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ABSTRACT
Many successful theories of liquids near the melting temperature assume that small length scale density fluctuations follow Gaus-
sian statistics. This paper presents a numerical investigation of density fluctuations in the supercooled viscous regime using an
enhanced sampling method. Five model systems are investigated: the single component Lennard-Jones liquid, the Kob-Andersen
binary mixture, the Wahnström binary mixture, the Lewis-Wahnström model of ortho-terphenyl, and the TIP4P/Ice model of
water. The results show that the Gaussian approximation persists to a good degree into the supercooled viscous regime; how-
ever, it is less accurate at low temperatures. The analysis suggests that non-Gaussian fluctuations are related to crystalline
configurations. Implications for theories of the glass transition are discussed.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5080277

I. INTRODUCTION

Small length scale density fluctuations in normal homo-
geneous liquids above the melting temperature obey Gaussian
statistics over many orders of magnitude.1,2 This dependence
underlies many successful theories of the liquid state.1,3–5 The
Gaussian approximation is sometimes assumed to hold in the
supercooled regime when the liquid approaches a glass tran-
sition.6–12 This study investigates to what extent Gaussian
statistics of small length scale density fluctuations persists
in the supercooled viscous regime near the glass-transition.
Viscous liquids are highly non-trivial as emphasized by the
three non’s:10 non-exponential relaxation of equilibrium fluc-
tuations, non-Arrhenius temperature dependence of struc-
tural relaxation time, and nonlinear out-of-equilibrium aging.
Thus, it is not obvious that Gaussian statistics will persist in
the supercooled viscous regime.

Statistics of density fluctuations add insight into the
ongoing debate about the origin of slow dynamics in structural
glass-formers.11,13–15 In general, liquids can be cooled below
their melting temperature due to the existence of a free-
energy barrier related to the formation of a critical nucleus.16

The dynamics near the glass-transition is by definition dra-
matically slower than that near the melting temperature.
When the dynamics is determined by a single constant free
energy barrier, then the slowdown would follow the Arrhe-
nius law. However, many liquids exhibit a super-Arrhenius
slowdown (the first “non”). Experiments and computer stud-
ies of model liquids have shown that the dynamics becomes
spatially heterogeneous upon cooling.17–21 It is an appeal-
ing idea that the dynamical heterogeneity could be related
to geometric arrangements of locally preferred structures of
well-packed molecules or atoms. Several studies have iden-
tified accumulation of locally preferred structures in specific
systems.20–33 The resulting representation is a heterogeneous
structure with non-Gaussian small length scale density fluc-
tuations. A disadvantage of the “locally preferred structure”
approach is that it is system specific. In this paper, it is pro-
posed to study statistics in the collective density field. This
general approach can be applied to distinct systems, which
is shown by investigating the model belonging to chemically
different classes.

In contrast to the aforementioned structural origin of
the glass-transition, some explanations regard structure as
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less important.10,34–36 The motivation lies on the experimental
observation that the structure factor is similar in the nor-
mal and in the supercooled liquid regime. As an example,
the quadratic scaling law of the temperature dependency of
the relaxation time35–38 originates from generic kinetic con-
straint models.38,39 These models have trivial thermodynam-
ics but non-trivial dynamics leading to a glass-transition. This
concept suggests that statistics of small length scale den-
sity fluctuations near the glass transition inherit the Gaussian
statistics of the normal liquid regime.

This study examines the statistics of small length scale
density fluctuations for the single component Lennard-Jones
(LJ)40 model, the binary Kob-Andersen mixture (KABLJ),41 the
Wahnström binary mixture (WABLJ),42 a coarse grained model
of o-terphenyl (LWoTP),43 and the TIP4P/Ice44 water model.
Enhanced sampling molecular dynamics methods are used to
investigate the distributions over many orders of magnitude.
The results show that the Gaussian approximation persists
to a good degree in the supercooled viscous regime; how-
ever, deviations are larger at low temperatures. The analy-
sis suggests that non-Gaussian features are related to first-
order transitions to crystals (other possibilities are discussed
in Sec. V).

This paper is organized as follows: Sec. II introduces the
formalism used to describe density fluctuations and theory of
the Gaussian approximation. Section III presents the numer-
ical methods used for the enhanced sampling of the den-
sity field and provides descriptions of the investigated mod-
els. Section IV presents the results, and the implications are
discussed in Sec. V.

II. FORMALISM AND THEORY
This section presents the formalisms employed to char-

acterize density fluctuations.

A. The collective density field in the k-space
In experiments (X-ray or neutron scattering) and theo-

ries of the liquid states, it is often convenient to work in the
reciprocal space. Consider a liquid of N particles located at
R = {r1, r2, . . ., rN} in a volume V with periodic boundaries
so that the average density is ρ = N/V. Let the real-space
density field be ρ(r) =

∑N
n δ(rn − r), where δ is Dirac’s delta

function. The collective density field in the reciprocal space
is then defined as the Fourier transform of the real-space
density field: ρk = ∫V drρ(r) exp(−ik · r)/

√
N, where k = kk̂

is the scattering or wave vector (sometimes the letter “q”
or “Q” is used). The 1/

√
N factor ensures the system size

invariance of amorphous configurations (liquids). The scaling
is
√
N for configurations with long-range translational order

(crystals) along the k̂ direction. For a system confined in a
periodic orthorhombic box, the density field can be written
as

ρk =

N∑
n=1

exp(−ik · rn)/
√
N, (1)

where k = (2πnx/Lx, 2πny/Ly, 2πnz/Lz), nx, ny, and nz are
integers, and Lx, Ly, and Lz are the length of the volume that
confines the liquid (V = LxLyLz).

The investigation can be limited to k-vectors along the
x-direction without the loss of information due to liquid’s
isotropy. For a cubic box with sides of length L = Lx = Ly = Lz,
it is possible to consider k vectors of lengths k = 2πn/L, where
n is an integer (nx = n and ny = nz = 0). The isotropy is, in
principle, destroyed by the box’s anisotropic periodic bound-
aries. However, such effects are expected to be small and are
ignored in this study.

Here, we consider the probability distribution P(|ρk|),
where |ρk| is the norm of the collective density field. It is not
needed to consider the full two-dimensional complex plane of
P(ρk) due to the symmetry of the liquid. The second moment
of the distribution Sk = 〈|ρk|2〉 is the structure factor rou-
tinely measured in scattering experiments. If the statistics
of density fluctuations follows a Gaussian (G) distribution,
then

PG( |ρk |) = 2 |ρk | exp(−|ρk |
2/Sk)/Sk. (2)

The central limit theorem states that in the thermodynamic
limit, the density fluctuations become Gaussian (see also dis-
cussion in Sec. V): P(|ρk|) → PG(|ρk|) for N → ∞. Thus, the
analysis is limited to non-trivial small length scale fluctuations
by studying systems of 100–1000 particles (unless otherwise
stated). It has been demonstrated that a small system of that
size represents viscous dynamics of a large system.45

FIG. 1. Natural logarithm of the probability distribution P(|ρk|) for k = (2πn/5.0273,
0, 0) from simulations of the single component LJ model in the normal liq-
uid regime. The solid black lines are the distribution function computed from
reweighed biased simulations. The red dashed lines are the Gaussian approx-
imations [Eq. (2)]. The distributions have been shifted vertically for clarity.
The inset shows the structure factor, where dots indicate the investigated
k-vectors.
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FIG. 2. Configurations representing the system in the non-
Gaussian tails of the distributions shown in Fig. 1. The
left panels show configuration of the single component LJ
model, and the right panels show the corresponding scat-
tering spectra Sk in the xy-plane (average over several
configurations). From top to bottom, the panels show data
from simulations with wave vectors with n = 6, n = 8, n = 10,
and n = 1, respectively.
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The fourth moment 〈|ρk|4〉 of the Gaussian distribution
PG(|ρk|) is 2〈 |ρk |2〉2. Thus, a non-Gaussian parameter can be
defined as

αρk = 〈 |ρk |
4〉/2〈 |ρk |

2〉2 − 1. (3)

B. The density fluctuations in a subvolume
A consequence of the central limit theorem is that non-

Gaussian features are more prominent in smaller systems.
Thus, it can be illustrative to investigate density fluctuations
in small subvolumes of a larger system. A subvolume can be
defined through the function h(r) so that h is unity inside
the volume and zero outside. The collective density field in
this subvolume can then be written as ρ

(h)
k =

∑N
n exp(−ik ·

rn)h(rn)/
√
Vh, where Vh is the size of the subvolume. k = 0

relates to the average density ρh = Nh/Vh in the subvol-
ume. Here, Nh =

∑N
n h(rn) is the number of particles in the

subvolume. The Gaussian approximation for the ρh density
fluctuations is

PG( ρh) = exp(−[ ρh − 〈ρh〉]2/2m2)/
√

2πm2, (4)

where m2 = 〈( ρh − 〈ρh〉)2〉 is the variance. For this distribution,
the fourth central moment m4 = 〈( ρh−〈ρh〉)4〉 equals 3m2

2. Thus,
a non-Gaussian parameter is defined as

αρh = m4/3m2
2 − 1. (5)

III. METHODS AND MODELS
A harmonic potential is added to the Hamiltonian in order

to bias the system towards large |ρk| values. The Gaussian
approximation can then either be investigated directly on
statistics of the biased simulations or by re-weighting statis-
tics of a series of simulations (a variation of the umbrellas
sampling method46). The description of the suggested method
is as follows:

A. Sampling rare fluctuations
of the collective density field

Let H(R, Ṙ) be the Hamiltonian of a given system. To
sample rare ρk fluctuations at some density and tempera-
ture, the following Hamiltonian is investigated with molecular
dynamics:47

Hκa(R, Ṙ) = H(R, Ṙ) + κ[ |ρk(R) | − a]2/2, (6)

where κ is the spring constant and a is the anchor point of the
bias field. The |ρk| probability distribution of the non-biased
system is given by

P( |ρk |) = NκaPκa( |ρk |) exp(κ[ |ρk | − a]2/2kBT), (7)

where Pκ a(|ρk|) is the distribution of the Hamiltonian with the
harmonic bias field applied and Nκa needs to be determined
numerically or derived from the Gaussian approximation.

For a series of overlapping distributions (with different a’s
and κ ’s), Nκa can be determined numerically using the iter-
ative Multistate Bennett Acceptance Ratio (MBAR) method.48

Alternatively, the distribution function Pκ a can be investigated

directly. The prediction for the Gaussian approximation is
found by combining Eqs. (2) and (7)

P(κa)
G ( |ρk |) = 2 |ρk | exp(−|ρk |

2/Sk − κ
′[ |ρk | − a]2)/N (κa)

G Sk, (8)

where the normalization constant is

N (κa)
G =

exp(− A2

Skκ ′
)

1 + Skκ′

[
exp(−A2) + Aπ

1
2 [1 + erf(A)]

]
, (9)

A = aκ′/
√
S−1
k + κ′, κ′ = κ/2kBT, and erf(x) = 2π−

1
2 ∫

x
0 exp(−s2)ds

is the error function. The first moment of the biased distribu-
tion is

〈 |ρk |〉P(κa)
G
=

exp(−a2κ′)
N 2aκ′[1 + Skκ′]2

[2Sk[aκ′]2 + B[1 + erf(A)]], (10)

where B = Aπ
1
2 eA

2
(1 +Sκ′(1 + 2a2κ′)). Predictions from the Gaus-

sian approximation can be used as initial guesses for the itera-
tive MBAR method.48 In practice, this leads to fewer iterations
before reaching convergence. (The unique solution that the
MBAR method converges to can, in principle, be far away from
the initial Gaussian guess.)

To perform molecular dynamic simulations, forces on
particles from the bias field need to be evaluated. The total
force acting on particle j is47

F(κa)
j = F(0)

j − κ( |ρk | − a)∇j |ρk |, (11)

where F(0)
j is the force of the unbiased Hamiltonian H(R, Ṙ)

and

∇j |ρk | = −k<[iρ∗k exp(−ik · rj)]/ |ρk |. (12)

It is possible to design an N-scaling algorithm although the
force acting on the particle j depends on the position of all the

FIG. 3. The distribution function Pκ a(|ρk|) in a series of |ρk| biased simulations
(κ = 4 and a = {0, 1, 2, 3, 4, 5}) of the KABLJ liquid in the supercooled regime.
The red dashed lines show the Gaussian prediction [Eq. (8); no fitting parameters].
The agreement is good. This type of data has been reweighed to get the P(|ρk|)
distributions in Fig. 5.
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FIG. 4. Examples of crystallizing trajecto-
ries: (a) the |ρk| trajectory in a simulation
with the bias field 5( |ρk | − 6.5)2 added
to the Hamiltonian of the KABLJ mixture.
A crystallite is formed in the last third
of the simulation. The crystallite con-
sists of pure A particles, and thus, crys-
tallization is accompanied by a phase
separation. (b) The number of A’s that
have 12 A’s in the first neighbor shell.
This order-parameter is an indicator of
the crystallization. (c) The configuration
in the last step of the simulation. The
A particles are green colored, while the
B’s are red colored. (d) The crystalline
qubatic order-parameter50 and (e) the
potential energy in biased simulations of
the LWoTP model. (f) The final config-
uration of a trajectory where a crystal
is formed. Molecules are given separate
colors.

particles: First loop over all particles to compute ρk and then
loop over all particles again to get particle forces using Eqs. (11)
and (12). The algorithm can be parallelized to several processes
since both the computation of ρk and the F(κa)

j forces involve
sums of independent contributions (assuming the same for
F(0)
j ). Computational efficiency of the algorithm is crucial since

long-time simulations are needed in the supercooled viscous
regime.

B. Sampling rare density fluctuations in a subvolume
The overall idea of the above mentioned method for

computing rare fluctuations of the collective density field
can also be used to sample rare density fluctuations in a
subvolume. First define a continuous quantity Ñh that is
strongly correlated with the number of particles Nh inside
the volume h. This is done by applying a switching func-
tion to the boundaries of the subvolume as described in
Ref. 49 by Patel et al. The unbiased distribution P( ρh) is
obtained by reweighing biased distribution P(Ñh) using the
MBAR method.48 For binary mixtures, a bias potential can
be applied to both types of particles. Statistical informa-
tion of the unbiased system is determined using the MBAR
method.

C. Energy surfaces
This study investigates density fluctuations in several

atomistic and models. The following examples have been cho-
sen to represent different chemical classes of liquids:

LJ: In 1924, Lennard-Jones suggested a simple model
of interaction between atoms by summing a repul-
sive term representing Pauli repulsions and an
attractive term representing London forces.40 This
study investigates a truncated version where the
potential energy surface is U(R) =

∑N
n>m u( |rm−rn |),

with u(r) = 4ε [(σ/r)12 − (σ/r)6 − 2.5−12 + 2.5−6] if
r/σ < 2.5 and zero otherwise. Molecular dynamics
is conducted for N = 108 particles withσ = ε = m = 1
in a periodic simulation cell at density ρ = 0.85
(L = 5.0273) and temperature T = 0.8. This state
point is in the normal liquid regime and close
to the freezing temperature.47,51 The LJ model is
not a good glass-former; however, it is included
in the analysis since it is a standard system in
computational condensed matter physics.

KABLJ: Kob and Andersen suggested a binary LJ mixture as
a model of a good glass former.41 This 80/20 mix-
ture of AB particles has a strong affinity towards
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unlike atoms: εAA = σAA = 1, εAB = 1.5, σAA = 0.8, εBB
= 0.5, and σBB = 0.88. This parametrization makes
a good glass-former on time-scales, and the sys-
tem sizes are typically investigated in silico. The
mixture is the standard model for computational
studies of low temperature liquid dynamics. It is
custom to study the density ρ = 1.2, where the
melting temperature is Tm = 1.027(3).52 Below this
temperature, the particles will eventually phase
separate and solidify in long-time simulations. The
thermodynamically stable solid consists of two
crystals: one, where A particles are in a face cen-
tered cubic structure and the other where A and
B particles form the crystal structure of PuBr3.52

If crystallization is avoided, however, the low-
temperature liquid accumulates locally preferred
structures where one of the small B particles is sur-
rounded by ten larger A particles, thus forming a
twisted bicapped square prism.25,32

WaBLJ: Wahnström suggested a 50/50 binary LJ mixture
with a size ratio of 80%:42 εAA = εBB = σBB = 1,
σAB = 1.1, and σBB = 1.2. Unlike the KABLJ mix-
ture, the interaction parameters (ε’s and σ’s) fol-
low the Lorentz-Berthelot rule of mixing. The
system is a good glass former (in silico); how-
ever, in long-time simulations, the mixture may
spontaneously crystallize into a MgZn2 crystal

structure.27 In the supercooled regime, the liq-
uid exhibits icosahedral25,31,53 and Frank-Kasper
order.27 The former structure is an A particle
with a first shell consisting of six A particles
and six B particles forming a distorted icosa-
hedron.53 The latter structure is a geometric
arrangement where two touching B particles have
six smaller A particles as common neighbors.27

The amount of these structures increases with the
decrease in the temperature since they pack space
well.27,54

LWoTP: Lewis and Wahnström43 suggested a coarse
grained model of ortho-terphenyl (C18H14) where
molecules are constructed from three LJ parti-
cles placed at the corners of an isosceles triangle
with two sides of length σ. The LJ particles
are parametrized to represent benzene rings:
ε = kB(600 K) and σ = 0.483 nm. To avoid crystal-
lization in a close-packed structure, the molecule
has an inner angle of 75◦ (that is, between 60◦ and
90◦ degrees—the angles found between neighbor-
ing triplets in close packed structures). In long-
time simulations, however, the system can crys-
tallize into a structure where the LJ particles form
a base centered cubic lattice with random orien-
tations of molecules.50,55 This study investigates
a system of N = 324 molecules (unless otherwise

FIG. 5. Natural logarithm of probability
distribution P(|ρk |) for (a) the KABLJ mix-
ture (T = 0.45, ρ = 1.2, and N = 1000),
(b) the WaBLJ mixture (T = 0.6, ρ
= 0.75, and N = 1024), (c) LWoTP trimer
molecules (T = 350 K, ρ = 1.09 g/ml, and
N = 324), and (d) tip4p/ice water model
(T = 280 K, ρ = 1 g/ml, and N = 432).
The red dashed lines are Gaussian
predictions. The insets show scattering
functions. The agreement with the Gaus-
sian prediction is good; however, devia-
tions are apparent in the tails of the dis-
tributions. These are likely attributed to
crystalline structures.
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stated) at temperature T = 350 K and density
ρ = 1.09 g/ml (L = 4.84 nm).

Water: Abascal et al.44 introduced the TIP4P/Ice atom-
istic water model. This four site model reproduces
the complicated phase-diagram of real water,
suggesting that it could give a good representa-
tion of the hydrogen-bonds in the liquid state. The
model is studied at temperature T = 280 K and den-
sity ρ = 1 g/ml. There are no signs of spontaneous
crystallization.

Numerical computations are performed using the software
packages LAMMPS,56 RUMD,57 and a home-made code avail-
able at http://urp.dk/tools. The implementation of the ρk
bias field is available in the official LAMMPS and RUMD
packages. Statistics of fluctuations of the ρk density field
are investigated in the constant NVT ensemble. Statis-
tics of the ρh density are studied in systems with a gas-
liquid interface. This is obtained by constructing an elon-
gated simulation cell with periodic boundaries in the x
and y directions and walls at the boundaries of the longer
z direction.

The results for the LJ, KABLJ, and WaBLJ models are
reported in reduced Lennard-Jones units, while the physical
units are used for the LWoTP model and the TIP4P/ice water
model.

IV. RESULTS
A. Fluctuations of the collective density field

Figure 1 shows the natural logarithm of probability dis-
tributions P(|ρk|) of the LJ model in the region of the phase
diagram just above the melting temperature (the normal
liquid regime). Figure 1 includes k-vectors from lengths of

FIG. 6. The natural logarithm of the distribution P(|ρk|) with k = 1.4 nm−1 of the
LWoTP model for system sizes of N = 324 (blue) and N = 2592 (green) molecules,
respectively. The Gaussian approximation (red dashed) is more accurate for the
larger system as expected from the central limit theorem. The non-Gaussian
parameters αρk [Eq. (3)] are 0.029 and 0.0011 for N = 324 and N = 2592,
respectively.

FIG. 7. Density fluctuations in a 3 × 3 × 3 subvolume, h, of the LJ model in the
normal liquid regime with a gas-liquid interface (T = 0.7, N = 3000, Lx = Ly = 10).
The inset shows a typical configuration of the system with a gas-liquid interface,
and the subvolume h located in the bulk liquid part.

k = 1.25 (n = 1) up to k = 15.0 (n = 12, shifted vertically for clarity).
The solid black lines are the reweighed distributions obtained
using a series of biased simulations, and the red dashed lines
are Gaussian approximations. Overall the Gaussian approxi-
mation gives a good description of the data. This supports
the common result that small length scales fluctuations are
Gaussian in the normal liquid regime.1,2 The tails of the
distributions, however, show non-Gaussian features. As an
example, the k-vectors with n = 6 and n = 8 show fat
tails compared to the Gaussian reference. A representative
configuration from the tail of the distribution for n = 6 is

FIG. 8. Structural relaxation time τα as a function of temperature of the KABLJ
mixture with a gas-liquid interface (N = 3000, Lx = Ly = 10). The struc-
tural relaxation time is here defined as Fs(k = 2π, t = τα ) = 1/e, where
Fs is the self intermediate scatter function of A’s located inside the slap
(−5 < z < 5). The inset shows the density of the liquid slap as a function of
temperature.
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FIG. 9. Density fluctuations at different temperatures in a 3 × 3 × 3 subvolume
of the KABLJ mixture with a gas-liquid interface. The Gaussian approximation
becomes better at higher temperature. The non-Gaussian parameter [Eq. (5)] for
the high temperature T = 0.55 is αρh = 3 × 10−4 while it is significantly larger,
αρh = −4 × 10−2, for the two lower temperatures, T = 0.40, 0.35.

shown in Fig. 2(a). A crystalline structure can be identified
in both the real-space configuration and the scattering spec-
trum as shown in Fig. 2(b). A cubic box with 108 LJ par-
ticles have an ideal crystal structure with 3 × 3 × 3 fcc
unit cells giving a Bragg peak at n = 6. The distribution
of the n = 8 vector [Figs. 2(c) and 2(d)] also has a fat tail.
This is also attributed to a crystalline structure but with
another orientation. (Bias simulation similar to the ones pre-
sented here can be used to compute the melting point
of crystals. This is referred to as the “interface pinning”
method.47)

Other k-vectors have thin tails. For example, Fig. 2(e)
shows a configuration from the tail of the n = 10 wave vector.
This structure is not crystalline but amorphous. Figures 2(g)
and 2(h) show a structure from the longest wave vector inves-
tigated (n = 1). The liquid responds to a strong bias field by
forming a vapor slap and a crystalline slap.

Next the glass forming models are investigated. Figure 3
shows the data for the KABLJ model at temperature T = 0.45
( ρ = 1.2) for a system size of N = 1000 particles. This state-
point is well below the melting temperature Tm = 1.027(3)52

where the structural relaxation time is about 103 times
slower than the normal liquid regime.41,58 The solid black
lines in Fig. 3 show biased distributions Pκ a(ρk) for κ = 4
and several anchor points: a = {0, 1, 2, 3, 4, 5}. The red
dashed lines are Gaussian approximation. The agreement is
good.

Interestingly, the systems are more prone to crystalliza-
tion when a |ρk| bias field is applied. Figure 4 shows examples
of crystallizing trajectories of the KABLJ mixture and LWoTP
trimers. Crystallizing trajectories are discarded in the analysis
of density fluctuations of the liquid state.

Figure 5 shows the distributions P(|ρk|) for the glass
forming liquids KABLJ, WaBLJ, LWoTP, and water for several

FIG. 10. (a) The ln(P(NA, NB)) distribution in a 3 × 3 × 3 subvolume of the KABLJ
mixture at T = 0.325 (the white squares were not computed due to bad statis-
tics). Non-gaussian features are seen as the contour lines that deviate slightly
from being oval. (b) A configuration from the tail of the distribution with equimo-
lar composition. The upper half of particles has been made invisible to reveal the
arrangement of particles in the 3 × 3 × 3 subvolume h. The structure corresponds
to a cubic CsCl crystallite. This is one of the thermodynamically stable phases of
the mixture.52

k-vectors. The red dashed lines indicate the Gaussian approx-
imation. The agreement is good, but the tails of the distri-
butions deviate from the Gaussian prediction. The deviations
are system-size dependent as expected from the central limit
theorem. Figure 6 shows that the non-Gaussian fat tail for
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k = 1.4 nm of the LWoTP systems is greatly diminished when
the system size increases from N = 324 to N = 2592.

B. Density fluctuations in a subvolume
Fluctuations in small subvolumes of a larger system can

give a further insight into the structural origin of the non-
Gaussian small length scale density fluctuations. Figure 7
shows the distribution function of the ρh density in a
3 × 3 × 3 subvolume, h. The points are reweighed statistics
from simulations with bias potentials. The red dashed line
is the prediction from the Gaussian approximation [Eq. (4)].
The agreement is good and is consistent with the find-
ings in Refs. 1 and 2. Some deviations from the Gaussian
approximation can be observed in the tails of the distri-
butions. The low density limit corresponds to the forma-
tion of a cubic vapor bubble in the liquid. As described by
the classical nucleation theory, the free energy −kBT ln(P)
required to form such a bubble is the sum of bulk and surface
contributions.

Gas-liquid coexistence simulations of the KABLJ mix-
ture are performed to investigate density fluctuations in the
supercooled viscous regime. Figure 8 shows the structural
relaxation time of particles in the liquid slap. The relaxation
time is non-Arrhenius in the investigated temperature regime,
0.28 < T < 0.60. The points on Fig. 9 shows the distribution
of the density ρh fluctuations in a 3 × 3 × 3 subvolume h for
temperatures T = {0.35, 0.40, 0.55}. The Gaussian approxima-
tions [Eq. (4)] are shown as red dashed lines. The conclusion
from the analysis of the |ρk| fluctuations remains—the Gaus-
sian approximation provides a fair description but becomes
less accurate when temperature is lowered. Deviations are
seen in both the tails of the distributions and near the mean
as quantified by the non-Gaussian parameter αρh [Eq. (5)].
Figure 10(a) shows the joint distribution of the two types
of particles, P(NA, NB). The Gaussian approximation pre-
dicts elliptical shaped contour lines. However, the distribution
shows deviations in the tails. Figure 10(b) shows a configu-
ration from a fat-tail region of the distribution at equimolar
composition. The configuration is a cubic CsCl crystallite. This
structure is one of the thermodynamically stable crystal struc-
tures of the KABLJ model.52 This suggests that non-Gaussian
features in the tails are related to the first order-transition
from a liquid to a crystal.

V. DISCUSSION
The results for chemically different glass formers have

been presented. The overall conclusion is that the Gaus-
sian approximation provides a fair description of the small
length scale density fluctuations; however, as tempera-
ture is lowered, the Gaussian approximation becomes less
accurate.

Gaussian statistics is usually described in two ways: (i)
from the central limit theorem, or (ii) from a harmonic approx-
imation. (i) The central limit theorem states that if random
variables from any underlying distribution are added together,
the resulting distribution will tend to follow Gaussian statis-
tics. For a non-flowing equilibrium liquid of sufficient size,

it can be assumed that subvolumes fluctuate independently.
As an example, consider the ideal gas model. The num-
ber of particles in a given subvolume h follows the Poisson
distribution. If the size of the subvolume is increased, then
Raikov’s theorem states that the fluctuations again follow a
Poisson distribution with a larger average value. This dis-
tribution in the thermodynamic limit becomes the Gauss
distribution. For a liquid with interactions, the underlying
distribution differs from the Poisson distribution; however,
by studying small length scale density fluctuations, one can
get insight into the nontrivial underlying distribution. This
brings us to the other, less trivial, way of arriving at Gaus-
sian statistics. That is, (ii) by a harmonic expansion around
a local minimum of the free energy function F: if x is an
order parameter, such as ρk or ρh, then the free energy
is

F(x) = −kBT ln(P(x)), (13)

where P(x) is the probability distribution. The function F(x)
can be expressed as an infinite polynomial expansion around
the minimum at x0. It is often convenient to approximate F
and assume that only the second order term is of relevance.
Thus, if we ignore higher order terms, we get a harmonic
approximation for the free energy5

FG(x) = a2[x − x0]2 + const. (14)

The truncation of the expansion series is non-trivial, as dis-
cussed below. The probability distribution of the Gaussian
approximation is found by equating Eqs. (13) and (14)

PG(x) = exp(−a2[x − x0]2/kBT). (15)

(The reason that statistics is found to be near-Gaussian is
not due to the harmonic bias field added to the Hamilto-
nian since the distribution functions are reweighed using
the MBAR method.) To understand the first order transi-
tions, e.g., the gas-liquid transition, higher order terms are
relevant. As a classic example, Landau’s (L) effective Hamil-
tonian59,60 includes higher-order terms to give a description
of the density fluctuations near the gas-liquid critical point:
FL(x) = a2[x − x0]2 + a4[x − x0]4 + const.. With Landau’s theory
in mind, one expects deviations from the Gaussian approxi-
mation when other phases (gas or crystals) interfere with the
liquid state. Deviations from the Gaussian statistics can be
attributed to the formation of a vapor bubble, as shown in
Fig. 2. In the supercooled regime, the crystal basin in the free
energy landscape becomes large, suggesting that statistics
becomes less Gaussian due to the presence of a crystal. The
microscopic image is the formation of subcritical crystallites
(Fig. 6). In agreement with this, the systems are more prone
to crystallization when a strong field biasing |ρk| is applied
(Fig. 4).

Beside subcritical crystallites, some supercooled viscous
liquid may accumulate crystal-like structures that share the
local arrangement of the crystal, i.e., rotational order in
the first shell. Tanaka and co-workers22,23,29,33 have demon-
strated that for some model liquids, there is a link between
slow dynamics and crystal-like order. Interestingly, the locally
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preferred structures of the WaBLJ supercooled viscous liq-
uid (the distorted icosahedron and the Frank-Kasper bond)
are shared with the crystal (MgZn2).27 This contrasts the
KABLJ mixture where the locally preferred structure25,32 is
different from the crystalline ground state.52 In general,
non-crystalline structures could also be important for the
statistics of small length scale fluctuations. Non-crystalline
structures have been suggested as an important component
for understanding the dynamics of the highly viscous liq-
uid near the glass transition.21,25,26,30–32 More refined meth-
ods are needed to clarify the coupling between a specific
local structure and small length scale density fluctuations.
The joint distribution function of density ( ρk or ρh) and
other order-parameters can give insight into this (see, e.g.,
Fig. 3 in Ref. 33). Such investigations are left to future
studies.

Small length scale density fluctuations can also be ana-
lyzed from an energy landscape45,61–63 perspective. In this
perspective, the 3N dimensional energy surface of the liq-
uid is partitioned into basins identified by the local min-
ima. Below a certain onset temperature, the system explores
the configuration space by means of two mechanisms. At
short times, the system vibrates in a basin that is, to a
good approximation, harmonic. Thus, it is expected that
these vibrations will give rise to Gaussian statistics of den-
sity fluctuations. On longer time-scales, the system will
explore different basing (activated relaxation). From this per-
spective, the non-Gaussian feature at low temperatures is
related to density fluctuations between basins (the inherent
states).

Some theories directly or indirectly assume Gaussian
statistics of small length scale density fluctuations. As an
example, the fact that small length scale fluctuations persist
to be near-Gaussian in the supercooled regime is in line with
the picture behind the generic kinetic constraint models.35–39

As mentioned in the Introduction, this concept suggest that
thermodynamics and structural details of glass forming mate-
rials are not crucial for understanding the dynamics of highly
viscous liquids. Finally, the Gaussian approximation of density
fluctuations plays a role in some elastic models.10,64,65 The
idea behind these approaches is that the viscous dynamics
is connected with elastic deformations which allow particles
in a subvolume to rearrange. Here, the Gaussian approxima-
tion enters in some theories to make predictions that can be
related to experiments.
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