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Abstract 44 

Purpose. Streptococcus oralis and Streptococcus mitis belong to the Mitis group, which are mostly 45 

commensals in the human oral cavity. Even though S. oralis and S. mitis are oral commensals, they 46 

can be opportunistic pathogens causing infective endocarditis. A recent taxonomic re-evaluation of 47 

the Mitis group has embedded the species Streptococcus tigurinus and Streptococcus dentisani into 48 

the species S. oralis as subspecies. In this study, the distribution of virulence factors that contributes 49 

to bacterial immune evasion, colonisation and adhesion were assessed in clinical strains of S. oralis 50 

(subsp. oralis, subsp. tigurinus and subsp. dentisani) and S. mitis. 51 

Methodology. Forty clinical S. oralis (subsp. oralis, dentisani and tigurinus) and S. mitis genomes 52 

were annotated with the pipeline PanFunPro and aligned against the VFDB database for assessment 53 

of virulence factors.  54 

Results/Key findings. Three homologs of pavA, psaA and lmb, encoding adhesion proteins, were 55 

present in all strains. Seven homologs of nanA, nanB, ply, lytA, lytB, lytC and iga with importance 56 

for survival in blood and modulation of the human immune system were variously present in the 57 

genomes. Few S. oralis subspecies specific differences were observed. iga homologs were 58 

identified in S. oralis subsp. oralis whereas lytA homologs were identified in S. oralis subsp. oralis 59 

and subsp. tigurinus. 60 

Conclusion. Differences in presence of virulence factors between the three S. oralis subspecies 61 

were observed. The virulence gene profiles of the 40 S. mitis and S. oralis (subsp. oralis, subsp. 62 

dentisani and subsp. tigurinus) contribute with important knowledge of these species and new 63 

subspecies.  64 

 65 
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Introduction 71 

Streptococcus oralis and Streptococcus mitis are non-hemolytic streptococci belonging to the Mitis 72 

group, which mostly are commensals in the human oral cavity throughout life [1, 2]. Even though S. 73 

oralis and S. mitis are oral commensals, they can be opportunistic pathogens entering the 74 

bloodstream and causing infective endocarditis (IE) [3, 4]. Streptococcus tigurinus and 75 

Streptococcus dentisani are other members of the Mitis group that have likewise been isolated from 76 

the oral cavities [5, 6]. S. tigurinus has been described as an IE causing agent [7].  A recently 77 

taxonomic re-evaluation of the Mitis group has embedded the two newer species Streptococcus 78 

tigurinus and Streptococcus dentisani  as subspecies into the species S. oralis [8]. Today the species 79 

S. oralis consist of the three subspecies S. oralis subsp. oralis, S. oralis subsp. tigurinus and S. 80 

oralis subsp. dentisani [8].  81 

Streptococcus pneumoniae, another member of the Mitis group, is the closest relative to S. oralis 82 

and S. mitis. Besides colonising the human nasopharynx, S. pneumoniae also causes local infections 83 

and serious life-threatening diseases, such as septicaemia, meningitis, pneumonia and more rare IE 84 

[9-11]. Virulence genes contributing to colonisation (e.g. nanA, nanB, lytA, lytB, lytC, and ply), 85 

contributing to evasion of the immune system (e.g. iga, cps) and contributing to adhesion (e.g. psaA 86 

and pavA) have been discovered in S. pneumoniae [12-20]. In addition, many of these genes have 87 

been identified in S. mitis and S. oralis. 88 

The Immunoglobulin A1 (IgA1) protease has been observed in both S. oralis and S. mitis, though 89 

variously present in both species [8, 21]. The gene encoding the pneumococcal surface adhesion A 90 

(psaA) has been identified in all investigated S. mitis and S. oralis [22, 23] and horizontal psaA gene 91 

transfer has been suggested among the species in the Mitis group [23]. The genes ply and lytA have 92 

both been recognized in the genomes of a minority of S. mitis genomes, but not in the genomes of S. 93 

oralis [24, 25]. In contrast, both S. mitis and S. oralis exhibit neuraminidase activity when grown in 94 

Brain Heart Infusion broth [26]. A widespread presence of the gene pavA was observed in a study 95 



 

 

where all nine included S. mitis and 11 S. oralis strains hybridized with pavA illustrating the 96 

importance of adherence and virulence protein A (PavA) for oral streptococci [25].  97 

 98 

Studies of virulence factors in clinical strains of S. mitis and S. oralis subsp. oralis, subsp. tigurinus 99 

and subsp. dentisani have been limited. We have previously whole genome sequenced and 100 

identified 40 S. mitis and S. oralis isolated from patients with IE [27]. In this study, we identify 101 

virulence factors in these S. mitis and S. oralis genomes in order to identify the distribution of 102 

virulence genes with importance for immune evasion, colonisation and adhesion in S. mitis, S. 103 

oralis subsp. oralis, S. oralis subsp. dentisani and S. oralis subsp. tigurinus.  104 

 105 

Materials and methods 106 

Bacterial strains 107 

Forty blood culture strains, S. mitis (n=12), S. oralis subsp. oralis (n=14), S. oralis subsp. tigurinus 108 

(n=8) and S. oralis subsp. dentisani (n=6) from patients with verified IE were collected 109 

retrospectively (2006-2013) from the Capital Region of Denmark (RH strains), Region Zealand 110 

(AE, Y and B strains) and Region of Southern Denmark (OD strains). One strain per patient was 111 

included in the study, except for one patient who contributed with two strains (B007274_11 and 112 

Y11577_11). The verification of IE was conducted by cardiologist and microbiologist according to 113 

the modified Duke criteria [28]. The 40 strains had been paired-end sequenced with 100X coverage 114 

using Illumina HiSeq 2000 (BGI-Tech Solutions, Hong Kong, China) [27]. The draft genomes were 115 

de novo assembled with SPAdes [29]. The species identification was based on Multi Locus 116 

Sequence Analysis (MLSA), and core-genome phylogeny [8, 27]. The GenBank accession numbers 117 

for the 40 genomes are available through the Bioproject accession number PRJNA304678.  118 

  119 



 

 

Genome annotation 120 

The pipeline PAN-genome analysis based on FUNctional PROfiles (PanFunPro) [30] was used for 121 

gene prediction and for prediction of functional domains in the de novo assembled genomes. First 122 

genes were predicted and translated into protein sequences using prodigal v2.50 [31]. The translated 123 

protein sequences for each streptococcal genome were searched against the databases; PfamA [32], 124 

TIGRFAM [33] and SUPERFAMILY [34] using InterProScan software [35] for prediction of 125 

functional domains. The combination of non-overlapping functional domains in the protein 126 

sequences constituted the functional profiles. Each functional profile was based on a coding 127 

sequence.  128 

 129 

Hierarchical clustering of species 130 

A presence-absence gene matrix based on the pan-genome of 40 clinical S. mitis and S. 131 

oralis strains was constructed in order to get an impression of co-existing genes among the strains 132 

examined from the two species. The matrix was constructed using PanGenome2Abundance.pl in 133 

PanFunPro [30].  134 

The Pearson correlation coefficient between the 40 strains using their presence/absence functional 135 

profiles were basis for hierarchical clustering of the strains.  136 

 137 

Prediction of putative virulence genes 138 

Basic Local Alignment Search Tool (BLASTP) [36] was applied to search the translated protein 139 

sequences against Virulence Factors of Pathogenic Bacteria database (VFDB), (Accessed 25 August 140 

2015) which contains various virulence factors from other streptococci, Staphylococcus aureus and 141 

Enterococcus faecalis [37-39]. The threshold for hits were an e-value < 0.001, a bit score > 50 and a 142 

sequence identity percent > 40 %. The best hit was based on highest bit score.  143 

 144 



 

 

Results 145 

Whole genome sequence characterisation  146 

The number of scaffolds from the de novo assembly ranged from 17-85 (S. mitis), 20-41 (S. oralis 147 

subsp. dentisani), 7-47 (S. oralis subsp. oralis) and 7-47 (S. oralis subsp. tigurinus). The estimated 148 

sizes of the S. mitis and S. oralis genomes ranged from 1.8 Mb-2.1 Mb. Each functional profile was 149 

considered based on a coding sequence. Between 1,692-2,083 functional profiles were predicted in 150 

the 12 S. mitis strains and 1,734-2,035 functional profiles were predicted in the 28 S. oralis strains. 151 

There was no subspecies specific differences between the number of functional profiles in the 28 S. 152 

oralis strains. The GC content was slightly higher in S. oralis (40.75-41.50 %) than in S. mitis 153 

(39.71-40.28 %). Number of scaffolds, N50, the longest sequences and the number of functional 154 

profiles in the 40 S. mitis and S. oralis genomes are presented in Appendix A. 155 

 156 

When clustering the strains based on presence/absence of the functional profiles, a tight cluster 157 

containing the S. mitis were identified (Fig. 1). The S. oralis strains clustered into three subclusters, 158 

which were congruent with earlier observed subclusters based on core-gene phylogeny [27]. 159 

Furthermore, the subclustering of S. oralis were congruent with the division of the strains into the 160 

three subspecies S. oralis subsp. oralis, subsp. tigurinus and subsp. dentisani [8]. 161 

Two S. oralis strains (S. oralis B007274_11 and S. oralis Y11577_11) with high correlation were 162 

isolated from the same patient within a day and should be considered as the same strain. 163 

 164 

Virulence genes present in S. mitis and S. oralis subsp. oralis, subsp. tigurinus and subsp. 165 

dentisani. 166 

 167 

In order to determine the presence of virulence genes in S. mitis and S. oralis subsp. oralis, subsp. 168 

tigurinus and subsp. dentisani, the functional profiles based on coding sequences in the 40 strains 169 



 

 

were aligned against the VFDB database. The number of strains that contained the putative 170 

virulence genes and the protein sequence identity to the VFDB reference sequence are specified in 171 

Table 1. Genes encoding proteins homologous to Adherence and virulence protein A (PavA) 172 

Laminin binding protein (Lmb) and Pneumococcal surface adhesion A (PsaA) were identified in all 173 

40 strains.  174 

Homologs of the seven genes nanA, nanB, ply, lytA, lytB, lytC, and iga that have been associated to 175 

bacterial survival in blood and immune evasion were variously present in the genomes [12, 16, 17, 176 

24]. Both nanA and nanB gene homologs were identified in S. mitis RH50275_09 and S. mitis 177 

RH50738_11; these were the only strains containing both neuraminidase genes. The nanA and nanB 178 

homologs were neighbours.  None of the S. mitis strains contained lytA and ply gene homologs 179 

simultaneously. iga homologs were identified in all 14 S. oralis subsp. oralis whereas lytA 180 

homologs only were identified in S. oralis subsp. oralis and subsp. tigurinus.   181 

Polysaccharide capsule production (CPS) has been described important for bacterial avoidance of 182 

the phagocytosis [19, 40]. Genes encoding homologs of Cps4 from S. pneumoniae TIGR4 were 183 

identified in both S. mitis and S. oralis. cps4A gene homologs were present in all 40 strains whereas 184 

genes homologous to cps4B, cps4C, and cps4D were variously present in the genomes.  Eight S. 185 

mitis strains and 22 S. oralis strains contained homologs of the four capsular genes cps4A, cps4B, 186 

cps4C, and cps4D. Furthermore, 22 S. oralis strains and one S. mitis strain contained a gene 187 

homologous to cps4I. One S. oralis subsp. dentisani strain, RH9883_08, contained genes 188 

homologous to cps4E, cps4F, cps4J, cps4K, and cps4L.  189 

 190 

In summary, three genes homologous to the adhesion genes, psaA, lmb and pavA were identified in 191 

all 40 strains. The presence of the seven putative virulence genes (homologs of nanA, nanB, ply, 192 

lytA, lytB, lytC and iga) important for immune evasion and colonisation in the 40 S. mitis and S. 193 



 

 

oralis genomes were not coherent. A few S. oralis subspecies specific differences were observed. 194 

All 14 S. oralis subsp. oralis contained an iga homolog, whereas homologs of lytA only were 195 

identified in S. oralis subsp. oralis and S. oralis subsp. tigurinus. Homologs of nanB and ply were 196 

only identified in S. mitis. Furthermore, homologs to the cps4 genes were identified variously in S. 197 

oralis and S. mitis strains, but none of the strains included a full capsular locus compared to the 198 

VFDB reference S. pneumoniae TIGR4 genome.  199 

 200 

Discussion 201 

Assessment of virulence factors in clinical S. mitis and clinical S. oralis subsp. oralis, subsp. 202 

tigurinus and subsp. dentisani has only been sparsely conducted. 203 

 204 

In the present study, the functional profiles were extracted from 40 IE clinical strains of S. mitis and 205 

S. oralis subsp. oralis, subsp. tigurinus and subsp. dentisani, by using the pipeline PanFunPro [30]. 206 

We have previously used PanFunPro for extraction of a Mitis group streptococci core-genome for 207 

evaluation of core-genome phylogeny [27]. The core-genome phylogeny revealed a subclustering of 208 

S. oralis into three subclusters [27]. Subclustering of S. oralis was later illustrated by Jensen et al. 209 

[8] by using core-genome phylogeny and it was proposed that the species S. tigurinus and S. 210 

dentisani should be reassigned as subspecies in S. oralis. Core-genome phylogeny was basis for 211 

identification of the clinical IE strains in the present study and in addition, Fig. 1 clearly illustrates 212 

clustering of the S. oralis strains into the three subspecies.  213 

The clustering of the three S. oralis subspecies strains in Fig. 1 based on the pan-genome indicates 214 

that other differences may occur between the subspecies than in the core-genes. By using a 215 

sequence identity percent > 40 % at protein level, few subspecies specific differences in virulence 216 

factors were observed between the three subspecies S. oralis subsp. oralis, subsp. tigurinus and 217 



 

 

subsp. dentisani. The threshold at 40 % sequence identity was based on findings in a study by Rost 218 

[41] who described that 90 % of the protein pairs were homologous when using a cut-off at roughly 219 

30% sequence identity. Furthermore, 40 % sequence identity has previously been used for protein 220 

identification in the Mitis group [42].  221 

 222 

The alignment of the functional profiles against the VFDB database revealed that iga homologs 223 

were present in all 14 S. oralis subsp. oralis and in seven out of 12 S. mitis. The iga gene encoding 224 

IgA1protease that cleaves the human immunoglobulin A1 in the hinge region, has been variously 225 

identified in S. mitis and S. oralis strains [8, 21, 42, 43].  IgA1 is a predominant immunoglobulin 226 

presented on the mucosal surfaces [44] and cleavage of this, limits the host humoral response and 227 

thereby promote colonisation of S. pneumoniae [12]. Recently, Jensen et al. [8] described that iga is 228 

only present in S. oralis subsp. oralis and not in S. oralis subsp. tigurinus and subsp. dentisani in 229 

accordance with the findings in the present study. These findings are further supported by Conrads 230 

et al. who used the former nomenclature and identified iga in S. oralis but not in S. tigurinus [45]. 231 

Another subspecies difference was observed between S. oralis subsp. oralis, subsp. tigurinus and 232 

subsp. dentisani in the present study (Table 1). Homologs of lytA were only identified in strains of 233 

S. oralis subsp. oralis and subsp. tigurinus. Conrads et al. did not include S. dentisani in their study 234 

but they identified lytA in some S. oralis and S. tigurinus strains, congruent with the present results 235 

[45]. lytA encodes the autolytic cell wall hydrolase Autolysin (LytA), which appears to be a 236 

predisposing circumstance for the release of cell cytoplasmic located protein pneumolysin (Ply) 237 

[46]. Pneumolysin (Ply) encoded by the gene ply, is a poreforming toxin that induces cell death by 238 

apoptosis. It is suggested to be an important factor for the initial establishment in nasal colonization 239 

and for development of septicemia [13, 14, 47]. The two genes lytA and ply have been localised 240 

simultaneously in all analysed S. pneumoniae genomes [24, 42] and in S. tigurinus AZ_3a [45] . In 241 

contrast, lytA and ply have only been identified in three out of 31 S. mitis genomes [24] and in none 242 



 

 

of the examined S. oralis genomes [24, 42]. In the present study, only two S. mitis genomes 243 

contained genes homologous to ply and five genomes contained genes homologous to lytA (Table 244 

1). lytA and ply homologs were not present simultaneously in any S. mitis strain, indicating that the 245 

presence and potential cooperation of lytA and ply is not a precondition for the S. mitis virulence.  246 

 247 

Other cell wall hydrolases, (LytB and LytC), encoded by lytB and lytC, are important for the 248 

colonisation of S. pneumoniae in nasopharynx and they contribute to bacterial avoidance of 249 

phagocytosis mediated by neutrophils and alveolar macrophages [16, 48]. In the present study, lytB 250 

homologs were identified in all 28 S. oralis strains whereas genes homologous to lytC were 251 

identified in 14 of the S. oralis strains distributed on all three subspecies (Table 1). In contrast, 252 

genes homologous to both lytB and lytC were identified in the majority (11 out of 12) of the S. mitis 253 

strains. In strains where both genes were present, lytB and lytC homologs were located in different 254 

loci, indicating that these genes are not transcribed together. 255 

 256 

Neuraminidase A and B (NanA and NanB) encoded by nanA and nanB, are other enzymes that have 257 

been stated important for colonisation and both enzymes seemed to be essential for survival in 258 

blood [17]. Intravenous infection with nanA and nanB mutants in mice, revealed a progressively 259 

clearance of bacteria in blood within 48 hours compared to the wild types, which persisted longer. 260 

In a previous study, nanA has been identified using PCR in all strains of S. oralis (n = 23) and S. 261 

mitis (n =10) [49], while only nanB was identified in strains of S. mitis by hybridization [25]. Genes 262 

homologous to nanA were identified in 27 strains of S. oralis and seven strains of S. mitis in the 263 

present study (Table 1). Genes homologous to nanB were only observed in six S. mitis strains in 264 

concordance with previous studies.  Homologs of both nanA and nanB were only identified 265 

simultaneously in two S. mitis strains. In these strains nanA and nanB homologs were neighbours 266 

indicating that these two genes may belong to a nanAB locus which have been described in S. 267 



 

 

pneumoniae [50]. Furthermore, the dispersed presence of nanA and nanB in S. mitis and S. oralis 268 

indicates that these two genes are not essential for the bacterial survival in blood.  269 

 270 

Adhesion of bacterial cells to fibronectin may contribute to development of IE [51]. Fibronectin is 271 

an extracellular matrix protein secreted by a variety of cells and it is present in saliva and blood [52, 272 

53]. S. pneumoniae adhere to immobilized fibronectin by the fibronectin binding surface protein 273 

PavA encoded by the gene pavA and it was demonstrated that pavA mutants had less ability to 274 

adhere to human epithelial and endothelial cells [18, 54]. A study of cell surface proteins in S. 275 

pneumoniae, S. mitis, and S. oralis showed that all 21 strains hybridized with pavA using 276 

microarray [55] and in another study pavA was identified in all S. tigurinus strains [45]. lmb 277 

encoding the lipoprotein Lmb is another gene contributing to adhesion, described for Streptococcus 278 

agalactiae as a protein that mediates bacterial attachment to human laminin promoting transfer of 279 

bacteria to the bloodstream and colonisation of damaged epithelium [56]. The same study illustrated 280 

the presence of lmb in all 11 examined S. agalactiae serotypes, confirming the importance of this 281 

gene [56]. psaA encoding another lipoprotein PsaA also contributing to bacterial adhesion, was 282 

likewise identified in all serotypes of S. pneumoniae [20]. The virulence properties of psaA was 283 

described using in vitro studies where psaA- mutants illustrated significant less virulence compared 284 

to the wildtype when inoculated intranasal and intraperitoneal in mice [57]. As well S. pneumoniae 285 

as S. agalactiae strains have been associated with IE cases, though they are mostly associated with 286 

non-IE infections [11, 58].   287 

In our study, genes homologues to pavA, lmb and psaA were identified in all 40 strains and these 288 

genes have been proven important for bacterial adhesion [54, 56, 59]. The presence of these genes 289 

across different species could be a result of horizontal gene transfer as earlier suggested by Zhang et 290 

al. for psaA [23]. 291 

 292 



 

 

Capsular polysaccharides (CPS) are indispensable for the virulence of S. pneumoniae by forming an 293 

inert shield, which prevent the phagocytosis [19, 40]. Today 97 serologically and structurally 294 

distinct CPS types have been recognised [60]. The encapsulated serotype 4 S. pneumoniae TIGR4 295 

strain was used as reference in the present study to examine the presence of capsule loci in the 40 296 

strains. The cps locus in TIGR4 include the genes cps4A-cps4L [61]. A cps4A homolog was 297 

identified in all 40 clinical strains (Table 1). Only one S. oralis subsp. dentisani strain (RH9883_08) 298 

contained genes homologous to cps4E, cps4F, cps4J, cps4K, and cps4L. Serotype switching 299 

between S. mitis strains and the S. pneumoniae TIGR4 strain has been reported before [62], which 300 

may also be possible for S. oralis subsp. dentisani. Skov et al. [63] identified complete cps loci in 301 

74 % of the 66 investigated S. mitis strains and in 95 % of the 20 investigated S. oralis strains 302 

including the subspecies tigurinus and dentisani. They confirmed capsule expression using 303 

antigenic analyses and demonstrated serological identities with different pneumococcal serotypes 304 

[63]. In the present study, eight S. mitis strains and 22 S. oralis strains contained genes homologous 305 

to cps4A, cps4B, cps4C, and cps4D. The cpsB-cpsD have been found essential for encapsulation in 306 

S. pneumoniae whereas cpsA influenced the level of CPS produced [64]. The presence of cps4A, 307 

cps4B, cps4C, and cps4D homologs in the eight S. mitis and 22 S. oralis strains indicates that these 308 

strains might be able to express capsule proteins. However, identification of capsular genes is not 309 

synonymous with capsule expression. Similar antigenic analyses as conducted by Skov et al. [63] 310 

could elucidate whether the IE strains in the present study express capsules. 311 

 312 

The former species S. dentisani now S. oralis subsp. dentisani were originally isolated from the oral 313 

cavity [65]. A recently study conducted by López-López et al. confirmed this by identifying S. 314 

dentisani in metagenomic sequences from 118 healthy individuals [6]. Beside the ability to colonize 315 

the oral cavity, the authors demonstrated that S. dentisani affects the growth of the oral pathogens 316 

Streptococcus mutans, Streptococcus sobrinus and Prevotella intermedia, illustrating a probiotic 317 

http://da.bab.la/ordbog/engelsk-dansk/synonymous


 

 

feature of S. dentisani. Based on their findings they proposed clinical trials to test the potential of S. 318 

dentisani in promoting human oral health [6].  In the present study, the isolation of six strains from 319 

IE patients, clearly demonstrates that S. oralis subsp. dentisani is an IE causing agent. This new 320 

knowledge is important as experimentally inoculation of S. dentisani into the oral cavity of healthy 321 

humans may affect their ability to develop IE. 322 

 323 

Conclusion  324 

In the present study, we describe for the first time that S. oralis subsp. dentisani is able to cause 325 

infective IE. The hierarchical clustering based on the pan-genome illustrates clustering of the S. 326 

oralis strains into subsp. oralis, subsp. dentisani and subsp. tigurinus indicating that other 327 

differences may occur between the subspecies than in the core-genes.  328 

Alignment of 40 clinical S. oralis (subsp. oralis, subsp. dentisani and subsp. tigurinus) and S. mitis 329 

genomes against the VFDB database revealed genes in the genomes homologous to virulence genes 330 

that contribute to bacterial avoidance of the immune system, colonisation and adhesion. Three 331 

genes homologous to psaA, pavA and lmb that contribute to adhesion were identified in all strains. 332 

The presence of adhesion genes in all strains indicates the importance of adhesion properties for S. 333 

mitis and S. oralis. Seven genes (homologs of nanA, nanB, ply, lytA, lytB, lytC and iga) contributing 334 

to colonisation and evasion of the immune system were variously identified in the strains.  335 

iga homologs were identified in S. mitis and all 14 S. oralis subsp. oralis whereas lytA homologs 336 

were identified in S. mitis, S. oralis subsp. oralis and S. oralis subsp. tigurinus indicating subspecies 337 

specific differences in S. oralis virulence. Genes homologous to the capsular genes cps4 in S. 338 

pneumoniae TIGR4 were variously identified in the 40 strains. However, none of the strains 339 

contained a full cps4 locus compared to S. pneumoniae TIGR4. The virulence gene profiles of the 340 

40 clinical S. mitis and S. oralis (subsp. oralis, subsp. dentisani and subsp. tigurinus) contribute 341 

with important knowledge about the virulence of these species and new subspecies. However, a 342 



 

 

further elucidation of expression studies and in vivo studies are necessary before the clinical 343 

relevance of the three new subspecies can be established.   344 
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Table 1.  Homologs of virulence genes in the 40 S. oralis and S. mitis strains.  518 

Genes  Product                           S. oralis* 
                        subspecies 

S. mitis*  S. oralis  
Identity 

S. mitis  
Identity 

  oralis     tigurinus dentisani  %** %** 
pavA Adherence and 

virulence protein A  
14/14 8/8 6/6 12/12 71-72 70-71 

lmb Laminin-binding 
surface protein 

14/14 8/8 6/6 12/12 64 -65 67-64 

psaA Pneumococcal 
surface adhesion A 
 

14/14 8/8 6/6 12/12 92-94 94-97 

nanA Neuraminidase A 
 

14/14 7/8 6/6 7/12 64-74 49-75 

nanB Neuraminidase B 
  

0/14 0/8 0/6 6/12  51-98 

ply Pneumolysin  
 

0/14 0/8 0/6 2/12  41-51 

lytA Autolysin  
 

4/14 3/8 0/6 5/12 45-60 57-85 

lytB Cell Wall Hydrolase 
 

14/14 8/8 6/6 11/12 47-55 45-69 

lytC Cell Wall Hydrolase 
 

5/14 6/8 3/6 11/12 44-57 40-86 

iga IgA1 protease 14/14 0/8 0/6 7/12 42-52 40-74 

*Number of strains in which the genes are present. ** Percentage of identical amino acids obtained using BLASTP.  519 

 520 

Figure legends 521 

Fig. 1. Hierarchical clustering of Pearson correlation coefficients determined from the 522 

presence/absence of functional profiles in the 40 strains. The heat map colour indicate the Pearson 523 

correlation coefficient between the strains; the darker colour, the higher correlation. The colour bars 524 

shows the individual species of the particular strain: S. oralis subsp. oralis (dark blue), S. oralis 525 

subsp. tigurinus (light blue), S. oralis subsp. dentisani (green) and S. mitis (red).  526 
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