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Abstract: Increasing use of engineered nanoparticles has led to extensive research into their potential 

hazards to the environment and human health. Cellular uptake from the gut is sparsely investigated and 

microscopy techniques applied for uptake studies can result in misinterpretations. Various microscopy 

techniques are used to investigate internalization of 10 nm gold nanoparticles in Daphnia magna gut 

lumen and gut epithelial cells upon 24h exposure and outline potential artefacts, i.e. high contract 

precipitates from sample preparation related to these techniques. Light sheet microscopy confirmed 

accumulation of gold nanoparticles in the gut lumen. Scanning transmission electron microscopy and 

elemental analysis revealed gold nanoparticles attached to the microvilli of gut cells. Interestingly, the 

peritrophic membrane appeared to act as a semipermeable barrier between the lumen and the gut 

epithelium, permitting only single particles through. Structures resembling nanoparticles were also 

observed inside gut cells. As elemental analysis could not verify these to be gold they were likely 

artifacts from the preparation, such as osmium and iron. Importantly, gold nanoparticles were in fact 

found inside holocrine cells with disrupted membranes. Thus, false positive observations of 

nanoparticle internalization may result from either preparation artefacts or by mistaking disrupted cells 

for intact. These findings emphasize the importance of cell integrity and combining elemental analysis 

with the localization of internalized nanoparticles using transmission electron microscopy. This article 

is protected by copyright. All rights reserved 
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INTRODUCTION 

Use of engineered nanoparticles (NPs) has increased rapidly over the past decade and consequently it is 

important to evaluate their environmental fate and potential effects. Most studies have focused on 

assessing toxicity of NPs, while less is known about bioaccumulation of these particles [1]. The uptake 

of NPs in aquatic organisms and in particular the cellular internalization following uptake are matters 

of crucial importance for understanding the potential effects of NPs.   

Electron Microscopy (EM) is a well-established technique for imaging of biological samples, 

including cellular ultra-structures. High resolution images of biological structures can be achieved by 

EM, with chemically or cryo fixed biological specimens [2]. In addition EM has become a vastly used 

technique in the field of nanotechnology, for characterizing the primary particle size and morphology 

of NPs [3-5]. More recently, EM techniques are increasingly being applied for detection of NPs in 

biological samples, to examine uptake and internalization of NPs in cells of whole aquatic organisms 

[6-10]. While Garcia-Alonso et al. [7] observed cellular uptake of NPs from the gut in the estuarine 

polychaete Nereis diversicolor and Santo et al. in D. magna [10] most studies using EM imaging are 

inconclusive and/or report no or limited detection of NP internalization [6, 8, 9] albeit disturbed gut 

cells [8]. The use of EM techniques such as transmission electron microscopy (TEM) also involves the 

risk of misinterpretation of results obtained from microscopy of NP internalization. Edgington et al. 

[11] found structures similar to single-walled carbon nanotubes in D. magna. However, additional 

analyses using high resolution TEM, Energy Dispersive X-ray Spectroscopy (EDX) and selected area 

diffraction revealed that the observed structures were in fact either staining artefacts or amorphous 

carbon. Brandenberger et al. [12] studied the cellular uptake of Quantum Dots (QD) in murine 

macrophage-like cells and found electron dense structures inside the cells. With Electron Energy Loss 

Spectroscopy (EELS) analysis they showed that only one area out of the six that were originally 
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believed to contain quantum dots, did in fact contain them. The particle-like structures found in the 

other areas were probably either precipitates from the post staining or osmophilic structures within the 

sample [12]. 

This type of study underline that we are still in the infancy of imaging and characterizing the 

uptake of NPs in organisms. Furthermore, it shows that the understanding of the mechanisms and 

artefacts associated with assessment of in vivo distribution of NPs can be improved.  

Daphnia magna is a widely used model organism in ecotoxicological studies due to their 

ecological relevance and limited maintenance requirements in the laboratory. Furthermore, they are 

ideal for bioaccumulation studies with NPs as they are transparent which enables visualization of 

accumulated material, including agglomerations of NPs, in the gut. In addition, their filter feeding 

behavior results in the filtration of large volumes of water, including suspended NPs.  D. magna can 

filter particles down to around the size of 200 nm out of their feeding current. However, smaller 

particles are also available for uptake through either direct interception [13, 14] or by drinking the 

surrounding media [15, 16]. Previous studies have shown uptake and accumulation of Au NPs in the 

gut of D. magna either by measurements of accumulated Au [17] or based on observations of a darkly-

colored gut [18-20]. In addition, Au NPs have been shown to be taken into the gut of D. magna by 

trophic transfer with E. gracilis and C. reinhardtii [21]. Hence, uptake into the gut is a likely route of 

exposure for NPs in D. magna. 

Au NPs have several properties that make them ideal for bioaccumulation studies, including 

relatively low toxicity and high stability in suspension, e.g. limited dissolution and aggregation. In 

addition, their high mass density increases contrast and detection with EM. 

The aim of the present study was to examine uptake of Au NPs into D. magna gut lumen and 

potential internalization into gut cells using multiple microscopy techniques: Light Sheet Microscopy 

(LSM), Focused Ion Beam Scanning EM (FIB-SEM), TEM, High-Angle Annular Dark-Field Scanning 
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Transmission EM (HAADF-STEM) and elemental analysis with EDX. In addition, the aim was to 

examine the potential artefacts related to microscopy which may lead to misinterpretation regarding NP 

internalization into cells.   

MATERIALS AND METHODS 

Nanoparticles  

Citrate stabilized Au NPs in suspension were synthesized at the University of Alberta, Canada 

by Dr. Jonathan GC Veinot and Guibin Ma as described by Skjolding et al. [17]. The manufacturer of 

the Au NPs reported a primary size of 10 nm. The particles were non-aggregated as imaged by cryo-

TEM of a prepared stock solution containing 40 mg Au/L in MilliQ water (Figure 1) and the size was 

validated by TEM and DLS before ingestion (Supplemental Data, Figure S1 and Table S2 [17]). 

Fluorescein isothiocyanate (FITC) labeled Au NPs were synthesized according to Jølck et al. [22] and 

used to allow imaging of NPs in whole organisms using LSM.   

Exposure of Daphnia magna to Au NPs 

The test suspensions for D. magna exposures were prepared immediately prior to exposure by 

adding the required amount of stock suspension into Elendt M7 medium [23] in a volumetric flask to a 

concentration of 0.4 mg Au/L. This concentration was used for all exposures and chosen from previous 

studies showing marked uptake at this concentration [17].   

No stirring or ultra-sonication was applied. The D. magna was cultured at DTU Environment in 

Elendt M7 medium in a temperature-controlled room at 20 (±1) °C with a 12h:12h light: dark cycle.  

D. magna neonates (< 24h old) were exposed to 0.4 mg Au/L for 24h in 100 ml beakers 

containing 25 mL test solution. In addition, controls without added Au NPs were included in each test 

series. Beakers with five D. magna neonates in each were incubated in the dark at 20 (±1) °C without 

feeding. After 24h exposure the animals were removed from the test beakers and gently rinsed in 

Elendt M7 medium to remove potential Au NPs adhered to the exoskeleton.  
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For LSM additional D. magna (n=3) was exposure to fluorescently labelled Au NPs in 1.5L 

aquariums filled with 1 L exposure solution. Exposure suspensions of 1 mg Au/L were prepared 

immediately prior to exposure, without the use of sonication or prolonged stirring. Exposed daphnia 

were sampled at different time points and analyzed in the LSM. Similarly, unexposed controls were 

also analyzed with LSM. Time points used for uptake phase were 1, 2, 4 and 24h. No feeding was 

carried out during the uptake phase. 

Specimen preparation for EM 

D. magna (both exposed animals and controls) were washed in sodium cacodylate buffer 

(0.15M), fixed in 2 % glutaraldehyde in 0.05 M cacodylate buffer for 1h at room temperature. 

Specimens were washed twice in sodium cacodylate buffer (0.15M), post-fixed in 1 % OsO4 with 0.02 

M KFeCN in 0.12 M cacodylate buffer, rinsed three times in MilliQ water, submerged for 1 hour in 1% 

w:vol tannic acid and washed three more times in MilliQ water and en bloc stained with 1% (w/vol) 

uranyl acetate for 2h. Specimens were dehydrated in a series of 2x10 min steps using ethanol of 70%, 

96%, 100%. After 2x10 min dehydration in propylene oxide specimens were infiltrated by gradually 

increasing Epon (embed 812, standard recipe) to propylene oxide ratio in a series of steps: 1:3 for 30 

min, 1:1 overnight, 3:1 for 1h and pure Epon for 2h. Finally specimens were embedded and cured at 60 

°C for 72h. 

Semi-thin sections (1µm) were obtained with a Leica Ultracut UCT ultramicrotome using glass 

knifes made on a knife maker (LKB instrument group 7800). Ultra-thin sections were obtained using a 

RMC MT-7 ultramicrotome and a diamond knife (Ultra 45°, Diatome). Semi-thin sections were placed 

on a glass slide and stained with toluidine blue for light microscopy (Olympus BX51 microscope) to 

localize the gut for EM.  

To rule out the possibility of Au NP transfer into D. magna gut resulting from the preparation 

steps, two methodological controls were included. Au NPs were added at two different steps of the 
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sample preparation (referred to as controls C1 and C2). For C1 Au NPs were added with the uranyl 

acetate during en bloc staining. For C2, Au NPs in acetone was used instead of propylene oxide during 

infiltration. Au NP suspension in acetone was obtained by gentle heating and evaporation of water from 

stock suspension and the subsequent suspension of Au NPs in acetone.  

Specimen preparation for LSM 

Before LSM imaging the daphnia were briefly transferred to clean media to rinse off exterior 

bound NPs. The daphnia were anesthetized to avoid movements during microscopy. For anesthesia 

17% ethanol and 0.55 mg/L phenoxyethanol solutions in VH US EPA media (0.24 g/L CaSO4*2H2O, 

0.24 g/L MgSO4*7H2O, 0.016 g/L KCl and 0.384 g/L NaHCO3 in MilliQ water) was used. After 

anesthesia the test organisms were embedded in freshly prepared 1% low temperature melting agarose 

in an Eppendorf tube. The agarose solution was kept in a heating block at 38°C to keep it liquefied. To 

avoid thermal damage of the daphnia the Eppendorf tube containing agarose was briefly taken off the 

heating block before embedding. Appropriate glass capillary and plunger was used to suck the test 

organism from the agarose solution. Care was taken to keep the daphnia vertically aligned with the 

capillary to receive the best penetration of light from all angles when imaged. When solidified in the 

agarose (approximately 1 min) the test organism was imaged in the LSM.  

EM and elemental analysis 

FIB-SEM (Quanta FEG 3D, FEI) was conducted on entire epoxy embedded specimens mounted 

on a holder and gold coated (High Resolution Sputter Coater, Cressington). A cross section of the gut 

was made by milling a trench into the sample. Imaging was done with a low-kV high contrast 

backscatter detector at 5 kV. Ultra-thin sections of 80-100 nm were placed on copper grids (Cu, 3 mm, 

250 mesh square, SPI-grids) for TEM (CM 100 Phillips, operating voltage 80 kV). Ultra-thin sections 

(70 nm) were placed on carbon coated grids (Cu, 3 mm, 200, Agar scientific) and carbon coated (208C, 

Cressington) prior to HAADF STEM & EDX (Tecnai G2 T20, FEI, operating voltage 200 kV). 
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Elemental analysis of single NPs was conducted in STEM mode with EDX (80 mm
2
 X-Max SDD 

detector, Oxford Instruments). Cryo-TEM (Tecnai G2 T20, FEI, operating voltage 200 kV) was 

performed using a single tilt liquid nitrogen cryo-transfer holder (626, Gatan) with Au NP stock 

suspension which had been placed on a lacey carbon grid (Agar scientific) and plunge-frozen in liquid 

ethane using a Vitrobot (FEI).  

LSM  

The LSM was performed using a Lightsheet Z.1 (Carl Zeiss Microscopy) equipped with a 5x 

objective, using the standard exposure chamber filled with VH US EPA media for imaging of the 

daphnia. Imaging of the samples was carried out using two lasers, 566 nm (laser 1) and 488 nm (laser 

2). Broad pass filters with a range of 505-545 nm and 575-615 nm were used for laser 1 and 2, 

respectively. A laser intensity of 3 and 10 % was used for laser 1 and 2, respectively, during the 

imaging of the uptake of Au NPs in daphnia. The exposure time used for all the samples was set to 

154.8 ms. The imaging was performed with two-sided illumination to obtain maximum illumination of 

the sample and avoid shaded areas. All imaging was performed as a series of slides referred to as the 

“z-stack” using an optimal thickness of the slides determined by the ZEN software (Carl Zeiss 

Microscopy). Furthermore, a 3D-multiview of the sample was made by rotation of the samples at 6 

different angles (0°, 60°, 120°, 180°, 240°, 300° and 360°). When complete, the image were fused and 

averaged with a pixel average of 3 in the x and y direction. A maximum intensity projection was 

created to evaluate the overall uptake of the Au NPs. 

RESULTS AND DISCUSSION 

Distribution of Au NPs at organism level 

The in vivo distribution of fluorescently labelled Au NPs in D. magna after 0, 2, 4 and 24h 

exposure to fluorescein (FITC)-labelled Au NPs imaged by LSM shows a continuous increase in 

fluorescent signal from the gut with time in Figure 2.   
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After 24 hours the gut was filled with fluorescent Au NPs. No fluorescent signal could be 

observed outside the gut of the daphnia. It is observed that initially the Au NPs accumulates in the 

hindgut as expected for inorganic particles with no nutritional value [24]. The fluorescent tag is 

covalently bound to the nanoparticles thus digestion of the fluorescent label is unlikely. The pH in 

Daphnia magna varies from pH 6-7.2 with increasing pH from the midgut to the anus. Consequently, 

no harsh environment in relation to pH is encountered after ingestion of the Au NPs and at 

physiological pH there was no change in the emission peak of the fluorescent tag.  

Preliminary embedding of FITC-labelled Au NPs dispersed in agarose showed no signal, thus only 

larger clusters of fluorescent Au NPs would be observed (data not shown). Similar observations were 

made by Rothen-Rutishauser et al. [25] using laser scanning microscopy, in a study demonstrating that 

clusters of approximately 150 Au NPs would yield a fluorescent event. Thus, localization of dispersed 

NPs is not possible with this method which underline the need for reliable EM procedures.  

Distribution of Au NPs in the gut with EM 

FIB-SEM images (back scattered electrons, BSE) of D. magna exposed to Au NPs showed the 

gut lumen and surrounding cellular structures (Figure 3). A strong BSE signal was registered from the 

gut lumen, indicating regions with high concentration of Au NPs and thus uptake into the gut (Figure 

3A, arrow), which was also expected based on images from LSM. The peritrophic membrane (PTM) 

appeared to retain the Au NPs in the gut lumen, except for single bright spots, which could possibly be 

Au NPs, observed near the microvilli (Figure 3B). However, elemental analysis of small particles 

outside the aggregates was not possible because of the relatively small volume of a 10 nm gold particle 

compared to the interaction volume of a 5 kV electron beam.  

TEM images of gut cross section from D. magna exposed to Au NPs exhibited regions of 

electron dense material within the gut lumen indicating the presence of Au NPs (Figure 4), asterisk). 

Mostly single electron dense particles and a few small aggregates were observed near the microvilli of 
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the epithelial gut cells (Figure 4, arrows), again indicating that the PTM acts as a low permeability 

membrane between the microvilli and the lumen. The PTM is generally assumed to consist of chitin 

and proteins, and creates a barrier with a pore size of approximately 10 nm [26]. It has previously been 

suggested to act as a barrier for NP access to D. magna gut cells [9]. Therefore, we find it likely that 

agglomerates of Au NPs are retained in the gut lumen by the PTM. However, as single Au NPs are of 

similar size as the PTM pores, single Au NPs may possibly cross the PTM and reach the microvilli of 

the gut cells. Au-NP like objects were indeed observed across the PTM associated with the microvilli 

of gut cells (Figure 5A). Furthermore, structures with high contrast and similar size as the Au NPs were 

also observed inside cells, suggesting cellular internalization of Au NPs (Figure 5B).  

Elemental analysis with HAADF-STEM and EDX 

To further investigate the occurrence of Au NPs in D. magna subsequent imaging and analysis 

were conducted using HAADF-STEM imaging and EDX to facilitate elemental analysis of single 

particles. The results revealed that the identification of NPs solely on observations (i.e. contrast, size 

and morphology) can be deceiving, especially for NPs inside the cellular matrix where both nano-sized 

cellular structures and precipitates can exhibit similar contrast and size ranges. The large Au NP 

aggregate-like structures retained by the PTM inside the gut lumen (Figure 4, asterisk) were confirmed 

to be Au by STEM EDX (Supplemental Data, Figure S3). In all samples of exposed D. magna, objects 

were observed both across the PTM and inside cells exhibiting size, shape and contrast similar to that 

of the Au NPs used in the study. Elemental analysis of single particles with STEM EDX was conducted 

for a large number of high contrast Au NP-like objects found associated with or inside cells. Examples 

are shown in Figure 6.  

Particles attached to the surface (Figure 6A) and at the base of microvilli (Figure 6B) were 

clearly distinguishable, due to the high contrast and characteristic shape of the NPs. Elemental analysis 

confirmed that these particles were Au. Inside the gut cells of exposed D. magna, high contrast material 
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was found mainly in mitochondria and lipid droplets. High contrast precipitates in mitochondria gave 

mainly osmium signals (Figure 6C), as did particles found in lipid bodies (Figure 6D) and an aggregate 

of high contrast particles below the basal lamina contained iron and aluminum (Figure 6E). Of 64 

particles found inside gut epithelial cells in 5 replicate animals and separately analyzed, none were 

confirmed to be Au. Furthermore, the 64 particles which were analyzed were only a fraction of the total 

number of particles observed inside cells. However, the majority of these were clearly not Au NPs 

when imaged in HAADF STEM and hence were not subjected to analysis. An additional source of 

artifacts in performing TEM of NP uptake can be imaging and analysis of particles inside dying cells. 

In this case, analysis is not a guarantee against false positives. The gut of D. magna  undergo rapid 

turnover and holocrine cells in which the cell content is packed into vesicles and released by disruption 

of the cell wall into the gut lumen together with digestive enzymes [27] were seen throughout the 

sections. Within these cells, we could observe NPs which were confirmed to be Au (Figure 6F). This is 

not surprising, considering that the cell membrane was no longer intact, but in some images, the cells 

were early in the process and it was difficult to distinguish them from intact cells. This might lead to 

incorrect conclusions regarding uptake of NPs even when performing elemental analysis. No confirmed 

Au NPs (by STEM EDX) were identified inside the C1 and C2 control organisms or blank controls 

(Supplemental Data, Figure S4). 

Internalization of NPs can take multiple routes depending on nanoparticle size, shape, surface 

charge and surface coating. Small particles are able to passively pass through cell membranes as shown 

in red blood cells which do not have an endocytic machinery [28, 29]. Both in vivo and in vitro studies 

have proposed NP uptake through endocytosis [7, 30, 31]. Larger NPs (approximately 100 nm) have 

been suggested to be taken up actively by endocytosis whereas smaller NPs (approximately 10 nm) 

have been suggested to accumulate on the cell membrane until the aggregates reach a certain size, 

resulting in uptake [32]. In case of long-time exposure to low numbers of NPs where threshold 
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densities of NPs on the cell membrane is insufficient, passive uptake might be a significant route of 

internalization [32]. Assuming that either aggregation of small particles on the surfaces of cells or long 

exposure time is necessary to facilitate uptake, it is possible that the small NPs in our study are simply 

not interacting with enough receptors on the cell surface to mediate an immediate response; especially 

since only single particles were seen to cross the PTM, across which they did not form large 

aggregates. Larger aggregates were isolated from the gut epithelial cells by the PTM. 

Lovern et al. [6] found few ~20 nm Au NPs close to microvilli in D. magna in an intake 

experiment the animals were exposed up to 24 hours. This is in contrast to the results from Khan et al. 

that D. magna did neither internalize ~20 nm Au NPs in its gut cells nor were the NPs associated with 

the microvilli of the gut epithelium [9]. The animals were exposed for 5 hours and allowed to depurate 

before analysis. In contrast to these findings, we found a considerable amount of Au NPs very close to 

or associated directly with the microvilli. For a conservative estimate, if we assume that between 10 

and 50 particles in each section are found to have crossed the peritrophic membrane and be either 

associated with or close to microvilli, assuming that each section is an exact 70 nm thick cross section 

of the gut and we estimate the length of the midgut to be 500 µm, then it would very roughly estimated 

amount to between 70000 and 350000 particles per animal. The difference between our findings and 

the study by Lovern et al. [6] may result from different NP sizes in the experiments, as the Au NPs in 

our study were smaller (10 nm). Heinlaan et al. [8] monitored D. magna at 6 time points up to 48h 

exposure to 30 nm CuO NPs and only at 48h found NPs close to microvilli. These differences indicate 

that the peritrophic membrane might act as an initial size-dependent barrier. Internalization via the gut 

epithelium in D. magna has been shown for ZnO NPs with the most efficient uptake of 10-30 nm 

particles [10]. The NPs were internalized and found inside microvilli and gut cells at various locations, 

as well as in the gut muscles indicating that they were able to cross the basal lamina as well. The 

animals in that study were also exposed for 48 hours. It is thus very likely that time and size are both 
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important factors for uptake of NPs when considering that particles have to cross the peritrophic 

membrane first. In contrast to these time-scales, Rosenkranz et al. [33] performed a study of uptake of 

negatively charged fluorescent polystyrene beads (20 nm and 1 µm) in the gut of D. magna where both 

particle sizes were shown to translocate from the gut to lipid storage bodies distant from the gut by 

confocal laser scanning microscopy within 30-60 minutes. This suggests that the translocation through 

the epithelial layer could also be relatively fast. Indeed fast translocation has recently been shown by 

the use of a layer of epithelial cells in vitro [34]. Together these findings suggest that future studies 

should include both short and long exposure times and include several particle sizes. 

CONCLUSIONS 

10 nm Au NPs can be taken in and accumulate in the gut lumen of D. magna. These particles 

are able to pass the PTM mainly as single particles, thus gaining access to the microvilli of the gut 

epithelial cells and attaching to these as observed after 24 hours of exposure. It is becoming 

increasingly recognized that TEM images of various nanomaterials in biological samples can be 

misinterpreted [11, 12, 35]. Our findings show that some form of elemental analysis is necessary for 

the identification of internalized NPs using TEM. As presence of Au NPs was confirmed in cells with 

disrupted membranes, there are two possibilities of false positive observations of NP internalization, 

either resulting from preparation artefacts or from mistaking holocrine cells for intact cells. By 

comparison to other similar studies our study also highlights the need for limiting the number of 

variable conditions in this type of experiments as both exposure time and NP size may influence the 

uptake. 

Supplemental Data—The Supplemental Data are available on the Wiley Online Library at DOI: 

10.1002/etc.xxxx. 

Acknowledgment—This work is part of the project ENVNANO (Environmental Effects and Risk 

Evaluation of Engineered Nanoparticles) supported by the European Research Council (Grant no. 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

This article is protected by copyright. All rights reserved 

281579). Electron microscopy was performed at Center for Electron Nanoscopy, Technical University 

of Denmark and Core Facility for Integrated Microscopy, Copenhagen University. We acknowledge 

the Centre for Cellular Imaging at the Sahlgrenska Academy, University of Gothenburg for the use of 

light sheet microscope and for support from the staff. R. Jølck and T. Andresen are kindly thanked for 

synthesizing the fluorescent gold nanoparticles used for light sheet microscopy. The authors declare no 

competing financial interest. 

Data Availability—Data available on request to the authors (louise.jensen@epfl.ch) 

  



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

This article is protected by copyright. All rights reserved 

 

REFERENCES 

1.  Handy RD, Cornelis G, Fernandes T, Tsyusko O, Decho A, Sabo-Attwood T, Metcalfe C, 

Steevens JA, Klaine SJ, Koelmans AA, Horne N. 2012. Ecotoxicity Test Methods for 

Engineered Nanomaterials: Practical Experiences and Recommendations from the Bench. 

Environ Toxicol Chem 31: 15-31. 

2.  Hayat MA. 2000. Principles and techniques of electron microscopy: biological applications, 4
th

 

ed, Cambridge University Press, Cambridge, UK.  

3.  Dudkiewicz A, Tiede K, Loeschner K, Jensen LHS, Jensen E, Wierzbicki R, Boxall ABA, 

Molhave K. 2011. Characterization of Nanomaterials in Food by Electron Microscopy. TrAC 

30: 28-43. 

4.  da Silva BF, Perez S, Gardinalli P, Singhal RK, Mozeto AA, Barcelo D. 2011. Analytical 

Chemistry of Metallic Nanoparticles in Natural Environments. TrAC 30: 528-540. 

5.  Klang V, Valenta C, Matsko NB. 2013. Electron Microscopy of Pharmaceutical Systems. 

Micron 44: 45-74. 

6.  Lovern SB, Owen HA, Klaper R. 2008. Electron Microscopy of Gold Nanoparticle Intake in the 

Gut of Daphnia Magna. Nanotoxicology 2: 43-48. 

7.  Garcia-Aonso J, Khan FR, Misra SK, Turmaine M, Smith BD, Rainbow PS, Luoma SN, 

Valsami-Jones E. 2011. Cellular Internalization of Silver Nanoparticles in Gut Epithelia of the 

Estuarine Polychaete Nereis Diversicolor. Environ Sci Technol 45: 4630-4636. 

8. Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier H-C. 2011. Changes 

in the Daphnia Magna Midgut upon Ingestion of Copper Oxide Nanoparticles: A Transmission 

Electron Microscopy Study. Water Res 45: 179-190. 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

This article is protected by copyright. All rights reserved 

9.  Khan FR, Kennaway GM, Croteau MN, Dybowska A, Smith BD, Nogueira AJA, Rainbow PS, 

Luoma SN, Valsami-Jones E. 2014. In Vivo Retention of Ingested Au NPs by Daphnia Magna: 

No Evidence for Trans-Epithelial Alimentary Uptake. Chemosphere 100: 97-104. 

10. Santo N, Fascio U, Torres F, Guazzoni N, Tremolada P, Bettinetti R, Mantecca P, Bacchetta R. 

2014. Toxic Effects and Ultrastructural Damages to Daphnia Magna of Two Differently Sized 

ZnO Nanoparticles: Does Size Matter? Water Res 53: 339-350. 

11. Edgington AJ, Petersen EJ, Herzing AA, Podila R, Rao A, Klaine SJ. 2014. Microscopic 

Investigation of Single-Wall Carbon Nanotube Uptake by Daphnia Magna. Nanotoxicology 8: 

2-10. 

12.  Brandenberger C, Clift MJD, Vanhecke D, Muhlfeld C, Stone V, Gehr P, Rothen-Rutishauser 

B. 2010. Intracellular Imaging of Nanoparticles: Is it an Elemental Mistake to Believe What 

You See? Part Fibre Toxicol 7: 15. 

13.  Bednarska A. Adaptive Changes in Morphology of Daphnia Filter Appendages in Response to 

Food Stress. 2006. Pol J Ecol 54: 663-667. 

14.  Gerritsen J, Porter KG, Strickler JR. 1988. Not by Sieving Alone - Observations of Suspension 

Feeding in Daphnia. Bull Mar Sci 43: 366-376. 

15.  Bianchini A, Wood CM. 2008. Sodium Uptake in Different Life Stages of Crustaceans: The 

Water Flea Daphnia Magna Strauss. J Exp Biol 211: 539-547. 

16.  Gillis PL, Chow-Fraser P, Ranville JF, Ross PE, Wood CM. 2005. Daphnia Need to Be Gut-

cleared Too: The effect of Exposure to and Ingestion of Metal-Contaminated Sediment on the 

Gut-clearance Patterns of D-Magna. Aquat Toxicol 71: 143-154. 

17.  Skjolding LM, Kern K, Hjorth R, Hartmann N, Overgaard S, Ma G, Veinot JGC, Baun A. 2014. 

Uptake and Depuration of Gold Nanoparticles in Daphnia Magna. Ecotoxicology 23: 1172-

1183. 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

This article is protected by copyright. All rights reserved 

18.  Lee BT, Ranville JF. 2012. The Effect of Hardness on the Stability of Citrate-Stabilized Gold 

Nanoparticles and Their Uptake by Daphnia Magna. J Hazard Mater 213: 434-439. 

19.  Yang XY, Edelmann RE, Oris JT. 2010. Suspended C-60 Nanoparticles Protect Against Short-

Term UV and Fluoranthene Photo-Induced Toxicity but Cause Long-Term Cellular Damage in 

Daphnia Magna. Aquat Toxicol 100: 202-210. 

20.  Zhu XS, Chang Y, Chen YS. 2010. Toxicity and Bioaccumulation of TiO2 Nanoparticle 

Aggregates in Daphnia Magna. Chemosphere 78: 209-215. 

21.  Lee WM, Yoon SJ, Shin YJ, An YJ. 2015. Trophic Transfer of Gold Nanoparticles from 

Euglena Gracilis or Chlamydomonas Reinhardtii to Daphnia Magna. Environ Pollut 201: 10-16. 

22.  Jølck RI, Rydhög JS, Christensen AN, Hansen AE, Bruun LM, Schaarup-Jensen H, von Wenck 

AS, Børresen B, Kristensen AT, Clausen MH, Kjær A, Conradsen K, Larsen R, af Rosenschöld 

PM, Andresen TL. 2015. Injectable Colloidal Gold for Use in Intrafractional 2D Image-Guided 

Radiation Therapy. Adv Healthcare Mater 4: 856-863. 

23.  OECD (Organisation for Economic Co-operation and Deevelopment) 2004. F. Test no. 202: 

Daphnia Sp. Acute Immobilisation Test OECD France. 

24.  Hardy WB, McDougall W. 1893. On the Structure and Functions of the Alimentary Canal of 

Daphnia. Proc Camb Phil Soc VIII: 41. 

25.  Rothen-Rutishauser B, Kuhn DA, Ali Z, Gasser M, Amin F, Parak WJ, Vanhecke D, Fink A, 

Gehr P, Brandenberger C. 2014. Quantification of Gold Nanoparticle Cell Uptake under 

Controlled Biological Conditions and Adequate Resolution. Nanomedicine 9: 607-621. 

26. Lehane MJ. 1997. Peritrophic Matrix Structure and Function. Annu Rev Entomol 42: 525-550. 

27.  Schultz TW, Kennedy JR. 1976. The Fine Structure of the Digestive System of Daphnia Pulex 

(Crustacea: Cladocera). Tissue Cell 8: 479-490. 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

This article is protected by copyright. All rights reserved 

28. Wang TT, Bai J, Jiang X, Nienhaus GU. 2012. Cellular Uptake of Nanoparticles by Membrane 

Penetration: A Study Combining Confocal Microscopy with FTIR Spectroelectrochemistry. 

ACS Nano 6: 1251-1259. 

29.  Rothen-Rutishauser BM, Schuerch S, Haenni B, Kapp N, Gehr P. 2006. Interaction of Fine 

Particles and Nanoparticles with Red Blood Cells Visualized with Advanced Microscopic 

Techniques. Environ Sci Technol 14: 4353-4359. 

30.  Cartiera MS, Johnson KM, Rajendran V, Caplan MJ, Saltzman WM. 2009. The Uptake and 

Intracellular Fate of PLGA Nanoparticles in Epithelial Cells. Biomaterials 30: 2790-2798. 

31.  Cho EC, Xie J, Wurm PA, Xia Y. 2009. Understanding the Role of Surface Charges in Cellular 

Adsorption versus Internalization by Selectively Removing Gold Nanoparticles on the Cell 

Surface with a I-2/KI Etchant. Nano Lett 9: 1080-1084. 

32.  Treuel L, Jiang XE, Nienhaus GU. 2013. New Views on Cellular Uptake and Trafficking of 

Manufactured Nanoparticles. J R Soc Interface 10: 20120939. 

33. Rosenkranz P, Chaudhry Q, Stone V, Fernandes TF. 2009. A Comparison of Nanoparticle and 

Fine Particle Uptake by Daphnia Magna. Environ Toxicol Chem 28: 2142-2149. 

34. Yao MF, He LL, McClements DJ, Xiao H. 2015. Uptake of Gold Nanoparticles by Intestinal 

Epithelial Cells: Impact of Particle Size on Their Absorption Accumulation and Toxicity. J 

Agric Food Chem 63: 8044-8049. 

35. Kobler C, Saber AT, Jacobsen NR, Wallin H, Vogel U, Qvortrup K, Molhave K. 2014. FIB-

SEM Imaging of Carbon Nanotubes in Mouse Lung Tissue. Anal Bioanal Chem 406: 3863-

3873. 

 

  



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

This article is protected by copyright. All rights reserved 

 

Figure 1. Cryo-TEM image of Au NP stock solution. The particles are non-aggregated, scale bar = 300 

nm, * = lacey carbon support. 

Figure 2. D. magna after (A) 0 h, (B) 2 h, (C) 4 h and (D) 24h exposure to Au NPs (0.4 mg Au/L) using 

a 5x magnification water immersed objective. The red and white color in the image corresponds to 

FITC tag (505-545 nm) and auto fluorescence of the daphnia (575-615 nm) respectively. Scale bars 0.5 

mm. 

Figure 3. FIB-SEM BSE images of D. magna gut epithelium after 24h exposure to Au NPs (0.4 mg 

Au/L). Electron dense structures appear white. Examples of Au NP-like objects are marked with 

arrows. (A) Scale bar = 1 µm, (B) scale bar = 0.5 µm. GC = gut cells, LU = Lumen, MV = Microvilli, 

PTM = Peritrophic membrane.  

Figure 4. D. magna gut epithelium after 24h exposure to Au NPs (0.4 mg Au/L). Overview of gut 

lumen and microvilli, scale bar = 0.5 µm. *= Au NP- like objects. GC = gut cells, MV = Microvilli, 

PTM = Peritrophic membrane. Arrows point to electron dense particles and aggregates. 

Figure 5. TEM images of D. magna gut epithelium exposed to Au NPs (0.4 mg Au/L) for 24h. (A) 

Electron dense particles attached to microvilli (arrows). Scale bar = 200 nm and (B) intracellular 

structures and objects which resemble NPs (inserts). Scale bar = 200 nm and inserts = 5 nm.  

Figure 6. HAADF STEM images of D. magna gut epithelium exposed to Au NPs (0.4 mg Au/L) for 

24h showing intracellular structures and possible NPs. Corresponding spectra are superimposed. For 

clarity the C-peaks are capped and only up to 2.5 keV is depicted. (A) Au NP at microvilli, scale bar = 

100 nm, (B) Au NP at base of microvilli, scale bar = 100 nm, (C) Os-rich particles in mitochondrion, 

scale bar = 300 nm, (D) Os-rich particles in lipid droplet, scale bar =  50 nm, (E) Aggregate of Fe-rich 

particles below the basal lamina, scale bar = 0.5 µm, (F) Au NP in a holocrine cell, scale bar  = 200 

nm. 
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Figure 5 

 

 



A
c
c
e
p
te
d
P
r
e
p
r
i n

t

This article is protected by copyright. All rights reserved 

 

Figure 6 

 

 




