
Roskilde University

Computer Science & Informatics

Exploring Networking
Technologies and Architecture
Through Game Development

Arash Abedin
Student
IMT Department

Daniel Lesko
Student
IMT Department

Anders Lassen
Supervisor
IMT Department

Eugenio Maria Capuani
Student
IMT Department

Rune Barrett
Student
IMT Department

Dragos Illie
Student
IMT Department

Contents

1 Introduction 4
1.1 Problem Formulation . 4
1.2 Exploratory Process . 5

2 DREAD - The Game 6
2.1 Initial Gameplay Description . 6
2.2 Development Environment & Game Engines 7
2.3 User experience design . 7

2.3.1 Usability and UX goals . 8
2.3.2 User interface for mobile (Android and iOS) 10
2.3.3 User interface for PC . 13

3 Networking 14
3.0.1 Client-Server architecture . 14
3.0.2 Peer-to-peer architectures . 15

3.1 Networking Technologies & Frameworks Used in the Project 16
3.1.1 Node.js & Socket.IO . 16
3.1.2 Photon’s networking architecture 16
3.1.3 Other worthy mentions . 18

4 The Entity Component System 19
4.1 Overview . 19

4.1.1 The Problem . 19
4.1.2 Why ECS is good for Game Development 20
4.1.3 How ECS works . 20
4.1.4 ECS in our project . 22

5 Description of the Node.js Software Architecture 23
5.1 Documentation of our Implementation 24

5.1.1 GameController . 26
5.1.2 Player Controllers . 27

1

Networking Technologies and Game Development DREAD Team

5.1.3 Utility Classes . 28
5.2 Game Processes . 29

5.2.1 Connection & Instantiation 29
5.2.2 Movement . 31
5.2.3 Shooting & collisions . 32

5.3 Implementation Details . 34
5.3.1 Server Side node.js and Socket.io 34
5.3.2 Client Side Implementation in Unity 36

6 Photon Implementation 40
6.1 Introduction . 40
6.2 Implementation Overview . 41
6.3 Game processes . 44

6.3.1 Connection and Instantiation 44
6.3.2 Movement . 45
6.3.3 Shooting and Collision . 47

6.4 Implementation Details . 48
6.4.1 Initialization . 48
6.4.2 Connection & Joining Rooms 48
6.4.3 Team Deathmatch and Freeplay 51
6.4.4 Movement . 54

7 Implementation of shared game elements 57
7.1 Reptile Weapon . 57

7.1.1 GlobeProjectile Class . 59
7.2 Camera Follow . 60

8 Discussion 61
8.1 Pros and cons of the Node.js and Socket.io implementation 61

8.1.1 Conclusion of Node.js and Socket.io implementation 63
8.2 Pros and Cons of the Photon implementation 64

8.2.1 Conclusion of Photon implementation 65

9 Conclusion 66

2

Glossary of terms and
abbreviations used

Throughout the report we make use of a number of terms that may otherwise be
unfamiliar to the reader; These terms are listed below:

Local Player/Remote Player: These two terms denote a distinction in the NodeJS
implementation and elsewhere, between the game player playing on the local
machine on which the server is running, and other players. For each connected
client, the local player’s control inputs are handled locally on the machine
and then broadcast to the server, while his actions are handled by the Play-
erController. In contrast, a remote player’s actions are simply received from
the server so that they may be displayed in the local game instance. These
functions are carried out by the OtherPlayerController. in Node.js version and
PlayerManager in the Photon version.

PvP : Player versus Player.

A term often used to denote competitive games, whose primary goal is to
compete against other human players.

CS : Client-Server.

See chapter 3

P2P : Peer-to-Peer.

See chapter 3

AAA : AAA or Triple-A is an informal classification often applied to games with
the highest development budgets and levels of promotion. These games are
often developed and published by multinational corporations as opposed to
Independent developers.

3

Chapter 1

Introduction

In this project we’re aiming to design, implement and deploy a cross platform on-
line multiplayer game that enables its users to play together while using different
platforms including mobile and PC (Windows, Mac and Linux).

The code for the project can be found at: https://github.com/DREAD-Inc/GameProject2018

The main focus areas of our project cover the following:

• Designing a game that has a certain degree of complexity.

• Designing the architecture of the game covering mainly the online networking
areas and its performance.

• Improving the usability of the game while keeping the same level of user ex-
perience and complexity for the users on all platforms.

• Implementing and deploying the game while testing and optimizing the core
areas of the game such as usability, networking performance and design.

1.1 Problem Formulation

The main aim of the project is to use the game we will be developing as a platform,
in order to explore what it takes to create a multi-platform, multiplayer application
with real-time communication. We will explore different approaches to development,
software architecture and networking, in order to gain better insights into this. We
envision that work might be needed in areas like networking, in order to ensure that
players on an un-reliable mobile connection can enjoy the game. Another area we’d
like to focus on is user experience. This is done both to explore what the challenges

4

https://github.com/DREAD-Inc/GameProject2018

Networking Technologies and Game Development DREAD Team

are in this scenario, and also in order to ensure that the controls and UI elements
lead to a seamless transition between mobile and PC.

1.2 Exploratory Process

As none of us had very much experience with game design, development and espe-
cially game networking models from the start of the project, we chose to carry the
development out as an exploratory process rather than a more traditional incremen-
tal and carefully planned project.

Because of this exploratory approach, developing the skeleton system of the game
took much longer than expected. We spent a lot of time trying to construct a decent
networking model with NodeJS, and slowly realized that our project was growing
more complex and hard to manage. Mid-way through our development we had to
re-focus our efforts: we switched from NodeJS to Photon in order to focus more on
developing game features, and re-implementing the game with that framework. We
have made some progress in that front, developing a new map and some more game
concepts like teams, but sadly we were not able to fulfill our vision fully.

Further more, while we had planned and designed the controls to be easy to use
on mobile, we did not get to implement the game on that platform. That said, the
reader will find our discussion of UX and mobile platform in section 2.3, alongside
UI mockups and a discussion of our experience designing the game with mobile
platforms in mind..

5

Chapter 2

DREAD - The Game

This section will explain our initial plan for the gameplay.

2.1 Initial Gameplay Description

The players will be divided in two teams, that compete against each other.

Each team will have a base each end on the map, there will be various points that
can be captured by players throughout the map.

Capturing points will allow the team to gather resources (e.g Gold), that can be
used to purchase upgrades. Capturing and holding a majority of the control points
of the map will also grant a team the opportunity to gain access to the enemy base
so they can attack it. Gold can also be gained by killing other players.

Thus there are two main ways to destroy the enemy base:

• Either capture a majority of the points (with the help of lower level upgrades
gained by passive income) and then launch an attack on the base.

• Or hoard Gold by killing players in order to unlock access to expensive items
that will allow you to get into the base and destroy it quickly.

The goal of the opposing team is to defend their base and/or attack. Defense can
be approached in two ways: they can either decide to meet the attackers on the field
and deny them control of the points, or they can bunker down in their base and wait
for the enemy to attack.

6

Networking Technologies and Game Development DREAD Team

Our goal with this is to make the game more thoughtful and tactical, and leave the
players with choice in how they want to play the game.

2.2 Development Environment & Game Engines

We chose a popular modern game engine partly for the reason that it will make
it simpler for us to compile the game on our chosen platforms. Apart from that,
it gives us the ability to include complex aspects of game development (such as
physics) without spending too much time on it.

In particular we chose to use Unity [9] as it is a combined game engine / IDE
that features a fast and simple work flow. The workflow in Unity builds upon a
programming pattern known as an Entity Component System (see chapter 4), that
makes it simple to make significant changes and reuse code for a large number of
different objects in the scene.

2.3 User experience design

In this chapter, we are gonna talk about user experience design in cross-platform
multiplayer experience. Our game will be playable on PC, Android and iOS, there-
fore we have to be careful about how we design the user experience in order to ensure
a fair gameplay for everyone.

For our game, we wanted to make the UI for mobile devices as user friendly and
minimalist as possible, without hindering mobile players compared to PC players.
The ultimate goal for the mobile interface, is to create same player experience as on
any other device. Therefore we have to consider how to position buttons and other
important information on the screen, in order to not put players in a disadvantage
with a lot of useless information, or out of proportion buttons and labels.

In the next sections, we will describe our present mock-ups for both mobile interface
and PC interface. Both figure 2.2 and figure 2.3 depict a possible design for the User
Interface based of a mental model, and are thus subject to change.

The mobile version is currently not implemented, and the PC version is missing
some of the features described in figure 2.3

7

Networking Technologies and Game Development DREAD Team

2.3.1 Usability and UX goals

The primary goal, when designing this game is to be very clear about the objec-
tive. We have these two top-level concerns - usability goals and user experience
goals. First is concerned about meeting specific criteria such as efficiency or learn-
ability while user experience goals are concerned with analyzing the quality of user
experience, such as enjoyability, fun or aesthetically pleasing.

When talking about usability, we want to have our game fulfill most of the goals,
which are the following:

• efficient to use (efficiency)

• effective to use (effectiveness)

• safe to use (safety)

• have good utility (utility)

• easy to learn (learnability)

• easy to remember how to use (memorability)

A very popular criterion for assessing whether a system is easy to learn is to apply
the ten-minute rule. It proposes that novice users should be able to learn how to
use a system in under 10 minutes. If not, the system fails [6]. In our case, if the user
does not understand the primary objective and/or purpose of the game within first
10 minutes, then we failed to deliver an optimal product. It should be absolutely
clear, even to a brand-new user, what the the goal of the application is (be it a
game, or not) within first 10 of using an application.

User-experience goals are changing over time. The emergence of technologies such
as VR/AR and mobile gaming being extremely popular, has brought much wider
set of concerns.

• satisfying

• enjoyable

• fun

• entertaining

• helpful

• motivating

• aesthetically pleasing

8

Networking Technologies and Game Development DREAD Team

• supportive of creativity

• rewarding

• emotionally fulfilling

There are many more goals to consider when talking about user experience obviously,
but some suit our context more than others. Primary goals for our game would be
fun, entertaining, enjoyable - it’s a game. There is a relation between both, where
we have to see the difference between unique systems and to assess proper primary
goals. The relationship is shown in figure 2.1. [7]

Figure 2.1: Usability and user experience
goals

It is also important to assess risks when considering both usability and user experi-
ence goals, and we have to understand the trade-off between those two. Sometimes,
some combinations will be incompatible and we will have to reconsider our primary
goal of the application and adapt.

9

Networking Technologies and Game Development DREAD Team

2.3.2 User interface for mobile (Android and iOS)

In figure 2.2 we can see our initial concept for mobile device interface. We tried to
keep up with our standards and make it a competitive experience with PC players.
The major difference in gameplay is how movement and shooting work. The idea
was to create a balanced experience when playing this competitive PvP game.

The user controls player’s movement using left virtual analog stick, moving it in
any desired direction; when moving the stick a little further, it performs a dash
in the intended direction. Shooting and aiming is merged into the right analog
stick, to avoid having the player move their fingers across entire screen and creating
confusion. Practically speaking this means that the player will shoot in whatever
direction their are aiming towards, if the analog stick is pushed far enough.

Figure 2.2: User interface for mobile de-
vices

Other mobile control schemes

We have come to this control scheme after a number of iterations, and we have
explored different ideas aimed at making the transition between PC and mobile UIs
as seamless as possible. In the early stages we tried to use only one analog stick,
which would control movement, while for shooting and aiming the user would tap

10

Networking Technologies and Game Development DREAD Team

a location. In this control scheme the user would tap in the general direction of an
enemy to shoot, or press and hold for continuous fire. This control scheme would
require a number of adjustments, such as the fact that all weapons should have an
indication of where the projectile will land (for example with a long laser pointer)
so that the user may have immediate feedback so it is easier to adjust their aim by
pressing and holding.

This control scheme emulates more closely the way the mouse is used in the PC
version, and it would make it arguably easier to move and shoot at the same time,
but we ultimately abandoned the idea because it would not work very well on smaller
devices. It would be quite nice on bigger screens like tablets or high-end phones,
but on low-end, smaller ones it would get rather uncomfortable as the user would
obstruct a lot more of the screen with his hand movements.

A related issue is that aiming this way would become less precise on a smaller screen.

While working on these alternative controls, we also realized that different control
schemes put different constraints on the way we design the game. Using the control
scheme described above would encourage the use of automatic or otherwise fast-firing
weapons in order to maximize the number of hits, and weapons that follow or lock
on enemies to minimize the amount of work the user has to do. When shooting is
performed by tapping in the general direction of an enemy, it is more advantageous
to saturate the area with projectiles in order to maximize the chances of hitting
rather than using single-fire, high-damage weapons that leave the player vulnerable
if they miss.

On the other hand, using the mouse on PC is a much more precise input method.
Using this control scheme would lead to PC players having a distinct advantage in
being able to aim quickly and precisely, while mobile players would be forced to get
closer and rely on firepower to eliminate other players. We did not want such an
imbalance in our game, so we decided to go back and re-design the mobile interface
to give mobile players more precise control.

The UI pictured in 2.2 makes it so that the right analog stick is bound to a fixed
position on the screen, which makes it more suitable for smaller devices.

With this layout we can better account for screen size, and aiming is more reliable
since moving the virtual analog stick in a certain direction will always translate in
the character aiming at a point in that direction. The user does not need to move
his hands around (which may throw his aim off, especially if he is trying to move
quickly). This also allows us to use a more varied arsenal of weapons as we have
less restraints.

There is still a disparity in precision of input between mobile players and PC players,

11

Networking Technologies and Game Development DREAD Team

owned in part to the nature of the platforms they play on, and we need to account for
that. For many years now, shooting games have tried to help players on platforms
with less precise controls (such as game consoles like the Playstation or Xbox) by
utilizing what is known as Aim Assist. As the name implies, Aim Assist is a collection
of techniques that help the player aim and compensate for both latency and less
precise controls.

In his talk at GDC 2013, Nick Weihs of Insomniac Games goes over many of the
common Aim Assist techniques used in 3D first person shooter games [12].

On a high level, Aim Assist tweaks the camera controls to make it easier to perform
small adjustment, or to ”snap” the player’s aim to an enemy when he aims close
enough to the target. While a 3D, first-person environment makes this more complex
to implement, a rudimentary aim-assist system could be implemented in the mobile
version of the game to bridge the gap between the two platforms. As an example we
could give characters an additional larger collider hitbox, which would be invisible
to the player, but that would make it easier for the player to hit targets (especially
moving ones). However, Aim Assist needs to be finely balanced to make the shooting
experience enjoyable, but not make the effect too obvious for players. An excessive
amount of aim assist may also lead to PC players being at a disadvantage, so it is
something that needs to be taken into account.

12

Networking Technologies and Game Development DREAD Team

2.3.3 User interface for PC

In 2.3 we can see our initial concept model for the PC version of the game, together
with the default key bindings. The user interface is meant to be minimalistic to cover
the least amount of screen space and to not clutter the screen with abundant data.
The key-bindings are also intended for a fast-pace shooter environment. We have
also considered no-mouse scenario, where players can use arrow keys in substitute
of mouse (e.g. laptop users), although it may be less optimal.

Figure 2.3: User interface for PC

13

Chapter 3

Networking

As it is more precisely described in chapter 2, the game we are developing has a
number of players (around 10) playing on equal sized teams against each other.
As such one of our priorities was to ensure a consistent and smooth gameplay on
different platforms, keeping factors like network latency in mind.

In this chapter, we will describe various network architectures commonly used for
games, and then go more in depth about Photon’s networking architecture since it
is a hybrid of different approaches.

Generally, there are two principal approaches for networking multiplayer games:
Client-Server (CS) and peer-to-peer (P2P) architectures.

3.0.1 Client-Server architecture

In a Client-Server architecture the players (clients) all connect to a central, trusted
server [10]. The server is responsible for relaying information between the clients,
as well as arbitrating whenever the clients transmit conflicting data. The server’s
version of the game state is used to resolve conflicts between clients (for example if
two clients disagree on where a third player is located).

There is a variant of the CS architecture called the Mirror server architecture, in
which clients connect to various instances of the server located in various geograph-
ical locations. This is mostly done to accommodate large player numbers located in
very distant parts of the world to reduce latency and group players from a similar
geographic area. In this setup, upon launching the game the client will connect to
the closest mirror. The Mirrors will act independently in normal gameplay, and
synchronize with each other at a later point (e.g nightly).

14

Networking Technologies and Game Development DREAD Team

There are various advantages and disadvantages that come with a client-server ar-
chitecture: on the positives’ side, it is easier to implement than a P2P architecture.
Inter-client communication is much more streamlined, and its centralized nature
makes programming easier. Furthermore server-based systems tend to be more re-
liable than P2P ones and less affected by client latency, especially in the Mirrored
server configuration. This is because a major contributor to latency in such a setup
is the physical distance from the server. In a multi-platform environment such as
our game, where some clients may be on unreliable mobile networks, the use of a
central server makes it easier to restore the game state if a client is disconnected.

As for the disadvantages of client-server systems, the main one is that they are
more expensive. The server also has limited computing resources, which may pose
a problem in games that deal with large player numbers (though this is not the case
with our game)[10]. Finally, a central server is also a single point of failure, and in
case of a crash it will render the game unplayable: this is generally unlikely, but it
needs to be kept in mind if one wishes to ensure continued service.

3.0.2 Peer-to-peer architectures

A peer-to-peer architecture is not based on a central server, but instead on a network
of clients that communicate with each other directly. Each client/peer manages
a local instance of the game state that is updated as information comes in from
other peers, and conflicting data is generally dealt with in two main ways: either by
consensus (where data form different peers is compared to determine what happened)
or by the use of a Master Client. The Master Client’s game state is referred to, to
determine whether an event has taken place in a similar way to what might happen in
a CS architecture. The use of master client is arguably the more common approach
between the two, as it makes conflict resolution easier.

A major advantage of P2P architectures is that they are extremely scalable, as
resources available to the software scale with the number of clients. The downside is
that P2P models are much more susceptible to latency: if a client cannot receive or
send updates within a reasonable time, it will lag behind the network and disrupt the
experience for that player. Another big advantage of P2P is that it eliminates the
need for server infrastructure, making it cheaper and easier to develop multiplayer
games on a low budget.

Within the master client approach, if the Master client does not have the resources
to handle the game session (be it in terms of available bandwidth or processing
power), it can ruin the experience for the other players.

15

Networking Technologies and Game Development DREAD Team

Another problem that arises is that of host migration, where the game’s host dis-
connects and a replacement must be found. Addressing this scenario requires more
complex tracking of the game state in each client, as when a new host is found
the game should resume from where it had stopped and loss of progress should be
avoided. This translates in more frequent updates to each client’s game state.

3.1 Networking Technologies & Frameworks Used

in the Project

Below is an overview of the networking frameworks and technologies that we have
used, or considered using, in our project:

3.1.1 Node.js & Socket.IO

Node.js is a popular server framework especially for web development. This is not
in least due to its ”one language to do it all” approach using JavaScript both on the
server side and the client. Socket.IO is a high level JavaScript library that allows
communication between a server and a client using Sockets. The Client/Server
structure in Node.JS and Socket.IO can be seen in figure 5.1.

In combination, these two technologies make for an easy way to get a server up
and running quickly. However - with respect to game development - it can become
an issue when the complexity of the code increases. NodeJS/Socket.IO are not
designed specifically for games, and therefore do not provide game specific tools for
synchronizing large amounts of game objects. Since our aim for choosing high level
technologies such as these are to make development faster and simpler, it might be
better to choose a technology where this type of synchronization has been thought
in during development of the server library.

3.1.2 Photon’s networking architecture

Photon is a networking framework that has long been used in conjunction with
Unity. It has been used in several AAA games and has been the main framework
used by Codemasters since 2011 (Developing games for Nintendo, Sony and Microsoft
consoles, as well as PCs. Notable names are the Dirt and F1 franchises) [11]

Photon uses a cloud based server that has a free plan with 20 concurrent users,
allowing for easy testing on different machines while developing. The cloud server

16

Networking Technologies and Game Development DREAD Team

runs a Master Server that handles game/room creation and allows for a lobby with
access to games.

The Photon framework is mainly client server, but also offers facilities to introduce
P2P elements in the networking. The Photon cloud acts as a central server to which
players connect to play, but there is also a minor element of P2P with a Master
Client approach.

The Photon cloud is composed of four main parts, a Name server, Master servers,
Game servers and a number of Hosted Rooms.

The diagram in figure 3.1 from Photon’s website ([2]) illustrates this division:

Figure 3.1: The Photon Cloud infrastruc-
ture

The practical use of the Photon Cloud will be more apparent in Chapter 6, but we
will make a brief reference to our game in order to explain how this works. When a
client connects to the game, it sends a request to the Name server, that determines
the available regions and is then directed to an appropriate Master server. The
Master server keeps track of all currently active game servers and how many players
are in them. From there the client can either join an existing room in that Game
server or create a new one. Game rooms are not represented in figure 3.1.

As we can see, the Master server setup is quite similar to the Mirrored server dis-
cussed above, with Master servers situated in different parts of the world to reduce
latency. There is however one crucial difference between the two: Photon’s Masters
and Game servers do not host a persistent world in our case, and there is no need
for the mirrors to update each other.

17

Networking Technologies and Game Development DREAD Team

The P2P aspect of the Photon network comes in the form of a limited use of the
Master Client approach in our project. Most data is sent and received from the
server during normal gameplay, thanks to serializable objects and implementations
of IPunObservable interface. All the game assets still reside on the client side. For
this reason we select a Master Client to load and synchronize maps/scenes between
clients. This ensures that there are no conflicts, and that all players are connected
to the same scene.

3.1.3 Other worthy mentions

Unet (Unity’s networking framework)

UNET is Unity’s own networking stack for making multiplayer games. It provides
a high-level API (HLAPI) that integrates tightly into Unity’s Entity Component
System, and provides a standardized way to network games. UNET also provides
a low-level API (LLAPI), intended for more complex applications that require their
own network code and infrastructure. Unet hasn’t been updated in around three
years however, and is in the process of being deprecated for a new Unity networking
system developed in collaboration with Multiplay. This replacement has not been
released yet.[4].

Unreal Engine

Unreal engine features an authoritative server framework that is used in popular
games such as Fortnite, and is a competing game engine to Unity. It is similarly free
to use for private individuals.

18

Chapter 4

The Entity Component System

This chapter will cover the history and essence of the Entity Component System,
which is integral to Unity’s work-flow

4.1 Overview

The Entity Component System (ECS) is a software development pattern used pri-
marily in games that provides a large amount of flexibility. Many major publicly
available game engines such as Unity, Unreal Engine and CryEngine have been built
with ECS as their main pattern. [8] ECS seems to be very widely used in modern
game programming.

There are lots of resources such as articles and talks with the purpose of explaining
what ECS and its uses are. There are however not a lot of programming pattern
books/peer reviewed articles that has ECS as a main concept. The reasoning for this
could be that the description and wider use of ECS is relatively new. We have chosen
to use this approach despite of that, as it seems to be a very efficient technique and
as it is the chosen pattern for Unity.

4.1.1 The Problem

Traditionally, game development has been done using the object oriented concept,
polymorphism, where classes extend and inherit from each other. Since games are
often rather diverse and complex with many different entities sharing pieces of func-
tionality, this can lead to some very deep and rigid hierarchies. In addition to this,

19

Networking Technologies and Game Development DREAD Team

games often change over time which makes it hard to plan out everything before
starting development.

The idea and development of the Entity Component System started in the early
2000’s as a solution to the above mentioned problem. An article from one of the
developers, Adam Martin, describes his experience and the evolution of ECS [5],
further referencing earlier work by Scott Bilas [1] .

The ECS pattern bears some resemblance to the Gang of Four [3] pattern named
Strategy, in that both patterns take a part of an object’s responsibility and delegates
that to a different object. The main difference is that with the Strategy pattern,
the delegated objects will usually be stateless (only containing algorithms/behavior)
whereas in ECS the delegated objects (components) can keep track of the state and
manage behavior at the same time.

4.1.2 Why ECS is good for Game Development

Suppose that the game includes a tree that behaves like normal trees, but this
particular tree is also supposed to be able to shoot at players. In a polymorphism
based system, the shooting functionality would have to come from some parent class
that can shoot, or be duplicated in the tree class, even though all the other trees
don’t need this functionality. From a programming perspective this is considered
bad practice, as it leads to either duplication or a very tight coupling.

There are in many different objects in games that will end up sharing some similar
functionality such as physics calculations and rendering. These are very convenient
to implement with ECS.

4.1.3 How ECS works

ECS works by a combination of three different concepts.

• Component: A component handles a single responsibility of an object (or
an Entity) in the game. Typically this will resemble a C struct in that it has
no functions and only stores data. One example of a typical component could
be a position component. Some way to store an x, y and z coordinate (This
component is called a Transform in Unity).

• System: A system is what gives the entities behaviour. It manipulate their
data. One example could be a movement system which would manipulate the

20

Networking Technologies and Game Development DREAD Team

coordinates stored in the position component, in order to move an object in
the scene.

• Entity: The entities are the actual objects in the game. They can can be a
characters, rocks or a shooting trees. Essentially, an Entity is no more than a
list of components and their respective systems.

Abstracting component and system in Unity

In the Unity architecture, the separation between components and systems can be
used in an abstract way. They can be implemented as one object without breaking
any benefits of the pattern. Unity provides a component called a RigidBody for
example. It contains the data needed for any kind of rigidbody physics (such as
gravity, mass, friction etc.) as well as the algorithms and functions. This essentially
makes it a combination of a component and a system.

All of our custom components are implemented in this way - without separating
component and system - as this, in our use case, creates neatly structured code
without having high coupling between any classes.

21

Networking Technologies and Game Development DREAD Team

4.1.4 ECS in our project

To give the reader an example on how our game project uses ECS, we provided
the ECS Diagram in figure 4.1 that demonstrates the entities, components and the
relation between two of our main entities Player and Weapon. As is illustrated in the
diagram, the main entities share similar components Rigidbody and Transform that
provide properties and functionalies related to the physics and the position/rotation
of the main entities.

Figure 4.1: ECS diagram for the entities
Player and Weapon

22

Chapter 5

Description of the Node.js
Software Architecture

This chapter describes the atchitecture of the Node.js version of the game, by looking
at the classes and processes that constitute the game.

23

Networking Technologies and Game Development DREAD Team

5.1 Documentation of our Implementation

Figure (5.1) shows the main components of the Node.js implementation of the game.

Figure 5.1: A UML Component Diagram
outlining the classes used in the software

As we can see the game works with a Client-Server network architecture, in which
the server side handles player connection events and is responsible for propagating
state changes to all other connected players.

24

Networking Technologies and Game Development DREAD Team

The class diagram in figure 5.2 provides a more indepth view of the contents of these
components. It only models the main elements of the software, and some classes
have been left out. For example every weapon in the game extends the Weapon
class and defines how that weapon should behave in-game. These sub-classes are
not modeled.

Figure 5.2: A UML Class diagram of the
principal classes in the game

25

Networking Technologies and Game Development DREAD Team

MonoBehaviour Class

The parent class MonoBehaviour[9] is the base class in the Unity library from which
every Unity GameObject script derives. Below we’re going to briefly describe some
of the most used member functions from the MonoBehaviour class.

• Start(): This function is called once a script is started, before any of the
Update methods are called.

• Update(): This function is called every frame.

• FixedUpdate(): This function has the same frequency as the physics system.
It is called every fixed framerate frame and should be used instead of Update
when dealing with Rigidbody 1.

• OnTriggerEnter(): This function is called when the GameObject collides with
another GameObject. For instance this can be useful when we want to deter-
mine if a bullet collides with a player, so we can handle the damage dealt to
that player.

• Destroy(): This function can be used to remove the game object. It’s necessary
when we want the player to be removed from the game upon death, to free the
allocated memory.

Along with the functions that the parent class MonoBehaviour provides to our
classes, it also provide some properties that are very useful. Bellow we describe
some of them:

• GameObject: is the object that this entity is attached to. As an entity is
always attached to a game object.

• Transform: The positional component attached to this GameObject. For in-
stance by calling transform.position, we would get a 3d vector that refers to
the position of the gameObject.

5.1.1 GameController

The GameController class functions as a high level entity that deals with creating
an instance of the game map and of the various objects in it, while other controllers
handle logic tied to specific game elements. the Game Controller also sends game
state/player data to the server.

1A component added to an object which will put its motion under the control of Unity’s physics
engine

26

Networking Technologies and Game Development DREAD Team

As we can see, the Game Controller has a wealth of functions, mainly dealing with
instantiating other objects and handling communication with the server. In addition
to sending player events to the server, the Game Controller also keeps track of what
players are connected and their status (position, health etc.). This information is
then relayed to the OtherPlayer Controller so that it may be displayed locally.

The bullet-related properties and functions inside the game controller are tied to a
weapon in the game that we call the ’Reptile Gun’. They are in the Game controller
since it need to be synchronized over the network. The Reptile gun will be discussed
more thoroughly in chapter 7.1.

5.1.2 Player Controllers

The PlayerController class on the other hand, is responsible for handling player
physics, movement and actions.

The OtherPlayerController its similar to the Player Controller, but it handles the
movement and action data only from other players on the network so that they can
be displayed. No input is processed here.

The PlayerController class, as we mentioned before, handles player movement
and action: a lot of the player object proprieties are tied to the physics engine, and
applied to the model via the use of a rBody object; attaching a RigidBody to a
model makes it subject to physical forces (as opposed to static objects).

This class also handles the death and de-spawning of the player. In the event that
the player’s health reaches 0 or goes below it, the doDie flag is set to True. this
value is checked every frame at run-time, and it triggers the Die() function if the
boolean value is set to True.

The Die() function resets player parameters and de-spawns the player’s character
model from the map. There is another value in the class that concerns death,
the dying variable. In order to explain its function, one needs to understand the
difference between the Update() and FixedUpdate() methods: both are standard
Unity methods that are called at every new frame: Update() is called at the very
beginning of the frame, while FixedUpdate() is called later on; FixedUpdate is
commonly used to compute physics, while Update is used for other functions that
take priority.

The dying variable simply resets the Player’s parameters before it de-spawns, this
makes it so that the player character appears to fall over upon death, instead of
immediately vanishing when the Die() function is called.

27

Networking Technologies and Game Development DREAD Team

The OtherPlayerController class performs a similar function to the Player Controller
described above, but while the Player Controller handles movement and interaction
for the local player, the Otherplayer controller handles those same functions for
players connected through the network.

As such, it is considerably shorter and mainly deals with receiving and sending data
from/to the server, so that the actions of connected players may be displayed on the
local machine.

The Player class is attached to the Player component, and holds key parameters
about the player such as current health or the player’s ID. This class has a lot less
functionality than the Player Controller, and the values within it change from player
to player. Its main task is to instantiate the player with the correct character model,
and change the player’s health when he/she takes damage.

5.1.3 Utility Classes

The ModelHandler handles loading of the different prefabs necessary for instantiating
the 3D models used in the game. This is done by loading prefabs and combining
them together to create a character in the game. A prefab in Unity is a combination
of scripts and models that constitute some game entity. Game entities can then be
instantiated using the description stored in the prefab.

28

Networking Technologies and Game Development DREAD Team

5.2 Game Processes

This section describes some of the essential processes that make up the game.

5.2.1 Connection & Instantiation

Figure 5.3: A UML System Sequence Dia-
gram showing how player connection and
game initiation is handled

.

The diagram in figure 5.3 shows the player connection and initiation process, for
both the local player as well as the remote player.

The first half of the diagram models how a local player joins the game.

29

Networking Technologies and Game Development DREAD Team

When a player joins the game the Game Controller sends a request over the socket
to the server. The server then adds the player to the list of currently connected
users and generates a unique ID for him/her. The server will then keep track of
the player’s data with this ID. Alongside the ID, the server initializes the Player’s
position, model and health. This data is then relayed back to the client. The client’s
then binds the incoming information to a Player Controller, all subsequent player
actions are handled by the Player controller.

The second half of the diagram, pictured as a loop, models how remote players are
handled. Whenever other players join the game, after the process described above
has taken place, the server broadcasts the player’s data to the other connected play-
ers. This data (containing player position, rotation, and health status) is received
by the connected clients and assigned to the OtherPlayer Controller, that is then
used to display the actions of those players on the screen.

30

Networking Technologies and Game Development DREAD Team

5.2.2 Movement

In figure 5.4 we can see how movement updates work between local player and other
remote players.

Figure 5.4: A UML System Sequence Di-
agram showing how movement is handled

.

When the local player performs any movement action, the PlayerComponent receives
the input and updates the transform of the local player and if the position is different
than previous one, then it informs the GameController that there is a change in
properties. The GameController then invokes the socket.io client which then informs
the server of the change in the local Transform.

The server updates the transform position data of the local player, then invokes the
socket function and the data is then transmitted over the sockets to all remote players
simultaneously. The Controller then finds the instance of player with provided id
and updates the position properties.

31

Networking Technologies and Game Development DREAD Team

The Game controller recieves data from the server and the OtherPlayer controller
then uses this data to update the local instances.

5.2.3 Shooting & collisions

When the player presses the fire button, the boolean value isShooting (referenced in
figure 5.2) is set to True. When this variable is set, the Player Controller invokes the
weapon controller for the equipped weapon, which in turn determines the behaviour
of the weapon and the projectile. The specific weapon controller then spawns the
projectile into the game. As long as the projectile is traveling, it reports its position
to the game controller so that the position may be broadcast to other players through
the server. If the projectile collides with an object in the scene, it simply de-spawns.
If, on the other hand, it collides with another player, it invokes the OtherPlayer
Controller for the player with that same ID. The damage is then subtracted from
the local instance of the OtherPlayer controller, and the new health value is then
broadcast to the rest of the connected players. For the clients that were unaffected
by the damage, they will simply receive this information on their local OtherPlayer
controller and display it. Conversely the player that was damaged updates its own
health value in the Player controller.

32

Networking Technologies and Game Development DREAD Team

Figure 5.5: A UML System Sequence Diagram showing how shooting and collision
work

.

33

Networking Technologies and Game Development DREAD Team

5.3 Implementation Details

In this section we describe some of the main areas of our code and technical imple-
mentation of this version.

5.3.1 Server Side node.js and Socket.io

We setup the nodejs.js and load the socket.io library by the following code.

1 var express = require("express");

2 var app = express();

3

4 var server = require("http").createServer(app);

5 var io = require("socket.io").listen(server);

6 // We set the port that every client should connect to, to 3000.

7 app.set("port", process.env.PORT || 3000);

Then the following variables are the main properties that are being used in order to
handle the networking between the players.

1 var clients = [];

2 var id = 0;

3 var OnlinePlayerNum = 0;

4 }

The following code handles each connection from each client that connects to the
server.

Server Side Client Connection Handling

1 io.on("connection", function(socket) {

2 // we have omitted the network code that is handled here

3 });

To provide examples on how the network handling code inside the upon function
looks like, the following code snippets are how we handle the player instantiations
and movements.

Data received from the connected client is sent to the rest of the clients connected
to the server.

34

Networking Technologies and Game Development DREAD Team

Server Side Player Instantiation

The following part of the code refers to the (Connection & Instantiation) diagram
5.3.

1 socket.on("USER_INITIATED", userData => {

2 console.log(userData.weapon);

3 clients.forEach(player => {

4 socket.emit("GET_EXISTING_PLAYER", player);

5 });

6 //Collecting the instantiated user’s data in our Clients array.

7 clients.push(userData);

8 socket.broadcast.emit("A_USER_INITIATED", userData);

9 });

In the function socket.broadcast.emit("A USER INITIATED", userData), the socket
emits the information to each of the players, except the player that has sent the data.
The first argument is a title we give to the socket so that it can be caught on the
receiver client side using socket.on("title name") function. And the second ar-
gument is the parameter we want to send to the receiver clients, to instantiate and
update their remote players’ properties.

Server Side Player Movement Synchronization

The following part of the code refers to the (movement) diagram 5.4.

1 socket.on("CLIENT_MOVE", function(movementData) {

2 for (var i = 0; i < clients.length; i++)

3 if (clients[i].id == movementData.id) {

4 clients[i].position = movementData.position;

5 clients[i].rotation = movementData.rotation;

6 socket.broadcast.emit("OTHER_PLAYER_MOVED", movementData);

7 return;

8 }

9 });

In the function socket.broadcast.emit("OTHER PLAYER MOVED", movementData),
operates the same way as the other function socket.broadcast.emit("A USER INITIATED",

userData) in the previous code snippet, but with different title and argument.

35

Networking Technologies and Game Development DREAD Team

5.3.2 Client Side Implementation in Unity

The following code snippets include the main properties needed in the client side
according to the game networking handling in the GameController class. A complete
list of functions that handle the data received from the server through sockets as
well as other part of the game logic, is available in the Class Diagram 5.2.

1 private Player clientPlayer;

2 private List<PlayerParams> players;

3 public List<GameObject> playerObjects;

4 public List<BulletParams> bullets;

The following code snippet is how we instantiate Socket.io client side in the Game-
Controller class.

1 private SocketIOComponent socket;

2 void Start()

3 {

4 socket = GetComponent<SocketIOComponent>();

5 StartCoroutine(ConnectToServer());

6

7 //Rest of the code

8 }

9 #region Connection

10 IEnumerator ConnectToServer()

11 {

12 yield return new WaitForSeconds(0.5f);

13 socket.Emit("USER_CONNECT");

14 }

In the code we use the 0.5f seconds delay before connecting to the server, to ensure
that the socket component has finished loading.

As we discussed how the server handles the user instantiation and movement in the
prior section, we continue by describing how the client then handles the operation
from its side.

36

Networking Technologies and Game Development DREAD Team

Client Side Player Instantiation

The following code snippet is how a user instantiation is handled when the server
emits information that a new player has joined.

1 private SocketIOComponent socket;

2 private GameObject otherCharPrefab;

3

4 void Start()

5 {

6 socket.On("A_USER_INITIATED", AddNewPlayer);

7 otherCharPrefab =

(GameObject)Resources.Load("Prefabs/PlayerCharacters/OtherPlayer",

typeof(GameObject));

8

9 //Rest of the code

10 }

11 private void AddNewPlayer(SocketIOEvent evt)

12 {

13 PlayerParams pp = PlayerParams.CreateFromJSON(evt.data.ToString());

14 var newCharacter = Instantiate(otherCharPrefab, pp.getPosition(),

Quaternion.Euler(0, -90, 0));

15 newCharacter.GetComponent<Player>().SetFromPlayerParams(pp);

16 players.Add(pp);

17 playerObjects.Add(newCharacter);

18 }

The object pp of type PlayerParams, is the parameter we get from the server through
the socket and the method Instantiate() is a method inherited from the MonoBe-
haviour class (that is discussed earlier in this report at section 5.1).

This is used to instantiate a GameObject in the game controller using the parameter
pp. The parameters it takes in our case are: An existing object that we want to
make a copy of, the initial position (Vector3) and rotation (Quaternion) of the object
.

Client Side Player Movement

In the following code snippets we describe how remote user movement is being
handled when the client recieves data on a remote player’s updated position. (The
system sequence diagram in figure 5.4 is showing the interactions that are being
handled in this part).

First, The target client that has done a movement would use the socket.Emit() in

37

Networking Technologies and Game Development DREAD Team

order to send its new position data to the server, then the server broadcasts the new
data to all the other clients. The method SendClientMovement() is called when
a movement is performed by the client. It requires the user’s id, its position and
rotation degree.

1 public void SendClientMovement(int id, Vector3 pos, Quaternion rot)

2 {

3 var obj = new MovementObjJSON(id, pos, rot);

4 socket.Emit("CLIENT_MOVE", JSONObject.Create(JsonUtility.ToJson(obj)));

5 }

As the server gets the data emitted from the moving client, it would broadcast the
same data to all the other clients in order to update the position of the instance
player of the moving remote player (discussed earlier in section 5.3.1).

The following code snippet is how the other clients get the data from server and
handle the instance of remote player position updates.

1 void Start()

2 {

3 socket.On("OTHER_PLAYER_MOVED", SetOtherPlayerMove);

4 }

5

6 private void SetOtherPlayerMove(SocketIOEvent evt)

7 {

8 var move = JsonUtility.FromJson<MovementObjJSON>(evt.data.ToString());

9 foreach (var p in players)

10 if (p.id == move.id)

11 {

12 p.position = move.position;

13 p.rotation = move.rotation;

14 }

15 }

In the above code snippet, in line 8, we re-convert the data that has been delivered in
JSON format from the server, to a type of MovementObjJSON which is a created by
C# and store that in the move variable. Then in line 9 we loop through the players
list (that holds objects with information of the properties of the remote players).
As the program finds the matching player inside the loop by its id, it updates the
matching player instance with the transform data contained in the move object we
recieved from the server.

38

Networking Technologies and Game Development DREAD Team

Now that the object in the players list that holds the property of the client is
updated. The instance of the remote player would map its position accordingly
using the following code in the OtherPlayerController.

1 void Update()

2 {

3 var pp = gameController.GetPlayerParams(id);

4 if (pp == null) return;

5 if (pp.position != lastpos)

6 {

7 transform.position = pp.position;

8 transform.rotation = pp.rotation;

9 lastpos = transform.position;

10 }

11 }

39

Chapter 6

Photon Implementation

6.1 Introduction

Photon provides us with many useful features that helped us in our game-making
process, including:

• A Central Server in the form of the Photon cloud described in section 3.1.2,
which allowed for easier deployment and testing.

• A unified method of inter-client communication through the PhotonNetworking
and PhotonView APIs. This was rather useful to us, as we found that every
time we tried to add new functionality in the NodeJS implementation we had
to amend our networking code, and make it more and more complex. If we
found possible improvements to it we had to go back and change all these
additional features.

These APIs gave us the freedom to experiment without the worry of having
to go back and change our networking code.

• A structured way to handle connection to the aforementioned Photon Cloud:
this wasn’t an immediate concern, but our NodeJS implementation was hard
to scale.

The main concern that moved us in this direction was twofold: We recognized that
our game was getting more and more complex (needlessly so), and we believed we
were getting held back by having to invent a lot of logic that already exists.

Additionally, there were other concerns, such as the realization that, were we to port
the game to mobile, we would have to ship the NodeJS binaries along with the game

40

Networking Technologies and Game Development DREAD Team

in order to make the server work.

While the process of making the back-end with NodeJS was a good learning experi-
ence, allowing us think about many lower-level optimization and such, we felt that
it was detrimental to the development of the game itself.

6.2 Implementation Overview

Figure 6.1: A UML Class diagram of the
principal classes in the game after the
Photon implementation

41

Networking Technologies and Game Development DREAD Team

As we can see, in figure 6.1, the architecture of the software has changed substantially
when compared to the Node.JS implementation: communication between clients has
been streamlined thanks to the Photon serializable view, and some classes have been
added to accommodate new functionality.

First up is the Launcher class, which is one of the new additions: this class in-
corporates some functionality that was previously present in the Game Controller,
and mainly deals with connection and instantiation. The purpose of this class is to
connect players to the game, as well as load new scenes when necessary. This class
also manages the lobby - starting games and eventually other menu related features.

• The GameController class mainly assigns players to teams and selects a master
client for the room.

• The PlayerHealth class keeps track of the local player’s health, sending and
receiving updates as necessary via PhototnSerializableView.

• The FollowCam class contains the main camera controls and parameters, which
is bound to the local player via the PlayerManager class. This camera follows
the player around during gameplay.

• movement and physics-based logic, while the AbilityController handles shoot-
ing and weapon instantiation.

• The PlayerMovement class, as the name implies, manages the Player

• The ModelHandler loads models from prefabs and has not been changed from
the Node.js implementation.

• The Weapon class remain unchanged from the previous implementation.

As we can see, this Photon implementation moves a lot of functionality that was
previously in the PlayerController and Player classes into more discrete classes for
a better separation of concerns. Thanks to Photon, there is no longer a need for
a separate OtherPlayer controller as we have made it dynamic using the isLocal
boolean variable provided by the photon library. The communication between clients
has also been streamlined which will be described here and in the discussion 8
chapter.

42

Networking Technologies and Game Development DREAD Team

Figure 6.2: A System Sequence Diagram depicting the Player connection in the
Photon implementation

43

Networking Technologies and Game Development DREAD Team

6.3 Game processes

6.3.1 Connection and Instantiation

In figure 6.2 we can see how players create and/or connect to a game within the
Photon implementation.

As the player runs the game, he loads into the lobby scene. Starting the game calls
the Launcher class, which is responsible for connecting , creating a room and serves
as a menu for the player. The Launcher class attempts to establish a connection to
the Photon Name Server with a given AppID, which identifies the game application.
If the AppID exists within the name server, it routes the client to a Master server
that contains information for all rooms for that particular game. The Master server
acknowledges the client’s connection, which then requests to join a random room.
If an appropriate room is found (i.e. if there is a room with at least one free slot for
the player to join), the player joins the room and thus can participate in an already
existing session of the game. If, on the other hand, a suitable room cannot be found,
the client creates a new room.

Regardless of whether the server was found or created, the server acknowledges that
the player has entered the server and returns the number of connected clients. The
client then proceeds to assign the local player to a team, by counting the number of
players present on the server, and assigning each to either teams sequentially.

44

Networking Technologies and Game Development DREAD Team

6.3.2 Movement

Figure 6.3: A UML System Sequence Dia-
gram showing how movement works in the
photon implementation

Because of the differences outlined in the previous sections, movement is greatly
simplified in the Photon implementation. Movement is handled by the PlayerMove-
ment class, which handles input from the local player and is also handles sending and
receiving the position of other clients. This class does not implement the OnPho-
tonSerializeView method like the PlayerHealth or AbilityController classes. This
is because the PlayerMovement script directly modifies the local players transform,
and thus we can simply use the PhotonView class to synchronize the x, y and z
coordinates from the transform as can be seen done in 6.4.

45

Networking Technologies and Game Development DREAD Team

Figure 6.4: A screenshot from the Unity
editor

Once a player moves, the PlayerMovement class sends the updated Transform to
the server alongside the ID of the local player, which then sends the transform to
other clients. This information is received by each client’s PlayerManager class, that
determines what player has moved and updates the transform in the local instance.

46

Networking Technologies and Game Development DREAD Team

6.3.3 Shooting and Collision

Figure 6.5: A System Sequence Diagram depicting the Player connection in the
Photon implementation

47

Networking Technologies and Game Development DREAD Team

The process of shooting is broadly similar to how it functioned in the NodeJS im-
plementation, but with some differences.

When a player presses the fire button, the AbilityController sets the isShooting

variable, sends it to the server and invokes the weapon controller of the weapon that
is currently equipped. the weapon controller then spawns a projectile that sends
its position to the server while it is active. When it collides with another player, it
triggers a collision and the PlayerHealth class of the remote player subtracts a fixed
value from the player’s health. The updated health value is then sent to the server
through a Photon stream on the next update.

6.4 Implementation Details

This sections goes into detail about the most relevant parts of the Photon imple-
mentation.

6.4.1 Initialization

The Photon library uses a settings file, PhotonServerSettings.asset, that contains
necessary server settings such as the AppId (The developer key for the photon cloud).
Once this AppId has been added to the settings file the application is ready to
connect and use the online photon cloud server.

6.4.2 Connection & Joining Rooms

This section details the core implementations of the Photon solution. Many of these
are the same features as in the Node.js version, but with the addition of a few
utilities such as teams and a 3d lobby menu that the player can walk around in.

Connection

As Photon is a fairly high-level game networking library some common function-
alities, such as connection, has been abstracted quite a bit. The following snippet
shows the full connection process from our perspective.

48

Networking Technologies and Game Development DREAD Team

1 public void Connect(string level)

2 {

3 // if connected, join - else initiate connection to the server.

4 if (PhotonNetwork.IsConnected)

5 {

6 // attempt joining a Random Room. If it fails, call

OnJoinRandomFailed() to create new room.

7 PhotonNetwork.JoinRandomRoom();

8 }

9 else //connect to Photon Server.

10 {

11 PhotonNetwork.GameVersion = gameVersion;

12 PhotonNetwork.ConnectUsingSettings();

13 }

14 }

First we use the IsConnected property from the PhotonNetwork object, to see if
there is already a connection. If not, it calls the ConnectUsingSettings() function
that connects to the photon server. If it is already connected it will attempt to join
a room. See chapter 3 for more information on rooms and other Photon related
concepts.

This connection process happens as soon as the application is started, and once it
is done, a limited player character is spawned in the ”lobby”. This player character
can move around and start a game, but cannot shoot.

49

Networking Technologies and Game Development DREAD Team

Lobby, Interactables & Starting a game

At this point the player is in the lobby. There are some simple animated interactables
in the current lobby that can be used for interacting in a different way from a
traditional menu. For instance, they could open up an in-game store or a player
inventory. In the current version of the game however, all they can do is to start a
game. All interactables are deriving from a parent class called InteractableController
that has the following function implemented.

1 void OnMouseDown()

2 {

3 RaycastHit hit;

4 Ray ray = Camera.main.ScreenPointToRay(Input.mousePosition);

5 Debug.DrawRay(ray.origin, ray.direction * 100, Color.yellow);

6

7 if (Physics.Raycast(ray, out hit))

8 {

9 Transform objectHit = hit.transform;

10 if (objectHit.tag == "LobbyInteractable")

11 Interact();

12 }

13 }

This uses a ray cast (a virtual line with collision information) from the camera
towards the direction of the clicked point. If an Interactable is is hit by this ray, its
Interact() function will be called.

Every Interactable overwrites a parent function called Interact() which defined what
should be done when it is clicked. The Interact() function from the TeamDMPlay-
Interactable can be seen below.

1 public override void Interact()

2 {

3 if (launcher == null)

4 {

5 print("Launcher reference not set on " + this.name);

6 return;

7 }

8 launcher.Connect("test_teamDM");

9 }

This function implementation is very simple. It calls the connect function from the
launcher class with a scene name as parameter, which will then load the player into
a Team Deathmatch game.

50

Networking Technologies and Game Development DREAD Team

6.4.3 Team Deathmatch and Freeplay

After the above process has been completed the player will enter a game of a certain
game mode. At this very early stage in the development of our game, there is only
two game modes, Team Deathmatch and Freeplay. The difference between these
two modes is whether or not the player will join and fight against a team, or it will
be every player against every other player.

Instantiation

At this point the player leaves the Lobby scene and enters one of the game scenes.

Instantiating something in the game (in our case our player prefab) using Photon-
Network.Instantiate will automatically synchronize the content of the PhotonView
component of the instantiated prefab for all clients in that respective room.

1 void Start()

2 {

3 Instance = this;

4

5 Debug.LogFormat("We are Instantiating LocalPlayer from {0}",

SceneManager.GetActiveScene().name);

6 // we’re in a room. spawn a character for the local player. it gets

synced by using PhotonNetwork.Instantiate

7

8 if (!usingTeams)

9 {

10 //Spawn at random position

11 PhotonNetwork.Instantiate(this.playerPrefab.name, new Vector3(0f, 5f,

0f), Quaternion.identity, 0);

12 PhotonNetwork.LocalPlayer.SetTeam(PunTeams.Team.none);

13 }

14 else

15 SetTeamInstantiate(); // Spawn at a predefined team spawn location

16 }

If were not in a team game mode, we tell photon to synchronize our player character
by spawning it with PhotonNetwork.Instantiate, and set it’s team value to none

allowing the player too shoot and take damage from any other player.

51

Networking Technologies and Game Development DREAD Team

Teams

If the current game mode is team based (Currently this is only the case for Team
Deathmatch), instead of directly calling PhotonNetwork.Instantiate in the start
function shown above, we call SetTeamInstantiate() which at this point works as
a simple way of making evenly numbered teams.

1 public void SetTeamInstantiate()

2 {

3 if (PhotonNetwork.PlayerList.Length % 2 == 0)// even / uneven

4 PhotonNetwork.LocalPlayer.SetTeam(PunTeams.Team.red);

5 else

6 PhotonNetwork.LocalPlayer.SetTeam(PunTeams.Team.blue);

7

8 var spawn = spawnPoints[PhotonNetwork.PlayerList.Length].transform; //not

-1 because player is added after this

9 PhotonNetwork.Instantiate(this.playerPrefab.name, spawn.position,

Quaternion.identity, 0);

10 }

This function uses the modulus operator to swap between the red and blue team
based on whether there is an even or an uneven number of players in the room at
the point of connection.

We have an array containing empty GameObjects with positions called SpawnPo-
sitions. See figure 6.6. This array contains predefined positional objects placed in
each end of the map, where the teams base is supposed to be.

52

Networking Technologies and Game Development DREAD Team

One side of the map holds the even numbered spawn points, and the other side holds
the odd numbered ones. We select the spawn position object stored at the index cor-
responding to the current number of connected players. We then collect the position
from that object, and spawn the player there using PhotonNetwork.Instantiate.

Figure 6.6: Spawn positions for team A

53

Networking Technologies and Game Development DREAD Team

6.4.4 Movement

For moving the player we make use of the AddForce and MovePosition functions
provided by Unity’s Rigidbody component.

The MovePosition function recieves a Vector3 (a three dimensional vector) repre-
senting the desired new position. It then does a smooth transition over a number of
frames using linear interpolation.

We create an input vector by collecting the numerical input values (which will be
either 0 or 1) from the movement keys and store those values in their corresponding
axis in a vector called ’input’. We multiply that vector with a speed value and the
Time.deltaTime to make it independent from the frameRate.

1 //Physics are not calculated in sync with the normal update (where input

should be collected), it should be handled in FixedUpdate

2 void FixedUpdate()

3 {

4 if (!photonView.IsMine && PhotonNetwork.IsConnected)

5 return;

6

7 if (IsGrounded() && doJump) Jump();

8 if (doDash) Dash();

9

10 //Move the character

11 rigidBody.MovePosition(rigidBody.position + input * speed *

Time.fixedDeltaTime);

12

13 //Increase gravity effect on the player

14 rigidBody.AddForce(Vector3.down * gravityIncrease * rigidBody.mass);

15

16 if (lastPos != transform.position || lastRot != transform.rotation)

17 {

18 lastPos = transform.position;

19 lastRot = transform.rotation;

20 }

21 }

We make sure that the player is connected before they are allowed to move. If they
are, we retrieve the input and move their position. We then add a force in the
downwards direction to simulate gravity using the Rigidbody’s AddForce function.
Lastly we store the current frame’s position to see whether there has been any change
in the following frames.

54

Networking Technologies and Game Development DREAD Team

Look Direction

If the player is controlling with the mouse, we determine the direction the character
is supposed to be looking at using a raycast from the camera and storing the point
where the ray intersects with the map. We can then subtract the characters position
from the stored intersection point, which gives us a vector corresponding to the
direction from the player towards the intersection point.

If the player is using the arrow keys to control, we simply create a vector from the
input value instead of the above. This gives the player eight fixed directions to move
and look in.

Unity’s transform component has a vector variable called forward which represents
the forward direction of the character. Once we have a direction from either mouse
or keyboard input, we can set this variable to rotate the character.

This however results in an instant rotation, which looks unrealistic. To avoid this
we use the Vector3.Lerp() function which interpolates between two vectors based
on a speed input. This rotates the character slowly over several frames.

1 private void DetermineLookDir()

2 {

3 //if Mouse1 is pressed, use a rayCast from the cameta to get a position

on the map for the char to look towards

4 forward = Vector3.zero;

5 var cam = Camera.main;

6 Ray camRay = cam.ScreenPointToRay(Input.mousePosition);

7 RaycastHit hit;

8 if (Input.GetButton("Fire1") && Physics.Raycast(camRay, out hit))

9 {

10 forward = hit.point - transform.position;

11 forward.y = 0;

12 }

13 else if (inputArrow != Vector3.zero) forward = inputArrow; //when Mouse1

isnt pressed set the look direction to the key input

14 else if (input != Vector3.zero) forward = input;

15

16 //Update look direction

17 if (forward != Vector3.zero) transform.forward =

Vector3.Lerp(transform.forward, forward, Time.deltaTime *

smoothSpeed);

18 }

55

Networking Technologies and Game Development DREAD Team

Advanced Movement

In addition to moving around horizontally with the arrow keys, the user has the
option to use the space key to jump upwards, and the shift key to dash quickly in
their movement direction.

Both of these are implemented using the RigidBody.AddForce() function. We
calculate an input vector corresponding to the direction and use this as input.

1 private void Dash()

2 {

3 Vector3 dashVelocity = Vector3.Scale(input/*transform.forward*/,

dashDistance * new Vector3((Mathf.Log(1f / (Time.deltaTime *

rigidBody.drag + 1)) / -Time.deltaTime), 0, (Mathf.Log(1f /

(Time.deltaTime * rigidBody.drag + 1)) / -Time.deltaTime)));

4 rigidBody.AddForce(dashVelocity, ForceMode.VelocityChange);

5 doDash = false;

6 }

7

8 private void Jump()

9 {

10 rigidBody.AddForce(Vector3.up * Mathf.Sqrt(jumpDistance * -2f *

Physics.gravity.y), ForceMode.VelocityChange);

11 doJump = false;

12 }

56

Chapter 7

Implementation of shared game
elements

In this chapter we are going to describe some of the other features in the game that
are being implemented in a common way in both of the versions.

7.1 Reptile Weapon

Among the Weapons that are created in our game program we are going to explain
the logic behind one of them called the Reptile Weapon as it’s the weapon with the
most functionality. This weapon can target anything and as it recognizes any object
on its target (while holding the shoot button), it would send a bullet that follows
the object until it collides that object.

As is shown in the class diagram 5.2, a Weapon type of object has the following func-
tions: Shoot(), StopShooting() and DealDamage(). The method DealDamage()

calculates the damage that it has dealt to the remote player. The system sequence
diagrams 5.5 and 6.5 for Node.js and Photon versions respectively, demonstrate
greater overview on how the shooting and damage operations are being handled, as
well as the networking aspect of it.

57

Networking Technologies and Game Development DREAD Team

The following code snippet is part of the logic on how the Reptile weapon handles
the bullet shooting in the ReptileController.

1 void Start()

2 {

3 line = laserBeam.GetComponent<LineRenderer>();

4 }

5

6 void Update()

7 {

8 if (line.GetPosition(1).z < maxLineLength)

9 line.SetPosition(1, new Vector3(0, 0,

Mathf.Lerp(line.GetPosition(1).z, maxLineLength,

Time.deltaTime * 4)));

10 }

In the Start() method in line three, we instantiate the line object that is being
used to detect an object. Then in the Update() function we generate a line towards
the aiming position.

1 private void ManageCollision(Collider other)

2 {

3 hasTriggered = true;

4 var distance = Vector3.Distance(other.transform.position,

transform.position);

5 if (distance < maxLineLength)

6 line.SetPosition(1, new Vector3(0, 0, distance));

7

8 GlobeProjectile newGlobe = Instantiate(globe, firePoint.position,

firePoint.rotation) as GlobeProjectile;

9 newGlobe.fromMainPlayer = true;

10 newGlobe.targetCharachter = other.gameObject;

11 string id = transform.parent.GetComponent<Player>().id.ToString() +

"rep" + globeId.ToString();

12 newGlobe.id = id;

13 globeId++;

14 gameController.InstantiatePlayerBullet(id,"rep",firePoint.position,false);

15 }

16 }

In the ManageCollsion() function, that is being called when the line object detects
any collision with an object. We get the target of the collision and use it as one of
the parameters to instantiate an object of the type GlobeProjectile, which is then
being spawned from the weapon as a bullet that follows the object that it took as
the parameter.

58

Networking Technologies and Game Development DREAD Team

On line 14 we call the gameController’s InstantiatePlayerBullet which handles
the networking part of this for synchronization with the remote players.

7.1.1 GlobeProjectile Class

The following code snippets display a part of the code in the GlobeProjectile

class, that handles following the character after the bullet is being sent out from the
reptile weapon.

1 void FixedUpdate()

2 {

3 if(fromMainPlayer){

4 transform.position = Vector3.MoveTowards(transform.position,

targetCharachter.transform.position, Time.deltaTime *

smoothSpeed);

5 gameController.MoveBullet(id, bulletType, transform.position,

isExploded);

6 }else{

7 var bp = gameController.GetBulletParams(id);

8 if (bp == null) return;

9 if (bp.position != lastpos)

10 {

11 transform.position = bp.position;

12 isExploded = bp.isExploded;

13 lastpos = transform.position;

14 }

15 }

16 }

In the FixedUpdate() method in the if / else statement, the program checks
whether this object should operate as if it is being handled as local instance of a
bullet, or as an instance of a bullet that is sent out from a remote player. If it
is being handled as the main instance, it would in each sequence get the current
position of the character object it got as the property and moves toward that object
using the MoveTowards() method.

The operation Time.deltaTime * smoothSpeed ensures that the movement would
be independent of the frame rate because we’re factoring in the Time.deltaTime
(the time spent since the last frame). The MoveTowards() method is using linear
interpolation to smooth out acceleration in any direction. The effect of liniar inter-
polation is that instead of moving directly from one position/rotation to another,
intermediate values are created and the movement will be split over a number of
frames.

59

Networking Technologies and Game Development DREAD Team

The else statement is run if the bullet is a remote instance. It would update its
position according to the parameters related to it self received from the server using
the socket (This part is only being used in the node.js version, as in the Photon
version, synchronization of transform properties of objects are streamlined by the
use of Photon’s PhotonTransformView class).

7.2 Camera Follow

We have a relatively simple camera follow script that has a fixed position at an angle
above the player. The player can use the scroll wheel to zoom in and out, but has
no other controls over the camera.

The player prefab (a prefab is a saved entity that can be spawned at runtime) has
an invisible object above its head. This is the camera’s target. We can change
this target at runtime to make the camera look at something else in the case of an
in-game event. Currently however, the rotation of the camera never changes and is
thus simply set to a fixed value.

1 void FixedUpdate()

2 {

3 if (!target) { return; }

4

5 float num = Input.GetAxis("Mouse ScrollWheel");

6 distance -= num * scrollSens;

7 distance = Mathf.Clamp(distance, minDistance, maxDistance);

8

9 Vector3 pos = target.position + offset;

10 pos -= transform.forward * distance;

11

12 transform.position = Vector3.Lerp(transform.position, pos, smooth * 0.5f

* Time.deltaTime);

13 }

First we determine the distance from the player using either the default value or
the input from the scroll wheel. We then move the camera to the targets position
+ a fixed offset using linear interpolation so the camera will smoothly change its
position rather than ”teleporting”.

60

Chapter 8

Discussion

In this chapter we’re going to assess the pros and cons related to each version of our
game prototype described in the earlier chapters.

In chapter 9, the Conclusion, we will evaluate what approach would be more appro-
priate for our game system according to our plan.

8.1 Pros and cons of the Node.js and Socket.io

implementation

In this section the pros and cons associated with our first version of the game (Node.js
and Socket.io Client Server networking) would be evaluated and described through
the following table

61

Networking Technologies and Game Development DREAD Team

Pros Cons

• The logic in the server is entirely
being written and controlled by
us. So a part of the game logic
could be handled in the server.

• Node.js uses JavaScript that is
asynchronous in nature, ensur-
ing that code execution does not
stop. Due to this the program
in the server won’t unnecessar-
ily stop the execution of code
which is unrelated to the pro-
cess that it is currently running.
Practically speaking, this means
that a client’s request wouldn’t
impact the performance of the
server handling other requests.

• Node.js has a large ecosystem of
open-source libraries, that can
be used in our server-side devel-
opment.

• Socket.io is quite portable, since
it provide libraries in many lan-
guages and environments. This
is useful if we plan to build a new
version of our game or port it to
other game engines.

• Socket.io is very easy to learn
and use. It provides various high
level functions that abstract the
complexities of Socket based pro-
grams.

• Socket.io is ideal for rapid devel-
opment and deployment, and is
thus quite useful when prototyp-
ing and testing a system.

• As Node.js uses JavaScript,
there are some incompatibilities
when passing data between the
server and the Unity engine due
to JavaScript’s weak typing.

• Our current implementation ap-
proach on this version requires us
to go back and add/modify net-
working code on components in
our program, when a new fea-
ture that has to be synchronized
is implemented. This can be
facilitated by a implementing a
better, more generalized solution
that would lead us to focus less
on the core logic of our game and
more on adding new features.

• Node.js and Socket.io were not
originally intended for games
specifically, and the corpus of li-
braries/documentation to incor-
porate Socket.io into games is
somewhat lacking.

• As the server-side code is com-
pletely designed and created by
us, we would need a hosting
service to store the server-side
program. This requires us to
pay additional fees and invest-
ing more time on finding an ap-
propriate and performant host-
ing server according to the num-
ber of current users.

Table 8.1: Pros and Cons of the node.js and socket.io implementation

62

Networking Technologies and Game Development DREAD Team

8.1.1 Conclusion of Node.js and Socket.io implementation

Summing up the pros and cons discussed on the table nr 8.1, we can conclude that
using Node.js and Socket.io in our game program gives us much more control over
the logic of our server, thus we can handle many operations for the synchronization
in the server-side code.

On the other hand however, integrating Node.js and Socket.io with the Unity C#
client-side has the disadvantages of maintainability issues, complexity in the client-
side code and incompatibility between Javascript and C# data structures.

63

Networking Technologies and Game Development DREAD Team

8.2 Pros and Cons of the Photon implementation

Pros Cons

• Photon is developed especially
for game networking, targeting
Unity as one of their supported
game engines, thus it also pro-
vides a wealth of functionality
for game networking and com-
munication that makes the de-
velopment process easier. There
are no issues with incompatibil-
ity when transferring data be-
tween different data-types, and
there is a tight integration with
the Unity engine.

• Photon provides servers in differ-
ent locations based on our needs,
which are free to use up to 20
concurrent users. In this case we
would be able to run and test the
game online from the beginning,
rather than testing them locally.
That gives us a more accurate
overview on our game’s perfor-
mance.

• Photon reduces the complexity
of the program structure.

• There is good documentation on
how to implement game net-
working using Unity and Pho-
ton.

• We don’t have the access re-
quired to manipulate the server
logic and thus all of our game
logic must be handled in the
client side.

• Vendor lock-in. Our appli-
cation is dependent on a third-
party (Photon) in order to func-
tion.

• Although it’s free to use for the
first 20 concurrent users, it can
become expensive once the num-
ber of users raises significantly.

Table 8.2: Pros and Cons of the node.js and socket.io implementation

64

Networking Technologies and Game Development DREAD Team

8.2.1 Conclusion of Photon implementation

Summing up the results according to the pros and cons discussed on the table 8.2,
we can conclude that using Photon for handling the networking area of our game
program can be beneficial, due to the APIs and services that simplify the process of
game development and would enable us to release the game faster. On the downside
it limits us with a blackbox server logic and environment and make our game to be
dependant on them.

65

Chapter 9

Conclusion

In the discussion above we have looked at the pros and cons of the two versions of
the game. In this final conclusion, we’d like to sum up our experience with both
and evaluate whether the switch to Photon was a good idea.

As it transpired from the discussion, the main disadvantage of the Node.js implemen-
tation was the growing complexity of our networking code, that forced us to go back
and add more ad-hoc code every time a new feature needed to be network-aware.
This was one of the major reasons that made us switch to Photon, but we believe
that such a change should not have been necessary if we had had more time. Most
of the issues we had with Node.js and Socket.io could be resolved by re-building the
Node.js networking code to be more general and scalable.

This is to say that our switch to Photon was more due to circumstance that some
flaw inherit in the technology, and from an academic stand point we would have
benefited from building - or rather finishing - the network part ourselves. That said
however, Photon proved useful to us when testing the application, and testing the
final game would still be harder with the Node.js and Socket.io implementation.

As for Photon it greatly sped up our work, and simplified the implementation of
both old and new networked features.

A running theme through this report is that the game was not finished, and that
is a rather obvious point we could build upon. Another avenue of further research
could be to include user feedback in our project form an early stage, improving on
the UX perspective and perhaps giving us better insight in our game design process.

Since we spent a lot of time comparing Photon and Node.JS in this project, it could
also prove useful to perform some empirical testing to asses the performance of each
system with a finished game.

66

Bibliography

[1] Scott Bilas. A data-driven game object system. https://www.gamedevs.

org/uploads/data-driven-game-object-system.pdf, 2002. Presented at
the 2002 Games Developers Conference.

[2] Exit Games. Connection and authentication: Regions. https://doc.

photonengine.com/en-us/pun/v2/connection-and-authentication/

regions. Accessed: 2018-12-07.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-oriented Software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995.

[4] Brandi House. Evolving multiplayer games beyond unet. https://blogs.

unity3d.com/2018/08/02/evolving-multiplayer-games-beyond-unet/.
Accessed: 2018-12-12.

[5] Adam Martin. Entity systems are the future of mmog de-
velopment. http://t-machine.org/index.php/2007/09/03/

entity-systems-are-the-future-of-mmog-development-part-1/. Ac-
cessed: 2018-10-02.

[6] Ted Nelson. Interactive systems and the design of virtuality. Creative Comput-
ing, 6(11):56–62, 1980.

[7] Jenny Preece, Yvonne Rogers, and Helen Sharp. Interaction Design: Beyond
Human-Computer Interaction. Wiley, 2002.

[8] Unity. Entity component system. https://unity3d.com/learn/tutorials/

topics/scripting/introduction-ecs. Accessed: 2018-10-02.

[9] Unity3D. The webpage of the unity game engine. https://unity3d.com/.
Accessed: 2018-10-02.

67

https://www.gamedevs.org/uploads/data-driven-game-object-system.pdf
https://www.gamedevs.org/uploads/data-driven-game-object-system.pdf
https://doc.photonengine.com/en-us/pun/v2/connection-and-authentication/regions
https://doc.photonengine.com/en-us/pun/v2/connection-and-authentication/regions
https://doc.photonengine.com/en-us/pun/v2/connection-and-authentication/regions
https://blogs.unity3d.com/2018/08/02/evolving-multiplayer-games-beyond-unet/
https://blogs.unity3d.com/2018/08/02/evolving-multiplayer-games-beyond-unet/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
http://t-machine.org/index.php/2007/09/03/entity-systems-are-the-future-of-mmog-development-part-1/
https://unity3d.com/learn/tutorials/topics/scripting/introduction-ecs
https://unity3d.com/learn/tutorials/topics/scripting/introduction-ecs
https://unity3d.com/

Networking Technologies and Game Development DREAD Team

[10] Steven Daniel Webb. Referee-based architectures for massively multiplayer on-
line games. PhD thesis, Curtin University of Technology, Department of Com-
puting, 2010.

[11] Rachel Weber. Codemasters to use exit’s photon for on-
line titles. https://www.gamesindustry.biz/articles/

2011-09-22-codemasters-to-use-exits-photon-for-online-titles.
Accessed: 2018-11-10.

[12] Nick Weihs. Techniques for building aim assist in console
shooters. [video]. https://www.gdcvault.com/play/1017942/

Techniques-for-Building-Aim-Assist, 2013. Accessed Dec. 14, 2018.

68

https://www.gamesindustry.biz/articles/2011-09-22-codemasters-to-use-exits-photon-for-online-titles
https://www.gamesindustry.biz/articles/2011-09-22-codemasters-to-use-exits-photon-for-online-titles
https://www.gdcvault.com/play/1017942/Techniques-for-Building-Aim-Assist
https://www.gdcvault.com/play/1017942/Techniques-for-Building-Aim-Assist

	Introduction
	Problem Formulation
	Exploratory Process

	DREAD - The Game
	Initial Gameplay Description
	Development Environment & Game Engines
	User experience design
	Usability and UX goals
	User interface for mobile (Android and iOS)
	User interface for PC

	Networking
	Client-Server architecture
	Peer-to-peer architectures

	Networking Technologies & Frameworks Used in the Project
	Node.js & Socket.IO
	Photon's networking architecture
	Other worthy mentions

	The Entity Component System
	Overview
	The Problem
	Why ECS is good for Game Development
	How ECS works
	ECS in our project

	Description of the Node.js Software Architecture
	Documentation of our Implementation
	GameController
	Player Controllers
	Utility Classes

	Game Processes
	Connection & Instantiation
	Movement
	Shooting & collisions

	Implementation Details
	Server Side node.js and Socket.io
	Client Side Implementation in Unity

	Photon Implementation
	Introduction
	Implementation Overview
	Game processes
	Connection and Instantiation
	Movement
	Shooting and Collision

	Implementation Details
	Initialization
	Connection & Joining Rooms
	Team Deathmatch and Freeplay
	Movement

	Implementation of shared game elements
	Reptile Weapon
	GlobeProjectile Class

	Camera Follow

	Discussion
	Pros and cons of the Node.js and Socket.io implementation
	Conclusion of Node.js and Socket.io implementation

	Pros and Cons of the Photon implementation
	Conclusion of Photon implementation

	Conclusion

