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Preface

This report contains the proceedings of the 7th International Workshop on Confluence (IWC
2018) in Oxford, United Kingdom on July 7th, 2018. The workshop is part of the Federated
Logic Conference (FLoC 2018), associated with the 3rd International Conference on Formal
Structures for Computation and Deduction (FSCD 2018). Previous IWC workshops were held
in Nagoya (2012), Eindhoven (2013), Vienna (2014), Berlin (2015), Obergurgl (2016), and
Oxford (2017).

Confluence provides a general notion of determinism and has been conceived as one of
the central properties of rewriting. Confluence relates to many topics of rewriting (comple-
tion, termination, commutation, coherence, etc.) and has been investigated in many for-
malisms of rewriting such as first-order rewriting, lambda-calculi, higher-order rewriting, higher-
dimensional rewriting, constrained rewriting, conditional rewriting, etc. Recently there is a re-
newed interest in confluence research, resulting in new techniques, tool support, certification as
well as new applications. The workshop promotes and stimulates research and collaboration on
confluence and related properties. In addition to original contributions, the workshop solicited
short versions of recently published articles and papers submitted elsewhere.

IWC 2018 received 11 submissions. Most submissions were reviewed by 3 program committee
members. After deliberations, the program committee decided to accept 8 submissions, which
are contained in this report. Apart from these contributed talks, the workshop has one invited
talk by Maja Kirkeby and Henning Christiansen, about Confluence in Constraint Handling
Rules. Their extended abstract is included in this report.

Several people contributed to IWC 2018 preparations. We are grateful to the members of
the program committee for their work. We also thank the members of the FLoC and FSCD
organizing committees for hosting IWC 2018 in Oxford.
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Jakob Grue Simonsen
Bertram Felgenhauer

Update (June 18, 2018): This version includes the system descriptions of the 7th Conflu-
ence Competition (CoCo 2018). Note, however, that CoCo will run during the FSCD conference
this year. For further information please refer to the CoCo website at

http://coco.nue.ie.niigata-u.ac.jp/2018/
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Confluence in Constraint Handling Rules:

A retrospective overview∗

Extended abstract of an invited talk given at IWC 2018

7th International Workshop on Confluence, July 7th 2018, Oxford, United Kingdom

Henning Christiansen and Maja H. Kirkeby

Computer Science, Roskilde University, Denmark
henning@ruc.dk and majaht@ruc.dk

1 Introduction

Constraint Handling Rules, CHR, is a nondeterministic programming language whose programs
consists of rewrite rules over program states, and being able to show confluence may be an im-
portant part of a program correctness proof. Confluence of CHR programs has been studied
from the first introduction of the language [8, 9]. The first essential results on proving conflu-
ence in CHR [1–3], developed during the 1990s, were formulated with respect to a logic based
semantics. This choice gave elegant proofs for terminating systems based on the subsumption
principle (see Section 2 below). More recent work extends the previous methods for proving
confluence to include invariants and confluence modulo equivalence. Furthermore, these new
results were developed for a more realistic semantics that reflects the de-facto standard imple-
mentations of CHR upon Prolog, including a correct treatment of Prolog’s non-logical devices
(e.g., var/1, nonvar/1, is/2) and runtime errors. In the following we give an overview of conflu-
ence results for Constraint Handling Rules, from early, fundamental results to recent extensions
including state invariants and confluence modulo equivalence.

2 Preliminaries

We rephrase the following standard definitions and properties. A transition system D = 〈S,→〉
consists of a set of states S; a transition is an element of → : S → S, written s1 → s2 or,
alternatively, s2 ← s1, and →∗ is the reflexive transitive closure of →. An object corner is
a structure of the form s1 ← s → s2 in which the indicated relationships hold. A system is
confluent whenever, for all s, s1, s2 with s1 ←∗ s →∗ s2, that s1, s2 are joinable, i.e., there
exists a state t such that s1 →∗ t←∗ s2; and it is locally confluent whenever any object corner
is joinable. The fundamental result is Newman’s lemma [17]: A terminating system is confluent
if and only if it is locally confluent.

Proving different types of systems confluent has been facilitated by constructions of sets
of critical pairs – or critical corners as we refer to, including the common ancestor state.
Typically, these critical corners are selected object corners of the same system (but we will
relax this later) and are accompanied by a notion of subsumption (that may vary depending on
the type of system), i.e., a given critical corner subsumes a set object corners.

The set of critical corners should satisfy the following properties.

∗This work is supported by The Danish Council for Independent Research, Natural Sciences, grant no. DFF
4181-00442.
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– whenever a critical corner is joinable, any object corner that it subsumes is joinable,

– an object corner not subsumed by a critical corner is known to be joinable in some way
or another (and thus referred to as trivial corners).

Thus, a proof of confluence for a terminating system may a matter of 1) describe a set of critical
corners, 2) show each of them joinable; we refer to this proof strategy as the subsumbtion
principle. Ideally a set of critical corners is finite, but this may not always be the case.

3 Constraint Handling Rules

Constraint Handling Rules [8, 10, 11], CHR, is a nondeterministic programming language based
on rewriting rules. It was originally designed as a logical languages for implementation of tra-
ditional constraint solvers, but CHR has become important as a general-purpose language for
representing knowledge and expressing algorithms in a high-level fashion; today it is applied
in many areas, for instance analysis of types, multi-agent systems, scheduling, and abduc-
tive reasoning; see, e.g., [12] for an overview. While most common CHR implementations
are deterministic rather than nondeterministic, it is still useful to consider CHR programs as
nondeterministic as it allows the programmer to disregard the execution model of the specific
implementation.

CHR relates to the logic programming tradition; constraints are first-order atoms and the
language has a declarative semantics [11] based on a logical reading of the rules. CHR programs
consist of (a finite set of) guarded rewrite rules over multi-sets of constraints, called constraint
stores.

Example 1 ([4, 5]). The following CHR program, consisting of a single rule (without guard),
collects a number of separate items into a set represented as a list of items.

set(L), item(A) <=> set([A|L]).

This rule will apply repeatedly, replacing constraints matched by the left hand side by those
indicated to the right. With a nondeterministic semantics, the query

?- item(a), item(b), set([]).

may lead to two different final states, {set([a,b])} and {set([b,a])}, both representing the
same set.

There are three rule types in CHR; the one in the example above is a simplification rule
that replaces constraints by new constraints; another rule type called propagation rule adds
new constraints (such a rule is written using a different arrow ‘==>’); and the last type, called a
simpagation, is a generalization of these two. CHR applies a bookkeeping mechanism to avoid
trivial looping that otherwise arises with propagation rules. This is easily incorporated into a
formal semantics, but for simplicity we of notation, ignore this in the present paper. For an
in-depth introduction of all rule types, see, e.g., [11].

There are two sorts of constraints: user-defined constraints that are those appearing in the
head of the rules, and built-in constraints with fixed meanings. The exact set of available built-in
constraints and the modeling of their meaning varies with the CHR semantics of interest. Several
CHR semantics have been proposed [1–7, 11]. The semantics used for confluence considerations
has traditionally only allowed logical built-ins [1–3, 6, 7, 11], but a recent semantics [4, 5] reflects
the de-facto standard implementations of CHR upon Prolog, including a correct treatment of
Prolog’s non-logical devices (e.g., var/1, nonvar/1, is/2) and runtime errors.
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The shape of a CHR state varies with the semantics: in a simple1 logic-based semantics, a
state is of the form 〈S,B〉 where S is a constraint store and B is a built-in store containing
a conjunction of built-ins where each built-in has a logical meaning; and in a Prolog-based
semantics, a state consists of a constraint store S, and each built-in has an operational meaning
producing a special substitution that is applied to S. For instance t1>t2 evaluates to an empty
substitution if t1 and t2 are ground arithmetic expressions with values v1 and v2, and v1>v2
holds, it evaluates to a failure substitution if instead v1≤v2, and to an error substitution,
otherwise. Applying an error (a failure) substitution to a state change the state to a special
state, namely an error -state (a failure-state); if such a state is reached no further transitions are
allowed; therefore, the Prolog-based semantics is sensitive to the execution order of built-ins.

A built-in constraint may occur in the constraint store either introduced in the start query
or by a rule body, and in rule-guards; user-defined constraints may not occur in the guards and
built-in constraints may not occur on the rules left-hand sides. In the logic based semantics,
built-ins in the constraint store are transferred to the built-in store, and in the Prolog based
semantics they are evaluated by their operational meaning and the state is updated accordingly.
For instance, considering the logic based semantics 〈{a=X, p(X)}, true〉 is transformed into
〈{p(X)}, X=a〉. Considering instead the Prolog based semantics 〈{a=X, p(X)}〉 is transformed
into 〈{p(a)}〉; see, e.g., [11] and respectively [5] for definitions.

A guard is a sequence of built-in constraints2; in the above example there are no guards,
but the following example includes rule-guards on the right-hand side, e.g., (X>0 |). For the
logic based semantics a rule may be applied if the current built-in store implies the guard; and
in the Prolog based semantics it may be applied if a rule-guard evaluates to neither failure nor
an error and it does not instantiate existing constraint store variables.

Example 2. Consider the following CHR program with four rules, r1–r4.

r1: p(X) <=> q(X) r3: q(X) <=> X>0 | r(X)

r2: p(X) <=> r(X) r4: r(X) <=> X<-0 | q(X)

In both semantics r3 applies to q(n) constraints when n is a positive number, e.g., q(1). Under
the Prolog based semantics the rule cannot apply to the state 〈{q(X)}〉 since the variable X

causes the guard X>0 to result in an error. Under the logic based semantics the r3 may transform
a state 〈{q(X)}, X>2〉 to 〈{r(X)}, X>2〉 because X>0 is a logical consequence of X>2, whereas r3,
for instance, does not transform the state 〈{q(X)}, true〉.

4 Confluence in CHR

The results on confluence for CHR are similar to those for term rewriting systems; critical
corners appear when two instances of rules can apply to overlapping constraints in the constraint
store, see, e.g., following example.

Example 3 (Ex. 1 continued). The set-program of Example 1 is not confluent under neither
semantics3, as both of its critical corners shown below are not joinable.

1In the original papers [1–3], the definition of states includes several extra components, that were later shown
redundant [4, 5].

2In the logic based semantics it is seen as a conjunction. In the Prolog based semantics they are evaluated
from left to right, each influencing the whole state including the subsequent series of the built-ins; if the guard
evaluates to failure or error these updates are discarded, see [5] for details.

3The built-in store under the logic based semantics is true for all indicated states.
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set([X1|L]), item(X2)} {set([X|L1]), set(L2)}↥ ↥
{item(X1), set(L), item(X2)} 〈{set(L1), item(X), set(L2)}↧ ↧
{item(X1), set([X2|L])} {set(L1), set([X|L2])}

Example 4 (Ex. 2 continued). The program of Example 2 is not confluent under neither seman-
tics3, as its single critical corner {q(X)}← {p(X)} →{r(X)} is not joinable.

When a critical corner is formed by rules with guards, their satisfaction is incorpotated into the
common ancestor state, which works nicely under the logic based semantics when only logical
built-ins are assumed. Here subsumption of an object corner by a critical corner is defined by
applying substitution and adding more constraints; the inherent monotonicity ensures joinabilty
of any object corner subsumed by a critical corner.

However, the subsumption principle as explained so far as well as the use of the logic based
semantics cannot handle non-logical built-in predicates that are available – and extensively
used in practice – in standard implementations of CHR. Consider, for example, the CHR rule
p(X) <=> var(X) | q(X), whose guard consists of Prolog’s test for whether its argument is
an uninstantiated variable. While the rule may apply to a state containing p(X), it does not
apply to a more specific state containing p(1). The other way round, if the guard is instead
nonvar(X), the rule may apply to a lot of subsumed instanced with p(1), p(2), ..., but this
cannot be “verified” by investigating a most general state including p(X) to which the nonvar

version of the rule does not apply.
In order to restore a subsumption principle aiming at finite proofs, we have taken the

consequence in our own work to describe critical corners in a different system with higher
expressibility than the object system. In the informal example considered above we can formally
characterize — as a meta-level state – expressions like“p(x) where x is a variable”, as well as
“... x is a constant”, and perform meta-level transitions. As it is shown below, the use of
such a meta-level representation is also a powerful tool when confluence under invariant and/or
modulo equivalence is considered, which otherwise has been problematic, even for the logical
subset of CHR under a logic based semantics.

5 Invariants and modulo equivalence

It can be argued that invariants and confluence modulo equivalence are important from a
practical point of view. In this section we give definitions and examples and later we consider
how to prove the properties. Most CHR programs are developed with a particular set of initial
queries in mind, which reduces the set of reachable states. In 2007, Duck et al. [7] suggested to
take such an induced invariant into account and, thus, make a much larger class of programs
confluent.

Definition 1. A set I is a state invariant for a relation → if x ∈ I ∧ x → y implies y ∈ I.

Such an invariant may be induced by a set of reachable states from a set of (initial) states Q,
i.e., I = {s′ | s ∈ Q ∧ s 7→∗ s′}.
Example 5 (Ex. 1 continued). The set-program reflects a tacitly assumed state invariant: only
one set-constraint is allowed. If we open up for a query such as

?- item(a), item(b), set([]), set([c]).
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we obtain a collection of different final states, representing different ways of partitioning {a,
b, c} into two sets. However, this may not be intended, and the relevant invariant Iset must
specify that a state includes exactly one set/1 constraint and a series of item/1 constraints.

Definition 2. A relation → is observably confluent (under invariant I) if and only if ∀x, y, y′ ∈
I : y′ ←∗ x →∗ y′ ⇒ ∃z ∈ I : y′ →∗ z ←∗ y′. We may write I-observably confluent meaning
observably confluent (under invariant I).

Example 6 (Ex. 2 continued). Consider the program of Example 2 together with an invariant I>0

induced by initial states with a single atom p(n) where n is a positive number (not a variable).
The program is I>0-observably confluent, since each forked state q(n) ← p(n) → r(n) is
joinable by rule r3: r(n) → q(n).

Confluence modulo equivalence is a generalization where forked states must reach equivalent
states, rather than a common state. For instance, a program may produce redundant data
structures such as representing sets as lists, and the equivalence states that the order of the
elements does not matter. Confluence modulo equivalence was first considered for CHR in 2014
by Christiansen and Kirkeby [4].

Definition 3. A relation→ is confluent modulo an equivalence ≈ if and only if ∀x, y, x′, y′ : y′ ←∗
x′ ≈ x →∗ y′ ⇒ ∃z, z′ : y′ →∗ z′ ≈ z ←∗ y′.

Example 7 (Ex. 1, 5 continued). The set-program is supposed to produce one set representa-
tion, and we introduce a state equivalence ≈set reflecting the redundant data structures. Two
states are equivalent if they have the same item-constraints and their respective set-constraint
set(L1) and set(L2) are such that L1 and L2 are permutations of each other.

We generalize confluence modulo equivalence and observable confluence as follows.

Definition 4. A relation → is I-observably confluent modulo an equivalence ≈ if and only if
∀x, y, x′, y′ ∈ I : y′ ←∗ x′ ≈ x →∗ y′ ⇒ ∃z, z′ ∈ I : y′ →∗ z′ ≈ z ←∗ y′.
Both observable confluence, confluence modulo equivalence and classic confluence are special
cases of this definition.

Huet [14] provided a pair of local properties for showing terminating programs confluent
modulo equivalence; we extend these with an invariant as follows.

Definition 5. A rewriting system → is locally I-observably confluent modulo ≈ if and only if
it has the following α- and β-properties.

α : ∀x, y, y′ ∈ I : y′ ← x → y′ ⇒ ∃z, z′ ∈ I : y′ →∗ z′ ≈ z ←∗ y′
β : ∀x, y, y′ ∈ I : y′ ≈ x → y′ ⇒ ∃z, z′ ∈ I : y′ →∗ z′ ≈ z ←∗ y′

We refer to structures of the form y′ ← x → y′ as α-corners and those of the form y′ ≈ x → y′

as β-corners.

Theorem 1 (obs. confl. mod. equivalence). A terminating relation → is I-observably confluent
modulo ≈ if and only if it is locally I-observably confluent modulo ≈.

In the special cases where equivalence is ‘=’, the β-property trivially holds and when, further-
more, the invariant is unrestrictive the α-property reduces to local confluence.

Both the invariant and the equivalence relation may be tailored for the individual program.
By nature, they are meta level properties that in general cannot be expressed in its own system:
the state itself is implicit and properties such as groundness (or certain arguments bound to be
variables) cannot be expressed in a logic-based semantics for CHR.
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6 Proving observable confluence

As mentioned, observable confluence was introduced by Duck et al. [7]. They suggested methods
of proving this property for logic CHR programs using a logic based semantics and as a direct
continuation of the logic subsumption principle.

Firstly, they construct the set of critical corners based from the program rules as explained
in Section 4. Typically, the states in these corners do not satisfy the invariant (a rule typically
includes variables, contradicting groundness), and the next step is to characterize a set of
“minimal extensions” of each critical corner such that 1) the states of such an extension satisfies
the invariant, 2) the set of all such extensions subsumes (by substitution and adding constraints)
all non-trivial object corners. Proving observable confluence amounts to show joinability af such
extension, using the standard transition relation for CHR.

There are two problems in this approach, first of all there is no formal representation of the
invariant that allows to take it into account when reasoning formally about joinability, and –
more importantly – as also noticed by Duck et al. [7], quite often there is an infinite number of
such extensions. This happens even for an intuitively simple invariant such as requiring ground
states. We can demonstrate this phenomenona for the program of Example 2.

Example 8. Consider the program of Example 2; it is not confluent as its single critical corner
q(X)← p(X)→ r(X) is not joinable (the built-in store is always true and thus omitted). How-
ever, adding an invariant “reachable from an initial state p(n) where n is an integer” makes it
confluent. We indicate the smallest set of corners found by minimal extensions of the critical
corner; the dotted transitions prove each of them joinable:

p(-1)

q(-1) r(-1)

r1 r2

r4

p(0)

q(0) r(0)

r1 r2

r4

p(1)

q(1) r(1)

r1 r2

r3

p(2)

q(2) r(2)

r1 r2

r3

. . .

p(-1)

q(-1) r(-1)

r1 r2

r4

p(0)

q(0) r(0)

r1 r2

r4

p(1)

q(1) r(1)

r1 r2

r3

p(2)

q(2) r(2)

r1 r2

r3

. . .

p(-1)

q(-1) r(-1)

r1 r2

r4

p(0)

q(0) r(0)

r1 r2

r4

p(1)

q(1) r(1)

r1 r2

r3

p(2)

q(2) r(2)

r1 r2

r3

. . .

This set subsumes exactly the set of all non-trivial object level corners. These corners and
their proofs of joinability obviously fall in two groups of similar shapes, but there is no way to
construct a finite set (of, say, one or two elements) of critical corners in CHR, that subsumes
all I object corner.

To avoid this problem, Christiansen and Kirkeby [15] suggests to describe critical corners in a
more powerful meta-language rather than using CHR itself, inspired by earlier work on meta-
programming in logic programming. Each term of CHR is here named by a ground term,
specifically, variables named by ground constants. A variable in such a term is thus a meta-
variable, which may be covered by a meta-level constraint. For example, the meta-level term
p(x) where type(const,X) subsumes all object level (i.e., CHR) atoms whose predicate is
p/1 and whose argument is a constant, i.e., p(a), p(b), ..., p(1), ... The authors define a notion
of abstract simulation making precise what it means for meta-level transitions and corners to
subsume4 sets of object level transitions and corners. Built-in predicates are reflected at the
meta-level, such that, say n<̂0 restricts n to names of terms t that satisfy the object level
condition t < 0, i.e., n is limited names of number constrants less that zero.

Example 9. (Continuing Ex. 2, 8) The invariant is formalized at the meta-level as states of the
form 〈{pred(n)}, true〉 where type(int,n) where pred is one of p, q and r. Below is shown
the two joinable critical meta-level corners that can be shown to subsume all non-trivial object
level corners.

4[15] use the terminology of a meta-level term covering object level notions.
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{p(X)} WHERE type(int,X), X≥0

{q(X)} WHERE type(int,X), X≥0 {r(X)} WHERE type(int,X), X≥0

r1 r2

r4

{p(X)} WHERE type(int,X), X<0)

{q(X)} WHERE type(int,X), X<0 {r(X)} WHERE type(int,X), X<0

r1 r2

r3

^

^^

^

^ ^

This example illustrates an additional technique called splitting: First a meta-level corner is
produced in the classical way, considering how rules can overlap; this yields a common meta-
level ancestor state p(x) where type(int,x) and the other states as above containing q(x),
resp. r(x). This meta-level corner is in itself not joinable as no single rule can apply, but
turning it into two meta-level corners, each joinable and together subsuming the same set of
object-level corners, proves observable confluence.

7 Proving Confluence modulo equivalence

Confluence modulo equivalence has been studied since the first half of the 20th century in a
variety of contexts; see, e.g., [5, 14] for an overview. It was introduced and motivated for CHR
by [4], also arguing that invariants are important for specifying meaningful equivalences. An
in-depth theoretical analysis, including the use of the ground representation, is given by [5] in
relation the Prolog-related semantics mentioned above.

To show confluence modulo equivalence for terminating CHR programs, two types of crit-
ical corners must be constructed: critical α-corners which are the standard critical corners
constructed by rule overlap as above, and critical β-corners of the form y′ ≈ x → y′, cf. Def-
inition 5. As before the critical β-corners must subsume all non-trivial object-level β-corners.
The meta-level language described above is also suitable for describing state equivalences [15].

Example 10 (Ex. 1 continued). The set-program of Example 1 is observably confluent modulo
≈set (Ex. 7) under invariant Iset (Ex. 5) since the critical α-corner with two set-constraints
does not subsume Iset corners and both the other critical α-corner and the critical β-corner are
joinable modulo ≈set, see below. The meta-level constraint its/1 constrains its argument to a
set of item-constraints and perm/2 constrains the arguments to a pair of permuted lists.

The α-corner:
{set([X1|L]), item(X2)} ] C where its(C) → {set([X2,X1|L])} ] C where its(C)↥
{item(X1), set(L), item(X2)} ] C where its(C)

≈

↧
{item(X1), set([X2|L])} ] C where its(C) → {set([X1,X2|L])} ] C where its(C)

The β-corner:
{set([L2]), item(X)} ] C where perm(L1,L2) ∧ its(C) → {set([X|L2])} ] C where perm(L1,L2) ∧ its(C)≈

{set([L1]), item(X)} ] C where perm(L1,L2) ∧ its(C) ≈↧
{set([X|L1])} ] C where perm(L1,L2) ] C ∧ its(C)

A recent paper [13] attempts to handle (observable) confluence modulo equivalence within the
logic-based semantics, along the lines of Duck et al [7]. However, this implies the mentioned
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problems of infinitely many proof cases, which seems to be inherent in relying on pure logic
based subsumption without having the enhanced expressibility provided by a suitable meta-level
representation.

8 Future work

We have given an overview of classic and recent results for confluence in CHR. The classic
results provide a theoretical foundation and the recent results on observable confluence and
modulo equivalence points towards more practical applications of these notions in a program-
ming context.

There exist methods for automatic check of confluence for CHR [16] in a strictly logical
setting, and in our own work we are developing similar methods for automatic or semi-automatic
proofs of observable confluence modulo equivalence. Naturally, invariants and state equivalences
may involve undecidability.
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Critical pairs for Gray categories

Simon Forest

Ecole Polytechnique

Abstract

Higher categories are a generalization of standard categories where there are not only
1-cells between 0-cells but more generally n+1-cells between n-cells. Semi-strict categories,
such as Gray categories in dimension 3, is a flavour of higher categories suited for rewriting
and used in this work. Here, we are interested in proving coherence of certain algebraic
structures in dimension 3 using rewriting, where “coherence” is the property that there
is at most one 3-cell between two 2-cells. Checking coherence then amounts to compute
critical pairs of a rewriting system and use a variant of Newmann’s lemma. In this setting,
an algorithm exists to compute these critical pairs.

Introduction

It is well-known that rewriting can be used to manipulate algebraic theories. In this setting,
the terms are the algebraic terms that arise from the signature of the theory and rewrite rules
come from an orientation of the equations of the theory. In the context of higher categories,
these techniques need to be adapted. Take monoids as an example. A monoid is given by a
set M , an operation m : M × M → M and an element e ∈ M such that m(m(x, y), z) =
m(x,m(y, z)), m(x, e) = x = m(e, x). More generally, there is a notion of monoid in 2-
category where the elements m and e are 2-generators in a 2-category: m : M ∗0 M ⇒ M
and e : 1 ⇒ M and such that equalities of 2-cells similar to the previous ones hold. The term
rewriting system (or TRS ) associated to the theory of monoids is then given by the signature
S = {m : M×M → M, e : 1 → M} and the following rewrite rules on formal compositions
obtained by orienting the equations: m ◦ (m× 1M )→ m ◦ (1M ×m), m ◦ (e× 1M )→ 1M and
m ◦ (1M × e)→ 1M . The standard tools of rewriting i.e., termination, critical pair lemma and
Newman’s lemma entails uniqueness of normal forms. In order to go from interpretations in
n-categories to interpretations in n+1-categories, the usual recipe is to replace equations on
n-cells by n+1-isomorphisms and by adding equations on the new n+1-cells, called coherence
cells, in order to entail the property of coherence, which states that, modulo the equations,
there is at most one 3-cell between two 2-cells. For monoids, by going from dimension 2 to 3,
we obtain the theory of pseudomonoids, which is important in category theory since the notion
of monoidal category can be seen as a pseudomonoid in the category of categories.

Several variants of 3-categories exist with different levels of expressivity and ease to ma-
nipulate. On the one end of the spectrum, weak 3-categories are the most general but are
complex since they have a lot of coherence cells. On the other end, strict 3-categories have
no coherence cells, only simple equations. But they are less expressive. Gray categories [4, 5]
are a middle ground between the two. In this work, we will study interpretations of algebraic
structures inside Gray categories. As a previous work[3] has shown, in order to have coherence,
it is sufficient to enforce equations on coherence cells that come from the critical branchings (or
critical pairs) of an adequate rewriting system. So there is a strong need for a tool that can
automate the computation of these critical branchings.
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1 Signatures and rewriting system

A graph (S0,S1, s0, t0) is given by a set S0 of points and a set S1 of arrows and source and target
functions s0, t0 : S1 → S0. We denote S∗1 the set of paths in the graph and s∗0, t

∗
0 : S∗1 → S0

the source and the target functions on paths, and ∗0 the composition operation on paths. A
signature S is given by a graph (S0,S1, s0, t0), by a set of 2-generators S2 with source and target
functions s1, t1 : S2 → S∗1 such that s∗0 ◦ s1 = s∗0 ◦ t1 and t∗0 ◦ s1 = t∗0 ◦ t1. An example of signature
is the monoid signature P, where:

P0 = {?} P1 = {1 : ?→ ?} P2 = {µ : 2⇒ 1, η : 0⇒ 1}

Note that we write n for the path ?
1−→ ?...?

1−→ ?︸ ︷︷ ︸
n

. A whisker w is then given by two paths

u, v ∈ S∗1 and a 2-generator α ∈ S2 and is denoted u ∗ α ∗ v. The 1-source and the 1-target are
defined as u ∗0 s1α ∗0 v and v ∗0 t1α ∗0 v and are respectively denoted s1w and t1w. A 2-cell
α is given by a sequence of whiskers w1, ..., wp that are 1-composable, i.e., t1wi = s1wi+1. We
denote α as w1 ∗ ... ∗ wp. The 1-source and the 1-target of α are defined as s1w1 and t1wp and
are denoted s1α and t1α respectively. We denote S∗2 the set of 2-cells. For two 1-composable
cells α = w1 ∗ ... ∗ wp and β = w′1 ∗ ... ∗ w′q, we define the 1-composition α ∗1 β as the 2-cell
w1 ∗ ... ∗ wp ∗ w′1 ∗ ... ∗ w′q. Note that 2-cells can easily be represented as string diagrams. For
example, in the case of monoids, if we picture η with and µ with , the following two 2-cells
can be defined:

(0 ∗ η ∗ 3) ∗ (0 ∗ µ ∗ 2) ∗ (1 ∗ µ ∗ 0) ∗ µ = (0 ∗ η ∗ 3) ∗ (2 ∗ µ ∗ 0) ∗ (0 ∗ µ ∗ 1) ∗ µ =

Note that in these pictures, there can be only one generator at a given height, and the relative
heights matter, so that the two 2-cells are not considered to be equal (contrarily to 2-categories).
A rewriting system consists of a signature S together with a set S3 of 3-generators, or rewriting
rules, equipped with source and target functions s2, t2 : S3 → S∗2. For example, the rewriting
system of monoids, which extends the associated signature, has the following rewrite rules:

A : (µ ∗ 1) ∗ µV (1 ∗ µ) ∗ µ L : (η ∗ 1) ∗ µV µ R : (1 ∗ η) ∗ µV µ

V V V

A context E = φ ∗ (u ∗ ∗ v) ∗ ψ is given by u, v ∈ S∗1 and φ, ψ ∈ S∗2. For A a rewrite rule, E is
compatible with θ when E[A] = φ ∗1 (u ∗0 A ∗0 v) ∗1 ψ exists. A rewriting step R is then given
by a rewrite rule A ∈ S3 and a compatible context E. It can be seen as an elementary 3-cell of
type φ ∗1 (u ∗0 s2A ∗0 v) ∗1 ψ V φ ∗1 (u ∗0 t2A ∗0 v) ∗1 ψ. A rewriting path is a finite sequence of
composable rewriting steps R1, ..., Rn with Ri : θi V θi+1. We denote such a rewriting path as
R1∗...∗Rn or 1θ for the empty path starting from the 2-cell θ. We write S∗3 for the set of rewriting
paths, and s∗2, t

∗
2 : S∗3 → S∗2 for the associated source and target functions. If R : θ1 V θ2 is a

rewrite step, we define the reverted rewrite step R−1 : θ2 V θ1 as a formal inverse of R. Then,
a rewriting zigzag is a sequence Z1, ..., Zn where Zi is either a rewrite step or a reverted rewrite
step and such that t2Zi = s2Zi+1. We denote such a rewriting zigzag as Z1 ∗ ...∗Zn. We denote
S>3 the set of rewriting zigzags. If Z = Z1 ∗ ...∗Zn, we define Z−1 as the zigzag Z ′ = Z ′n ∗ ...∗Z ′1
with Z ′i = R−1 if Zi = R and Z ′i = R if Zi = R−1. There is also a composition operation of
zigzags given by the concatenation of sequences. A coherated rewriting system is given by a
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rewrite system S and a congruence == on the rewriting zigzags S>3 . By “congruence”, we mean
that == is an equivalence relation compatible with the difference compositions and the inverse
operations. For example, if Z1

== Z2 then U ∗ Z1 ∗ V == U ∗ Z2 ∗ V and Z1
−1 == Z2

−1. The
standard congruence ==S on a rewriting system S is the smallest congruence such that:

1. if E1[A1] and E2[A2] are two rewrite steps of same source θ and “acting on independent
zones of θ” (notion that will be precised later) then E1[A1] ∗ E′2[A2] ==S E2[A2] ∗ E′1[A1]
where E′1 is the “residual context” of E1 after the rewrite step E2[A2] and similarly for
E′2.

2. if R is a rewrite step, then R ∗R−1 ==S 1s2R and R−1 ∗R ==S 1t2R

For instance, in the rewriting system of monoids, there is the following instance of 1:

V V ==S V V

We say that a congruence == is standard when ==S ⊂ ==. Note that signatures and rewriting
systems are simplified definitions of prepolygraphs, or polygraphs on precategories [6, 3].

In what follows, we supposed a fixed rewriting system S.

2 Rewriting

Branchings. A branching B is a pair of rewriting steps (R1, R2) = (E1[A1], E2[A2]) with
s2R1 = s2R2. We call the source of the branching B, denoted s2B to be s2R1. Recall that a
2-cell θ is of the form w1 ∗ ... ∗ wn. We then define the size of θ, denoted |θ|, as n and the
interval of θ, denoted Iθ, as the set {1, ..., n}. If A is a rewrite rule and E = φ ∗ (u ∗ ∗ v) ∗ψ is
a compatible context, we define the action interval of E[A] : θ V θ′ on θ, denoted IE[A] to be
the subsegment {|φ|+ 1, ...|φ|+ |s2A|} of Iθ and the action index to be |φ|. Note that the size
of IE[A] is given by |s2A|. In what follows, we will suppose that for all rewrite rules A ∈ S3, we
have |s2A| ≥ 1. For a branching B = (E1[A1], E2[A2]) with Ei = φi ∗ (ui ∗ ∗ vi) ∗ψi, define the
relative offset of B to be |φ2| − |φ1|. Also, we say that that the actions of E1[A1] and E2[A2]
are overlapping if IE1[A1] ∩ IE2[A2] 6= ∅. For example, in the theory of monoids, there is the
following branching:

E1[R]

W
E2[A]

V

whose action indexes are respectively 1 and 2 and whose action intervals are respectively {2, 3}
and {3, 4}, are overlapping and can be depicted as follows:

Let B = (E1[A1], E2[A2]) a branching with Ei = φi ∗ (ui ∗ ∗ vi) ∗ ψi. We say that B is trivial
when E1[A1] = E2[A2], non-minimal when there is another branching (F1[A1], F2[A2]) with
Fi = αi ∗ (ri ∗ ∗ si) ∗ βi such that there exists r, s, α, β not all identities such that φi = α ∗ αi,
ψi = βi ∗β, ui = r ∗ ri and vi = si ∗ s, independent when the actions E1[A1] and E2[A2] are not
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overlapping and critical when it is of none of the above. We adapt the notion of confluence in
the setting of a coherated rewriting system (S,==): a branching B = (R1, R2) with Ri : αV βi
is said to be confluent when there exists a pair of rewriting paths (S1, S2) with Si : βi V γ such
that R1 ∗ S1

== R2 ∗ S2. We also define a straight-forward notion of termination: we say that a
rewriting system S is terminating if there is no infinite sequence (Ri)i∈N of rewriting steps with
Ri : φi V φi+1. In another work, we have the following result that motivates the computing of
critical branchings:

Theorem 1 (FSCD18, Newman’s lemma). Let (S,==) be a coherated rewriting system such that
the rewriting system S is terminating, == is standard and all critical branchings are confluent.
Then (S,==) is coherent.

Computation of critical branchings. Let B = (E1[A1], E2[A2]) be a critical branching.
Because B is in particular non-independent, it holds that IE1[A1] ∩ IE2[A2] 6= ∅. But since
IEi[Ai] = {|φi| + 1, ..., |φi| + |s2Ai|}, the relative offset is bounded: 0 ≤ |φ2| − |φ1| < |s2A1|.
Moreover, for a given offset, we have a uniqueness property:

Proposition 1. Let A1 and A2 be two rewrite rules and p such that 0 ≤ p < |s2A1|. Then
there is at most one critical branching B = (E1[A1], E2[A2]) such that the actions of E1[A1]
and E2[A2] have p as relative offset.

Let A1 and A2 and n1, n2 such that ni = |s2Ai| and

s2Ai = (ri,1 ∗ αi,1 ∗ si,1) ∗ ... ∗ (ri,n1 ∗ αi,n1 ∗0 si,n1)

The proof of the last property gives us a procedure to compute all the context E1, E2 such that
(E1[A1], E2[A2]) is a critical branching. See figure 2 for the procedure.

Example. We apply this procedure for the computation of critical branchings between the
rewrite rules A and A in the theory of monoids. There are only two possible relative offset p
to test: 0 and 1. When p = 0, the procedure produces no context because it is the case of the
trivial branching. So we focus on the case p = 1. In this case, the two whiskers to unify are the
following:

and

It is easy to unify them using u1 = 0, u2 = 0, v1 = 1 and v2 = 0. Using the formulas of the
procedure, we then define

φ1 = 1 φ2 = ψ1 = ψ2 = 1

These elements define contexts E1, E2 with Ei = φi ∗ (ui ∗ ∗ vi) ∗ ψi and they define a
branching B = (E1[A], E2[A]) where E1[A] and E2[A] are rewrite step as follows:

E1[A]

V and
E2[A]

V

B is non-independent since the action intervals of E1[A] and E2[A] are respectively {1, 2}
and {2, 3} so they overlap. Moreover, this branching is minimal. So B is critical.
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procedure CriticalBranching(A1, A2)
let P = ∅
for p = 0 to n1 − 1 do (MainFor) . All possible relative offset are tested

if (p = 0 and A1 = A2)
or (r1,p+1 is not a suffix of r2,1 and r2,1 is not a suffix of r1,p+1)
or (s1,p+1 is not a prefix of s2,1 and s2,1 is not a prefix of s1,p+1) then

continue MainFor
end if
let u1, u2 be the smallest such that u1 ∗ r1,p+1 = u2 ∗ r2,1
let v1, v2 be the smallest such that s1,p+1 ∗ v1 = s2,1 ∗ v2
for i = p+ 1 to n1 do

if u1 ∗ r1,i 6= u2 ∗ r2,i or α1,i 6= α2,i−p then
continue MainFor

end if
end for
let φ1 = 1 and φ2 = ∗pi=1((u1 ∗ r1,i) ∗ α1,i ∗ (s1,i ∗ v1))
let ψ1 = ∗n2

i=n1−p+1((u2 ∗ r2,i) ∗ α2,i ∗ (s2,i ∗ v2))
and ψ2 = ∗n1

i=n2+p+1((u1 ∗ r1,i) ∗ α1,i ∗ (s1,i ∗ v1))
P ← P ∪ {(φ1 ∗ (u1 ∗ ∗ v2) ∗ ψ1, φ2 ∗ (u2 ∗ ∗ v2) ∗ ψ2)}

end for
return P

end procedure

Conclusion

In this work, we showed how rewriting formalism can be used for the interpretation of algebraic
structures in a 3-dimensional categorical setting. In particular, we defined the notion of signa-
tures, rewriting systems, rewrite rules and rewrite paths in this setting and stated an adaptation
of Newman’s lemma for coherence, which relates the coherence property to the critical branch-
ings of the rewriting system. Then we gave an algorithm to compute the critical branchings,
and gave an example for the theory of pseudomonoids. Even though we restricted ourselves to
dimension 3, the formalism and the algorithm can be readily used with higher dimensions.
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Abstract

We introduce string data structures as combinatorial descriptions of structured words on
totally ordered alphabets. The data can be described by words through a reading map and
can be constructed by using an insertion algorithm. The insertion map defines a product
on datum. We show that the associativity of this product, the cross-section property of the
data structure, and the confluence of the rewriting system defined by the insertion map are
equivalent properties. We make explicit a coherent presentation of the monoid presented
by the data structure, made of generators, rewriting rules describing the insertion of letters
in words and relations among the insertion algorithms.

1 Introduction

A data structure describes a way to organize and to store a collection of structured data. It
defines primitive operations such as constructors, insertion and reading maps on the data. In this
work, we study string rewriting systems (SRS) whose normal forms can be described using a data
structure and whose normalisation strategies are induced by insertion algorithms. Such data
structures appear in many contexts in combinatorial algebra, combinatorics and fundamental
computer science and describe combinatorial structures such as arrays, tableaux, staircases or
binary search trees. They are used to describe combinatorially equivalence relations in free
monoids. In particular array structures can be used to study plactic, Chinese, hypoplactic and
sylvester monoids.

For instance, the structure of plactic monoid emerged from the works of Schensted [13] and
Knuth [9] on the combinatorial study of Young tableaux and it has found several applications in
combinatorics and representation theory [11, 4]. The study of plactic monoids (of type A) using
SRS on Knuth generators is not straightforward, in particular in rank greater than 4 they do
not admit finite completion with respect to the lexicographic order, [10]. Finite completions
can be obtained by adding new generators in the quasi-center of the monoid. In particular,
by adding column or row generators, the completion procedure ends producing a convergent
presentation of plactic monoids, [2, 1]. Such convergent presentations can be used to make
explicit coherent presentations of plactic monoids giving all the relations among the relations of
the presentations, [7]. The confluence property is essential to obtain such coherence results.

The confluence of the column presentation for plactic monoids is a consequence of the
commutation of Schensted’s insertion algorithms in Young tableaux: the right insertion (or
insertion by rows) and the left insertion (or insertion by columns). In this work, we make explicit
this confluence result in a general algebraic framework. We introduce the notion of string data
structures as combinatorial descriptions of structured words on totally ordered alphabets. The
data can be described by words through a reading map and can be constructed using an insertion
algorithm. The insertion map defines a product on datum. We show that the associativity of
this product, the cross-section property of the data structure, and the confluence of the rewriting
system defined by the insertion map are equivalent properties. We make explicit a coherent
presentation of the monoid presented by the data structure, made of generators, rewriting rules
describing the insertion of letters in words and relations among the insertion algorithms.
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In a first part, we introduce the notion of string data structure. We show that the commutation
of left and right insertion algorithms on a data structure induces an associative product on
the data. We define an SRS associated to a data structure, whose rules are defined by the
insertion map, and we show that the associativity of the product on the data structure yields
the confluence of this SRS. In a second part, using the notion of generating set of a string data
structure, we construct an SRS on a reduced set of data and we show that the associativity of
the data structure induces the confluence of this reduced SRS. In addition, we make explicit a
coherent presentation of the monoid presented by a data structure in terms of the normalisation
strategy induced by the insertion algorithm on the data structure. We recall in Appendices the
Schensted’s algorithms, the notion of coherent presentation and we give the proofs of the main
results presented in this abstract.

2 String data structures, confluence and cross-section

String data structures. A string data structure, SDS for short, S on a totally ordered
alphabet A is a quadruple (DA, `, I, R) made of a set DA, a reading ` of words on A, a
one-element insertion map I and a reading map R defined as follows:

i) the inclusions A ⊆ R(DA) ⊆ A∗ hold, where A∗ denotes the free monoid on A,

ii) the map ` : A∗ → A∗ sends each word x1 . . . xk in A∗ on a word xσ(1)
. . . xσ(k)

in A∗, where σ
is a permutation on {1, . . . , k},
iii) I : DA×A → DA inserts an element of A into an element of DA such that any restric-
tion I(−, x) is injective for x ∈ A. By iteration, one defines an insertion map I∗ : DA×A∗ → DA

that inserts a word in A∗ into an element of DA wrt `, that is I∗(d, x1 . . . xn) =
I∗(I(d, y1), y2 . . . yn), for any d ∈ DA and x1 . . . xn ∈ A∗, where y1 . . . yn = `(x1 . . . xn),

iv) R : DA → A∗ is injective and satisfies I∗(∅, `(−))R = IdDA
and R(∅) is the empty word.

The map I∗(∅, `(−)) : A∗ → DA is called the constructor of the SDS S. The maps I, R
and I∗(∅, `(−)) will be also denoted by IS, RS and CS. We will use the right-to-left (resp.
left-to-right) reading of words denoted by `r (resp. `l). A right (resp. left) SDS is an SDS whose
insertion map is said right (resp. left), that is inserting a word into an element of DA with
respect to `l (resp. `r). Two one-element insertion maps I, J : DA×A → DA commute if the
relation J(I(d, x), y) = I(J(d, y), x) holds for every d ∈ DA and x, y ∈ A. An opposite of a right
(resp. left) SDS (DA, `l, I, R) (resp. (DA, `r, I, R)) is a left (resp. right) SDS (DA, `r, J, R) (resp.
(DA, `l, J, R)) such that I and J commute.

For example, a (Young) tableau on the finite set [n] := {1, . . . , n} is a collection of boxes in
left-justified rows, filled with elements of [n], where the entries weakly increase along each row
and strictly increase down each column. Denote by Ytn the set of tableaux on [n]. Schensted, [13],
introduced the right (or row) (resp. left (or column) insertion Sr (resp. Sl) : Ytn×[n]→ Ytn,
see Appendix A. Let Rcol : Ytn → [n]∗ be the map reading the columns of a tableau from
left to right and from bottom to top. This defines two SDSs Yrown = (Ytn, `l, Sr, Rcol) and
Ycoln = (Ytn, `r, Sl, Rcol) on the structure of tableau.

An SDS S = (DA, `, I, R) is associative if the product ?S : DA×DA → DA defined by
setting d ?S d′ = I∗(d, `(R(d′))), for any d, d′ ∈ DA is associative. That is, the relation (d ?S
d′) ?S d′′ = d ?S (d′ ?S d′′) holds for any d, d′, d′′ ∈ DA. For instance, the SDS (Ytn, `l, Sl, Rcol) is
not associative:
(

1
4
6

?S 2
3

)
?S 1 = 1 2 3

4
6

?S 1 = 1 1 3
2
4
6

6= 1 1 2 3
4
6

= 1
4
6

?S 1
2
3

= 1
4
6

?S
(

2
3
?S 1

)
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Theorem 1. Let S be a right (resp. left) SDS. If there is a left (resp. right) SDS T opposite
to S, then the SDSs S and T commute, that is d ?S d′ = d′ ?T d, for any d, d′ ∈ DA, and are
associative.

Structure monoid of an SDS. Let S = (DA, `, I, R) be an SDS. Denote by | the product of
the free monoid on DA. The structure monoid associated to the SDS S is the monoid, denoted
by M(S), and presented by the following SRS

R(S) = 〈DA | γd,d′ : d|d′ → d ?S d
′ for any d, d′ in DA 〉,

called the standard presentation induced by the SDS S. Since every application of a rewriting
rule of R(S) yields a strictly smaller preceding word with respect to the deglex order on D∗A,
the SRS R(S) is terminating. Moreover, if the SDS S is associative, then the SRS R(S) is
convergent. The reading of the standard presentation of the SDS S is the SRS defined by

R(A,S) = 〈A | γd,d′ : RS(d)RS(d′)→ RS(d ?S d
′) for any d, d′ in DA 〉.

Any critical pair of R(A,S) has the form

RS(d ?S d
′)RS(d

′′)
γd?Sd′,d′′// RS((d ?S d

′) ?S d
′′)

RS(d)RS(d
′)RS(d”)

γd,d′RS(d′′)00

RS(d)γd′,d′′
.. RS(d)RS(d

′ ?S d
′′)
γd,d′?Sd′′

// RS(d ?S (d′ ?S d
′′))

for every d, d′, d′′ ∈ DA. As a consequence, if S is associative, then R(A,S) is locally confluent.

Compatibility of an SDS. An associative SDS S = (DA, `, I, R) is compatible with an
equivalence relation ∼ on A∗ if for any d ∈ DA and w,w′ ∈ A∗, w ∼ w′ implies I∗(d,w) =
I∗(d,w′), and for any w ∈ A∗, one has RSCS(w) ∼ w. If S = (DA, `, I, R) is an associative SDS

compatible with the relation ∼, thus I∗ induces a unique map Ĩ∗, such that the diagram on the

right commutes, where π : A∗ → A∗/ ∼ denotes the quotient map.
Hence, the constructor CS induces a map CS : A∗/ ∼→ DA de-

fined by CS(π(w)) = Ĩ∗(∅, π(`(w))), for any w ∈ A∗. Moreover, we
have CSπRS = IdDA

. Hence, the map CS is bijective.

DA×A∗ I∗ //

Id×π
��

DA

DA×A∗/ ∼
Ĩ∗

::

Proposition 1. Let S be a right associative SDS compatible with the equivalence relation ∼S
induced by R(A,S). The map CS : A∗ → DA induces a monoid isomorphism CS between A∗/ ∼S
and (DA, ?S), with the inverse induced by the reading map RS.

Let ∼ be an equivalence relation on a free monoid K∗ on a set K. Recall that a subset S ⊂ K∗
satisfies the cross-section property for the monoid K∗/ ∼ if each equivalence class with respect
to ∼ contains exactly one element of S. Let S be a right associative SDS compatible with the
equivalence relation ∼S induced by R(A,S). By Proposition 1, the monoids (DA, ?S) and A∗/ ∼S
are isomorphic. One says that R(S) and R(A,S) are Tietze-equivalent, that is present the same
monoid. In particular, if R(A,S) is terminating, then the set of normal forms wrt R(S) satisfies
the cross-section property for M(S) if and only if the set Nf(A,S) of normal forms wrt R(A,S)
satisfies the cross-section property for M(S).

Theorem 2. Let S be a right associative SDS such that the SRS R(A,S) is terminating. Then
the SRSs R(S) and R(A,S) are Tietze-equivalent and the set Nf(A,S) satisfies the cross-section
property for the monoid M(S).
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For instance, the plactic monoid Pn of rank n, [11], is presented by the Knuth presentation
whose set of generators is [n] submitted to relations zxy = xzy for x 6 y < z and yzx = yxz
for x < y 6 z. Schensted showed that Sr and Sl commute, [13]. Then, by Theorem 1 the
SDS Yrown is associative and the SRS R(Yrown ) is convergent. One shows that the Knuth
presentation is Tietze-equivalent to the reading of the SRS R([n],Yrown ). By [9], see also [12],
the SDS Yrown is compatible with the equivalence relation induced by the Knuth presentation.
Then, by Proposition 1, R(Yrown ) is a convergent presentation of the monoid Pn. Hence, the
set Ytn satisfies the cross-section property for Pn.

3 Coherent presentations and SDS

Change of generators. Let S = (DA, `, I, RS) be an SDS. One considers a binary relation |
on DA compatible with RS, that is RS(d|d′) = RS(d)RS(d′) for any d, d′ ∈ DA, where d|d′
denotes (d, d′) ∈ |. A generating set with respect to such a binary relation is a subset Q of DA such
that A ⊆ RS(Q), and any element d in DA can be written d = c1|c2| . . . |ck, with c1, . . . , ck ∈ Q.
From such generating set Q of S, one can define an SDS SQ = (DA, `Q, IQ, RQ) on Q, where

i) the map `Q : Q∗ → Q∗ induces a permutation on the letters of each words on Q,

ii) IQ : DA×Q → DA is a one-element insertion map defined by IQ(d, c) = I∗(d,RS(c)), for
any c ∈ Q and d ∈ DA, that induces an insertion map I∗Q : DA×Q∗ → DA wrt `Q,

iii)RQ : DA → Q∗ is the reading map associated to |, that is, for any d ∈ DA,RQ(d) = c1|c2| . . . |ck
is the decomposition of d with respect to |.

A reduced presentation. Consider an SDS S = (DA, `, I, RS) and a generating set Q of S
with respect to a binary relation | compatible with RS. One defines the following SRS

R(Q,DA,S) = 〈Q | γc,c′ : c|c′ → RQ(c ?S c
′) for any c, c′ ∈ Q such that c|c′ /∈ DA 〉,

called the reduced SRS of S. We will denote by Nf(Q,S) the set of normal forms wrt R(Q,DA,S).
The SRS R(Q,DA,S) may be non terminating, in particular when the number of generators in Q
is not decreasing with the application of rules γc,c′ . An additional condition is thus necessary
on S to assure the termination of R(Q,DA,S).

Lemma 1. Let S = (DA, `, I, RS) be an associative SDS and Q be a generating set of S with
respect to a binary relation | compatible with RS. If the SRS R(Q,DA,S) is terminating, then
the SRSs R(S) and R(Q,DA,S) are Tietze-equivalent.

For instance, consider the SDS Yrown and let Coln be the set of tableaux with only one
column. Denote by | the concatenation of columns in Ytn. Every d in Ytn can be written
d = c1|c2| . . . |ck, where c1, . . . , ck are the columns of d from left to right. We have Rcol(d) =
Rcol(c1)Rcol(c2) . . . Rcol(ck). Then, the concatenation | is a binary relation compatible with Rcol
and the set Coln is a generating set wrt |. Let RColn : Ytn → Col∗n be the map that decomposes
a tableau as the concatenation of its columns from left to right. The SDS Yrown is associative and
one shows that the SRS R(Coln,Ytn,Ycoln ) is terminating. Then by Lemma 1 the SRSs R(Ycoln )
and R(Coln,Ytn,Ycoln ) are Tietze-equivalent. Hence, the SRS R(Coln,Ytn,Ycoln ) is a finite
convergent presentation of the monoid Pn. By this way we recover the result of [1, 2].

Coherence from insertion. Recall that a normalisation strategy for an SRS R specifies a
way to apply the rules in a deterministic way. It is defined as a mapping σ of every words u
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in X∗ to a rewriting step from u to a chosen normal form û. We distinguish two canonical
strategies to reduce words: the leftmost one σ> and the rightmost one σ⊥, according to the way
we apply first the rewriting rule that reduces the leftmost or the rightmost subword. Given an
associative SDS S = (DA, `, I, R) and an associated reduced SRS R(Q,DA,S), we say that a
normalization strategy σ of R(Q,DA,S) computes the constructor CS if it is normalizing, and it
reduces any word c1|c2| . . . |cn in Q∗ to RQ(c1 ?S c2 ?S . . . ?S cn), that is

σc1|c2|...|cn : c1|c2| . . . |cn → RQ(c1 ?S c2 ?S . . . ?S cn) for any c1, . . . , cn ∈ Q.

Theorem 3. Let S be an associative SDS and Q be a generating set of S such that the
SRS R(Q,DA,S) is terminating. If there exists a normalization strategy of R(Q,DA,S) that
computes CS, then the set Nf(Q,S) satisfies the cross-section property for M(S).
In particular, if the leftmost normalization strategy σ> computes CS, then the SRS R(Q,DA,S)
can be extended into a coherent convergent presentation by adjunction

c|c′|c′′|

σ>
cc′c′′

,,

c|γc′,c′′
,,

RQ(c ?S c
′ ?S c

′′)

c|RQ(c′ ?S c
′′)
σ>
c|RQ(c′?Sc′′)

66 for every c, c′, c′′ in Q.

With hypothesis of Theorem 3, consider σ> (resp. σ⊥) the leftmost (resp. rightmost)
normalisation strategy with respect to R(Q,DA,S) for a right SDS S. Suppose that there is an
SDS T opposite to S. If the strategy σ> computes CS, then R(Q,DA,S) can be extended into
a coherent convergent presentation by adjunction of the homotopy
generator on the right for every c, c′ and c′′ in Q, where σ> (resp. σ⊥)
corresponds to the application of the right (resp. left) insertion
of S (resp. T).

c|c′|c′′|

σ>
cc′c′′

))

σ⊥
cc′c′′

55RQ(c ?S c
′ ?S c

′′)

Theorem 3 can be used to construct coherent presentations of plactic monoids, see Appendix G.

4 Conclusion and work in progress

We have introduced the notion of SDS to study the confluence of SRS whose rules are defined
by insertion algorithm. We show that the fact that a right SDS and a left SDS that present a
monoid are opposite and the confluence property of the standard SRS presenting the monoid
are equivalent properties. We apply our construction on the Chinese monoid of rank n, [3],
generated by the set [n] and subject to the relations zyx = zxy = yzx, for x 6 y 6 z. By
constructing an SDS associated to the insertion algorithm in Chinese staircases, we deduce the
confluence of the reduced presentation of the Chinese monoid and we extend this presentation
into a finite coherent presentation of the monoid, see Appendix F. Finally, the sylvester monoid
of rank n, [8], generated by [n] and subject to the relations cavb = acvb, for all a 6 b < c
and v ∈ [n]∗, can be described using the notion of binary search trees. We expect that our
methods should conduce to a coherent presentation of the sylvester monoid induced by the
insertion algorithm in a binary search tree.
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A Schensted’s algorithms

Schensted introduced two algorithms to insert an element x in [n] into a tableau t of Ytn, [13].
The right (or row) insertion algorithm Sr : Ytn×[n] −→ Ytn computes a tableau Sr(t, x) as
follows. If x is at least as large as the last element of the top row of t, then put x to the right of
this row. Otherwise, let y be the smallest element of the top row of t such that y > x. Then x
replaces y in this row and y is bumped into the next row where the process is repeated. The
procedure terminates when the element which is bumped is at least as large as the last element
of the next row. Then it is placed at the right of that row. For instance, the four steps to
compute Sr

(
1 3 5
2 4
6

, 2
)

are:

1 3 5 ←2
2 4
6

;
1 2 5
2 4 ←3
6

;
1 2 5
2 3
6 ←4

;
1 2 5
2 3
4
←6

;
1 2 5
2 3
4
6

The left (or column) insertion algorithm Sl : Ytn×[n] −→ Ytn computes a tableau Sl(t, x) as
follows. If x is larger than the first element of the first (leftmost) column of t, then put x to the
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bottom of this column. Otherwise, let y be the smallest element of the first column of t such
that y > x. Then x replaces y in this column and y is bumped into the next column where the
process is repeated. The procedure terminates when the element which is bumped is greater
than all the elements of the next column. Then it is placed at the bottom of that column. For
instance, the four steps to compute Sl

(
1 3 5
2 4
6

, 2
)

are:

1 3 5
2 4
6
↑
2

;
1 3 5
2 4
6
↑
2

;
1 2 5
2 4
6
↑
3

;
1 2 3
2 4
6

↑
5

;
1 2 3 5
2 4
6

B Proof of Theorem 1

Consider a right SDS S = (DA, `l, I, R). Let T = (DA, `r, J, R) be an opposite SDS of S. One
shows that for any d, d′ and d′′ in DA the following equalities hold

CS(R(d)R(d′)R(d′′)) = (d ?S d
′) ?S d

′′ and CT(R(d)R(d′)R(d′′)) = (d′′ ?T d
′) ?T d. (1)

Prove first that the equality CS(w) = CT(w) holds for any w in A∗. We proceed by induction. By
definition, we have CS(x) = CT(x), for any x in A. Suppose that CS(x1 . . . xk) = CT(x1 . . . xk),
for any x1 . . . xk in A∗. Then we obtain

CS(x1 . . . xkxk+1) = I(CS(x1 . . . xk), xk+1)
= I(CT(x1 . . . xk), xk+1)
= I(J(CT(x2 . . . xk), x1), xk+1)
= J(I(CT(x2 . . . xk), xk+1), x1)
= J(I(CS(x2 . . . xk), xk+1), x1)
= J(CS(x2 . . . xkxk+1), x1)
= J(CT(x2 . . . xkxk+1), x1)
= CT(x1x2 . . . xkxk+1).

In particular, we have CS(R(d)R(d′)) = CT(R(d)R(d′)), for any d, d′ ∈ DA. Moreover, we

have CS(R(d)R(d′))
(1)
= d?S d′ and CT(R(d)R(d′))

(1)
= d′ ?T d, for any d, d′ ∈ DA. Then we deduce

that S and T commute.
For any d, d′, d′′ ∈ DA, the equality CS(R(d)R(d′)R(d′′)) = CT(R(d)R(d′)R(d′′)) holds, and

we have CS(R(d)R(d′)R(d′′))
(1)
= (d ?S d′) ?S d′′ and CT(R(d)R(d′)R(d′′))

(1)
= (d′′ ?T d′) ?T d. Then,

the equality (d ?S d′) ?S d′′ = (d′′ ?T d′) ?T d holds for any d, d′, d′′ ∈ DA. Since S and T commute,
we obtain

(d′′ ?T d
′) ?T d = d ?S (d′′ ?T d

′) = d ?S (d′ ?S d
′′).

Thus, we obtain (d ?S d′) ?S d′′ = d ?S (d′ ?S d′′), for any d, d′, d′′ in DA. Hence, the SDS S is
associative. Similarly, one proves that if there is a right SDS opposite to a left SDS S, then the
SDS S is associative.

C Proof of Theorem 2

Consider a right associative SDS S = (DA, `l, I, RS). One shows that for any d in DA and x1 . . . xp
in A∗ the following equality holds

I∗(d, `l(x1 . . . xp)) = I∗(I∗(d, x1 . . . xk), xk+1 . . . xp). (2)
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To prove Theorem 2 it is sufficient to show that S is compatible with the equivalence relation ∼S
induced by R(A,S). Let us show that RSCS(w) ∼S w, for any w ∈ A∗. Every w = x1 . . . xp
in A∗ can be written w = RS(ιS(x1)) . . . RS(ιS(xp)), where ιS denotes the inclusion map of A
into RS(DA). Since S is associative and R(A,S) is terminating, R(A,S) is convergent. Then the
application of the rewriting rules ofR(A,S) on w yield to the normal form RS(ιS(x1)?S. . .?SιS(xp))
which is equal to RS(CS(w)). Hence, we obtain RSCS(w) ∼S w.

Suppose that for w and w′ in A∗ we have w ∼S w′. Let us show that, for any d in DA, we
have I∗(d,w) = I∗(d,w′). Note that for any w in A∗ and d in DA, the following equality holds

CS(RS(d)w) = I∗(∅, `l(RS(d)w)) = I∗(∅, `l(RS(d)) `l(w))
(2)
= I∗(I∗(∅, `l(RS(d)), `l(w)) = I∗(d,w).

Since w ∼S w′, we have RS(d)w ∼S RS(d)w′. Then by the unique normal form property of the
SRSR(A,S), we haveRS(CS(RS(d)w)) = RS(CS(RS(d)w′)), for any d in DA. SinceRS is injective,
we obtain CS(RS(d)w) = CS(RS(d)w′). Hence, for any d in DA, we have I∗(d,w) = I∗(d,w′).
As a consequence, we obtain that the SDS S is compatible with the equivalence relation ∼S.

D Coherent presentations of monoids

We recall from [5] the notion of coherent presentation of monoids. Let R be an SRS on an
alphabet X. For every rewriting rule β of R we will denote respectively by s1(β) and t1(β)
the source and the target of β. We will denote by R> the (2, 1)-category freely generated by
the SRS R, that is the free 2-category enriched in groupoid generated by the set of rules R,
see [6]. The 2-cells of the (2, 1)-category R> corresponds to elements of the equivalence relation
generated by R. A 2-sphere of R> is a pair (f, g) of 2-cells in R> such that s1(f) = s1(g)
and t1(f) = t1(g).

An extended presentation of a monoid M is an SRS R presenting M extended by a globular
extension Γ of the (2, 1)-category R>, that is a set of homotopy generators A : f V g relating
parallel 2-cells f and g in R>, respectively denoted by s2(A) and t2(A) and satisfying the globular
relations s1s2(A) = s1t2(A) and t1s2(A) = t1t2(A). We will denote by Γ> the free (3, 1)-category
generated by such an extended presentation. A coherent presentation of a monoid M is an
extended presentation (R,Γ) of M such that the cellular extension Γ is a homotopy basis of the
(2, 1)-category R>, that is, for every 2-sphere γ of R>, there exists a homotopy generator in R>

with boundary γ.

E Proof of Theorem 3

Let S = (DA, `, I, RS) be an associative SDS and Q be a generating set of S such that the
SRS R(Q,DA,S) is terminating. Let σ be a normalization strategy of R(Q,DA,S) that com-
putes CS. Let us show that the SRS R(Q,DA,S) is convergent. Any critical pair of R(Q,DA,S)
has the form (γc,c′c

′′, cγc′,c′′), for c, c′, c′′ in Q. Applying the normalisation σ, we have the
following reduction diagram:

RQ(c ?S c
′)|c′′

σRQ(c?Sc′)|c′′// RQ
(
(c ?S c

′) ?S c
′′)

c|c′|c′′
γc,c′c

′′
33

cγc′,c′′
++
c|RQ(c′ ?S c

′′)
σc|RQ(c′?Sc′′)// RQ

(
c ?S (c′ ?S c

′′)
)

822



Coherence of monoids by insertions Hage and Malbos

which is confluent by the associativity of ?S. Hence, the SRS R(Q,DA,S) is convergent by
termination hypothesis. Moreover, by Lemma 1, the SRSs R(S) and R(Q,DA,S) are Tietze-
equivalent. Then the SRS R(Q,DA,S) is a presentation of the structure monoid M(S) and thus
the set Nf(Q,S) satisfies the cross-section property for M(S).

In particular, if the leftmost normalization strategy σ> computes CS, then by [14] the
SRS R(Q,DA,S) can be extended into a coherent convergent presentation by adjunction of

c|c′|c′′|

σ>
cc′c′′

,,

c|γc′,c′′
--

RQ(c ?S c
′ ?S c

′′)

c|RQ(c′ ?S c
′′)

σ>
c|RQ(c′?Sc′′)

55 for every c, c′, c′′ in Q.

F Chinese coherent presentations

The reduced presentation of the Chinese monoid is the SRS whose set of generators is

Qn =
{
cyx

∣∣ 1 6 x < y 6 n
}
∪
{
cxx

∣∣ 1 < x < n
}
∪
{
c1, . . . , cn

}
,

where c1, . . . , cn represent the initial generators 1, . . . , n, and whose rewriting rules are of the
form γu,v : cucv → cwcw′ , where cwcw′ is obtained by inserting cv into cu using the right insertion
defined in [3]. We show that this presentation is a finite convergent presentation of the Chinese
monoid and it can be extended into a coherent presentation by adjunction of

cece′ct
ceβe′,t // cecbcb′

βe,bcb′ // cscs′cb′
csβs′,b′ // csckck′ βs,kck′

,,
cucvct

βu,vct 22

cuβv,t
,,

clcmck′

cucwcw′
βu,wcw′

// caca′cw′
caβa′,w′

// cacdcd′
caβa′,w′

// clcl′cd′ clβl′,d′

22

where the rewriting rules β−,− denote either a rewriting rule of the reduced presentation or an
identity.

G Plactic coherent presentations

As an application of Theorem 3, consider the SDSs Ycoln and Yrown . By definition, the left-
most normalisation strategy σ> with respect to R(Coln,Ytn,Ycoln ) computes CYcol

n
. Then the

SRS R(Coln,Ytn,Ycoln ) is extended into a finite coherent presentation by adjunction of, [7]:

c1|c2|c′′
c1γc2,c′′ // c1|c3|c4 γc1,c3c4

++
c|c′|c′′

γc,c′c
′′ 33

cγc′,c′′ ++
c′3|c5|c4

c|c′1|c′2
γc,c′1

c′2

// c′3|c′4|c′2 c′3γc′4,c′2

33

where c|c′, c′|c′′ /∈ Ytn, RColn(c ?Ycol
n
c′) = c1|c2, RColn(c2 ?Ycol

n
c′′) = c3|c4, RColn(c1 ?Ycol

n
c3) =

c′3|c5, RColn(c′′ ?Yrow
n

c′) = c′1|c′2, RColn(c′1 ?Yrow
n

c) = c′3|c′4 and RColn(c′2 ?Yrow
n

c′4) = c5|c4.
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Abstract – The computation of minimal convergent presentations for monoids, categories
or higher-dimensional categories appear in low-dimensional combinatorial problems on these
structures, such as coherence problems. A method to compute coherent presentations using
convergent string rewriting systems was developed following works of Squier. In this approach,
coherence results are formulated in terms of confluence diagrams of critical pairs. This work
proposes an extension of these methods to string rewriting systems modulo.

1 Introduction
The computation of minimal convergent presentations for monoids, categories or higher-dimensional
categories appear in low-dimensional combinatorial problems on these structures, such as coherence
problems. A method to compute coherent presentations using convergent string rewriting systems was
developed following works of Squier, see [9, 10]. In this approach, coherence results are formulated
in terms of confluence diagrams of critical pairs. This work proposes an extension of these methods to
algebraic or categorical structures having additional algebraic axioms, such as commutation, linearity or
inverses. Using a notion of rewriting modulo, we show how to compute coherent presentations modulo
algebraic axioms.

Rewriting modulo was developed in several approaches. The rules are split into two parts: oriented
rules in a set R and non-oriented equations in a set E. The most naive approach of rewriting modulo is
to use a rewriting system R{E consisting in rewriting on congruence classes modulo E, but this appears
unefficient for analysis of confluence, see [1, Chapter 11]. Another approach of rewriting modulo
has been considered by Huet in [11] where rewriting paths does not involve equivalence steps, and
confluence is formulated modulo equivalence. Jouannaud and Kirchner enlarged this approach in [12] by
providing completion methods for any rewriting system between R and R{E. Several other approaches
have also been developed for term rewriting systems modulo to deal with various equational theories,
see [2, 14, 17].

In this work, we extend Huet’s approach to prove coherence results modulo algebraic relations, e.g.
inverses for rewriting in groups, or commutation for linear rewriting. Indeed, in most cases, algebraic
relations such as commutation cannot be oriented in a terminating way. Moreover, rewriting modulo can
be used to delete some critical branchings that should not be considered in the analysis of coherence.
This is the case for the computation of coherent presentations for algebraic structures such as groups or
algebras.

Known approaches of rewriting for groups are mainly based on a presentation of groups as monoids
with explicit inverses and explicit rules for inverse axioms. The SRS is thus defined on the set of genera-
tors of the group, their formal inverses, and the explicit rules for inverses, [3–6, 15]. However, coherent
presentations of groups have to take into account that the presentation is modulo these inverse relations.
The objective is to study confluence modulo the confluence diagrams induced by these relations, and to
consider rewriting steps in the free group. This approach corresponds to rewriting on congruence classes
modulo the equivalence given by the inverse relations, and thus is not suitable to study confluence. For
this reason, we consider the weaker theory of rewriting modulo introduced by Huet. One of the main
applications is to extend the coherent results obtained by rewriting methods on Artin-Tits monoids in
[7] to Artin-Tits groups.
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The second example of algebraic structure we consider is the axiomatic of vector spaces in the theory
of linear rewriting developed in [8]. Actually, the critical branchings in linear rewriting are defined
modulo the axioms of vector spaces, namely abelian groups and distributivity of the multiplicative law.
For instance, if we denote by E the set of axiomatic rules of vector spaces and R is a linear rewriting
system with two rules 3x ñ 2y and 2x ñ z, then the branching 2y ð 3x � 2x � x ñ z � x can be
interpreted as a branching of R modulo E. In this way, the coherence result obtained on algebras in [8]
can be formulated in terms of rewriting modulo.

This work presents a construction of coherent extensions of SRS modulo. In a first part, we recall
the notion of confluence modulo as introduced by Huet, [11]. Then, we introduce the notion of coherent
extension modulo, that corresponds to homotopy bases of SRS as defined in [10] when the set of axioms
is empty. It is defined by a set of 3-cells modulo tiling all the spheres created by rewriting paths which
are parallel modulo the axioms. In the last section, we enounce a generalization of Squier’s coherence
theorem to confluent SRS modulo. The proof of this result is given in Appendix A as well as some
recalls on the categorical language on SRS used in this work in Appendix B.

2 Rewriting modulo

Let us recall the notion of rewriting modulo a set of relations. In the sequel, all the SRS considered are
defined on a same alphabet X. Given two SRS R and E, a rewiting with respect to R modulo relations
defined by E consists in rewriting using rules of R on congruence classes modulo E. This corresponds
to studying the rewriting system R{E defined by u ñR{E v if and only if there exists strings u 1 and
v 1 on X such that u �E u

1 ñR v
1 �E v. However, studying confluence of this rewriting system is

complicated as explained in [1], so we use a weaker notion of confluence modulo as introduced by Huet
in [11]. Whenever it exists, we denote by pu a normal form of a string u on X with respect to R.

Equivalence modulo. Let consider the free p2, 1q-category EJ generated by E (see Appendix B for
categorical constructions). The 2-cells of EJ will be called equivalences modulo E. An equivalence
modulo E of length equals to 1 is called a one-step equivalence. We denote by �E
the equivalence relation generated by E. A branching modulo E of the SRS R is a pair
pf, gq of 2-cells of the free 2-category R� such that s1pfq �E s1pgq as depicted by the
diagram on the side. We do not distinguish the branchings pf, gq and pg, fq. Such a
branching pf, gq is local if `pfq, `pgq, `peq ¤ 1 and `pfq � `pgq � `peq � 2.

u 1

u

f %9

e
v

g
%9 v 1

An aspherical (resp. Peiffer) branching modulo E of R is a pair pf, fq (resp. pfv, ugq) of 2-cells of R�

depicted by

u

f

�+
u 1

u

f

2F
(resp.

u 1v

uv

fv &:

uv

ug $8 uv 1

)

A branching pf, gq is confluent modulo E if there exists 2-cells f 1 and g 1 in R�,
as in the diagram on the side. pf 1, g 1q is called a confluence modulo E. We

will denote this by u 1
E
_ v 1. We say that R is confluent modulo E if all of its

branchings are confluent modulo E.

u 1 f 1

�'
u

f ';

w

v

g #7

w 1

v 1 g 1

8L

Local branching. Local branchings belong to one of the following families:

i) local aspherical branchings, for a rewriting step f of R: u
f
�/

f

/C v
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ii) local Peiffer branchings: for rewriting steps f, g of R (resp. for a rewriting step f of R and a one-step
equivalence e of E):

u 1v

uv

fv %9

ug
%9 uv 1

(resp.
u 1v

uv

fv %9

		
ue

�� uv 1
)

iii) overlapping branchings are the remaining local branchings, in which we distinguish two families:

v

u

f #7

g
&: v 1

v

u

f #7

��
e

  v 1

A critical branching modulo E is an overlapping local branching that is minimal for the order generated
by the relations pf, gq ¤

�
ufv, ugvq.

Local Confluence modulo. A SRS R is locally confluent modulo a SRS E if any of its local branchings
is confluent modulo E. Note that any aspherical and Peiffer branching being confluent modulo E, local
confluence modulo E is equivalent to the confluence of overlappings modulo E. Huet show that under
the assumption that the composite ñR � �E is terminating, then R is confluent modulo E if and only
if any overlapping branching of R modulo E is confluent modulo E, [11]. Under the same assumption,
he shows that a SRS R is locally confluent modulo a SRS E if and only if any critical branching of R
modulo E is confluent modulo E, [11].

3 Coherent extensions modulo

Given two SRS R and E, a 2-sphere modulo E in the free p2, 1q-category RJ is a pair pf, gq of 2-cells
in RJ which are parallel modulo E, that is, s1pfq �E s1pgq and t1pfq �E t1pgq and such that f or g
is not trivial. Note that the case f and g trivial produce a 2-sphere in EJ. These 2-spheres do not fit in
the construction of coherence extensions modulo E. A 2-sphere modulo E will be pictured by one of the
following diagrams:

u

f

�1
v

u 1

g

-A v 1

u

!!

u 1

==

f

�-

g

1E

v

!!

v 1

==

u

##

u 1

::

f��

g��
v

##

v 1

::

We will denote by SphEpRq the set of 2-spheres modulo E in RJ. A cellular extension of RJ modulo E
is a set Γ equipped with a map γ : Γ ÝÑ SphEpRq, whose elements are called 3-cells modulo E. We say
that Γ is coherent if the map γ is surjective. A 3-cell A modulo E filling a 2-sphere pf, gq modulo E will
be denoted by A : f VE g. We say that f (resp. g) is the 2-source (resp. 2-target) of A and we denote
it by s2pAq (resp. t2pAq). We define formal compositions �0,�1,�2 of 3-cells modulo E in a cellular
extension Γ as pasting operations defined as follows:
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i) Given A and B in Γ , one defines A �0 B as the 3-cell modulo E tiling the cylinder as follows:

u

##

u 1

::

v

##

v 1

::

A
5I

f��

g��

f 1��

g 1��
B
5I

w

##

w 1

::

t

##

t 1

::

ù

uv

##

u 1v 1

::

ff 1��

gg 1��
A�0B
5I

wt

##

w 1t 1

::

ii) Given A and B in Γ such that t1s2pAq � s1s2pBq and t1t2pAq � s1t2pBq, one defines a 3-cell
modulo E denoted by A �1 B tiling the following composite cylinder:

u

FF

u 1

XX

A
Ui

f
%9

g %9

v

FF

v 1

XX

B
Ui

f 1
%9

g 1 %9

w

FF

w 1

XX

ù
u

FF

u 1

XX

A�1B
Ui

f�1f
1

%9

g�1g
1

%9

w

FF

w 1

XX

iii) Given A and B in Γ such that t2pAq � s2pBq, one defines a 3-cell modulo E denoted by A �2 B
tiling the cylinder obtained as follows:

u

##

u 1

::

f��

g��
A
5I

v

##

v 1

::

u 1

##

u2

::

g��

h��
B
5I

v 1

##

v2

::

,

ù

u

##

u2

::

f��

h��
A�2B
5I

v

##

v2

::

Let Γ be a cellular extension of RJ modulo E. We will denote by CpΓq the closure of Γ with respect
to compositions �0, �1 and �2 of 3-cells of Γ and their formal inverses A�1 for A P Γ quotiented by
the exchange relations pA �i Bq �j pA 1 �i B

1q � pA �j A
1q �i pB �j B

1q for any 0 ¤ i   j ¤ 2 and the
inverse relations A �i A� � 1sipAq for any A in Γ and i � 0, 1, 2. When CpΓq is a coherent extension
of RJ modulo E, we say that Γ is acyclic modulo E.

4 Coherence from confluence modulo
Squier’s completion. Suppose that R is a confluent SRS modulo a SRS E. A Squier’s completion
modulo E of R is a cellular extension modulo E of RJ whose elements are the 3-cells

u 1
f 1

�-

Af,g��

w
e 1u

f (<

g "6
w 1

v
g 1

1E

u 1
f 1

�-

Bf,e��

w
e 1u

f (<

xx

e ��
w 1

v
g 1

1E

for any critical branching pf, gq and pf, eq of R modulo E, where f, g are rewriting steps of R and e is
a one-step equivalence of E. Note that such a completion is not unique in general and depends on the
rewriting sequences f 1, g 1 and the equivalence e 1 used to obtain the confluence diagrams.
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4.1. Theorem (Coherence modulo). Let R be a SRS confluent modulo a SRS E such that ñR � �E is
terminating, then any Squier’s completion of R modulo E is acyclic.

A proof of this result is given in Appendix A. As a consequence of Theorem 4.1, with the same
hypothesis, one can prove that if Γ is an acyclic extension of EJ then CpSpR, Eqq \ Γ is a coherent
extension of pR\ EqJ. In particular when E is convergent, we fix a Squier completion SpEq and we get
that CpSpR, Eqq \ SpEq is a coherent extension of pR\ EqJ.

Example. Let R be the SRS on X � ta, b, c, d, d 1u defined by the rules ab
α0
ñ a and da

β
ñ ac. We

complete the SRS R into a confluent SRS by adding the rules acnb
αn
ñ acn for all n in N in R. Let us

consider the SRS E defined on X with the rule d 1a
e
ñ ac. A Squier’s completion of R modulo E is then

given by a family of 3-cells modulo E tiling the following confluence modulo diagrams:

acn�1b αn�1

�0
dacnb

βcnb (<

dαn
$8

acn�1

dacn βcn

/C

acn
�� ecn�1

��
acnb

αn %9

��
ecn�1b

��

d 1acn�1

d 1acn�1b d 1αn�1

.B

d 1acn �� ecn

��
d 1acnb

d 1αn &:

��
ecnb ��

acn�1

acn�1b αn�1

0D

Note that up to a diagram rotation, the last two families of confluence diagrams are the same, so the
coherent extension of Rmodulo E consists in the two families of 3-cells given by the first two confluence
modulo diagrams. We recover the coherent extension of the SRS R\ E given in [13].

Finiteness conditions modulo. In the case where E is empty, Theorem 4.1 is the Squier’s theorem for
SRS, [16], see [10] for a polygraphic proof. From Squier’s result, it follows the homotopical finiteness
from convergence: if a monoid admits a presentation by a finite convergent SRS, then it has finite
derivation type (FDT). From Theorem 4.1, we deduce a new finiteness condition modulo. If a monoid
admits a presentation by a finite convergent SRS R modulo E, then it has FDT modulo E, that is, R
admits a finite cellular extension Γ modulo E such that CpΓq is acyclic. If the SRS R modulo E has FDT
modulo E and E has FDT, then the SRS R \ E has FDT. In particular, if R is a finite confluent SRS
modulo a finite convergent SRS such that ñR � �E terminating, then R\ E has FDT.

5 Conclusion and work in progress
In this work, we have presented a coherence result for SRS modulo a set of axioms. This result is based
on the notion of confluence modulo introduced by Huet. However, completion procedures for such SRS
are missing. We expect that some completion methods given in [2, 12, 17] could be adapted to compute
Squier’s completion of non confluent SRS modulo. In particular, with the axioms of group, naive
completion modulo induces infinitely many completion steps due to overlapping branchings between
a rule and an equivalence obtained by adding elements of the form xx�1. The objective is to define
an appropriate completion procedure allowing to avoid this infinite completion. One approach is to
consider a restriction of local obstruction of confluence by considering rewriting step conditioned by
algebraic context.
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A. Proof of Theorem 4.1

Proof. Let us consider a Squier’s completion SpR, Eq of R modulo E.
Step 1. Prove that, for every local branching pf, gq and pf, eq of R modulo E with f, g in R and e in E,

there exist 2-cells f 1 and g 1 in R� and 3-cells A : f �1 f
1 V g �1 g

1 and B : f �1 f
1 V e �1 g

1 modulo E
in CpSpR, Eqq, as in the following diagram:

u 1 f 1

�-

A��

w
u

f
)=

g "6
w 1

v
g 1

1E

u 1 f 1

�-

B��

w
u

f
)=

uu

e ��

w 1

v
g2

1E

In the case of a local aspherical branching, we setA as an identity. For a local Peiffer branching pf, gq
with f, g in R, we can choose f 1 and g 1 such that f �1 f 1 � g �1 g 1 and we set A an identity. For a local
Peiffer branching pf, eqwith f in R and e in E, we can choose f 1 as the empty 2-cell, g2 � f and the right
equivalence being e so that B is also an identity. Moreover, if we have an overlapping branching pf, gq
(resp. pf, eq) that is not critical, we have pf, gq � puhv, ukvq (resp. pf, eq � puhv, ue 1vq) for some
u, v in X� such that both ph, kq and ph, e 1q are critical. We consider the 3-cells A 1 : f �1 f

1 VE g �1 g
1

and B 1 : f �1 f 1 VE e �1 g
2 corresponding respectively to the critical branchings ph, kq and ph, e 1q. We

conclude by setting f 1 � uh 1v g 1 � uk 1v g2 � ue 1v A 1 � u �0 A
1 �0 v B � u �0 B

1 �0 v.

Step 2. We prove that, for any 2-cells f : x ñ y and g : x ñ z of R�, there exists a 3-cell modulo
E from f to g in CpSpR, Eqq. To do this, we decompose the 2-cells f and g into f � f1 �1 f2 and
g � g1 �1 g2 where f1 : x ñ y 1 and g1 : x ñ z 1 are rewriting steps of R, and f2,g2 are in R�. Then
pf1, g1q is a local branching of R modulo E and we use local confluence modulo E to get 1-cells y2 and
z2 in X� and 2-cells f 11 : y

1 ñ y2 and g 11 : z
1 ñ z2 in R� with y2 �E z2. Using Step 1, we get a 3-cell

A : f1 �1 f
1
1 VE g1 �1 g

11. We construct a 3-cell modulo E from f to g using Noetherian induction
principle from [11] defined as follows: we fix an auxiliary string rewriting system Raux with only one
0-cell, whose 1-cells are the pairs px, yq of elements of X�. Raux contains a 2-cell px, yq ñRaux px 1, y 1q
in any of the following situation:

• there exist 2-cells xñ x 1 and (yñ y 1 or xñ y 1) in R�;

• there exists a 2-cell yñ y 1 in R and an equivalence x �E x 1 in E;

• there exist 2-cells yñ x 1 and yñ y 1 in R�;

• x e�E y �E x 1
e 1

�E y
1 and `peq   `pe 1q.

Following [11, Proposition 2.2], if ñR � �E is terminating, then so is Raux. Let us apply Noetherian
induction on Raux with the following property:

Ppx, yq : x �E y ñ @ x 1, y 1 | x
�
ñP x

1 & y
�
ñR ñ x 1

E
_ y 1
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This leads to the diagram on the right which enables to construct a 3-cell A : fVE g in CpSpR, Eqq.

y 1

f 11 �1

f2

�+

1©

y2 %9 y

x

f

�(

g

6J

f1

.B

g1

�1
z2 %9 z

z 1
g 11

,@

g2

2F

�

�

Ind.

Ind.

Ind.

Step 3. We now prove that for each rewriting steps f : x ñ x 1 and g : y ñ y 1 in R such that x
e
�E y,

there exist 2-cells f 1 : x 1 ñ x2, g 1 : y 1 ñ y2 in R� and a 3-cell modulo E from f �1 f
1 to g �1 g 1.

We will prove the result by induction on `peq. If `peq � 0, this is Step 1. Suppose that `peq � 1, that is
x () y. By local confluence of R modulo E, looking at the local branching pf, eq, we get the existence
of 2-cells f1 : x 1 ñ x2, g1 : yñ y2 in R� with x2 �E y2. By Step 1, there exists a 3-cell modulo E in
CpSpR, Eqq from f �1 f1 to g1. We construct the 3-modulo E from f �1 f

1 to g �1 g 1 using Noetherian’s
induction as illustrated by the following diagram.

x 1
f 1

�0f1 �0
x__

__

f
*>

1© x2 %9 x2

y

g �3

g1 %9 y2 %9 y2

y 1
g 1

/C

2©

Ind.

2©

Hence the result is proved for `peq � 1. Suppose the result proved for `peq � k ¡ 1 and let us prove

the result for `peq � k � 1. Suppose that x
k�1
() y, we decompose

this reduction by x
k
() z () y. We fix a 2-cell h : y ñ py in R�. By

confluence modulo E, there exists 2-cells f 1 : x 1 ñ x2 and g 1 : z 1 ñ z2

in R� such that x2 �E py �E z
2. We construct a 3-cell modulo E

between f �1 f 1 and g �1 g 1 as depicted on the diagram on the right.

x__
k__

f�1f
1

 4
x2

y__
__

h %9 py
z

g�1g
1

*> z2

Induction on k

3©

Step 4. Now, let us prove that for any 2-cells f : x ñ px and g : y ñ py with x
e
�E y, there exists a

3-cell A : f VE g modulo E in CpSpR, Eqq. Let us first write f � f1 �1 f2 and g � g1 �1 g2 where
f1 : x ñ x 1 and g1 : y ñ y 1 are rewriting steps in R and f2 : x 1 ñ px, g2 : y 1 ñ py are 2-cells
in R�. Using the confluence modulo E on the triple pf1, e, g1q, we get the existence of 1-cells x2, y2

and 2-cells f 11 : x 1 ñ x2 and g 11 : y 1 ñ y2 such that x2 �E y2. According to Step 3, there exists a
3-cell modulo E in CpSpR, Eqq from f1 �1 f

1
1 to g1 �1 g 11. By Noetherian induction principle, we get the
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following diagram allowing us to construct the 3-cell A:

x 1

f 11 �2

f2

�,

3©
x

f1

)=

f

�*
x2 %9 px

y
g1

 4

g

4Hy2 %9 py
y 1

g 11

-A

g2

2F

�

�

Ind.

Ind.

Ind.

Step 5. We prove that every 2-sphere modulo E of RJ is the boundary of a 3-cell modulo E
of CpSpR, Eqq. First, let us consider a 2-cell f : uñ v in R�. Using confluence modulo E of R,
there exist 2-cells in R� σu : u ñ pu and σv : v ñ pv in R� such that
pu �E pv. By construction, the 2-cells f �1 σv and σu are parallel modulo
E and their respective targets are normal forms. By Step 4, there exists a
3-cell modulo E in CpSpR, Eqq from f �1 σv to σu as in the diagram on the
right.

u

f

 4

σu  4

v

σvj~pu pv
σf��

Now, let us consider a 2-cell f : u ñ v of RJ. By construction of RJ, the 2-cell f can be decom-
posed in a non unique way into a zigzag sequence f1 �g�11 �1 � � � �1 fn �1 g

�1
n with source u and target

v where each fi and gi is a 2-cell of R�. We define a 3-cell modulo σf : f �1 σv VE σu in CpSpR, Eqq
as the following composition:

u

σu

��

f1 %9 v1

σv1

��

u2
g1ey

σu2

��

%9 p� � � q uney

σun

��

fn %9 vn

σvn

��

v
gney

σv

��
pu pv1 xu2 p� � � q xun xvn pv

σf1��
σg1��

σfn
��

σgn
��

Proceeding similarly for any other 2-cell g : u 1 ñ v 1 of RJ, we get a 3-cell σg : g �1 σv 1 VE σu
in CpSpR, Eqq. In this way, for any 2-sphere pf, gq modulo E in RJ, there exists a 3-cell modulo fVE g
in CpSpR, Eqq given by the following composition:

u

f

�1
σu �2

v
σvl�pu pv

xu 1 pv 1
u 1

g

,@
σ 1u

-A

v 1
σ 1v

]q
�E4© 4©

σf��

σg

DX
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B. Categorical formulation of string rewriting systems
In this work, the constructions on SRS are formulated in categorical language. In this part, we recall
the notions used in the text for a reader unfamiliar to this language. We refer to [10] for a deeper
presentation of categorical formulation of SRS.

1-categories of strings. Given an alphabet X, we denote by X� the free monoid generated by X. This
monoid can be seen as the free 1-category generated by X, that is a 1-category with only one 0-cell
and whose 1-cells are strings made of elements of X. Having only one 0-cell, any two 1-cells of X�

are composable and the composition corresponds to concatenation of strings. This concatenation is
associative and unitary with the empty string as unit.

2-categories of rewriting steps. Recall that a 2-category C is defined by a set C0 of 0-cells, a set C1 of
1-cells and a set C2 of 2-cells and equipped with two compositions �0 for 1-cells and 2-cells and �1 for
2-cells. A 2-category is equipped with source and target maps making it a 2-graph, that is a digram in
the category of sets:

C0 C1
t0

oo

s0
oo C2

t1

oo

s1
oo

where the maps satisfy the globular relations: s0s1 � s0t1 and t0s1 � t0t1. For any 1 ¤ i   j ¤ 2,
the i-cell sipfq (resp. tipfq) is called the i-source (resp. i-target) of a j-cell f. A 2-cell f in C can be
pictured by

s0pfq

s1pfq

""

t1pfq

<<
f
��

t0pfq

The composition �0 and �1 are associative and unitary and compatible with source and target maps.
They also satisfy the exchange law, that is, for any situation

x

u

��

u 1 //

u2

@@

f��

f 1��

y

v

��

v 1 //

v2

BB

g
��

g 1��

z

the equality pf �0 gq �1 pf 1 �0 g 1q � pf �1 f
1q �0 pg �1 g

1q holds.
Given a SRS R on an alphabet X, one can construct the free 2-category generated by R, denoted by

R� and defined as follows. It has only one 0-cell, its 1-cells are strings on X and its 2-cells are rewriting
paths of R. The �0-composition in R� corresponds to concatenation of strings, and the �1-composition
is the sequential composition of rewritings of R. Each 2-cell f of R� can be decomposed into a sequence
f � f1 �1 f2 �1 . . . �1 fk, where each fi is a 2-cell corresponding to a rewriting step of the form:

x
u
// y

s1pfq

!!

t1pfq

==
f�� z

v
// t
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that we will denote by ufv. The length of a 2-cell f in R�, denoted by `pfq is the minimal number of
rewriting steps in any �1-decomposition of f. We denote by u ñR v if there exists a 2-cell in R� of
length 1, that is u rewrites to v in one R-step.

p2, 1q-categories of equivalence. Let E be a SRS on an alphabet X. The free p2, 1q-category generated
by E, denoted by EJ, is the free 2-category on E in which all the 2-cells are invertible with respect to
the �1-composition. That is its 0-cells, 1-cells and 2-cells are those of E�, and any 2-cell f of EJ has
an inverse f� : t1pfq ñ s1pfq with respect the �1-composition satisfying the relations f �1 f� � 1s1pfq
and f� �1 f � 1t1pfq. The 2-cells of the p2, 1q-category EJ corresponds to elements of the equivalence
relation generated by E, that we will denote by �E.
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Abstract

We study rewriting systems over free modules, that is linear combinations of free gen-
erators with noninvertible coe�cients. We provide a su�cient condition in terms of local
con�uence restricted to generators for the global rewrite relation to be con�uent: this con-
dition is formulated in terms of syzygies. When the coe�cients belong to a domain, we
equip the set of syzygies with a module structure, which provides a �ner criterion: the
local con�uence has to be checked over a subset of syzygies, namely a generating set for
the module structure.

1 Introduction

The diamond lemma for noncommutative polynomials was introduced by Bergman [4] for com-
puting normal forms in noncommutative algebras using rewriting theory. The diamond lemma
together with the works of Bokut [5] gave birth the theory of noncommutative Gröbner bases [7].
The latter provides applications in various areas of noncommutative algebra: study of embed-
ding problems, this was the motivation of Bokut and Bergman, homological algebra [1, 6] or
Koszul duality [2, 3], for instance.

The diamond lemma is based on the observation that the set of noncommutative polyno-
mials admitting a unique normal form is a vector space. Hence, the set of noncommutative
monomials being a linear basis of noncommutative polynomials, it is su�cient to check the
local con�uence property over these monomials. The diamond lemma asserts that when the so
called overlapping/inclusion ambiguities (which correspond to critical pairs for term rewriting)
are joinable, then every monomial admits a unique normal form, so that the global rewrite
relation is con�uent.

In this work, we are interested in the study of linear combinations of monomials where
the coe�cients in these combinations do not form a �eld. In this framework, elements with
a unique normal form do not form a subspace anymore: consider for instance a rewrite rule
2y −→ x, where the coe�cients belong to the ring of integers Z. Since 2 is not inverible in Z,
the monomial y is a normal form but y + y = 2y is not a normal form! This observation has
the following consequence: a rewrite relation such that every monomial admits a unique normal
form has no reason to be con�uent. For instance, consider the two rewrite rules 2y −→ −x
and 2x −→ −y. Then, one can show that for every n ∈ Z, nx and ny admit a unique normal
form, but 2x+ 2y rewrites both in x and y which are not joinable!

In Theorem 4.5, we present an analogous version of the diamond lemma for rewriting sys-
tems over linear combinations with noninveritble coe�cients. This work does not concern
noncommutative polynomials but the more general case of free left module (formal de�nitions
are given at the beginning of the next section): we do not take into account the structure of
monomials. The adaptation of the criterion of Theorem 4.5 to noncommutative polynomials
with noninvertible coe�cients is a further work. Two other further works should be mentionned
there: when the coe�cients are Z, the underlying module structure is the one of abelian groups,
so that we wish to develop rewriting theory in this context. Another perspective is the study
of the case where monomials are terms of the λ-calculus, which is the framework of algebraic
λ-calculus [8].
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2 Rewrite systems over free left modules

Throughout the paper, we �x a not necessarily commutative ring R and a set X. We denote by
RX the free left module over X, that is the set of �nite formal linear combinations of elements
of X with coe�cients in R. Given such two elements f =

∑
rxx and g =

∑
sxx, the sum

f + g is equal to
∑

(rx + sx)x and the left product of r ∈ R with f is equal to
∑

(rrx)x,
where rrx is the product of r and rx in R.

A set R of rewrite rules over RX is said to be left-monomial if its elements are of the form
rx −→ f , where r, x and f belong to R, X and RX, respectively. Our �rst objective is to
extend R into a rewrite relation on RX, still written −→, in such a way that the congruence
relation induced by −→ is the left ideal generated by R. In other words, we want to have the
following equivalence:

f
∗←→ g ⇐⇒ f − g =

∑
s (rx− f) , (1)

with the sum over a �nite set of indexes (s, rx −→ f) ∈ R×R. For that, we choose repre-
sentatives for every left class modulo r, so that every element s ∈ R admits a decomposition
r1r+r2 where r2 is the chosen representative of the left class of s. The rewrite relation induced
by R is de�ned by

(r1r + r2)x + g −→ r1f + r2x + g, (2)

where x belongs with a zero coe�cient in the decomposition of g. The rewrite relation (2)
satis�es the equivalence (1).

Example 2.1. When the ring R is left euclidean, we choose the representatives of left classes as
the set of remainders for the euclidean division. Here, we present the explicit description of the
rewrite relation for two examples of euclidean rings: the ring of integers Z and a commutative
�eld K. Consider a rewrite rule nx −→ f over ZX and an integer m. By euclidean division,
m is equal to qn+ r. Then, mx + g rewrites into qf + rx + g. A commutative �eld K is an
euclidean ring where the euclidean division of µ by λ is µ = (µ/λ)λ. Then, the rewrite rule
λx −→ f induces the rewrite step µx + g −→ (µ/λ) f + g.

3 Compatible termination order

In the next section, we formulate the diamond lemma for rewrite relations over RX induced by
a left-monomial set of rewrite rules R. For that, we assume that the rewrite relation induced
by R satis�es the following hypothesis:

∀ (rx −→ f, h) ∈ R ×RX, rx+ h ↓ f + h, (3)

where f ↓ g means that f and g are joinable. Moreover, we also need that the rewrite relation
is equipped with a compatible termination order de�ned in De�nition 3.1. In this de�nition we
use the following notation: given f ∈ RX, we denote by supp (f) the set of elements of X
which belong to the decomposition of f with nonzero coe�cient.

De�nition 3.1. A termination order compatible with R is a is a well-founded order � over
RX such that for every f, g, h ∈ RX and every a, b ∈ R the following conditions are
satis�ed:

i. if f −→ g, then g � f ,
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ii. if g � f and supp (h) ∩ supp (f) = ∅, then g + h � f + h,

iii. if f � ax, g � by and ax+ by 6= 0, then f + g � ax+ by,

iv. if f � ax and ab 6= 0, then bf � (ba)x.

Example 3.2. Assume that that for every rx −→ f ∈ R, x does not belong to supp (f).
Then, one can show that R satis�es (3). Moreover, assume that X is equipped with a well-
founded order �. Then, we de�ne the order on RX, still written �, as the restriction of the
multi-set order to �nite subsets of X: we have g ≺ h if supp (g)∩ supp (h) 6= ∅ and for every
x ∈ supp (g) such that x /∈ supp (h), there exists y ∈ supp (h) such that y /∈ supp (g) and
x ≺ y. Then, we can show that � is compatible with R.

The diamond lemma presented in the next section concerns rewrite systems satisfying the
hypothesis (3) and equipped with a compatible termination order. In the sketch of proof of the
diamond lemma, we we use Lemma 3.3. We need the following de�nition: given f ∈ RX, we
say that the rewrite relation −→ is locally con�uent at f if for every g, h, k ∈ RX such that
g ≺ f , h ≺ f , k ≺ f , g −→ h and g −→ k, we have h ↓ k.

Lemma 3.3. Assume that R is equipped with a compatible termination order and satis�es the
hypothesis (3) and that −→ is locally con�uent at f. For every f1, f2, g1, g2 � f such that
f1 ↓ g1 and f2 ↓ g2, and for every r ∈ R, we have f1 + f2 ↓ g1 + g2 and rf1 ↓ rg1.

4 The diamond lemma

The diamond lemma [4] gives a criterion for testing local con�uence over so called critical pairs.
In Corollary 4.5, we formulate the diamond lemma for rewriting systems over free modules,
which consists in testing local con�uence for generating sets of syzygies. These generating sets
are analogous to critical pairs in our framework.

De�nition 4.1. Let p = (rx −→ f, sx −→ g) be a pair rewrite rules whose left-hand side
are multiple of a common element x. A syzygy of p is a tuple (r1, r2, s1, s2) of elements
of R such that r2 and s2 are the chosen representatives of their left classes modulo r ans s,
respectively, and r1r + r2 = s1s+ s2. The set of syzygies of p is written syz (p). Moreover, a
syzygy (r1, r2, s1, s2) is said to be con�uent if we have r1f + r2x ↓ s1g + s2x.

Theorem 4.2. Let R be a left-monomial set of rewrite rules satisfying hypothesis (3) and let
� be a termination order compatible with −→. The rewrite relation −→ is con�uent if and only
if for every pair of rewrite rules p = (rx −→ f, sx −→ g), every syzygy of p is con�uent.

Sketch of proof. Let (r1, r2, s1, s2) ∈ syz (p). Letting h = (r1r + r2)x = (s1s+ s2)x, we
observe that h rewrites into r1f + r2x and s1g + s2x, which shows the direct implication.

Assume that for every p = (rx −→ f, sx −→ g) and for every (r1, r2, s1, s2) ∈ syz (p),
we have r1f + r2x ↓ s1g+ s2x and let us show that −→ is con�uent. The rewrite relation −→
is terminating by de�nition of compatibility with a termination order, so that it is su�cient to
show that it is locally con�uent, or equivalently that is locally con�uent at u for every u. We
show the latter by induction on u: assume that −→ is con�uent at every v � u and that two
rewrite rules rx −→ f and sy −→ g apply to u. Two cases have to be investigated according
to x 6= y or x = y for proving that these two rewrite rules provide joinable terms.
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First, if x 6= y, we let u = (r1r + r2)x + (s1s+ s2) y + h and we have the following
con�uence diagram:

r1f + r2x+ (s1s+ s2) y + h ∗

))
f ′ ∗

!!
(r1r + r2)x+ (s1s+ s2) y + h

22

,,

r1f + r2x+ s1g + s2x+ h

∗ //

∗ 00

h′

g′ ∗

==

(r1r + r2)x+ s1g + s2y + h ∗

55

The term f ′ (respectively g′) and the two arrows coming to f ′ (respectively g′) exist by hy-
pothesis (3). By de�nition of a compatible rewrite order, we have r1f + r2x+ s1g+ s2x+ h �
(r1r + r2)x+(s1s+ s2) y+h, so that −→ is con�uent at r1f +r2x+s1g+s2x+h by induction
hypothesis, which gives h′ and the two arrows coming to h′.

If x = y, we let u = (r1r + r2)x + h = (s1s+ s2)x + h and we have the following
con�uence diagram:

r1f + r2x+ h ∗

&&
f ′ ∗

""
(r1r + r2)x+ h = (s1s+ s2)x+ h

11

--

h′ + h

∗ //

∗ //

h′′

g′ ∗

==

s1g + s2y + h ∗

88

The tuple (r1, r2, s1, s2) is a syzygy, so that there exists h′ such that r1f + r2x
∗−→ h′

∗←−
s1g+ s2x. By de�nition of a compatible termination order, h′+h′, r1f + r2x and s1g+ s2x are
smaller than u. The existence of f ′ and g′ together with their coming arrows are consequences
of Lemma 3.3. The existence of h′′ and its coming arrows are due to the induction hypothesis.

Our diamond lemma asserts that the con�uence property has to be checked over subsets of
syzygies instead of all the syzygies in the case where the ring R is a domain, that is rs = 0 if
and only if r = 0 or s = 0. These subsets are generating set for an R-module structure over
syzygies given by the following operations:

i. let syz1 = (r1, r2, s1, s2) and syz2 = (r′1, r
′
2, s

′
1, s

′
2) be two syzygies of p. We

write r2 + r′2 = r3r + r4 and s2 + s′2 = s3s + s4. Then, we get a new syzygy
syz1+syz2 = (r1 + r′1 + r3, r4, s1 + s′1 + s3, s4) since we have (r1 + r′1 + r3) r + r4 =
(r1 + r′1) r + (r2 + r′2) = (s1 + s′1) s + (s2 + s′2) = (s1 + s′1 + s3) s + s4.

ii. Let syz = (r1, r2, s1, s2) be a syzygy of p and let t ∈ R. We write tr2 = r3r + r4
and ts2 = s3s + s4. Then, we get a new syzygy tsyz = (tr1 + r3, r4, ts1 + s3, s4)
since we have (tr1 + r3) r + r4 = t (r1r + r2) = t (s1s+ s2) = (ts1 + s3) s+ s4.
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Remark 4.3. If R is not a domain, then the element r3 in i. and ii. is not unique, so that
the sum of two syzygies and the product of a syzygy by an element of R is not well-de�ned.

Lemma 4.4. Assume that R is a domain. Let p = (rx −→ f, sx −→ g), let syz1 =
(r1, r2, s1, s2) and syz2 = (r′1, r

′
2, s

′
1, s

′
2) be two con�uent syzygies of p and let t ∈ R. If

−→ is con�uent at (r1 + r′1 + r3) r+r4 = (s1 + s′1 + s3) s+s4 (respectively (tr1 + r3) r+r4) =
(ts1 + s3) s+ s4), then syz1 + syz2 (respectively tsyz1) is con�uent.

Sketch of proof. We only show that the sum of two con�uent syzygies syz1 + syz2 is con�uent.

Let h, h′ ∈ RX such that r1f+r2x
∗−→ h

∗←− s1g+s2x and r
′
1f+r

′
2x

∗−→ h′
∗←− s′1g+s

′
2x.

Letting t = (r1 + r′1 + r3) r + r4 = (s1 + s′1 + s3) s+ s4, we have the following diagram:

(r1 + r′1 + r3) f + r4x ∗

** h1

(r1 + r′1) f + (r3r + r4)x
∗

44

∗
** h3

tx

55

))

h+ h′ ∗

44

∗
** h4

(s1 + s′1) g + (s3s+ s4)x ∗

**

∗

44

h2

(s1 + s′1 + s3) g + s4x
∗

44

The elements h1, h2 and their coming arrows are constructed using hypothesis (3). The
elements h3 and h4 and their coming arrows are constructed using that −→ is con�uent at tx
and Lemma 3.3. Finally, using again an inductive argument of con�uence, we close the diagram
and deduce that syz1 + syz2 is con�uent.

Using similar arguments, we show that tsyz1 is con�uent, which concludes the proof.

An adaptation of the proof of Theorem 4.2 using Lemma 4.4 provides our diamond lemma,
formulated as follows:

Theorem 4.5. Assume that R is a domain and that for every p = (rx −→ f, sx −→ g),
every element of a generating set of syz(p) is con�uent. The rewrite relation −→ is con�uent.

Example 4.6. Assume thatR is a commutative �eldK. For every p = (λx −→ f, µx −→ g),
syz (p) is the vector space spanned by (1/λ, 0, 1/µ, 0). From Corollary 4.5, −→ is con�uent if
and only if for every pair of rewrite rules (λx −→ f, µx −→ g), we have f/λ ↓ g/µ, which
is equivalent to each x ∈ X admits a unique normal form.
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Abstract

On the one hand, ordered completion is a fundamental technique in equational theorem
proving that is employed by automated tools. On the other hand, their complexity makes
such tools inherently error prone. As a remedy to this situation we give an Isabelle/HOL
formalization of ordered rewriting and completion that comes with a formally verified
certifier for ordered completion proofs. By validating generated proof certificates, our
certifier increases the reliability of ordered completion tools.

1 Introduction

Completion has evolved as a fundamental technique in automated reasoning since the ground-
breaking work by Knuth and Bendix [5]. Its goal is to transform a given set of equations into
a terminating and confluent term rewrite system that induces the same equational theory and
can thus be used to decide equivalence with respect to the initial set of equations. Since the
original procedure can fail if unorientable equations are encountered, ordered completion was
developed to remedy this shortcoming [2]. The systems generated by ordered completion tools
are in general only ground confluent, but this turns out to be sufficient for practical applications
like refutational theorem proving.

Consider for example the following equational system E0 which the tool MædMax [10]

x ÷ y ≈ 〈0, 0〉 x ÷ y ≈ 〈s(q), s(q)〉 x − 0 ≈ x

0 − y ≈ 0 s(x)− s(y) ≈ x − y s(x)> s(y) ≈ x > y

s(x)> 0 ≈ true s(x)≤ s(y) ≈ x ≤ y 0 ≤ x ≈ true

transforms by ordered completion into the following rules R (→) and equations E (≈):

x − 0 → x 0 − x → 0 s(x)− s(y)→ x − y x ÷ y → 〈0, 0〉
0 ≤ x → true s(x)≤ s(y)→ x ≤ y s(x)> 0 → true

s(x)> s(y)→ x > y 〈s(x), s(x)〉 ≈ 〈s(q), s(q)〉 〈s(q), s(q)〉 ≈ 〈0, 0〉 〈0, 0〉 ≈ 〈0, 0〉

This system can be used to decide a given ground equation by checking whether the terms’
unique normal forms (with respect to ordered rewriting) are equal.

Such ground complete systems are useful for other tools, like ConCon [9]—a tool for au-
tomatically proving confluence of conditional term rewrite systems—which employs ordered
completion for proving infeasibility of conditional critical pairs. In fact, E0 from our initial
example is the equational system that ConCon derives from Cops #361 for that purpose. The
latter models division with remainder, though the transformation performed by ConCon creates
some equations which do not fit into this semantics but are required to decide confluence.

∗This work is supported by the Austrian Science Fund (FWF): projects T789 and P27502.
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However, automated tools like ConCon and MædMax are complex and highly optimized.
The produced proofs often comprise hundreds of equations and thousands of steps. Hence care
should be taken to trust the output of such tools.

To improve this situation we follow a two-staged certification approach and first (1) add the
relevant concepts and results to a formal library, and then (2) use code generation to obtain a
trusted certifier. More specifically, our contributions are as follows:

• Regarding stage (1), we extended the Isabelle Formalization of Rewriting1 (IsaFoR) by
ordered rewriting and a generalization of the ordered completion calculus oKB [2], and
proved the latter correct for finite runs using ground-total reduction orders (Section 3).
Moreover, we established ground-totality of the lexicographic path order and the Knuth-
Bendix order.

• With respect to stage (2), we extended the XML-based certification problem format (CPF
for short) [8] by certificates comprising the initial equations, the resulting system along
with a reduction order, and a stepwise derivation of the latter from the former. We then
formalized check functions that verify that the supplied derivation corresponds to a valid
oKB run whose final state matches the resulting system (Section 4). As a result CeTA (the
certifier accompanying IsaFoR) can now certify ordered completion proofs produced by the
tool MædMax [10].

2 Preliminaries

In the sequel we use standard notation from term rewriting [1]. We consider the set of all terms
T (F ,V) over a signature F and an infinite set of variables V, while T (F) denotes the set of
all ground terms. A substitution σ is a mapping from variables to terms. As usual, we write
tσ for the application of σ to a term t. A variable permutation (or renaming) π is a bijective
substitution such that π(x) ∈ V for all x ∈ V. For an equational system (ES) E we write E↔ to
denote its symmetric closure E ∪ {t ≈ s | s ≈ t ∈ E}. For a reduction order > and an ES E , the
term rewrite system (TRS) E> consists of all rules sσ → tσ such that s ≈ t ∈ E and sσ > tσ.

Given a reduction order >, an extended overlap is given by two variable-disjoint vari-
ants `1 ≈ r1 and `2 ≈ r2 of equations in E↔ such that p ∈ PosF (`2) and `1 and `2|p are unifiable
with most general unifier µ. An extended overlap which in addition satisfies r1µ 6> `1µ and
r2µ 6> `2µ gives rise to the extended critical pair `2[r1]pµ ≈ r2µ. The set CP>(E) consists of all
extended critical pairs among equations in E . A TRS R is (ground) complete if it is terminating
and confluent (on ground terms). Finally, we say that a TRS R is a presentation of an ES E ,
whenever ↔∗E =↔∗R.

3 Formalizing Ordered Completion

We consider the following definition of ordered completion.

Definition 1 (Ordered Completion). The inference system oKB of ordered completion operates
on pairs (E ,R) of equations E and rules R over a common signature F . It consists of the
following inference rules, where S abbreviates R∪ E> and π is a renaming.

1http://cl-informatik.uibk.ac.at/isafor
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deduce
E ,R

E ∪ {sπ ≈ tπ},R if s←−−−
R∪E

· −−−→
R∪E

t compose
E ,R] {s→ t}
E ,R∪ {sπ → uπ} if t −→S u

E ] {s ≈ t},R
E ,R∪ {sπ → tπ} if s > t

E ] {s ≈ t},R
E ∪ {uπ ≈ tπ},R if s→S u

orient simplify
E ] {s ≈ t},R
E ,R∪ {tπ → sπ} if t > s

E ] {s ≈ t},R
E ∪ {sπ ≈ uπ},R if t→S u

delete
E ] {s ≈ s},R

E ,R collapse
E ,R] {t→ s}
E ∪ {uπ ≈ sπ},R if t→S u

We write (E ,R) ` (E ′,R′) if (E ′,R′) is obtained from (E ,R) by employing one of the above
inference rules. A finite sequence of inferences (E0,∅) ` (E1,R1) ` · · · ` (En,Rn) is called a run.
Definition 1 differs from the original formulation of ordered completion [2] in two ways. First,
collapse and simplify do not require an encompassment condition. This omission is possible since
we only consider finite runs. Second, we allow variants of rules and equations to be added. This
relaxation tremendously simplifies certificate generation in tools, where facts are renamed upon
generation to avoid the maintenance and processing of many renamed versions of one equation.

The following inclusions express straightforward properties of oKB.

Lemma 1. If (E ,R) `∗ (E ′,R′) then R ⊆ > implies R′ ⊆ >.

Lemma 2. If (E ,R) `∗ (E ′,R′) then the conversion equivalence ↔∗E∪R =↔∗E′∪R′ holds.

The following abstract result is the key ingredient to our proof of ground completeness.

Lemma 3. Let E be an ES and > a reduction order such that s > t or t ≈ s ∈ E holds for all
s ≈ t ∈ E. If for all s ≈ t ∈ CP>(E) we have s ↓E> t or there is some s′ ≈ t′ ∈ E↔ such that
s ≈ t = (s′ ≈ t′)σ then E> is ground complete.

In combination, Lemmas 1, 2, and 3 allow us to obtain our main correctness result: ac-
ceptance of a certificate by our check function implies that R ∪ E> is a ground complete
presentation of E0. For simplicity’s sake, we give only the corresponding high-level result (that
is, not mentioning our concrete implementation):

Theorem 1. Suppose (E0,∅) `∗ (E ,R) was obtained using a ground-total reduction order >
with minimal constant c and for all s ≈ t ∈ CP>(E↔∪R) either s ↓R∪E> t, or s ≈ t = (s′ ≈ t′)σ
for some s′ ≈ t′ ∈ E↔. Then ↔∗E0 =↔∗R∪E and R∪ E> is ground complete.

This result employs the following sufficient condition for ground completeness: all critical
pairs are joinable or instances of equations already present. In fact, this is not a necessary
condition. Martin and Nipkow [6] gave examples of ground confluent systems that do not satisfy
this condition, and presented a stronger criterion. However, ground confluence is known to be
undecidable even for terminating TRSs [4], hence no complete criterion can be implemented.

Ground-total reduction orders. Ground confluence crucially relies on ground-total reduc-
tion orders. Our IsaFoR proofs of the following results follow the standard textbook approach [1].

Lemma 4. If > is a total precedence on F then >lpo is total on T (F).

Lemma 5. If > is a total precedence on F then >kbo is total on T (F).

In addition, we proved that for any given KBO >kbo (LPO >lpo) defined over a total prece-
dence > there exists a minimal constant c such that t >kbo c (t >lpo c) holds for all t ∈ T (F).
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4 Checking Ordered Completion Proofs

While CeTA has supported certification of standard completion for quite some time [7], certifi-
cation of ordered completion proofs is considerably more intricate. For standard completion,
the certificate contains the initial set of equations E0, the resulting TRS R together with a
termination proof, and stepwise E0-conversions from ` to r for each rule ` → r ∈ R. The
certifier first checks the termination proof to guarantee termination of R. This allows us to
establish confluence of R by ensuring that all critical peaks are joinable. At this point it is
easy to verify ↔∗E0 ⊆ ↔∗R: for each equation s ≈ t ∈ E0 compute the R-normal forms of s and
t and check for syntactic equality. The converse inclusion ↔∗R ⊆ ↔∗E0 is taken care of by the
provided E0-conversions. Overall, we obtain that R is a complete presentation of E0 without
mentioning a specific inference system for completion.

Unfortunately, the same approach does not work for ordered completion: The inclusion
↔∗E0 ⊆ ↔∗R∪E cannot be established by rewriting equations in E0 to normal form, since they
may contain variables but R ∪ E> is only ground confluent. Therefore, we instead ask for
certificates that contain the input equalities E0, the resulting equations and rules (E ,R), the
reduction order >, and a sequence of inference steps according to Definition 1. A valid certificate
ensures (by Lemma 2) that the relations ↔∗E0 and ↔∗R∪E coincide.

The certificate corresponding to our initial example contains the equations E0, the resulting
system (E ,R), and the reduction order >kbo with precedence > > s > ≤ > true > − > ÷ >
p > 0, w0 = 1, and w(0) = 2, w(÷) = w(true) = w(s) = 1, and all other symbols having weight
0. In addition, a sequence of inference steps explains how (E ,R) is obtained from E0:

simplifyleft x ÷ y ≈ 〈s(q), s(q)〉 to 〈0, 0〉 ≈ 〈s(q), s(q)〉
deduce 〈0, 0〉 ← 〈s(u), s(u)〉 → 〈0, 0〉
deduce 〈s(x), s(x)〉 ← 〈0, 0〉 → 〈s(q), s(q)〉
deduce x > y ← s(x)> s(y)→ s(s(x))> s(s(y))

deduce s(s(x))> s(0)← s(x)> 0 → true
orientrl 0 ≤ x → true
orientlr s(s(x))> s(0)→ true
orientrl s(x)> s(y)→ x > y
orientlr s(x)> 0 → true
orientrl s(s(x))> s(s(y))→ x > y
orientrl x − 0 → x
orientlr x ÷ y → 〈0, 0〉
orientrl s(x)− s(y)→ x − y
orientrl 0 − x → 0
orientrl s(x)≤ s(y)→ x ≤ y
collapse s(s(x))> s(s(y))→ x > y to s(x)> s(y) ≈ x > y
simplifyleft s(x)> s(y) ≈ x > y to x > y ≈ x > y
collapse s(s(x))> s(0)→ true to s(x)> 0 ≈ true
simplifyleft s(x)> 0 ≈ true to true ≈ true

delete x > y ≈ x > y

delete true ≈ true

Given such a certificate, CeTA checks that the provided sequence of inferences forms a run
(E0π,∅) `∗ (E ,R) for some renaming π. Verifying the validity of individual inferences involves
checking side conditions such as orientability of a term pair in an orient step with respect to
the given reduction order. Then it is checked that R ∪ E> is ground confluent according to
the criterion of Theorem 1. Finally, it is ensured that the given reduction order > has a total
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precedence (and is admissible, in the case of KBO). As usual in CeTA, error messages are printed
if one of these checks fails, pointing out the reason for the proof being rejected.

5 Conclusion

We presented our formalization of ordered completion in IsaFoR, which enables CeTA (starting
with version 2.33) to certify ordered completion proofs. To the best of our knowledge, CeTA
thus constitutes the first formally verified certifier for ordered completion.

Together with Hirokawa and Middeldorp we reported on another Isabelle/HOL formaliza-
tion of ordered completion [3]. The main difference to our current work is that this other
formalization is based on a more restrictive inference system of ordered completion that also
covers infinite runs, while we restrict to finite runs in the interest of certification. Indeed every
finite run akin to [3, Definition 18] is also a run according to Definition 1, while the inference
sequence in our running example is not possible in the former setting.

As future work, we plan to add more powerful criteria for ground confluence to IsaFoR, and
support equational disproofs based on ground complete systems in CeTA. To that end, it would
be useful to also support narrowing in CeTA. Certified equational disproofs could in turn be used
to certify confluence proofs by ConCon which rely on infeasibility of conditional critical pairs.
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Abstract

Confluence is a decidable property of ground rewrite systems. We present a formalization
effort in Isabelle/HOL of the decision procedure based on ground tree transducers.

1 Introduction

Confluence is an undecidable property of term rewrite systems. Oyamaguchi [7] was the first to
prove the decidability of confluence for ground rewrite systems. Dauchet, Heuillard, Lescanne,
and Tison [3] presented a simpler decidability proof based on ground tree transducers. Comon,
Godoy, and Nieuwenhuis [2] were the first to prove that confluence of ground rewrite systems is
decidable in polynomial time and Felgenhauer [6] presented a cubic time algorithm.

In [4] the decision procedure of [3] was extended to left-linear, right-ground rewrite systems.
Dauchet and Tison [5] showed that the first-order theory of rewriting is decidable for ground
rewrite systems. In this theory properties definable by a first-order formula over rewrite
predicates like → and →∗ are expressible. This includes confluence. The decision procedure
(extended to left-linear, right-ground rewrite systems) is implemented in FORT [8]. Ground tree
transducers and their closure properties play a key role in the decision procedure.

Our long-term aim is to formalize the decision procedure in the proof assistant Isabelle/HOL
such that the output of FORT can be certified. (To this end, FORT would emit a sequence
of operations on automata that correspond to a formula; the certifier would then compute
the corresponding automata using a verified implementation.) In this paper we present a
formalization of ground tree transducers and their closure properties. Furthermore, a number of
results on the interplay between rewriting and ground tree transducers are formalized, bringing
us close to the first formalized proof of the decidability of confluence of ground rewrite systems.

Our formalization is based on IsaFoR [9]1. Our own development can be found at http://

cl-informatik.uibk.ac.at/software/fortissimo/iwc2018/. Furthermore most definitions,
theorems, and lemmas directly correspond to the formalization. These are indicated by the 4
symbol, which links to a HTML presentation in the PDF version of the paper.

2 Preliminaries

We assume familiarity with term rewriting and (bottom-up) tree automata. Let R be a ground
term rewrite system (TRS for short) over a signature F , where F contains at least one constant
(which is assured if R 6= ∅.) A tree automaton A = (Q,Qf ,∆) consists of a set of states

∗This work is supported by the Austrian Science Fund (FWF): project P30301.
1http://cl-informatik.uibk.ac.at/isafor
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Q, a set of final states Qf , and a set of transitions ∆. Ordinary transitions have the form
f(q1, . . . , qn)→ q where q1, . . . , qn and q are states, and f ∈ F has arity n, while ε-transitions
p→ q are between states. Noting that the transitions are ground rewrite rules, we write →A
for →∆. To decide confluence of R, first a ground tree transducer (GTT for short) G = (A,B)
is constructed that recognizes a relation in between2 →R and →∗R. A GTT G consists of two
tree automata A and B that operate on the same signature. A pair of ground terms s and t is
accepted by G if s→∗A · ∗B← t; we denote the relation consisting of all such pairs (s, t) by L(G).

Next the transitive closure G∗ of G is computed by an iterative procedure in which certain
ε-transitions are added to the involved tree automata. Since (→∗R)∗ = →∗R, the GTT G∗
recognizes reachability. The relation ∗

R← is recognized by the inverse G∗− of G∗ (which is simply
obtained by interchanging the two tree automata that make up G∗).

The GTTs G∗ and G∗− are composed to obtain GTTs G1 and G2 that recognize the relations
↑R = ∗

R← · →∗R and ↓R =→∗R · ∗R←. The final step of the decision procedure is the inclusion
check L(G1) ⊆ L(G2). In [4] this is done by applying an ad-hoc recognizability preserving
transformation from GTTs to tree automata over an extended signature, and subsequently using
a decision procedure for tree language inclusion. In our formalization we instead associate RR2

automata to G1 and G2, followed by an inclusion check for RRn automata, where RRn relations
are a way of capturing n-ary relations on terms as regular tree languages [1]. The reason for
this is that RRn automata play a key role in the decision procedure for the first-order theory of
rewriting. Therefore we can reuse our results when formalizing further aspects of the theory
implemented in FORT. On the other hand, the detour via GTTs is necessary because RR2

relations are not closed under transitive closure.
The most complicated part of the above procedure is the closure of GTT relations under

composition and transitive closure. Proofs of these results are presented in detail in [1, Section 3.2].
Below we present (simpler) paper proofs that correspond to our formalization.

3 Formalizing the Confluence Check

We rely on IsaFoR’s formalization of tree automata, where a tree automaton is a triple consisting
of the set of final states (which is irrelevant for GTTs), the set of ordinary transitions, and the
set of epsilon transitions. The set of states of the automaton is left implicit. For example,

ta.make {0} {a [] → 1 , f [1 ] → 0} {(0 , 1 )}

would be an automaton that accepts fk(a) for k > 1 (the transitions are a→ 1, f(1)→ 0, and
0→ 1). Note that ordinary transitions and ε-transitions have different types, hence different
notation. We can check whether an automaton A accepts a term t in state q using q ∈ ta res A
t. The language accepted by A is provided as ta lang A. GTTs are formalized as pairs of tree
automata with the same state and function symbol types. The relation accepted by a GTT is
formalized by the predicate gtt accept, which is equivalent 4 to gtt accept ′ given in Listing 1.

The first step of the construction is to obtain a GTT from the given ground TRS R. To this
end, we follow the construction of Dauchet et al. [4]. Let 〈s〉 be a state for each subterm s�R
(meaning there is a rule l→ r in R such that s� l or s� r). Let G = (A,B) where

∆A = {f(〈t1〉, . . . , 〈tn〉)→ 〈f(t1, . . . , tn)〉 | f(t1, . . . , tn) �R} ∪ {〈l〉 → 〈r〉 | l→ r ∈ R}

and ∆B is defined symmetrically (replacing 〈l〉 → 〈r〉 by 〈r〉 → 〈l〉 in the second subset). In the

2It is also true that →∥ R is recognizable by a GTT 4 4 but for confluence this weaker result suffices.
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inductive gtt accept ′ :: ( ′q , ′f ) gtt ⇒ ( ′f , ′q) term ⇒ ( ′f , ′q) term ⇒ bool
for G where
mctxt [intro]: length ss = length ts =⇒ num holes C = length ss =⇒
∀ i < length ts. ∃ q . q ∈ ta res (fst G) (ss ! i) ∧ q ∈ ta res (snd G) (ts ! i) =⇒
gtt accept ′ G (fill holes C ss) (fill holes C ts)

Listing 1: Definition of GTT acceptance.

definition cmn ta rules::( ′f , ′v) term set ⇒ (( ′f , ′v) term option, ′f ) ta rule set
where

cmn ta rules T =
{(f (map Some ts) → Some (Fun f ts)) |f ts t . Fun f ts � t ∧ t ∈ T}

definition trs to ta A::( ′f , ′v) trs ⇒ (( ′f , ′v) term option, ′f ) ta where
trs to ta A R = ta.make {} (cmn ta rules (TRS terms R))
{(Some l , Some r) |l r . (l ,r) ∈ R}

Listing 2: Associating a GTT to a TRS.

formalization, 〈s〉 is represented by Some s.3 This gives rise to the definitions in Listing 2. The
resulting GTT is suitable for simulating sequences of R steps, by the following theorem.

Theorem 1. →R ⊆ L(A,B) 4 and L(A,B) ⊆ →∗R. 4

Example 2. We illustrate the construction on the ground TRS R consisting of the rules a→ f(a),
a→ b, and f(b)→ c. We construct the GTT G = (A,B) with ∆ consisting of the rules

a→ 〈a〉 b→ 〈b〉 c→ 〈c〉 f(〈a〉)→ 〈f(a)〉 f(〈b〉)→ 〈f(b)〉

to recognize all subterms in the rules of R, ∆A = ∆ ∪ {〈a〉 → 〈f(a)〉, 〈a〉 → 〈b〉, 〈f(b)〉 → 〈c〉},
and ∆B = ∆ ∪ {〈f(a)〉 → 〈a〉, 〈b〉 → 〈a〉, 〈c〉 → 〈f(b)〉}. Note that L(G) accepts more than →∥ R.
For instance, (a, f(b)) ∈ L(G) as a→∗A 〈f(a)〉 ∗B← f(b) but a→∥ R f(b) does not hold.

To illustrate one of the minor (but tedious) issues that come up in the formalization, note
that the state type of the GTT seeps into terms accepted by the GTT: they are objects of type
( ′f , ( ′f , ′q) term option) term. On the other hand, R∗ is a relation between terms of type ( ′f ,
′v) term, with a completely different variable type. But actually, since we deal with ground
terms, the variable type does not matter. In order to express this property, we use the existent
adapt vars function that changes the variable type arbitrarily.

The next step in the decision procedure is the computation of the transitive closure. However,
that computation builds on the composition of GTT relations, so we present that first. The
composition combines the transitions of the constituent GTTs, and adds carefully chosen epsilon
transitions.

Definition 3. 4 Let G1 = (A1,B1) and G2 = (A2,B2) be GTTs. We let

GTT comp(G1,G2) = (∆A1
∪∆A2

∪∆ε(B1,A2),∆A1
∪∆A2

∪∆ε(A2,B1))

Here ∆ε(A,B) = {(p, q) | t→∗A p and t→∗B q for some t ∈ T (F)}.
3This use of the option type is not really necessary, but it was helpful to distinguish states and terms while

developing the proofs.

348



Formalizing GTTs in Isabelle/HOL Felgenhauer, Middeldorp, Prathamesh, Rapp

This construction is simplified compared to [1, 3]. Compared to [3], only ε-transitions are
added, while [1] actually adds fewer ε-transitions than our definition, but at the cost of a less
symmetric definition.

Example 4. Continuing Example 2, we let Q be the set of states in ∆ and compute ∆ε(A,B) =
IdQ ∪ {〈b〉 → 〈a〉, 〈c〉 → 〈f(b)〉} ∪ {〈c〉, 〈f(a)〉, 〈f(b)〉} × {〈a〉, 〈f(a)〉} and ∆ε(B,A) = ∆ε(A,B)−.
For instance, the transition rule 〈c〉 → 〈a〉 ∈ ∆ε(A,B) is witnessed by the term f(b).

Theorem 5. 4 If R1 and R2 are recognizable relations then R1 ◦R2 is a recognizable relation.
More precisely, if R1 and R2 are recognized by G1 and G2, where the states of G1 and G2 are
disjoint, then R1 ◦R2 is recognized by GTT comp(G1,G2).

The transitive closure of a GTT G is computed by taking G0 = G and then iterating
Gn+1 = GTT comp(Gn,Gn) until a fixed point is reached. If G is finite, this process terminates.
4 We have proved that the GTT produced that way accepts the transitive closure of the
original GTT. 4 One interesting aspect is that transitivity of the resulting GTT relation follows
immediately from the first part of the proof of Theorem 5 (where the assumption that the states
of G1 and G2 are disjoint is not used). 4

Example 6. Returning to our example, let A1 = A ∪∆ε(B,A) and B1 = B ∪∆ε(A,B). The
GTT G1 = (A1,B1) recognizes →∗R while its inverse ∗R← is recognized by G−1 = (B1,A1). Next
we compose G−1 and G1 to obtain a GTT G↑ that recognizes ∗R← · →∗R. This requires a renaming
of states in one of the GTTs. Similarly, composing G1 and G−1 produces a GTT G↓ recognizing
the joinability relation →∗R · ∗R←.

Finally, we need to check whether one GTT language is a subset of another one. To this
end, we formalized the result 4 that any GTT relation is an RR2 relation.

Theorem 7. 4 Let R be a ground TRS and let G = (A,B) be the GTT simulating R-steps as
in Theorem 1. Then R is confluent on ground terms if and only if

ta lang(GTT to RR2(GTT comp(G∗−,G∗))) ⊆ ta lang(GTT to RR2(GTT comp(G∗,G∗−)))

Example 8. To finish our running example, we transform G↑ and G↓ into RR2 automata. A
subsequent language inclusion check returns a negative answer from which we infer that the
TRS R lacks confluence. Indeed there are non-joinable peaks, e.g., b← a→ f(a)→ f(b)→ c.

Note that the results presented so far are purely theoretical, and cannot be executed directly.
Here we sketch how to derive executable code for ∆ε, cf. Definition 3. Note that a direct
implementation of the definition would require iterating over all ground terms t, of which there
are infinitely many. The first step is to define an inductive set ∆′ε 4 that is equal to ∆ε: 4

f(~p)→ p ∈ A f(~q)→ q ∈ B len ~p = len ~q = n (pi, qi) ∈ ∆′ε (1 6 i 6 n)

(p, q) ∈ ∆′ε
cong

(p, q) ∈ ∆′ε p→ p′ ∈ A
(p′, q) ∈ ∆′ε

ε1
(p, q) ∈ ∆′ε q → q′ ∈ B

(p, q′) ∈ ∆′ε
ε2

We then plug this into a generic algorithm for Horn inference (which we regard as the foundation
of saturation algorithms), which works on inference rules of the shape a1 · · · an → a, where
ai, a are all of the same type. The idea here is that proving correctness and termination can be
done once and for all on this generic level, and then be reused for any saturation procedure.

In the case of ∆′ε, the inference rules work on pairs of states (p, q), i.e., the potential elements
of ∆′ε. We turn the inferences of ∆′ε into Horn clauses by keeping only the premises of the form
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(p, q) ∈ ∆′ε, evaluating the other premises immediately based on A and B. 4 Then we show
that the resulting Horn inferences characterize ∆′ε. 4 In order to use the generic procedure, we
have to provide a function that computes the inferences with no premises (∆ε

′ infer0), 4 and
a function that computes inferences that use a particular premise (p, q) and other premises from
a given set (∆ε

′ infer1). 4 With those functions we can instantiate the generic procedure.

∆ε
′ impl A B = saturate impl (∆ε

′ infer0 A B) (∆ε
′ infer1 A B)

Partial correctness follows from partial correctness of the generic procedure. 4

4 Conclusion

We have outlined an ongoing effort to formalize decidability of (ground) confluence of ground
TRSs, which is a useful test case for the decidability of the full first-order theory of rewriting for
ground TRSs. The main remaining challenge is to provide executable algorithms for all these
results and prove their termination. We have already made significant progress to this end; in
fact there are executable versions of all constructions needed for the confluence check, except for
the final tree language subset check.

Our immediate goal is to provide a verified confluence checker for ground TRSs. Many
tasks remain as future work. We want to adapt the basic TRS to GTT construction to cover
the larger class of linear, variable separated (extended) TRSs, which consist of rewrite rules
` → r such that ` and r are linear terms without common variables. For the full first-order
theory of rewriting, while we already have constructions for intersection, union, complement,
cylindrification and projection (the latter are used for dealing with quantifiers), these are not
yet executable.
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Abstract

Unravelings, which are transformations of a conditional term rewriting system (CTRS,
for short) into an unconditional term rewriting system (TRS, for short), are useful to prove
confluence and operational termination of some CTRSs. A simultaneous unraveling has
been proposed for normal 1-CTRSs and a sequential one has been proposed for determin-
istic 3-CTRSs, the class of which includes normal 1-CTRSs. In this paper, we first show
that for a normal 1-CTRS, the simultaneously unraveled TRS is orthogonal iff so is the
sequentially unraveled one. Then, we show that for a normal 1-CTRS, if the simultane-
ously unraveled TRS is terminating, then so is the sequentially unraveled one. Finally, we
show that for a normal 1-CTRS with termination of the unraveled TRS, the simultaneously
unraveled TRS is locally confluent iff so is the sequentially unraveled one.

1 Introduction

Conditional term rewriting [14, Chapter 7] is known to be much more complicated than uncon-
ditional term rewriting in the sense of analyzing properties (cf. [12]). A popular approach to the
analysis of conditional term rewriting systems (CTRSs, for short) is to transform a CTRS into
an unconditional term rewriting system (TRS, for short) that is in general an overapproxima-
tion of the CTRS w.r.t. reduction. This approach enables us to use techniques for the analysis
of TRSs, which are well investigated in the literature.

Unravelings [9, 10, 13] are useful to prove confluence and operational termination [8] of
CTRSs because of the following results: (a) a deterministic 3-CTRS (3-DCTRS, for short)
is confluent if the unraveled TRS is confluent and the CTRS is weakly left-linear (WLL, for
short) [6, 7], and (b) a 3-DCTRS is operationally terminating if the unraveled TRS is termi-
nating [3]. A simultaneous unraveling has been proposed for normal 1-CTRSs [9, 14], and a
sequential unraveling has been proposed for 3-DCTRSs [10, 13]. Normal 1-CTRSs are 3-DCTRS
and both the simultaneous and sequential unravelings are applicable to normal 1-CTRSs. For
this reason, to prove confluence and operational termination of normal 1-CTRSs, we can use
both the simultaneous and sequential unravelings. For example, CO3 [11], a confluence prover
for CTRSs, tries to prove confluence via the simultaneous unraveling, and, if it fails, then uses
the sequential one.

In this paper, we first show that for a normal 1-CTRS, the simultaneously unraveled TRS
is orthogonal iff so is the sequentially unraveled one (Section 4). Then, we show that for a
normal 1-CTRS, if the simultaneously unraveled TRS is terminating, then so is the sequentially
unraveled one (Section 5). Finally, we show that for a normal 1-CTRS with termination of the
unraveled TRS, the simultaneously unraveled TRS is locally confluent iff so is the sequentially
unraveled one (Section 6). The second and third results imply that for a normal 1-CTRS, the
simultaneously unraveled TRS is convergent iff so is the sequentially unraveled one.

∗This work was partially supported by JSPS KAKENHI Grant Number JP17H01722.
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2 Preliminaries

We omit basic notions and notations for term rewriting [2, 14], and we assume that the reader
is familiar with them. In this section, we briefly recall the notions and notations of CTRSs.

An (oriented) conditional rewrite rule over a signature F is a triple (`, r, c), denoted by
`→ r ⇐ c, such that the left-hand side ` is a non-variable term in T (F ,V), the right-hand side
r is a term in T (F ,V), and the conditional part c is a sequence s1 � t1, . . . , sk � tk of term
pairs (k ≥ 0) where all of s1, t1, . . . , sk, tk are terms in T (F ,V). In particular, a conditional
rewrite rule ` → r ⇐ c is called unconditional if the conditional part c is the empty sequence
ε, and we may abbreviate it to `→ r. We sometimes attach a unique label ρ to the conditional
rewrite rule `→ r ⇐ c by denoting ρ : `→ r ⇐ c, and we use the label to refer to the rewrite
rule. An (oriented) conditional term rewriting system (CTRS, for short) over a signature F is
a set of conditional rules over F , and it is called a term rewriting system (TRS, for short) if
every rule `→ r ⇐ c in the system is unconditional and Var(`) ⊇ Var(r).

A CTRS R is called normal if for every rule ` → r ⇐ s1 � t1, . . . , sk � tk ∈ R, all of
t1, . . . , tk are ground normal forms of Ru where Ru = {` → r | ` → r ⇐ c ∈ R}. A CTRS R
is called a 1-CTRS (3-CTRS, resp.) if Var(r, c) ⊆ Var(`) (Var(r) ⊆ Var(`, c), resp.) for every
rule ` → r ⇐ c ∈ R. A CTRS R is called deterministic (DCTRS, for short) if for every rule
`→ r ⇐ s1 � t1, . . . , sk � tk ∈ R, Var(si) ⊆ Var(`, t1, . . . , ti−1) for all 1 ≤ i ≤ k.

3 Unravelings

An unraveling U is a transformation of CTRSs into TRSs such that for every CTRS R, we
have that →R ⊆ →∗U(R) and U(R ∪R′) = U(R) ∪ R′ for any TRS R′ [9, 12]. For a CTRS R
over a signature F , we denote the extended signature of F via U by FU(R). Given a finite set
X = {o1, . . . , on} of objects, a sequence o1, o2, . . . , on under some arbitrary order on the objects

is denoted by
−→
X .

A simultaneous unraveling for normal 1-CTRSs [9] has been refined as follows.

Definition 3.1 (Usim [14]). Let R be a normal 1-CTRS over a signature F . For each condi-
tional rule ρ : `→ r ⇐ s1 � t1, . . . , sk � tk in R, we introduce a new function symbol Uρ, and
transform ρ into a set of two unconditional rules as follows:

Usim(ρ) = { `→ Uρ(s1, . . . , sk,
−−−−→Var(`)), Uρ(t1, . . . , tk,

−−−−→Var(`))→ r }

Note that if k = 0, then Usim(`→ r) = {`→ r}. Usim is straightforwardly extended to normal
1-CTRSs: Usim(R) =

⋃
ρ∈R Usim(ρ). Note that Usim(R) is a TRS over FUsim(R).

A sequential unraveling for 3-DCTRSs [10] has been refined as follows.

Definition 3.2 (Useq [13, 14]). Let R be a 3-DCTRS over a signature F . For each conditional
rule ρ : ` → r ⇐ s1 � t1, . . . , sk � tk in R, we introduce k new function symbols Uρ1 , . . . , U

ρ
k ,

and transform ρ into a set of k + 1 unconditional rules as follows:

Useq(ρ) = { `→ Uρ1 (s1,
−→
X1), Uρ1 (t1,

−→
X1)→ Uρ2 (s2,

−→
X2), . . . , Uρk (tk,

−→
Xk)→ r }

where Xi = Var(l, t1, . . . , ti−1) for 1 ≤ i ≤ k. Note that if k = 0, then Useq(`→ r) = {`→ r}.
Useq is straightforwardly extended to DCTRSs: Useq(R) =

⋃
ρ∈R Useq(ρ). Note that Useq(R) is

a TRS over FUseq(R).
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Example 3.3. Consider the following normal 1-CTRS [4] (278.trs in Cops1):

R1 =





proc(y ,m)→ proc(app(map(self, nil), split2(m, y)),m)
⇐ leq(m, len(y)) � true, e(split1(m, y)) � false,

proc(y ,m)→ proc(split2(m, app(map(self, nil), y)),m)
⇐ leq(m, len(y)) � false, e(split1(m, app(map(self, nil), y))) � false




∪R2

where R2 is a TRS defining app, map, split2, leq, split1, and e as in [4, pp. 42–43]. R1 is
unraveled by Usim and Useq as follows:

Usim(R1)=





proc(y ,m)→ U1(leq(m, len(y)), e(split1(m, y)), y ,m),
U1(true, false, y ,m)→ proc(app(map(self, nil), split2(m, y)),m),

proc(y ,m)→ U2(leq(m, len(y)), e(split1(m, app(map(self, nil), y))), y ,m),
U2(false, false, y ,m)→ proc(split2(m, app(map(self, nil), y)),m)





∪R2

Useq(R1) =





proc(y ,m)→ U3(leq(m, len(y)), y ,m),
U3(true, y ,m)→ U4(e(split1(m, y)), y ,m),
U4(false, y ,m)→ proc(app(map(self, nil), split2(m, y)),m),

proc(y ,m)→ U5(leq(m, len(y)), y ,m),
U5(false, y ,m)→ U6(e(split1(m, app(map(self, nil), y))), y ,m),
U6(false, y ,m)→ proc(split2(m, app(map(self, nil), y)),m)





∪R2

4 Orthogonality of Unraveled TRSs

In this section, we show that for a normal 1-CTRS R, Usim(R) is orthogonal (i.e., left-linear
and non-overlapping) iff so is Useq(R).

Let R be a normal 1-CTRS over a signature F . By definition, for a rule `→ r ∈ Usim(R),
the left-hand side ` is either in T (F ,V) or of the form Uρ(t1, . . . , tk, x1, . . . , xn) where t1, . . . , tk
are ground normal forms of Ru. In the latter case, the rule `→ r is not overlapping with any
rule in Usim(R). For this reason, by definition, if we have two overlapping rules `1 → r1, `2 →
r2 ∈ Usim(R), then we have two overlapping rules `1 → r′1, `2 → r′2 ∈ Useq(R).

Lemma 4.1. For a normal 1-CTRS R, Usim(R) is non-overlapping iff so is Useq(R).

It follows from the definition of Usim and [12, Theorem 3.9 (1)] that Usim(R) is left-linear
iff so is Useq(R). Therefore, the following theorem is a direct consequence of Lemma 4.1.

Theorem 4.2. For a normal 1-CTRS R, Usim(R) is orthogonal iff so is Useq(R).

Since orthogonality is decidable, given a normal 1-CTRS R, if we prove confluence of an
unraveled TRS (Usim(R) or Useq(R)) via orthogonality, then we can also prove confluence of
the other unraveled TRS.

5 Termination of Unraveled TRSs

In this section, we show that for a normal 1-CTRS R, if Usim(R) is terminating, then so is
Useq(R).

It is shown in [12] that for a normal 1-CTRS R over a signature F , there exists a
tree homomorphism φR such that for all terms s, t ∈ T (FUseq(R),V), if s →∗Useq(R) t, then

1 http://cops.uibk.ac.at
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Table 1: the result of proving termination of the unraveled TRSs from Cops.
AProVE NaTT CO3

result Usim(·) Useq(·) Usim(·) Useq(·) Usim(·) Useq(·)
YES 39 39 35 35 24 25
NO 9 9 9 9 — —

MAYBE 0 0 7 7 27 26
timeout (300 seconds) 3 3 0 0 0 0

φR(s) →∗Usim(R) φR(t). The tree homomorphism can be extended for dependency pairs [1] so

that for all terms s, t ∈ T (FUseq(R),V), if s] →DP(Useq(R)) t
], then (φR(s))] (= ∪→DP(Usim(R)))

(φR(t))], where DP(R′) denotes the set of dependency pairs of a TRS R′ and u] denotes
the term obtained from u by replacing the root symbol by the corresponding marked sym-
bol. This implies that if s, t ∈ T (F ,V) and s] (→∗Useq(R) · →DP(Useq(R)) · →∗Useq(R))

+ t], then

(φR(s))] (→∗Usim(R) · →DP(Usim(R)) · →∗Usim(R))
+ (φR(t))]. Thus, an infinite dependency chain of

Useq(R) can be converted to an infinite dependency chain of Usim(R).

Theorem 5.1. For a normal 1-CTRS R, if Usim(R) is terminating, then so is Useq(R).

The converse of Theorem 5.1 does not hold in general. For example, for R2 = { a → b ⇐
c � d, a � e }, Useq(R2) is terminating but Usim(R2) is not.

Since termination is undecidable, unlike orthogonality, Theorem 5.1 does not imply that (a)
if we have proved termination of Usim(R) using some method, then we could directly prove
termination of Useq(R) using some method that does not rely on Theorem 5.1. It is not easy
to prove (a) for all existing methods to prove termination of TRSs. Instead of proving (a),
we examined (a) for 51 normal 1-CTRSs in Cops.1 Our experiments were performed on OS
X 10.11.6 equipped with an Intel Core i5 CPU at 2.9 GHz with 8 GB RAM, and we used
AProVE [5], NaTT [15], and CO3 [11] as termination provers. Table 1 illustrates the number
of benchmarks for each result, and indicates that the results for Usim and Useq are almost the
same—the methods implemented in CO3 are very simple, and thus, the number of YES for Usim

and Useq are slightly different.

6 Local Confluence of Unraveled TRSs

In this section, we show that for a normal 1-CTRS R with termination of the unraveled TRSs
Usim(R) and Useq(R), if Usim(R) is locally confluent (i.e., confluent), then so is Useq(R).

Let R be a normal 1-CTRS over a signature F . As described in Section 4, every overlap of
the unraveled TRS is caused by two rules `1 → r1, `2 → r2 such that `1, `2 ∈ T (F ,V). The tree
homomorphism φR in Section 5 can be used for joinability of critical pairs of Usim(R) from
joinability of Useq(R), and vice versa.

Theorem 6.1. Let R be a normal 1-CTRS such that Usim(R) is terminating. Usim(R) is
locally confluent iff so is Useq(R).

For terminating TRSs, (local) confluence is decidable (see [2, p. 140]). Therefore, given
a normal 1-CTRS R, if we prove termination of Usim(R) or Useq(R), and if we prove local
confluence of an unraveled TRS (Usim(R) or Useq(R)), then we can also prove local confluence
of the other unraveled TRS.
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7 Conclusion

In this paper, we showed that for a normal 1-CTRS, (1) the simultaneously unraveled TRS is
orthogonal iff so is the sequentially unraveled one, (2) if the simultaneously unraveled TRS is
terminating, then so is the sequentially unraveled one, and (3) under termination of the un-
raveled TRS, the simultaneously unraveled TRS is locally confluent iff so is the sequentially
unraveled one. The second and third results imply that for a normal 1-CTRS, the simultane-
ously unraveled TRS is convergent iff so is the sequentially unraveled one. If R is WLL and
Usim(R) or Useq(R) is confluent, then R is confluent [6, 7]. Therefore, to prove confluence
of a WLL normal 1-CTRS by either orthogonality of the unraveled TRS or termination and
joinability of critical pairs of the unraveled TRS, there is no difference between the use of Usim

and Useq , except for the power of a termination prover we use (see Table 1).
The sequential unraveling has been improved to preserve confluence of CTRSs as much as

possible [7, Uconf ]. We will adapt the results in this paper to the improved sequential unraveling
and then we will consider the efficiency of proving confluence via CO3. In addition, we will
compare the simultaneous and sequential unravelings w.r.t. other confluence criteria for TRSs.
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Abstract

Top trees with DAG representation can be used to compress huge tree data
such as XML documents. However, one tree can be represented by several top
trees, so it is necessary to efficiently decide which top trees represent the same tree
for higher compression rate.

In this paper, we give a complete axiom system for the equational theory of top
trees, called the cluster algebra. In order to prove the completeness, we introduce
a reduction system on cluster algebra, and show the strong normalization and the
unique normal form property.

1 Introduction
Tree-structured data such as XML documents are widely used in the world. In many
cases, such data become huge, and it is necessary to compress them. DAG is one of the
most common compression techniques, in which equal subtrees are shared. However, a
lot of real XML data have common parts not as subtrees but as intermediate structures,
called clusters, and hence they cannot be shared as subtrees in DAGs. For example,
in Figure 1 (a), this tree has the common structure b(b[ ]), which is not a subtree but
forms a cluster.

a

c

B

E

B

A

bb

a

b

b

c

b

b

d

(a) (b) (c)

d

B

A

bb

a

c

B

E

B

A

b

d

B

Figure 1: Sharing clusters

To solve this problem, top trees and their DAG representations have been proposed
[1, 2, 3]. A top tree is a binary tree representing a recipe to reconstructing the original
tree by merging its clusters. By the top trees, we can restructure common clusters
to subtrees of a top tree, and share them in the top-tree DAGs. In Figure 1 (b), the
cluster b(b[ ]) is reconstructed as b A b (we use infix notation for top trees), and it can
be shared as a subtree in DAG as (c).
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However, the same cluster can be represented by different top trees, and then they
cannot be shared in the top-tree DAG. Therefore, if we can efficiently decide whether
two top trees represent the same tree, we can expect higher compression rate by the
top-tree DAGs.

In this paper, we consider an equational theory for the equivalence of top trees as a
theoretical foundation for equivalence checking for top trees. We give an axiom system
for the equational theory, called the cluster algebra [4], and prove its completeness. For
the completeness, we give a reduction system for the cluster algebra, and show the
strong normalization and the unique normal form property. We show that there is a
one-to-one correspondence between the normal forms and the original trees.

2 Top Tree and Cluster Algebra

We consider ordered trees as original data, in which each of the nodes and leaves has
a label, such as a(b(c, d), e). Clusters are fragments of a ordered tree. Each cluster has
one top boundary node ⊥ at the root position, and at most one bottom boundary node,
which is a distinguished leaf node marked with [ ] such as a[ ]. For example, ⊥(b[ ], e),
⊥(c, d), and ⊥(a(b(c, d), e)) are clusters in the ordered tree a(b(c, d), e).

We can reconstruct the original ordered tree by merging its clusters. There are five
type of merging, which are listed in Figure 2.

Figure 2: Five types of merging clusters

The type A and B merge two clusters in vertical direction, that is, they replace
the bottom boundary node of the left cluster with the right cluster. The difference
between A and B is whether the right cluster has a bottom boundary node [ ] or not.
The C, D, and E merge two clusters in horizontal direction. For the type C, the left
cluster has [ ]. For D, the right cluster has [ ]. For E, neither has [ ]. For example,
if two clusters ⊥(b[ ], e) and ⊥(c, d) are merged by the type B, we obtain the cluster
⊥(b(c, d), e). If two clusters ⊥(b, c[ ]) and ⊥(e) are merged by the type C, we obtain
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the cluster ⊥(b, c[ ], e). We also use the metavariables V for A or B, and H for C, D,
or E.

A top tree [1, 2] is a binary tree that shows how we can reconstruct the original
ordered tree by merging its clusters. Each node of a top tree is one of the merging types
A, B, C, D, and E. Each leaf of a top tree is a label of the original ordered tree, which
represents either the cluster ⊥(a) or ⊥(a[ ]) depending on the type of the parent node.
In [4], the equivalence of the top trees are formalized as the cluster algebra, where the
merging types are classifying into two kinds, vertical and horizontal merging.

We abuse the metavariables t, t′, · · · for ordered trees and clusters, and we use
the metavariables τ , α, β, · · · for top trees. For a cluster t which contains a bottom
boundary node and another cluster t′ ≡ ⊥(t1, · · · , tn), we write t[t′] for the cluster
obtained by replacing a[ ] in t by a(t1, · · · , tn). For clusters t = ⊥(t1, · · · , tn) and
t′ = ⊥(t′1, · · · , t′m), we write t� t′ for ⊥(t1, · · · , tn, t′1, · · · , t′m).
Definition 1. 1. The mapping T from the top trees to the clusters without [ ] and T ′

from the top trees to the clusters with [ ] are defined as follows.
T (a) = ⊥(a) T ′(a) = ⊥(a[ ])

T (τ1 B τ2) = T ′(τ1)[T (τ2)] T ′(τ1 A τ2) = T ′(τ1)[T ′(τ2)]

T (τ1 E τ2) = T (τ1)� T (τ2) T ′(τ1 C τ2) = T ′(τ1)� T (τ2)
T ′(τ1 D τ2) = T (τ1)� T ′(τ2)

The cases which are not listed above are undefined. We call τ well-formed if T (τ) or
T ′(τ) is defined. In the following, we consider only well-formed top trees.

2. When either T (τ1) ≡ T (τ2) or T ′(τ1) ≡ T ′(τ2) holds, τ1 and τ2 are said to be
equivalent, and we write |= τ1 = τ2.

3 Axioms for Cluster Algebra
We give a set of axioms for equational theory of the cluster algebra.
Definition 2. 1. The axioms for cluster algebra are given as follows.

(α C β) B γ = (α B γ) E β (α E β) E γ = α E (β E γ)

(α C β) A γ = (α A γ) C β (α C β) C γ = α C (β E γ)

(α D β) B γ = α E (β B γ) (α D β) C γ = α D (β C γ)

(α D β) A γ = α D (β A γ) (α E β) D γ = α D (β D γ)

(α A β) B γ = α B (β B γ)

(α A β) A γ = α A (β A γ)

2. We write ` τ1 = τ2 if it is derivable by the following inference rules, where
X ∈ {A,B,C,D,E}.

τ1 = τ2 is an axiom
` τ1 = τ2

(Ax) ` τ = τ
(Ref) ` τ1 = τ2

` τ2 = τ1
(Sym)
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` τ1 = τ2 ` τ2 = τ3
` τ1 = τ3

(Tr) ` τ1 = τ2
` τ1Xτ = τ2Xτ

(ComL) ` τ1 = τ2
` τXτ1 = τXτ2

(ComR)

The axioms in the left column exchange V and H. The axioms in the right column
are associativity for V and H, respectively.

The soundness is proved by the induction on ` τ1 = τ2 straightforwardly.

Theorem 1 (Soundness). For top trees τ1 and τ2, if ` τ1 = τ2, then |= τ1 = τ2

4 Completeness

For the completeness, we introduce a reduction system and prove the strong normal-
ization and the unique normal form property, where we use the fact that there is a
one-to-one correspondence between the normal forms and the ordered trees.

Definition 3. The reduction rules for the cluster algebra are obtained from the axioms
in Definition 2.1 by orienting from left to right, such as ( α C β ) B γ ⇒ ( α B γ ) E β

Theorem 2. The reduction system for the cluster algebra is strongly normalizable.

Proof. We define the following three measures.

w(τ) = ΣV ∈τ (the number of H in the left subtree of V )
dV (τ) = ΣV ∈τ (the number of V in the left subtree of V )
dH(τ) = ΣH∈τ (the number of H in the left subtree of V )

Then, the pair (w(τ), dV (τ)+ dH(τ)) is strictly decreasing by each reduction step with
respect to the lexicographic order.

The normal forms τ are characterized by the following grammar

τ ::= α | α H τ α ::= a | a V τ,

Definition 4. The mapping Θ from the clusters to the normal forms is defined by
induction on the size of the clusters as follows.

Θ(⊥(a(t1, · · · , tn))) = a V Θ(⊥(t1, · · · , tn))
Θ(⊥(t1, · · · , tn)) = Θ(⊥(t1))H(· · · (Θ(⊥(tn−1))HΘ(⊥(tn))) · · · )

Proposition 1. For any normal form τ , we have Θ(T (τ)) ≡ τ .

The normal forms and the clusters are related as Figure 3.
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Figure 3: Clusters and normal-form top trees

Proposition 2 (Unique normal form property). For two normal forms τ1 and τ2, if
|= τ1 = τ2, then we have τ1 ≡ τ2.
Proof. By |= τ1 = τ2, we have T (τ1) ≡ T (τ2), and hence Θ(T (τ1)) ≡ Θ(T (τ2)). By the
previous proposition, we have τ1 ≡ τ2.

Theorem 3 (Completeness). For two top trees τ1 and τ2, if |= τ1 = τ2 , then ` τ1 = τ2.

Proof. By SN, we have normal forms τ ′i of τi for i = 1, 2. By the soundness we have
|= τi = τ ′i , and by the assumption we have |= τ ′1 = τ ′2. By the previous proposition, we
have τ ′1 ≡ τ ′2. Therefore we have ` τ1 = τ ′1 ≡ τ ′2 = τ2.

5 Conclusion
In this paper, we have considered the axioms for the cluster algebra representing the
equivalence of the top trees, and proved soundness and completeness of the axiom
system. Based on this axiom system, it is expected to be possible to efficiently decide
equivalence of top trees without actually decompressing them to the original ordered
trees, and higher compression rate in DAG representations of the top trees. As future
work, we will give an efficient algorithm for equivalence checker for the top trees.
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A primary functionality of ACP is proving confluence of term rewriting systems (TRSs).
ACP integrates multiple direct criteria for guaranteeing confluence of TRSs. It also incorporates
divide–and–conquer criteria by which confluence or non-confluence of TRSs can be inferred from
those of their components. Several methods for disproving confluence are also employed. For
some criteria, it supports generation of proofs in CPF format that can be certified by certifiers.
The internal structure of the prover is kept simple and is mostly inherited from the version
0.11a, which has been described in [2]. No new (non-)confluence criterion for TRSs has been
incorporated from the one submitted for CoCo 2017.

This year we have added a new functionality to ACP, namely that of proving unique normal
forms w.r.t. conversion (UNC) of TRSs. It incorporates divide–and–conquer criteria for UNC
and multiple direct criteria for guaranteeing UNC of TRSs. The list of implemented criteria
and methods is reported in [3]. In particular, this includes a UNC completion method which is
inspired from conditional linearlization technique [4], and a UNC criterion of non-duplicating
weight-decreasing joinability [5]. A preliminary implementation for proving confluence of (ori-
ented, type 3) conditional term rewriting systems, is also added.

ACP is written in Standard ML of New Jersey (SML/NJ) and the source code is also available
from [1]. It uses a SAT prover such as MiniSAT and an SMT prover YICES as external provers. It
internally contains an automated (relative) termination prover for TRSs but external (relative)
termination provers can be substituted optionally. Users can specify criteria to be used so that
each criterion or any combination of them can be tested. Several levels of verbosity are available
for the output so that users can investigate details of the employed approximations for each
criterion or can get only the final result of prover’s attempt.
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AGCP (Automated Groud Confluence Prover) [1] is a tool for proving ground confluence of
many-sorted term rewriting systems. AGCP is written in Standard ML of New Jersey (SML/NJ).
AGCP proves ground confluence of many-sorted term rewriting systems based on two ingredients.
One ingredient is to divide the ground confluence problem of a many-sorted term rewriting
system R into that of S ⊆ R and the inductive validity problem of equations u ≈ v w.r.t. S
for each u → r ∈ R \ S. Here, an equation u ≈ v is inductively valid w.r.t. S if all its ground

instances uσ ≈ vσ is valid w.r.t. S, i.e. uσ
∗↔S vσ. Another ingredient is to prove ground

confluence of a many-sorted term rewriting system via the bounded ground convertibility of
the critical pairs. Here, an equation u ≈ v is said to be bounded ground convertibile w.r.t. a
quasi-order % if uθg

∗←→
% R vθg for any its ground instance uσg ≈ vσg, where x

∗←→
%

y iff there

exists x = x0 ↔ · · · ↔ xn = y such that x % xi or y % xi for every xi.
Rewriting induction [3] is a well-known method for proving inductive validity of many-

sorted term rewriting systems. In [1], an extension of rewriting induction to prove bounded
ground convertibility of the equations has been reported. Namely, for a reduction quasi-order
% and a quasi-reducible many-sorted term rewriting system R such that R ⊆ �, the extension
proves bounded ground convertibility of the input equations w.r.t. %. The extension not only
allows to deal with non-orientable equations but also with many-sorted TRSs having non-free
constructors. Several methods that add wider flexibility to the this approach are given in
[2]: when suitable rules are not presented in the input system, additional rewrite rules are
constructed that supplement or replace existing rules in order to obtain a set of rules that
is adequate for applying rewriting induction; and an extension of the system of [2] is used if
if the input system contains non-orientable constructor rules. AGCP uses these extension of
the rewriting induction to prove not only inductive validity of equations but also the bounded
ground convertibility of the critical pairs. Finally, some methods to deal with disproving ground
confluence are added as reported in [2].

No new ground (non-)confluence criterion has been incorporated from the one submitted
for CoCo 2017.
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The tool CeTA [10] is a certifier for confluence and non-confluence proofs of term rewrite
systems (TRSs) and conditional term rewrite systems (CTRSs). Its soundness is proven as
part of IsaFoR, the Isabelle Formalization of Rewriting. The following techniques are currently
supported in CeTA—for further details we refer to the certification problem format (CPF) and to
the sources of IsaFoR and CeTA (http://cl-informatik.uibk.ac.at/ceta/).

Term rewrite systems. For terminating systems CeTA can check confluence via the critical
pair lemma. For possibly non-terminating TRSs CeTA supports several criteria based on linearity
and restricted joinability of critical pairs [5], the rule labeling heuristic [4], addition and removal
of redundant rules [3], and terminating critical-pair-closing systems [6]. To certify non-confluence
one can provide a divergence and a non-joinability certificate, based on distinct normal forms,
tcap, interpretations, or tree automata [2]. Since 2018, CeTA features paersistent decomposition [1].

Conditional term rewrite systems. For CTRSs CeTA supports: certifying confluence of
almost orthogonal, properly oriented, right-stable 3-CTRSs [7]; unraveling, a technique for
transforming a given CTRS into a TRS; confluence of quasi-decreasing strongly deterministic
CTRSs, possibly in conjunction with inlining [8].

Completion. Since version 2.33 CeTA supports the certification of ordered completion [9].
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CO3, a converter for proving confluence of conditional TRSs, tries to prove confluence of
conditional term rewriting systems (CTRSs, for short) by using a transformational approach.
The tool is based on the result in [3, 8, 6]: the tool first transforms a given weakly-left-linear
(WLL, for short) 3-DCTRS into an unconditional term rewriting system (TRS, for short) by
using the SR transformation SR [10, 11, 5] or the unravelings UN [4] and U [9], and then verifies
confluence of the transformed TRS by using the following theorems: (a) a normal 1-CTRS R is
confluent if R is WLL and UN (R) or U(R) is confluent [1, 2, 3], (b) a 3-DCTRS R is confluent
if R is WLL and U(R) is confluent [2, 3], (c) a WLL normal 1-CTRS R is confluent if SR(R) is
confluent [8], and (d) a WLL and ultra-WLL 3-DCTRS R is confluent if SR(R) is confluent [6].
This tool is basically a converter of CTRSs to TRSs and the main expected use of this tool is
the collaboration with other tools for proving confluence of TRSs. For this reason, this tool has
very simple and lightweight functions to verify properties such as confluence and termination
of TRSs. The tool is available from http://www.trs.css.i.nagoya-u.ac.jp/co3/.

Since version 1.4, CO3 does not use SR because SR(R) is not confluent due to some auxiliary
rules (see [6]), and the latest version does not use UN because the power of proving confluence of
normal 1-CTRSs by UN is empirically weaker than that by U under the implemented sufficient
conditions for confluence (see [7]).
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CoLL-Saigawa is a tool for automatically proving or disproving confluence of (ordinary) term
rewrite systems (TRSs). The tool, written in OCaml, is freely available from:

http://www.jaist.ac.jp/project/saigawa/

The typical usage is: collsaigawa <file>. Here the input file is written in the standard WST
format. The tool outputs YES if confluence of the input TRS is proved, NO if non-confluence is
shown, and MAYBE if the tool does not reach any conclusion.

CoLL-Saigawa is a joint confluence tool of CoLL v1.2 [8] and Saigawa v1.9 [4]. If an input
TRS is left-linear, CoLL proves confluence. Otherwise, Saigawa analyzes confluence. CoLL is a
confluence tool specialized for left-linear TRSs. It proves confluence by using Hindley’s commu-
tation theorem [3] together with the three commutation criteria: Development closeness [2, 9],
rule labeling with weight function [10, 1], and Church-Rosser modulo A/C [6]. Saigawa can
deal with non-left-linear TRSs. The tool employs the four confluence criteria: The criteria
based on critical pair systems [5, Theorem 3] and on extended critical pairs [7, Theorem 2], rule
labeling [10], and Church-Rosser modulo AC [6]. Recently, an implementation bug on the last
criterion has been reported (see [11]). We are trying to rectify the bug before the competition.

This version of CoLL-Saigawa is still at the experimental stage. Full integration of the two
tools is planned for a future version.
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ConCon is a fully automatic confluence checker for oriented first-order conditional term
rewrite systems (CTRSs). It is written in Scala and available under the LGPL license at

http://cl-informatik.uibk.ac.at/software/concon

For some of its methods ConCon issues calls to the external unconditional confluence and
termination checkers CSI and TTT2 as well as the theorem prover Waldmeister. ConCon first tries
to simplify rules and remove infeasible rules from the input system, then it employs the following
three confluence criteria:

(A) a quasi-decreasing strongly deterministic 3-CTRS is confluent if all its critical pairs are
joinable [1],

(B) an almost orthogonal extended properly oriented right-stable 3-CTRS is confluent [5],

(C) a deterministic 3-CTRS is confluent if its unraveling is left-linear and confluent [6].

In parallel ConCon also tries to show non-confluence using conditional narrowing (and some
other heuristics). To make criteria (A) and (B) more useful, ConCon uses a variety of methods
to check for infeasibility of conditional critical pairs, ranging from a simple technique based
on unification, via symbol transition graph analysis, reachability problem decomposition, the
exploitation of certain equalities in the conditions, and tree automata completion to equational
reasoning. ConCon can generate certifiable output [3, 4] for most of the implemented methods.
A much more extensive description of ConCon can be found in the recent PhD thesis of the first
author [2]. ConCon participates in the categories CTRS and CPF-CTRS at CoCo 2018.
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CSI is a strong automatic tool for (dis)proving confluence of first-order term rewrite systems
(TRSs). It has been in development since 2010. Its name is derived from the Confluence of the
rivers Sill and Inn in Innsbruck. The tool is available from

http://cl-informatik.uibk.ac.at/software/csi

under a LGPLv3 license. A detailed description of CSI can be found in [4]. Compared to last
year’s version, CSI 1.2.1 contains an implementation of the decision procedure for UNC of linear
shallow rewrite systems by Zinn and Verma [5]. Furthermore it supports certified output for the
persistent decomposition of many-sorted systems [1–3].

CSI participates in the categories CPF-TRS, NFP, TRS, UNC, and UNR of CoCo 2018.
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CSÎ ho is a tool for automatically proving confluence of higher-order rewrite systems, specifi-
cally pattern rewrite systems (PRSs) as introduced by Nipkow [3, 7]. CSÎ ho focuses on patterns
in order to ensure decidability of unification for computing critical pairs. To this end CSÎ ho
implements a version of Nipkow’s algorithm for higher-order pattern unification [8]. CSÎ ho is an
extension of CSI, a powerful confluence prover for first-order term rewrite systems. The tool
and a web interface are available at

http://cl-informatik.uibk.ac.at/software/csi/ho

Below we briefly describe the criteria implemented by CSÎ ho, a more detailed description of
both CSÎ ho and CSI can be found in [5, 6].

For terminating PRSs CSÎ ho decides confluence by checking joinability of critical pairs [7].
As termination criteria CSÎ ho implements a basic higher-order recursive path ordering and static
dependency pairs with dependency graph decomposition and the subterm criterion. Alternatively,
one can also use an external termination tool like WANDA [2] as an oracle. For potentially
non-terminating systems CSÎ ho supports weak orthogonality [10] and van Oostrom’s result on
development closed critical pairs [9]. As a divide-and-conquer technique CSÎ ho implements
modularity, i.e., decomposing a PRS into parts with disjoint signatures, for left-linear PRSs—
note that confluence of PRSs is not modular in general [1]. Moreover CSÎ ho uses the simple
technique of adding and removing redundant rules [4], adapted for PRSs. New in version 0.3.2
is improved support for showing non-confluence.
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FORT is a decision and synthesis tool for the first-order theory of rewriting for finite left-linear
right-ground rewrite systems. It implements the decision procedure for this theory, which uses
tree automata techniques and goes back to Dauchet and Tison [1]. In this theory confluence-
related properties on ground terms are easily expressible. The basic functionality of FORT is
described in [2] and in [3] we report on several extensions, including witness generation for
existentially quantified variables in formulas and support for combinations of rewrite systems.
The latter allows to express a property like commutation, which is a natural generalization of
confluence and a potential future CoCo category.

FORT 2.0 is implemented in Java. A command-line version of the tool can be downloaded
from

http://cl-informatik.uibk.ac.at/software/FORT/

FORT participates in the categories GCR, NFP, UNC, and UNR at CoCo 2018.
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SOL is a Haskell-based tool that assists the proofs of confluence and strong normalisation of
higher-order computation. SOL is intended to be a generic higher-order computation analysis
tool that is applicable to the modern theories of higher-order programming languages. This
aim is demonstrated in [Ham17] and further developed in [Ham18].

Based on the foundation of second-order algebraic theories [FH10] and its computational
counter part [Ham16, Ham17] and polymorphic extension [Ham18], we implemented various
results on higher-order syntax and computation in SOL, including Knuth and Bendix’s crit-
ical pair checking for confluence, and Function-as-Constructor Unification (FCU) [LM16] for
unification. Termination analysis is based on the General Schema criterion [Bla00].
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