A. and Proietti, M. 2001b. Verifying CTL properties of infi-
nite state systems by specializing constraint logic programs. In ACM Workshop VCL 2001.
Technical Report DSSE-TR-2001-3. University of Southampton, UK, 85–96.

Fioravanti, F., Pettorossi, A. and Proietti, M. 2004. Transformation rules for locally
stratified constraint logic programs. In Program Development in Computational Logic. LNCS
3049. Springer, 292–340.

Fioravanti, F., Pettorossi, A., Proietti, M. and Senni, V. 2012. Improving reachabil-
ity analysis of infinite state systems by specialization. Fundamenta Informaticae 119, 3-4,
281–300.

Fioravanti, F., Pettorossi, A., Proietti, M. and Senni, V. 2013a. Generalization strategies
for the verification of infinite state systems. Theory and Practice of Logic Programming 13, 2,
175–199.

Fioravanti, F., Pettorossi, A., Proietti, M. and Senni, V. 2013b. Proving theorems by
program transformation. Fundamenta Informaticae 127, 1–4, 115–134.

Fioravanti, F., Proietti, M. and Senni, V. 2015. Efficient generation of test data struc-
tures using constraint logic programming and program transformation. Journal of Logic and
Computation 25, 6, 1263–1283.

Flanagan, C. and Godefroid, P. 2005. Dynamic partial-order reduction for model checking
software. In POPL 2005. ACM Press, 110–121.

Fribourg, L. and Olsén, H. 1997. A decompositional approach for computing least fixed-
points of Datalog programs with Z-counters. Constraints 2, 3/4, 305–335.
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verifying Java programs. In CAV 2016, Part I. LNCS 9779. Springer, 352–358.
Kalra, S., Goel, S., Dhawan, M. and Sharma, S. 2018. Zeus: Analyzing safety of smart

contracts. In 25th Network and Distributed System Security Symposium The Internet Society,
1–15.

Kanamori, T. 1993. Abstract interpretation based on Alexander templates. Journal of Logic
Programming 15, 1&2, 31–54.

Kelly, A., Marriott, K., Søndergaard, H. and Stuckey, P. 1998. A practical object-
oriented analysis engine for CLP. Software: Practice and Experience 28, 2, 188–224.

Khedker, U. P. and Karkare, B. 2008. Efficiency, precision, simplicity, and generality in
interprocedural data flow analysis: Resurrecting the classical call strings method. In CC 2008.
LNCS 4959. Springer, 213–228.

Kimmig, A., Demoen, B., Raedt, L. D., Costa, V. S. and Rocha, R. 2011. On the imple-
mentation of the probabilistic logic programming language ProbLog. Theory and Practice of
Logic Programming 11, 2–3, 235–262.

Kirkeby, M. H. 2019. Probabilistic output analyses for deterministic programs - reusing exist-
ing non-probabilistic analyses. Electronic Proceedings in Theoretical Computer Science 312 ,
43–57.
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