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Global dynamics of healthy and cancer cells

competing in the hematopoietic system

May 8, 2020

Morten Andersen, Hans C. Hasselbalch, Lasse Kjær, Vibe Skov, Johnny T. Ottesen

Abstract

Stem cells in the bone marrow differentiate to ultimately become mature, functioning1

blood cells through a tightly regulated process (hematopoiesis) including a stem cell niche2

interaction and feedback through the immune system. Mutations in a hematopoietic stem3

cell can create a cancer stem cell leading to a less controlled production of malfunctioning4

cells in the hematopoietic system. This was mathematically modelled by Andersen et al.5

(PLoS ONE, 12 (2017), pp. 1-18) including the dynamic variables: healthy and cancer6

stem cells and mature cells, dead cells and an immune system response. Here, we apply a7

quasi steady state approximation to this model to construct a two dimensional model with8

four algebraic equations denoted the simple cancitis model. The two dynamic variables are9

the clinically available quantities JAK2V617F allele burden and the number of white blood10

cells. The simple cancitis model represents the original model very well. Complete phase11

space analysis of the simple cancitis model is performed, including proving the existence and12

location of globally attracting steady states. Hence, parameter values from compartments13

of stem cells, mature cells and immune cells are directly linked to disease and treatment14

prognosis, showing the crucial importance of early intervention. The simple cancitis model15

allows for a complete analysis of the long term evolution of trajectories. In particular,16

the value of the self renewal of the hematopoietic stem cells divided by the self renewal of17

the cancer stem cells is found to be an important diagnostic marker and perturbing this18

parameter value at intervention allows the model to reproduce clinical data. Treatment19

at low cancer cell numbers allows returning to healthy blood production while the same20

intervention at a later disease stage can lead to eradication of healthy blood producing21

cells.22

Assuming the total number of white blood cells is constant in the early cancer phase23

while the allele burden increases, a one dimensional model is suggested and explicitly solved,24
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including parameters from all original compartments. The solution explicitly shows that25

exogenous inflammation promotes blood cancer when cancer stem cells reproduce more26

efficiently than hematopoietic stem cells.27

1 Introduction28

Production of blood cells is denoted hematopoiesis. In the bone marrow reside the hematopoi-29

etic stem cells (HSC) that differentiate through multiple cell divisions into mature cells30

(MC) such as neutrophils, platelets, and red blood cells [40]. The number of human HSC31

has been estimated to be of the order of 104−105 each dividing every 25th to 50th week [6],32

[38]. An order of magnitude of 1011 mature blood cells are produced daily [68], correspond-33

ing to millions per second, equivalent to 10 kg per year [43]. Clearly, a tight regulation of34

blood cell production is crucial and disturbances to this regulation may be severe.35

Mathematical modelling has a prominent role in the study of hematopoiesis and its36

disorders and may be addressed from various areas of applied mathematics such as ordinary37

differential equations (ODE) [20, 66, 46, 45, 59], partial differential equations (PDE) [58,38

39, 28], delay differential equations [43, 3] or stochastic models [13, 12, 67, 34]. Böttcher39

et al. [5] investigate replicative capacity of progenitors and differentiated cells and use an40

ODE-model to investigate the cellular aging based on data for telomere lengths and discuss41

implications for chronic myeloid leukemia. This approach relies on a discrete age structure,42

whereas for example Doumic et al. [14] consider a continuous age structure including stem43

cell dynamics, naturally leading to a PDE-formulation. Ashcroft et al. [2] focus on stem44

cell dynamics and use stochastic modelling to investigate wild type and mutant stem cells45

migrating back and forth to the blood stream and calibrate the model based on murine46

data.47

Mutations in the DNA of the stem cells may be uncritical for hematopoiesis (neu-48

tral/passenger mutations) or they may be critically disturbing (driver mutations), giv-49

ing rise to blood cancer characterized by an overproduction of malfunctioning mature50

cells - so-called transformed cells, which increase the risk of thrombosis [29]. Of spe-51

cial interest is the BCR-ABL1 kinase translocation (the Philadelphia chromosome) as a52

driver for chronic myeloid leukemia, which has been studied using mathematical modelling53

[44, 62, 65, 4, 15, 16, 32, 36, 49, 48, 56, 57]. However, the focus of the present paper is the54

type of blood cancers denoted Philadelphia-negative myeloprofilerative neoplasms (MPNs)55

including essential thrombocytosis, polycythemia vera and primary myelofibrosis. These56

are stem cell disorders evolving on a time scale of years characterized by acquired few driver57

mutations, where JAK2V617F (JAK2 ) is the most common [60].58

Few previous studies have addressed mathematical modelling of human MPNs. Zhang59

et al. [74] recently investigated a model of MPNs with inflammation as a fixed, constant60

input. Andersen et al. [1] proposed a more comprehensive model of human MPN develop-61

ment that is the starting point for the present paper. JAK2 mutated cells are explicitly62
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included at stem cell and mature cell level. As dynamical variables we include hematopoi-63

etic and cancer stem cells that battle through a stem cell niche interaction, hematopoietic64

and cancer mature cells, dead cells and inflammation level. This allows for investigation65

of several intricate couplings: How does the population of hematopoietic and cancer stem66

cells evolve and interact and how does this depend on the remaining part of the system? Is67

cancer development aligned with development of increasing inflammation and vice versa,68

is increasing inflammation positively or negatively affecting cancer progression? Which69

mechanisms should be altered to stop further disease progression or ultimately cure the70

patient? The long term behaviour of trajectories is investigated by a thorough analysis71

of attractors of the system elucidating conditions and intervention strategies for cancer72

escape, elimination, or equilibrium. In [51] the model is extended with T-cell response.73

Here, we disregard this extension to allow for analytical investigation.74

Section 2 presents the basic Cancitis model originally proposed in [1]. A useful quasi-75

steady state approximation appears in section 2.1. In section 2.2 the system is transformed76

into the clinically relevant variables and the equations are scaled and a comprehensive77

analysis of the topology of the dynamics is presented. The model is compared to data and78

discussed in section 3 along with various intervention strategies derived from the analysis of79

the model. The structure of the transformed equations suggests that early cancer dynamics,80

with and without treatment, can be captured by an explicit solution controlled by a single,81

lumped parameter.82

2 Mathematical model of coupled blood production, blood83

cancer and inflammation84

Figure 1 illustrates how hematopoiesis can be maintained on a systemic level. Hematopoi-85

etic stem cells, x0, can self renew where a nonlinear inhibitory feedback accounts for limited86

niche space, resources, and cytokine feedback. Stem cells may also differentiate through87

multiple steps (represented by amplification factor, A) to mature blood cells, x1, here being88

exemplified by the white blood cells (neutrophils). Both cell types may die, and debris of89

the dead cells, a, is eliminated or recycled by the immune system, here lumped together in90

one compartment, s, typically represented by cytokines associated with the immune system91

activity such as IL-1β, IL-1Ra. Il-2R, IL-8, Il-10,IL-12 and C-reactive protein. Excess of92

dead cells leads to increased clearance by immune cells (red arrow). A need for extra or93

fewer mature blood cells is thus mediated through the immune system [1],[51],[64].94

In case of a stem cell mutation such as JAK2, figure 1 may be expanded with a stem95

cell compartment of cancer stem cells, CSC (y0), as well as mutated mature blood cells96

(y1) which is seen in figure 2, with corresponding equations (1), introduced by Andersen et97

al. [1] inspired by the models of chronic myeloid leukemia by Dingli and Michor [10] and98

by Stiehl et al. [61].99

The introduction of mutated cells implies a competition at stem cell level where the100
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Figure 1: Blood production in a healthy individual is regulated by hematopoietic stem
cells (x0) that self renew with rate rx regulated by a stem cell niche feedback, φ(x0) and
cytokine feedback (red arrow from s compartment) or differentiate with rate ax in multiple
steps (illustrated by amplification A) to ultimately becoming hematopoietic mature cells
(x1). HSC die with rate dx0 and mature blood cells die with rate dx1. Dead cells (a) are
engulfed by the immune system that here is pooled together in one compartment (s) that
stimulates clearing of dead cells with rate ea. Presence of dead cells stimulate immune
cells with rate rs. Endotoxins, smoking and other environmental factors may add to the
inflammatory response, thus we add such a term (characterized by the lightning symbol).
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HSC and CSC compete for space and nutrients in the bone marrow niche. Hematopoietic101

stem cells are characterized by a self renewal rate, rx, death rate, dx0, and differentiation102

into progeny, ax. An inhibitory feedback, φx(x0, y0), from the stem cell niche takes into103

account the limited space and nutrient supply and the competition between HSC and104

CSC. Inflammation stimulates self renewal of stem cells [33] which is motivated by death105

of mature healthy cells and provides a demand for replacement by new ones. Hence, the106

effective self renewal is chosen as rxφx(x0, y0)s. Finally, HSC may mutate to become107

CSC with rate rm. The chance of mutation is believed to increase with inflammation108

[26, 24, 9, 8, 37, 27, 71, 69, 72, 74, 22, 23] justifying an effective mutation rate being rms.109

Proliferating stem cells go through a sequence of cell divisions to ultimately become110

mature, differentiated cells. As we do not account for all intermediate division steps, the111

growth rate of mature blood cells is ax multiplied with amplification factor, Ax. The112

mature cells undergo apoptosis with rate dx1 . Differential equations for CSC and cancer113

mature cells are described similar to their healthy counterparts.114

The apoptosis compartment is a collection of all cells that have undergone apoptosis and115

is therefore positively stimulated by cells from other compartments with this destiny and116

negatively affected by clearing by the immune cells, which is happening through a second117

order mechanism - dead cells encountering immune cells are eliminated with a second order118

rate ea.119

The immune system activity level is exemplified by cytokines such as IL 6 or IL 8 that120

are inflammation markers related to hematological malignancies [8]. The complexity of the121

immune system is assumed to be simplified due to a fast immune response compared to122

the remaining dynamics resulting in a single, dynamical variable, s.123

The immune level activity is stimulated by the presence of dead cells and has a self124

elimination proportional to the population size. Further, an exogenous immune stimulation125

is possible through I(t) such as microbial infection and inflammation (e.g. smoking and126

pollution). The resulting differential equations are shown in (1).127

x′0 = (rxφxs− dx0 − ax)x0 − rmsx0 (1a)

x′1 = axAxx0 − dx1x1 (1b)

y′0 = (ryφys− dy0 − ay) y0 + rmsx0 (1c)

y′1 = ayAyy0 − dy1y1 (1d)

a′ = dx0x0 + dy0y0 + dx1x1 + dy1y1 − eaas (1e)

s′ = rsa− ess+ I(t) (1f)

φx = φx(x0, y0) =
1

1 + (cxxx0 + cxyy0)2 (1g)

φy = φx(x0, y0) =
1

1 + (cyxx0 + cyyy0)2 . (1h)

128
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As the model is inspired by Dingli and Michor [10], the default parameter values should129

be comparable to theirs. The cell numbers are chosen as typical numbers for a human.130

Prior to the first cancer stem cell, the model should be in steady state with 1010 mature131

blood cells (the neutrophil count, similar approach as in [61]), and 104 HSC which is a132

compromise between different reported values [21], [19], [61], [63], [10]. For a lifetime of133

one week in tissue, we chose dx1 = 0.1 per day [52]. The effective self renewal of stem cells134

rxφxs is chosen to match cell division once per year.135

The inflammatory level, s, is an abstract, scalable quantity whose progression which136

correlate with the inflammation markers IL-1β, IL-1Ra. Il-2R, IL-8, Il-10,IL-12 and C-137

reactive protein. Production of dead cells are correlated with plasma lactic dehydrogenase,138

see [1] including supplementary material for further details.139

We expect ry > rx for a blood cancer to develop, typically of measurable size after140

5-10 years. For simplicity, we let unknown cancer cell parameter values equal their healthy141

counterpart. To satisfy the above conditions, the default parameter values in table 1 are142

obtained. For further details on parameter estimation for this model, see [1].143

The mutant rate is set to default value 2 ·10−8 such that expansion of CSC is driven by144

mutations for CSC-values less than 1 and the CSC expansion is dominated by self renewal145

for CSC larger than 1. As the mutation rate increases with inflammation [41], [25] the146

effective mutation rate is included as rms. In the further analysis we both investigate the147

effect of a continuous mutation corresponding to rm > 0 and to a single event mutation148

corresponding to initializing the model with a single cancer cell but letting rm = 0.149

Parameter Value Unit Parameter Value Unit

rx 8.7 · 10−4 day−1 ry 1.3 · 10−3 day−1

ax 1.1 · 10−5 day−1 ay 1.1 · 10−5 day−1

Ax 3.7 · 1010 - Ay 3.7 · 1010 -

dx0 2 · 10−3 day−1 dy0 2 · 10−3 day−1

dx1 0.1 day−1 dy1 0.1 day−1

cxx 7.5 · 10−5 - cyy 7.5 · 10−5 -

cxy cxx - cyx cyy -

es 2 day−1 rs 3 · 10−4 day−1

ea 1.6 · 106 day−1 I 7 day−1

rm 0 or 2 · 10−8 day−1

Table 1: Default parameter values of model (1) given as total cells per human (a male of
weight 70 kg).
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Figure 2: The hematopoiesis-cancer-inflammation model consists of six cell populations;
the hematopoietic stem cells (HSC), the hematopoietic mature cells (HMC), the cancer
stem cells (CSC), and the cancer mature cells (CMC), dead cells and cytokines. The
mechanisms described in figure 1 are included also for cancer cells. HSC mutates with rate
rm to become CSC. The stem cell niche feedbacks, φx and φy now depend on both CSC
and HSC to comply with the competition for space and growth signals.
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2.1 The simple cancitis model150

The dynamics of cytokine regulation is fast compared to blood production [65]. Further-151

more, white blood cells in the blood stream have a lifetime of six hours [70] to a week152

[52], while hematopoietic stem cells divide about once per year [11]. Therefore, we insist153

on mature cells and immune cells to be quickly equilibrated with the stem cell dynamics154

leading to the quasi steady state assumption155

x′1 = y′1 = a′ = s′ = 0 , (2)

and with constant I making the system autonomous.156

This leads to a two dimensional coupled ode-system, the simple Cancitis model (see
appendix 4 for detailed derivation)

x′0 = (rxφxs− dx0 − ax)x0 − rmsx0 (3a)

y′0 = (ryφys− dy0 − ay) y0 + rmsx0 (3b)

x1 =
axAx
dx1

x0 (3c)

y1 =
ayAy
dy1

y0 (3d)

s =
I

2es
+

√(
I

2es

)2

+
rs (axAx + dx0)

eaes

(
x0 +

ayAy + dy0

axAx + dx0
y0

)
(3e)

a = − I

2rs
+
es
rs

√(
I

2es

)2

+
rs (axAx + dx0)

eaes

(
x0 +

ayAy + dy0

axAx + dx0
y0

)
(3f)

φx = φx(x0, y0) =
1

1 + (cxxx0 + cxyy0)2 (3g)

φy = φx(x0, y0) =
1

1 + (cyxx0 + cyyy0)2 . (3h)

Allowed initial values of (x0, y0) belong to D1 = R+ ∪ {0} × R+ ∪ {0}. The parameter157

values are non negative so D1 is invariant to the flow defined by equation (3).158

Using default parameter values, system (3) is an excellent approximation to system159

(1) - see figure 3. To test the robustness, parameter values and initial conditions are160

varied and 100 simulations were performed. All initial conditions and parameters (except161

rx, dx1, Ax, es) are chosen from a normal distribution with mean given by the default value162

and standard deviation being 25% of the default value. If a negative value is sampled,163

then the value is discarded and a new sample is taken. The parameters rx, dx1, Ax, es164

are then chosen such that the system is initiated at the hematopoietic steady state for165

mutation rate rm = 0 and no initial cancer cells present. The full model and the simple166

model are evaluated daily for 80 years. The difference for each variable, x0, x1, y0, y1, a, s167
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Figure 3: Comparison of the full model (1) and the simple model (3) using default param-
eter values. Blue curve is the number of hematopoietic stem cells, red curve is number of
cancer stem cells using the full model. Grey curves are the corresponding quantities in the
reduced model.

is computed and normalized by the initial value except y0 and y1 which are normalized168

by their hematopoietic counterpart. The maximum distance is then computed as the169

maximum deviation i.e. using the L∞ norm. Due to the normalization, the distance is a170

dimension free number. The distance is less than 0.004 for all variables for all simulations,171

which means there is no visual difference in plots such as observed in figure 3. Hence, the172

difference between the full and simple model scaled by the baseline value is at any point in173

time less than one percent so the reduced model is a good approximation to the full model174

in all investigated cases.175

2.2 Reformulating the simple model using the total white blood cells176

and JAK2 allele burden177

The simple model can be formulated as a closed system of x1 and y1 using the proportion-
ality between x0 and x1 and between y0 and y1. Excluding (x1, y1) = (0, 0) we can define
the coordinate transformation D1 \{(0, 0)} → R+× [0, 1], (x1, y1)→ (z1, z2) where z1 ∈ R+

is the total number of white blood cells and z2 ∈ [0, 1] is the JAK2 allele burden. Thus we
exclude the trivial possibility of having no mature cells corresponding to z1 = 0.

z1 = x1 + y1 (4a)

z2 =
y1

x1 + y1
(4b)
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with inverse mapping

x1 = z1(1− z2) (5a)

y1 = z1z2 . (5b)

This means that the clinically, measurable quantities are explicitly modelled as the only
dynamic variables. Some parameters are difficult to assess, so for simplicity some param-
eters of the healthy cells and the cancer cells are chosen to be equal. Following [1] we
investigate the case with the constraints

ax = ay (6a)

Ax = Ay (6b)

dx0 = dy0 (6c)

dx1 = dy1 (6d)

cxx = cyy . (6e)

An analysis relaxing equation (6) is omitted here due to the parsimonuous principle and178

lack of data.179

The equations of total number of white blood cells and allele burden from equation (4)180

and equation (3) then simplifies to181

z′1 = z1

(
(rx + z2 (ry − rx)) φ̃s̃− dx0 − ax

)
(7a)

z′2 = (1− z2)
(
z2 (ry − rx) φ̃+ rm

)
s̃ (7b)

φ̃ =
1

1 +
(
cxx

dx1
axAx

)2
z2

1

(7c)

s̃ =
I

2es
+

√(
I

2es

)2

+
dx1
axAx

rs (axAx + dx0)

eaes
z1 . (7d)

Then hypotheses based on clinical data can be directly investigated in the model and vice182

versa that features in the model may give rise to hypotheses that may be tested from183

appropriate clinical data. We will study system (7) with z1 ≥ 0 and 0 ≤ z2 ≤ 1. In184

particular, we will allow z1 = 0 in the subsequent analysis even though the coordinate185

transformation (x1, y1) ↔ (z1, z2) is not defined here. The differential equations (7) can186

easily be defined for z1 = 0, and the stability of fixed points on the line z1 = 0 provide187

information on phase space for z1 > 0 where the coordinate transformation is well defined.188

For z2(0) ∈ [0; 1], z2(t) stays within this interval as (1 − z2) is a factor in z′2 and for189

z2 = 0, z′2 ≥ 0. From equation (7a) we see that φ̃s̃ is going to 0 for z1 approaching infinity190

implying there exists a number M such that for z1 > M then ż1 < 0. For non negative191

initial conditions, z1(t) stays non negative (as z1 = 0 is a z1 null cline). Therefore, the192

compact set [0,M ]× [0, 1] is an attracting trapping region for the system.193

10



2.3 Scaled equations194

A scaled form of equation (7) is now formulated to facilitate further analysis. We introduce195

a constant z̄ (value to be determined) and a variable, Z1, such that196

z1 = z̄Z1 . (8)

Similarly, we introduce the dimensionless time τ by197

t = t̄τ , (9)

where t̄ is a constant to be determined. Then, differential equations of Z1 and z2 can be198

formulated from equation (8), equation (9) and equation (7) with the notation ż = dz
dτ .199

From the chain rule and equation (8)200

Ż1 =
t̄

z̄
z′1 . (10)

Inserting the expression for z′1 from equation (7a) along with equation (8) we obtain201

Ż1 = t̄Z1

(
(rx + z2 (ry − rx)) φ̃s̃− dx0 − ax

)
(11)

with202

φ̃s̃ =
I

2es

1 +
√

1 + 4esdx1rs
axAx+dx0
I2axAxea

z̄Z1

1 +
(
cxxdx1
axAx

)2
z̄2Z2

1

(12)

To simplify the denominator, we choose203

z̄ =
axAx
cxxdx1

(13)

denoting the lumped parameter expression in the numerator by β1,204

β1 = 4
esrs

cxxeaI2
(axAx + dx0) , (14)

equation (11) becomes205

Ż1 = t̄Z1

(
rx

I

2es

(
1 + z2

(
ry
rx
− 1

))
1 +
√

1 + β1Z1

1 + Z2
1

− dx0 − ax
)
. (15)

By choosing206

t̄ =
2es
rxI

, (16)
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the first term is simplified, and we may conveniently introduce two lumped parameters, β2

and β3 by

β2 =
ry
rx
− 1 (17a)

β3 = 2
es
rxI

(dx0 + ax) . (17b)

For ż2 the equation then becomes207

ż2 = t̄z′2 = (1− z2)
1 +
√

1 + β1Z1

1 + Z2
1

(
β2z2 +

rm
rx

(
1 + Z2

1

))
(18)

which suggests a fourth lumped parameters as208

β4 =
rm
rx

. (19)

In summary, we obtain the system

Ż1 = Z1

(
(1 + β2z2)

1 +
√

1 + β1Z1

1 + Z2
1

− β3

)
(20a)

ż2 = (1− z2)
1 +
√

1 + β1Z1

1 + Z2
1

(
β2z2 + β4

(
1 + Z2

1

))
, (20b)

with new parameters given by relations to the old ones

β1 = 4
esrs

cxxeaI2
(axAx + dx0) (21a)

β2 =
ry
rx
− 1 (21b)

β3 = 2
es
rxI

(dx0 + ax) (21c)

β4 =
rm
rx

. (21d)

The equations (20) describe the mature cells (Z1) in reduced units (equation (8)) and allele209

burden (z2) progression over time, with parameters related to stem cell, mature cell and210

immune system mechanisms. Parameters are constrained by β1, β3 > 0 and β4 ≥ 0 and211

β2 ≥ −1, with default parameter values in table 2 computed from the default parameters of212

the full model, table 1. The parameter β2 is related solely to the stem cell compartments,213

with negative values if rx > ry and positive values if rx < ry. The parameter β4 is the214

mutation rate relative to the hematopoietic self renewal rate. The value of this parameter215

will also be investigated when equal to zero, to allow for a one hit mutation (by setting the216

initial condition to one cancer cell) instead of considering a continuous mutation rate. The217

12



β1 β2 β3 β4

0.16 0.48 1.32 2.3·10−5

Table 2: Default parameter values of system (21).

parameters β1 and β3 provide nontrivial connection between original system parameters218

related to the immune cells, dead cells, stem cells and mature cells. β3 is the product of two219

lumped parameters that are important for cell exhaustion namely a loss versus production220

term on stem cell level, ax+d0
rx

, and a loss versus production term at immune cell level, es
I .221

Regarding β1, the presence of axAx implies that an increase in proliferation signal222

increase the β1 - value. An increased strength of the niche feedback (increasing cxx) leads223

to a decreased β1. Except for cxx, the original parameters entering β1 relates to the value224

of apoptotic cells and immune cells for a given number of stem cells - see equation (3e) and225

(3f), as a ratio between effects that increase a and s levels namely rs
eaes

(axAx + dx0) and226 (
I
es

)2
.227

2.4 Phase space analysis228

The reduction from six differential equations to two has several useful implications. The229

order of the phase space is reduced from six to two allowing visualizations using the phase230

plane giving an overview of trajectories for many initial conditions simultaneously. The231

two-dimensional dynamics is quite restricted since trajectories cannot cross as the existence232

and uniqueness theorem applies. In the reduced model, the parameters of the full system233

are grouped in the parameters β1, ..., β4 showing the minimum number of parameters giving234

a functional dependence on the original parameters that otherwise would have shown up as235

correlated. The simplicity of system (20) implies that significant analysis can be conducted236

which is the focus of the current section. To categorize the steady states satisfying Ż1 =237

ż2 = 0 we employ the following vocabulary:238

• A hematopoietic steady state is defined as having z2 = 0.239

• A cancer steady state is defined as having z2 = 1.240

• A co-existing steady state is defined as having 0 < z2 < 1.241

A cancer steady state always exists with value (Z1, z2) = (0, 1). For β4 = 0 also (Z1, z2) =242

(0, 0) is a trivial steady state solution.243

2.4.1 Analytic bound on trapping region244

The existence of a trapping region is already established. An analytic expression of an245

upper bound of Z1 at the trapping region boundary is formulated. Consider equation246

(20a) for Z1 ≥ 1 implying 0 < Z−1
1 ≤ 1,247

13



(1 + β2z2)
1 +
√

1 + β1Z1

1 + Z2
1

− β3 ≤ (1 + |β2|)
Z−1

1 +
√
Z−2

1 + β1Z
−1
1

Z−1
1 + Z1

− β3

≤ (1 + |β2|)
1 +
√

1 + β1

Z1
− β3 . (22)

Solving for Z1 requiring the latter expression being negative, an upper bound on the248

trapping region in the Z1 direction is obtained,249

M1 = max{1, (1 + |β2|)
1 +
√

1 + β1

β3
} = (1 + |β2|)

1 +
√

1 + β1

β3
, (23)

For β2 < 0, |1 + β2z2| ≤ 1, providing the smaller bound250

M2 = max{1, 1 +
√

1 + β1

β3
} . (24)

Hence, an attractive trapping region is M1 × [0, 1] for β2 > 0 and M2 × [0, 1] for β2 < 0.251

This implies that solutions initially located outside the trapping region is attracted to it,252

and any solution once in the trapping region will stay there. A consequence of this is that253

the trajectories exist globally in time [55].254

The possible dynamics in bounded, two-dimensional flow is very limited as the only255

attractors are fixed points or limit cycles. We restate the Poincaré Bendixon theorem as256

stated in for example [54].257

Theorem 1 (Poincaré-Bendixon) Given a system of ordinary differential equations dx
dt =258

F (x), where x is two dimensional, let x(t) represent a solution trajectory of the system259

which is bounded. Then either x(t) converges as t → ∞ to an equilibrium point of the260

system, or it converges to a periodic cycle.261

Remark 1 Due to index theory [47], any periodic solution in a two-dimensional phase262

space must have at least one fixed point in its interior. Therefore, if no coexistence steady263

states exist, then no limit cycles can exists. From monotonicity properties of equation264

(20b), ż2 = 0 only allows for coexistence points and limit cycles if β2 < 0 and β4 > 0 i.e.265

if HSC self renewal dominates CSC self renewal and new CSC are continuously produced266

by mutations.267

All steady state solutions are roots of a polynomial of at most fifth order which easily268

can be solved numerically using standard software. As an example, consider the nontrivial269

cancer steady state satisfying z2 = 1 and Z1 being the solution of270

0 =

(
(1 + β2)

1 +
√

1 + β1Z1

1 + Z2
1

− β3

)
(25)
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corresponding to271 √
1 + β1Z1 =

β3

1 + β2

(
1 + Z2

1

)
. (26)

Squaring this expression gives a fourth order polynomial.272

0 =

(
β3

1 + β2

)2

Z4
1 + 2

(
β3

1 + β2

)2

Z2
1 − β1Z1 +

(
β3

1 + β2

)2

− 1 . (27)

All roots can then easily be computed numerically for a given set of parameter values.273

Then, the relevant, physiological solutions must be real, satisfy Z1 > 0 and fulfill equation274

(26). This approach implies that all critical points can be numerically computed. The275

local stability of a steady state can then be computed by evaluating the eigenvalues of the276

Jacobian at the steady state, provided that the steady state is hyperbolic. Some phase277

planes corresponding to different parameter values are shown in figure 4. The following278

analysis address the typical phase plane topologies depending on the parameter values.279

2.4.2 Hematopoiesis280

We first consider hematopoiesis (figure 1) by expecting a stable, positive equilibrium of281

Ż1 = Z1

(
1 +
√

1 + β1Z1

1 + Z2
1

− β3

)
. (28)

Defining282

F (Z1) =
1 +
√

1 + β1Z1

1 + Z2
1

, (29)

a fixed point of Ż1 for non zero Z1 then requires F (Z1) − β3 = 0. The monotonicity283

properties of F are important for the further analysis. F is an increasing function of Z1284

for small, positive values, then it has a unique maximum at Z1 = Z̃1, and is decreasing for285

Z1 > Z̃1. F (0) = 2, and F goes to 0 for large Z1. This implies that for β3 < 2, a unique,286

positive solution exists to F (Z1)−β3 = 0. Since F (0)−β3 > 0, then F (Z1)−β3 cross zero287

with negative slope so the steady state is stable [47].288

For 2 < β3 < F (Z̃1) exactly two steady state positive solutions exist. The first steady289

state occurs where F (Z1)− β3 has positive slope, causing the steady state to be unstable,290

while the steady state with largest Z1 value occurs where F (Z1) − β3 has negative slope,291

causing the steady state to be stable. For β3 > F (Z̃1) no steady state solutions exists. A292

sufficient criterion for this is β3 > 1 +
√

1 + β2
1 . The parameter region allowing for two293

hematopoietic steady states is small. Biologically, an upper bound on β3 is meaningful for294

hematopoisis as stem cell exhaustion is expected for large parameters related to removal295

of cells, (dx0 + ax)es and small parameters related to production of cells, rxI. For the296

remaining part of the paper, we will focus on β3 < 2 as this guarantees existence of297

a stable fixed point of equation (28). For the default parameter values this criterion is298
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Figure 4: Phase space of equation (20) for β2 > 0. Open blue circles are unstable steady
states with both eigenvalues having positive real part, green open circles are saddles, closed
circles are stable steady states, grey curves are null clines of Ż1, red curves are null clines of
ż2. Default parameters are used in (a) where a cancer steady state attracts all trajectories
with Z1(0) > 0, satisfying lemma 1. In (b), default parameter values are used except
β4 = 0, so lemma 2 applies showing a cancer steady state attracts trajectories with initial
conditions Z1(0) > 0 and 0 < z2(0) < 1.

fulfilled. For β3 < 2 the unique, positive root of F (Z1) − β3 = 0 is denoted Z̄1, which299

has value 0.75 for default parameter values. An increase in β1 shifts the equilibrium blood300

cell count to higher values and an increase in β3 shifts the equilibrium blood cell to lower301

values as β3 acts as an effective death rate of mature cells. In terms of original parameters302

this means that an increase in rs or Ax increase the equilibrium blood cell number, while303

an increase in cxx or ea decrease the equilibrium blood cell number.304

As Ż1 < 0 for Z1 > Z̄1, [0; Z̄1] × [0, 1] is a trapping region. We now systematically305

investigate the phase plane topologies of equation (20). When possible, the results are306

summarized in lemmas and phase plane figures, which may be conducted for a fast overview307

of the possible dynamics of the model.308

2.4.3 The case β2 > 0309

Consider the case β2 > 0 corresponding to ry > rx. First, we assume β4 > 0, which310

prevents hematopoietic steady states since ż2 > 0 for z2 = 0. In this case, the only zero of311

ż2 is for z2 = 1 i.e. a cancer steady state, hence neither hematopoietic steady states nor312

coexistence points are possible for β2 > 0, β4 > 0 . The criterion Ż1 = 0 with Z1 6= 0 and313

z2 = 1 is314

0 = F (Z1)− β3

1 + β2
, (30)

which has a unique solution for β3 < 2 by similar arguments as for the hematopoiesis315

investigation. Solutions to equation (30) solves316
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0 =

(
β3

1 + β2

)2

Z4
1 + 2

β3

1 + β2

(
β3

1 + β2
− 1

)
Z2

1 − β1Z1 +
β3

1 + β2

(
β3

1 + β2
− 2

)
. (31)

The first coefficient is positive and the third is negative. Hence, regardless of the sign of317

the second coefficient, there is one sign change from the first to the third coefficient. As318

β2 ≥ 0, 0 < β3 < 2 then β3
1+β2

− 2 ≤ β3 − 2 < 0, hence the last term is negative, and the319

sequence of coefficients in equation (31) has one sign change for β2 ≥ 0 and β3 < 2, so320

there is a unique solution to Ż1 = 0 for Z1 > 0 in this case. Denote this value by Z∗1 . In321

summary, for β2 ≥ 0, β4 > 0 and 0 < β3 < 2 there are two fixed points: (0, 1) and (Z∗1 , 1).322

Consider equation (20a) for any z2 ∈ [0; 1]:323

lim
Z1→0+

Ż1

Z1
= 2 (1 + β2z2)− β3 ≥ 2− β3 > 0 . (32)

This implies that the fixed point (0, 1) is unstable and that we may choose any small ε > 0324

such that for Z1 = ε then Ż1 > 0 for any z2 ∈ [0; 1]. The trapping region325

T1 = [ε;M1]× [0; 1] (33)

only contains one fixed point, namely (Z∗1 , 1). As there can be no limit cycles, we have326

proved the following lemma.327

Lemma 1 For β2 ≥ 0, β4 > 0 and β3 < 2 there are two fixed points of equation (20), (0, 1)328

and (Z∗1 , 1) . (Z∗1 , 1) attracts all solutions with Z1(0) > 0.329

For β2 > 0 and β4 = 0 there are additional two critical points, at (0, 0) and the330

hematopoietic steady state (Z̄1, 0). As ż2 > 0 for any 0 < z2 < 1 these two critical points331

are unstable. No coexistence points are possible. For any small ε > 0 we define the set332

T2 = [ε;M1]× [ε; 1] , (34)

which is a trapping region. (Z∗1 , 1) is the only attractor in T2 and hence globally stable333

within T2.334

The line z2 = 0 is invariant to the flow, and trajectories on this line are attracted to335

(Z̃1, 0) by similar reasoning as in section 2.4.2.336

Lemma 2 For β2 > 0, β4 = 0 and β3 < 2 there are four fixed points of equation (20),337

(0, 0), (0, 1), (Z∗1 , 1), and (Z̄1, 0). The cancer steady state (Z∗1 , 1) attracts all solutions with338

Z1(0) > 0, z2(0) > 0. (Z̄1, 0) attracts trajectories satisfying z2(0) = 0 and Z1(0) > 0.339
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2.4.4 The case β2 = 0 and β4 = 0340

Consider the case β2 = β4 = 0, β3 < 2. The dynamics is very simple as ż2 = 0 i.e. the341

allele burden does not vary with time. The dynamics of Z1 then follows similar dynamics342

as for hematopoiesis, section 2.4.2 i.e. there are two zeros of Ż1, Z1 = 0 and Z1 = Z̄1. For343

any Z1(0) > 0, Z1 approaches Z̄1.344

Disease progression occurs with β2 > 0 leading to a measurable JAK2 allele burden345

which may be altered by a targeted drug leading to β2 = 0 i.e. similar HSC and CSC self346

renewal. In this case, the mature blood cell count will be maintained at a healthy value,347

with a constant proportion of JAK2 cells.348

2.4.5 The case β2 = 0 and β4 > 0349

In this case ż2 is only zero for z2 = 1, and is increasing for z2 ∈ [0, 1). There are two steady350

states, (0, 1) is unstable and (Z̄1, 1) is stable and attracts all solutions with Z1(0) > 0.351

This corresponds to the cancer stem cells dominate due to mutational supply from the352

hematopoietic stem cells.353

2.4.6 The case −1 < β2 < 0 and β4 = 0354

We investigate the case −1 < β2 < 0 corresponding to rx > ry and β4 = 0 i.e no continuous355

mutation rate. Steady states are located at (0, 1), (Z̄1, 0), (0, 1) and there may be additional356

two cancer steady states, related to the monotony properties of F . If β3
1+β2

< 2 or β3
1+β2

=357

F (Z̃) there are two cancer steady states. If 2 < β3
1+β2

< F (Z̃) there are three cancer steady358

states. If β3
1+β2

> F (Z̃) there is only the trivial cancer steady state, (0, 1), see figure 5.359

The former case is symmetric to the case β2 > 0, β4 = 0. For any small ε > 0 the set360

[ε;M1]× [0; 1− ε] is a trapping region, that only contains one steady state, which is on the361

boundary of the set.362

In the remaining cases, [0;M1]×[0; 1−ε] is a trapping region i.e. the flow is repelled from363

the cancer steady states. The trivial steady state (0, 0) is a saddle, with stable manifold364

along the z2 axis, which is also invariant to the flow. Hence, also in this case does (Z̃, 0)365

attract initial conditions in [ε;M1]× [0; 1− ε].366

Lemma 3 For −1 < β2 < 0, β4 = 0 and β3 < 2 the hematopoietic steady state (Z̄1, 0)367

attracts all trajectories with Z1(0) > 0, z2(0) < 1. Unstable steady states are (0, 0), (0, 1)368

and if 2 < β3
1+β2

< F (Z̃) there are additional two unstable cancer steady states.369

2.4.7 The case −1 < β2 < 0 and β4 > 0370

In this case there are no hematopoietic steady states, as ż2 > 0 for z2 = 0. There may be371

zero, one or two cancer steady states, satisfying equation (30). Zeros of ż2 are z2 = 1 or372
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Figure 5: Phase space for −1 < β2 < 0, β4 = 0. In all cases (Z̄1, 0) attracts all trajectories
excluding initial condition Z1(0) = 0 or z2(0) = 1.

z2 = f1(Z1) with373

f1(Z1) = −β4

β2

(
1 + Z2

1

)
. (35)

As f1 is increasing with Z1, we may use equation (24) to get an upper bound on this null374

cline within the Z1 values of the trapping region. Then, f1 has values in [−β4
β2

;−β4
β2

(
1 +

(
1+
√

1+β1
β3

)2
)

]375

within the Z1 values of the trapping region.376

The null clines of Ż1 are Z1 = 0 or z2 = f2(Z1) with377

f2(Z1) =
1

−β2

(
1− β3

F (Z1)

)
(36)

For admissible z2 values 1 > −β2 > β4 > 0 is needed. The Jacobian evaluated at the378

steady state (0,−β4
β2

) is then379

J

(
0,−β4

β2

)
=

[
2 (1− β4)− β3 0

0 2β2

(
1 + β4

β2

)] , (37)

The second eigenvalue is always negative, with corresponding eigen direction being the380

z2 axis. The sign of first eigenvalue 2 (1− β4)−β3 then determines the stability properties.381

By direct calculation, it is easily seen that the steady state is stable if f1(0) > f2(0) and a382

saddle if f1(0) < f2(0) thus proving the following remark.383

Remark 2 A necessary condition for any coexistence steady state is 1 > −β2 > β4 >384

0. This condition is also sufficient for a coexistence point located at the boundary of the385

trapping region (0,−β4
β2

). This steady state is a saddle with stable eigenvector along the386

z2 - axis if 2(1 − β4) − β3 > 0 (corresponding to f1(0) < f2(0)), and a stable node if387

2(1− β4)− β3 < 0 (corresponding to f1(0) > f2(0)).388
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A cancer steady state (Z∗1 , 1) with positive Z∗1 must satisfy f2(Z∗1 ) = 1 which is equivalent389

to F (Z∗1 ) = β3
1+β2

. Linear stability analysis provides knowledge of the type of steady state390

based on f1 and f2 in the generic cases.391

Lemma 4 Let −1 < β2 < 0, β4 > 0, 0 < β3 < 2. If a cancer steady state exists with392

f2(Z∗1 ) = 1 it is393

• a saddle if f ′2(Z∗1 ) > 0 ∧ f1(Z∗1 ) > 1 or f ′2(Z∗1 ) < 0 ∧ f1(Z∗1 ) < 1.394

• an unstable node or focus if f ′2(Z∗1 ) > 0 ∧ f1(Z∗1 ) < 1.395

• a stable node or focus if f ′2(Z∗1 ) < 0 ∧ f1(Z∗1 ) > 1.396

Proof. The proof is based on direct computation of the trace and determinant of the397

Jacobian evaluated at the steady state, providing knowledge of the eigenvalues. If the398

determinant is negative, the steady state is a saddle. If the determinant is positive and399

the trace is positive, the steady state is an unstable node or focus. If the determinant is400

positive and the trace is negative, the steady state is a stable node or focus.401

det (J (Z∗1 , 1)) = −β2Z
∗
1 (1 + β2)F ′(Z∗1 )F (Z∗1 ) (1− f1(Z∗1 )) (38a)

tr (J (Z∗1 , 1)) = Z∗1 (1 + β2)F ′ (Z∗1 )− β2F (Z∗1 ) (1− f1 (Z∗1 )) (38b)

As sign(F ′(Z∗1 )) = sign(f ′2(Z∗1 )) the lemma follows directly.�402

The cases not covered by the lemma require a nonlinear analysis and will not be pursued403

further.404

A coexistence steady state is a point (Ẑ1, ẑ2) satisfying 0 < f1(Ẑ1) = f2(Ẑ1) < 1.405

Lemma 5 If a coexistence point (Ẑ1, ẑ2) exists, then it is a saddle if f ′1(Ẑ1) < f ′2(Ẑ1) and406

stable focus or a stable node if f ′1(Ẑ1) > f ′2(Ẑ1) and f ′2(Ẑ1) < 0.407

Proof. The proof is straight forward computation by evaluating the trace and determinant408

of the Jacobian evaluated at the steady state. Negative determinant implies a saddle, while409

a positive determinant together with negative trace implies both eigenvalues have negative410

real part meaning that the steady state is a stable node or a stable focus.411

det
(
J
(

(Ẑ1, ẑ2)
))

= −β2Ẑ1 (1− ẑ2)F
(
Ẑ1

)2β4Ẑ1F
(
Ẑ1

)
−
β3F

′
(
Ẑ1

)
F
(
Ẑ1

)
 (39)

Then, notice that412

f ′1

(
Ẑ1

)
< f ′2

(
Ẑ1

)
⇔ 2β4Ẑ1F

(
Ẑ1

)
−
β3F

′
(
Ẑ1

)
F
(
Ẑ1

) < 0 (40)
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proving that if (Ẑ1, ẑ2) exists, then it is a saddle if f ′1(Ẑ1) < f ′2(Ẑ1).413

Similarly, det
(
J
(

(Ẑ1, ẑ2)
))

> 0 if f ′1(Ẑ1) > f ′2(Ẑ1), hence eliminating saddle type fixed414

point. As415

tr
(

(Ẑ1, ẑ2)
)

= β3Ẑ1

F ′
(
Ẑ1

)
F
(
Ẑ1

) + β2 (1− ẑ2)F
(
Ẑ1

)
, (41)

the trace is guaranteed to be negative if F ′
(
Ẑ1

)
< 0. Since416

f ′2(Z1) =
β3

−β2

F ′(Z1)

F (Z1)2
, (42)

then a sufficient criterion for negative trace is f ′2

(
Ẑ1

)
< 0 proving the second part of the417

lemma. �418

A case not covered in the lemma is f ′1(Ẑ1) > f ′2(Ẑ1) ∧ f ′2(Ẑ1) > 0. We can rule out419

a saddle point, but the sign of the trace is not known. Perturbing a parameter such that420

the trace changes sign while f ′1(Ẑ1) > f ′2(Ẑ1) prior and after perturbation implies that421

the real part of both eigenvalues shift sign at the same parameter value, suggesting a422

Hopf-bifurcation. This is indeed possible to observe in simulations though this requires an423

unrealistically large β4 value, see figure 10.424

Lemma 6 If f2(Z̃1) > f1(Z̄1) and f1(Z̄1) < 1 then there exists a stable coexistence point425

(Ẑ1, ẑ2) with Z̃1 < Ẑ1 < Z̄1 and ẑ2 < f1(Z̄1) and there are no closed orbits enclosing426

(Ẑ1, ẑ2).427

Proof. Recall that f2 is strictly decreasing for Z1 > Z̃1 and f2(Z̄1) = 0 and f1 is strictly428

increasing. Hence, a unique intersection,
(
Ẑ1, f1(Ẑ1)

)
, between f1 and f2 exists for a429

Ẑ1 bounded above by Z̄1 and below by Z̃1. As 0 < f1(Z1) < 1 for 0 < Z1 < Z̄1, then430

f1(Ẑ1) = ẑ2 ∈ (0, 1). As f ′2(Ẑ1) < 0 and f ′1(Ẑ1) > 0 then (Ẑ1, ẑ2) is a stable steady state by431

lemma 5. To show there can be no closed orbits encircling (Ẑ1, ẑ2), consider figure 6. The432

argument is based on showing existence of a continuum of invariant regions containing the433

steady state point. Notice that for Z̃ < Z1 ≤ Z̄ then f2 is monotone and hence f−1
2 is well434

defined.435

Any closed orbit encircling (Ẑ1, ẑ2) must have an intersection P = (p1, p2) with z2 =436

f2(Z1) for Z1 ∈ (Ẑ1; Z̄1]. Choosing a sufficiently small δ > 0 we construct the box with437

corners (p1 + δ, p2), (p1 + δ, f2(p1 + δ) + δ), (f−1
2 (f2(p1 + δ) + δ) − δ, f2(p1 + δ) + δ)),438

(f−1
2 (f2(p1 + δ) + δ) − δ, p2). Let the normal vector to the box be pointing outwards.439

Consider the line segment of the box spanned by (p1 + δ, p2), (p1 + δ, f2(p1 + δ) + δ). As440

this line segment is to the right of the null cline of Ż1, then Ż1 < 0 everywhere on this line441

segment. As the outward normal of the box is (1, 0) everywhere on this line segment, then442
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(Ż1, ż2) · (1, 0) < 0 showing the flow is pointing inwards to the box. By similar arguments,443

the flow is pointing inwards on the remaining three sides of the box, i.e the box is an444

invariant set. By existence and uniqueness at P the proposed closed orbit contains points445

both inside and outside the box region. However, any trajectory once in the box region446

cannot escape to reconnect at P from outside the box. Hence, there are no closed orbits447

encircling (Ẑ1, ẑ2). �448

Remark 3 If f2(0) > f1(Z̄) and f1(Z̄) < 1 then lemma 6 is fulfilled and there is a449

unique coexistence point with positive Z1 value. This out rules period solutions globally. A450

sufficient criterion for this is451

1

2
(2− β3) > β4

(
1 +

(
1 +
√

1 + β1

β3

)2
)

(43)

together with452

1 > β4

(
1 +

(
1 +
√

1 + β1

β3

)2
)
. (44)

If inequalities (43) and (44) are met then for sufficiently small ε > 0 the set453

T3 = [ε;M1]× [0; 1− ε] (45)

is invariant to the flow, and the only steady state in T3 is the coexistence steady state. By454

the Poincaré Bendixon Theorem this point is then attracting all trajectories in T3 i.e. the455

following lemma is proved456

Lemma 7 For β2 < 0, β3 < 2, β4 > 0, 1
2 (2− β3) > β4

(
1 +

(
1+
√

1+β1
β3

)2
)

, 1 > β4

(
1 +

(
1+
√

1+β1
β3

)2
)

457

a unique, positive, coexistence steady state of equation (20) exists which attracts all trajec-458

tories with Z1(0) > 0, z2(0) < 1.459

Remark 4 If there is one steady state satisfying lemma 6, and any other coexistence steady460

state with positive Z1 value is a saddle, then there are no closed orbits. This is due to index461

theory [47] that disallows a closed orbit solely enclosing one or more saddles.462

Considering again the necessary condition for a coexistence point f1(Z1) = f2(Z1)463

which implies464 √
1 + β1Z1

(
1− β4

(
1 + Z2

1

))
= (β3 + β4)

(
1 + Z2

1

)
− 1 . (46)

Squaring this expression and collection terms of same order, the Z1 - value at the coexis-
tence point must satisfy a fifth order polynomial

0 =− α2α5
2Z1

5 +
(
α4

2 + 2α4α5

)
Z1

4 +
(
−2α2α5

2 + 2α2α5

)
Z1

3

+
(
2α4

2 + 4α4α5 − 2α4

)
Z1

2 +
(
−α2α5

2 + 2α2α5 − α2

)
Z1 + α4

2 + 2α4α5 − 2α4 ,
(47)
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Figure 6: Illustration of no limit cycle when the conditions of lemma 6 are fulfilled. The
red curve is the null cline of ż2, grey curve is the null cline of Z1. Any limit cycle must
enclose a critical point and for the parameter constraints considered, there is exactly one
coexistence steady state (blue dot). Therefore, any limit cycle must intersect the null cline
of Z1, denote such a point P . Construct a rectangular box as shown. At P the flow is
along the z2 - axis hence pointing into the box. As the existence and uniqueness theorem
applies, the trajectory through P consists of points both inside and outside of the box.
However, the box is a trapping region as seen by inspection of the null clines and that Ż1

and ż2 are continuous in Z1 and z2. Therefore, the trajectory through P entering the box
cannot escape it to reconnect with P from outside the box. Hence, there can be no limit
cycle through P , and hence no limit cycle at all.
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Figure 7: Phase space for β2 < 0 small with increasing numerical value, all other parameters
at default values. In (a) β2 = −2 · 10−5, in (b) β2 = −3 · 10−5, and in (c) β2 = −8 · 10−5.
As the two null clines cross, a stable coexistence steady state is created, changing the
stability of the cancer steady state from stable to unstable. For increasing |β2| the stable
equilibrium has decreasing z2 value. The dynamics is a fast attraction to the stable Z1

null cline and the a slower attraction to the stable coexistence steady state / cancer steady
state. As equation (47) is independent of β2, the inner coexistence point (when it exists)
moves parallel to the z2 - axis as β2 is varied.

(a) (b) (c) (d) (e) (f) (g) (h)

β1 5 4 4 2 5 2 2 5
β2 -.2793 -.2793 -.1676 -.1676 -.2793 -.1676 -.1676 -.1816
β3 1.3 1.95 1.95 1.2 1.3 1.74 1.8 1.73
β4 .3313 .1988 .2916 .106 .1 .0133 .0133 .8469

Table 3: Parameter values for figure 8, (a)-(h)

with the constraint that equation (46) must be valid. Then, the z2 value at the coexistence465

point can be computed from equation (35). Notice that equation (47) is independent of β2466

while equation (35) is not. Therefore, perturbing β2 the coexistence point moves parallel467

to the z2 axis, see figure 7. Hence, increasing the self renewal of CSC compared to HSC468

increase the allele burden but not the total blood cell count in this case. The polyno-469

mial formulation of the steady state is easily implemented in e.g. Matlab for numerical470

implementation.471

Possible phase planes for −1 < β2 < 0, β4 > 0, 0 < β3 < 2 are shown in figure 8.472

The different cases are found by investigating the existence and order of z2 = f1(Z1) and473

z2 = f2(Z1) crossing each other and the boundaries. We have found no more than two474

coexistence steady states with positive Z1 value, for a given parameter set of parameter475

values.476
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Figure 8: Phase plane, (Z1, z2), for −1 < β2 < 0, β4 > 0. Corresponding parameter values
are listed in table 3 and 4. In all cases except (i) and (o), there can be no period orbits,
hence the steady states are the only possible attractors. Unhealthy attractors are located
on the lines Z1 = 0 and z2 = 1, while a coexistence steady state with positive Z1 value may
be unhealthy or healthy, for example (f), (g), (n) may be considered healthy conditions for
most initial conditions.
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(i) (j) (k) (l) (m) (n) (o)

β1 20 6 6 8 2 4 20
β2 -.9107 -.1536 -.2000 -.2933 -.2933 -.6984 -.9079
β3 0.3 1.92 1.95 1.85 1.85 1.95 .3
β4 .8469 .1233 .1 .2770 .1325 .0795 .8747

Table 4: Parameter values for figure 8, (i)-(o)

2.4.8 The case β2 = −1, β4 > 0477

This case is similar to 0 > β2 > −1 except there can be no cancer steady states and hence478

will not be elaborated further. The possible topologies are shown in figure 9.479

3 Discussion480

A two dimensional model is presented to investigate the dynamics of cancer and hematopoi-481

etic stem cells and mature cells, immune system activity, and clearing of dead cells, in-482

cluding a nonlinear niche feedback with competition between the two stem cell types. In483

the model the self renewal rates for HSC and CSC are allowed to differ while some other484

parameters being assumed equal for the HSC and CSC dynamics. For a wide range of485

parameter values, analytical insight in the global dynamics is obtained revealing that the486

competition at stem cell level, β2, is crucial for whether hematopoiesis is maintained or487

MPN dominates. In particular, β2 > 0 is a signature of cancer growth out competing488

healthy hematopoietic cells, while β2 < 0 is needed for stable hematopoiesis or a sustained,489

low cancer burden.490

3.1 Elevated JAK2 in patients without MPN diagnosis491

Blood samples from non MPN diagnosed patients have been analyzed by Xu et al. [73]492

who found that about 1% of the 3935 investigated subjects were JAK2 positive, with 70%493

of these having low allele burdens i.e. less than 5%. A general population study found that494

0.2% of the population harbours the JAK2 mutation [50]. In a large Swedish study [29],495

the number of patients with MPN is found as 3035 during the years 2001 to 2008. With a496

population size of 9 millions this implies a prevalence of 0.03%.497

How can the role of JAK2 mutation as a driver for cancer development for MPN patients498

be consistent with many carrying the JAK2 mutation do not have an MPN diagnosis?499

One explanation could of course be, that a large number of subjects were in an early, yet500

undiagnosed state of MPNs.501

Traulsen et al. [67] suggest another reason, namely that the JAK2 mutation found in502

the study of [73] is not occurring at the stem cell level but further down the proliferation503

chain hence not affecting hematopoiesis so severely. This would imply that after some504
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Figure 9: Phase space for β2 = −1. (a) and (b) are unhealthy conditions while (c) and (d)
are healthy for most initial conditions.

27



(a) (b)

Figure 10: In (a) there are two stable steady states and two saddles. Selected trajectories
are shown in green, blue and black curves. Parameter values are β1 = 20, β2 = −.93, β3 =
.3, β4 = .8747. In (b) β2 = −.92 with the remaining parameter values being the same as
in (a). A Hopf- bifurcation has occurred for some β2 ∈ (−.92;−.93) such that a stable
coexistence steady state has turned unstable and a stable limit cycle has appeared.

time, the JAK2 positive cells are depleted. However, a small, stable JAK2 fraction can505

be maintained for years [18]. Our analysis suggests an alternative answer; the non MPN506

diagnosed subjects are characterized by parameter values rendering a stable, coexistence507

point with low allele burden corresponding to figure 8(f), (g), (n). Alternatively, the MPN508

fraction of cells may be slowly increasing corresponding to HSC and CSC selfrenewal being509

of comparable size. This may be more feasible than multiple JAK2 mutations in the510

same individual [42]. Another interesting explanation is the ’active immune window where511

malignant cells need to reach a critical level before the immune system is activated to keep512

a low disease level. This has proven a fruitful explanation for describing clinical data of513

patients with chronic myeloid leukemia [7].514

3.2 Intervention strategies515

From the previous analysis it is clear that the sign of β2 is important for treatment outcome.516

Intervention at stem cell level is important to ensure cure or minimal residual disease517

which is relevant also for chronic myeloid leukemia [10]. In figure 11 a model simulation518

with default parameter values is shown along with median data of two sets of patients519

with polycythemera vera treated with pegylated interferon-α-2a [53], [30]. Altering β2520

by decreasing ry and increasing rx corresponds to a mechanism of the drug where the521

malignant clone is targeted [53][31] and HSC are activated [17]. Only the initial conditions522

vary, corresponding to a different initial allele burden for each group of study. Hence,523

by altering β2 to the value −0.9, two clinical data sets can be reproduced using a single524

parameter set in the model.525
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Figure 11: Grey stipulated curve is cancer growth using the default parameter values in
the simple model shifted in time such that the JAK2 allele burden is 45% at t = 0. Dots
are median values from two independent clinical studies of patients with polycythemia vera
treated with pegylated interferon-α-2a. Red dots are from from [53] (43 patients), black
dots are from are from [30] (40 patients). Full grey curves are output of the simple model,
with β2 = −.9, which is obtained by a doubling in rx as interferon increases stem cell
activity [17] and a reduction in ry. Remaining parameters set to default values. The only
difference between the two grey curves are the initial conditions. Hence, the simple model
with a unique set of parameter values can reproduce several clinical reports on PV patients
with the explained effect being related to increased HSC function compared to CSC during
treatment.

The phase plane dynamics with β2 having small, negative values are shown in figure526

7 showing how a stable cancer steady state bifurcates to a stable coexistence steady state527

when perturbing β2. In figure 12, two treatment scenarios are shown based on changing β2528

from positive to negative values. Starting treatment at a high allele burden can ultimately529

lead to reversal to a healthy, hematopoietic steady state or a coexistence steady state with530

low allele burden. An effective drug (high dose) may have the negative impact that the531

total number of white blood cells have critically low values in the transition from a high532

allele burden to a healthy state as can be seen by considering the trajectories in figure 12.533

This suggests that maintaining a low dose or slowly increasing dose during treatment may534

be important, or that treatment should also address other parameters.535

Intervention at an early cancer stage is preferred for several reasons for example reduc-536

ing the risk of thrombosis or hemorrhage. Our phase plane analysis suggests further that537

an early intervention can lead to a coexistence steady state with low tumor load while late538

intervention may lead to out competition of healthy cells even though the self renewal of539

HSC is larger than that of CSC. This may occur when there are three coexistence steady540
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Figure 12: Phase space with default parameter values where the full blown MPN cancer is
the stable steady state. A typical trajectory (black curve) is shown with initial condition
in the black square. A successful treatment must change the sign of β2 from positive to
negative. At the triangle, two different treatments are initiated (magenta), for the full
curves β2 = −0.9 and for the dashed β2 = −0.1. The temporary, small value of Z1 at the
full, magenta curve suggests that an effective treatment may reduce the number of white
blood cells too severely. However, a more gradual change of β2 corresponding to a slowly
increasing dose of an effective drug does not have the same shortcoming.
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Figure 13: Possible phase plane for β2 < 0, β4 > 0. Blue curves are specific trajectories.
Black curves are the stable manifolds of the saddle point (green circle) dividing the phase
space in two bassins of attraction. In the right region the stable, coexistence point is
a relatively healthy state while the left region implies extinction of healthy cells for any
initial condition. The case showed here may be a result of intervention with β2 > 0 prior to
intervention and β2 < 0 after intervention. Early intervention leads to an initial condition
in the lower right part of the phase space which corresponds to a non expanding malignant
cell count i.e. a relatively healthy condition. The thick blue curve shows that the same
intervention at large, initial malignant cell counts can lead to eradication of healthy cells.

states, for initial conditions with large allele burdens are in the basin of attraction of the541

stable steady state causing extinction of healthy cells - see figure 13. Furthermore, for ini-542

tial conditions in the basin of attraction of the relatively healthy coexistence steady state,543

a high initial allele burden implies a transient with a low Z1 value compared to the steady544

state. Hence, late treatment start may imply more serious adverse events which advocates545

for early treatment. The separatrix (black curve) provides a threshold for initial condi-546

tions that will maintain homeostasis versus eradicate healthy cells. A similar approach has547

proven useful for dynamics of Hepatitis C Virus and immune suppression [35].548
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3.3 Comparison of the simple and full model549

The simple model is a good representation of the full model for cancer progression. An550

important reason for this is the assumption that cancer initiation is a perturbation to551

a hematopoietic steady state i.e. initially y′0 = y′1 = a′ = s′ = 0 which implies that552

no transients are observed for the trajectories of the full model to be close to the simple553

model. Initiating a treatment may be interpreted as a fast change in one or more parameter554

values. In figure 14 the simple and full model are evolved with default parameter values555

until an allele burden of 50% is obtained. Then, a parameter value is abruptly changed,556

and the resulting trajectories of stem cells and mature blood cells are shown for the full557

and simple model. The simple model is a good approximation to the full model when558

altering a stem cell parameter value such as rx or ry as seen in figure 14(a) which supports559

the use of the simple model in figure 11. Changing a parameter value of the mature cells560

such as dx1 lead to a discontinuity in the simple model and a fast transient in the full561

model, hence for a short time the full model and the reduced model do not match - see562

14(b). This discontinuity is expected in the simple model from equation (3c); a jump in563

dx1 leads to a jump in x1. Hence, for treatments mainly affecting mature cells, a fast564

transient between the full and the reduced model may be observed. The full model and the565

simple model have exactly the same steady states. However, the stability steady states in566

a quasi steady state model and a full model may differ. In figure 15 a bifurcation diagram567

is shown for the reduced model model by computing steady states and their stability at568

500 times 250 grid points. Likewise, the corresponding steady state of the full model can569

be investigated by fixing all full model parameters at default values except rm, ry, es and570

rs that can be computed from the values of β1, β2, β3 and β4 by inverting equation (21).571

Then, the stability of the full model is assessed by the dominant eigenvalue of the six by572

six dimensional Jacobian. The stability of the full model and simple model are found to573

be identical everywhere.574

3.4 Early MPN phase575

One hit mutation576

Assuming little change in Z1 in the early cancer phase, we may derive expressions for577

cancer growth for a one hit mutation, i.e. β4 = 0. In that case578

ż2 = k1β2 (1− z2) z2 , (48)

with k1 =
1+
√

1+β1Z̄1

1+Z̄2
1

and with the initial condition being a positive, small allele burden, z20579

at time equal to zero. This equation may be solved providing the well known expression580

for logistic growth. Such an expression is well known in cancer descriptions. However,581

the approach here with the logistic growth as an asymptotic case of a more elaborate582

model allows for inferring mechanisms to the parameters of the one dimensional model583
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Figure 14: Initial conditions correspond to integrating the full or simple model with default
parameter values until equal amounts of hematopoietic and cancer stem cells. Then, an
abrupt change in a parameter value is applied, representing a potential treatment. In (a)
β2 is changed to −.9 by reducing ry and doubling rx which correspond to the suggested
effect of pegylated interferon-α-2a in figure 11. Left panel is stem cell numbers, right
panel is mature cell numbers. Blue curves are hematopoietic cells, red are blood cancer
cells. Grey curves are the corresponding trajectories from the simple model. For an abrupt
change in stem cell parameters, the simple model, (3) remains a good approximations to
the full model (1). In (b) the value of dy1 is increased by a factor 10 with the remaining
parameters at default value. Here, the mature cancer cell count drops immediately in
the simple model while the full model has a fast transient before good agreement again
is observed between the full model and the two dimensional model. Though an increased
death rate of mature, cancer cells implies an immediate reduction of mature cancer cells,
the mature hematopoietic cells are not restored by this intervention an in the long run, the
mature cancer cells again dominates the mature hematopoietic cells i.e. this intervention
does not provide a cure.
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Figure 15: Bifurcation diagram, with β1 = 2, β3 = 1.74 and varying β2 and β4. The letters
on the figure correspond to the topologies in figure 8, hence showing possible transitions
between the topologies as parameters are perturbed. In regions g, f, e the stable steady
state is a coexistence steady state, while in regions d and a a cancer steady state is the
only stable steady state.

equation (48). Thus, in the early cancer phase, if the disease is diagnosed and treatment is584

conducted, which change the sign of β2 from positive to negative with new value denoted585

β̂2, then, disease progression is changed from logistic growth to logistic decay. However,586

the dose-response relation may be unknown. Comparing the growth curve at allele burden,587

z2 before treatment to allele burden ẑ2 after treatment using the lab time t we observe588

z′2
ẑ′2

=
β2 (1− z2) z2

β̂2 (1− ẑ2) ẑ2

. (49)

This means that the change in stem cell parameters, β2
β̂2

can be directly computed from589

considering the slope of allele burden of mature cells prior to and after treatment without590

use of sophisticated parameter estimation techniques. In this way, mathematical modelling591

and reasoning give a window to investigate the hardly accessible stem cell dynamics by592

mechanistic modelling and measurements of the mature cells.593

Solving (48) with a change of β2 value to another value β̂2 at time τ = T gives594

z2(τ) =
z20e

β2k1τ

z20 (eβ2k1τ − 1) + 1
, for 0 ≤ τ ≤ T (50a)

ẑ2(τ) =
z2(T )eβ̂2k1(τ−T )

z2(T )
(
eβ̂2k1(τ−T ) − 1

)
+ 1

, for τ > T (50b)

595
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Figure 16: Red, thick curve is allele burden growth using the simple, reduced model with
default parameters. At year 10, a treatment intervention changes the β2 value to -0.9
showed by the thin red, solid line. Grey curves are the corresponding analytic approxima-
tion given by equation (50) with z2(0) = 0.01 corresponding to the sensitivity of the best
assays.

A comparison of this formula to the simple, reduced model is seen in figure 16 providing596

a good approximation within the measurable, low allele burden regime.597

3.5 Role of exogenouos inflammation stimuli598

We reformulate equation 50 in terms of the original parameters

z2(t) =
z20e

γt

z20 (eγt − 1) + 1
, for 0 ≤ t ≤ T̂ (51a)

z2(t) =
z2(T̂ )eγ̂(t−T̂)

z2(T̂ )
(
eγ̂(t−T̂) − 1

)
+ 1

, for t > T̂ (51b)

with599

γ =
ry − rx

2es
(
1 + Z̄2

1

) (I +

√
I2 +

(
4
esrs
cxxea

(axAx + dx0)

)
Z̄1

)
. (52)

This implies |γ| increases with I, i.e. disease progression is accelerated for a large endoge-600

nous inflammatory stimuli, when ry > rx . Surprisingly, in case an intervention happens,601

such that ry > rx prior to treatment but rx > ry after treatment, then inflammation acts602

as a disease driver prior to treatment but after treatment inflammation acts like a health603

promoter. Similarly, one may predict the behaviour of perturbing the original parameters604

es, rs, cxx, ea, ax, Ax, dx0.605
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4 Appendix606

Derivation of the simple Cancitis model607

Model is (1) written here again for convenience

x′0 = (rxφxs− dx0 − ax)x0 − rmsx0 (53a)

x′1 = axAxx0 − dx1x1 (53b)

y′0 = (ryφys− dy0 − ay) y0 + rmsx0 (53c)

y′1 = ayAyy0 − dy1y1 (53d)

a′ = dx0x0 + dy0y0 + dx1x1 + dy1y1 − eaas (53e)

s′ = rsa− ess+ I(t) (53f)

φx = φx(x0, y0) =
1

1 + (cxxx0 + cxyy0)2 (53g)

φy = φx(x0, y0) =
1

1 + (cyxx0 + cyyy0)2 (53h)

These equations are subject to a quasi steady state assumption of all compartments except608

the stem cells609

x′1 = y′1 = a′ = s′ = 0 , (54)

and with constant I. From x′1 = 0, x1 is easily expressed as610

x1 =
axAx
dx1

x0 , (55)

and similarly y′1 = 0 implies611

y1 =
ayAy
dy1

y0 . (56)

From s′ = 0 we get612

a =
es
rs
s− I

rs
(57)

Inserting this in equation (53e) with a′ = 0 we arrive at613

0 = dx0x0 + dy0y0 + dx1x1 + dy1y1 − eas
(
es
rs
s− I

rs

)
(58)

which may be considered a second order polynomial in s. Solving for the roots we get614

s± =
I

2es
±

√(
I

2es

)2

+
rs
esea

(dx0x0 + dy0y0 + dx1x1 + dy1y1) (59)
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As we are only interested in non negative s values, only s = s+ is kept and equation (55)615

and equation (56) are inserted to give616

s =
I

2es
+

√(
I

2es

)2

+
rs (axAx + dx0)

eaes

(
x0 +

ayAy + dy0

axAx + dx0
y0

)
(60)

Inserting this expression for s in equation (57) provides a as a function of x0 and y0617

a = − I

2rs
+
es
rs

√(
I

2es

)2

+
rs (axAx + dx0)

eaes

(
x0 +

ayAy + dy0

axAx + dx0
y0

)
(61)

Differential equations (53a) and (53c) together with the algebraic equations (55), (56), (59)618

and (61) constitue the simple cancitis model.619
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