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Abstracts of invited talks

Two-layered Belnapian logics
for uncertainty

Marta B́ılková

The Czech Academy of Sciences, Institute of Computer Science, Prague
Email: bilkova@cs.cas.cz

When it comes to information, its potential incompleteness, uncertainty, and
contradictoriness needs to be dealt with adequately. Separately, these charac-
teristics have been taken into account by various appropriate logical formalisms
and (classical) probability theory. While incompleteness and uncertainty are
typically accommodated within one formalism, e.g. within various models of
imprecise probability, contradictoriness and uncertainty less so — conflict or
contradictoriness of information is rather chosen to be resolved than to be
reasoned with. To reason with conflicting information, positive and negative
support—evidence in favour and evidence against—a statement are quantified
separately in the semantics. This two-dimensionality gives rise to logics inter-
preted over twisted-product algebras or bi-lattices, the well known Belnap-Dunn
logic of First Degree Entailment being a prominent example [2, 6].

In a spirit similar to Belnap-Dunn logic, one can introduce many-valued
logics for uncertainty which are interpreted over twisted-product algebras based
on the [0, 1] real interval. They can be seen to account for the two-dimensionality
of positive and negative component of (the degree of) belief based on potentially
contradictory information. The logics presented in this talk include extensions
of  Lukasiewicz or Gödel logic with a de-Morgan negation which swaps between
the positive and negative semantical component. The extensions of Gödel logic
in particular relate to the extensions of Nelson’s paraconsistent logic N4 [10, 11],
or Wansing’s paraconsistent logic I4C4 [12], with the prelinearity axiom. The
resulting logics inherit (finite) standard completeness and decidability properties
of  Lukasiewicz or Gödel logic respectively, and allow for an efficient reasoning
using the constraint tableaux calculi formalism [3].

Many-valued logics with such a two-dimensional semantics can be applied
to reason about belief based on evidence within a two-layer logical framework.
Two-layer logics for reasoning under uncertainty were introduced in [7, 8], and
developed further within an abstract algebraic framework by [5] and [1]. They
separate two layers of reasoning: the lower layer consists of a logic chosen to
reason about events (often classical propositional logic interpreted over sets of
possible worlds), the connecting modalities are interpreted by a chosen uncer-
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tainty measure on propositions of the lower layer (typically a probability or a
belief function), and the upper layer consists of a logical framework to reason
about probabilities or beliefs. The modalities apply to lower level formulas only,
to produce upper level atomic formulas, and they never nest. Logics introduced
in [7] use classical propositional logic on the lower level, and reasoning with lin-
ear inequalities on the upper level. [8] on the other hand uses  Lukasiewicz logic
on the upper level, to capture the quantitative reasoning about probabilities
within a propositional logical language.

Building on that idea and having in mind the two-dimensionality of in-
formation, another two-layer modal logic has been introduced to reason with
non-standard probabilities [9] in our recent conference paper [4]. It presents a
logical framework in which belief is based on potentially contradictory infor-
mation obtained from multiple, possibly conflicting, sources and is of a prob-
abilistic nature. It uses an extension of  Lukasiewicz logic on the upper layer,
Belnap-Dunn logic on the lower layer to model evidence, and its probabilistic
extension [9] to give rise to a belief modality. The many-valued logics with
two-dimensional semantics mentioned above can all be used on the upper layer
in this framework to reason about agent’s beliefs, producing two-layer logics
suitable for various scenarios: extensions of  Lukasiewicz logic are adequate in
cases when aggregated evidence yields a non-standard probability measure or a
belief function (on a De Morgan algebra), while extensions of Gödel logic are
useful to reason about comparative uncertainty in cases where it is not so.

(This talk is rooted in joint work with S. Frittella, D. Kozhemiachenko,
O. Majer and S. Nazari.)
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Is Intuitionistic Mathematics Compati-
ble with Classical Logic?

Liron Cohen

Intuitionistic mathematics, as conceived by Brouwer, extends the standard
Curch-Turing notion of effective algorithmic constructions by also admitting
constructions based on temporal intuitions. In particular, the key notion of
infinitely proceeding sequences of freely chosen objects, known as free choice
sequences, regards functions as being constructed over time.

In this talk, we will describe how, despite this stronger computational power,
free choice sequences can be embedded in an implemented formal framework,
namely the constructive type theory of the Nuprl proof assistant. This im-
plementation requires a major overhaul to all components of the Nuprl proof
assistant, and in particular an extension of the notion of truth to a multi-world
truth. We will present two possible models and show that while one is inconsis-
tent with classical reasoning, the other is compatible with it. We will also discuss
broader implications of supporting such an extended notion of computability in
a formal system, focusing on formal verification and constructive mathematics.
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Potentialism and Critical Plural Logic

Øystein Linnebo

Potentialism is the view that certain types of entity are successively gener-
ated, in such a way that it is impossible to complete the process of generation.
What is the correct logic for reasoning about all entities of some such type?
Under some plausible assumptions, classical first-order logic has been shown
to remain valid, whereas the traditional logic of plurals needs to be restricted.
Here I seek to answer the open question of what is the correct plural logic for
reasoning about such domains. The answer takes the form of a critical plural
logic. An unexpected benefit of this new logic is that it paves the way for an al-
ternative analysis of potentialism, which is simpler and more user-friendly than
the extant modal analysis.

13



From definability in finitely-valued
modal logic

Carles Noguera

This talk will present some new results (obtained in cooperation with Guillermo
Badia and Xavier Caicedo) in the area of many-valued modal logics. After intro-
ducing the topic, we will establish two main facts: (1) in finitely-valued modal
logics we cannot define more classes of frames than are already definable in clas-
sical modal logic, and (2) a large family of finitely-valued modal logics define
exactly the same classes of frames as classical modal logic (including modal log-
ics based on finite Heyting and MV-algebras). In particular, we will have that
the celebrated Goldblatt-Thomason theorem applies immediately to these logics.
Therefore, we obtain the central result of a previous work by Teheux (a gener-
alization of Goldblatt-Thomason theorem for finitely-valued modal Lukasiewicz
logics) with a much simpler proof and for a much wider class of logics, and
answer one of the open questions left in that paper.
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Normative Dilemmas, Dialetheias,
and their Modal Logic

Graham Priest

Systems of norms deliver (at least arguably) both dilemmas and dialetheias.
In the first part of the talk I will illustrate this with examples concerning norms
of law, morality, and rationality. In the second part I will discuss the appropriate
modal logic of obligation. Unsurprisingly, a paraconsistent logic is required to
do justice to matters.
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New results on Kripke completeness and
incompleteness in modal predicative logic

Valentin Shehtman

As noticed some 50 years ago, Kripke frame semantics does not fit well for
modal predicate logics. This contrasts to the propositional case, when we can
expect the logics to be complete.

The talk gives an overview of some well-known and some recent results in this
field. We are mainly interested in minimal predicate extensions of propositional
logics and their Kripke completions. In particular we consider a certain oper-
ation of ‘boxing’, show that it preserves strong Kripke completeness and find
axiomatization for ‘boxed’ logics. We also axiomatize logics of some predicate
Kripke frames based on finite trees.
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Revision without revision? Two case
studies in inconsistent mathematics

Zach Weber

Inconsistent mathematics (IM) is a branch of non-classical mathematics that
allows some contradiction, by using a background paraconsistent logic. Since
IM allows inconsistent theories, but classical mathematics does not, there is a
natural sense in which IM is revisionary, challenging or rejecting some aspects of
conventionally accepted mathematics. However, most of the (few) people who
have worked in IM have not advocated for revisionism; they suggest various ways
it is more conservative after all, and seek instead reassurance that under IM no
classical mathematics is lost. In this talk I explore whether IM is best thought of
as revisionist, by looking at two case studies: first, the expressive completeness
of the logic LP (studied by Omori and Weber); and second, the cardinality of the
set of all computable functions (studied by Sylvan and Copeland). Both of these
questions have well-established classical answers. But when approached from
IM we see a sense in which those answers can be challenged—yet without simply
‘overturning’ received wisdom. In light of this I ask whether IM offers revision
without revision, and, appropriately enough, whether this provides reassurance
without reassurance.
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Abstracts of contributed talks

Maximality of logic without identity

Guillermo Badia, Xavier Caicedo and Carles Noguera

In the 1960s, Lindström [11] showed that first-order logic is the maximal
logic (in terms of expressive power) satisfying certain combinations of model-
theoretic results. The best known of these combinations are:

Löwenheim–Skolem theorem + Compactness

Löwenheim–Skolem theorem + Recursively enumerable set of validities

These are by no means exhaustive though (the reader can consult the ency-
clopaedic monograph [2] for a thorough treatment of this topic). Philosophically,
these results have been interpreted as providing a case for first-order logic being
the “right” logic in contrast to higher order, infinitary or logics with generalized
quantifiers, which can be argued to be more mathematical beasts (see [12]). An
implicit assumption of Lindström’s work is that identity (=) is a most basic
notion and belongs in the base logic.

Lindström’s theorems clearly fails for first-order logic without identity (L−
ωω)

since first-order logic with identity (Lωω) is a proper extension of L−
ωω. In fact,

there are continuum-many logics between the former and the latter obtained by
adding finite cardinality quantifiers of the form ∃≥n.

In this talk we aim at finding a way to amend Lindström’s two central
theorems so they would apply in the identity-free context. We use the notion of
an abstract logic from [2, Def. II.1.1.1]. Recall that this notion presents logics
as model-theoretic languages [6] (see also [1, 11]), not as consequence relations
or collections of theorems. Furthermore, we assume logics to have the basic
closure properties from [2, Def. II.1.2.1] except that in the atom property we
use L−

ωω as the base logic. We use an essential definition from [5]: A ∼ B means
that there is a relativeness correspondence between the models [5, Def. 2.5], i.e.
an isomorphism relation without functionality or injectivity requirements (we
prefer to call this a weak isomorphism). We will use the following property of
logics:

• Weak isomorphism property : for any structures A and B, A ∼ B only if
A ≡L B.

As usual, if L and L′ are logics, we write L ≤ L′ if, for any vocabulary τ and
any formula φ ∈ L(τ), we can find an equivalent formula φ′ ∈ L′(τ).
L−
ωω is, properly speaking, a fragment of Lωω containing the guarded frag-

ments corresponding to basic modal logics. In the modal setting, the most
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fruitful approach has been to use bisimulations as modal analogues of potential
isomorphisms in first-order logic to obtain Lindström-style characterizations [3].
In the present context all we require is the notion of weak isomorphism intro-
duced in [5], which is stronger than bisimulation.

We are now ready to state the central maximality result of this talk:

Theorem 1. Let L be an abstract logic such that L−
ωω ≤ L. If L has the weak

isomorphism, compactness, and Löwenheim–Skolem properties, then L ≤ L−
ωω.

By L1−
ωω we denote the logic obtained from L−

ωω by allowing just vocabularies
where all the relation symbols are unary. If only this kind of vocabulary is
admitted, we call the logic monadic. In this case, we obtain the same result
from compactness alone:

Theorem 2. Let L be a monadic logic such that L1−
ωω ≤ L. If L satisfies the

compactness and weak isomorphism properties, then L ≤ L1−
ωω.

Corollary 3. L−
ωω (resp. L1−

ωω) is the fragment of Lωω (resp. L1
ωω) preserved

under weak isomorphisms.

Theorem 4. Let L be an effectively regular abstract logic [2, Def. II.1.2.4]
such that L−

ωω ≤ L. If L has the weak isomorphism property, is recursively
enumerable for validity, and has the Löwenheim–Skolem property, then L ≤
L−
ωω.

Adding a Lindström quantifier to L−
ωω usually destroys the weak isomor-

phism property, as is the case with cardinality and cofinality quantifiers. How-
ever, each quantifier has a natural version closed under weak isomorphisms.
This technique provides interesting examples.

Example 5 (The logic L−
ωω(Q−

α )). Consider the Lindström quantifier Q−
α de-

fined as:

{⟨A,M,E⟩ |M ⊆ A,E equivalence relation onA congruent withM,
∣∣M⧸E

∣∣ ≥ ωα}.
The satisfaction condition for this operator then is

A |= Q−
αxyz[φ(x), θ(y, z)] iff {⟨a, b⟩ ∈ A2 | A |= θ[a, b]} is an equivalence relation onA,

A |= ∀xy(θ(x, y)→ (φ(x)→ φ(y))), and∣∣{a ∈ A | A |= φ[a]}⧸{⟨a, b⟩ ∈ A2 | A |= θ[a, b]}
∣∣ ≥ ωα.

It is easy to verify that this logic has the weak isomorphism property. In the
case of L−

ωω(Q−
1 ) it inherits countable compactness and the recursive axiomati-

zability of validity from Lωω(Q1) (these facts are not immediate).
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Example 6 (The logic L−
ωω(Qcfω−)). Consider now the following Lindström

quantifier:

Qcfω− = {⟨A,M,E⟩ |M ⊆ A2, E is an equivalence relation onA congruent withM,

⟨A,M⟩⧸E is a linear order with cofinality ω}.

Then, we have that A |= Qcfω−xyzw[φ(x, y), θ(z, w)] iff

• θA = {⟨a, b⟩ ∈ A2 | A |= θ[a, b]} is an equivalence relation on A,

• A |= ∀xy((θ(x, y) ∧ θ(z, w))→ (φ(x, z)→ φ(y, w))),

• A |= “φ(x, y) is an irreflexive transitive relation”,

• A |= (∀xy)(φ(x, y) ∨ φ(y, x) ∨ θ(x, y)), and

• ⟨A, θ
A⟩⧸{⟨a, b⟩ ∈ A2 | A |= θ[a, b]} has cofinality ω.

L−
ωω(Qcfω−) is closed under weak isomorphisms and inherits the compactness

and recursive axiomatizability of full Lωω(Qcfω). This logic also shows that the
Löwenheim–Skolem property is needed in Thm. 1, in contrast to Thm. 2 where
only compactness is required.

A remarkable example of a Lindström quantifier which respects weak iso-
morphims is the Henkin quantifier QH .

Example 7 (The logic L−
ωω(QH)). Recall the Henkin quantifier QH which is

defined as follows:

QH = {⟨A,M⟩ |M ⊆ A4,M ⊇ f × g for some f, g : A −→ A}.

It is known that when QH is added to L1−
ωω it collapses into L1−

ωω itself [10]
so that the resulting logic is compact. However, L−

ωω(QH) may be shown to be
incompact.

The results in the present paper may also provide a foundation for a philo-
sophical discussion on whether L−

ωω is suitable as a contender for the title of the
“right logic” against Lωω. After all, the logicality of the = predicate is not ob-
vious (cf. [7]). Another work where L−

ωω has attracted mathematical attention
is [9], where the problem of categoricity of theories in that logic is studied.
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Logic Compactness LöwSko Property Weak Iso Property
Lωω + + −
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On the connexivity
of fuzzy counterfactuals

Libor Běhounek

University of Ostrava, CE IT4Innovations–IRAFM,
30. dubna 22, Ostrava, Czechia

Email: libor.behounek@osu.cz

The validity of the axioms of connexivity in various semantics of counterfactual
conditionals has been a widely discussed topic (e.g., [4, 6, 3]). Recently, a
fuzzy semantics of counterfactuals [1] has been proposed, which accommodates
graded antecedents and consequents and reflects the vagueness of the similarity
ordering of possible worlds. This brings up the natural question of whether
some form of the connexive axioms is valid in this semantics, or perhaps in some
variant thereof. In this contribution, I will briefly introduce the semantics in
question and show that it indeed validates some restricted forms of the connexive
axioms, especially if the original definition of the semantics is strengthened in
an arguably natural way.

The mentioned gradual semantics for the propositional logic of counterfac-
tuals can be based on a broad class of first-order fuzzy logics; for simplicity,
though, we will restrict ourselves to the standard semantics of the logic  L∀∆, or
the well-known infinite-valued logic of  Lukasiewicz with the additional connec-
tive ∆ (see, e.g., [2]). The standard semantics of  L∀∆ evaluates propositions in
the real interval [0, 1], using the following Tarski conditions:

∥¬φ∥ = 1− x ∥∆φ∥ = 1− sgn(x)

∥φ& ψ∥ = max(0, x+ y − 1) ∥φ ∧ ψ∥ = min(x, y)

∥φ⊕ ψ∥ = min(1, x+ y) ∥φ ∨ ψ∥ = max(x, y)

∥φ→ ψ∥ = min(1, 1− x+ y) ∥φ↔ ψ∥ = 1− |x− y|
∥(∀x)φ(x)∥ = infa∈D

(
∥φ∥(a)

)
∥(∃x)φ(x)∥ = supa∈D

(
∥φ∥(a)

)
The graded semantics for counterfactuals is based on Lewis’ Analysis 2 of

[5], according to which a counterfactual A □→ C is true in a world w if all the
closest (in terms of similarity to w) A-worlds (i.e., worlds satisfying A) are C-
worlds. We will see that, unlike Lewis’ bivalent Analysis 2, the gradual variant
does not rely on the implausible Limit Assumption. In its most basic form, the
semantics is defined as follows:

A fuzzy counterfactual frame is a non-empty setW of possible worlds equipped
with a system of fuzzy relations ⪯w : W 2 → [0, 1], for all w ∈W , satisfying the
conditions:

(i) (v ⪯w w) = 1 only if v = w (strict minimality of w)
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(ii) (u ⪯w v) = 1 or (v ⪯w u) = 1 (linearity)
(iii) (v ⪯w v′) & (v′ ⪯w v′′) ≤ (v ⪯w v′′) (fuzzy transitivity)
An evaluation in a fuzzy counterfactual frame is a mapping e : PropVar ×

W → [0, 1], extended to all propositional formulae of  L∆ as usual; the value
of the formula A in the world w is denoted by ∥A∥w. The semantics of the
counterfactual conditional □→ is defined as follows:

∥A □→ C∥w =df

(
Min⪯w

∥A∥ ⊆ ∥C∥
)
,

whereX ⊆ Y ≡df (∀v)(Xv → Y v) and (Min⪯w∥A∥)(v) ≡df ∥A∥v∧(∀v′)(∥A∥v′ →
v ⪯w v′), both interpreted in the standard semantics of  L∀∆. It can be observed
that the definition uses the same Tarski conditions as that of Lewis’ Analysis 2,
only reinterpreted in  L∀∆. The consequence relation |= is defined as the global
preservation of the designated truth degree 1.

The semantics can readily be extended by fuzzy S5-modalities (e.g., [2, §8.3]),
defined as ∥□A∥w =df infv∈W ∥A∥w and ∥♢A∥w =df supv∈W ∥A∥w, and the
usual definition of strict implication, A J C ≡df □(A→ C). Then, similarly as
in the bivalent case, the counterfactual implication is intermediate between the
material and strict implications: ∥A J C∥w ≤ ∥A □→ C∥w ≤ ∥A→ C∥w.

It can be shown that the gradual semantics validates various desirable prop-
erties of counterfactuals (such as A □→ A ∨B) and refutes various undesirable
properties (e.g., the transitivity of □→). Although the axiomatization of this
semantics in the propositional language of counterfactual logic has not yet been
attempted, a syntactic method for verifying counterfactual laws is obtained by
the standard translation trx into first-order  Lukasiewicz logic  L∀∆ with addi-
tional axioms formalizing the properties (i)–(iii) of the ternary predicate ⪯,
where the atoms, the connectives of  L∆, and the modalities □,♢ are translated
in the usual manner, and the counterfactual implication □→ is translated as
follows:

trx(A □→ C) = (∀y)
(
try(A) ∧ (∀z)(trz(A)→ y ⪯x z)→ try(C)

)
.

As mentioned, Lewis’ bivalent Analysis 2 of [5] employs the implausible
Limit Assumption to ensure the existence of the closest A-worlds, provided any
A-worlds exist. In the described gradual semantics of [1], however, a consider-
ably weaker and arguably more plausible condition of the right-connectedness
of the fuzzy counterfactual frame is sufficient to ensure the non-emptiness of
Min⪯w

∥A∥, and hence the non-triviality of A □→ C whenever A is possible
to a non-zero degree. This condition says that for every strictly decreasing
(w.r.t. ⪯w) set of worlds X ⊆W , there are distinct worlds u, v ∈ X whose close-
ness to w is mutually indistinguishable to a non-zero degree, i.e., (u ≈w v) > 0,
where (u ≈w v) =df (u ⪯w v) ∧ (v ⪯w u); or equivalently,

sup
u,v∈X
u ̸=v

(u ≈w v) > 0. (1)

As shown in [1], this condition already ensures that (Min⪯w
∥A∥)(v) > 0 for

some v ∈ W if ∥A∥u > 0 for some u ∈ W—and so the non-triviality of the
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counterfactual A □→ C whenever ♢A is true to a non-zero degree. (In [1],
the condition is equivalently formulated in terms of a fuzzy indistinguishability
relation between abstract, possibly uninhabited distances from w. The condition
of right-connectedness is then a plausible property of fuzzy indistinguishability
on ordered sets, saying that the infimum of a set is not fully distinguishable
from all of its elements.)

In the context of discussing the validity of the connexive axioms in vari-
ous semantics for counterfactuals (e.g., [4, 6, 3]), a natural question is whether
these axioms are valid in (right-connected) fuzzy counterfactual frames. First,
it is clear that fuzzy counterfactuals can only validate them for bivalent (and
possible, due to classical counterexamples) antecedents: since A↔ ¬A is sat-
isfiable in  L∆, fuzzy counterfactual frames can validate □(A↔ ¬A), and thus
also A □→ ¬A and ¬A □→ A. Easy calculations moreover show that even as-
suming A ∨ ¬A and ♢A, right-connected fuzzy counterfactual frames only val-
idate a weak form of the connexive axioms—namely, holding only to a non-
zero, rather than full, degree; e.g., Aristotle’s theses only hold in these forms:
A ∨ ¬A,♢A |= ¬∆(A □→ ¬A) and A ∨ ¬A,♢A |= ¬∆(¬A □→ A).

Counterexamples to the stronger variants of the connexive axioms (not weak-
ened by the connective ∆) are easy to find. The condition of right-connectedness,
while sufficient for the non-triviality of counterfactuals with possible antecedents,
is thus too weak to ensure the stronger forms of connexivity. Nevertheless, the
stronger connexive axioms turn out to be valid in fuzzy counterfactual frames
that satisfy a stronger form of the right-connectedness condition, namely: For
any strictly decreasing (w.r.t. ⪯w) set of worlds X ⊆W ,

sup
u,v∈X
u ̸=v

(u ≈w v) = 1. (2)

In terms of abstract distances of [1], condition (2) says that the infimum of a
set of distances is indistinguishable from some of its elements up to the full
degree 1, which is still a plausible property of fuzzy indistinguishability on an
ordered set. It is not difficult to show that condition (2) ensures the existence
of ⪯w-minimal worlds for bivalent possible antecedents not only to a non-zero
degree as does condition (1), but even to the full degree 1. In consequence of
this, fuzzy counterfactual frames satisfying (2) validate the connexive axioms as
follows:

A ∨ ¬A,♢A |= ¬(A □→ ¬A) (3)

A ∨ ¬A,♢¬A |= ¬(¬A □→ A) (4)

A ∨ ¬A,♢A |= (A □→ B)⇒ ¬(A □→ ¬B) (5)

A ∨ ¬A,♢A |= (A □→ ¬B)⇒ ¬(A □→ B) (6)

for⇒ ∈ {→,J,□→}. In the terminology of [3], connexivity restricted to possible
antecedents is called humble modal connexivity. In our case, the bivalence of
antecedents (which in classical logic is automatic) must additionally be required.
On the other hand, the premises ♢(A → B) and ♢(A → ¬B), assumed in
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the definition of humble modal Boëthius’ theses in [3], are already ensured in
fuzzy counterfactual frames by the premises of (5)–(6) and condition (2). Fuzzy
counterfactual frames satisfying (2) thus validate, and can even be shown to be
characterized by, the humble modal connexive axioms for fuzzy counterfactuals
with bivalent antecedents.
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Paraconsistent modal logic of
comparative uncertainty

Marta B́ılková, Sabine Frittella, Daniil Kozhemiachenko

General project. This work is a part of the project introduced in [1]. We are
developing a modular logical framework for reasoning based on uncertain, in-
complete or inconsistent information. In this framework, an agent is construct-
ing their belief using probabilistic incomplete and/or conflicting information
aggregated from multiple sources. We formalise such probabilistic reasoning
using the framework of many-valued crisp modal logics akin to those presented
in [2, 3, 7]. These logics allow statements of the form □ϕ construed as ‘the
agent believes that ϕ’ or ‘the agent is certain in ϕ’ to have not only the classical
values but also the intermediate ones.

Two-dimensional treatment of uncertainty. For the purpose of our talk,
we consider agents who although not being always able to give an exact level of
their certainty in some proposition, can compare their certainty in one proposi-
tion to the certainty in the other. Thus, we are interested in the expansions of
Gödel logic which can be treated as the logic of comparative truth (or compar-
ative certainty).

Two-dimensionality comes from the definition of the logics using expansions
of the product bilattice [0, 1] ⊙ [0, 1]. Here, the left coordinate is interpreted
as the agent’s certainty in truth of a statement (‘positive support’) and the
right coordinate — as certainty in falsity (‘negative support’). Since agents
can collect their data from different (and possibly conflicting) sources, we treat
positive and negative supports independently. The usual truth order of [0, 1]
becomes ‘truth-and-falsity’ order and is defined as follows

(x, y) ≤ (x′, y′) iff x ≤ x′ and y ≥ y′

While ∧ and ∨ are defined in the same way as on twisted structures (cf.,
e.g. [5]), there are several ways to construe the negative support of implication.
We interpret the negative support of ϕ → χ as ¬χ � ¬ϕ with � being the
coimplication of Gödel logic. This treatment of→ goes back to one of Wansing’s
logic of [8], namely I4C4, which, in its turn is derived from bi-intuitionistic
logic [4, 6]. We call the propositional fragment G2(→,�).

Definition 1 (Propositional connectives). For all a, b ∈ [0, 1], we set a ∧ b :=
min(a, b), a ∨ b := max(a, b) as well as

a→G b :=

{
1, if a ≤ b
b else

b �G a :=

{
0, if b ≤ a
b else

Negation and 1 are defined as ∼Ga := a→G 0, and 1 :=∼G 0, respectively.
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Now fix a countable set Prop of propositional letters and consider the fol-
lowing language:

ϕ := 0 | 1 | p | ¬ϕ | (ϕ ∧ ϕ) | (ϕ ∨ ϕ) | (ϕ→ ϕ) | (ϕ � ϕ)

where p ∈ Prop. We define ∼ϕ := ϕ→ 0.
Let v : Prop → [0, 1]× [0, 1], and denote v1 and v2 its left and right coordi-

nates, respectively. We extend v as follows.

v(0) = (0, 1) v(ϕ1 ∧ ϕ2) = (v1(ϕ1) ∧ v1(ϕ2), v2(ϕ1) ∨ v2(ϕ2))
v(1) = (1, 0) v(ϕ1 ∨ ϕ2) = (v1(ϕ1) ∨ v1(ϕ2), v2(ϕ1) ∧ v2(ϕ2))

v(¬ϕ) = (v2(ϕ), v1(ϕ)) v(ϕ1 → ϕ2) = (v1(ϕ1)→G v1(ϕ2), v2(ϕ2) �G v2(ϕ1))
v(ϕ1 � ϕ2) = (v1(ϕ1) �G v1(ϕ2), v2(ϕ2)→G v2(ϕ1))

Modalities and frame semantics. We expand the language with □ — a
modal operator that we treat as ‘the agent is certain that. . . ’, as well as its dual
— ♢ and denote the resulting language with L□,♢. Modalities are interpreted
in an expected fashion on crisp models.

Definition 2 (Frames). A crisp frame is a tuple F = ⟨W,R⟩ with with W ̸= ∅
and R ⊆W ×W .

Definition 3 (Models). A crisp model on a frame F is a tuple M = ⟨F, v⟩
with F being a frame and v : Var ×W → [0, 1] ⊙ [0, 1] is a valuation which is
uniquely extended to a map with domain L□,♢ ×W in such a way that it is a
propositional G2 homomorphism (for the propositional connectives) and where
the modal operators are interpreted as infima and suprema w.r.t. the order on
[0, 1]⊙ [0, 1].

v(0, w) = (0, 1) v(ϕ ◦ ϕ′, w) = v(ϕ) ◦ v(ϕ′)
(with ◦ ∈ {∧,∨,→,�})

v(1, w) = (1, 0) v(□ϕ,w) = inf {v(ϕ,w′) : wRw′}
v(¬ϕ,w) = (v2(ϕ), v1(ϕ)) v(♢ϕ,w) = sup {v(ϕ,w′) : wRw′}

The definitions of validity and entailment are also as expected.

Definition 4 (Truth, falsity, and entailment).

• ϕ is true at w ∈ M (denote, M, w ⊨+ ϕ) iff v1(ϕ,w) = 1. ϕ is false at
w ∈M (denote, M, w ⊨− ϕ) iff v2(ϕ,w) = 1.

• ϕ is true in M (denote, M ⊨+ ϕ) iff v1(ϕ,w) = 1 for any w ∈M. ϕ is false
at w ∈M (denote, M ⊨− ϕ) iff v2(ϕ,w) = 1 for any w ∈M.1

• ϕ is valid on F (denote, F |= ϕ) iff for any valuation v on F and for any
state w ∈ F, it holds that v(ϕ,w) = (1, 0).

1As expected, M, w ⊨+ Γ stands for ∀γ ∈ Γ : M, w ⊨+ γ and likewise for ⊨−.
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• ϕ is (universally) valid iff it is valid on every frame.

• Γ ⊆ L□,♢ locally entails ϕ iff for any M, it holds that

∀w ∈M : inf {v(γ) : γ ∈ Γ} ≤ v(ϕ,w)

We denote the set of valid formulas with KG2.

Results. We provide a sound and complete Hilbert-style axiomatisation of
KG2. We also develop its model theory. In particular, we show that Scott
— Lemmon correspondence holds and obtain complete axiomatisations for the
canonical extensions of KG2. Furthermore, we prove the finite model property
for KG2 using a modification of the filtration technique and provide decidability
and complexity results.
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ica, 94(2):189–214, 2010.

[3] X. Caicedo and R.O. Rodriguez. Bi-modal Gödel logic over [0,1]-valued
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1 Introduction

Hybrid logic extends standard modal logic so it can refer to worlds. It does
so using nominals, a second kind of propositional symbol, usually written i, j,
and k, to distinguish them from the p, q, and r used for ordinary propositional
symbols. Nominals are true at one and only one world in any model, so a
nominal is an atomic ‘propositional term’ that names a world (or time, or state,
or. . . ); here we call such symbols standard nominals. Arthur Prior introduced
early forms of hybrid logic in the 1950s and 60s; see [5, 2] for background.

Sometimes, rather than introducing nominals as a second kind of proposi-
tional symbol, Arthur Prior would create them using the Q operator: Qp, the
result of prefixing the ordinary propositional symbol by Q operator, converted
p to a nominal. As Prior put it in [7], page 237:

For ‘p is an individual’ (or an instant, or a possible total world-state)
we write Qp. If we have propositional quantifiers, we can define Qp
thus:

Qp = ♢p ∧ ∀q(□(p→ q) ∨□(p→ ¬q))

Here the □ and ♢ are the box and diamond forms of the universal modality,
that is, □ means true at all worlds and ♢ means true at some world. Thus, if
the quantifier is read as ranging across all sets of worlds, then Qp says that the
denotation of p is a singleton, that is, p is a standard nominal.

But Prior’s definition is ambiguous: there are two mathematically well un-
derstood ways of interpreting a propositional quantifier like ∀q. The first is to
interpret it as quantifying across all subsets of the set of possible worlds. This
is called the standard interpretation, and it is the standard interpretation that
gives rise to standard nominals. But we can also interpret propositional quanti-
fiers as ranging over a pre-selected set of subsets of worlds called the admissible
subsets. This interpretation traces back to Leon Henkin’s pioneering work on
higher-order logic in the 1950s, and is often called the general semantics. Read
this alternative way, Prior’s operator Qp says that the denotation of p is an
atom, that is, a minimal non-empty admissible set.

The distinction between the standard and the general semantics is of direct
relevance to Prior’s definition of the Q operator: when interpreted standardly
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Figure 1: Natural deduction rules for propositional quantifiers

@iϕ[q/p]
(∀I)∗

@i∀pϕ

@i∀pϕ
(∀E)†

@iϕ[ψ/p]

∗ The propositional variable q does not occur free in @i∀pϕ or in any undis-
charged assumptions.
† The formula ψ is free for p in φ and ψ does not contain any standard nominal
in formula position.

we get standard nominals, but when interpreted according to the general seman-
tics, we get something interestingly different; here we call them non-standard
nominals. In this note we explore this distinction by working with a basic hybrid
language enriched with propositional quantifiers. Thus we will have standard
nominals and — because of the propositional quantifiers — we will be able to
define Prior’s Q operator and hence non-standard nominals too.

That is, we work with a language which contains ordinary propositional
symbols, a universal modality □ (and its dual ♢), standard nominals i, j, k and
so on, together with a satisfaction operator @i, @j , @k for each nominal. A
formula of the form @iφ says that φ is true at one particular world, namely the
world the standard nominal i refers to, and similarly for j, k and so on. Note
that standard nominals are used in two syntactically distinct ways: if i appears
as a subscript to @, then we say it occurs in operator position and if it occurs
as an atomic symbol, then we say it occurs in formula position. The above are
the syntactic elements of what nowadays is called the basic hybrid language. To
this we add propositional quantifiers.

2 Natural deduction rules for propositional quan-
tifiers

So we have two species of nominals — standard nominals and non-standard
nominals, the latter being defined via the Q operator interpreted by the general
semantics. To make the differences between our two species of nominals con-
crete, it will help to have a proof system. In the present note we consider the
natural deduction system for hybrid logic obtained by adding the two rules in
Figure 1 to the system for propositional hybrid logic given in Chapter 2 of the
book [4]. The rules in Figure 1 are translations into natural deduction style of
the tableau rules given in [1].

A characteristic feature of natural deduction style proof-systems is that there
are two different kinds of rules for each logical connective: one to introduce
it, the other to eliminate it. The rules (∀I) and (∀E) in Figure 1 are the
introduction and elimination rules for the propositional quatifier. The (∀I)
rule is standard, but the (∀E) rule is not: Whereas the first part of the †

30



side-condition simply prevents accidental symbol binding (defined in the usual
way), the second part of the † side-condition has a clear-cut model-theoretic
meaning: If the second part of the side-condition is included, we get a proof-
system wrt. the general semantics, but on the other hand, if the side-condition
is not included, we get a system which is sound (but not complete) wrt. the
standard semantics (see, for example, Chapter 4 of [6]).

We are currently investigating how to make sense of the above distinction
from a more proof-theoretic point of view, which is the reason why we are here
working with a proof-system in natural deduction style.

Our first remark is in connection with the branch of logic called proof-
theoretic semantics, which is based on the idea of explaining the meaning of
a logical connective in terms of derivation rules, see [10]. If we take that idea
for granted, then the side-condition tells something about the (proof-theoretic)
semantics of propositional quantifiers, namely that if nominals are allowed in
formula position, in particular, if nominals can be substituted for propositional
symbols, then the range of the quantifiers includes the denotations of nominals,
which is in line with the model-theoretic observation that even though the un-
restricted (∀E) rule is not sound wrt. the general semantics, it is sound wrt.
what are called discrete general semantics, based on frames having the property
that all singleton sets are admissible, cf. [1].

This raises a more general and somewhat speculative question: What would
Prior have said to the contemporary issue of proof-theoretic semantics versus
model-theory?

• Would he endorse a proof-theoretic semantics for temporal and modal
logics? Probably not: In his paper [9] he uses his famous ”tonk” argument
to raise doubt as to whether the meaning of logical connectives can be
explained in terms of derivation rules.

• Would he prefer a model-theoretic semantics? Definitely not when it
comes to temporal logics. This is clear from many places in his works
where he objects to the abstract character of instants, which are reified in
the usual Kripke models of time.

We remark that it is less clear whether Prior had a problem with the metalin-
guistic nature of model-theoretic semantics, at least, it seems that he accepted
a specific metalinguistic semantics which is not set-theoretic, namely what is
called a homophonic2 semantic theory of tenses, cf. [8] pages 8–9, as described
in the paper [3].

Beside these philosophical and historical issues, there are a number of more
technical issues that calls for investigation: the inversion principle and maximum

2A semantic theory is homophonic if the constructions of the object language are inter-
preted in terms of analogous constructions of the metalanguage, for example, the standard
truth-table semantics for propositional logic is homophonic since ¬ is interpreted i terms of
negation and ∧ is interpreted in terms of conjunction, etc. This is contrary to the Kripke
semantics for tense logic where the tense operators P and F are interpreted in terms of
quantification—not in terms of tenses.
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formulas, normalisation and the subformula property of normal derivations,
analyticity, conservativity, etc.
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[4] T. Braüner: Hybrid Logic and its Proof-Theory. Springer, 2011.
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In [2], Ferguson shows that Richard Angell’s connexive logics PA1 and PA2,
and Graham Priest’s PN , are questionable bases for connexive arithmetic. Fer-
guson shows these theories to be quite limited, if not unserviceable. Some
“pathologies”, as he calls them, of these systems include the following:

1. For any theory T in any universal-identity extension of arithmetics based
on PA1, there exists at least one formula (∀x ≤ n)(φ(x)) that is true
for natural even n and false for natural odd n. (This is an arithmetic
expression of a well-known feature —or defect, as Woods and Routley
and Montgomery considered it— of Angell-McCall’s extension of PA1,
CC1, to wit: a proposition p connexively implies only odd-numbered
conjunctions of occurrences of itself, and never even-numbered ones.)

2. The arithmetics based on PA2 solve the above problem of bounded quan-
tification. However, for any theory T in any universal-identity extension
of arithmetics based on PA2, denoted ‘PA2+’, every complete protoarith-
metical theory is either literal or illiterate, i.e. either T |=PA2+ (t = t)↔
T(t = t) or T |=PA2+∼ ((t = t)↔ T(t = t)) for any term t, where T is a
truth predicate.

3. Finally, there are no numerically inductive theories of arithmetic in any
universal-identity extension of Priest’s PN . These theories are decidible
but only due to the fact that the Peano axioms have no consequences in
these systems.

In view of the results above, Ferguson conjectures that further attempts
may consider using Wansing’s C, since there is an embedding of its quanti-
fied version into positive intuitionistic logic, from which Heyting arithmetic is
available. In [3], Ferguson borrows techniques from relevant logic to prove that
C#, the connexive arithmetic based on Wansing’s C, is Post-consistent sim-
pliciter, guaranteeing that it has models. Notably, it seems that all its models
are inconsistent.

However, we believe Ferguson attempted the task using considerably weak
connexive logics. We approach connexive arithmetic in a rather distinct, but
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simpler, manner. We obtain cRM3 by replacing the conditional of RM3,
namely

A→ B {1} {1, 0} {0}
{1} {1} {0} {0}
{1, 0} {1} {1, 0} {0}
{0} {1} {1} {1}

with the Belikov-Loginov conditional [1],

A→BL B {1} {1, 0} {0}
{1} {1} {0} {0}
{1, 0} {1} {1, 0} {0}
{0} {1, 0} {1, 0} {1, 0}

thus validating Aristotle’s and Boethius’ theses (and their variants) and invali-
dating Symmetry for the conditional, which suffice for connexivity. cRMn are
obtained following the strategy to obtain RMn. Then, following the methods
of [4], we formulate the connexive arithmetics cRM3#, cRM3##, cRMni and
cRMω through the underlying connexive logics cRMQ, cRM3Q and cRMnQ
which we obtain by adapting their relevant counterparts.

Among the results we prove in the connexive arithmetics considered, which
are essentially the same as those available in their relevant counterparts, the
following are noteworthy:

1. Every cRM3# is inconsistent and ω-inconsistent but non-trivial.

2. cRM3# is ω-complete.

3. cRM3# is prime and complete.

4. cRM3# is decidible.

5. The theorems of cRM3i# are exactly the truths of cRM3i.

6. cRMω is inconsistent, ω-inconsistent but non-trivial.

7. cRMω is ω-complete.

Finally, we comment on some differences between the relevant systems and
the connexive versions we offer. Foreseeable, some theorems require new proofs,
as some principles of R are lacking in cRM. Moreover, we do not have ana-
logues for other theorems. For instance, though the relevant arithmetics RM3i

contain R#, R##, RM# and RM##, a connexive analogue of this result is not
available without knowing cR: the largest fragment of R that does not trivialize
when the connexive theses are added to it.
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1 Defeasible LTL

Linear temporal logic (LTL) was introduced by Pnueli [5] as a formal tool for
reasoning about programs execution. Many properties that an execution should
have can be expressed elegantly using this formalism. The logic LTL is used
for systems verification [6]. With advances in technologies, systems became
more and more complex, displaying new features and behaviours. One of these
behaviours is tolerating exceptions. In more general terms, if an error occurs
within an execution of a program at certain points of time where it is tolerated,
the program can still function properly.

Defeasible linear temporal logic (LTL˜) is a defeasible temporal formalism
for representing and verifying exception-tolerant systems. It is based on linear
temporal logic (LTL) and builds on the preferential approach of Kraus et al.
[4] (a.k.a. the KLM approach) for non-monotonic reasoning, which allows us
to formalize and reason with exceptions. We want a formalism for verifying
properties of executions that can, on one hand, be strictly required at some
points of time, and on the other hand, be missing in other points of time deemed
to be exceptional or anodyne. The defeasible aspect of LTL˜ adds a new
dimension to the verification of a program’s execution. We can order time
points from the important ones, which we call normal, to the lesser and lesser
ones. Normality in LTL indicates the importance of a time point within an
execution compared to others.

1.1 Introducing defeasible temporal operators

Britz & Varzinczak [1] introduced new modal operators called defeasible modali-
ties. In their setting, defeasible operators, unlike their classical counterparts, are
able to single out normal worlds from those that are less normal or exceptional.
Here we extend the vocabulary of LTL with the defeasible temporal operators
□∼ and ♢∼. Sentences of the resulting logic LTL˜ are built up according to the
following grammar:

α ::= p | ¬α | α ∧ α | α ∨ α | □α | ♢α | ⃝α | αUα | □∼α | ♢∼α

Standard Boolean operators are a part of the syntax. The symbol ⊤ is an
abbreviation of p∨¬p, ⊥ is an abbreviation of p∧¬p, the implication operator
α→ β def

=¬α∨β and the equivalence operator α↔ β def
= (α→ β)∧ (β → α). The

classical temporal operators are: □ always, ♢ eventually, ⃝ next and U until.
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The intuition behind defeasible operators is the following: □∼ reads as defeasible
always and ♢∼ reads as defeasible eventuality.

The set of all well-formed LTL˜ sentences is denoted by L˜. Using defea-
sible operators, we can express defeasible properties of an execution, targeting
current and future states that are normal on one hand, and leaving states that
are exceptional on the other. Here are some defeasible properties that can be
expressed in LTL˜.

• Defeasible safety: □∼α means that the property α for all normal future
time points of the execution.

• Pertinent liveness: ♢∼α means that the the property α will hold in a normal
future time point of the execution.

• Defeasible response: □∼♢∼α means that for all normal time points of the
execution, there is a later normal time point where α holds.

• Defeasible persistence: ♢∼□∼α means that there exists a normal point in
the execution such that from then and onward all the normal points are
points where α holds.

Next we shall discuss how to interpret statements that have this defeasible
aspect and how to determine the truth values of each well-formed sentence in L˜.

1.2 Preferential semantics

In order to interpret the sentences of L˜, we define two components. First, we
consider (N, <) to be a temporal structure. The temporal structure represents
the chronological sequence of time points. Let P be a finite set of propositional
atoms, the first component of the interpretation is a mapping function V : N −→
2P that associates each time point t ∈ N to a set of atoms V (t) that are true in
t.

For the second component, the preferential aspect of the interpretation is
directly inspired by the preferential semantics proposed by Shoham [7] and used
in the KLM approach [4]. The ordering relation ⋎ is a strict partial order on our
points of time. Following Kraus et al. [4], t ⋎ t′ means that t is more preferred
than t′.

Definition (Minimality w.r.t. ⋎ ). Let ⋎ be a strict partial order on a set N and
N ⊆ N. The set of the minimal elements of N w.r.t. ⋎ , denoted by min ⋎ (N),
is defined by min ⋎ (N) def

= {t ∈ N | there is no t′ ∈ N such that t′ ⋎ t}.

Definition (Well-founded set). Let ⋎ be a strict partial order on a set N. We
say N is well-founded w.r.t. ⋎ if min ⋎ (N) ̸= ∅ for every ∅ ≠ N ⊆ N.

Definition (Preferential temporal interpretation). An LTL˜ interpretation on
a set of propositional atoms P, also called preferential temporal interpretation
on P, is a pair I def

= (V, ⋎ ) where V : N −→ 2P is a valuation function on time
points, and ⋎ ⊆ N×N is a strict partial order on N such that N is well-founded
w.r.t. ⋎ . We denote the set of preferential temporal interpretations by I.
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In what follows, given a preference relation ⋎ and a time point t ∈ N, the set
of preferred time points relative to t is the set min ⋎ ([t,+∞[) which is denoted
in short by min ⋎ (t). It is also worth to point out that given a preferential
interpretation I = (V, ⋎ ) and N, the set min ⋎ (t) is always a non-empty subset
of [t,+∞[ at any time point t ∈ N.

Preferential temporal interpretations provide us with an intuitive way of
interpreting sentences of L ˜ . Let α ∈ L ˜ , let I = (V, ⋎ ) be a preferential
interpretation, and let t be a time point in I in N. Satisfaction of α at t in I,
denoted I, t |= α, is defined as follows:

• I, t |= p if p ∈ V (t);

• I, t |= ¬α if I, t ̸|= α;

• I, t |= α ∧ α′ if I, t |= α and I, t |= α′;

• I, t |= α ∨ α′ if I, t |= α or I, t |= α′;

• I, t |= □α if I, t′ |= α for all t′ ∈ N s.t. t′ ≥ t;
• I, t |= ♢α if I, t′ |= α for some t′ ∈ N s.t. t′ ≥ t;
• I, t |= □∼α if I, t′ |= α for all t′ ∈ min ⋎ (t);

• I, t |= ♢∼α if I, t′ |= α for some t′ ∈ min ⋎ (t).

The truth values of Boolean connectives and classical modalities are defined
as in LTL. The intuition behind a sentence like □∼α is that α holds in all
preferred time points that come after t. ♢∼α intuitively means that α holds on
at least one preferred time point relative in the future of t.

We say α ∈ L˜ is preferentially satisfiable if there is a preferential temporal
interpretation I and a time point t in N such that I, t |= α. We can show that α ∈
L˜ is preferentially satisfiable if there is a preferential temporal interpretation I
s.t. I, 0 |= α. A sentence α ∈ L˜ is valid (denoted by |= α) iff for all temporal
interpretation I and time points t in N, we have I, t |= α.

We can see that the addition of ⋎ relation preserves the truth values of all
classical temporal sentences. Moreover, for every α ∈ LLTL, we have that α is
satisfiable in LTL if and only if α is preferentially satisfiable in LTL˜.

Let α, β be well-formed sentences in L ˜ . We have a duality between our
defeasible operators: |= □∼α↔ ¬♢∼¬α. We also have |= □α→ □∼α and |= ♢∼α→
♢α. Intuitively, this property states that if a statement holds in all of future
time points of any given t, it holds on all our future preferred time points of t.
As intended, this property establishes the defeasible always as “weaker” than
the classical always. It can commonly be accepted since the set of all preferred
future states are in the future. This is why we named □∼ as defeasible always.
On the other hand, we see that ♢∼ is “stronger” than classical eventually, the
statement within ♢∼ holds at a preferable future.

We established the decidability of the satisfiability problem of the sub-
language that has □,♢,□∼,♢∼ as modalities [3]. We also defined a semantic
tableau for another fragment [2] that can serve as the basis for further exploring
tableau methods for this logic.
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Logic with Two-Layered Modal Syntax:
Abstract, Abstracter, Abstractest

Petr Cintula and Carles Noguera

Two-layered modal syntax is given by three propositional languages (col-
lections of connectives together with their arities): the lower one (also known
as language of events), the modal one (whose connectives are actually called
modalities), and the upper one (also known as language of statements). Us-
ing these three languages and a fixed set of event variables, we construct three
disjoint sets of formulas:

• non-modal (or event) formulas are built from event variables using the
lower language,

• atomic modal formulas (or atomic statements) are built by applying the
modalities to non-modal formulas, and

• complex modal formulas (or statements) are built from the atomic ones
using the upper language.

Note that, by construction, the modalities cannot be nested and each event
variable has to be in the scope of some modality.

Early examples of logics with two-layered syntax were modal logics of uncer-
tainty stemming from Hamblin’s seminal idea of reading the atomic statement
Pφ as ‘probably φ’ [16] and semantically interpreting it (in a given Kripke frame
equipped with a finitely additive probability measure) as true iff the probabil-
ity of the set of worlds where φ is true is bigger than a given threshold. This
idea was later elaborated and extended by Fagin, Halpern and many others; see
e.g. [5, 15].

These initial examples used classical logic to govern the behavior of formulas
on both the modal and the non-modal layers. A departure from this classical
paradigm was proposed by Hájek and Harmancová in [13] and later developed
by them in collaboration with Godo and Esteva in [12]. They kept classical
logic as the interpretation of the lower syntactical layer of events, but proposed
 Lukasiewicz logic to govern the upper layer of statements on probabilities of
these events, so that the truth degree of the atomic statement Pφ could be
directly identified with the probability of the set of worlds where φ is true.
Later, numerous other authors changed even the logic governing the lower layer
(e.g., another fuzzy logic in order to allow for the treatment of uncertainty of
vague events) or considered additional possibly non-unary modalities (e.g. for
conditional probability), see e.g. [10, 9, 17, 11, 7, 6, 8, 14].

This research thus gave rise to an interesting way of combining logics which
allows to use one logic to reason about formulas (or rules) of another one with
numerous examples described and developed in the literature. The existing bulk
of literature constitutes an area of logic screaming for systematization through

40



the development and application of uniform, general, and abstract methods. In
our previous work [3] we took the first steps towards such a theory by provid-
ing an abstract notion of two-layered syntax and logic, a general semantics of
measured Kripke frames and proved, in a rather general setting, two forms of
completeness theorem most commonly appearing in the literature. Although
the level of generality seemed quite sufficient back then (finitary weakly implica-
tive logics with unit and lattice conjunction, see [4]), the recent development in
the field shows the need for more: e.g., the lower logic in [2] and the upper logic
in [1] are not weakly implicative.

The aim of this talk is to present the state of the art of the abstract theory of
two-layered logics which is now much more extensive, streamlined and mature
than in the original paper [3]. In particular, we will show how we can obtain
the completeness results for an arbitrary equivalential or degree-preserving lower
logic and an arbitrary equivalential upper logic.
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[2] M. B́ılková, S. Frittella, O. Majer, and S. Nazari. Belief Based on Incon-
sistent Information. In M.A. Martins and I. Sedlár (eds.) Dynamic Logic.
New Trends and Applications, volume 12569 of Lecture Notes in Computer
Science, pp. 68–86. Springer, 2020.

[3] P. Cintula and C. Noguera. Modal logics of uncertainty with two-layer
syntax: A general completeness theorem. In U. Kohlenbach, P. Barceló, and
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Towards First-Order Partial Fuzzy
Modal Logic

Antońın Dvořák

In recent decades, modal logics have been studied not just in the classical biva-
lent setting, but also in non-classical settings including that of fuzzy logic (e.g.,
[9, §8.3], [6, 12]). In this contribution, we present our research program aim-
ing at the introduction and investigation of first-order partial fuzzy modal logic
with varying domains. To the best of our knowledge, such logic has not been
yet proposed. To this end, we already studied some necessary building blocks of
such logic, namely fuzzy relational modalities admitting truth-valueless propo-
sitions [3] and free fuzzy logic [2]. These systems are based on partial fuzzy
logic [4], that is, a variant of fuzzy logic that admits truth-valueless proposi-
tions. For first-order modal logic in the classical setting, see, e.g., [7, 8].

Partial fuzzy logic L∗ proposed in [4] represents truth-value gaps by an ad-
ditional truth value ∗, added to an algebra of truth degrees of an underlying
△-core [10] fuzzy logic L. The intended L∗-algebras are thus defined as ex-
pansions L∗ = L ∪ {∗} of L-algebras L, where ∗ /∈ L. The connectives of L
are extended to L∗ in several parallel ways, including the following prominent
families of L∗-connectives:

• The Bochvar-style connectives cB for each connective c of L, which treat ∗
as the absorbing element.

• The Sobociński-style connectives cS, which treat ∗ as the neutral element.

• The Kleene-style connectives cK, which preserve the neutral and absorbing
elements of the corresponding connectives of L and otherwise are evaluated
Bochvar-style.

The first-order variant L∀∗ of L∗, introduced in [1], is defined as usual in
fuzzy [9, 10] logics, with predicates evaluated in L∗-algebras. Like the connec-
tives of L∗, the quantifiers of L∀∗ also come in several families. For example,
the Bochvar-style quantifiers ∃B,∀B yield ∗ whenever an instance is ∗-valued,
etc.

Partial fuzzy relational modalities. As a next step towards first-order
partial fuzzy modal logic, we studied partial fuzzy relational modalities [3]. We
aimed at extending the propositional language of L∗ by meaningful Kripke-
style modalities in K. Above, we already met three important families of
propositional connectives of partial fuzzy logic L∗, namely Bochvar, Kleene and
Sobociński, and also the corresponding families of quantifiers of L∀∗. Natu-
rally, we searched for the corresponding partial fuzzy modalities with a behavior
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in some sense analogous to the behaviour of these families of connectives and
quantifiers. First, we characterized these modalities by means of their semantic
behavior. Later, we showed how these modalities can be defined using proposi-
tional connectives and quantifiers of L∀∗. Kripke modalities can be understood
as monadic quantifiers over possible worlds restricted by the accessibility rela-
tion, hence it is not surprising that a similar situation occurs in partial fuzzy
modal logic. In particular, since the semantic definitions of, e.g., □ involve a uni-
versal quantifier and a restricting connective, namely implication, partial fuzzy
modalities can be generally indexed by two indices that specify the quantifier
and the connective.

Free fuzzy logic. For our system of first-order fuzzy modal logic, we expect
that in some possible worlds, a term has a referent, but that it may not be
the case in other ones. Standard predicate (fuzzy) logic does not admit non-
denoting terms. In [2], we introduced two variants of first-order fuzzy logic that
can deal with non-denoting terms, or terms that lack existing referents. Logics
designed for this purpose in the classical setting are known as free logics [5, 11].
We discussed the features of free logics and selected the options best suited
for fuzzification, deciding on the so-called dual-domain semantics for positive
free logic with truth-value gaps and outer quantifiers. We fuzzified the latter
semantics in two levels of generality, first with a crisp and subsequently with a
fuzzy predicate of existence.

First-order partial fuzzy modal logic with varying domains. Now we
have at our disposal the ingredients for our system of first-order fuzzy modal
logic. In the talk, we will introduce the structure of a Kripke model for this logic
with one common domain and domains of individual possible worlds (subsets of
the common domain). Then, we will propose Tarski conditions for terms and
formulae including also the conditions for modalities and quantifiers. As above,
modalities will come in various families differing in the modes of propagation
of the undefined value. The same holds for quantifiers. Moreover, there will
be two kinds of quantifiers, similarly as in our proposed system of free logic,
namely “outer” quantifiers that quantify over the common domain, and “inner”
quantifiers that quantify over domains of possible worlds. These “inner” quan-
tifiers can be defined as relativizations of “outer” quantifiers using the predicate
of existence. We will finish by presenting initial observations about this system.

Acknowledgement. Joint work with Libor Běhounek.
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[7] Torben Braüner and Silvio Ghilardi. First-order modal logic. In Patrick
Blackburn, Johan van Benthem, and Frank Wolter, editors, Handbook of
Modal Logic, pages 549–620. Elsevier, Amsterdam, 2006.

[8] Melvin Fitting and Richard L. Mendelsohn. First-Order Modal Logic, vol-
ume 277 of Synthese Library. Kluwer, Dordercht, 1998.
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Glivenko classes and constructive
cut elimination in infinitary logic

Giulio Fellin, Sara Negri and Eugenio Orlandelli

Notable parts of algebra and geometry can be formalised as coherent theories
over first-order classical or intuitionistic logic. Their axioms are coherent impli-
cations, i.e., universal closures of implications D1⊃D2, where both D1 and D2

are built up from atoms using conjunction, disjunction and existential quantifi-
cation. Examples include all algebraic theories, such as group theory and ring
theory, all essentially algebraic theories, such as category theory [4], the theory
of fields, the theory of local rings, lattice theory [13], projective and affine geom-
etry [13, 10], the theory of separably closed local rings (aka “strictly Henselian
local rings”) [5, 10, 15].

Although wide, the class of coherent theories leaves out certain axioms in
algebra such as the axioms of torsion abelian groups or of Archimedean ordered
fields, or in the theory of connected graphs, as well as in the modelling of
epistemic social notions such as common knowledge. All the latter examples
can however be axiomatised by means of geometric axioms, a generalisation of
coherent axioms that allows infinitary disjunctions.

Orevkov [11] has established some well-known conservativity results of clas-
sical logic over intuitionistic and minimal predicate logics with equality. In par-
ticular, [11] isolates seven classes of sequents – the so-called Glivenko sequent
classes – having this property and it shows that these classes are optimal: any
class of sequents for which classical derivability implies intuitionisitc derivability
is contained in one of these seven classes. The interest of such conservativity re-
sults is twofold. First, since proofs in intuitionistic logic obtain a computational
meaning via the Curry-Howard correspondence, such results identify some clas-
sical theories having a computational content. Second, since it may be easier to
prove theorems in classical than in intuitionistic logic and since there are more
well-developed automated theorem provers for classical than for intuitionistic
logic, such results simplify the search for theorems in intuitionistic theories.

Coherent and geometric implications form sequents that give a Glivenko
class [11], as shown by Barr’s Theorem.

Theorem 1 (Barr’s Theorem [2]). If T is a coherent (geometric) theory and A
is a sentence provable from T with (infinitary) classical logic, then A is provable
from T with (infinitary) intuitionistic logic.

If we limit our attention to first-order coherent theories T , an extremely
simple and purely logical proof of Barr’s Theorem has been given in [7] by means
of G3-style sequent calculi. [7] shows how to express coherent implications by
means of rules that preserve the admissibility of the structural rules of inference.
As a consequence, Barr’s theorem is proved by simply noticing that a proof in
G3cT is also a proof in the intuitionistic multisuccedent calculus G3iT. This
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simple and purely logical proof of Barr’s Theorem has been extended to cover
all other first-order Glivenko classes in [8].

A purely logical proof of Barr’s Theorem for infinitary geometric theories
has been given [9]. This work considers the G3-style calculi for classical and
intuitionistic infinitary logic G3[ci]ω (with finite sequents instead of countably
infinite sequents) and their extension with rules expressing geometric implica-
tions G3[ci]ωT. The main results in [9] are that in G3[ci]ωT all rules are
height-preserving invertible, the structural rules of weakening and contraction
are height-preserving admissible, and cut is admissible. Hence, Barr’s Theorem
for geometric theories is proved by showing that a proof in G3cωT is also a
proof in the intuitionistic multisuccedent calculus G3iωT.

In this paper we extend this purely logical proof of the infinitary Barr’s
Theorem to cover all other infinitary Glivenko sequent classes: for each class
we give a purely constructive proof of conservativity of classical infinitary logic
over intuitionistic and minimal infinitary logics.

One weakness of the results in [9] is that the cut-elimination procedure given
in Sect. 4.1 is not constructive. This is a typical limitation of cut eliminations
in infinitary logics that are based on ordinal numbers [3, 6, 14]. The main prob-
lem is that the proof makes use of the ‘natural’ (or Hessenberg) commutative
sum of ordinals which is not available in CZF nor in IZF [12, p.369]. We con-
structivise the proof of (height-preserving) admissibility of the structural rules
for G3[cim]ωT by giving procedures that avoid completely the need for ordi-
nal numbers: inductions on (sums of) ordinals are replaced by inductions on
well-founded trees and by Brouwer’s principle of bar induction.3
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Defusing Small Explosions in
Topic-Sensitive Intentional Modals

Thomas Ferguson

Topic-Sensitive Intentional Modals: The framework of topic-sensitive in-
tentional modal operators (TSIMs) described by Berto in e.g. [2] and [3] provides
a general platform for representing agents’ intentional states of various kinds. In
the general case, a TSIM is a two-place modal operator □φ ψ with an intended
reading: “given φ, one stands in such-and-such a relation to ψ.”

The core Kripke-style semantic interpretation of these operators has two
components, one truth-theoretic and the other content-theoretic. The truth-
theoretic component employs a variably strict conditional in the sense of [10],
reflected by the presence of an accessibility relation Rφ for each formula φ. This
is complemented by a content inclusion filter reminiscent of Fine’s semantics for
analytic implication in [8], in which a function cmaps each formula to an element
of a semilattice of topics with ordering ≼. The general truth conditions for a
TSIM are

• w ⊩ □φ ψ if

{
∀w′ s.t. wRφw

′, w′ ⊩ ψ, and

c(ψ) ≼ c(φ)

Varying semantic conditions allow one to model a number of intentional rela-
tions. E.g., among those documented in [3] is a doxastic reading in which □φ ψ
is understood as “after revising one’s beliefs with φ, one believes ψ.”

Calling it a “small explosion principle,” [3] identifies a potentially counter-
intuitive feature: In any interpretation in which □φ φ—the (Success) axiom—
holds, we will have the following:

(S-EXP) ⊨ □φ∧¬φ∧ψ ¬ψ

Given (Success), the classicality of the stock TSIM framework ensures vacuous
satisfaction of the first clause while the second clause follows from the guarantee
that c(¬ψ) ≼ c(φ ∧ ¬φ ∧ ψ).

(S-EXP) is clearly a special case of a phenomenon identified in [5] as the
paradox of “making too much of one small, if nasty, mistake”—the theoremhood
of ((φ∧∼φ)∧ψ)→ (ψ∧∼ψ). Given a doxastic reading, e.g., (S-EXP) encap-
sulates a picture in which the presence of any item of inconsistent information
is sufficient to explicitly undermine any occurrent belief of an agent.

Deutsch’s remarks in [6] on strategies for resolving the relevantly objection-
able φ → (ψ → ψ) are equally applicable to the paradox of small-if-nasty-
mistakes. Broadly, the two strategies correspond to truth-theoretic and content-
theoretic considerations, respectively; applied to □φ∧¬φ∧ψ ¬ψ, these may be
made precise as
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• positing inconsistent situations satisfying φ ∧ ¬φ ∧ ψ and not ¬ψ, and

• relaxing the condition that the subject-matter of ¬ψ is included in that
of φ ∧ ¬φ ∧ ψ

The Content-Theoretic Strategy: The inclusion of the topic of ¬ψ within
that of φ ∧ ¬φ ∧ ψ is a consequence of the condition of negation transparency,
according to which c(φ) = c(¬φ), i.e., the subject-matters of a formula and
its negation are identical. But in a system like Angell’s AC of [1], negation
transparency need not hold, further motivated by the “fact-based” account of
subject-matter in Fine’s interpretation of AC in [9].

We define a modified semantics for TSIMs by replacing the content semi-
lattice with the signed semilattice defined in [7] for the containment logic PAC
and redefining the conditions on c accordingly. Importantly, the models allow
for cases in which c(φ) and c(¬φ) are incommensurable.

Observation 1. (S-EXP) fails in the logic of signed TSIMs, even in case
(SUCCESS) is assumed.

Thus, adopting a content-theoretic strategy à la Angell is strong enough to
resolve the paradoxical (S-EXP).

The limitations of the strategy are revealed by similar cases of small-if-nasty-
mistakes. Thus, it remains too hasty to trumpet Observation 1 as a solution to
the general form of the paradox. Consider the following:

(S-EXP⋆) ⊨ □φ∧¬φ∧ψ∧(ψ∨¬ψ) ¬ψ

In natural language, (S-EXP⋆) reflects that the entry of inconsistent infor-
mation in an intentional state undermines an unrelated explicit belief ψ in the
presence of explicit information that ψ satisfies excluded middle.

Observation 2. Assuming (SUCCESS), (S-EXP⋆) is valid in the logic of
signed TSIMs.

The Truth-Theoretic Strategy: The truth-theoretic strategy posits a device
by which a state can verify φ ∧ ¬φ ∧ ψ without verifying ¬ψ. This strategy is
formalized by describing a modification to the TSIM model theory in which an
atom p is given a positive interpretation v+(p) ⊆W and negative interpretation
v−(p) ⊆ W inducing verification (⊩+) and falsification (⊩−) relations given
standard FDE evaluations.

Observation 3. (S-EXP) and (S-EXP⋆) fail in the logic of TSIMs with FDE
states, even in case (SUCCESS) is assumed.

The truth-theoretic strategy thus resolves both (S-EXP) and (S-EXP⋆).
Although going paraconsistent may work for a doxastic interpretation, the

epistemic interpretation reveals its limitations. In [4], the following is identified
as a desirable property when TSIMs are given a knowledge reading:
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(COOKIT) {□φ ψ,□φ ψ ⊃ ξ} ⊨ □φ ξ

Given the definition of ⊃, the following should also hold:

(COOKIT⋆) {□φ ψ,□φ ¬ψ ∨ ξ} ⊨ □φ ξ

If (COOKIT⋆) is to be respected, devices like FDE—for which disjunctive
syllogism fails—are inappropriate tools.

(COOKIT⋆) thus presents a dilemma. (S-EXP) and (S-EXP⋆) seem
equally paradoxical on the knowledge reading. (Consider a textbook—a paradig-
matic aggregate of knowledge-constitutive propositional information. Clearly, a
student’s knowledge of a truth ψ explained in a physics textbook should not
be undermined by some irrelevant inconsistency φ ∧ ¬φ in its concluding re-
marks.) Straightforward, paraconsistent truth-theoretic strategies contradict
(COOKIT) while content-theoretic strategies do not dispel (S-EXP⋆). We
conclude by considering what is necessary to resolve this dilemma.
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On the role of Dunn and Fisher Servi
axioms in relational frames for
Gödel modal logics

Tommaso Flaminio, Lluis Godo, Paula Menchón
and Ricardo Oscar Rodriguez

Extending modal logics to a non-classical propositional ground has been,
and still is, a fruitful research line that encompasses several approaches, ideas
and methods. In the last years, this topic has significantly impacted on the
community of many-valued and mathematical fuzzy logic that have proposed
ways to expand fuzzy logics (t-norm based fuzzy logics, in the terminology of
Hájek [8]) by modal operators so as to capture modes of truth that can be
faithfully described as “graded”.

In this line, one of the fuzzy logics that has been an object of major interest
without any doubt is the so called Gödel logic, i.e., the axiomatic extension of
intuitionistic propositional calculus given by the prelinearity axiom: (φ→ ψ) ∨
(ψ → φ). As first observed by Horn in [9], prelinearity implies completeness of
Gödel logic with respect to totally ordered Heyting algebras, i.e., Gödel chains.
Indeed, prelinear Heyting algebras form a proper subvariety of that of Heyting
algebras, usually called the variety of Gödel algebras and denoted G whose
subdirectly irreducible elements are totally ordered. Furthermore, in contrast
with the intuitionistic case, G is locally finite, whence the finitely generated free
Gödel algebras are finite.

Modal extensions of Gödel logic have been intensively discussed in the liter-
ature [2, 3, 10]. Following the usual methodological and philosophical approach
to fuzzy logic, they have been mainly approached semantically by generalizing
the classical definition of Kripke model ⟨W,R, e⟩ by allowing both the evalua-
tion of (modal) formulas and the accessibility relation R to range over a Gödel
algebra, rather than the classical two-valued set {0, 1} (see [1] for a general ap-
proach). More precisely, a model of this kind, besides evaluating formulas in a
more general structure than the classical two-element boolean algebra, regards
the accessibility relation R as a function from the cartesian product W ×W to
a Gödel algebra A so that, for all w,w′ ∈W , R(w,w′) = a ∈ A means that a is
the degree of accessibility of w′ from w.

Here, we put forward a novel approach to Gödel modal logic that leverages on
the duality between finite Gödel algebras and finite forests. This line, that was
previously presented in [7], is deepened and extended by the present approach.
In particular, we ground our investigation on finite Gödel modal algebras and
their dual structures, that is, the prime spectra of finite Gödel algebras ordered
by reverse-inclusion. These ordered structures can be regarded as the prelinear
version of posets and they are known in the literature as finite forests: finite
posets whose principal downsets are totally ordered. In general, Gödel algebras
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with modal operators form a variety denoted by GAO for Gödel algebras with
operators. Hence, the algebras we are concerned with are those belonging to the
finite slice of GAO. The associated relational structures based on forests, as we
briefly recalled above, might hence be regarded as the prelinear version of the
usual relational semantics of intuitionistic modal logic. Accessibility relations
R□ and R♢ on finite forests are defined, in our frames, by ad hoc properties that
we express in terms of (anti)monotonicity on the first argument of the relations
themselves. These relational frames will be called forest frames.

Furthermore, we put forward a comparison between our approach to the
ones that have been proposed for intuitionistic modal logic and, in particular,
those developed by Palmigiano in [12] and Or lowska and Rewitzky in [11]. By
analyzing the role that these different relational frames (namely, those presented
by Palmigiano, Or lowska and Rewitzky, and ours) have in proving a Jónsson-
Tarski like representation theorem for Gödel algebras with modal operators, we
realized that forest frames situate in a middle level of generality between those
of Palmigiano and those of Or lowska and Rewitzky. The former being the less
and the latter being the more general ones.

More in details, we observe that, if we start from any Gödel algebra with
operators (A,□,♢), its associated forest frame (FA, R□, R♢) allows to con-
struct another algebraic structure (SFA

, β□, δ♢) isomorphic to the starting one.
Interestingly, the forest frame (FA, R□, R♢) is not the unique one that recon-
structs (A,□,♢) up to isomorphisms. Indeed, for every Gödel algebra with
operators (A,□,♢), there are non-isomorphic forest frames, Palmigiano-like,
and Or lowska and Rewitzky-like frames that determine the same original modal
algebra (A,□,♢) up to isomorphism.

We start by considering the most general way to define the operators □ and
♢ on Gödel algebras and investigating the relational structures corresponding
to the resulting algebraic structures. Later on, we focus on particular and
well-known extensions. Precisely we consider two main extensions of Gödel
algebras with operators: (1) the first one is obtained by adding the Dunn axioms,
typically studied in the fragment of positive classical (and intuitionistic) logic
[5, 4]; (2) the second one is determined by adding the Fischer-Servi axioms
[6]. From the algebraic perspective, adding these identities to Gödel algebras
with operators identifies two proper subvarieties of GAO that we respectively
denoted by DGAO and FSGAO.

In contrast with the case of general Gödel algebras with operators whose re-
lational structures need two independent relations to treat the modal operators,
the structures belonging to DGAO and FSGAO only need, for their Jónnson-
Tarski like representation, frames with only one accessibility relation. In addi-
tion, we study in detail the relational structures corresponding to two further
subvarieties of GAO. The first one is the variety obtained as the intersection
DGAO ∩ FSGAO. The algebras belonging to such variety have been called bi-
modal Gödel algebras in [3] and a modal algebra (A,□,♢) ∈ DGAO ∩ FSGAO
is characterized by the property stating that, for every boolean element b ∈ A,
both □b and ♢b are boolean as well. The second subvariety that we consider
refines DGAO. Indeed, any algebra (A,□,♢) belongs to this class iff it satisfies
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Dunn axioms, plus the requirement that □a and ♢a are boolean for all a ∈ A.
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Semantical investigations on non-classical
logics with recovery operators
(using the Isabelle proof assistant)

David Fuenmayor

What & Why

Non-classical negations have an important application in computer science by
enabling knowledge representation and reasoning in presence of partial (incom-
plete) and excessive (contradictory) information. A logic is called paraconsistent
if it ‘tolerates contradictions’ and paracomplete if it does not ‘enforce complete-
ness/exhaustiveness’. Thus, in paraconsistent logics, the so-called “principle of
explosion” or ex contradictione (sequitur) quodlibet (ECQ) is not valid: from a
contradiction A ∧ ¬A not everything follows. Dually, in paracomplete logics
the “law of excluded middle” or tertium non datur (TND) is not valid: the for-
mula A ∨ ¬A is not a tautology. Recovery operators are unary connectives
employed in these logics to selectively recover properties of classical logic in a
sentence-wise fashion (cf. [12] for a discussion).

This presentation gives an overview of formal reconstruction work using the
Isabelle proof assistant (available at the Archive of Formal Proofs [17] and sum-
marised in [18]). The present semantical investigations employ a formal meta-
language: Church’s simple theory of types [3], also known as classical higher-
order logic (HOL) and instantiated here as Isabelle’s logic: Isabelle/HOL [23].
This work introduces a shallow semantical embedding [2, 6] for a family of non-
classical logics featuring a semantics based upon (Stone-type representations of)
Boolean algebras extended with additional unary operations by drawing upon
early works on topological Boolean algebras (by Kuratowski [19, 20], Zarycki
[24, 25], McKinsey & Tarski [22]). The range of such logics is, in fact, very wide
and includes quantified paraconsistent and paracomplete logics. The present
work also aims at reformulating (and extending) the neighbourhood semantics
for paraconsistent Logics of Formal Inconsistency (LFIs) with replacement as
proposed in previous work [11, §5–§7]. On the more practical side, this ap-
proach allows for harnessing theorem provers, model generators and so-called
‘hammers’ [8] for reasoning with combinations of quantified non-classical logics.

This work has its roots in ongoing efforts towards embedding symbolic auto-
mated ethical reasoning capabilities in new-generation AI [5, 4], where the ability
of reasoning under real-world partial and inconsistent information (e.g. avoiding
‘explosion’) is essential. The work is also of interest to the working logician, who
might appreciate tedious pen-and-paper calculations being replaced by invoca-
tions of (counter-)model generators (such as Nitpick [9]) or automated theorem
provers (via Sledgehammer [8]) integrated into modern mathematical proof as-
sistants.
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How

Boolean algebras of propositions

Two notions play a fundamental role in this work: propositions and proposi-
tional functions. Propositions are intended to act as sentence denotations. In
this respect, we will follow the “propositions as sets of worlds” paradigm as
traditionally employed in the semantics of modal logics. For this, we introduce
a type w for the domain of points (interpreted as ‘worlds’, ‘states’, etc.), where
σ, the type for propositions, is an alias for type w⇒bool (i.e. the type for char-
acteristic functions of sets of points). Propositional functions are, as the name
suggests, functions assigning propositions to objects in a given domain; formally,
they are basically anything with a (parametric) type ‘t⇒σ (where ‘t acts as a
type variable representing an arbitrary but fixed type; cf. type polymorphism in
Isabelle/HOL [23]).

Below we show how to encode in Isabelle/HOL Boolean algebras (BAs) by
drawing upon their set-based Stone representations. They will later be extended
with topological operators used to define negations and recovery operators.

The relations of equality and lattice-ordering are encoded as terms of type
σ⇒σ⇒bool in the following manner:

A ≈ B := ∀w. (A w)←→ (B w) A ⪯ B := ∀w. (A w) −→ (B w)

Following the shallow semantical embeddings approach [2, 6], we reuse HOL’s
meta-logical classical connectives (∧, ∨, −→, ¬, True, False) in order to define
object-logical connectives for BAs (∧, ∨, →, −, ⊤, ⊥; using boldface symbols)
as HOL-terms of types σ⇒σ⇒σ, σ⇒σ, and σ for binary, unary, and zero-ary
connectives respectively; this gives:

A∧B := λw. (A w) ∧ (B w) A∨B := λw. (A w) ∨ (B w) A→ B := λw. (A w) −→ (B w)

−A := λw. ¬(A w) ⊤ := λw. True ⊥ := λw. False

The aim is to encode a complete BA that can be used to interpret quantified
formulas in the spirit of Boolean-valued models for first-order theories (e.g. LFIs
with replacement [11, §9] or set theory [1]). For this we encode (infinitary) infima
and suprema as terms of type (σ⇒bool)⇒σ by reusing the (polymorphic [23])
meta-logical quantifiers ∀ and ∃.∧∧∧

S := λw. ∀X. S(X) −→ (X w)
∨∨∨

S := λw. ∃X. S(X) ∧ (X w)

After verifying that our encoded BAs are complete, we proceed to define object-
logical quantification: Q∀, Q∃, by taking suprema and infima over the range
Ra(π) := λY. ∃x. π(x) = Y of a propositional function π (of type ‘t⇒σ). Observe
that these quantifiers can be given an alternative, equivalent formulation that
corresponds, in fact, to the one introduced for the shallow semantical embedding
of quantified modal logics in HOL; cf. [2, 6]. Moreover, we can introduce a more
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familiar variable-binder notation: ∀, ∃ (with boldface symbols) by exploiting
λ-abstraction; cf. [3].

Q∀ π :=
∧∧∧

Ra(π) Q∀ π :=alt λw. ∀X. π(X) w ∀x. π := Q∀ (λx. π)

Q∃ π :=
∨∨∨

Ra(π) Q∃ π :=alt λw. ∃X. π(X) w ∃x. π := Q∃ (λx. π)

Exploiting type polymorphism (cf. [23]) we observe that by taking the type
variable ‘t above as σ we obtain propositional quantifiers, whereas by taking ‘t
as some further type i (for ‘individuals’) we obtain predicate quantification.

In fact, the expressivity of HOL allows us to seamlessly generalise the alter-
native definition above by explicitly passing a domain of quantification (δ). We
call these variants restricted, aka. ‘free’, quantifiers.4

QR
∀ (δ)π := λw. ∀X. δ(X) w −→ π(X) w

(
i.e. QR

∀ LDMπ =
∧∧∧

Ra[π|D]
)

QR
∃ (δ)π := λw. ∃X. δ(X) w ∧ π(X) w

(
i.e. QR

∃ LDMπ =
∨∨∨

Ra[π|D]
)

Note in the right-side correspondence above that Ra[π|D] := λY. ∃x. D(x) ∧
π(x) = Y , and L·M converts (characteristic functions of) sets into their corre-
sponding ‘rigid’ propositional functions, i.e. LSM := λX. λw. S(X).

Finally, we introduce a suitable fixed point notion to allow for the encod-
ing of recovery operators. We speak of propositions (of type σ) being fixed
points of an operation φ (of type σ⇒σ). For this we define in the usual way a
fixed point predicate on propositions fp(φ) := λX. φ(X) ≈ X. Moreover, this
predicate can become ‘operationalised’ by defining a fixed-point construction
φfp := λX. φ(X) ↔ X such that fp(φ) X ←→ φfp(X) ≈ ⊤ always holds.

Negations

It is well known that Boolean algebras extended with closure C (resp. interior
I) operators (aka. closure, resp. interior algebras) and topologies are two sides
of the same coin. This fact has been exploited, at least since the seminal work
by McKinsey & Tarski in the 1940’s [22], to provide topological semantics for
intuitionistic and modal logics (cf. [14] for a partial survey). In the present
approach, the key to reusing HOL’s classical connectives for the encoding of
paraconsistent (resp. paracomplete) negations lies in the interplay between the
classical complement operation and the closure C (resp. interior I) operators.
We generalise McKinsey & Tarski’s approach in two respects: (i) by defining
unary operations satisfying some (not necessarily all!) of the corresponding
topological conditions (e.g. Kuratowski [19] axioms); and (ii) by introducing

4These restricted quantifiers take a propositional ‘domain’ function δ(·) as an additional
parameter. This function can be interpreted as mapping elements X to the proposition “X
exists”. Readers acquainted with quantified modal logics may observe that δ(·) generalises the
‘existence’ meta-predicate employed to restrict the domains of quantification in the varying-
domains semantics for first-order modal logics [15] (cf. [7] for the use of restricted quantification
in the encoding of category theory in Isabelle/HOL).
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some alternative, yet related, sets of conditions of a topological nature which
characterise the derivative D [19, 25], and the so-called frontier F (aka. bound-
ary) and border B [24] operations.5

Our recipe for the encoding of a non-classical negation is thus as follows:

1. We choose a particular topological BA as the base algebra to work with,
observing that we may leave its corresponding primitive topological opera-
tor (I, C, D, B, F) initially unconstrained. In this regard, different choices
give us different points of departure for defining (possibly distinct) families
of non-classical negations.6

2. We define non-classical negations as composite algebraic operations em-
ploying the (primitive or derived) topological operators, leaving them ini-
tially unconstrained. We have opted in [17] for composing the operators
I and C with the complement −.7 This gives us (a family of) para-
complete and paraconsistent negations, defined respectively as: ¬IA :=
I(−A) and ¬CA := C(−A).

3. We start ‘customising’ our negation by adding semantic restrictions (e.g. Ku-
ratowski closure axioms or their analogues) for the topological operators
on-demand in order to minimally satisfy the desired ‘negation-like’ prop-
erties (ECQ, TND, double-negation introduction/elimination, De Morgan
laws, different versions of contraposition and modus tollens, etc.). This
give-and-take process is supported by automated tools like Nitpick and
Sledgehammer.8

4. Alternatively (or rather complementarily) we can employ fixed-point pred-
icates fp(·) and operators (·)fp in order to recover particular ‘negation-like’
properties as above, many of which cannot be readily recovered by only
adding the semantic (e.g. Kuratowski) conditions from the previous step.
This is further discussed in the next section.

5Recalling our previously defined fixed-point predicate fp(·), we note that if an element A
satisfies (fp I)(A) (resp. (fp C)(A)), in other words, if A is a fixed point of I (resp. C), then
A is called open (resp. closed). In a similar vein, we have considered in [17] the fixed points
of other operators (F ,B,D) and verified several interesting properties.

6For instance, by taking a BA extended with a (minimally constrained) frontier F operator
as a base, we obtain a semantics for the logic Rmbc(ciw), which is the least extension of the
basic logic RmbC that features a definable consistency connective; cf. [11].

7Other, more creative choices are surely possible. Their plausibility is easy to verify with
our approach using theorem provers and model finders. Which properties we thereby obtain
and which limits exist are intriguing topics that deserve further investigation.

8It is worth remarking that we have leveraged automated provers (via Sledgehammer)
together with model finder Nitpick to uncover minimal semantic conditions (modulo existence
of ‘not-too-big’ finite countermodels) under which the above relationships hold. There were
actually only very few cases in which the question of minimality remained undecided: either
is the conjecture a theorem but the provers can not verify it (. . . yet), or there exist indeed
infinite or too-big-for-Nitpick countermodels. We found it rather surprising that the great
majority of non-theorems have indeed finite countermodels of ‘small’ cardinalities (most of
them algebras with 2 or 4 elements, in rare cases 8 were required).
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Recovery operators

We elaborate on the last item (4) above, observing that fixed-point predicates
and operators can serve as a mechanism for ‘recovering’ the classical properties
of negation in a sentence-wise fashion.

It is clear that, for the paraconsistent negation ¬C , ECQ does not hold in
general. As it happens, we can ‘switch on’ ECQ for some proposition A by further
assuming A open. Thus, by defining a degree-preserving consequence relation
[16] such that A ⊢ B := A ⪯ B, we have that (fp I) A −→ A ∧ ¬CA ⊢ ⊥.
Analogously, we can recover TND for the paracomplete negation ¬I relative to
some A, by assuming A closed, such that (fp C) A −→ ⊤ ⊢ A∨¬IA.

Interestingly, other ‘negation-like’ properties can analogously be recovered
in a sentence-wise fashion. For instance, we can recover, for the paracomplete
negation ¬I , the properties of double-negation introduction, and (a variant of)
contraposition, for some given proposition A, by assuming A open. In fact, by
restricting set-quantification over only open A’s (assuming all interior condi-
tions for I) we obtain a quite special paracomplete logic, namely, intuitionistic
logic. (Observing that this construction actually corresponds to the Stone-type
representation of a Heyting algebra.)

Moreover, we can employ the ‘operationalised’ fixed-point construction (·)fp
in order to recover ECQ (among other properties) for ¬C by purely object-logical
means, for instance, by noting that Ifp(A) ∧ A ∧ ¬CA ⊢ ⊥ (for A arbitrary).
Let us now introduce a corresponding algebraic operation ◦A := Ifp(A), which
we shall call a consistency operator, drawing upon the paraconsistent Logics of
Formal Inconsistency (LFIs; introduced in [13], cf. also [10, 12]). Moreover, we
can do the same exercise for the dual property TND for ¬I , thus obtaining an
operator PA := Cfp(A), such that PA→ A∨¬IA ≈ ⊤, or, more suggestively,
by defining ⋆⋆⋆A := −PA, thus obtaining ⊤ ⊢⋆⋆⋆A∨A∨¬IA (for A arbitrary).
We call P a determinedness operator, drawing upon the (dual) Logics of Formal
Undeterminedness (LFUs; introduced in [21], cf. also [12]).

Last but not least, we can also recover several properties of negation by ap-
plying these fixed-point constructions to topological operators other than I and
C such as D, B, F , thus obtaining other, hitherto unnamed recovery operators.
For instance, the operator Bfp(·), while not able to recover TND or ECQ, can,
under some conditions, recover some contraposition, De Morgan, and double-
negation rules. We refer the reader to [17] and its summary [18] for details.
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Truth Tables for Modal Logics:
The Forgotten Papers

Lukas Grätz

1 Introduction

The truth table method is used to test validity or satisfiability of a propositional
formula by listing all combinations of truth values in what we call a truth table.
The discovery of this brute force method is often attributed to Charles S. Peirce.
Modern investigations present a multi-layered picture around the utilization of
truth table device and truth table technique by Emil Post, Bertrand Russel,
Ludwig Wittgenstein, Paul Bernays and others [1]. Notably, truth tables in-
fluenced the early development of modal logic as well—logics proposed by Jan
 Lukasiewicz have a many-valued semantics.

It was soon shown that the classical many-valued semantics is not sufficient
for the modern modal logics developed by C.I. Lewis. Kurt Gödel’s proof to the
contrary was adapted to modal logics by James Dugundji [2, 3]. We will see that
this problem is solved as soon as the notions of truth functions and truth tables
are decoupled. Modal logic might not be truth functional, but truth tables can
be defined nevertheless.

2 Henry S. Leonard

In 1941, Henry S. Leonard gave a talk “Modal Propositions and Truth Tables”
at the annual meeting of the eastern division of the American Philosophical
Association [4].9 He presented three methods of truth tables for modal propo-
sitions. The first is restricted “accidental” modal forms. The second one seems
to be the one he elaborates in his later paper on two-valued truth tables [5].
The third, unpublished method involves the use of four truth values.

In [5], Leonard defines truth tables with propositional formulas as headings
and rows with truth values “T” or “F” below each heading. Using this gen-
eral notion of a truth table, he defines valid tables in §§12–20 by semantical
constraints. For modal functions, he defines prescriptions D, D1, D2 and D3.
As Leonard concludes, the resulting modal systems seem to be distinct from
standard modal logics. Notably, D corresponds to Ivlev’s Smin.

3 Anderson and Poliferno

Until the beginning of the 1960th there was a great lack of semantic tools for
modal logic. Alan Ross Anderson and his disciple M. J. Poliferno wanted to

9Some notes and manuscripts of Leonard are preserved under UA.17.361 by Michigan
State University Archives & Historical Collections, East Lansing, Michigan.
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close this gap by developing decision procedures based on truth tables for im-
portant modal logics [6, 8]. Unfortunately, these procedures contained several
mistakes [7, 9, 10]. A final corrected version was never provided by the au-
thors. Nevertheless, it is worth looking into these papers as they present an
early construction of truth tables modal logics M and S4.

4 Arnould Bayart

According to google scholar, Arnould Bayart’s paper “On truth-tables for M,
B, S4 and S5” [11] is cited only by Luis Fariñas-del-Cerro [12], in fact in the
same Belgian journal “Logique et Analyse”. Bayart’s paper is from 1970 and
contains 41 pages. Historical background on Bayart’s work can be found in
[13]. It seems that Bayart’s work disappeared invisibly in the shadow of the
just emerging Kripke semantics. You may notice that [11] does not include the
word “modal” in its title, which makes it hard to find.

Nevertheless, Bayart’s truth tables are unrelated to possible worlds semantic.
He fixes and extends Anderson’s approach to modal logics M , B, S4 and S5.
Starting in Section 2, he gives relational constraints on truth table rows for
these logics. These relations he calls C0 and C1. Basically, they are defined for
truth table rows r and v as follows:

r C0 v iff r(□α) = T implies v(α) = T for every formula □α on the headings of the truth table.

r C1 v iff r(□α) = T implies v(□α) = T for every formula □α on the headings of the truth table.

Bayart shows soundness, which he calls consistency, and completeness of his
truth table method.

5 Kripke and Massey

In [14], Saul Kripke makes a suggestion to construct truth tables based on
the possible worlds semantics for S5. This approach is further developed by
Gerald J. Massey [15], constructing several truth tables for a single formula to
reflect different assignments in each possible world. In contrast to the papers
we mentioned before, Massey’s paper seems to be widely known [1]. Notably,
Massey refers to Leonard but not to Anderson.

6 Conclusion and Outlook

We have seen a number of approaches to constructing truth tables for modal
logic. Some of these are very little known. Noteworthy are the truth tables of
Arnould Bayart for well-known modal logics.

There is another tradition using many-valued, non-deterministic semantics
with valuation levels: This was proposed by Yuri Ivlev [16, 17] and John T.
Kearns [18] and then developed in [19, 20, 21, 22].
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The existential and universal quantifiers in first-order logic have a clear in-
tuitive meaning and a very well understood behaviour from their interpretation
in classical models. However, many challenges arise when trying to interpret
quantifiers in a non-classical setting. Already in intuitionistic logic the seman-
tics of the universal quantifier cannot be defined locally (i.e. its intuitionistic
interpretation requires to look across possible worlds in models and across the
individuals inhabiting those worlds) [7], and unless the constant domain axiom
∀x(A∨B(x))↔ A∨∀xB(x) is assumed, the domains of the models might vary.
Likewise for modal logic, even within a classical framework, different semantics
have led to different axiomatizations [8, 11]. For weaker logics than the intu-
itionistic, it is unclear how to properly axiomatize the quantifiers and how to
interpret them. In [12, 14, 13], a general approach on quantification is given
based on the theory of hyperdoctrines. In [18], semantics with a constant do-
main are given for distributive modal logic. In [17, 3, 15], an algebraic approach
is explored which covers a class of logics, based on the algebraic interpretation of
quantifiers as suprema and infima [16]. For classical modal logic, a very general
complete axiomatization is given in [4].

Our proposal builds on [19, 1], where a proper display calculus is introduced
for classical first-order logic, based on a well known semantic analysis that rep-
resents classical first-order models as hyperdoctrines. As was the case of other
logical frameworks (cf. e.g. [5, 6, 9]), this semantic analysis makes it possible to
define a suitable multi-type calculus for first-order logic in which the side condi-
tions of introduction rules for the quantifiers are encoded into analytic structural
rules involving different types. Wansing’s insight [21, 20, 2] that quantifiers can
be treated proof-theoretically as modal operators is incorporated into this ap-
proach by simply regarding (∀x) and (∃x) as modal operators bridging different
types (i.e. as heterogeneous operators). Following Lawvere [12, 14, 13] and Hal-
mos [10], this requires to consider as many types as there are finite sets of free
variables; that is, two first-order formulas have the same type if and only if they
have exactly the same free variables.
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In this environment, both substitutions and quantifiers are explicitly repre-
sented as logical and structural connectives, which allows to encode the axioms
capturing their interaction as analytic (hererogeneous) modal reduction princi-
ples, and hence as analytic structural rules. Thanks to this, we are now in a
position to explore systematically the space of properties of substitutions and
quantifiers and their possible interactions, and more importantly, to conduct a
finer-grained analysis of fundamental interactions between quantifiers and in-
tensional connectives. For instance, certain rules encode the fact that the cylin-
drification maps are Boolean algebra homomorphisms, which in turn captures
the fact that classical propositional connectives are all extensional.

This algebraic analysis, performed in [19, 1] in order to define the multi-type
display proof calculus, allows us to isolate a multi-sorted algebraic representation
of classical first-order logic, a directed system of Boolean algebras connected via
the cylindrification maps.

Building on this algebraic reformulation of classical first-order logic, we in-
troduce multi-type algebraic semantics and proper multi-type display calculi for
first-order logics based on varieties of lattice expansions (normal LE-logics). The
algebraic semantics are based on directed systems of lattices with normal opera-
tors, connected via embeddings which correspond to cylindrifications and lattice
homomorphisms which correspond to substitutions. The algebraic inequalities
that describe the interactions between these embeddings and homomorphisms
and the operators, belong to the class of analytic inductive inequalities and can
therefore be transformed to analytic rules in the multi-type display calculus.

We show that these semantics, in the cases of intuitionistic and classical
modal logic, correspond to existing logical frameworks by recasting completeness
proofs. Having obtained modular algebraic semantics we use duality theory and
the theory of canonical extensions to investigate the corresponding relational
models. We discuss the challenges that arise in the interpretation of quan-
tifiers when the propositional base is weaker than intuitionistic and highlight
the connection of these challenges with the possible constructions of filters and
ideals in different algebraic settings. We present as case studies the relational
semantics for first-order co-intuitionistic logic, where information can disappear
in models whose domains shrink (as opposed to intuitionistic logic where new
information arises as models’ domains expand), and the relational semantics
for first-order distributive logic where we have models whose domains can both
expand and shrink. Finally we present general semantics for first-order logic on
non-distributive propositional base. We will present both polarity-based and
graph-based semantics and discuss possible interpretations for each construc-
tion.
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Quantum logic (QL) has been studied to handle strange propositions of quan-
tum physics. In particular, logic based on orthomodular lattices, namely, ortho-
modular logic (OML), has been studied since 1936, proposed by Birkhoff and
Von Neumann [11]. An orthomodular lattice is related to the closed subspaces
of a Hilbert space, which is a state space of a particle in quantum physics. In-
stead of these lattices, the Kripke model (possible world model) of OML can be
used, which is called the orthomodular-model (OM-model) [14].

OML contains only the propositions for states and does not include the
propositions expressing the agent’s knowledge. To treat an agent’s knowledge
in quantum mechanics, some studies combine epistemic logic (EL) with QL.
Ref [9] and [10] can be cited as one of the studies of logic that deal with the
concept of knowledge with quantum physics. In these studies, the models which
incorporate specific quantum information concepts were used. Ref [1] and [3]
can be cited as the studies of knowledge with more general concepts of quantum
physics. In these studies, similar to EL, knowledge was expressed using the
indistinguishability of states. These studies mainly focus on the analysis of
static knowledge.

To discuss the general transitions of knowledges due to the procurement of
informations, other concepts, such as dynamic EL (DEL), have to be introduced
and the field of dynamic epistemic QL (DEQL) has to be developed. In [4],
quantum test frame is introduced as a part of the study of the dynamic logic of
test (DLT). DLT is a logic for dealing with general changes in knowledge due to
information obtained by testing. Quantum test frame is based on the frame for
DLT and the frame for dynamic QL (DQL) [5] [6] [7]. DQL uses modal symbols
for several types of transitions of quantum states, such as unitary evolutions
and projections. An important aspect of quantum physics is the change of state
due to measurement. In quantum physics, when a physical quantity is observed,
the state is projected to an eigenstate of the physical quantity. That is, when
information is obtained from a particle, the state of the particle itself changes
depending on the obtained information. This is an important difference between
classical and quantum information, and it is reflected in a quantum test frame.
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Although the transition of knowledge in quantum mechanics has been ana-
lyzed in some directions, some problems remain.

1. These models in previous studies are little complicated because these mod-
els introduce almost every element related to knowledge of quantum me-
chanics. Such a model is also needed, but a somewhat simple model that
leaves only the important notions is also useful.

2. As the models and symbols are complicated, constructing a deduction
system for this types of logic is somewhat complicated task because we
have to deal with the mutual consistency of many conditions. Actually,
deduction systems for these logics have not been well analyzed.

3. One of the reasons for the complexity of the model is that the conditions
used for the models are often unique. Therefore, it is difficult to compare
the logic on these models with other logics.

In this study, as a basis for solving these problems, we construct new logic
and models for the transition of knowledge in quantum mechanics that is sim-
pler than the studies in [3] and [4], while retaining the essence of these studies.
Furthermore, we construct a deduction system that holds soundness and com-
pleteness for those new models. In general, public announcement logic (PAL)
is treated as the most basic and simple logic in DEL. Therefore, this logic fits
the purpose of this study. We construct dynamic epistemic orthomodular logic
(DEOML) by combining the frames and models of OML and PAL, and we sim-
ply use a combination of logical symbols for OML and PAL. OML is adopted
instead of DQL for the foundation of logic because of the following advantages.

Although OML is not a modal logic, OM-models implicitly include the concept
of the modality of projection as binary relations that satisfies some impor-
tant conditions [16]. Therefore, OML can handle the concept of projection
while being a simpler model than DQL. This is a completely different fea-
ture from previous studies that added all the movement of projections to
models expressly.

OML does not include the other dynamic concepts of quantum mechanics, such
as unitary evolutions. However, the most important strange properties
of the agent’s knowledge that appear in quantum mechanics are related
to projective observations. Therefore, the important properties can be
analyzed as long as the concept of projection is included in the logic.

Different from DQL, deduction systems for OML are well argued in previous
studies [17] [21] [22], and we can use them directly to construct a deduction
system for DEOML. Furthermore, the modal symbols used in DEOML are
the same that used in PAL, which is not the case for logics based on DQL
[4]. This nature is useful to prove some theorems.

We construct a sequent calculus type deduction system for DEOML and
prove the soundness and completeness theorem. Sequent calculus is suitable for
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this study because it is compatible with OML [17] [21] [22]. Furthermore, by
using properties similar to PAL, the deduction rules for knowledge-related parts
can be easily constructed.
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Two-Dimensional Rigidity

Jonathan Mai

Multi-dimensional modal logics are modal logics interpreted over relational
structures, whose points are tuples or sequences over some base set. These
logics, and here especially two-dimensional modal logic, have many interesting
applications in reverse correspondence theory, natural language semantics and
philosophy [5] [2] [4]. However, two-dimensional modal logic can also be ap-
plied to address conceptual issues concerning the semantics of first-order modal
languages. This important application has not yet received the attention it
deserves. Due to the influential [1] the opinion is widespread that a varying
domain semantics for first-order modal languages with rigid designators must
be based on a free logic. In my talk I want to show that this belief is wrong. I do
this by developing a two-dimensional varying domain semantics for first-order
modal languages with rigid designators that preserves classical quantification
theory.

My talk has three parts. The first part reconstructs and criticizes an ar-
gument due to Garson, which aims to show that varying domain semantics for
first-order modal languages with rigid designators should not be combined with
classical quantification principles [1]. The argument starts with the observa-
tion that for any rigid constant c the sentence ∃x(c = x) is true at a point in
a varying domain model if and only if c’s denotation is in the domain of the
point. Since classical quantification theory implies that ∃x(c = x) is valid, it
follows according to Garson that every rigid constant c of the language denotes
an object that is in the domain of every point of the model. This is supposed to
lead to severe technical as well as conceptual problems. However, Garson him-
self does not provide any convincing reason for thinking that under a varying
domain semantics the validity of ∃x(c = x) implies that rigid constants denote
objects that exist at every point of a model. Garson’s argument is sound only
if the implication mentioned holds.

The second part of my talk shows that the implication does not hold and
so that Garson’s argument fails. I do that by defining a varying domain two-
dimensional semantics for a language with rigid constants, where quantifiers
behave classically. I confine myself to first-order modal languages with relation
symbols (plus identity), individual constants and without any function symbols.
A two-dimensional varying domain model on a non-empty set D is a triple
M = (W, δ, I), where W ̸= ∅ and δ : W → P(D) \ {∅}. I is an interpretation
function with I(c)(w) ∈ δ(w), for any constant c and I(P )(w) ⊆ Dn, for any
n-place relation symbol P . Assignments are functions g from variables to D.
The definitions of denotation and satisfaction are given with respect to pairs
(w, v) of points. For denotation, note that the denotation of a constant with
respect to (w, v) is I(c)(v). The satisfaction clauses for identity and the boolean
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connectives are the standard ones. The clauses for atoms, quantifications and
boxed formulas go as follows:

• M, (w, v), g |= Pt1 . . . tn :⇔ (t
M,(w,v),g
1 , . . . , t

M,(w,v),g
n ) ∈ I(P )(v);

• M, (w, v), g |= ∀xφ :⇔ M, (w, v), g ax |= φ, for all a ∈ δ(v);

• M, (w, v), g |= □φ :⇔ M, (w, u), g |= φ, for every u ∈W .

Let a formula φ be true in a model M (M |= φ), if for any w ∈ W and
any assignment g it holds that M, (w,w), g |= φ. A formula φ is a logical
consequence of a set of formulas Σ (Σ |= φ), if M |= φ, for any model M with
M |= ψ, for any ψ ∈ Σ. Validity is logical consequence from the empty set.

Call a term t (two-dimensionally) rigid with respect to a modelM = (W, δ, I),
a point w ∈W and an assignment g, if for all u, v ∈W we have that tM,(w,v),g =
tM,(w,u),g. I assume for any model M and any w ∈ W a (maybe empty) col-
lection Cw of exactly those constants which are rigid w.r.t M,w, g, for some
g. Furthermore, let CM =

⋃
w∈W Cw. I call a model M fully rigid, if for all

w ∈ W : Cw ̸= ∅ ⇒ Cw ⊆
⋂
v∈W Cv. Note that t is rigid w.r.t M,w, g only if

tM,(w,v),g = tM,(w,w),g, for all v ∈W , even if M is not fully rigid. Therefore, for
every fully rigid M it follows that M |= c = c′ only if M |= □(c = c′), for any
constants c, c′ ∈ CM . Let fully rigid semantics be defined as above but where
the admissible models are restricted to be fully rigid models. Thus the results
from above show that fully rigid semantics captures the notion of rigidity and is
varying domain. Finally, fully rigid semantics preserves classical quantification
theory: For any fully rigid model M , M |= ∃x(c = x), where c is a constant
from CM . This is because, for any w ∈ W , cM,(w,w,),g ∈ δ(w). For the same
reason, for any fully rigid model M , M |= Pc only if M |= ∃xPx. At the same
time, rigid constants need not denote objects that exist at every point of a fully
rigid model M , since for w ̸= u we may have cM.(w,v),g ̸= cM,(u,s),g.

In the third part of my talk I outline how fully rigid semantics can be used to
give a promising semantic treatment of natural language descriptive names, i.e.
proper names whose reference is determined by a definite description. I argue
that the meaning of descriptive names is of a two-dimensional nature. It can
be represented as a partial function from centered worlds to constant functions
from possible worlds to individuals.This partial function I call the name’s deep
intension. The idea is the following: Centered worlds represent reference fixing
situations. Assume the individual a centered world centers on uniquely satisfies
the description that is supposed to fix the reference of a name n. Then the deep
intension of n is defined for the centered world and outputs the constant function
which sends every possible world to that individual. In case the individual at
the center of the world does not uniquely satisfy the associated reference fixing
description, n’s deep intension is undefined for the centered world in question.
I apply this semantics to the notorious case of ‘Newman-1’, a descriptive name
introduced in [3]. The semantics predicts that prior to the first instant of the
21st century, the name did not denote anything, since its deep intension was not
defined for any actual centered world with a time parameter earlier than that
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first instant. However, since the beginning of the 21st century the name rigidly
denotes the individual that uniquely satisfies the condition of being the first to
be born in the 21st century.

References

[1] Garson, J. W.: Quantification in Modal Logic. Handbook of Philosophical
Logic, vol. II, ed. D. Gabbay and F. Guenthner. Reidel, 1984, 249-307.

[2] Kamp, H.: Formal Properties of ‘Now’. Theoria 37 (1971), 227-73.

[3] Kaplan, D.: Quantifying In. Synthese 19 (1968-69), 178-214.

[4] Kaplan, D.: On the Logic of Demonstratives. Journal of Philosophical Logic
8 (1978), 81-98.

[5] Marx, M. and Y. Venema: Multidimensional Modal Logic. Kluwer, 1997.

76



Completing most quantified modal logics

Eugenio Orlandelli

This work, which is a revised version of [15, 14], is a proof-theoretic study
of quantified modal logics (QMLs) in the context of indexed modalities and
transition semantics. We hope in this way to dispel some ‘locus communis’
on the intractability of quantified modal logics. The core of our work is the
introduction and the systematic study of labelled sequent calculi for indexed
modal logics (IMLs).

An IML is defined as the set of indexed modal formulas that are valid on a
class of transition frames, see [3, 4]. In general IMLs determine a very general
and expressive family of QMLs which allows to simulate most other families
of QMLs, such as all those considered in [1]. IMLs are obtained by indexing
modal operators with sets of terms and by considering a counterpart-theoretic
semantics. This allows us to distinguish between de re and de dicto modalities
and to obtain a better control of quantifiers, substitutions, and identity in modal
contexts. Axiomatic systems for IMLs have been introduced in [3] and studied
in [16]. Nevertheless, save for some of the simpler calculi, there exists no proof
that such systems are complete with respect to the intended class of transition
frames. This is an instance of a general problem for QMLs: completeness results
for QMLs are extremely difficult to find. Moreover, in most cases the quantified
extensions of a complete propositional modal logic are not complete with respect
to the intended semantics [19, 8, 5, 6, 2, 9].

In modal logics the incompleteness phenomenon is widespread at the propo-
sitional level and it becomes even worst at the predicative level, see [18]. Even if
we limit our attention to the quantified extensions of those propositional modal
logics (PMLs) which are complete and canonical, we find that most of them are
incomplete. Of course the analysis needs to be more precise because ‘quantified
extensions’ can mean different things – e.g., there are logics with or without
classical quantification, with or without the Barcan formulas, with or without
the Ghilardi formula and with or without the necessity of identity. In general,
given a complete PML S two kinds of incompleteness may arise for its quantified
extensions: there are incompletable logics such as the non recursively axioma-
tizable Q.GL [10] and completable logics such as Q.S4M where, in order to
obtain a complete system, we need to add some de re axiom that regulates the
interaction between modalities and the first-order machinery [6].

We are interested in completable logics: we aim at extending to the predicate
level a wide range of completeness results established at the propositional level.
In doing so, we want to solve the following open problem for IMLs:

how should we define a modular family of proof systems that char-
acterizes quantified extensions of a wide class of complete PMLs?
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This will be done by introducing labelled sequent calculi for IMLs which behave
extremely well from a proof-theoretic point of view – all the structural rules of
inference are admissible and all rules are invertible – and characterize quantified
extensions of any first-order definable PML.

The labelled calculi introduced in [12] allow to internalize the semantics
of a propositional modal logics into the syntax of the calculi by extending the
language and to express the semantic conditions defining classes of modal frames
via rules expressing coherent (aka geometric) implications [11]. In [7] it has
been shown that each first-order formula can be transformed into a coherent
implication and, hence, in a rule preserving the good structural properties of
the underlying calculus. In [13, 17] it has been shown that the same holds
for quantified modal logics and, as it shown in [14], the same holds for some
indexed epistemic logics. In this work we show that this holds holds for all
indexed extension of each first-order definable propositional modal logic.

This proves that labelled sequents are better behaved than axiomatic systems
with respects to QMLs: for any completable – but incomplete – axiomatic
system for a first-order definable QML, we can define a labelled sequent calculus
that proves all theorems of the completion of the axiomatic system. To illustrate,
in [5] it has been shown that the formula:

♢(∀x(A→ □A) ∧□¬∀xA) ∧ ♢∀x(A ∨□A) ∧ ∀x(♢A→ □A) (7)

is consistent in the axiomatic system Q.2.BF (i.e., Cresswell’s KG1+BF),
but it is unsatisfiable in the class C2,BF of all Kripke frames for that logic.
This proves the incompleteness of Q.2.BF, which is completable by adding
some presently unknown axiom. On the other hand, our modular completeness
theorem entails that the labelled sequent calculus for C2,BF is complete with
respect to it.

References
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Hyperintensional models
for non-congruential modal logics

Matteo Pascucci and Igor Sedlár

Overview In this work we illustrate applications of a semantics for non-
congruential modal logic introduced in [9] and based on hyperintensional mod-
els. We start by discussing some philosophical ideas behind the approach; in
particular, the difference between the proposition expressed by a formula (its
intension) and the semantic content of a formula (its hyperintension), which is
captured in a rigorous way in hyperintesional models. Next, we rigorously spec-
ify the approach and provide a fundamental completeness theorem. Moreover,
we analyse examples of non-congruential systems that can be semantically char-
acterized within this framework in an elegant and modular way. In the light of
the results obtained, we argue that hyperintensional models constitute a basic,
general and unifying framework for the interpretation of modal logic.

Non-congruential modal logic. The use of non-congruential systems of
modal logic is crucial to represent contexts of reasoning that can be named
“logically hyperintensional” [3]. These are contexts in which two formulas that
express the same proposition (i.e., which are logically equivalent) cannot be
always substituted salva veritate in the scope of a modal operator. Epistemic
reasoning provides well-known examples of hyperintensional contexts; for in-
stance, the set of formulas representing what is explicitly known or believed by
a subject endowed with bounded rationality is not closed under logical equiva-
lence.

Alternative proposals for the semantic analysis of non-congruential modal
systems have been formulated over the years. Some are tailored to specific
classes of systems (see, e.g., [2], [1] and [6]); others aim at constituting a general
framework (see, e.g., [7], [8] and [4]). Here we focus on the semantics formulated
in [9], which employs hyperintensional models.

Formal setting. Let a propositional language P contain a countable set of
propositional variables Pr and the set of connectives ConP = {∧,∨,→, 0̄},
where ∧,∨,→ are binary and 0̄ is zero-ary. The language Mod(P), which is a
modal extension of P, contains Pr and ConMod(P) = ConP ∪ {□}, where □ is
unary. The set of formulas of X , for X ∈ {P,Mod(P)}, is denoted as FmX . We
define ¬φ := φ→ 0̄ and φ↔ ψ := (φ→ ψ) ∧ (ψ → φ).

An X -type algebra is any algebra A = (A, {cA | c ∈ ConX }). FmX can be
seen as an X -type algebra. Given two algebras A and B, an X -homomorphism
from A to B is a mapping that commutes with all elements of ConX .

Definition 1. A hyperintensional model is a tuple M = (W,C, O,N, I), where
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• W is a non-empty set;

• C is a P-type algebra;

• O is a P-homomorphism from FmMod(P) to C;

• N is a function from W to subsets of (the universe of) C;

• I is a P-homomorphism from C to the power-set algebra over W such
that, for all φ ∈ FmMod(P) and w ∈W

w ∈ I(O(□φ)) ⇐⇒ O(φ) ∈ N(w) (8)

We define E as the composition of O and I. A formula φ is valid in M iff
E(φ) = W . We will sometimes write (M, w) |= φ instead of w ∈ E(φ), where E
is defined over M. Informally, C is a set of “semantic contents” of declarative
sentences endowed with some algebraic structure. O(φ) is the semantic content
assigned to φ.

General completeness theorem. A logic is here regarded either as an ax-
iomatic system or as a set of theorems. Given a logic L based on a language
X , φL is the set of all maximal consistent L-theories Γ s.t. φ ∈ Γ. Moreover,
FmL

X = {φL | φ ∈ FmX }.

Theorem 1. For each logic L over Mod(P), there is a hyperintensional model
ML s.t., for all ϕ, ϕ ∈ L iff ϕ is valid in ML.

Proof. An adaptation of the usual canonical model construction, where the
model ML = (WL,CL, OL, NL, IL) is such that: WL is the set of all maximal
consistent L-theories, CL = FmMod(P), N

L(Γ) = {φ | □φ ∈ Γ}, OL(φ) = φ
and IL(φ) = φL.

Modular semantic characterization. Properties of hyperintensional mod-
els can be added in a modular way to obtain a semantic characterization for
specific non-congruential modal systems. Some examples are illustrated below.

Definition 2. A Boolean-content model is a hyperintensional model where C
is a Boolean algebra.

Let x, y range over the universe of C. We define x ≤ y as x ∨C y = y. A
Boolean-content model is

• monotonic iff, for all w ∈W , x ≤ y only if x ∈ N(w) =⇒ y ∈ N(w);

• regular iff it is monotonic and, for all w ∈ W , x ∈ N(w) and y ∈ N(w)
only if x ∧ y ∈ N(w);

• N -consistent iff, for all w ∈W , x ∈ N(w) implies ¬x ̸∈ N(w).
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We analyse the following non-congruential systems over Mod(P), all of which
contain the Propositional Calculus (PC) and are closed under Modus Ponens:

• C0.1 is the weakest system that is closed under the rule (REPC)
φ↔ ψ ∈ PC

□φ↔ □ψ

• C0.5 is the weakest system that is closed under the rule (RMPC)
φ→ ψ ∈ PC

□φ→ □ψ

• C1 is the weakest system including the axiom (K) □(φ → ψ) → (□φ →
□ψ) that is closed under (RMPC)

• D1 is the weakest system including the axioms (K) and (D) □φ→ ¬□¬φ
that is closed under (RMPC).

Definition 3. Let L be a logic over Mod(P). The PC-content L-model is

MPC/L = (WPC/L,CPC/L, OPC/L, NPC/L, IPC/L)

such that

• WPC/L is the set of all maximal consistent L-theories;

• CPC/L = (FmPC , {cPC | c ∈ ConP}) where cPC(φPC1 , . . . , φPCn ) =(
c(φ1, . . . , φn)

)PC
;

• OPC/L(φ) = φPC ;

• NPC/L(Γ) = {φPC | □φ ∈ Γ};

• IPC/L(φPC) = φL.

Lemma 1. Let L be a logic over Mod(P); then, MPC/L is a Boolean-content
model.

Proof. OPC/L is a P-homomorphism by definition of cPC . CPC/L is a Boolean
algebra thanks to the definition of PC; in fact, it is a set algebra. Next, IPC/L is
a P-homomorphism thanks to the properties of maximal consistent L-theories.

Lemma 2. For each logic L over Mod(P), each Γ ∈WPC/L and each φ:

φ ∈ Γ ⇐⇒ (MPC/L,Γ) |= φ (9)

Proof. EPC/L(φ) = IPC/L(OPC/L(φ)) = IPC/L(φPC) = φL.

Theorem 2 (Semantic Characterization).

1. φ ∈ C0.1 iff φ is valid in all Boolean-content models.

2. φ ∈ C0.5 iff φ is valid in all monotonic Boolean-content models.

3. φ ∈ C1 iff φ is valid in all regular Boolean-content models.

4. φ ∈ D1 iff φ is valid in all regular N -consistent Boolean-content models.
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Final remarks. The results proven have important consequences with respect
to applications of the framework, which can be described adopting the terminol-
ogy in [11]. First, the approach at issue is basic since, in its more general form,
can be used to semantically characterize the Propositional Calculus formulated
over Mod(P). Second, the approach is general, since properties can be added to
classes of models in a modular way, thus characterizing modal systems with a
different deductive power. Moreover, as it is shown in [9], within this framework
one can simulate related approaches developed in the literature; most impor-
tantly, hyperintensional models embed Rantala models [7, 8], which, in turn,
embed models of many other frameworks available [11, 10]. For these reasons,
hyperintensional models constitute also a unifying framework for the analysis
of non-congruential modal logics.
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Yes, Fellows, Well-known Modal Logics
are at Most 8-valued

Pawel Pawlowski and Elio La Rosa

In this paper, we show that well-known modal logics have a non-deterministic
characterization that is at most 8-valued. By well-known modal logics, we mean
logics depicted in the modal cube of the Stanford Encyclopedia of Philosophy
entry on modal logic [7]. These systems are defined by the modal logic K ex-
tended with an arbitrary combination of axioms: D, T, B, 4, 5. While some of
these results are already known, we complete the overall picture and simplify
it by providing reductions that minimize the number of values. We also em-
phasize on the use of more economical axiomatizations that do not incorporate
axioms that become redundant in the presence of the necessitation rule. In this
process, some logics are coupled with non-normal (in the sense of lacking the
necessitation rule) companions.

Consider the following 2-valued (V, V ′) table for the connective ◦:

◦ V V ′

V V V, V ′

V ′ V ′ V, V ′

Notice how, for the value associated with the V ′ column, the table does not single
out a single value, but a set {V, V ′} of them, indicated in the abbreviated form
by V, V ′ in our table. We call these tables non-deterministic. Non-deterministic
semantics are based on such a generalization of (many-valued) tables. Since the
interpretation of connectives can give a non-empty set of truth-values instead of
a single one, the valuation function singles out one of the possible values given
by the set.

This allows for introducing new interpretations for an otherwise extensional
reading of a connective, making it possible to semantically characterize logics
that cannot be characterized by finitely many valued (deterministic) approaches.
Examples of this can be found in [10, 1, 13] and [4]. In this paper, we deal with
finitely many-valued characterizations of modal logics that cannot be captured
by deterministic tables, as those studied in [6], possibly strengthened by the
method on mth-level valuations in order to validate necessitation.10 So far,
approaches of this kind were developed for capturing modal logics weaker than
K [9], for K, T, S4, S5, KD, KB and KTB [11, 2, 12].

10[5], extend this study providing more general results of incompleteness, while [4] and [8]
show that not even non-deterministic many-valued matrices alone (i.e., not characterized by
the mth-level valuations introduced below) are not enough to characterize common modal
logics, in particular those systems comprised between K and S5. Moreover, [8] shows that no
deterministic many-valued matrix can characterize any of the weakening of modal logics such
as the ones above that do not validate the necessitation rule.
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No systematic study of non-deterministic semantics has hence been con-
ducted for all well-known modal logic, that is, logics of the modal cube portrayed
in the Stanford Encyclopedia of Philosophy entry on modal logic [7].11 In this
paper, we fill this gap and rework the logics found in the works cited above in
order to guarantee a more economical axiomatization while preserving modu-
larity over the presence of the necessitation rule and, in some cases, a reduction
of the number of values will be given. As a consequence, axiomatizations which
do not include necessitation are not closed under the rule of substitutivity of
equivalents.12
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11For reasons of clarity, notation will slightly deviate from that of [7], being more explicit
on the axiom added to the base system K, as Figure 2 shows.

12This was first noticed by [12], where the authors spotted a mistake in the work of [9]. The
proposed axiomatic system provided there is not sound with respect to the substitution of a
subformula φ for ¬¬φ and vice versa in a formula ψ. This mistake carries over to [2], but was
later acknowledged in [3].
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Information Types in
Intuitionistic Predicate Logic

Vı́t Punčochář and Carles Noguera

Following [1] we can distinguish between a concrete piece of information
and an information type. While the sentence the white queen is on b5 (when
uttered in a suitable context of a chess game) provides a piece of information, the
expression the position of the white queen represents an information type under
which some concrete pieces of information fall, namely the pieces expressed by
the sentences the white queen is on b5, the white queen is on a3, and so on.

Even though expressions representing information types are not declarative
sentences, one can observe that it makes sense to combine them by logical
operators. For instance, the type the position of the white queen when combined
via conjunction with the type the position of the black king forms a new type,
namely the position of the white queen and the position of the black king. For
example, the piece of information the white queen is on b5 and the black king is
on a1 falls under this complex type. In a similar sense, one can form complex
information types by means of universal quantifier, obtaining, for example, the
type the positions of all chess pieces. A piece of information falls under this
type if it specifies for every chessmen what is its position.

One can generalize the notion of entailment to be applicable not only to
pieces of information but also to information types. For example, the type
the positions of all chess pieces “entails” in this generalized sense the type the
position of the white queen, meaning that every piece of information falling
under the former type entails (in the usual sense) some piece of information
falling under the latter type.

One can codify a logic of information types. This is done by first-order inquis-
itive logic [2] where information types are identified with questions. However,
the standard inquisitive logic is based on classical logic of declarative sentences.
In other words, the standard framework allows us to express information types
only in the context of classical predicate logic. The goal of this paper is to
generalize the framework so that we can express information types also in the
context of non-classical predicate logics. We will focus especially on the case of
first-order intuitionistic logic. In particular, we will formulate a non-standard
semantic framework for intuitionistic predicate logic and prove completeness
with respect to this semantics. Then we extend the first-order language with
new expressive means that allow as to formulate information types. The non-
standard framework enables us to equip these new expressions with a suitable
semantics. We define the notion of entailment and generalize the ideas from
[2] to obtain an axiomatization. In the final part of our talk we will formulate
also an algebraic semantics for the first-order intuitionsitic logic of information
types. A possiblility of further generalization to the substructural setting will
also be briefly discussed.
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In the rest of this abstract we explain the main technical points in more
detail. We start with the following first-order language L. Terms are just
variables and names. Complex formulas are defined as follows:

α ::= ⊥ | Pt1 . . . tn | α ∧ α | α ∨ α | α→ α | ∀xα | ∃xα

A complete infinitely distributive lattice (CID-lattice, for short) is a struc-
ture ⟨S,

⊔
,
d
⟩ where S is a nonempty set,

⊔
,
d

respectively assign to every
subset of S its join and meet (⊔,⊓ will denote the finitary versions of

⊔
,
d

)
and the infinitary distributive laws are satisfied: s ⊔

d
i∈I ti =

d
i∈I(s ⊔ ti),

s ⊓
⊔
i∈I ti =

⊔
i∈I(s ⊓ ti).

A signature is just a set of predicates and names. Given a signature σ,
we define a σ-model as a tuple M = ⟨A, U, V ⟩, where A is a CID-lattice (of
information states), U is the nonempty set (the universe of discourse), and V is
a σ-valuation, i.e. a function that assigns to each name from σ an element of U ,
and to every n-ary predicate from σ a function that assigns to each n-tuple of
elements from U an element of A. Note that

⊔
∅ is the least element of A. It

represents the inconsistent state (the state of maximal information) and it will
be denoted as 0.

An evaluation is a function that assigns to each variable of the language an
element of U . If e is an evaluation, x a variable and m ∈ U , then e(m/x) is the
evaluation that assigns m to x and e(y) to every other variable y. For any term
t, V e(t) is identical with V (t) if t is a name, and with e(t) if t is a variable.

A σL-formula is a formula of L in the signature σ. Given a σ-model M =
⟨A, U, V ⟩ and an evaluation e, we define a relation of support ⊩e between the
states of M and σL-formulas by the following clauses:

s ⊩e ⊥ iff s = 0,
s ⊩e Pt1 . . . tn iff s ≤ V (P )(V e(t1), . . . , V e(tn)),
s ⊩e α ∧ β iff s ⊩e α and s ⊩e β,
s ⊩e α ∨ β iff there are t, u ∈ S such that s ≤ t ⊔ u

and t ⊩e α, u ⊩e β,
s ⊩e α→ β iff for every t ≤ s, if t ⊩e α, then t ⊩e β,
s ⊩e ∀xα iff for every m ∈ U , s ⊩e(m/x) α,
s ⊩e ∃xα iff there is a g : U → S such that s ≤

⊔
m∈U g(m)

and for all m ∈ U , g(m) ⊩e(m/x) α.

If s ⊩e α, we will also say that s e-supports α. We define a consequence
relation ⊨ as a preservation of support, i.e. if Φ ∪ {α} is a set of σL-formulas,
then Φ ⊨ α iff for every σ-model M, every state s of M and every evaluation
e in M, if s e-supports all formulas from Φ then s e-supports α. Let ⊢ be the
derivability relation of intuitionistic predicate logic with constant domains.

Theorem 1. Let Φ ∪ {α} be a set of L-sentences. Then, Φ ⊨ α iff Φ ⊢ α.

Information types are expressed using inquisitive disjunction and inquisitive
existential quantifier, so we extend the language in the following way:
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φ ::= ⊥ | Pt1 . . . tn | φ ∧ φ | α ∨ α | α→ φ | ∀xφ | ∃xα | φ ⩾

φ | ∃]xφ

The resulting language will be called Ltyp. Non-inquisitive existential quan-
tifier and disjunction are applicable only to formulas from L. Also antecedents
of implications are always from L. (It is an open problem whether or not one
can recursively axiomatize the resulting logic for the full language without these
restrictions, especially the restriction concerning implication.) Within this lan-
guage, the semantic clauses for the operators from L are as before and for the
new operators they are defined as follows:

s ⊩e φ

⩾

ψ iff s ⊩e φ or s ⊩e ψ,
s ⊩e ∃]xφ iff for some m ∈ U , s ⊩e(m/x) φ.

The definition of entailment can now be extended to the full language Ltyp.
A sound and complete system of the resulting logic is obtained by a system for
intuitionistic logic (extrapolated to the language Ltyp) and enriched with the
usual introduction and elimination rules for inquisitive disjunction and inquisi-
tive existential quantifier and the following rules:

R1 α→ (φ

⩾

ψ) / (α→ φ)

⩾

(α→ ψ), if α ∈ L
R2 α→ ∃]xφ / ∃]x(α→ φ), if α ∈ L and x is not free in φ,
R3 ∀x(φ

⩾

ψ) / φ

⩾ ∀xψ, if x is not free in φ.

Theorem 2. Let Φ ∪ {φ} be a set of Ltyp-sentences. Then, Φ ⊨ φ iff Φ ⊢ φ.

For a better understanding of this untypical logic, it is illuminating to see it
also from a more algebraic perspective. We will introduce a class of structures
that are isomorphic to lattices of nonempty downsets of CID-lattices. We will
provide an alternative characterization of these structures and show that these
structures are exactly what is needed for an algebraic semantics of intuitionistic
logic with information types.
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Modal QUARC

Jonas Raab

The purpose of this paper is to showcase a modal extension of the Quantified
Argument Calculus (QUARC)—a novel logical system developed by Hanoch Ben-
Yami (2014). To indicate its potential, we consider the Barcan and Converse
Barcan formulas in modal QUARC (M-QUARC). In particular, I show that they
are not valid even if we employ the usual restrictions capable of validating them.
For that reason, I develop a model-theoretic semantics with variable domains
for M-QUARC. Moreover, I introduce new conditions—conditions not on the
domain but on the extension of predicates—which, in turn, validate the Barcan
and Converse Barcan formulas.

As most readers won’t be familiar with QUARC, let me start by outlining
its main features. QUARC is motivated by Ben-Yami’s claim that classical logic
is not the logic of natural language—which QUARC is supposed to capture.
There are several differences between classical logic and QUARC. Most tellingly,
as suggested by its name, QUARC treats quantification differently from how
classical logic does.

Consider, for example, the sentence ‘All animals are mortal’. The formal
rendering of such a sentence based on classical logic introduces several differ-
ences to the sentence’s surface-form. In particular, classical logic introduces a
quantifier ∀x acting on an open formula φ(x). Moreover, the open formulas
has a conditional → as its main connective. Overall, classical logic renders the
sentence as ‘∀x(A(x) → M(x))’. QUARC, on the other hand, has quantified
arguments capturing the expression ‘all animals’ (∀A). It is called quantified
argument because it can be the argument of another predicate such as ‘mor-
tal’ ((·)M). Overall, QUARC formalizes the sentences as ‘(∀A)M ’—keeping the
surface form intact. As quantified arguments are plural referring expressions,
QUARC is, in contrast to classical logic, a plural logic.

Moreover, QUARC distinguishes between sentence and predicate negation.
Sentence negation is the negation as known from classical logic, i.e., an opera-
tor on formulas. Predicate negation, on the other hand, allows us to introduce
new predicates. For example, classical logic renders a sentence like ‘Pegasus
does not fly’ as ‘¬(F (p))’. QUARC, on the other hand, can render this sen-
tence as ‘(p)¬F ’, where ‘(·)¬F ’ is the negated form of ‘F ’. For quantifier-
free QUARC-formulas, sentence negation and predicate negation are equivalent
(¬((·)F )⇔ (·)¬F ), but the position of the negation makes a difference for quan-
tified formulas (¬((∀A)M) ̸⇔ (∀A)¬M). For example, ‘It is not the case that
all animals are mortal’ is not equivalent to ‘All animals are not mortal’.

This has also consequences for M-QUARC. We can treat not only negation
as an operator on predicates, but also other modalities such as necessity (□)
and possibility (♢). As in the case of negation, the position of the modality
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in quantifier-free formulas does not make a difference; however, in formulas
involving quantifiers, the formulas do come apart. For example, the sentence
‘All horses possibly fly’ ((∀H)♢F ) is (arguably) not equivalent to the sentence
‘It is possible that all horses fly’ (♢((∀S)F )) (cf. Ben-Yami 2020).

Further differences to classical logic are the incorporation of anaphora and
what Ben-Yami calls reordered predicates which capture, for example, active/passive
constructions. For example, a sentence like ‘Bellerophon rides Pegasus’ concerns
a two-place predicate ‘(·,−)F ’ whose positions can be reordered as ‘(−, ·)F 2,1’
where the ‘2, 1’ superscript indicates the reordering. This reordered predicate
can be used to turn the active sentence into the passive sentence ‘Pegasus is
ridden by Bellerophon’.

Anaphora, on the other hand, play the role of variables in classical logic, i.e.,
they allow for cross-reference. For example, it allows us to formalize a sentence
like ‘Bellerophon captured Pegasus and he rides it’ as ‘(bα, pβ)C∧(α, β)R’ where
α and β are the anaphora and the subscripts indicate their sources. Anaphora
can also attach to quantifiers. As the introduction of anaphora is substitutional,
we have to treat quantification substitutionally, too.

Having seen the main differences between QUARC and classical logic, let
me somewhat informally introduce the language of M-QUARC and indicate the
main ingredients for the model-theoretic semantic with variable domains.

The language LQ of QUARC consists of the following countably infinite sets:
a set of anaphora AnaLQ

, of singular arguments SALQ
, of n-place predicates

PrednLQ
(n ≥ 1), and of n-place reordered predicates ReordnLQ

(where every
P ∈ ReordnLQ

is the reorder of a Q ∈ PrednLQ
). Moreover, it includes the usual

logical symbols and some auxiliary symbols.
The language LMQ of M-QUARC is LQ augmented by the logical symbols □

and ♢. Moreover, we recursively define a set ModLMQ
of modalities as follows:

¬,□,♢ ∈ ModLMQ
; if π ∈ ModLMQ

, then ¬π,□π,♢π ∈ ModLMQ
. The reason

is that we allow for modalities π ∈ ModLMQ
to be operators on predicates; for

every P ∈ ReordnLMQ
and π ∈ ModLMQ

, we have a predicate πP . For example,
for a predicate ‘is a horse’, we also have the predicates ‘is possibly a horse’, ‘is
necessarily a horse’, ‘is not possibly a horse’, etc.

The set of LMQ-formulas (FormLMQ
) is recursively defined. The quantifier

clauses are slightly more complex than usual. I introduce a variable domain
semantics; the models are tuples M = ⟨W ,R,D,D, V ⟩ consisting of a set of
possible worlds (W ), an accessibility relation (R), a domain (D), a domain map
(D), and a valuation function (V ). The domain map D: W → P(D) assigns
every possible world w ∈W its domain Dw := D(w) ⊆ D.

As quantification is substitutional, we have to consider language expansions
in order to get the truth conditions right. I introduce LMQ-w-A-expansions: for
a model M, w ∈W , and A ⊆ Dw, we define the language L′

MQ := LMQ∪{ca|a ∈
A} where the cas are new symbols (ca ∈ SAL′

MQ
). To interpret these language

expansions, we have to consider model expansions. A model M′ is a w-A-
expansion of a model M to the language L′

MQ if W ′ = W , R′ = R, D′ = D,
D′ = D, V ⊆ V ′, and, if a ∈ Du, V ′(ca)(u) = a, and if a /∈ Du, V ′(ca)(u) ∈ Du.
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Given these definitions, we can define the relation M, w |= φ in the usual way.
In particular, a model M satisfies a formula ψ(∀P ) at a world w iff. every w-
a-expansion M′ of M such that a ∈ V (P )(w), M′, w |= ψ(ca/∀P ), i.e., if every
expansion for which an element of the respective domain is a P satisfies the
formula ψ.

This brings us to the Barcan and Converse Barcan formulas. M-QUARC-
analogues of the Barcan formulas are of the form ‘(∀S)□P → □((∀S)P )’ and
‘♢((∃S)P ) → (∃S)♢P ’. Moreover, M-QUARC-analogues of the Converse Bar-
can formulas are formulas of the form ‘□((∀S)P ) → (∀S)□P ’ and ‘(∃S)♢P →
♢((∃S)P )’.

The usual conditions necessary to validate Barcan and Converse Barcan
formulas are conditions on the domain: we call M a constant domain model
iff. D is constant, i.e., Dw = Du (u,w ∈ W ); we call it an isotone domain
model iff. for wRu, Dw ⊆ Du; we call it an antitone domain model iff. for
wRu, Dw ⊇ Du; and we call it an absolute and constant domain model iff. D is
absolute and constant, i.e., Dw = Du = D.

Clearly, the last condition implies the other three. What we can show is that
in absolute and constant domain models of M-QUARC, analogues of the Barcan
and Converse Barcan formulas have countermodels. The reason is that we
evaluate predicates P ∈ ReordnLMQ

relative to domains, i.e., the extension of P
varies across different domains. Since quantification always involves a restricting
predicate, this means that we cannot just swap modalities and quantifiers.

However, we can impose conditions on the extensions of predicate. We call
M an isotone extension model iff. for P ∈ Reord1LMQ

, if wRu, then V (P )(w) ⊆
V (P )(u); an antitone extension model iff. for P ∈ Reord1LMQ

, if wRu, then

V (P )(w) ⊇ V (P )(u); and a constant extension model iff. for P ∈ Reord1LMQ
, if

wRu, then V (P )(w) = V (P )(u).
With these conditions we can formulate new results: antitone extension

models validate M-QUARC-analogues of Barcan formulas, and isotone extension
models validate M-QUARC-analogues of Converse Barcan formulas. Thus, M-
QUARC shows that Barcan and Converse Barcan formulas are connected to the
predicates extensions more than the behaviour of the domains. This contrasts
it with “classical” modal logic.
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Completeness in Partial Type Logic

Jǐŕı Raclavský and Petr Kuchyňka

Background. If equipped with logical operators, simple type theory (STT)
(Church [5], Andrews [1]) is a comprehensive variant of higher-order logic (HOL):13

its variables are tied to ‘ranges’ called types τ , which are symbols interpreted
not only by the domain Dι of individuals as in FOL but also by various sets of
functions over the type basis B = {Dι, Do}, where Do = {T, F} (truth values).
Definition of types τ ∈ T : i. ι, o ∈ T ; ii. τ0 7→ τ1 ∈ T , whenever each τi ∈ T .
Dτ0 7→τ1 is the set of all functions-as-graphs from Dτ0 to Dτ1 . Then, a frame is
an indexed family of sets F = {Dτ}τ∈T . A model is M = ⟨F ,I ⟩, where I is
an interpretation function (it interprets constants of L).

STT is known for its i. great expressive power – a feature which is however
accompanied by STT’s ii. incompleteness (as famously proved by Gödel). See
e.g. van Bentham and Doets [18], Farmer [8] for discussion and defence of HOL.
STT, whose language L is a typed λ-calculus, is substantially justified by its iii.
broad range of applications in computer science (esp. functional programming
languages, proof assistants). Henkin [10] remarkably accompanied the fact ii. by
the (proven) fact that STT is complete w.r.t. general (or Henkin, non-standard)
models.

The crucial ideas of his proof are: (a) domains of a general model contain
not all, but some of all possible functions, (b) these functions are named by
λ-abstracts (and also by constants, if available in L), (c) the hierarchy of terms
denoting the objects in F are closed under β-conversion rules and few oper-
ational rules, (d) each Dτ only consists of values of a certain function Φ at
equivalence classes of closed λ-terms. So the questions of semantics became the
questions of derivation rules, as stressed by Henkin [11]. Henkin’s proof became
an ‘industry standard’ in various versions of HOL, see e.g. Andrews [1], Brown
[4], Areces et al. [2].14

Various writers recently proposed a needed (cf. e.g. Feferman [9]) exten-
sion of STT by embracing, in addition to total functions, partial functions(-as-
graphs): a partial function f is undefined (i.e. has no value at all) for at least
one argument x of its domain, i.e. f(x) = (which we will write f(x) = for
its convenience in our further notation). See the partial TTs by e.g. Tichý [16],
Farmer [7], Muskens [14].

13We can speak about a pure STT, if it is equipped only with λ-rules (α-, β-, η-), while
STT as logic has even rules for logical operators (which are usually defined in the style of e.g.
∀(s) ≡ (s = λx.T), where s is a variable for sets as characteristic functions, and x ranges over
the (interpretation of the) type of its members).

14Henkin’s famous 1949 completeness proof for FOL, often adapted for modal logic, arose
as a simplification of his proof for STT. For its recent application for various non-classical
logics, see e.g. Cintula and Noguera [6] (and their forthcoming book).
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Unlike Tichý, both Farmer and Muskens offered Henkin-style completeness
proofs for their systems. However, Muskens’ TT only contains relations and
the logic is four-valued (with ‘strong Kleene’ basis), hence his proof cannot
be adapted for the other systems. Farmer’s proof is based on the proof by
Andrews, for his partial TT is an extension of Andrews’ TT. But Farmer’s STT
only contains total functions over Do and partial functions over Dι. Again, his
proof cannot be adapted for the other systems. In other words, Tichý’s partial
TT lacks a completeness proof.15

Goal of the paper. In our paper, we provide a Henkin-style completeness
proof for a (significant) adjustment of Tichý’s partial TT, which we call TT∗.
There are three main reasons why it is important: (1) Tichý’s partial TT, and
thus even TT∗, is the only TT which systematically uses all total and partial
multiargument functions (so it has the greatest expressivity if compared with
the other system mentioned in this abstract), (2) it has an extension enabling to
capture fine-grained hyperintensionality (needed e.g. for the analysis of natural
language), (3) its natural deduction system, which we adjust as NDTT∗ , allows
a plausible expression of inference with partial functions (while no criticism in
the style of Blamey [3] is applicable).

Syntax and semantics of TT∗. In the first phase of our whole project (cf.
e.g. [15]), we reformulated and adjusted Tichý’s system to obtain its clear and
unambiguous syntax and (Henkin-style model-theoretic) semantics:16

a. LTT∗ C ::= x | c | C0(C̄m) | λx̃m.C0 | ⌜C0⌝ | ⌊⌊C0⌋⌋τ
b. For definitions of type over the (type) basis BTT∗ (which significantly

extend definitions e.g. in [5] and [16]), see [15].

c. A standard or general model is M = ⟨F ,I ⟩ with appropriate F and I .

TT∗ conforms to Tichý’s [17] neo-Fregean algorithmic approach: LTT∗ con-
sists of terms t that express (abstract) acyclic, not necessarily effective algorith-
mic computations called constructions C. Each C either v-constructs (depen-
dently on assignment v) an object O denoted by t, or it v-constructs nothing at
all, being v-improper (so t is non-denoting).

An application C0(C̄m) applies a function F v-constructed by C0 to an m-ary
argument A v-constructed by C̄m, provided F is defined for A (it is v-improper
otherwise); a λ-abstraction λx̃m.C0 v-constructs a function. Acquisitions ⌜C0⌝
and immersions ⌊⌊C0⌋⌋τ are adjusted from Tichý [17]. ⌜C0⌝ v-constructs C0

as such (this is useful for capturing Sinn of expressions in hyperintensional
contexts). ⌊⌊C0⌋⌋τ v-constructs, if v-proper, what is v-constructed by what is
v-constructed by C0; our future work will embed ⌊⌊C0⌋⌋τ into our proof.

In our proof, LTT∗ contains constants for Bochvar-like ¬ and → and strong-
Kleene-like ∃ and ∀ (these are not interdefinable in partial TT).

15Moreover, Tichý never employed model-theoretic notions such as model, frame or inter-
pretation.

16Let X̃m be short for X1X2...Xm and X̄m be short for X1, X2, ..., Xm.
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Natural deduction NDTT∗ . We adjust natural deduction in sequent style
from [16] (most of this our work was presented in [15, 12]), we call our system
NDTT∗ . Since it utilises sequents, it has i. structural rules. It also has ii.
constructional rules. Further, it has iii. operational rules for logical constants of
(an extended) LTT∗ (and even iv. rules for extralogical constants). Instantiation
rules, necessitated by partiality, complement introductory and elimination rules.
NDTT∗ has 27 basic rules.

Sequents S – from which rules R are build – are made from ‘labelled (or
signed) terms’, which are congruence statements called matches M. Matches
are either i. of the form C:τa, which says that C is v-proper (and its value is
v-constructed by a. the variable a ranging over τ , b. the constant a of type τ ,
or c. the acquisition ⌜a⌝, where a is a construction), or ii. of the form C:τ ,
which says that C is v-improper. Matches are definitely (counter)satisfiable
w.r.t. M and bring also further benefits for our Henkin-style proof: C of C: is
v-improper in M either for the fact that C v-constructs no object in any model
whatsoever, or it v-constructs no object in M under consideration.

Main results presented in the paper consist in proofs that establish the fol-
lowing theorems:

Theorem 1. If ∆ is any consistent set of matches over BTT∗ , there is a general
model M in which ∆ is satisfiable.

Theorem 2. For any sequent S over BTT∗ , ⊢NDTT∗ S iff ⊨g S (i.e. valid in the

general sense).
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Modal Intuitionistic Algebras
and Twist Representations

Umberto Rivieccio

A modal Heyting algebra (henceforth, MHA) is obtained by enriching a
Heyting algebra ⟨H;∧,∨,→, 0, 1⟩ with a unary modal operator that satisfies
x → □y = □x → □y. Such an operator is also known in the literature as a
nucleus.

MHAs (and subreducts thereof) have been studied since the 1970s, usually
within the framework of topology and sheaf theory [7, 8, 2]. A more recent
paper [4] proposed a logic (called Lax Logic) based on MHAs as a tool in the
formal verification of computer hardware. Even more recently, another con-
nection between MHAs and logic emerged within the study of the algebraic
semantics of quasi-Nelson logic [15, 14]. The latter may be viewed as a common
generalization of both intuitionistic logic and Nelson’s constructive logic with
strong negation [9] obtained by deleting the double negation law.

As shown in [14, 11, 10], there exists a formal relation between the algebraic
counterpart of quasi-Nelson logic (quasi-Nelson algebras) and MHAs which par-
allels the well-known connection between Nelson algebras and Heyting algebras
(see e.g. [16]). This relation – which concerns the algebras in the full language as
well as some of their subreducts – provides further motivation for an investiga-
tion of MHAs from a logical as well as an algebraic point of view. Studies of this
kind, perhaps owing to the mainly topological interest in this class of algebras,
can hardly be found in the existing literature, with the notable exception of [1].
The purpose of the my contribution is to (at least partly) fill in this gap and at
the same time to draw attention to certain subreducts of MHAs whose interest
is motivated by the recent developments in the theory of quasi-Nelson logic.

Given that a MHA is usually presented in the language {∧,∨,→,□, 0, 1},
fragments that appear to be of natural interest (from a logico-algebraic-topological
perspective) are, for instance, the implication-free one {∧,∨,□} and the {→,□}-
fragment. The former, whose models are distributive lattices enriched with a
modal operator, is the main object of [1], while the latter was studied (mainly
from a topological perspective) as far back as in [7] and as recently as in [3].
Other less obvious but equally interesting “fragments” have emerged in the
course of recent investigations on quasi-Nelson logic and quasi-Nelson alge-
bras [11, 10, 12]. An interest in these classes of algebras, however, can also
be motivated within the limits of the traditional framework of MHAs.

A well-known fact within the theory MHAs [7, Thm. 2.12] is that, for every
such algebra H = ⟨H;∧,∨,→,□, 0, 1⟩, the set H□ of the fixpoints of the □
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operator can itself be endowed with a MHA structure by defining, for every
n-ary algebraic operation f ∈ {∧,∨,→,□, 0, 1}, the operation f□ given, for all
a1, . . . , an ∈ H□, by f□(a1, . . . , an) := □f(a1, . . . , an). This algebra, denoted
H□, is indeed a MHA, and a very special one17, for the □ operator is the
identity map on H□. This very fact, in turn, is essential in ensuring that H□

has a Heyting algebra reduct; for instance we have

a ∧□ b = □(a ∧ b) = □a ∧□b = a ∧ b

for all a, b ∈ H□, guaranteeing that ∧□ is a meet semilattice operation on H□.
A similar reasoning applies to the other operations as well, although the join ∨□
(computed in H□) does not coincide with the join ∨ (computed in H), i.e. H□

is not a Heyting subalgebra of H.

Thus, although nothing prevents us from considering each operation f□ as
defined on the whole universe H, in general ∧□ and ∨□ will not be semilattice
operations on H, and likewise →□ will not be the Heyting implication. By
definition, all these operations generalize the intuitionistic ones, which can be
retrieved by requiring □ to be the identity map on H. Indeed, a natural ques-
tion to ask is what properties each generalized operation f□ retains and, more
generally, whether f□ has any independent interest deserving further study.

An answer to the latter question may come from the theory of quasi-Nelson
logic. Indeed, as shown in the papers [14, 11, 10, 12], some of the above-defined
operations of type f□ naturally arise (via the so-called twist representation)
within the study of fragments of the quasi-Nelson language. From this stand-
point it is interesting to observe that, on these new algebras, the original Heyting
operations coexist with the new ones. Thus, for instance, one of the classes of
algebras arising in this way retains the original meet semilattice operation (and
the lattice bounds) while replacing the Heyting implication with its general-
ized counterpart: that is, we are dealing with the {∧,→□, 0, 1}-subreducts of
modal Heyting algebras (on which the modal operator is in fact definable by
□x := 1 →□ x). Note that these new algebras are not the result of an arbi-
trary choice of operations, but arise as factors in the twist representation of
subreducts of quasi-Nelson algebras, as explained below.

A quasi-Nelson algebra may be defined as a commutative integral bounded
residuated lattice A = ⟨A;⊓,⊔, ∗,⇒,⊥⟩ that (upon letting ∼x := x ⇒ ⊥)
satisfies the Nelson identity :

(x⇒ (x⇒ y)) ⊓ (∼ y ⇒ (∼ y ⇒ ∼x)) = x⇒ y.

Quasi-Nelson algebras arise as the algebraic counterpart of quasi-Nelson
logic, which can be viewed either as a generalization (i.e. a weakening) com-
mon to Nelson’s constructive logic with strong negation and to intuitionistic
logic or as the extension (i.e. strengthening) of the well-known substructural
logic FLew (the Full Lambek Calculus with Exchange and Weakening [5]) by
the Nelson axiom:

((x⇒ (x⇒ y)) ⊓ (∼ y ⇒ (∼ y ⇒ ∼x)))⇒ (x⇒ y).

17This construction is easily seen to be a generalization of Glivenko’s result relating Heyting
and Boolean algebras (corresponding to the case where □x = (x→ 0) → 0).
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We refer to [15] for further details on quasi-Nelson logic as well as for other
equivalent characterization of quasi-Nelson algebras (these can also be obtained
as the class of (0, 1)-congruence orderable commutative integral bounded resid-
uated lattices).

Each Heyting algebra H = ⟨H;∧,∨,→, 0, 1⟩may be viewed as a quasi-Nelson
algebra on which ∧ = ∗ = ⊓, ∨ = ⊔, →=⇒ and 0 = ⊥, and we know that on
H the double negation is a modal operator. On the other hand, if we replace H
by a quasi-Nelson algebra A, then the double negation need not define a modal
operator on A, but can be used to obtain one on a special quotient H(A), which
is the Heyting algebra canonically associated to each quasi-Nelson algebra A via
the twist construction.

Given a quasi-Nelson algebra A, consider the map given, for all a ∈ A, by
a 7→ a ∗ a. The kernel θ of this map is a congruence of the reduct ⟨A;⊓,⊔,⊥⟩
which is also compatible with the double negation operation and with the weak
implication ⇒2 given by x ⇒2 y := x ⇒ (x ⇒ y). Thus, letting □(x/θ) :=
∼∼x/θ, we have a quotient algebra H(A) = ⟨A/θ;⊓,⊔,⇒2,□,⊥⟩, which is a
MHA. Moreover, A embeds into a twist-algebra over H(A), defined as follows.

Let H = ⟨H;∧,∨,→,□, 0, 1⟩ be a modal Heyting algebra. Define the algebra
H▷◁ = ⟨H▷◁;⊓,⊔, ∗,⇒,⊥⟩ with universe H▷◁ := {⟨a1, a2⟩ ∈ H × H : a2 =
□a2, a1 ∧ a2 = 0} and operations given, for all ⟨a1, a2⟩, ⟨b1, b2⟩ ∈ H ×H, by:

⊥ := ⟨0, 1⟩
⟨a1, a2⟩ ∗ ⟨b1, b2⟩ = ⟨a1 ∧ b1,□((a1 → b2) ∧ (b1 → a2))⟩
⟨a1, a2⟩ ⊓ ⟨b1, b2⟩ := ⟨a1 ∧ b1,□(a2 ∨ b2)⟩
⟨a1, a2⟩ ⊔ ⟨b1, b2⟩ := ⟨a1 ∨ b1,□(a2 ∧ b2)⟩
⟨a1, a2⟩ ⇒ ⟨b1, b2⟩ := ⟨(a1 → b1) ∧ (b2 → a2),□(a1 ∧ b2)⟩.

A quasi-Nelson twist-algebra over H is any subalgebra A ≤ H▷◁ satisfying
π1[A] = H.

The twist representation theorem [15] states that every quasi-Nelson algebra
A embeds into the twist-algebra (H(A))▷◁ through the map given by a 7→
⟨a/θ,∼ a/θ⟩ for all a ∈ A. This result is obviously an extension to the non-
involutive setting of the well-known twist representation of Nelson algebras (see
e.g. [16]), which can be retrieved as the special case where □ is the identity map
on H(A).

The twist-algebra definition suggests that certain term operations of the
language of MHAs are of particular interest in the study of fragments of quasi-
Nelson logic. Consider, for instance, the monoid operation. In order to define
∗ on a quasi-Nelson algebra A ≤ H▷◁, we need two operations on H: the
semilattice operation ∧ (for the first component) and, for the second component,
an implication-like operation (denote it by ⇀) which can be given by x⇀ y :=
x → □y. The latter claim may not be obvious, but using the properties of the
twist construction and of the □ operator it is not hard to verify the following
equalities:

□((a1 → b2) ∧ (b1 → a2)) = □((a1 → □b2) ∧ (b1 → □a2)) = □(a1 → □b2) ∧□(b1 → □a2)

= (a1 → □b2) ∧ (b1 → □a2) = (a1 ⇀ b2) ∧ (b1 ⇀a2).

These observations led to the introduction of the class of algebras dubbed ⇀-
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semilattices in [12], where we show that the {∗,∼}-subreducts of quasi-Nelson
algebras are precisely the twist-algebras over ⇀-semilattices. Similar consid-
erations motivate the introduction of other term operations of the language of
MHAs, for instance x ⊙ y := □(x ∧ y) and x ⊕ y := □(x ∨ y). The classes of
modal algebras thus obtained allow us to establish twist representations for (re-
spectively) the {⇒2,∼}- and the {∧,⇒,∼}-subreducts of quasi-Nelson algebras
(studied, respectively, in [10] and in [12]). Other subreducts may be obtained
by adding a modal operator to more traditional classes of intuitionistic alge-
bras, such as implicative semilattices (giving us the {∗,⇒,∼}-subreducts of
quasi-Nelson algebras), distributive lattices (giving us the {∧,∨,∼}-subreducts
studied in [13]) and pseudo-complemented lattices (corresponding to the “two-
negations” subreducts studied in [11]). It is worth mentioning that all these
results specialize straightforwardly to the involutive case, yielding previously
unknown characterizations of the corresponding fragments of Nelson’s construc-
tive logic with strong negation.

The preceding considerations indicate the above-mentioned classes of modal
intuitionistic algebras as mathematical objects which may be interesting both
in themselves and in relation to the study of non-classical logics (Nelson’s logics
in particular18). In this contribution I will give an overview of the results that
have been achieved thanks to the introduction of these new classes of “modal
intuitionistic algebras”, and above all I will report on ongoing research aimed at
obtaining a better understanding of these algebras from a logical, an algebraic
and a topological point of view.
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Changing the World Constructively

Igor Sedlár

The finite model property of intuitionistic logic entails completeness with
respect to posets where each element is under a maximal element. Maximal
elements can be seen as complete and consistent possible worlds and elements
strictly under them as situations containing incomplete yet consistent informa-
tion about the world. This suggests a natural semantics for intuitionistic modal
logic based on posets with maximal elements and an accessibility relation on
the set of maximal elements. In models for a modal language containing □ and
♢ based on such posets, a situation x is seen as containing the information that
φ is necessary, □φ, if φ is true in each world u accessible from any world w in
which x is contained; similarly, x contains the information that φ is possible,
♢φ, if φ is true in each world u accessible from any w in which x is contained.
In this paper, we study the intuitionistic modal logic AK arising from this
semantics.

1 The logic AK

The modal language M contains a countable set of propositional variables Pr,
propositional connectives ∧,∨,→,⊥ and modal operators □,♢. The set of for-
mulas of M is defined in the usual inductive way and denoted FmM.

A w-frame is F = (S,≤,W,R), where (i) (S,≤) is a partially ordered set;
(ii) (W,R) is a directed graph; (iii) W is the set of maximal elements of (S,≤);
and (iv) for all s ∈ S there is w ∈ W such that s ≤ w. A w-model based on
F is M = (F, V ), were V is a function from Pr to subsets of S closed upwards
under ≤. For each M, the satisfaction relation induced by M, |=M, is a relation
between states s ∈ S of M and formulas φ ∈ FmM defined by induction on
the complexity of formulas in such a way that the clauses for propositional
variables and propositional connectives are as in the semantics of intuitionistic
propositional logic and

• s |=M □φ iff, for all w, u ∈W , s ≤ w and Rwu only if u |=M;

• s |=M ♢φ iff, for all w ∈ W such that s ≤ w, there is u ∈ W where Rwu
and u |=M φ.

A formula φ is valid in M iff s |=M φ for all s in M; φ is valid in F iff φ is valid
in all M based on M. AK is the set of formulas valid in all F.

The logic AK is “almost” the basic classical normal modal logic K in the
sense that (φ1 ∧ . . . ∧ φn) → ψ is in K iff (□φ1 ∧ . . . ∧ □φn) → □ψ is in AK.
However, (DD) ♢(p∨ q)→ ♢p∨♢q is not in AK, which means that it is a non-
normal intuitionistic modal logic. It is also noteworthy that (DD) is valid in all
F where R is a universal relation, but not in all F where R is an equivalence
relation. AK also enjoys the disjunction property and the Glivenko property
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with respect to K (i.e. φ ∈ K iff ¬¬φ ∈ AK).

2 Completeness results

Fix an axiom system Int for intuitionistic propositional logic with Modus Ponens
and Uniform Substitution as rules of inference. Using the canonical model
construction, we obtain the following result.

Theorem 3. φ ∈ AK iff φ is a theorem of the system AK, which results by

extending Int with the Necessitation rule
φ

□φ
and the axioms

(A1) □(p→ q)→ (□p→ □q)

(A2) ♢p↔ ¬□¬p
(A3) □(p ∨ ¬p)
(A4) ¬¬□p→ □p

For each directed graph (classical Kripke frame) (W,R), let Po(W,R) be
the class of w-frames (S,≤,W,R), and similarly for Po(F) where F is a class of
directed graphs. Let K be the proof system for the basic normal modal logic
K. Let ¬¬Σ := {¬¬φ | φ ∈ Σ}.
Theorem 4. If K+Σ is a normal modal logic that is canonical for the first-order
property of directed graphs Φ and F(Φ) is the class of directed graphs satisfying
Φ, then AK + (¬¬Σ) is sound and complete with respect to Po(F(Φ)).

3 Comparisons to other intuitionistic modal log-
ics

The satisfaction clauses for □,♢ in our semantics are a variant of the clauses
used by Wijesekera [5]. AK extends Božić and Došen’s logic HK□ (over M),
see [1], and the propositional fragment WK of Wijesekera’s logic, studied also
in [3]. AK does not extend Božić and Došen’s bimodal logic HK□♢ (since
♢p ∨ ¬□p fails) or IK of [2, 4], which contains (DD).

AK is the logic of all “standard” intuitionistic modal frames (S,≤, Q) where
Q is a binary relation on S satisfying the “Božić–Došen condition” (≤◦Q◦≤) ⊆
Q and

(W1) ∀xy (Qxy → ∀z(y ≤ z → z ≤ y))

(W2) ∀xy (Qxy → ∃x′ (x ≤ x′ ∧ ∀z(x′ ≤ z → Qzy)))

4 Informal interpretation and possible applica-
tions

AK might turn out to be a convenient formalism capturing constructive rea-
soning in settings where the modal accessibility relation is interpreted in terms
of actions that modify the state of the world. Building on this intuition, we will
also briefly outline a version of Propositional Dynamic Logic extending AK.
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Carnap’s Problem

for Generalised Quantifiers

Sebastian G.W. Speitel

Carnap’s Problem concerns the question of how much of the semantics of an
expression one can ‘read off’ of its inferential behaviour. More precisely, it
asks what model-theoretic value of an expression is determined by a given con-
sequence relation in the context of a particular semantic framework. Carnap
[4] showed that even at the level of the propositional connectives the standard
(single-conclusion) consequence relation of classical propositional logic is inca-
pable of determining their standard truth-conditional semantics in any but the
simplest cases. The underdetermination of the model-theoretic value of logical
constants by consequence relations extends and deepens at the level of quantifi-
cation. Recently, Bonnay & Westerst̊ahl [3] characterised the extent to which
the standard universal and existential quantifiers are underdetermined by the
consequence relation of classical first-order logic (FOL). Their treatment of these
expressions as quantifiers in the sense of generalised quantifier theory invites an
extension of the investigation of the determination and underdetermination of
quantifiers in the context of first-order consequence relations in general. To map
out the framework for such an investigation, and to present some initial results,
is the purpose of this talk.

A generalised or Lindström-quantifier Q is a class of structures of the same
signature [6]. Every quantifier Q determines a unique quantifier-on-a-domain
M , Q(M). Where L is the language of FOL, we designate by L (Q) the
language of FOL extended by a quantifier symbol Q, and by L (Q1, . . . , Qn)
the language of FOL extended by quantifier symbols Q1, . . . , Qn. Given the
standard interpretations of the logical constants of FOL and an interpretation
of Q (interpretations of Q1, . . . , Qn) of appropriate type(s) we denote the model-
theoretic consequence relation over the relevant logics by |=Q (|=Q1,...,Qn). An
interpretation Q′ is consistent with a consequence relation |=Q if |=Q ⊆ |=Q′ .
We then ask the following question:

for what values Q, and under what conditions, is it the case that Q is the
unique interpretation of Q that is consistent with |=Q?

In other words: under what conditions is the consequence relation |=Q ‘strong
enough’ to uniquely ‘pin down’ or determine the intended interpretation Q of Q?
When a quantifier is such that it is the unique Q (satisfying certain conditions)
consistent with |=Q, we say that it is uniquely determined by |=Q (with respect
to these conditions).

Bonnay and Westerst̊ahl showed in [3] that the demand that quantifiers
be isomorphism-invariant suffices to uniquely determine the standard interpre-
tation of the universal (and thus also the existential) quantifier in the con-
text of the standard consequence relation of FOL. We show that the condi-
tion of isomorphism-invariance, a very natural constraint for values interpreting
quantifier-expressions, also renders several non-first-order definable quantifiers
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unique with respect to their associated consequence relation |=Q. In the class
of type ⟨1⟩ cardinality quantifiers this is the case for, e.g.,

(i) Q = Q0, where Q0(M) = {A ⊆ M | ω ≤ |A|} is the quantifier there exist
infinitely many

(ii) Q = Qfin, where Qfin(M) = {A ⊆ M | |A| < ω} is the quantifier there
exist finitely many

These results are, despite their elementary nature, philosophically interesting:
both uniqueness and isomorphism-invariance have, in different traditions, been
considered essential components of the logicality of an expression.19 Unique de-
termination of model-theoretic value by inference, in the sense outlined above,
and under the assumption of further semantic constraints, thus delineates a
class of logical constants far extending the usual class of first-order logical ex-
pressions. A criterion of logicality based on unique determination by inference
(categoricity) and isomorphism-invariance (formality) was formulated and de-
fended in [2].

In the class of type ⟨1⟩ cardinality quantifiers the ability to be uniquely
determined by a consequence relation over a language of the form L (Q) appears
to abruptly stop at ℵ1. Based on old results by Keisler and others20 we show
that the quantifier there exist uncountably many (Q1), given by Q1(M) = {A ⊆
M |ℵ1 ≤ |A|}, fails to be uniquely determinable over any consequence relation of
the form |=Q. This result generalises, in a strengthened formulation, to various
other classes of cardinality quantifiers of the formQα(M) = {A ⊆M |ℵα ≤ |A|}.
If there is time, we will present further examples of quantifiers of various types
that are not uniquely determined by their associated consequence relations.

Returning to a more abstract perspective and taking isomorphism-invariance
to be a desirable constraint on potential interpretations of quantifier-expressions
we further study the extent and limits of unique determinability of generalised
quantifiers by appropriate consequence relations. In particular, we show that
the EC∆-definability of a class in FOL is sufficient for a quantifier Q identified
with that class to be uniquely determined by the consequence relation |=Q. We
explore further relationships between notions of definability (e.g., projective de-
finability) and unique determination by a consequence relation, and investigate
various closure conditions of unique determination under, for example, Boolean
combinations of quantifiers.

We conclude this talk by briefly looking at analogous questions for the case in
which more than one generalised quantifier-expression is present in the language,
i.e., at unique determinability with respect to consequence relations |=Q1,...,Qn

over languages L (Q1, . . . , Qn), advancing some questions and conjectures, and
reflecting on the philosophical significance of the results presented.

This talk is based on joint work with D. Bonnay and D. Westerst̊ahl.

References
[1] N. Belnap, “Tonk, Plonk and Plink.” Analysis 22, 1962, pp. 130-134.

19E.g. [1, 7].
20See [5]

106



[2] D. Bonnay and S.G.W. Speitel, “The Ways of Logicality: Invariance and
Categoricity”, in: The Semantic Conception of Logic: Essays on Conse-
quence, Invariance, and Meaning, G. Sagi & J. Woods (eds.), Cambridge
University Press 2021, pp. 55-80.

[3] D. Bonnay and D. Westerst̊ahl, “Compositionality Solves Carnap’s Prob-
lem”, Erkenntnis 81, 2016, pp. 721-739.

[4] R. Carnap, Formalization of Logic, Harvard University Press 1943.

[5] H.J. Keisler, “Logic with the Quantifier ‘There Exist Uncountably Many’.”,
Annals of Mathematical Logic 1, 1970, pp. 1-93.

[6] P. Lindström, “First-Order Predicate Logic with Generalized Quantifiers”,
Theoria 32, 1966, pp. 186-195.

[7] G. Sher, The Bounds of Logic: A Generalized Viewpoint, MIT Press, 1991.

107



Modals and Quantifiers in Neighbourhood
Semantics for Relevant Logics

Andrew Tedder and Nicholas Ferenz

The Mares-Goldblatt analysis of quantifiers in relevant logic, introduced in
[9], presents a particularly elegant and transferable solution to the well-known
problem that the most plausible axiomatisations of first-order relevant logics are
incomplete with respect to their constant-domain semantics [4]. The solution
revolves around two innovations:

1. The use of general frame semantics, incorporating a set of admissible
propositions.

2. The use of a non-Tarskian truth condition for the quantifiers, exploiting
the difference between sets of points which are, and those which are not,
admissible propositions.

The resulting semantics is simple, elegant, and allows for completeness proofs for
the resulting logics which straightforwardly adapt the canonical model meth-
ods usually employed for the frame semantics of relevant logics. It has been
developed in the direction of first-order classical modal logics by Goldblatt [7]
and Mares [6], and for use in propositionally quantified relevant logic in fur-
ther work by Goldblatt and Kane [8]. More recently, Ferenz has employed the
Mares-Goldblatt analysis of the quantifiers to provide adequate frame seman-
tics for a range of quantified relevant modal logics [2, 3]. Furthermore, Ferenz
and Tedder [13] have developed the Mares-Goldblatt semantics to accommo-
date a range of logics weaker than those complete w.r.t. classes of relational
frames, by investigating first-order relevant logics in a neighbourhood setting,
following on work by Sylvan (née Routley) and Meyer [11, 12] and Goble [5].
The resulting semantics, in essence, treats of Mares-Goldblatt style extensions
of algebraic semantics for weak relevant logics, as the resulting semantics is a
general neighbourhood semantics, as related structures are called by Pacuit [10]
in the classical modal case, and so provides for a semantic characterisation of a
wide range of logics.

In this paper, we shall extend our previous work by investigating general
neighbourhood semantics for quantified modal relevant logics. We shall give a
general completeness argument, along the lines of those in [3, 13], investigate
the various forms of augmentation for the intensional connectives (both relevant
and modal), and how these interact with the quantifiers, and discuss upshots
for debates surrounding constant-domain modal logics and metaphysics.

Neighbourhood Mares-Goldblatt frames can be defined as follows:

Definition. An NQMRL frame is a tuple F = ⟨W,N,R, ∗, S□, S♢, P rop,D, PropFun⟩
where:

• ∅ ̸= N ⊆W
• R ⊆W × ℘(W )2

• ∗ : W −→W

• S□, S♢ ⊆W × ℘(W )

• Prop ⊆ ℘(W )

• D ̸= ∅
• PropFun ⊆ {φ | φ : Dω −→
Prop}
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Given F , we define the following operations on X,Y ⊆W :

• ¬X = {α ∈W | α∗ /∈ X}
• X → Y = {α ∈W | RαXY }

• □X = {α ∈W | S□αX}
• ♢X = {α ∈W | S♢αX}

Then F is required to satisfied the following constraints:

(c0) N ∈ Prop and Prop closed w.r.t. ∩,∪,¬,→,□,♢
(c0.0) There is a φN ∈ PropFun s.t. for any f ∈ Dω, φNf = N

(c0.1) (⊕φ)f = ⊕(φf) for any f ∈ Dω,⊕ ∈ {¬,□,♢}
(c0.2) (φ⊗ ψ)f = φf ⊗ ψf for any f ∈ Dω,⊗ ∈ {∩,∪,→}
(c0.3) For any φ ∈ PropFun, n ∈ ω, f ∈ Dω, the following is an element of

PropFun:

(∀nφ)f =
d

f ′∼xf

φf ′ =
⋃
{X ∈ Prop | X ⊆

⋂
f ′∼xf

φf ′}

(c0.4) For any φ ∈ PropFun, n ∈ ω, f ∈ Dω, the following is an element of
PropFun:

(∃nφ)f =
⊔

f ′∼xf

φf =
⋂
{X ∈ Prop |

⋃
f ′∼xf

φf ′ ⊆ X}

(c1) X ⊆ Y ⇐⇒ N ⊆ X → Y for any X,Y ∈ Prop

We can then define models on such frames straightforwardly:

Definition. A model M on F consists of a multi-type function M , on constants
Con and predicates Pred s.t. M : Con −→ D and M : Predn ×Dn −→ Prop.
Then, given f : ω −→ D, we fix:

• Mf (c) = M(c) • Mf (xn) = fn

With these, we extend M to a valuation J·KM : L −→ PropFun s.t., for any
f ∈ Dω – we’ll write JAKMf for (JAKM )f :

• JP (τ0, . . . , τn)KMf
= M(P )(Mf (τ0), . . . ,Mf (τn))

• J⊕AKMf = ⊕JAKMf
for ⊕ ∈ {¬,□,♢}

• JA ∧BKMf = JAKMf ∩ JBKMf

• JA ∨BKMf = JAKMf ∪ JBKMf
• JA→ BKMf = JAKMf → JBKMf
• J∀xnAKMf = (∀nJAKM )f

• J∃xnAKMf = (∃nJAKM )f

A formula A is true in M , written |=M A iff N ⊆ JAKMf holds for every
f ∈ Dω. A is true on a frame F , |=F A iff |=M A holds for every F on M .
Finally, A is valid for a class F of frames just in case it is true on every F ∈ F .

The range of logics for which we can obtain completeness w.r.t. classes of
such frames is very large – including, at least, any logic obtainable from the
basic system F of [13] (called “Min” in [5]) by any of the quantifier or modal
axioms/rules mentioned in [2, 3], and a range of others. Using the very gen-
eral tools of gaggle theory, for which, see [1], we can obtain equivalence results
between neighbourhood models and relational models when the former obey so-
called augmentation principles. These, in effect, enforce the requirement that
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the operations defined by the neighbourhood relations (→,□,♢) have distribu-
tion types and, where appropriate, stand in relations of abstract residuation with
each other. Consideration of the quantifiers against this background adds some
additional complexities, but allows for new results and insights. The aim of this
talk is to set out some of these insights, and discuss philosophical upshots.
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[1] Katalin Bimbó and J. Michael Dunn. Generalized Galois Logics: Relational
Semantics for Nonclassical Logical Calculi. CSLI (2008).

[2] Nicholas Ferenz. Quantified Modal Relevant Logics. Ph.D. Dissertation,
University of Alberta, (2019).

[3] Nicholas Ferenz. “Quantified Modal Relevant Logics”. Review of Symbolic
Logic (Forthcoming).

[4] Kit Fine. “Incompleteness for Quantified Relevance Logics”. Directions in
Relevant Logic, ed. J. Norman and R. Sylvan, pp. 205–225. Kluwer (1989).

[5] Lou Goble. “Neighborhoods for Entailment”. Journal of Philosophical Logic
32:483–529 (2003).

[6] Robert Goldblatt and Edwin D. Mares. “A General Semantics for Quantified
Modal Logic”. Advances in Modal Logic v.6 (2006).

[7] Robert Goldblatt. Quantifiers, Propositions and Identity: Admissible Se-
mantics for Quantified Modal and Substructural Logics. Cambridge University
Press (2011).

[8] Robert Goldblatt and Michael Kane. “An Admissible Semantics for Proposi-
tionally Quantified Relevant Logics”. Journal of Philosophical Logic 39(1):73–
100 (2010).

[9] Edwin D. Mares and Robert Goldblatt. “An Alternative Semantics for Quan-
tified Relevant Logic”. Journal of Symbolic Logic 71(1):163–187 (2006).

[10] Eric Pacuit. Neighborhood Semantics for Modal Logic. Springer (2017).

[11] Richard Routley and Robert K. Meyer. “Towards a General Semantical
Theory of Implication and Conditionals. I. Systems with Normal Conjunc-
tions and Disjunctions and Aberrant and Normal Negations”. Reports on
Mathematical Logic 4:67–89 (1975).

[12] Richard Routley and Robert K. Meyer. “Towards a General Semantical
Theory of Implication and Conditions. II. Improved Negation Theory and
Propositional Identity”. Reports on Mathematical Logic 9:47–62 (1976).

[13] Andrew Tedder and Nicholas Ferenz. “Neighbourhood Semantics for First-
Order Relevant Logics”. Journal of Philosophical Logic (Forthcoming).

110



On Three-Valued Modal Logics:
from a Four-Valued Perspective

Xinyu Wang, Yang Song and Satoshi Tojo

0. Preliminaries

Various non-classical logics thrive, the most successful ones including three-
valued logic and modal logic. Here immediately arises a natural question: how
can we combine three-valued logic with modal logic into so-called “three-valued
modal logic”? We provide an answer by taking an uncommon detour approach
of interpreting three-valued weak Kleene logic through auxiliary four-valued
logic, so as to obtain a deeper and clearer philosophical insight, which then
guides us to evolve three-valued propositional logic into three-valued modal
logic in a systematical way and spontaneously generates very natural three-
valued semantics suitable for modality □. To demonstrate our method, two
practical example cases are presented and analyzed in detail, with sound and
strongly complete natural deduction proof systems. One case is deontic and
another one is epistemic, both of which are quite interesting and popular topics
in study of modal logic as well as philosophy, and our technique of three-valued
modal logic provides a clean and elegant way to combine deontic or epistemic
notion into temporal logic, without too much complexity to make use of multiple
modalities.

Definition 1. Given a non-empty countable set of propositions P, formula A
in Language 3VL is recursively defined as the following BNF, where p ∈ P:

A ::= p | ¬A | A ∧A | A ∨A

A three-valued valuation model is a function V : P→ {T,U, F}.

Song et al. in [1] devises a novel methodology of interpreting three-valued
propositional logic with the assistance of four-valued propositional logic. Define
a four-valued propositional model as a four-valued valuation function V4 : P→
{T1, F1}×{T2, F2}. The core philosophical idea is that in the finest-grained view,
everything is ultimately two-valued, for example, we can ably pick any one out of
arbitrarily finite many possible values by just asking a series of yes/no questions.
Hence the pair of truth values V4(p) = (ValV4

1 (p),ValV4
2 (p)) ∈ {T1, F1}×{T2, F2}

just represent two different yes/no properties of the “bundled” propositional
letter p, but when we zoom out to a courser-grained view, resolution decreases
and p blurs so as to look like one solitary three-valued propositional letter. Thus,
the heart of the whole story settles on semantics of these two two-valued truth
values, as well as a “compression” function fC : {T1, F1}×{T2, F2} → {T,U, F}.

As for the case of weak Kleene logic, we let ValV4
1 behave classically:

ValV4
1 (¬A) = T1 ⇐⇒ ValV4

1 (A) = F1

ValV4
1 (A ∧B) = T1 ⇐⇒ ValV4

1 (A) = T1 and ValV4
1 (B) = T1

ValV4
1 (A ∨B) = T1 ⇐⇒ ValV4

1 (A) = T1 or ValV4
1 (B) = T1
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We let ValV4
2 behave False-infectiously:

ValV4
2 (¬A) = F2 ⇐⇒ ValV4

2 (A) = F2

ValV4
2 (A ∧B) = F2 ⇐⇒ ValV4

2 (A) = F2 or ValV4
2 (B) = F2

ValV4
2 (A ∨B) = F2 ⇐⇒ ValV4

2 (A) = F2 or ValV4
2 (B) = F2

We let fC(T1, T2) = T , fC(F1, T2) = F , and fC(T1, F2) = fC(F1, F2) = U .

The advantage of this four-valued interpretation is straightforward: with its
assistance, we can easily expand three-valued propositional logic onto three-
valued modal logic, with ample confidence to philosophically justify our choice
of definition for modality □’s three-valued semantics, since we already have a
good intuition about how □ may act upon a two-valued truth value.

1. Case I Deontic Three-Valued Modal Logic
Definition 2. Given a non-empty countable set of propositions P, formula A
in Language 3VML is recursively defined as the following BNF, where p ∈ P:

A ::= p | ¬A | A ∧A | A ∨A | □A

A three-valued Kripke model M is a triple (S,R, V ) where:

• S is a non-empty set of possible worlds.

• R ⊆ S × S is a binary relation on S.

• V : S ×P→ {T,U, F} is a three-valued valuation function.

Suppose A is any 3VL-formula, for its first two-valued truth value ValV4
1 (A),

T1 means the agent is obligated to do A, and so F1 means the agent does not
have to do A; for its second two-valued truth value ValV4

2 (A), T2 means the
agent is allowed to do A, and so F2 means the agent is forbidden to do A.
Thus fC(T1, T2) = T means the agent must do A, fC(F1, T2) = F means the
agent can either do A or not do A, and fC(T1, F2) = fC(F1, F2) = U means
the agent must not do A since ethically speaking, an immoral deed is afterall
immoral even if it is also an obligation, for example, a soldier kills an enemy on
the battlefield. Further we designate a temporal interpretation to modality □
in Language 3VML, then semantics of □ can be assigned as the following:

1. At any possible world, ValV4
1 (□A) = T1 iff on all successors ValV4

1 (A) = T1,
because that the agent must keep doing A all the time in the future is the
same as that at any time in the future the agent must be doing A.

2. At any possible world, ValV4
2 (□A) = T2 iff on all successors ValV4

2 (A) = T2,
because that the agent is allowed to keep doing A all the time in the future
is the same as that at any time in the future the agent is allowed to do A.

The above four-valued semantics can be mapped down to three-valued seman-
tics:

ValMI (s,□A) =


T, if ∀sRt,ValMI (t, A) = T

U, if ∃sRt,ValMI (t, A) = U

F, otherwise

2. Case II Epistemic Three-Valued Modal Logic
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Suppose A is any 3VML-formula, for its first two-valued truth value ValV4
1 (A),

T1 means objectively A is true and so F1 means A is false, just as classical
two-valued logic; for its second two-valued truth value ValV4

2 (A), T2 means the
agent understands A, and so F2 means the agent does not understand A. Thus
fC(T1, T2) = T means the agent understands A is true, fC(F1, T2) = F means
the agent understands A is false, and fC(T1, F2) = fC(F1, F2) = U means
the agent does not understand A since under such a circumstance, it is sheer
nonsense for the agent to talk about truth value of some statement that he does
not even understand at all. Further we designate a temporal interpretation to
modality □ in Language 3VML, then semantics of □ can be assigned as the
following:

1. At any possible world, ValV4
1 (□A) = T1 iff on all successors ValV4

1 (A) = T1.

2. At any possible world, ValV4
2 (□A) = T2 iff on the very same possible

world ValV4
2 (A) = T2, because understanding a sentence depends solely on

status quo, regardless whether the sentence itself talks about past, present
or future.

Moreover, it can be reasonably assumed that the agent never forgets his knowl-
edge [2], namely, the following restriction should be put onto the Kripke model:

3. For any propositional letter p ∈ P, at any possible world if ValV4
2 (p) = T2,

then on all successors ValV4
2 (p) = T2.

This restriction can be mapped down as: a three-value Kripke model is a three-
valued Kripke model–II, iff for any s ∈ S and any p ∈ P, V (s, p) = U ⇒
∀tRs, V (t, p) = U . Within the class of three-valued Kripke models–II, the above
four-valued semantics can be mapped down to three-valued semantics:

ValMII

II (s,□A) =


T, if ValMII

II (s,A) ̸= U and ∀sRt,ValMII

II (t, A) = T

U, if ValMII

II (s,A) = U

F, otherwise
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