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Abstract 

Cyclodextrin complexes were used as simple model systems to explore the enthalpy-entropy 

compensation phenomenon which is often observed in biomolecular processes, e.g. in protein-

ligand binding. The complexation thermodynamics for the binding of a series of adamantane 

derivatives to several cyclodextrin hosts were determined by isothermal titration calorimetry in 

the temperature range 10-55 °C. As for other cyclodextrin complexes, the thermodynamic 

parameters depended systematically on the structural modifications of the cyclodextrins. 

Hydroxypropyl chains at the rims of the cyclodextrin hosts changed the thermodynamic 

fingerprint of binding to all guests by inducing significant increases in the complexation 

enthalpies and entropies. Similarly, the heat capacity changes upon complexation also showed a 

linear dependence on the number of hydroxypropyl chains. The altered complexation 

thermodynamics was ascribed to the increased dehydration of polar groups on the guest by the 

hydroxypropyl chains on the host. This unfavorable interaction destabilized the complexes as the 

enthalpic penalty was only partially compensated by the gain in entropy. The degree of enthalpy-

entropy compensation depended on the guest molecule and seems to be related to the 

hydrophilicity/hydrophobicity of the desolvated molecular surface.  



Introduction 

Molecular recognition depends on numerous noncovalent interactions between the associating 

molecules. When the association takes place in a solvent the interactions with the solvent 

molecules also contribute. Given the complexity of such systems it is no surprise that binding 

free energies (ΔG°) are extremely difficult to predict, even for simple binary host-guest systems. 

It is often challenging to obtain even a qualitative understanding of the main driving forces for 

formation of host-guest complexes. Driving forces that may contribute to the formation of a 

complex include electrostatic/coulombic forces, van der Waals interactions, hydrogen bonding, 

etc. In aqueous solution, the hydrophobic effect also plays an important, and often dominant, 

role. 

The binding free energy, ΔG°, can be divided into enthalpic and entropic contributions, which 

are often interpreted in terms of driving forces. Attractive electrostatic and van der Waals forces 

are assumed to result in an enthalpy-driven binding, while hydrophobic attraction supposedly is 

characterized by a large gain in entropy. This simplistic interpretation of binding 

thermodynamics has caused some confusion and seemingly contradictory observations. For 

example, there are many experimental indications that the hydrophobic effect is a crucial driving 

force for the formation of cyclodextrin (CD) inclusion complexes.1 However, the thermodynamic 

fingerprint of these interactions does not conform to the conventional view that hydrophobic 

interactions are entropy-driven. On the contrary, the vast majority of CD complexes are 

enthalpy-driven.2 This “nonclassical hydrophobic effect” is not only observed for CDs but may 

be a general characteristic of the solvent-driven association of molecules of moderate polarity,3 

keeping in mind that the CD cavity is considered semipolar.1 Release of water molecules from 

the CD cavity constitutes another explanation of the enthalpy-driven complexation.4 The latter 



explanation is hypothesized to constitute a general driving force in systems where water 

molecules are confined in small cavities.5  

The example above illustrates how the experimentally observed thermodynamic fingerprint plays 

a pivotal role in the arguments for the driving forces and their molecular interpretation. 

Similarly, thermodynamic data play a central role in the recent arguments for the existence of a 

distinct chaotropic effect, orthogonal to the hydrophobic effect.6 But is it really possible to 

conclude anything about the driving forces based on the enthalpic and entropic contributions? 

Possibly, but it requires a thorough understanding of the various contributing factors to these 

thermodynamic functions. Especially, the phenomenon called enthalpy-entropy compensation 

(EEC) needs to be understood as it can mask the thermodynamic fingerprint of the mechanisms 

that are responsible for the binding free energy.  As the name indicates, EEC refers to processes 

where an enthalpic contribution is partially or wholly offset (compensated) by a similar but 

oppositely directed entropic contribution. Consequently, such processes do not contribute much 

to the free energy although they may dominate the total thermodynamic fingerprint. 

Reorganization of water molecules near solute surfaces have been suggested to be a source of 

EEC.7,8 

EEC is a long known and much debated topic, but its underlying causes are not clear.9–12 We 

have previously reported the complexation thermodynamics of numerous natural and modified 

CD host molecules with a number of bile salt guests.13–15 For those complexes, a strong EEC 

effect was observed. Complexes with natural βCDs were driven by a large negative enthalpy 

(ΔH° ≈ -25 to -30 kJ/mol) and slightly destabilized by entropy (TΔS° ≈ 0 to -7 kJ/mol). Chemical 

modification of the CD hosts resulted in a significant increase in ΔH° but also in a compensating 

increase in TΔS°, so that the effect on the binding free energy was relatively small (see Eq. 3). 



This effect scaled with the size and number of substituents at the rims of the CDs so that 

formation of complexes with some of the highly substituted CDs were mainly driven by entropy 

((TΔS° ≈ 10 to 15 kJ/mol) and to a much lesser extent by enthalpy (ΔH° ≈ -5 kJ/mol). A similar 

picture was obtained for complexation with natural and modified γCDs.16 Although the presence 

of substituents at the rims of the CDs completely altered the thermodynamic fingerprint of the 

complexation process, this was not interpreted as a change in the driving force. Rather, the 

observed EEC was attributed to the increased hydrophobic contacts between the guest and the 

extended host molecule. This interpretation was supported by molecular dynamics (MD) 

simulations, measured heat capacity changes, and osmotic stress measurements.17–19 On the other 

hand, a detailed analysis of the MD simulations revealed that altered energetics of the water in 

the cavity of the free CD constituted at least part of the explanation for the observed EEC.20 

Upon formation of the complex, release of the cavity water into the bulk will thus exhibit an 

altered thermodynamic fingerprint. 

The present work aims to explore these hypotheses about the origins of the EEC observed for CD 

complexes. Is the EEC brought about by increased hydrophobic contacts between the guest and 

the CD substituents and the concomitant release of surface water? Or is there another 

explanation, such as altered energetics of the cavity water that is expelled upon complexation? 

The hypotheses and the experimental strategy are illustrated in Figure 1. Increased hydrophobic 

contacts occur when the guest molecule protrudes from the CD cavity and interacts with the 

substituents at the rims of the CD, but a sufficiently small guest molecule will not protrude from 

the CD cavity and will not form hydrophobic contacts with the substituents. Thus, if the 

hydrophobic contacts hypothesis is valid, no substituent-induced EEC is expected for the 

complexation with small guest molecules. Testing this hypothesis requires a suitable guest 



molecule. Adamantane is a spherical hydrocarbon that is able to fit almost perfectly into the 

cavity of βCD without protruding from the cavity.21–23 As the adamantane moiety also has a 

strong affinity for βCD this binding motif is an excellent model for testing the hydrophobic 

contacts hypothesis. The present work explores the complexation thermodynamics of several 

water-soluble adamantane derivatives (AD) upon binding to natural and modified βCDs. 

 

Figure 1 Small guest molecules are not expected to interact with the substituents at the CD rims. The small guest could be 
adamantane and the large guest could be a bile salt. 

 

  



Experimental Section 

Chemicals 

Natural β-cyclodextrin, randomly substituted (2-hydroxypropyl)-β-cyclodextrin (HP093), and 1-

Adamantylamine were purchased from Adamas-Beta, Shanghai, China. Randomly substituted 

(2-hydroxypropyl)-β-cyclodextrin (HP063) was from Alfa Aesar, Shanghai, China. 

Adamantanecarboxylic acid (AdCOO) and 1-adamantaneacetic acid (AdCH2COO) were from 

J&K Chemical, Shanghai, China. 1-Adamantanol (AdOH) and 1-Adamantanemethanol 

(AdCH2OH) were purchased from Sigma-Aldrich. The water content of the three CD samples 

were determined by Karl-Fischer titration to 11.2, 7.1, and 6.4 wt% for βCD, HP063 and HP093, 

respectively. The water content was taken into account when calculating the concentration of the 

cyclodextrins. 

 

Nuclear Magnetic Resonance Spectroscopy 

Spectra were recorded at 25°C on a Bruker Avance-600 spectrometer, equipped with a 

cryoprobe. For structural characterization of HPβCDs, 1D 1H and 13C and 2D HSQC, HMBC, 

H2BC spectra were recorded on samples containing around 10 mM CD in D2O. For structural 

characterization of the complexes, 2D ROESY spectra (16 scans, 400 ms mixing time) were 

recorded on samples with around 10 mM of CD and AD dissolved in D2O based phosphate 

buffer, pH 7.2. 

 

 



Isothermal titration calorimetry 

Titrations were made on a VP-ITC (Malvern Panalytical, Malvern, UK) with a cell volume of 1.4 

ml. Aqueous solutions of CDs were titrated into solutions of ADs in aliquots of 10μL, in total 28 

injections. The first injection of only 2 μL was not included in the data analysis. All solutions 

were buffered with a 50 mM phosphate buffer, pH 7.20. At this pH the ADs with carboxylic acid 

or amino groups carry one negative or positive charge, respectively. AD concentrations were in 

the range 0.3-1 mM and CD concentrations were approximately 10 or 20 times higher, resulting 

in a molar ratio of 2 or 4 at the end of the titration. The lower the binding constant, the higher the 

concentrations. Titrations were conducted at 10, 25, 40 and 55 °C, except for the adamantols 

which caused some problems at elevated temperatures, possibly due to problems with solubility 

or chemical stability. 

 

Molecular dynamics simulations 

Complexes of natural βCD and a HPβCD with the two anionic guests were simulated, as well as 

the uncomplexed species. Each of the 4 complexes were simulated in two binding modes where 

the carboxylate group protruded from either the primary or the secondary CD rim. For the native 

CD structures, bonded and nonbonded parameters were from the CHARMM carbohydrate force 

field.24,25 Parameters for the 2-hydroxypropyl substituents and the adamantane derivatives were 

generated by the CGenFF program version 1.0.0,26,27 with the CHARMM General Force Field 

version 3.0.1.28 See ref. 23 for details of the AD parameters. Molecules and complexes were 

solvated in cubic boxes of TIP3P water with a side length of 34-36 Å. If necessary, charge 

neutrality was obtained by adding a sodium ion. 



Initial structures of the complexes were generated by placing the AD guest at the opening of the 

secondary CD rim with the charged group pointing away from the cavity. Simulations were run 

with 2 fs time steps in the NAMD software.29 Complexes and free HPβCDs were simulated with 

a 10 ns equilibration run and a 20 ns production run. Free ADs and free natural βCD have fewer 

structural degrees of freedom and required less simulation time. ASA was determined in the 

VMD software30 using a spherical probe of radius 1.4 Å at a sampling frequency of 10 ps and 

averaged. 

   



Results 

A total of 15 AD:CD complexes were characterized with respect to structure and complexation 

thermodynamics.  Two neutral ADs, AdOH and ADCH2OH, two negatively charged ADs, 

AdCOO and AdCH2COO, and a single positively charged AD, AdNH3, were chosen as guest 

molecules. Natural βCD and two HPβCDs were used as host molecules. Structures are shown in 

Figure 2. 

 

Figure 2 Structures of the investigated adamantane derivatives and cyclodextrins. 

 

Characterization of CDs and their complexes 

The two HPβCD samples were characterized by NMR according to a previously described 

method,13 using the areas of selected peaks in the 1H and 13C spectra (Figures S1 and S2 in the 

Supporting Information). The average degree of substitution, expressed as the number of HP 

chains per glucose unit, was 0.63 and 0.93 for HP063 and HP093. Around 58% of the HP chains 

were located on O2 of the secondary CD rim, while around 10% were located on O6 of the 

primary rim. The remaining 30% were assumed to be attached to O3 on the secondary rim. 



Previous analyses of HPβCD samples by other analytical techniques yielded similar patterns of 

substitution.31,32 

NMR ROESY spectra confirmed the inclusion of adamantane derivatives into the CD cavity, as 

evidenced by strong interactions between the interior CD protons, H3 and H5, and all of the 

protons on the adamantyl moiety (Figures S3 and S4). The complexity of the HPβCD samples 

resulted in significantly broadened and overlapping signals, which prevented an unambiguous 

determination of the orientation of the adamantane derivatives. For complexes with natural βCD, 

it was recently established that the charged group of AdNH3 protrudes from the secondary rim, 

while AdCOO and AdCH2COO are oriented in both directions.23 Those orientations were also 

observed in methylated βCDs,23 and it seems likely that HPβCDs behave the same way. Very 

weak ROESY crosspeaks were observed between the protons on the AD guests and the methyl 

group on the HP chains of HP093, indicating limited interactions between these moieties (Figure 

S5) 

 

Molecular Dynamics Simulations 

Molecular dynamics simulations of four of the investigated complexes were conducted to 

explore their structure and dynamics. In particular, the influence of the HP substituents was 

explored to test the validity of the hypothesis expressed in Figure 1. To this end, inclusion 

complexes with a hydroxypropylated βCD were compared to the corresponding inclusion 

complexes with natural βCD. The HPβCD was named HP086 as its degree of substitution was 

0.86 (6 HP chains distributed over 7 glucose units). To resemble the substitution pattern of the 



experimental CD samples as closely as possible, three HP chains were attached to O2’s on the 

glucose units, two to O3’s, and a single HP chain to an O6. 

Each combination of host and guest was simulated with two different guest orientations in which 

the carboxylate groups on the guest protruded from either the wider secondary rim of the CD or 

from the primary rim. Which one is the correct guest orientation is difficult to determine 

experimentally, and both secondary and primary complexes may coexist, as observed for natural 

βCD and methylated βCDs.23 

During the 30 ns of simulation, none of the complexes dissociated. Some mobility of the guests 

was observed, but in all complexes the adamantyl moiety stayed inside the CD cavity. The HP 

chains on HP086 were very mobile and interacted with the guest and each other. To quantify 

their interaction with the guest molecule the water accessible surface area (ASA) was used. This 

parameter is also expected to be correlated with experimentally determined thermodynamic 

functions such as ΔCp.33 Numerous interactions between the HP-chains and the guest would 

result in a large burial of surface area, that is, a large negative change in the water accessible 

surface area. 

All ASA values for free and complexed species are presented in Table S1 in the Supporting 

Information. The change in ASA upon complexation was calculated as the difference in ASA 

between the complexes and the free species: 

ΔASA = ASAcomplex – (ASACD + ASAAD)   Eq. 1 

The buried surface area (ΔASA) was grouped into polar (ΔASAp) and nonpolar surface area 

(ΔASAnp). The resulting values appear in Table 1 for both secondary and primary complexes. It 

is clear that more nonpolar than polar surface area was buried upon complexation, which is not 



surprising given the nonpolar nature of the adamantyl moiety and the CD cavity. The presence of 

HP chains on the CD hardly resulted in increased burial of surface area, i.e. there were few direct 

contacts between the HP chains and the guest. In the most extreme case, the secondary 

HP086:AdCH2COO complex, the presence of 6 HP chains only resulted in increased burial of 21 

Å2 of nonpolar surface when compared to the corresponding complex with natural βCD. For 

comparison, each HP chain in complexes with bile salt guests dehydrated an estimated 12-16 Å2 

of nonpolar surface due to numerous contacts between the HP chains and the protruding guest 

molecules.17 Thus, the MD simulations essentially confirmed the picture in Figure 1, in which 

the HP chains interact with large protruding bile salt guests but not with small cavity-included 

adamantane guests. 

Table 1 Buried polar (ΔASAp) and nonpolar (ΔASAnp) surface area of the simulated complexes. All values are in Å2. It is not clear 
whether the ADs are oriented with the charged carboxylate group protruding from the secondary or primary rim of the CDs, 
therefore both orientations were simulated. 

Complex Secondary complex Primary complex 
 ΔASAp ΔASAnp ΔASAp ΔASAnp 
βCD:AdCOO -68 -306 -130 -290 
HP086:AdCOO -75 -316 -102 -307 
βCD:AdCH2COO -76 -311 -130 -311 
HP086:AdCH2COO -67 -332 -121 -322 

 

Complexation Thermodynamics 

Complexation thermodynamics was determined by isothermal titration calorimetry for all 

combinations of the three host molecules (βCD, HP063 and HP093) and the 5 guest molecules 

(AdCOO, AdCH2COO, AdNH3, AdOH and AdCH2OH), in total 15 complexes. Binding 

thermodynamics are usually obtained by fitting the ‘one set of sites’ model to each 

enthalpogram, yielding the binding constant, K, binding enthalpy, ΔH°, and stoichiometry, N, as 

best fit parameters. Conducting titrations at different temperatures allows for the change in heat 



capacity, ΔCp, to be determined as the temperature derivative of ΔH°. By exploiting that the 

temperature dependence of the binding constant is governed by ΔH°, as expressed by the van’t 

Hoff equation, more accurate thermodynamic data can be obtained by doing a global fit to 

multiple titrations at different temperatures.34 In the global fit ΔCp is assumed to be temperature 

independent. This assumption is based on personal experience with CD complexes,15,18,34–36 and 

there is no indication in the literature that ΔCp for CD complexes should exhibit any significant 

temperature dependence within the currently investigated temperature range.37–39 Assuming a 

temperature independent ΔCp the binding constant can be expressed as: 

ln(𝐾𝐾) = Δ𝐻𝐻0−𝑇𝑇0Δ𝐶𝐶𝑝𝑝
𝑅𝑅

� 1
𝑇𝑇0
− 1

𝑇𝑇
� + Δ𝐶𝐶𝑝𝑝

𝑅𝑅
ln �𝑇𝑇

𝑇𝑇0
� + ln (𝐾𝐾0)   (Eq. 2) 

where ΔH0 and K0 are the complexation enthalpy and binding constant at a reference 

temperature, T0, here chosen to be 25 °C. The global fitting procedure then yielded ΔH0, K0 and a 

temperature independent ΔCp as global best fit parameters. Additionally, a set of local 

parameters, N, one for each titration, were varied to fit the data. An example of a global fit is 

shown in Figure 3 together with the obtained fitting parameters and their statistics. More 

examples are shown in the Supporting Information, and all obtained thermodynamic parameters 

are presented in Table S2. In most cases, excellent fits of the enthalpograms were obtained, and 

the errors on the obtained thermodynamic parameters were very small.  



 

Figure 3 Global fit of 4 calorimetric titrations of AdCH2COO with βCD, conducted at 10, 25, 40 and 55 °C. The fitting parameter, 
N, was local and assumed the values 0.942, 0.943, 0.938, and 0.936. 

 

Once the binding constant and binding enthalpy was determined, the binding free energy and 

binding entropy was calculated: 

ΔG° = -RTln(K) = ΔH° - TΔS°     (Eq. 3) 

where R is the gas constant. 

The obtained binding thermodynamics for the complexes of natural βCD with the three charged 

ADs are in good agreement with values previously reported by Cameron et al., with the 

exception of ΔH° for the βCD:AdCH2COO complex where the previous value is too negative by 

around 5 kJ/mol.40 The complexes of βCD with the two neutral ADs are less characterized in the 



literature, and only the βCD:AdCH2OH complex has been studied by calorimetry at a single 

temperature (25 °C), at which slightly deviating values of K and ΔH° were reported.41 None of 

the complexes with HPβCDs have previously been described in the literature 

The thermodynamic parameters, ΔG°, ΔH°, and TΔS°, for all 15 complexes are plotted in Figure 

4, along with previously published data for complexes of HPβCDs with three bile salt guests.13 

Although the most apparent feature is the large linear increase in ΔH° and TΔS° with the number 

of HP chains on the host CD, it is also noteworthy that the HP chains severely destabilized the 

complexes. Going from βCD to HP091, the binding free energy increased 5-6 kJ/mol, meaning 

that the binding constants were reduced by a factor of 10 in the highly modified CD complexes 

(corresponding to an increase in ΔG° of 5.7 kJ/mol). Complexes with charged ADs were 

destabilized slightly more than complexes with neutral ADs. 



 

Figure 4 ΔH°, TΔS° (left axis) and ΔG° (right axis) for the formation of complexes with βCD and HPβCDs, plotted as a function of 
the number of HP chains per glucose unit of the CD hosts. Data for AD guests are shown with filled symbols while previously 
reported data13 for three bile salt guests, glycocholate (GC), glycodeoxycholate (GDC) and glycochenodeoxycholate (GCDC), are 
shown with open symbols. All data are from Table S2. 



Discussion 

Disrupted solvent interactions with polar groups determine binding affinity 

The measured binding constants can be easily rationalized. For the βCD complexes, the binding 

affinity correlates with the distance between the nonpolar adamantyl moiety and the attached 

polar group. The adamantyl moiety is located in the hydrophobic cavity of the CD with the polar 

group protruding from the cavity. The complexes are presumably destabilized when the polar 

group is too close to the CD host, resulting in reduced interactions between the polar group and 

the solvent. The charged –NH3 group is directly attached to the adamantyl moiety and is 

therefore strongly dehydrated upon complexation, thus AdNH3 had the lowest binding affinity. 

The charged carboxylate oxygens are separated from the adamantyl moiety by two and three 

bonds in AdCOO and AdCH2COO, respectively, thus fewer interactions with the solvent are 

broken upon complexation, and the binding affinity increases in the order AdNH3 < AdCOO < 

AdCH2COO. Same pattern is seen for the two neutral guests. Although the hydroxyl groups in 

AdOH and AdCH2OH are separated from the adamantyl moiety by only one and two bonds, 

respectively, the destabilizing effect is not as severe as for the charged guests due to the weaker 

interactions of the hydroxyl group with the solvent. 

Similar reasoning can be used to rationalize the destabilizing effect of the HP chains. The chains 

presumably disrupt the attractive interactions between the polar guest groups and the solvent. 

This may explain why the HP chains caused a larger destabilization of complexes with charged 

ADs than neutral ADs. The partial dehydration of the neutral hydroxyl groups in AdOH and 

AdCH2OH presumably cost less energy than dehydration of the charged carboxylate and amino 

groups. This interpretation is supported by the relatively small destabilizing effect of HP chains 



on complexes with bile salts,13 where solvent interactions with the polar hydroxyl groups on the 

guest probably are less disrupted by the HP chains. 

 

Cyclodextrin substituents induced large increase in ΔH° and TΔS° 

As seen on Figure 4, the HP chains significantly altered the thermodynamic fingerprint of the 

complexation process. Upon going from βCD to HP091, ΔH° increased with 11-15 kJ/mol, 

depending on the guest. The increase in TΔS° was a little smaller: 6-7 kJ/mol for complexes with 

charged ADs and around 10 kJ/mol for neutral ADs. Whereas the complexes with natural βCD 

were almost exclusively driven by enthalpy, the binding free energy of complexes with HP091 

was defined by almost equal contributions from enthalpy and entropy. The observed increase in 

ΔH°, and especially the increase in TΔS°, were less pronounced than for previously studied 

complexes with bile salt guests, also shown in Figure 4.  

Interestingly, it seems to be a general trend that substituents at the rims of the CD host increase 

the enthalpy and entropy of complexation. This has been observed for ibuprofen binding to 

HPβCD,39 adamantane-based drugs binding to sulfobutylether-βCD,42 rimantadine and 

amantadine (AdNH3) binding to sulfobutylether-βCD (compare data for sulfobutylether-βCD43 to 

data for βCD41), numerous drugs binding to sulfobutylether-βCD,44 aminobenzoic acids binding 

to HPαCD and HPβCD45, and the already mentioned binding of bile salts to methylated, 

hydroxypropylated and sulfobutylated βCDs and γCDs. Despite the large experimental evidence 

of such effects on the complexation thermodynamics the underlying reasons are still somewhat 

speculative. As outlined in the introduction, the working hypothesis ascribes the substituent-

induced increments in ΔH° and ΔS° to increased hydrophobic contacts between substituents and 



guest. The current MD simulations indicated limited contacts between the HP chains and AD 

guests, so the observed increase in ΔH° and ΔS° seems to disprove this hypothesis. However, the 

measured heat capacities creates a more ambiguous picture, as discussed below. 

 

Decrease in ΔCp indicates hydrophobic contacts between HP-chains and guest  

The change in isobaric heat capacity, ΔCp, is an often used measure of the molecular surface area 

that becomes exposed to water during a molecular process. Exposure of nonpolar surface is 

characterized by a large positive ΔCp while exposure of polar surface gives a negative ΔCp.33,46 

The measured negative values of ΔCp, plotted in Figure 5 are thus consistent with the large burial 

of hydrophobic surface upon insertion of the adamantyl moiety into βCD. 

 

Figure 5 ΔCp for the formation of complexes with βCD and HPβCDs. Data for AD guests are shown with filled symbols while 
previously reported data17 for three bile salt guests, glycocholate (GC), glycodeoxycholate (GDC) and glycochenodeoxycholate 
(GCDC), are shown with open symbols. All data are from Table S2. 

 



What is really interesting is the effect of the hydroxypropyl substituents on ΔCp. With the 

exception of AdNH3, there was a substantial decrease in ΔCp with increasing degree of 

substitution, indicating formation of hydrophobic contacts between the HP chains and the AD 

guests. The literature does not present any universal quantitative relationship between ΔCp and 

ΔASAnp but previous studies suggest a proportionality constant of around 2 J/mol/K per Å2 for 

extracavity interactions in cyclodextrins.17,47 ΔCp for complexes with HP093 were more negative 

than for the corresponding complexes with natural βCD by around 100-150 J/mol/K. This 

decrease in ΔCp translates into an additional burial of 50-75 Å2 in complexes with HP093 but 

analysis of the MD simulations, presented in Table 1, yields a much smaller number. Is 

something wrong with the MD simulations, or is the interpretation of ΔCp in terms of accessible 

surface area too simplistic? While it is worth noting that there are other contributions to ΔCp,11 it 

is also questionable whether ΔASA is a sufficient measure of the hydration changes. Without 

going into a deeper discussion of these issues, it is noted that both the MD simulations and the 

ΔCp values showed that the AD guests interacted less with the HP chains than did the previously 

studied BS guests. The HP chains also have a smaller impact on the enthalpies and entropies of 

binding to the AD guests, suggesting that the observed substituent-induced variations in 

complexation thermodynamics indeed are related to the interactions between the HP chains and 

the guest. 

 

Disrupted polar interactions reduce the degree of enthalpy-entropy compensation 

The studied AD:CD complexes were investigated to see whether the presence of HP chains at the 

CD rims would produce compensating changes to ΔH° and TΔS°. The HP chains brought about 



significant increases in ΔH° and TΔS° but they also destabilized the complexes, i.e. the observed 

changes in ΔH° and TΔS° were not fully compensating. The low degree of compensation is also 

apparent from the enthalpy-entropy compensation plot in Figure 6 where the slopes are much 

lower than unity. Only if the slope is unity there will be exact EEC and an unaltered ΔG°. 

 

Figure 6 Enthalpy-entropy compensation plot for all AD:CD complexes. For each AD guest, the complexes with the three CD hosts 
lie very close to the linear regression lines. 

 

It is noteworthy that the slopes in the EEC plot can be grouped in two. For the charged AD 

guests the slopes are in the range 0.53-0.56, meaning that only half of the destabilizing effect 

resulting from an increase in ΔH° is compensated by increased TΔS°. For the neutral hydroxyl 

containing ADs, the slopes are significantly higher, around 0.67. For a large number of 

complexes of bile salts with various modified CDs, the slopes in the EEC plot were closer to 

unity, between 0.75 and 0.90,48 and even closer, 0.93-0.94, when only methylated CDs were 

considered.18 It is tempting to interpret the slopes in terms of the hydrophilicity of the molecular 



surfaces that are dehydrated upon complexation. Partial dehydration of highly hydrophilic 

molecular moieties, like the charged carboxylate and amino groups, results in a low degree of 

EEC. Dehydration of nonpolar surface, as in the case of the bile salt complexes, yields an almost 

complete compensation with slopes close to unity. Dehydration of hydroxyl groups with 

intermediate hydrophilicity results in an intermediate degree of compensation. This interpretation 

is corroborated by a large study of the complexation thermodynamics of charged CDs with ionic 

guests.49 No compensation was observed for complexes with significant electrostatic 

(coulombic) interactions between host and guest. Only the complexes with a neutral guest 

exhibited EEC, but with a slope of 0.5. According the interpretation above, this low degree of 

compensation is due to dehydration of the hydrophilic zwitterionic headgroup of the employed 

neutral guest. 

The results presented in the present study add to the growing body of evidence that liberation of 

water molecules from the hydration layers of molecular surfaces is a major source of EEC.50–52 

Much of the evidence comes from protein-ligand interactions, but cyclodextrin complexes are in 

many ways better model systems due to their smaller and less complex structure which allows 

for a more detailed and precise structural and thermodynamical characterization. 

 

  



Conclusion 

The small AD guest molecules were anticipated to be completely included in the cavity of βCD 

and should therefore not interact with the sidechains at the rims of modified βCDs. However, the 

results suggest that the sidechains disturb the hydration of the polar moieties of the guest 

molecules that protrude from the CD cavity. Thus, the studied systems were not as ideal as 

anticipated and could not provide an unambiguous confirmation of the hypothesis that 

dehydration of guest and sidechains is the cause of previously observed examples of EEC. 

Nevertheless, the study resulted in several important findings. As for other CD complexes, the 

presence of substituents at the CD rims resulted in increased enthalpies and entropies of 

complexation as well as more negative values of ΔCp, presumably due to the release of hydration 

waters from the guest and the substituents. Unlike other complexes, where the increase in 

enthalpy was almost completely compensated by increased entropy, a lower degree of enthalpy-

entropy compensation was observed. Importantly, the degree of compensation seems to be 

related to the polarity of the dehydrated surface, with a low degree of compensation for 

hydrophilic surfaces and almost complete compensation for hydrophobic surfaces. 
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