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Abstract

We investigate vortex merging at low Reynolds numbers from a topological point of
view. We identify vortices as local extremal points of vorticity and follow the motion
and bifurcation of these points as time progresses. We consider both two-dimensional
simulations of the vorticity transport equation and an analytical study of the core growth
model. The merging process of identical vortices is shown to occur through a pitchfork
bifurcation and for asymmetric vortices one vortex merges with a saddle through a cusp
(perturbed pitchfork) bifurcation. Excellent agreement between the core growth model
and the numerical simulations is observed. For higher Reynolds numbers, filamentation
becomes dominant hence limiting the predictive value of the core growth model. A com-
plete investigation of merging in the core growth model is conducted for all possible vortex
strengths. Simple, analytical expressions are derived for bifurcation curves, merging time,
and vortex positions depending on systems parameters.

1 Introduction

For general viscous flows, it is surprisingly difficult to define a vortex in a rigorous way which
is also simple to use, and no generally accepted definition exists. Here we just mention
a few approaches. Jeong and Hussain [1995] discuss a number of vortex definitions based
on the velocity gradient, the ∆ criterion, the Q criterion and the λ2 criterion, which for
two-dimensional flow all are identical. More recently Haller [2005] has proposed a definition
based on the strain acceleration tensor. In these definitions a vortex is a region in the fluid
fulfilling a certain inequality. An alternative approach is to consider the topology of the
entire vorticity field and how it changes as the dynamics progresses. This immediately leads
to focusing on the critical points where ∂xω = ∂yω = 0. They organize the structure of
the level curves of vorticity: Generically, the critical points are isolated and either extrema
encircled by closed level curves or saddles with stable and unstable manifolds which divide the
vortical regions from one another. Thinking of a vortex as a local extremum of vorticity is a
natural generalization of a point vortex. Saddles may have no simple physical interpretation,
but must be present for topological reasons. A similar approach has been used extensively for
the stream function rather than the vorticity. In that case the critical points are stagnation
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points and the level curves are simply the streamlines. See the reviews [Tobak and Peake,
1982, Brøns, 2007] and [Brøns et al., 2007, Balci et al., 2015] for specific applications to the
cylinder wake and boundary layer eruption.

Understanding the interaction, creation and destruction of vortices is important for de-
scribing the dynamics of the flow and may be more instructive than the dynamics of the entire
flow field. A classical example of this approach is the modeling of an inviscid flow by discrete
point vortices, which reduces the problem to a set of ordinary differential equations for the
vortex positions, see e.g. Newton [2001] or Meleshko and Aref [2007] for an introduction and
a historical overview.

Interaction and merging of two vortices is a fundamental and well studied problem in fluid
mechanics, see the recent review by Leweke et al. [2016] for an introduction and overview.
Understanding vortex merging is needed for insight into complicated flows like wake struc-
ture of body-fluid interactions and two dimensional turbulence. Description of the vorticity
topology of vortex merging is the purpose of the present paper. Bifurcation theory is used to
study how critical points of vorticity interact and are created and destroyed, considering time
as a bifurcation parameter. This approach is used to study vortex merging at low Reynolds
numbers (1 ≤ Re ≤ 100). The method will be applied to simulation of the vorticity transport
equation, and analytically to the core growth model which will be described below.

1.1 Previous studies of vortex merging

Early studies of vortex merging mainly focus on merging in inviscid fluids. Two point vor-
tices in inviscid fluid cannot merge, as the vortex separation distance is constant. However,
three point vortices may collapse in finite time (merge) depending on initial conditions and
vortex strengths, [Synge, 1949, Aref, 1979]. Two or more vortex patches in inviscid fluid
may lead to merging; Deem and Zabusky [1978] and Dritschel [1985] studied vortex patches
with constant vorticity in inviscid fluid. This simplification implies that only the evolution
of the vortex patch boundaries are needed to compute the evolution of the flow field, coined
contour dynamics. Equilibrium solutions of such states are found, which is not possible in
viscous fluid. Some analytical investigations of merging in inviscid fluid restricting vortices
to elliptical shapes was conducted by Melander et al. [1988]. Merging of vortex patches with
Gaussian profile in inviscid fluid is investigated and compared to laboratory experiments in
rotating fluids by Trieling et al. [2005].

Cerretelli and Williamson [2003] describe vortex merging by four stages, where diffusive
growth is the first, followed by a convective stage leading to the second diffusive stage and
finally the merged diffusive stage. Brandt and Nomura [2007] also discuss four vortex merging
stages in two - dimensional flow for symmetric vortex merging depending on the vorticity gra-
dient and rate of strain. Brandt and Nomura [2010] investigate the situation with asymmetric
vortices. A merging criterion for two-dimensional co-rotating vortices has been proposed by
Meunier et al. [2002]. The criterion describes when a rapid decrease in the separation between
the vortices (the onset of vortex merging) is observed and is given by a critical length scale
related to the second moment of vorticity divided by the circulation. For the experimental
part the early stage vortices are found to agree well with Gaussian vortices. Meunier et al.
[2005] discuss two point vortices and two Gaussian vortices in relation to vortices behind an
aircraft, which is also discussed by Jacquin et al. [2003]. Josserand and Rossi [2007] investi-
gate vortex merging of co-rotating vortices at large Reynolds numbers. A recent contribution
is the work by Folz and Nomura [2017] where numerical simulations are used to characterize
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interaction of two vortices with varying vortex strength ratios.

1.2 The core growth model

With one point vortex of strength Γ as initial condition at x = 0 (bold face denotes vector
x = (x, y) ∈ IR2), ω(x, 0) = Γδ(0) the two-dimensional vorticity transport equation can be
solved analytically yielding the Lamb - Oseen vortex [Saffman, 1992]

ω(r, t) =
Γ

πσ(t)2
e
− r2

σ(t)2 , uθ =
Γ

2πr

(
1− e−

r2

σ(t)2

)
, ur = 0 , (1)

with
σ(t) =

√
4νt . (2)

This means that for r � σ we have uθ ≈ Γ0
2πr which is the velocity generated by a point vortex

of the same strength. The Lamb - Oseen vortex is an attracting solution for any integrable
initial vorticity field as proved by Gallay and Wayne [2005]. Hence, unbounded flow with
an integrable initial vorticity distribution with non zero total circulation will converge to
a single Lamb - Oseen vortex after sufficiently long time. For multiple vortices as initial
condition to the vorticity transport equation, an explicit analytical solution is typically not
available. Therefore, we resolve to numerical simulations of the vorticity transport equation
and compare these to analytical investigations of a synthetic flow given by the core growth
model, also known as the multi Gaussian model. Here, the centers of the Gaussian vortices
move in a field prescribed by the other vortices (similar to inviscid point vortex dynamics) and
the cores of the vortices diffuse as predicted by the Lamb - Oseen solution of a single vortex.
Investigations of the core growth model with few vortices are conducted by Jing et al. [2010]
but the idea of splitting advective and diffusive mechanisms in computations with Gaussian
vortices is an older approach [Beale and Majda, 1981, Kida and Nakajima, 1998].

In the case of N Gaussian vortices with strengths Γk, the velocity of the j’th vortex center
is (with complex notation z = x+ iy, and ∗ indicating complex conjugate)

ż∗j =
1

2πi

∑
k 6=j

Γk
zj − zk

(
1− exp

(
−|zj − zk|

2

4νt

))
, (3)

and the velocity field at any point, z, in the fluid that is not a center of a Gaussian vortex is

ż∗ =
1

2πi

N∑
k=1

Γk
z − zk

(
1− exp

(
−|z − zk|

2

4νt

))
. (4)

The vorticity field can be computed when the location of the Gaussian vortex centers, zk(t),
is known by the formula

ω =

N∑
k=1

Γk
4πνt

exp

(
−|z − zk|

2

4νt

)
. (5)

Thus, in the core growth model the vorticity is calculated from a superposition of Gaussian
terms. In general, this is not an exact solution of the vorticity transport equation but we will
regard it as a simple model allowing some viscous effects. Gallay [2011] proved (under certain
conditions) that the solution to the vorticity transport equation converge to a sum of Lamb -
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Oseen vortices for viscosity going to zero and for finite time when the inital condition is a sum
of point vortices. A related result was obtained by Marchioro [1998]. The first diffusive stage
of vortex merging described by Cerretelli and Williamson [2003] is found to be well described
by two Lamb - Oseen vortices, hence there is experimental justification for investigating the
core growth model in detail. The core growth model with a few vortices can be analyzed in
detail and may show qualitative information that is valuable also for more realistic flow.

Importantly, the single, Lamb - Oseen vortex, Eq. (1), has the property that u · ∇ω = 0
hence it is also a solution to the diffusion equation

∂tω = ν∇2ω . (6)

As this is a linear equation, a sum of Lamb - Oseen vortices is a solution to this equation.
Therefore, the core growth model is expected to perform well when the advection term u · ∇ω
is not dominating.

1.2.1 Previous studies of the core growth model

Core growth models with few vortices have been subject to little attention and analysis despite
a Gaussian vortex profile is observed in experiments [Trieling et al., 2010]. In Jing et al. [2010]
the instantaneous streamlines and vorticity contours of three, collinear Gaussian vortices are
investigated. The three circulations are chosen such that the three vortices stay aligned and
the whole configuration rotates with time dependent rotation rate. Numerical analysis of the
core growth model is compared to numerical solution of the vorticity transport equation and
both indicate a linear increase of merging time with Reynolds number.

Kim and Sohn [2012] derive the integrals of motion for the core growth model similar
to point vortex dynamics and a time-dependent Hamiltonian for the position of the vortex
centers is derived. They prove the impossibility of self similar collapse of three vortices in
the core growth model. This is a result contrary to the point vortex case where self similar
collapse is possible [Aref, 1979].

Jing et al. [2012] investigate vortex interaction using the core growth model of two vortices,
one case of equal vortex strength and one case of asymmetric vortex strength. Their main
focus is on analyzing a suitable rotating coordinate system, where time dependent separatrices
of the instantaneous streamlines can be computed with a rich dynamics that is related to
the passive tracer evolution of the system. Here, we will complement their investigations by
studying all possible two vortex interactions in the core growth model and compare the results
to simulations of the vorticity transport equation. To our knowledge this is the first analytical
investigation of the vorticity topology of the core growth model. Recall, an extremum of the
vorticity is considered a vortex. The description of a vortex as a single point allows bifurcation
analysis to describe the merging of the vortices. In the core growth model, all bifurcations
are investigated and described and simple equations for the position of the vortex extrema as
a function of time and system parameters are derived.

The paper is organised as follows: In Section 2 the numerical simulation of the vorticity
transport equation is described. In Section 3 the topologies and bifurcation curves of the
core growth model are investigated after a useful scaling and coordinate system is chosen.
The analytical results are compared to the numerical results of the simulation of the vor-
ticity transport equation. In Section 4 equations for trajectories of the vortices are derived
and compared to numerical results. In Section 5 the results are summarized, compared to
literature and alternative approaches are discussed.
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2 Methodology

2.1 Scaling and parameters

We consider two Gaussian vortices. Vortex 1 with strength Γ1 is situated at (−d, 0) and
vortex 2 with strength Γ2 is situated at (d, 0). We let Γ2 > 0 which does not exclude any case
- we can still investigate opposite signed circulations of the two vortices as well as circulations
with the same sign. Two vortices with negative circulation rotate in opposite direction of two
vortices with positive sign. Likewise, a sign change in Γ1 + Γ2 implies a sign change in the
direction of rotation. To obtain the vorticity transport equation in non dimensional form,
length and time scales are divided by typical quantities. Following the approach of Meunier
et al. [2002] and Jing et al. [2012] the typical quantities are obtained from the point vortex
formulation of the problem. The typical length scale, L, is the distance between the vortices
and the typical time, T , is the time of one revolution of the two point vortices

T =
(2π)2 (2d)2

|Γ1|+ Γ2
. (7)

The non dimensional time in the vorticity transport simulations is then t̄ = tT−1. The
advective forces scale with Γ and the viscous forces scale with ν. The Reynolds number of
the simulations is defined as

Re =
|Γ1|+ Γ2

2ν
, (8)

which is consistent with the Reynolds number used in Meunier et al. [2002] and Jing et al.
[2012] being Γ

ν for two equal vortices.

2.2 Numerical method

We integrate the vorticity equation in (arbitrary) dimensional form, as this allows for a direct
comparison with the model, using the variable transformations given above. As the choice
of units are arbitrary, we will not write these explicitly. The Reynolds number is varied by
varying the kinematic viscosity ν as Γ1 + Γ2 = 2 in all simulations. Since Re ≤ 100 and we
have a square domain, a simple finite difference method with the explicit Euler integrator
scheme suffices. Let u = (u, v) be the velocity field, then for any grid point i, j in the system
domain we have

ωn+1
ij (∆t) = ωnij −

(
unij · (∇ωnij)− ν∇2ωnij

)
∆t

∇2ψn+1
ij = −ωn+1

ij , un+1
ij =

∂ψn+1
ij

∂y
, vn+1

ij = −
∂ψn+1

ij

∂x
, (9)

where ∆t is the integrator time step. The spatial derivatives are approximated by central
differences. The Euler scheme is only conditionally stable and the appropriate time step
size is dependent on the cell Reynolds number [E and Liu, 1996b]. Therefore, we apply
an adaptive time step method, where the error estimator is given by the maximum of the
absolute differences, i.e. err = max{|ωnij(∆t) − ωnij(∆t/2)|}; the relative tolerance is set to
≤ 0.1 %. The computational domain is [−6; 6] × [−6; 6] using grid spacing ∆x = 0.06, and
we have applied periodic boundary conditions. The numerical solver is readily implemented
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in GNU Octave [Eaton et al., 2016]. In particular, the Poisson equation is solved also using
a finite difference scheme and GNU Octave’s build-in direct matrix solver (Hansen [2011],
Eaton et al. [2016]). The Gaussian vortices are set at (±1, 0) and the initial condition is

ω(x, 0) = Γ1 exp

(
−(x+ 1)2 + y2

σ2
0

)
+ Γ2 exp

(
−(x− 1)2 + y2

σ2
0

)
, (10)

with σ0 = ∆x unless otherwise stated.
The numerical method was tested in different ways. (i) For Re = 100 results from the first

order Euler scheme was compared against the 4th order Runge-Kutta algorithm [E and Liu,
1996b,a]. With the same error tolerance the average time step is approximately 10 % larger for
the 4th order Runge-Kutta scheme, however, this does not compensate for the factor of four
in computational cost. (ii) To test for finite size effects, the domain was increased by a factor
2 for Re = 100 giving same merging time. (iii) The effect of grid point spacing was tested by
comparing the vorticity field for spacings ∆x=0.12, 0.09 and 0.06. The difference is expected
to be largest in the beginning of the simulation as the gradients are largest for small times.
After 200 iterations the difference in vorticity extrema for ∆x=0.12 and ∆x=0.06 is 1%, no
difference for ∆x =0.09 and 0.012 is found to five decimal places, that is, the relative error
is less than 10−3 %. The same conclusion is drawn for the position of the vorticity extrema .
The difference decreases as time increases as expected. The exact differences are dependent
on initial conditions, and the initial vorticity must be a distribution with a finite width. As
noted above we use the smallest grid spacing, ∆x=0.06, in order to achieve high resolution
and thereby minimizing the numerical error when interpolating data for the location of the
vorticity extrema.

3 Vorticity topology in the core growth model

Let the center of vortex 1 at (x1(t), y1(t)) be advected in the velocity field from vortex 2 at
(x2(t), y2(t)) prescribed by Eq. (1) and vice versa, and let their initial locations be at (−d, 0)
and (d, 0). One can deduce [Kim and Sohn, 2012] that the distance between the vortices is
conserved, similar to the point vortex case. The center of vorticity, zcv, is stationary (using
z = x+ iy) being

zcv =
αz1 + z2

1 + α
, α 6= −1, (11)

where the parameter α is

α =
Γ1

Γ2
. (12)

The center of vorticity moves infinitely far away for α approaching −1. Both Gaussian vortices
rotate around zcv with identical time-dependent angular velocites,

dφ

dt
=

Γ1 + Γ2

2π(2d)2

(
1− exp

(
−(2d)2

σ(t)2

))
, (13)

where σ(t) is given by Eq. (2). For small times the well known expression for the angular
velocity of two point vortices is obtained while for large time the viscosity makes dφ

dt go to
zero. The time dependent vorticity is given by
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ω =
Γ1

πσ(t)2
exp

(
−(x− x1(t))2 + (x− y1(t))2

σ(t)2

)
+

Γ2

πσ(t)2
exp

(
−(x− x2(t))2 + (y − y2(t))2

σ(t)2

)
. (14)

Since the Gaussian vortices move on concentric circles with the same angular velocity, one
can choose new coordinates (x′, y′) by a translation and a rotation such that (x− x1(t))2 +
(y − y1(t))2 is mapped to (x′ + d)2+y′2 and (x− x2(t))2+(y − y2(t))2 is mapped to (x′ − d)2+
y′2. This guarantees that the vorticity topology can be studied with the centers of the two
Gaussian vortices at fixed positions, which facilitates the analysis.

Dimensionless variables (denoted ˜ ) are introduced by x′ = dx̃, y′ = dỹ, ω = σ2

πΓ2
ω̃,

u = 2πd
Γ2
ũ, v = 2πd

Γ2
ṽ and defining the dimensionless time, τ

τ =
4ν

d2
t . (15)

The relation between the dimensionless time, t̄, used in the vorticity transport simulations
and τ is

t̄ =
Re

32π2
τ . (16)

The time t̄ is useful for comparing to existing, numerical results while the time, τ , simplifies
the analysis of the core growth model.

We now relabel (x̃, ỹ) to (x, y) i.e. the dimensionless coordinates in the corotating coor-
dinate system while (xlab, ylab) refer to the dimensionless coordinates in the lab frame, where
the vorticity transport simulations are performed. The dimensionless vorticity in the core
growth model becomes

ω = α exp
(
−τ−1

(
(x+ 1)2 + y2

))
+ exp

(
−τ−1

(
(x− 1)2 + y2

))
. (17)

Symmetry implies
ω(x, y, α, τ) = ω(x,−y, α, τ) (18)

and

ω(x, y, α, τ) = αω(−x, y, 1

α
, τ) . (19)

Both the vorticity transport simulations and the core growth model have the initial Gaussian
vortices placed at (±1, 0). For the vorticity transport simulations the advective time scale
related to point vortex motion is used and for the core growth model a viscous time scale is
used.

The topology of the vorticity given by Eq. (17) will be investigated for any non zero α,
and positive, increasing τ . By Eq. (19) it is sufficient to investigate |α| ≥ 1. To proceed,
the critical points of Eq. (17) are computed, satisfying ∂xω = ∂yω = 0, the type (saddle or
extremum) is determined by the sign of the Hessian determinant |H| = ∂xxω · ∂yyω− (∂xyω)2

at such a point. See Fig. 1 for the typical cases. The condition |H| = 0 at a critical point
indicates a bifurcation point. The location of non degenerate critical points (|H| 6= 0) is
described in the following theorem - see Appendix A for a proof.
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Theorem 1. Location of critical points

• All critical points occur on the x-axis.

• For vortices of same sign, α > 0, critical points only occur for |x| < 1 and for vortices
of opposite sign, α < 0, critical points only occur for |x| > 1.

• In the generic case ∂xxω 6= 0 at a critical point, the type of the critical point is known.
The critical point closest to x = ±1 is an extremum, and the consecutive points are of
alternating type.

3.1 Bifurcation analysis

The expression for ∂xω(x, 0) may be rearranged to

τ∂xω(x, 0)

2 (x+ 1) exp
(
−τ−1

(
(x+ 1)2 + y2

)) + α = g(x, τ) (20)

with

g(x, τ) = −x− 1

x+ 1
exp

(
4τ−1x

)
. (21)

Then ∂xω(x, 0) = 0 corresponds to α = g(x, τ). The motivation for introducing g is a
decoupling of the parameters, such that critical points are solutions of α = g(x, τ) and
bifurcation points, which must fulfill ∂xω = ∂xxω = 0, are characterized by ∂xg(x, τ) = 0.
The graphical interpretation of a bifurcation point is a horizontal tangent of g. The physical
interpretation of a bifurcation for increasing τ is a merging of a saddle and at least one
extremum of the vorticity, hence the bifurcation value is the merging time, τm. See Fig. 1
and 2 for the interpretation of g in some typical cases.

Three graphs of g can be seen in Fig. 2. By computing the local minimum and the local
maximum of g for varying τ Fig. 3a is constructed. This can be achieved by an explicit
formula, since zeros of ∂xg(x, τ) corresponds to zeros of p(x) given by

p(x) = x2 − 1 +
1

2
τ , (22)

which has two zeros for τ < 2

x±(τ) = ±
√

1− 1

2
τ , (23)

showing that any bifurcation point occurs for |x| < 1 i.e. for positive α. The merging time,
τm, for α > 1 is then given by inserting x+ in Eq. (21) with τ = τm

α(τm) = −x+ − 1

x+ + 1
exp

(
4τ−1
m x+

)
(24)

which inversely defines the merging time, and is illustrated in Fig. 3(a). The right hand side
of Eq. (24) is a decreasing function of τm, which goes to infinity for τm going to 0 and goes
to 1 for τm going to 2. Hence, three critical points are most persistent for α = 1. Here, the
bifurcation occurs at τm = 2. The symmetry in Eq. (19) provides a similar argument for x−
and 0 < α < 1. Exactly when α = 1 the observed bifurcation is a pitchfork bifurcation. For
all other values of α the bifurcation correspond to the perturbed pitchfork bifurcation - see
Fig. 5. The findings are summarised in the following theorem (proved in Appendix A).
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(a) (b) (c)

Figure 1: Examples of the three structurally stable vorticity topologies in the core growth
model. (a) α = 2, τ = 0.2, (b) α = 2, τ = 2, (c) α = −1, τ = 2.

Figure 2: Plots of y = g(x, τ) for τ = 1 (red), τ = 2 (dashed blue), τ = 3 (grey). Critical
points of vorticity are intersections of the horizontal line y = α for fixed α and y = g(x, τ).
Consider first the red curve. For α - values between the two local extrema of g there are three
critical points corresponding to Fig. 1(a). At τ = 2 the two local extrema merge, hence for
any α > 0 there is only one solution to α = g(x, τ) giving the final topology in Fig. 1(b). For
any τ > 0 and α < 0 topology Fig. 1(c) appears with two extrema an no saddles.
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(a) (b)

Figure 3: The analytical relation between merging time and α, Eq. (24), is the grey curve
in (a) and black dots are simulation results (Re = 5). In (b) blue dots are simulations of the
vorticity transport equation with α = 1, red dots correspond to α = 2. Upper full line are
the model prediction Eq. (26) for α = 1 and the lower full line is for α = 2.

Theorem 2. Bifurcations of vorticity contours.

• There are 1,2 or 3 critical points of vorticity for α > 0.

• For increasing time, three critical points merge to one critical point for α > 0. This
may happen through a pitchfork bifurcation (α = 1) or a perturbed pitchfork bifurcation
(α 6= 1).

• The final topology is one vortex extremum for α > 0. An upper limit of the merging
time is

τmax = 2 . (25)

This upper limit is realized in the case α = 1.

• There are no bifurcations for vortices of opposite sign. Two extrema are the only critical
points of the vorticity.

In Fig. 3 the model prediction of merging time is compared to vorticity transport simula-
tions showing good agreement for low Reynolds numbers. The merging time in the simulations
is predicted to be linearly increasing by Eq. (16)

t̄m =
Re

32π2
τm . (26)

The simulations support the symmetric case α = 1 to be the most robust case of two vortices.
For high Reynolds numbers, the core growth model over - estimates the merging time. This
is related to the filamentation of the vortices appearing in the vorticity transport equation
which is not part of the core growth model (see the discussion, Section 5).
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4 Trajectories of critical points in the core growth model

In dimensionless variables the center of vorticity given by Eq. (11) is

xcv =
1− α
1 + α

. (27)

In the laboratory frame, the critical points of vorticity rotate around (xcv, 0) with angular
velocity given by Eq. (13). In dimensionless time, this becomes

dφ

dτ
=

Re

16π

(
1− exp

(
−4τ−1

))
. (28)

While the merging time only depends on α and the initial core width corresponding to τ0,
the rotation rate has a prefactor involving an extra parameter, Re. Hence, in the core growth
model, merging time and topology is independent of Re. We will now consider trajectories,
where Re does matter. Since merging occurs for τ ≤ 2 one can with less than 4% error in φ
skip the exponential term in Eq. (28) to get

φapprox =
Re

16π
τ . (29)

Hence, the viscous slowdown is negligible, rendering the point vortex angle a good approxi-
mation, φapprox = 2πt̄. For any fixed α, τm is uniquely determined by Eq. (24) meaning that
varying Re gives a linear increase in φ by Eq. (29). For any fixed α, τ = τm is fixed hence
the angle at merging, φm, scales linearly with Re. Recall, that for symmetric vortices, α = 1,
the merging time is 2 hence a relation between Re and merging angle is by Eq. (29)

Re = 8πφm , for α = 1. (30)

Re can thereby be estimated by observing the merging angle in an experiment. This approach
is used in Fig. 4 for the grey curves.

The equation α = g(x(τ), τ) implicitly defines x = x(τ) when knowing an initial condition
(τ0, x(τ0)). This implies dx

dτ can be computed by implicit differentiation of α = g(x(τ), τ)
giving

dx

dτ
=

x
(
x2 − 1

)
τ
(
x2 − 1 + 1

2τ
) , (31)

which is valid as long as ∂xg(x, τ) 6= 0 hence when p(x) 6= 0 i.e. when no bifurcation occurs.
The motion of the critical points in the co-rotating frame when no bifurcations occur is then
dictated by Eq. (31) and y = 0 and the initial condition (τ0, x(τ0)). The trajectory of each
critical point can thereby be found by solving a single ordinary differential equation.

In the laboratory frame, (xlab(τ), ylab(τ)) is given by x(τ) from Eq. (31) combined with a
rotation around zcv

xlab(τ) = x(τ) cosφ+
1− α
1 + α

(1− cosφ) (32a)

ylab(τ) = x(τ) sinφ− 1− α
1 + α

sinφ , (32b)
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(a) (b)

(c) (d)

Figure 4: Trajectories of critical points of vorticity in the lab frame. The first column is the
symmetric case, α = 1, and the last column illustrates an asymmetric case α = 2. Full curves
correspond to vorticity extrema and the dashed curves are vorticity saddles. Blue curves are
vorticity transport simulations at Revt = 20, red curves are Revt = 50. The black curve is the
core growth model with Remodel = Revt. The grey curve in the top row is the core growth
model with Remodel = 17, in the bottom row Remodel = 37. From the merging angle in the
numerical simulation, Remodel is easily computed by Eq. (30) which is used to generate the
grey curves for α = 1.
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(a) (b)

(c) (d)

Figure 5: Position of the critical points of vorticity in the co-rotating frame (where all critical
points are located on the y - axis) as a function of time. Legends are similar to Fig. 4. Left
column shows a pitchfork bifurcation, right column shows the perturbed pitchfork (cusp)
bifurcation.

where φ = φapprox can be used for τ ≤ 2 i.e. to study merging. For the long term behavior of
opposite signed vortices, the time evolution in Eq. (28) must be included. Simulations of the
vorticity transport equation can be visualized in the co-rotating frame by using the inverse
of Eq. (32)

x = xlab cosφ+ ylab sinφ+
1− α
1 + α

(1− cosφ) , (33)

which is used in Fig. 5.
The fixed point values of Eq. (31) are x = −1, 0, 1 which means that [−1, 0] and [0, 1] are

trapping regions. A critical point cannot escape such a region if it is once in there.
A stationary critical point requires dx

dτ = 0 such that, at some time, x = 0 or x = 1 or
x = −1. The two latter cases are not possible for finite, non zero α. The case x = 0 can only
be obtained for α = 1 being the symmetric pitchfork - see Fig. 5. The following theorem is a
direct consequence of Eq. (31), see Appendix A for a proof.

Theorem 3. Dynamics of critical points for α > 0.
Survival of the strongest: If α 6= 1 the weaker vortex merges with the saddle point for increasing
time.

As an alternative to Eq. (31) α = g(x, τ) can be reformulated such that τ is given in
terms of x i.e. as the inverse function, which can be used to compute (τ, x(τ))

13



τ =
4x

lnα+ ln
(

1+x
1−x

) , for α > 0 , i.e. |x| < 1 , (α, x) 6= (1, 0) (34a)

τ =
4x

ln (−α) + ln
(
x+1
x−1

) , for α < 0 , i.e. |x| > 1 . (34b)

For a given Re and α, a range of x - values may be inserted in Eq. (34) to get (τ, x(τ)),
then Eq. (32) can be applied to get the location of the critical points of vorticity in the lab
frame, see Fig. 4. This is a very simple procedure compared to conducting direct numerical
simulation of the vorticity transport equation or actual experiment followed by post processing
to find the critical points of vorticity.

4.1 Dynamics of critical points of vorticity for α < 0

The main focus of the present paper is the study of vortex merging. For opposite signed
vortices (α < 0) there are no bifurcations in the core growth model which limits the interest
of this case, as the topology shown in Fig. 1(c) persists. Trajectories of the vorticity extrema
may still be found. There is need for considering times longer than τ = 2 contrary to the case
α > 0. Simple expressions and asymptotic forms of the trajectories of the vorticity extrema
are stated in this section. The following theorem follows from Eq. (31) and Eq. (34), proved
in Appendix A.

Theorem 4. Dynamics of critical points for α < 0.

• The vortices move away from each other with |x(τ)| ≤ |x0|τ0 τ .

• For α < 0, α 6= −1 the weaker vortex moves to infinity with speed bounded from below
by 1

4 ln (−α) and the stronger vortex moves towards the center of vorticity.

• For α = −1 the vortices asymptotically follow

x (τ) = ±
√
τ

2
, for τ large. (35)

As |x| > 1 for α < 0, τ must at least be larger than 2 for the above asymptotic solution
to hold. From Fig. 6, it seems to be a good approximation to the full model solution shortly
thereafter hence the separation distance between the vorticity extrema are well approximated
by
√

2τ .
The asymptotic behaviour of x(τ) for large τ can be found from an Ansatz of the form

x(τ) = τ
∑∞

n=0 cnτ
−n. We seek a solution to α = g(x, τ) for large τ and α < 0, α 6= −1. The

Ansatz is inserted and coefficients of same order are collected giving for the lowest orders

x(τ) =
1

4
ln (−α) τ +

2

ln (−α)
+O

(
τ−1

)
. (36)

Comparison to the vorticity transport equation, Fig. 7, shows an upper bound of the vortex
positions in the co-rotating frame is given by the first two terms of this expansion.
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(a) (b)

Figure 6: For α < 0, the core growth model has two persistent vorticity extrema and no
saddles, which is also the case observed in vorticity transport simulations (blue dots). The
location of the critical points of vorticity is seen in (a) for Re = 20, α = −1. The red curve is
the asymptotic formula x = ±

√
τ
2 , the grey is the core growth model. In (b) the corresponding

trajectories are shown. In the point vortex case, the two vortices translate with uniform speed
in the y-direction. In the core growth model this speed decays as 1− exp

(
− 4
τ

)
. While the

speed in the y direction is underestimated by the core growth model, the separation distance
between the vorticity extrema is accurately described by

√
2τ as predicted by the core growth

model.

(a) (b)

Figure 7: The location of the critical points of vorticity in the co-rotating frame are shown
in (a) for Re = 20, α = −2. The dashed red line is x(τ) = 1

4 ln(−α)τ + 2
ln(−α) , the full red

line is x(τ) = 1
4 ln(−α)τ and the green line corresponds to the center of vorticity. In (b) the

corresponding trajectories with the green dot being the center of vorticity are shown. Here
the model has been integrated for sufficiently long to see one vorticity extremum approach
the center of vorticity.
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5 Discussion

Analytical solutions of the vorticity transport equation are in general very difficult to obtain,
but approximate models which allow analytical results may provide useful insight. Studies of
the core growth models are sparse compared to the rich literature on point vortex dynamics
where viscous effects are not included. The present, analytical investigation shows that two
co-rotating vortices in the core growth model ultimately leads to exactly one extremum of
vorticity. This long term solution is in excellent agreement with the important theorem on
long time dynamics of the two dimensional vorticity transport equation in Gallay and Wayne
[2005].

Two vortices can change into one through a pitchfork bifurcation in the case of equal
circulation or through a cusp (perturbed pitchfork bifurcation) in the case of unequal circu-
lations. The topologies of critical points of vorticity are in agreement with numerical results
presented here and by e.g. Brandt and Nomura [2007] and with experimental and numerical
results by Meunier et al. [2005]. It is a useful feature of the core growth model that it allows
for a complete classification of the flow topologies as well as simple, analytical expressions
for the bifurcation curves. Furthermore, simple expressions for the position of all vorticity
extrema may be derived.

Jing et al. [2012] numerically compute the merging time in the core growth model with two
vortices. Two cases are investigated corresponding to α = 1 and α = 2. The used scalings
differs from ours, but the ratio τm(α=1)

τm(α=2) can easily be compared to our results. Excellent

agreement is obtained as both approaches give the ratio 0.58. Jing et al. [2012] numerically
compute the bifurcation diagram in the core growth model for the two cases. Here, we have
found analytical expression of the curves in the bifurcation diagram which are valid for any
choice of vortex strengths.

Jing et al. [2010] find numerically that the bifurcation time in the core growth model of
three collinear vortices depends linearly on Reynolds number, a trend that is also observed
for the vorticity transport equation. As shown here, this result is analytically exact for the
core growth model of two vortices.

The convective stage of vortex merging is negligible in the viscous situation studied here.
Cerretelli and Williamson [2003] relate the convective stage to the filamentation of the vortic-
ity. This leads to asymmetry of the vorticity field which pushes the vortex extrema together.
However, one must be careful when inferring from the instantaneous flow field to the trans-
port properties of the fluid i.e. when comparing the Eulerian and Lagrangian flow properties.
For vortex patches in inviscid fluid this is discussed by Fuentes [2001]. The relation between
vorticity filamentation, the flow on the line joining the vortices, and the actual motion of the
vortex extrema is hence a nontrivial problem. Brøns and Bisgaard [2010] derive a differential
equation for the position of critical points of vorticity in viscous flows. In the limit of van-
ishing viscosity the vorticity extrema are advected with the fluid. For viscous flows a term
is added proportional to the viscosity and also depending on high order derivatives of the
vorticity.

As seen in Fig. 8 the vorticity field does not exhibit significant filamentation for low
Reynolds numbers where the core growth model matches well with the vorticity transport
equation. As the Reynolds number increases, filamentation becomes more pronounced, which
is related to faster vortex merging. Hence, even when the validity of the core growth model
is questionable, it may still provide an upper bound on the merging time.

The interaction of two vortices may occur in the vicinity of other vortices providing a
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(a) (b)

Figure 8: Example of vorticity contours of the vorticity transport equation seen in the labo-
ratory frame for α = 1. In (a) Re = 50, in (b) Re = 200. In the latter case filamentation is
more pronounced, a process not included in the core growth model.

background strain or shear for the interaction. This affects the merging process [Brandt and
Nomura, 2007, Trieling et al., 2010]. Application of the core growth model in this setting
may provide useful insights. Another interesting approach is to add mechanisms to the core
growth model, making it more realistic, albeit more complex. A way to accomplish this is
to use a multi-moment vortex method that allows filamentation of the vorticity contours as
done by Nagem et al. [2009] and Uminsky et al. [2012] where the lowest order approximation
retrieves the core growth model.
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A Mathematical Proofs

Proof of Theorem 1.

Proof. For convenience, introduce

ω1 = exp
(
−τ−1

(
(x+ 1)2 + y2

))
(37a)

ω2 = exp
(
−τ−1

(
(x− 1)2 + y2

))
. (37b)

The partial derivatives of ω are computed to determine the critical points

∂xω = −2τ−1 ((x+ 1)αω1 + (x− 1)ω2) (38a)

∂yω = −2τ−1y (αω1 + ω2) . (38b)

Solving ∂yω = 0 there are two candidates, but only y = 0 does not exclude a simultaneous
solution of ∂xω = 0. Hence, the critical points are solutions of ∂xω(x, 0) = 0. The second
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order derivatives are needed to determine the type of critical points.

∂xyω(x, 0) = 0 (39a)

∂yyω(x, 0) = −2τ−1 (αω1(x, 0) + ω2(x, 0)) . (39b)

Denoting x∗ as the critical point value solving ∂xω(x∗, 0) = 0 we get

∂yyω(x∗, 0) = −4τ−1ω2(x∗, 0)

x∗ + 1
, (40)

which means ∂yyω(x∗, 0) > 0 for x∗ < −1 and ∂yyω(x∗, 0) < 0 for x∗ > −1. Finally,

∂xxω(x, 0) = −2
(
ατ−1ω1(x, 0)

(
1− 2τ−1 (x+ 1)2

)
+ τ−1ω2(x, 0)

(
1− 2τ−1 (x− 1)2

))
.

(41)
For α > 0, ∂xω(x, 0) > 0 for x ≤ −1 and ∂xω(x, 0) < 0 for x ≥ 1. Hence, all critical points
are in the interval (−1, 1) and at least one exists for all values of τ as ∂xω(x, 0) crosses the
x- axis from positive to negative values. In the typical case of this happening transversally,
∂xxω(x∗, 0) > 0 at the (first) critical point. From Eq. (40) it is clear that ∂yyω(x∗, 0) < 0 for
α > 0. This means that in the case of ∂xω(x, 0) crossing the x-axis transversally, there will
be an odd number of critical points, the first being a extremum and then of alternating type.
Similar argumentation applies to α < 0.

Proof of Theorem 2.

Proof. ∂xg(x, τ) has at most two zeros, located at |x| < 1 due to Eq. (22). Together with
the limits (42), the first and last part of the Theorem is proved as g is positive only for
x ∈ (−1, 1). Since

lim
x→∞

g(x, τ) = −∞ (42a)

lim
x→−∞

g(x, τ) = 0 (42b)

lim
x→−1±

g(x, τ) = ±∞ , (42c)

the range of g on the subdomain (−1, 1) is (0,∞) so there must exist a critical point for any
nonzero α. Similarly there must exist two critical points for negative α. Since g is monotone
for x ∈ (−∞,−1) and x ∈ (1,∞) there are exactly two critical points of the vorticity for
negative α.

The maximal merging time for any positive α follows from Eq. (23). As the type of the
critical points of vorticity is known by Thm. 1, the bifurcation types at merging is a pitchfork
for α = 1 and a perturbed pitchfork for α 6= 1.

Proof of Theorem 3.

Proof. The initial locations of the two extrema are in two distinct trapping regions by Eq.
(23). The initial location of the saddle then determines which extremum it will bifurcate with.
Since g is increasing from x− to x+ and g(0, τ) = 1 then for α > 1, α = g(x, τ) is fulfilled for
some x > 0. Thus, in this case the saddle will merge with the extremum located at x > 0.
Similar arguments apply for 0 < α < 1.
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Proof of Theorem 4

Proof. Since dx
dτ is positive for x > 1, τ > 0 and negative for x > 1, τ > 0 the two vortex

extrema moves away from each other for increasing time for α < 0.
Considering x(τ) > 1 then by Eq. (31)

dx

dτ
<
x

τ
(43)

which implies

x(τ) ≤ x0

τ0
τ . (44)

Similar considerations can be done for the critical point located at x < −1 proving the first
part of the Theorem.

Since x+1
x−1 approaches 1 for large x, an estimate can be constructed from Eq. (34) where

ln
(
x+1
x−1

)
is left out. Solving for x gives

x(τ) ≈ ln (−α)

4
τ , for large τ, α < 0 , α 6= −1 (45)

For α < −1, ln(−α) and ln
(
x+1
x−1

)
are both positive which means the bound

x(τ) ≥ ln (−α)

4
τ (46)

holds for any τ ≥ 4
ln(−α) . Hence, the positive solution occuring for x > 1 is bounded below

by a linear growth.
The solution for x < −1 can be investigated using that τ must be non negative in Eq.

(34), meaning the denominator must be negative giving the criterion

xcv < x < −1 , (47)

with xcv given by Eq. (27). Since dx
dτ < 0 for x < −1 by Eq. (31), the stronger vortex will

move towards the center of vorticity, xcv. The case 0 > α > −1 is covered by the symmetry
given in Eq. (19), establishing the Theorem.

Reorganizing Eq. (34b) and using the power series expansion of ln facilitates investigation
of the dynamics for large τ and α = −1

ln

(
x+ 1

x− 1

)
= ln

(
1 +

2

x− 1

)
=

2

x− 1
− 1

2

(
2

x− 1

)2

+ ... (48)

For large |x| only the lowest order of the expansion is used

τ =
4x

ln (−α) + 2
x−1

. (49)

Then, for large |x| and α = −1

x (τ) = ±
√
τ

2
, for τ large . (50)
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