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ABSTRACT
This paper studies numerically the solid phase of a system of particles interacting by the exponentially repulsive pair potential, which is a face-
centered cubic (fcc) crystal at low densities and a body-centered cubic (bcc) crystal at higher densities [U. R. Pedersen et al., J. Chem. Phys.
150, 174501 (2019)]. Structure is studied via the pair-distribution function and dynamics via the velocity autocorrelation function and the
phonon density of states. These quantities are evaluated along isotherms, isochores, and three isomorphs in both crystal phases. Isomorphs
are traced out by integrating the density-temperature relation characterizing configurational adiabats, starting from state points in the middle
of the fcc-bcc coexistence region. Good isomorph invariance of structure and dynamics is seen in both crystal phases, which is notable in view
of the large density variations studied. This is consistent with the fact that the virial potential-energy correlation coefficient is close to unity
in the entire fcc phase and in most of the bcc phase (basically below the re-entrant density). Our findings confirm that the isomorph theory,
developed and primarily studied for liquids, applies equally well for solids.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5144871., s

I. INTRODUCTION
The EXP pair potential is the purely repulsive exponentially

decaying function,

vEXP(r) = ε e−r/σ . (1)

The system of particles interacting via this pair potential has been
studied much less than, e.g., the Lennard-Jones or inverse power-law
(IPL) pair-potential systems. Nevertheless, papers reporting stud-
ies of the EXP system or, more generally, systems that involve an
EXP term in the pair potential have appeared regularly ever since
1929.1–14 As argued in Ref. 15, the EXP system deserves a closer
study for two reasons. First, real-world systems, e.g., the low-density
limit of the Yukawa (screened Coulomb) potential system, are well
described by the EXP pair potential, which also plays an impor-
tant role in most potentials describing metals. Second, the EXP pair

potential may be regarded as the “mother of all pair potentials” in
the sense that it explains the quasiuniversality of the structure and
dynamics of simple liquids that applies for a large class of pair poten-
tials.16,17 Thus, any pair potential, which can be written as a finite
sum of EXP terms with coefficients much larger than kBT, defines a
system in the same quasiuniversality class as the hard-sphere and
Lennard-Jones systems.16,17 The EXP system may, consequently,
replace the discontinuous hard-sphere system as the generic system
in liquid-state theory.

The first paper in this series studied the structure and dynam-
ics along the EXP system’s fluid-phase isotherms and isochores.18

Paper I18 also provided an example of quasiuniversality by show-
ing that the radial distribution function (RDF) of the Lennard-Jones
system is close to that of the EXP system at state points where the
two systems have the same reduced diffusion coefficient. Paper II
studied the EXP system’s fluid phase isomorphs,19 demonstrating
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FIG. 1. Thermodynamic phase diagram of the EXP pair-potential system (in the EXP unit system). [Reproduced with permission from Pedersen et al., J. Chem. Phys.
150, 174501 (2019). Copyright 2019 AIP Publishing LLC.] (a) shows the phase diagram in the pressure–temperature plane, (b) shows the phase diagram in the density-
temperature plane. At low pressures/densities, the solid phase is a face-centered cubic (fcc) crystal, while at higher pressures/densities, the solid phase is body-centered
cubic (bcc). The black dot marks the triple point at which the three phases meet. The star marks the re-entrant state point above which no solid phase exists. The discrete
gray dashed lines in (b) are the three isomorphs studied in Sec. V.

invariance of the reduced-unit structure and dynamics along iso-
morphs.19 Note that while there, as for any purely repulsive sys-
tem, is just a single fluid phase, the EXP system has neverthe-
less typical gas and typical liquid state points. Moreover, in con-
trast to the Lennard-Jones system, the EXP system has strong virial
potential-energy correlations at all low-temperature fluid-phase
state points, including the system’s typical gas-phase state points.
The region delimiting the liquid and gas phases defines the so-called
Frenkel line, the different definitions of which20–22 are isomorph
invariant.

FIG. 2. Excess isochoric specific heat per particle in the solid phase in units
of kB, denoted by c̃ex

V . Most state points are green, showing that the specific
heat is close to that of a perfect harmonic crystal (3kB per particle, implying
c̃ex
V = 1.5). The arrow marks the zero-temperature coexistence density found in

Paper III: ρ = 1.747 64 ⋅ 10−2 in the EXP unit system. The line separating fcc
and bcc state points found from simulations is full red; its extrapolation to the
zero-temperature coexistence density15 is dashed.

Paper III15 established the thermodynamic phase diagram of
the EXP system, which involves two crystalline phases: a face-
centered cubic (fcc) phase at low densities and a body-centered (bcc)
at higher densities. There is a re-entrant liquid phase at the highest
densities studied, which are of order unity in the “EXP unit sys-
tem” defined by σ and ε in Eq. (1). This means that above a certain
temperature there is no stable solid phase, a property the EXP sys-
tem has in common with other pair-potential systems such as the
Gaussian-core model,23 which do not have a diverging energy at
zero particle separation. Figure 1, which is reproduced from Paper
III,15 shows the thermodynamic phase diagram of the EXP system
in (a) the pressure-temperature representation and (b) the density-
temperature representation. The phase transformations between the
three phases are all of first order, i.e., associated with a density
change and a latent heat. The coexistence regions in the density-
temperature plot are barely visible in Fig. 1(b), however, except as a
slight thickening of the phase-boundary lines. In particular, the fcc-
bcc transition is only weakly first order; the relative density change is
merely 0.3% at the liquid-fcc-bcc triple point and even lower (0.01%)
at zero temperature.15

As an example of a quantity monitored in the two crystalline
phases, Fig. 2 shows the excess isochoric specific heat per particle in
units of kB, denoted by c̃ex

V , in a diagram in which the colors reflect
different values. The prevalent color is green in both the fcc and bcc
phases, showing that the excess specific heat is close to the 1.5kB
per particle expected for a perfect harmonic crystal according to the
Dulong–Petit rule.24

II. METHODS
All simulations were carried out using the double-precision

version of the Roskilde University Molecular Dynamics (RUMD)
code, which is optimized for graphics-processing-unit (GPU) com-
puting.25 The Newtonian molecular dynamics (MD) simulations
were standard NVT simulations using the leap-frog integrator and
the Nosé–Hoover thermostat. Brownian dynamics was employed to
check the Nosé–Hoover NVT MD results. All findings relating to
structure and dynamics reported below are based on Newtonian MD
simulations at state points for which Brownian dynamics gives the
same structure and specific heat. This is the case except at very low
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FIG. 3. (a) Potential-energy distributions for three different simulation methods at a low-temperature state point. The distribution of potential energies using Brownian dynamics
is given by blue symbols and that of an all-particle-move Monte Carlo algorithm by the red symbols. These two methods result in the same potential energy distribution, which
as expected is Gaussian. In contrast, a bi-modal distribution is observed for Nosé–Hoover (NVT) MD simulations (black symbols). This is caused by the near-harmonic state
of the system, resulting in extremely slow equilibration. NVT MD simulations are of little use at such low temperatures. (b) The friction coefficients λ ≡ 1/(mμ) used in the
Brownian simulations, where m is the particle mass. The symbols mark simulated state points. (c) The Brownian dynamics cutoffs used. In order to arrive at cutoff-independent
results, it was necessary to use a cutoff larger than 6σ at the highest densities and at certain low-temperature state points. (d) State points simulated by standard Newtonian
Nosé–Hoover NVT MD dynamics. All results for structure and dynamics reported below were obtained by this dynamics.

temperatures. As in Paper III,15 a cut-off at 6σ was used for all MD-
simulated state points; a larger cut-off was occasionally used for the
Brownian dynamics simulations (see below).

Brownian dynamics simulations were carried out using an inte-
grator implemented in RUMD as part of this work. The integrator is
given26 by (in which n is the discrete-time index, μ is the mobility,
and R is the vector of all particle coordinates)

Rn+1 = Rn − μ∇U(Rn)Δt +
√

2kBTΔtμ N(0, 1). (2)

Here, Δt is the time step and N(0, 1) for each time step is a vector of
random numbers drawn from a zero-mean unit-variance Gaussian
distribution. Note that changing the friction coefficient affects both
the magnitude of the displacements and the relative importance of
the random forces compared to the forces from the gradient. The

FIG. 4. Normalized plots of virial W
and potential energy U deviations from
average values at three different state
points. The virial potential-energy corre-
lation coefficient R [Eq. (3)] is given in
each figure. (a) shows results at a low-
density, low-temperature state point of
the fcc phase. (b) shows results for a
bcc state point. (c) shows results for a
bcc state point close to the re-entrant
state point [compare Fig. 1(b)]; here, the
correlations are much weaker than in
(a) and (b).
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FIG. 5. Virial potential-energy correlation coefficient R in the two solid phases. (a) shows that correlations are generally strong in both the fcc and the bcc crystalline phases
with R depending primarily on the density, decreasing as density increases. Only at the highest densities studied, close to the re-entrant density, does the correlation coefficient
go below the threshold of 0.9 that defines an R-simple system.27,28 (b) The quantity 1 − R plotted as a function of the pressure along the solid-liquid phase boundary. The
green curve represents the liquid phase at coexistence, and the red and blue curves represent the fcc and bcc phases at coexistence, respectively. Note that correlations
are somewhat stronger in the solid phases than in the co-existing liquid phase. At the highest pressure, which is above the re-entrant state point, R becomes negative
(1 − R > 1).

challenge is to find a friction coefficient for which the exploration of
the phase space is reasonably fast.

Figure 3(a) shows the equilibrium potential-energy distribu-
tions obtained by three different simulation methods: NVT MD
(black points), a standard small-step Monte Carlo method imple-
mented for an extra consistency check (red points), and Brown-
ian dynamics (blue points). The latter two methods result in the
same Gaussian distribution, while this is not the case for the MD
simulation. The reason is that MD is highly inefficient at equili-
brating an almost harmonic crystal, making it virtually impossible
to use MD at very low temperatures. Depending on the quantity
of interest, we therefore used Brownian dynamics at low-
temperature state points. Figures 3(c) and 3(d) show which state
points were simulated by Brownian dynamics respectively MD,
while Fig. 3(b) reports the friction coefficients used.

In Brownian dynamics, the configurational part of the isochoric
specific heat calculated from the fluctuations should have the same
value as when calculated from MD. This provides a consistency
check ensuring that both methods reproduce the correct canonical
ensemble probabilities. Based on this, we found it safe to use MD
whenever the temperature is above 1.5 ⋅ 10−5 or the density is less five
times the melting density at the temperature in question. All struc-
ture and dynamics data reported below refer to this region of phase
space. At selected state points here, we compared the structure,
the density-scaling exponent (Sec. III), the virial potential-energy
correlation coefficient (Sec. III), and cV ex with the same quantities
obtained from Brownian Dynamics and found very good agreement.

FIG. 6. The density-scaling exponent γ defined in Eq. (5). γ depends primarily on
the density and decreases with increasing density. The same behavior is observed
in the condensed-liquid phase of the EXP system. In contrast, at low densities
and high temperatures where the EXP system is gas-like, γ depends primarily on
the temperature [compare Fig. 3(c) in Ref. 19]. The simplest version of isomorph
theory predicts that γ depends only on the density.35 That treatment focused on
the dense liquid phase in which each molecule interacts strongly and continuously
with several nearest neighbors, which does not apply in the gas phase.
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The simulations employed standard periodic boundary con-
ditions. All fcc simulations involved 4000 particles, i.e., a cubic
10×10×10 lattice. The bcc simulations involved 4394 particles when
the cutoff used was 6σ or 8σ, i.e., a cubic 13×13×13 lattice; at larger
cutoffs a cubic 20 × 20 × 20 lattice was used.

III. THE VIRIAL POTENTIAL-ENERGY CORRELATION
COEFFICIENT AND THE DENSITY-SCALING
EXPONENT

Isomorph theory applies for systems with strong correlations
between the constant-volume equilibrium fluctuations of virial

FIG. 7. Density-scaling exponent γ and virial potential-energy correlation coefficient R of the two crystalline phases in different representations. Red symbols and lines
represent fcc state points, and blue symbols and lines represent bcc state points. (a) γ (left) and R (right) plotted vs density. The dashed and full curves are the predictions
of the approximate analytical theory for the T → 0 limit of perfect crystals28 (Appendix A). The predictions work best at low densities. (b) R as a function of temperature
along two fcc isochores, showing that the approximate analytical theory (horizontal lines) works best at low density and low temperature. (c) γ plotted vs R for all simulated
state points. The data almost collapse to a single curve common to both crystal structures. For comparison, the black dashed line gives the exact analytical prediction for the
zero-density limit of the gas phase.19 The red and blue lines are the fcc and bcc predictions of the approximate analytical theory28 (Appendix A). The inset provides a blow
up of the data with strongest correlations. (d) Log-log plot of γ vs 1 − R. The black dashed line is the gas-phase theory.18 Green lines are data for liquid-phase isochores and
purple lines for gas-phase isochores. In the left part of the figure, the identical red and blue lines give the theoretical predictions, while the triangles are numerical data for
different isochores with the upper ones giving data for lower densities. The arrows give the direction of decreasing temperature on a given isochore. The isochores connect
to liquid-phase isochores of virtually same density (green lines, data from Ref. 18). The dashed-dotted lines represent coexistence state points. The blue (bcc) data points
are below the theoretical prediction while the fcc data are above it.
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W and potential energy U.27–31 Recall that the average virial ⟨W⟩
gives the contribution to the pressure p deriving from particle
interactions according to the general equation of state pV = NkBT
+ ⟨W⟩, in which N is the number of particles and T is the
temperature.

Correlations between W and U are investigated numeri-
cally by standard Nosé–Hoover NVT MD simulations. For any
configuration R defined as the 3N-dimensional vector of all par-
ticle positions, the potential energy U(R) is of course known
from the simulation. For the EXP pair-potential system, the
virial W(R) is given by the following sum over all pairs:

W(R) = −(1/3)∑i<j rijv
′
EXP(rij) = ∑i<j(rij/3σ)e

−rij/σ .32 Note that
the virial is always positive. This applies, in fact, throughout the
phase diagram of any purely repulsive pair potential because the
pressure is always larger than that of an ideal gas.

Figure 4 shows plots of virial and potential energy equilibrium
NVT fluctuations as a function of time with both quantities normal-
ized to unit variance in order to make it easier to estimate the degree
of correlation.27 (a) and (b) show results for typical fcc and bcc crys-
talline state points, while (c) shows the fluctuations at a bcc state
point close to that of the re-entrant state point. The latter case shows
much weaker correlations.

FIG. 8. Radial distribution functions (RDFs) along four isotherms, two of which involve both crystal phases. The RDFs are given a function of the reduced particle distance
r̃ ≡ ρ1/3r. Peak heights narrow and increase as the density is decreased; due to the use of reduced units, the peak positions do not move visibly. (a) shows results for the
T = 5 ⋅ 10−7 fcc isotherm. (b) and (c) show results for the T = 3 ⋅ 10−5 fcc and bcc isotherms, respectively. (d) and (e) show results for the T = 1 ⋅ 10−4 fcc and bcc isotherms,
respectively. (f) shows results for the T = 1 ⋅ 10−3 bcc isotherm.
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The Pearson correlation coefficient R quantifying the correla-
tion between W and U is defined by (in which the angular brack-
ets denote constant-volume canonical NVT averages and Δ the
deviation from the equilibrium value)

R ≡
⟨ΔUΔW⟩

√
⟨(ΔU)2⟩⟨(ΔW)2⟩

. (3)

Figure 5 gives data for the virial potential-energy correlation coeffi-
cient in which (a) shows by color coding how R varies. Interestingly,
the fcc-bcc phase transition does not visibly change R. In most of
the phase diagram investigated the EXP system obeys the R > 0.9

criterion designating an R-simple system.17,27,28,33 Figure 5(b) shows
how R varies along the liquid-solid phase boundaries, plotted as a
function of the pressure. Below the horizontal dashed line, R > 0.9;
this applies for most of the coexistence state points, involving both
fcc and bcc phases.

A more recent definition of an R-simple system is one for which
most configurations obey the “hidden scale-invariance” condition34

U(Ra) < U(Rb) ⇒ U(λRa) < U(λRb). (4)

This expresses the property that if one configuration Ra has a lower
potential energy than another one at the same density Rb, this is also

FIG. 9. Normalized velocity autocorrelation function and phonon density of states (inset) along the four isotherms studied in Fig. 8, plotted as a function of the reduced
time. The phonon density of states was obtained from the Fourier transform of the normalized velocity autocorrelation function. There is a significant variation along all four
isotherms and in both crystal phases. (a) shows results for the T = 5 ⋅ 10−7 fcc isotherm. (b) and (c) show results for the T = 3 ⋅ 10−5 fcc and bcc isotherms, respectively. (d)
and (e) show results for the T = 1 ⋅ 10−4 fcc and bcc isotherms, respectively. (f) shows results for the T = 1 ⋅ 10−3 bcc isotherm.
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the case if the two configurations are scaled uniformly to a different
density. Equation (4) only applies for all configurations in the case
of perfect virial potential-energy correlations (R = 1),34 which only
happens in the non-physical situation of a potential-energy function
that is a constant plus an Euler-homogeneous function of the coordi-
nates. Thus, in realistic situations, hidden scale invariance is merely
an approximate symmetry.17,33

Isomorphs are defined as curves in the phase diagram of con-
stant excess entropy Sex for an R-simple system (Sex is the entropy
minus that of an ideal gas at same density and temperature,36 a
quantity that is always negative). All systems have curves of con-
stant Sex, obviously, but only for R-simple systems do these curves
have approximately invariant reduced-unit structure and dynam-
ics.30,33,34,37 Hence, the name “isomorphs” for such curves.30

The slope of an isomorph in the logarithmic density–
temperature phase diagram, γ, is defined30 by

γ ≡ (
∂ lnT
∂ ln ρ

)

Sex

. (5)

For an R-simple system, if γ were constant, there would be invari-
ance of the reduced-unit structure and dynamics along the lines
of constant ργ/T. For this reason, γ is referred to as the density-
scaling exponent.30,33,38 In a computer simulation, one evaluates γ
from the constant-density canonical ensemble equilibrium virial and

potential-energy fluctuations via the following general statistical–
mechanical identity:30

γ =
⟨ΔUΔW⟩
⟨(ΔU)2⟩

. (6)

Figure 6 shows how γ varies throughout the two solid phases.
We see that γ depends primarily on the density. In fact, the orig-
inal 2009 version of isomorph theory30 predicted that γ is a func-
tion of the density independent of temperature.35 It was later found,
however, that the generic version of isomorph theory based on
Eq. (4) allows for a more general variation of γ.34 Interestingly, in
the gas phase of the EXP system, γ depends more on temperature
than on density.19 It is appears that γ depends primarily on the
density when a system is in the condensed liquid or solid phases
in which any given particle interacts strongly with several near-
est neighbors.28,39 For many system, e.g., the Lennard-Jones and
related systems, this corresponds to the main R-simple part of the
thermodynamic phase diagram because (except at very high temper-
atures) the gas phase usually does not exhibit strong virial potential-
energy correlations. The EXP system is an interesting exception to
this that exhibits strong correlations even in the gas phase (whenever
kBT ≪ ε).18

Figures 7(a) and 7(b) show γ and R as functions of density
and temperature. In these figures, “predictions” refer to the theory
of Ref. 28, which is summarized in Appendix A. This theory is not

FIG. 10. RDFs along three isochores as a function of the reduced particle distance. There is a significant variation of structure with higher peaks at lower temperatures. (a)
shows results for the ρ = 1 ⋅ 10−3 fcc isochore. (b) and (c) show results for the ρ = 1 ⋅ 10−2 fcc and bcc isochores, respectively. (d) shows results for the ρ = 1 ⋅ 10−1 bcc
isochore.
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exact because it ignores interactions beyond nearest-neighbor par-
ticles and assumes that transverse and longitudinal fluctuations of
nearest-neighbor vectors are uncorrelated. The former assumption
breaks down at high densities. Figure 7(c) plots γ vs R40 for all
state points studied, where blue are fcc and red are bcc state points.
Paper I in this series18 derived analytically the black dashed line for
the dilute gas phase and showed from simulations that all gas and liq-
uid state points fall below this line. We now see that this also applies
for the two solid phases. Interestingly, there is an almost one-to-one
relation between R and γ for the solid state points, independent of
the crystal phase. These data are consistent with an approximate the-
ory (Appendix A) according to which a single analytical expression
may be derived for R and γ, which applies for both crystalline phases.
Figure 7(d) shows γ vs 1− R in a log-log plot. The arrow indicates the
direction of lower temperature for data of the same density. The the-
oretical prediction is approached in this limit for the fcc data (red)
whereas the high-density bcc data fall below the prediction. The
right part of Fig. 7(d) reproduces data for the fluid phase reported
in Ref. 18.

IV. ISOTHERMS AND ISOCHORES
This section presents results for the variation of structure and

dynamics along isotherms and isochores of the fcc and bcc phases
of the EXP system; the same analysis is carried out along isomorphs
in Sec. V. The structure is probed by the radial distribution function

(RDF), while the dynamics is probed by the velocity autocorrelation
function as well as its Fourier transform giving the phonon density
of states.

Figure 8 plots the RDF along four isotherms as a function of
the reduced particle distance r̃ ≡ ρ1/3r. (b) and (c) are for the same
isotherm in the fcc and bcc phases, respectively; the same applies for
(d) and (e). The structure changes significantly along all isotherms,
with growing peak heights as density is decreased. Not surprisingly,
the lowest temperature isotherm reported in (a) shows the largest
and most narrow peaks, reflecting that here the thermal vibrations
are smallest. Figure 9 shows data along the same four isotherms for
the normalized velocity autocorrelation as a function of the reduced
time defined by t̃ ≡ ρ1/3√kBT/mt.30 The insets show the phonon
density of states in reduced units, calculated from the velocity auto-
correlation function. We conclude that the dynamics also changes
significantly along isotherms.

We proceed to present a similar study of how structure
and dynamics varies along the isochores, i.e., at constant volume.
Figure 10 shows the reduced-unit RDFs along three isochores with
(b) and (c) giving data for the fcc and bcc phases of the same iso-
chore. At any given density, the lower the temperature is, the higher
are the peaks. Figure 11 shows the normalized velocity autocorrela-
tion function’s variation with reduced time at the same three densi-
ties. Just as along the isotherms, there is a significant variation along
any given isochore of both structure and dynamics.

FIG. 11. Normalized velocity autocorrelation function and phonon density of states (insets) along the three isochores studied in Fig. 10. The phonon density was obtained
from the Fourier transform of the normalized velocity autocorrelation function. (a) shows results for the ρ = 1 ⋅ 10−3 fcc isochore. (b) and (c) show results for the
ρ = 1 ⋅ 10−2 fcc and bcc isochores, respectively. (d) shows results for the ρ = 1 ⋅ 10−1 bcc isochore.

J. Chem. Phys. 152, 094505 (2020); doi: 10.1063/1.5144871 152, 094505-9

© Author(s) 2020

https://scitation.org/journal/jcp


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

V. ISOMORPHS

Section IV reported the variation of structure and dynamics
along the EXP system’s solid phase isotherms and isochores. Given
the orders of magnitude of variation of density and temperature,
not surprisingly both structure and dynamics vary a lot, even when
given in reduced units in order to eliminate variations deriving from
trivial scaling of time and length. As mentioned, the isomorph the-
ory predicts the existence of lines in the phase diagram of approx-
imately invariant reduced-unit structure and dynamics whenever
virial potential-energy correlations are strong, which is the case for
almost all state points of the two solid phases [compare Fig. 5(a)].

This section investigates to which degree this prediction holds.
At a given temperature and pressure, the average of the fcc and
bcc coexistence densities is chosen as the starting point for tracing
out isomorphs in the fcc phase (going to lower densities) as well as
in the bcc phase (going to higher densities). The isomorphic state
points are determined by means of Eqs. (5) and (6) using a fourth-
order Runge–Kutta integration in log space.41 Four simulations are
needed to determine a new state point in this approach. One of these
four simulations refers to the given (starting) state point, the other
three are used as correctors to the prediction.41 The simulation at
the state point in question was based on 2 × 106 time steps, while
each of the three corrector simulations used just 50 000 time steps.
The state point simulations were long because these were used also
for calculating the RDF, velocity autocorrelation function, R, and
γ—the Runge–Kutta integration scheme would work fine with only
the short simulation time of the corrector simulations. Three iso-
morphs were generated by numerically integrating Eq. (5) starting
from a state point on the fcc-bcc coexistence line as described above

and moving, respectively, to lower and higher densities. Each direc-
tion involve one decade of density variation. The Runge–Kutta inte-
gration steps involved a density increase of ∼25% when going to
higher density, i.e., into the bcc phase, and a density decrease of
∼20% when going to lower densities, i.e., into the fcc phase. The
three isomorphs generated in this way and studied below are shown
as gray dashed lines in Fig. 1(b), one of which is very close to the
melting line. The precise state points are listed in Appendix B.

Before presenting data for the variation of structure and
dynamics along selected isomorphs, we investigate the relation
between melting line(s) and isomorphs. In the original paper on
isomorphs from 2009,30 it was predicted that the melting line is an
isomorph. This statement was qualified in 2016,42 and the melting
line is now predicted to be an approximate isomorph, a fact that may
nevertheless be utilized for calculating the melting-line variation of
several quantities. It is generally a good approximation, however,
to assume that the melting line is an isomorph. This is illustrated
in Fig. 12 in which (a) shows a temperature–pressure plot of the
liquid-phase isomorph through the triple point (black dashed line)
and the two melting lines (fcc and bcc). The isomorph follows these
lines closely, with significant deviations only at the highest densities.
Here, the re-entrant point is approached, the correlation coefficient
drops significantly (Fig. 5), and isomorph theory breaks down.

Figure 12(b) gives the log–log density–temperature slopes of
the fcc freezing, bcc freezing, and liquid melting lines, plotted as a
function of the pressure. For comparison, Fig. 12(c) gives the log–log
density–temperature slopes of the isomorphs (the density-scaling
exponents) in the three phases emanating from the triple point.
At the fcc–bcc transition, the slope is 2.33. This is consistent with
expectations from the inverse-power-law pair potential where the

FIG. 12. Melting line, configurational
adiabats, and corresponding log–log
slopes. The virial potential-energy corre-
lations are strong at most points; here,
the configurational adiabats are iso-
morphs. (a) Temperature–pressure dia-
gram showing the configurational adia-
bat through the triple point as the dashed
black line and the two melting lines as
blue (fcc) and green (bcc) lines. (b) and
(c) show as functions of pressure the
log–log slopes of the melting/freezing
lines and of the configurational adiabats,
respectively. Note that the slopes refer to
those of the temperature–density phase
diagram in which the melting and freez-
ing lines are not exactly identical. Never-
theless, the curves in (b) and (c) are very
similar. (d) Density-scaling exponent γ
along the two melting lines as a function
of the density.
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transition takes place around the exponent n = 7 (corresponding to
the slope γ = n/3).43,44 Finally, Fig. 12(d) plots the density-scaling
exponent γ in the solid phases along the melting lines as a func-
tion of the density. The overall conclusion of Fig. 12 is that both
the fcc–liquid and the bcc–liquid melting lines are isomorphs to a
good approximation and that, consequently, the melting-line slopes
are well approximated by the density-scaling exponent. Significant
deviations only occur close to the re-entrant point.

Figure 13 demonstrates invariance of the reduced-unit RDFs
along six isomorphs generated by Runge–Kutta integration of Eq. (5)
into the fcc and bcc phases as described above. We observe a nice

collapse along all three isomorphs. A comparison with Figs. 8 and 10
shows that the invariance of structure does not arise simply because
structure is invariant throughout the phase diagram.

Figure 14 shows approximate invariance of the dynamics along
the same three isomorphs. The collapse is not as good as for the
structure, but it should be kept in mind that a much larger den-
sity variation is considered here than in most previous studies. Thus
the first data published demonstrating isomorph invariance of the
dynamics were for a 3% density change of the highly viscous Kob–
Andersen binary Lennard-Jones mixture,30 while each of the figures
in Fig. 14 involves a density variation of a full decade. The relevant

FIG. 13. fcc and bcc RDFs along three isomorphs. (a) and (b) show data for the fcc and bcc isomorph terminating at the ρ = 1.72 ⋅ 10−3 coexistence point. (c) and (d) show
data for the fcc and bcc isomorph terminating at the ρ = 8.04 ⋅ 10−3 coexistence point. (e) and (f) show data for the fcc and bcc isomorph terminating at the ρ = 1.38 ⋅ 10−2

coexistence point.
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FIG. 14. Normalized velocity autocorrelation function and phonon density of states (inset) along the three isomorphs of Fig. 13. (a) and (b) show data for the fcc and bcc
isomorph terminating at the ρ = 1.72 ⋅ 10−3 coexistence point. (c) and (d) show data for the fcc and bcc isomorph terminating at the ρ = 8.04 ⋅ 10−3 coexistence point. (e)
and (f) show data for the fcc and bcc isomorph terminating at the ρ = 1.38 ⋅ 10−2 coexistence point.

comparison is with the isotherms of Fig. 9 or the isochores of Fig. 11,
revealing a considerably better collapse along the isomorphs.

Figure 15 shows how γ and R vary along the three isomorphs
studied in Figs. 13 and 14. There is a substantial variation of γ, which
as we have already seen is primarily a function of density. This shows
that the EXP system cannot be approximated by an inverse power-
law (IPL) pair-potential system. Since isomorphs are only exact for
IPL systems, it is all the more remarkable that isomorph invariance
of both structure and dynamics applies in the fcc and bcc phases of
the EXP system. The reason is that, despite the large variation of γ,
the virial potential-energy correlations are very strong (except at the
largest densities studied).

VI. OUTLOOK

This paper has investigated the two crystalline phases of the
EXP system. Except at the highest densities studied, close to the
density of the re-entrant transition, the virial potential-energy cor-
relations are very strong in both the fcc and the bcc phases (Fig. 5).
Consistent with this, we find excellent invariance of structure along
isomorphs and, in view of the large density range simulated, also a
quite good invariance of the dynamics.

Only a few studies have been performed on isomorphs in crys-
tals,42,45–48 but the findings of this paper confirm that hidden scale
invariance and the concept of isomorphs is not limited to liquids.
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FIG. 15. γ and R along the three isomorphs studied in Figs. 13 and 14. There is
a much larger variation of the density-scaling exponent γ than found for Lennard-
Jones type systems; at the same time R is close to unity at most state points.

Compared to other pair potentials, the EXP pair potential is inter-
esting because it exhibits a large variation of the density-scaling
exponent γ and has isomorphs in the gas, liquid, and solid phases.
In the latter case, the large γ variation results in two stable crys-
tal structures. Based on the study presented in this paper, it is now
possible to include the solid phase in the proposition that the EXP
system may be regarded as the mother of all simple pair-potential
systems.17 Indeed, an exponential function often plays an important
role in empirical as well as ab initio based pair potentials for metals.

An interesting question for future work is what happens at den-
sities above unity, i.e., above the re-entrant point. For the Gaussian-
core model, unpublished results of ours show that R may become
fairly close to −1, which gives rise to “anti-isomorphs” that have
negative slope but still good invariance of the reduced-unit physics.
Whether a similar thing happens for the EXP system is not known.
If the answer is yes, this may be utilized for interpreting observations
on real systems, e.g., dense solutions of star-shaped polymers as well
as of metals. In relation to the latter, interestingly it has recently has
been proposed that all metals may have a reentrant transition.49
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APPENDIX A: APPROXIMATE ANALYTICAL THEORY
FOR γ AND R OF CRYSTALS

Figure 7 presents predictions based on an approximate ana-
lytical theory developed some time ago.28 The theory, which
assumes that all interactions beyond nearest-neighbor pairs may be
ignored and that transverse and longitudinal fluctuations of nearest-
neighbor vectors are uncorrelated, works as follows (compare
Sec. II B.2 in Ref. 28). Let the index b represent nearest-neighbor
bonds. If the nearest-neighbor bond b has length rb and the equilib-
rium bond length is ac, one defines

Sp ≡ ∑
b
(rb − ac)

p. (A1)

At any time, the potential energy U and the virial W can both be
expressed as linear combinations of S1, S2, S3, . . .. At low tem-
peratures, S1/ac and S2/a2

c have similar variance while the fluctu-
ations of all the other terms are insignificant.28 For the fluctuat-
ing parts of U and W, this leads to U = CU

1 S1/ac + CU
2 S2/a2

c and
3W = CW

1 S1/ac + CW
2 S2/a2

c . Here, CU
p ≡ kpapc/p! and CW

p ≡ −kpa
p
c/

(p − 1)! − kp+1a
p+1
c /p! in which kp is defined by Taylor expanding

the pair potential in question as follows, v(r) = ∑∞p=0 kp(r − ac)
p
/p! .

For the EXP pair potential, if α ≡ ac/σ and β ≡ exp(−ac/σ), one finds
kpapc = ε(−α)pβ. Thus,

CU
1 /(εαβ) = −1 ; CU

2 /(εαβ) = α/2 ;

CW
1 /(εαβ) = 1 − α ; CW

2 /(εαβ) = −α + α2
/2.

(A2)

If the relative displacement of the pair of particles involved in bond
b, ub, is decomposed into a term parallel to and a term perpendicular
to the bond vector, ub = ub ,∥ + ub ,�, it follows from Eq. (A1) that for
small displacements one has S1 =∑b|ub ,�|2/(2ac) and S2 =∑b|ub ,∥|2.
Making the Einstein-crystal-like assumption that ub ,∥ and ub ,� are
uncorrelated and assuming that the length squared of the latter is
twice that of the former because there are two transverse degrees of
freedom, the theory predicts28 that

R =
CU

1 C
W
1 + CU

2 C
W
2

√
(CU

1 )
2 + (CU

2 )
2
√
(CW

1 )
2 + (CW

2 )
2

(A3)

and that [in Ref. 28, the below factor of 1/3 is erroneously missing
from the first line of Eq. (47)]

γ =
1
3

¿
Á
ÁÀ(C

W
1 )

2 + (CW
2 )

2

(CU
1 )

2 + (CU
2 )

2 . (A4)

From this, we find for the EXP pair-potential system

R =
−1 + α − α2

/2 + α3
/4

√
1 + α2/4

√
1 − 2α + 2α2 − α3 + α4/4

(A5)

and

γ =
1
3

¿
Á
ÁÀ1 − 2α + 2α2 − α3 + α4/4

1 + α2/4
. (A6)

Nearest-neighbor interactions dominate in the low-density limit,
i.e., when α≫ 1; in this limit, the theory predicts R ≅ 1 and γ ≅ α/3.

Equations (A5) and (A6) give the predictions shown as full
curves in Fig. 7. For the fcc crystal, the α parameter is given by
ρα3
=
√

2, and for the bcc crystal, α is given by ρα3
= 3
√

3/4.
According to the theory, R and γ are functions of α only. The theory
thus predicts the same relation between these R and γ for both crys-
tal phases. This is confirmed qualitatively in Figs. 7(c) and 7(d). As
expected, the theory works best at low densities, though the theory
is not exact even here.

APPENDIX B: STATE POINTS OF THE THREE
ISOMORPHS STUDIED

The three isomorphs studied involve the state points listed in
Tables I–III. The state points were determined by integrating Eqs. (5)
and (6) by the fourth-order Runge–Kutta algorithm.41
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TABLE I. State point data for the highest-temperature isomorph [compare Fig. 1(b)].

ρ − bcc T − bcc ρ − fcc T − fcc

1.722 042 × 10−3 7.000 195× 10−5 1.722 042× 10−3 7.000 195× 10−5

2.167 922 × 10−3 1.151 925× 10−4 1.367 866× 10−3 4.054 469× 10−5

2.729 252 × 10−3 1.801 824× 10−4 1.086 535× 10−3 2.216 146× 10−5

3.435 925 × 10−3 2.692 507× 10−4 8.630 653× 10−4 1.139 2× 10−5

4.325 573 × 10−3 3.857 789× 10−4 6.855 571× 10−4 5.481 866× 10−6

5.445 574 × 10−3 5.303 934× 10−4 5.445 574× 10−4 2.455 211× 10−6

6.855 571 × 10−3 7.027 732× 10−4 4.325 573× 10−4 1.021 56× 10−6

8.630 653 × 10−3 8.988 158× 10−4 3.435 925× 10−4 3.913 932× 10−7

1.086 535 × 10−2 1.113 681× 10−3 2.729 252× 10−4 1.374 032× 10−7

1.367 866 × 10−2 1.342 329× 10−3 2.167 922× 10−4 4.397 298× 10−8

1.722 042 × 10−2 1.570 931× 10−3 1.722 042× 10−4 1.275 095× 10−8

TABLE II. State point data for the second isomorph.

ρ − bcc T − bcc ρ − fcc T − fcc

8.043 829 × 10−3 3.550 652× 10−4 8.043 829× 10−3 3.550 652× 10−4

1.012 658 × 10−2 4.472 253× 10−4 6.389 441× 10−3 2.743 632× 10−4

1.274 861 × 10−2 5.462 811× 10−4 5.075 313× 10−3 2.044 776× 10−4

1.604 955 × 10−2 6.481 507× 10−4 4.031 465× 10−3 1.466 612× 10−4

2.020 519 × 10−2 7.504 103× 10−4 3.202 306× 10−3 1.009 489× 10−4

2.543 682 × 10−2 8.484 276× 10−4 2.543 682× 10−3 6.641 069× 10−5

3.202 306 × 10−2 9.388 76× 10−4 2.020 519× 10−3 4.159 616× 10−5

4.031 465 × 10−2 1.019 611× 10−3 1.604 955× 10−3 2.473 289× 10−5

5.075 313 × 10−2 1.088 987× 10−3 1.274 861× 10−3 1.390 032× 10−5

6.389 441 × 10−2 1.144 33× 10−3 1.012 658× 10−3 7.349 984× 10−6

8.043 829 × 10−2 1.184 993× 10−3 8.043 829× 10−4 3.642 935× 10−6

TABLE III. State point data for the third isomorph.

ρ − bcc T − bcc ρ − fcc T − fcc

1.384 26 × 10−2 1.870 217× 10−4 1.384 26× 10−2 1.870 217× 10−4

1.742 68 × 10−2 2.205 215× 10−4 1.099 557× 10−2 1.552 329× 10−4

2.193 905 × 10−2 2.535 828× 10−4 8.734 091× 10−3 1.250 395× 10−4

2.761 962 × 10−2 2.850 907× 10−4 6.937 735× 10−3 9.757 41× 10−5

3.477 104 × 10−2 3.141 555× 10−4 5.510 839× 10−3 7.351 166× 10−5

4.377 415 × 10−2 3.395 311× 10−4 4.377 415× 10−3 5.333 891× 10−5

5.510 839 × 10−2 3.605 528× 10−4 3.477 104× 10−3 3.712 32× 10−5

6.937 735 × 10−2 3.773 441× 10−4 2.761 962× 10−3 2.471 613× 10−5

8.734 091 × 10−2 3.879 638× 10−4 2.193 905× 10−3 1.568 369× 10−5

1.099 557 × 10−1 3.929 355× 10−4 1.742 68× 10−3 9.452 045× 10−6

1.384 26 × 10−1 3.953 509× 10−4 1.384 26× 10−3 5.387 184× 10−6
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