
Pathfinding Algorithms in a Unity 3D
Environment

Roskilde University
IMT

Humanistic Technology
Computer Science Project

Title: Pathfinding Algorithms in a Unity
3D Environment

Project Period: Spring Semester 2018

Project Group: S1825228105

Members:

Andreas O. Thomsen
Study number: 58650
E-mail: aobelt@ruc.dk

Sebastian A. V. Jakobsen
Study number: 57938
E-mail: savj@ruc.dk

Alex T. K. Wogelius
Study number 58717
E-mail: atkw@ruc.dk

Pelle Schlebaum
Study number: 57306
E-mail: pellesc@ruc.dk

Supervisor: Junia P. G. Silva

Number of pages: 60

Hand in date: 28/5/2018

Abstract

The aim of this report is to test path finding algorithms in four different environ-
ments - one with no obstacles, one with a maze, one with a barn shaped obstacle
and one with the target enclosed with one entrance. The algorithms under exam-
ination is modified versions of respectively breadth first search, dijkstra and A*.
furthermore we have implemented a minimal heap based version of A* and Dijk-
stra, also to compare them. The area of the search is grid based and can therefore
be seen as nodes connected with eight other nodes. We use unity game engine
as platform, because it provides tools to make good visualizations, and a build-in
profiler which, combined with a series of tests of each algorithm in the different en-
vironments gives a picture of their completion time. The tests shows, that in a plain
grid the heap optimized A* was 4.925 milliseconds faster than the slowest which
was breadth first search. In the maze, the heap optimized dijkstra implementa-
tion were 1.848 milliseconds faster than the slowest which again were breadth first
search. With the barn shaped obstacle the dijkstra without heap optimization was
the fastest and 1.235 milliseconds faster than the heap optimized Dijkstra which
were the slowest. The test of the enclosed target showed that breadth fist search
were the fastest, and 0.974 milliseconds faster than unoptimized A* which were
the slowest.

Keywords: Unity, Dijkstra, A*, Breadth first search, pathfinding, algorithms,
optimization.

Contents

1 Introduction 1
1.1 Problem framing . 2

2 Theory 3
2.1 Algorithms . 3
2.2 Pathfinding . 4
2.3 Optimization . 10

3 Design 16
3.1 Node . 16
3.2 Grid . 18
3.3 Heap . 21
3.4 Swap items . 26
3.5 Additional methods . 26
3.6 Pathfinding . 27
3.7 Dijkstra . 30
3.8 Breadth first search . 32

4 Methodology 33
4.1 Journal . 33
4.2 Benchmarking . 34
4.3 Statistics . 37

5 Analysis & Discussion 40
5.1 Introduction to tests . 40
5.2 No obstacles . 40

5.3 Maze environment . 42
5.4 Barnyard environment . 43
5.5 Enclosure environment . 43
5.6 With or without heap . 44
5.7 Hashset and lists . 44
5.8 Sources of errors and uncertainties . 45
5.9 Expectations . 45

6 Conclusion 46

7 Perspectivation 47
7.1 The game idea . 47
7.2 Benchmarking . 47
7.3 Google Maps comparison . 48
7.4 Alternative uses . 49
7.5 Costs . 50

Bibliography 51

Appendix 52

A Journal 53

1 Introduction

This computer science project started out with the intention to research, design,
and implement various types of algorithms. “Algorithms are the stuff of computer
science: they are central objects of study in the field.” (Sedgewick 2011, pp. 4) .
Algorithms are present everywhere in today‘s society from nuclear power plants
to coffee machines and in route planners like google maps (Bhasin 2015).

Algorithms are clearly an important field to have an understanding about when
one is writing a program. Researching which sort of algorithms and how one
should write them can be a complex problem, but the essential goal when writing
algorithms is, to minimize computational calculations and memory. Sedgewick
and Kayne talk about how upgrading your computer might increase a programs
speed by a factor of 10 or 100, but a good algorithm can speed a program up with
a higher factor (Sedgewick 2011). This is of course much more economical feasible
than upgrading all the current hardware.

It‘s no secret that the goal intended was to gain enough knowledge about algo-
rithms and how to implement them, in the hope of being able to apply them to
NPC’s in a 2D video game. This is because all of the group members have an in-
terest in developing computer games, and all have had a course revolving the con-
cepts of basic AI. It seemed like an obvious way to approach this project because
we read about algorithms regarding basic AI using the A* algorithm (Sedgewick
2011). But as timed passed we realised that the scope for making a game was too
big for us being satisfied with the end result of the semester project and decided
that we didn’t have the means to accomplishing the idea within one semester.

The scope of this project is about understanding and designing algorithms, but

1 of 60

1.1. Problem framing

also about the optimization methods that exists. Finally, the project aims at com-
paring different algorithms to present test results, so it will be possible to do a
comparative evaluation. The algorithms are being programmed in C# through Mi-
crosoft Visual Studio which is what is used by Unity so we can get a visualization
of the execution of the different algorithms.

1.1
Problem framing

As the scope of the project changed throughout the process, the problem frame
naturally changed as well. The first approach remained the same and was about
getting to know some classic algorithms, and what components and methods they
entail. Then the question arose of where and how in society algorithms are used
and what purpose they have. That’s where the understanding of the power of
algorithms started forming, when it became clear what computational processes,
they can save. After exploring different algorithms and understanding the theory
behind them, it was clear that the projects scope should be on the theory behind
design-techniques and implementation of pathfinding algorithms. The preferred
algorithms will be implemented, and some sort of benchmarking test needs to
take place. That’s another problem, understanding what benchmarking entails
and how it should take place. This brings forward additional questions like what
parameters need to be set and what criteria needs to be met, to have a benchmark
test that produces some results that can be evaluated properly.

1.1.1
Problem definition

How do different path finding algorithms perform in different environments and

how do they compare to each other?

2 of 60

2 Theory

In this chapter the concept of three classic algorithms will be presented and their
strengths and weaknesses will be evaluated, in the scope of which problems they
could be best suited to solve. There will also be a presentation of different opti-
mization methods that can be implemented in an algorithm to save computational
time.

2.1
Algorithms

In this section various algorithms will be explored and discussed in relation to
each other. This will be done through mathematical representations and graphs.
The reasoning behind the algorithms presented in this section is done through
graphs, because as Harsh Bhasin puts it “(. . .) graphs which is the soul of algo-
rithm analysis and design.” (Bhasin 2015, pp. 142) . Algorithms can be visualized
through many types of graphs. The ones referred to in this chapter will mainly
be cyclic and non-cyclic graphs, the latter also known as trees, is when a node
(vertex) is not isolated (Bhasin 2015). Graphs can also be a matrix but regarding
to this project which has a focus on pathfinding, we will mostly refer to cyclic or
non-cyclic weighted graphs. Weighted means there are some costs associated to
the nodes or edges in the graph.

An algorithm can be viewed as a series of tasks that needs to be fulfilled to com-
plete an objective (Bhasin 2015). Algorithms are everywhere and as Harsh Bhasin
also notes, they exist within everything from coffee-makers to power plants as
well as in our search engines and, as most people know, in google maps as a
tool for getting directions which are happening due to the pathfinding algorithms

3 of 60

2.2. Pathfinding

(Bhasin 2015). The pathfinding algorithms we aim to work with are Dijkstras(1959),
breadth first search(1945), and A* pronounced "A-Star"(1968), and we will try to
implement them to compare them up against each other (Timeline of algorithms
2018).

2.2
Pathfinding

In essence, pathfinding is about finding a route from point A to point B. The
way to handle this varies from checking all possible directions until point B has
been located, to providing search parameters which serves to guide the pathfinder
in order to avoid checking all available moves and instead, do a focused search
that will, in theory, save computational power and therefore also work faster. “A
good algorithm should use the resources such as CPU usage, time, and memory
judiciously.” (Bhasin 2015, pp. 2)

2.2.1
Breadth First Search

Harsh Bhasin introduces us to breadth first search and depth first search algo-
rithms through talking about graphs and graph traversals, hence graph traversal
can be either BFS or DFS (Bhasin 2015).

The breadth first search algorithm is checking the neighbouring nodes from the
root node. It implements a data structure called queue. The queue is used when a
node is processed, then the adjacent nodes are placed in a queue (Bhasin 2015).

The queue used in the breadth first search algorithm is an array in order to keep
track of the visited nodes - this is a global array (Bhasin 2015). As mentioned
above, the breadth first search algorithm checks its neighbouring nodes but the
algorithm goes through all the nodes, as going through layers of neighbours. The
algorithm starts by selecting the root node and then putting it in the queue. Then
"A" is processed and we see that "B" and "C" are adjacent(neighbours) to "A", so
now they will be put in the queue and so forth. The reason for the array to keep
checking the visited nodes is because, when dealing with graphs as a representa-

4 of 60

Chapter 2. Theory

tion, then "D" and "A" could be connected but we don’t want to process "A" again,
when we get to "D". Meaning you can get from "A" to "D", but "D" isn’t adjacent
to "A" otherwise it would have been put in queue with "B" and "C".

As mentioned breadth first search checks through layers of neighbours and this
is its strength. But if the desired node one wants to reach is on the seventh layer
and there are for example 256 nodes on each layer, then it has to process 256 nodes
on each layer before getting to the desired node (Bhasin 2015).

Following here is a graphical representation where we want to get to the "I" node.

Figure 2.1: Graph/Map

What we see here is a graph, it could
represent a road map, where we at
our root node "A", wants to visit
some family at node "I".

Figure 2.2: Graph/Map

As mentioned in the theory section
BFS will search through the adjacent
nodes in the next layer. As seen on
figure 2.2 it finds "B", "C", and "D".

5 of 60

2.2. Pathfinding

Figure 2.3: Graph/Map

Now the nodes adjacent to "A" have
been processed so the algorithm
checks the adjacent nodes to "B",
which is "E".

Figure 2.4: Graph/Map

Since the only adjacent node to "B"
was "E", we go back to "C" and pro-
cess the adjacent nodes to "C", which
is "F" and "G".

Figure 2.5: Graph/Map

In figure 2.5 the algorithm is back at
the "D" node and are processing the
adjacent nodes to "D", which is the
"H" node.

6 of 60

Chapter 2. Theory

Figure 2.6: Graph/Map

Finally when the nodes on layer 1
"B", "C" and "D" has been processed
and the ones on layer 2 "E", "F", "G"
and "H", the algorithm goes to the
"E" node and processes the ones ad-
jacent to "E". Now the algorithm has
made it to "I". That’s how breadth
first search executes in theory.

2.2.2
Dijkstra

Dijkstra‘s algorithm is a single-source shortest path algorithm which was invented
to solve “the single-source shortest-path problem in edge-weighted digraphs with
non-negative weights.” (Sedgewick 2011, pp. 652) dijkstra‘s algorithm is use-
ful for finding the shortest path or the lowest cost path through a digraph when
the weights are non negative. An edge-weighted digraph has a cost or weight
connected to a directed path. Regarding the cost/weights and the nodes, the
weights do not represent the distance between edges. They are Euclidean dis-
tances (Sedgewick 2011). The reason for this is important because dijkstra‘s al-
gorithm uses the weights from the edges to get to a node, to find the minimal
cost path i.e. the shortest path. The quality of dijkstra is that it’s able to build
a shortest-paths tree where it‘s possible to find the shortest path from the source
node to any given node (Sedgewick 2011).

When applying dijkstra‘s algorithm to an edge-weighted graph it’s possible to
apply a greedy approach to finding the shortest path, which aims at either mini-
mizing costs or maximizing profit (Bhasin 2015). The greedy approach on edge-
weighted graphs work by using heuristics from the edges when calculating the
shortest path between two nodes.

7 of 60

2.2. Pathfinding

The guide for using the greedy approach is starting from a source node and then
selecting a node as the goal, then the algorithm will find the path with the lowest
cost.

2.2.3
A*

The A* algorithm finds its path by maintaining two lists. An open list and a closed
list described further below. Also it has a set of heuristics which helps determine
the direction of its search towards its end-goal. This for an example, separates it
from dijkstra‘s algorithm which searches in all directions until it reaches its end-
goal and are therefore - in theory faster.

This algorithm is an extension of dijkstra‘s algorithm, which aims to improve
upon the running time using heuristics. dijkstra‘s algorithm was in some sense
blindly searching the graph for the goal node. It did not use the location of the
goal node to guide its search, which meant it would search with equal priority
in all directions.

Vinther, Vinther, and Afshani 2015, pp. 18

Open-list

The purpose of the open-list is to store all the neighbouring nodes of the current
node under investigation. As the search expands, more neighbours will be added
but to the end of the list. With sufficient heuristics, we can loop through the open-
list, and take the "closest" neighbour and make that one the next current node /
"node of interest". (Oksa 2014)

Closed-list

The closed-list serves as a back stopper meaning, that its purpose is to add the
nodes that have already been investigated so - when a loop through neighbours of
the current node is initiated, and other nodes have already been examined, they
will be skipped.

8 of 60

Chapter 2. Theory

Heuristics

The heuristics are the logic the A* follows in order to generate the shortest path.
The heuristics are described as:

F(n) = G(n) + H(n) (2.1)

The cost of a move

Figure 2.7: Unit Circle

Moving horizontally or vertically have
a cost of 1 and moving diagonally have
a cost of 1.4. The reason for choosing
1.4 for the diagonal move is that we
consider our map, and the nodes it con-
sists of, as angles of 90 degrees. There-
fore to calculate the diagonal move-
ment we need to find "C" in Pythagoras
theorem. As it is - the theorem says that
"C" to the power of 2 is equal to "A" to
the power of 2 plus B to the power of 2.
since our movement cost to go along either "A" or "B" is 1, then those two powered
by 2 would be 2. Now to find the square root of 2, ending up at 1.414213. By a
principle of convention we multiply these costs by 10. So to simplify it, we choose
to make the diagonal movement cost 14 and the cost of both vertical and horizon-
tal moves 10.

beneath we will describe F-, G- and H-cost individually.

9 of 60

2.3. Optimization

G cost

The G cost is the cost from any given node to the starting node. As we move
further away from the starting node this number will grow according to horizontal,
vertical and diagonal costs.

H cost

The H cost is the distance from any given node to the end node, and therefore the
H cost equips the algorithm with a kind of compass telling it which way to search.
As we get closer to the end node, the H cost will get smaller and smaller according
to the horizontal, vertical and diagonal costs.

F cost

F is the combined cost of the H- and G cost. The F cost gives the A* algorithm its
potential to find the shortest path without searching the entire area. So with the
right heuristics A* works really well and thus are flexible because only with slight
changes to the heuristics you can change and modify the search criteria (Vinther,
Vinther, and Afshani 2015, pp. 19).

2.3
Optimization

In the following section we wish to investigate one way of optimizing a couple
of our algorithms for further comparison of algorithmic design and structure. We
want to optimize to compare the results of a regular loop-search of a list of nodes,
to the presumably optimized version using heap sort(1968).(Timeline of algorithms
2018) The results of these comparisons will be used in our analysis. The section
will contain image examples of a maximum heap structure, whereas we are using a
minimum heap structure - the principles are exactly the same. The only difference
is that in a max-heap structure we want to sort for the highest value and in the
min-heap we sort for the lowest value.

10 of 60

Chapter 2. Theory

2.3.1
The Heap

Since pathfinding algorithms are searching for the lowest cost path we have ap-
plied a min-heap sort structure to our optimization of two of the algorithms. The
term "heap" was first used in the relation with heap-sort, and is not to be confused
with the heap as garbage-collected storage as it is used in various programming
languages such as Java (Cormen et al. 2009, pp. 151). To see why using a heap is
much faster than a search through a list, it can be useful to illustrate the structure
of a heap. A heap can be thought of as an advanced array of items with specific
index relations. The visualisation of a heap is a reversed binary tree-structure with
every node having a relation to two other nodes. Nodes are therefore not separate
items in a list, but are connections of relations. The index relations are visualized
in 2.8.

Figure 2.8: The heap as an array list,
Cormen et al. 2009(pp. 152).

As shown in 2.8, the first index holds a relation
to the second and third index, the second index
holds a relation to the fourth and fifth index,
the third to the seventh and eighth index and
so on. In practice we refer to any node linking
two other nodes as the parent of those nodes. (A
parents index will always be less than its chil-
dren’s and therefore to the left of them in the
list). The goal is to satisfy the heap property,
that the value of any node i other than the root,
is at most equal to its parent - and in the case of a Min-Heap structure it shall be
lower if it is not equal:

A[Parent(A)] ≤ A(i) (2.2)

Cormen et al. 2009, p. 153 When looking at the tree structure it becomes clear
that we can always define the parent / children relationships in a fairly simple
way. The number within the grey circle is the stored value of the node, while the
number above is the index number.

11 of 60

2.3. Optimization

Figure 2.9: heap as conceptual tree,
(Cormen et al. 2009, pp. 152)

To get to any current-node-[i]s po-
sition through the index relations
shown in fig. 2.8

parent(i) = i/2 (2.3)

le f tChildNode(i) = 2 ∗ i (2.4)

rightChildNode(i) = 2 ∗ i + 1 (2.5)

Cormen et al. 2009, pp. 152

Notice that moving to the parent node from the right-child node we end up at a .5
index number which is rounded down(by automatic integer division in our code).

Usually when applying heap-sort it involves building the heap, a method to "heapify"
the heap - meaning that the heap property will be maintained, and a way to extract
the top heap item and "re-sorting" to find the new lowest value.

This is the structure of max-heapify:

12 of 60

Chapter 2. Theory

(Cormen et al. 2009, pp. 154)

When it is called, MAX-HEAPIFY assumes that the binary trees rooted at
LEFT(i) and RIGHT(i) are max-heaps, but that A[i] might be smaller than its
children, thus violating the max-heap property.

(Cormen et al. 2009, pp. 154)

The next sub-section is a basic description of how to create a heap and how to
extract the minimum F cost, as well as a visualization of the "heapify" method.

2.3.2
Heap-sort

.
The first step of the heap sort procedure is to specify the size of the heap that is to
be built.

A.heap.size = A.length (2.6)

Whenever an element is passed into the heap the "heapify" method is called and
as the heap is filled the heap property is being maintained through that method.
As long as the heap property is maintained, it is possible to remove the top item
in the heap and then update the heap to maintain its property.

13 of 60

2.3. Optimization

Figure 2.10: Heapify, (Cormen et al. 2009, pp.
158)

The algorithm begins with (a) where
A(i) is at index five (The highest in-
dex number that has children to com-
pare with). Again, A(i) assumes that its
children are both max-heaps but that
itself is possibly a smaller value - this
might sound contradictory but it basi-
cally just means that A(i) is the one that
"checks" if it breaks the heap property.
In the "heapify" example, shown in Fig-
ure 2.10, index five with a value of 16 is
being compared with its children (child
in this case). 16 is a bigger value than
7 so nothing is swapped. In the next
run (b) of the loop A(i) changes to in-
dex four - compares with its children
and swaps places with its highest-value
child which is 14, and so on. As the heap is filled with nodes as an open list (list
of nodes/neighbours to be evaluated), we can begin to extract the top item, sort
the list anew and keep doing so till the heap is sorted. In the case of pathfinding
we only need to extract the shortest path from A to B.

2.3.3
Extraction and updating

The following section is meant to illustrate how to extract and re-heapify the
heap. These are the final steps for our heap-sort algorithm in order to apply it
to pathfinding.

Figure 2.11: Extract and update, (Cormen et
al. 2009, pp. 160)

As seen in figure 2.11 line two it keeps
going through the nodes as long as
there are nodes in the heap to com-
pare (down to 2). The top-heap ele-
ment is then sent to an array list in line
3 just before decrementing the list by
one. Now it heapifies the heap again to

14 of 60

Chapter 2. Theory

"sort up" the new highest value.

Figure 2.12: Extract and update (graph), (Cormen et al. 2009, pp. 161)

15 of 60

3 Design

In this section, there will be elaborated on our code and highlighted the areas
which are important. The approach will be to bring out methods from the respec-
tive scripts, and dive into their individual functionality for the program as a whole.
It‘s necessary to point out, that in the cases where vector3 is mentioned it contains
three values - X, Y and Z. However in this case Z is treated as Y because the visu-
alization of the pathfinding is two dimensional and Y is then the depth which is
always set to 1. There is also two Node scripts, but in order not to repeat the same
topics there will only be described one in this section. The reason for this is, that
the other Node script - Dnode ("dijkstra node" used for the dijkstra algorithm) is
similar, but a bit simplified compared to the Node script we will elaborate on here.

3.1
Node

First of, the Node script implements the IHeapItem interface with a type <Node>.
The reason for this is that this script now have to implement a get and a set method.
Further more we can see that the IHeapItem script on line 1, implements the Icom-
parable interface from where we also need to implement the CompareTo method
that we will use to sort our Nodes in our Heap optimization of both the A* and
the dijkstra scripts. This will be explained further in this section.

1 public interface IHeapItem <T> : IComparable <T>{
2

3 int HeapIndex { get; set; }

A Node contains five integers. The Hcost and Gcost meant for the A star algorithm.
GridX and GridY so it knows its own position in the Grid array, and lastly a
HeapIndex so it can be stored in, and knows its own place in the Heap. Then it
contains a boolean which dictates if a node is walkable or not, a vector3 to store its

16 of 60

Chapter 3. Design

position in the game world and a reference to its parent Node - used for tracking
its path once it is found.

3.1.1
Constructor

for each Node instantiated we have a constructor that - when initialized sets its
walkable boolean, worldPosition, GridX and GridY.

1 public Node(bool walkable , Vector3 worldPosition , int gridX , int gridY){
2 this.walkable = walkable;
3 this.worldPosition = worldPosition;
4 this.gridX = gridX;
5 this.gridY = gridY;
6 }

3.1.2
FCost

Also for each Node, there is a FCost get method in order for the A* pathfinding
script to calculate each of its next moves. As can be seen on line 4, it returns the
gCost added the hCost because that is in fact the fCost seen in the Theory section
under A*2.2.3

1 //-- || fCost get -method ||--\\
2 public int FCost{
3 get{
4 return gCost + hCost;
5 }
6 }

3.1.3
HeapIndex

The HeapIndex method is a getter and setter and is given its value in the pathfind-
ing script.

1 public int HeapIndex
2 {
3 get { return heapIndex ;}
4

5 set {heapIndex = value;}
6 }

17 of 60

3.2. Grid

3.1.4
CompareTo

the CompareTo method was created because it implemented the IHeapItem inter-
face which implements the IComparable interface. This method allows one to sort
Nodes in the heap optimization. The principle it works by is that it takes a node
as parameter. It then initializes an integer called compare which stores the value
returned from the CompareTo method, used on the FCost of the node which con-
tains this method to the node which is sent through the method. If the cost is less
than its compared node it returns -1, if it is equal it returns 0 and if its larger it re-
turns 1. There’s also implemented a tie breaker seen on line 4 which purpose is, if
the FCost of the two nodes under comparison is equal, then there is a comparison
to the hCost which is the distance to the goal from the Nodes under comparison.
Since our heap is reversed meaning that Nodes with the lowest Fcost should be
first, then it returns -compare so that it returns -1 if it‘s 1.

1 public int CompareTo(Node nodeToCompare)
2 {
3 int compare = FCost.CompareTo(nodeToCompare.FCost);
4 if (compare == 0){
5 compare = hCost.CompareTo(nodeToCompare.hCost);
6 }
7 return -compare;
8 }
9 }

3.2
Grid

The Grid1 script works as a command script, understood in the sense that it con-
tains nine different booleans that through an inspector can be given the value true
or false. Their values determine which algorithm is running, and further more for
visual purpose, also show the path and searched area of each algorithm. It also has
2 two-dimensional arrays of types Node and Dnode, a float that holds the Node
diameter, and a vector2 that holds the grid’s size. There’s also a layer-mask with
the purpose of setting each node to either walkable or un-walkable - this will be
further explained later in this section. Finally two integers that hold the grid size
X and the grid size Y.

18 of 60

Chapter 3. Design

3.2.1
CreateGrid

The script contains two methods that create a grid. One that creates a grid of
Dnodes which is made for the dijkstra algorithm, and one for the two remaining
algorithms that consists of Nodes. They are similar in structure besides the popu-
lation of either Nodes or Dnodes in the two two-dimensional arrays.

Besides setting the grid’s X and Y to the same size as gridSizeX and gridsizeY
we also start the nodes population at the bottom left corner. In order to set world-
BottomLeft we need to use unity’s transform.position which gives the game objects
their position in the game world - (x = 0, y = 0, z = 0) being its centre/ "world
origin". Then we subtract half the width of the gridWorldSizeX and half the height
of gridWorldSizeY. The calculation can be seen on line 4 and sets the starting point
for the Node or Dnode population to the left bottom corner. In the nested for
loop, one can see the calculation done for giving each node its world point in the
grids.Hereafter we initialize a temporary boolean walkable which is set to either
true or false with unity’s Physics.CheckSphere in which it passes the world point,
the node radius and the unwalkableMask and this checks if a given node should
be walkable or not. Lastly we populate the grids by giving it a place in the grid’s X
and Y and instantiate a Node with walkable - either true or false, the world point
and its X and Y.

1 void CreateGrid (){
2

3 grid = new Node[gridSizeX , gridSizeY];
4 Vector3 worldBottomLeft = transform.position - Vector3.right * gridWorldSize.x

/ 2 - Vector3.forward * gridWorldSize.y / 2;
5

6 for(int x = 0; x < gridSizeX; x ++){
7 for (int y = 0; y < gridSizeY; y ++){
8 Vector3 worldPoint = worldBottomLeft + Vector3.right * (x * nodeDiameter +

nodeRadius) + Vector3.forward * (y * nodeDiameter + nodeRadius);
9

10

11 bool walkable = !(Physics.CheckSphere(worldPoint ,nodeRadius , unwalkableMask));
12 grid[x,y] = new Node(walkable ,worldPoint , x, y);
13

14 }

19 of 60

3.2. Grid

15 }
16 }

3.2.2
GetNeighbours

The next method that will be presented is one the group made in order to get
the neighbours of the current node under examination in our pathfinding. It also
exists in two similar versions so that our dijkstra algorithm and the two remaining
pathfinding algorithms can use their function.

The methods takes a Node or Dnode as parameter, this is done so that it‘s possible
to pass the current node from our search algorithms. It starts by initializing a list
of Nodes. Thereafter follows a nested for loop, and inside this we first off want
to skip to check if both X and Y are 0 because this means, that it is in fact the
node that we passed in and therefore there is no need to check it. After this we
initialize two integers called CheckX and CheckY with their values set to the node‘s
X position + the X value that are in the scope of the nested for loop, so we get the
neighbour node’s X position and the same goes for the Y value.

Then we make a check to see if the CheckX and CheckY are within the bound-
aries of the grid array that holds all our nodes and if it is, we add that node to the
neighbour list and return it.

1 public List <Node > GetNeighbours (Node node){
2

3 List <Node > neighbours = new List <Node > ();
4

5 for (int x = -1; x <= 1; x++) {
6 for (int y = -1; y <= 1; y++) {
7

8 if (x == 0 && y == 0)
9

10 continue;
11

12

13 int checkX = node.gridX + x;
14 int checkY = node.gridY + y;
15

16

17 if(checkX >= 0 && checkX < gridSizeX && checkY >= 0 && checkY < gridSizeY
){

20 of 60

Chapter 3. Design

18 neighbours.Add (grid [checkX , checkY]);
19 }
20 }
21 }
22 return neighbours;
23 }

3.2.3
NodeFromWorldPoint

This method also appear in two versions like the two prior methods, and for the
same reasons. The purpose of these methods are to provide each of the pathfinding
algorithms with the exact positions of the start point and the end point of their
search. They take a vector3 as parameter but only uses X and Z. Then we initialize
two float variables with the percentage of the X and Y position, basically it can be
a float within 0 and 1. To make sure it doesn’t give a value out of the grid’s area,
if let‘s say, either the seeker or the target are not within the grid area because it
would then throw errors. It implements the Mathf.Clamp01 that clamps the value
within 0 and 1 for this purpose. Finally it initializes two integer values X and
Y which takes the whole gridSizeX - 1 because arrays are 0 indexed. Then it‘s
multiplied by percentageX and thus get the X position. The same counts for the Y
position and then it returns the Grid position with the X and Y coordinates.

1 public Node NodeFromWorldPoint(Vector3 worldPosition){
2

3 float percentageX = (worldPosition.x + gridWorldSize.x / 2) / gridWorldSize.x;
4 float percentageY = (worldPosition.z + gridWorldSize.y / 2) / gridWorldSize.y;
5

6 percentageX = Mathf.Clamp01 (percentageX);
7 percentageY = Mathf.Clamp01 (percentageY);
8

9 int x = Mathf.RoundToInt ((gridSizeX -1) * percentageX);
10 int y = Mathf.RoundToInt ((gridSizeY -1) * percentageY);
11

12 return grid [x, y];
13 }

3.3
Heap

The following section will cover our implementation of a min-heap in our pathfind-
ing program. It differs from the theoretical section not only by being a min-heap

21 of 60

3.3. Heap

(in regards to the examples used being of a max-heap) but also by being built up
of more methods. These differences will be explained along the way.

First of all the heap class "communicates" with the nodes through an interface that
any object using the heap, has to implement.

1 public class Heap <T> where T : IHeapItem <T> {
2

3 T[] items;
4 int currentItemCount;

This is a very flexible way of constructing the heap class. It uses T to represent
a generic object so that it can fit different objects into the heap, as long as they
implement the IHeapItem interface along with its methods. And this is basically
the meaning of the first line, the public class Heap takes in a parameter of type T
where the object T implement the IHeapItem interface. So far so good.
The heap consists of an array of T-items which will respectively be the node and
D-node in the use of the heap. Besides that, the list needs a counter to keep track
of how many T items there are in the heap, hence the currentItemCount.
The functionality that has to be implemented via the interface consists of a getter
and a setter of the heap-index as well as a compare method so that its possible to
compare the two nodes with each other.

1 public interface IHeapItem <T> : IComparable <T>{
2

3 int HeapIndex { get; set; }
4 }

3.3.1
Heap constructor

In the heap constructor the heap is set to be an array list of the parameter type T
with a "passed-in" size of maxHeapSize - when the heap is constructed in the A*
and dijkstra algorithms, the grid.maxSize will be passed in, meaning that the heap
has indexes to contain all nodes in the grid.

1 public Heap(int maxHeapSize){
2 items = new T[maxHeapSize];
3 }

22 of 60

Chapter 3. Design

3.3.2
Add an item to the heap

This method takes in an item parameter of type T. When a node is passed through
this method it is assigned its heapIndex-number through the HeapIndex setter method
in the respective node‘s classes. The index will be equal to the currentItemCount
which is incremented in the end of the method. The item can now be inserted into
the heap in its correct position before being sorted up according to its value/ cost.

1 public void Add(T item){
2

3 item.HeapIndex = currentItemCount;
4 items[currentItemCount] = item;
5 SortUp(item);
6 currentItemCount ++;
7 }

3.3.3
Remove the top item in the heap

This method has a return type T since the functionality needed is to return the
first item of the sorted heap to the path list in the pathfinding classes (A* and
dijkstra). It begins by defining a new variable of type T called firstItem which
occupies index zero in the heap, the lowest cost item of the sorted list. Then it
proceeds by decrementing the currentItemCount by one. Now that the firstItem
variable holds the top node, it can give away its place in the heap, it gives it to the
currentItemCount item which is in theory the most expensive node. This doesn‘t
really matter since it is being sorted down in the heap in a couple of steps. It is
being done this way to figuratively decrement the heap in the bottom instead of
the top, since the agenda is to always be able to find the lowest cost value on top of
the heap. Before sorting it down though, it is being set to its new heapIndex at zero
since it comes with a heapIndex of currentItemCount which isn‘t its correct position
any more. The method is ended by returning our firstItem, the original items[0].

1 public T RemoveFirst (){
2

3 T firstItem = items [0];
4 currentItemCount --;
5 items [0] = items[currentItemCount];
6 items [0]. HeapIndex = 0;
7 SortDown(items [0]);
8 return firstItem;

23 of 60

3.3. Heap

9 }

3.3.4
Sort clarification

As the attentive reader might have noticed, there hasn’t really been mentioned
anything about the "heapify" concept described in our theory section. In that
section the heapify method is being showcased as a recursion which has not been
necessary in our use, since items are being added to the heap and in that method
sorted in a while-loop in the respective pathfinding classes. Another difference is
that we want to be able to both sort an item up the heap and down the heap. This
is due to the fact that it is not necessary to sort and deliver a complete list from the
heap to an array list. When the path has been found, the heap will still be filled
with "neighbour nodes" and at that point it is not meaningful to transfer the items
one by one into a list. Therefore, when an item is added it should be sorted up the
heap, but when the first item is removed and replaced with items[currentItemCount]
it needs to be sorted down through all the "neighbour nodes" that are still in the
heap.

3.3.5
Sort up

The sort up method takes in an item parameter of type T. The parent to the item
that are being passed in will have its index defined by the formula shown in the
heap theory section, equation 2.3. (The calculations in the code looks a bit different,
since the heap-index in the code starts at index zero contrary to the formulas
shown in that figure). A while loop is then initiated where a new local parentItem
is defined to be items[parentIndex]. Now it is possible to compare the incoming
item with its parent and swap it if necessary, (if it has a lower cost than its parent)
through our Swap method.

1 void SortUp(T item){
2

3 int parentIndex = (item.HeapIndex - 1) / 2;
4 while(true){
5 T parentItem = items[parentIndex];
6 if (item.CompareTo(parentItem) > 0){
7 Swap(item , parentItem);
8 } else {

24 of 60

Chapter 3. Design

9 break;
10 }
11 parentIndex = (item.HeapIndex - 1) / 2;
12 }
13 }

3.3.6
Sort down

This method is like a reversed version of the "sort up" method. It also takes in an
item parameter of type T that actually comes from the bottom of the heap when the
top heap-item has been removed. A while-loop is also initiated where it‘s possible
to define the incoming item’s children by the formula shown in the theory section,
equations 2.4 and 2.5. A swapIndex is then created which is comparable with the
largest variable in the theory description of "heapify". The "heapify" concept is
actually a combined version of our sort up and sort down method.
The next step is to check if the incoming item even has a left and a right child. If
there is a left child, which is being checked for first, it just sets the swapIndex to
this child. If there also is a right child we then compare the left- and right child
node with each other. The lowest cost of this comparison will then be stored in the
swapIndex variable and lastly, we can compare the swapIndex with the item that is
being passed through the method to begin with (i.e the parent). If the swapIndex
has the lowest cost we then swap it with its parent, and if not we return from the
loop.

1 void SortDown(T item){
2

3 while(true){
4 int childIndexLeft = item.HeapIndex * 2 + 1;
5 int childIndexRight = item.HeapIndex * 2 + 2;
6 int swapIndex = 0;
7

8 if (childIndexLeft < currentItemCount){
9

10 swapIndex = childIndexLeft;
11

12 if (childIndexRight < currentItemCount){
13

14 if(items[childIndexLeft]. CompareTo(items[childIndexRight]) < 0){
15

16 swapIndex = childIndexRight;
17 }
18 }

25 of 60

3.4. Swap items

19

20 if (item.CompareTo(items[swapIndex]) < 0){
21

22 Swap(item , items[swapIndex]);
23 } else {
24 return;
25 }
26

27 } else {
28 return;
29 }
30 }
31 }

3.4
Swap items

The swap method takes in two item parameters of type T, an itemA and an itemB.
The method begin by defining the incoming items as each others index, getting
ready for the switch. Before the actual swap a new int variable is defined (itemAIn-
dex), to hold the index of itemA since it‘s about to be overwritten with the index
number of itemB. The last step will be to overwrite itemB with the stored value of
itemA which is held by itemAIndex.

1 void Swap(T itemA , T itemB){
2

3 items[itemA.HeapIndex] = itemB;
4 items[itemB.HeapIndex] = itemA;
5

6 int itemAIndex = itemA.HeapIndex;
7 itemA.HeapIndex = itemB.HeapIndex;
8 itemB.HeapIndex = itemAIndex;
9 }

10 }

3.5
Additional methods

There are a couple of small additional methods. There is a count method that re-
turns the number of items in the heap. This is for the while loop in the pathfinding
classes that uses the heap. The while loop runs as long as the count is bigger than
zero. There is also an update method which will actually just sort up an item if we
have found a neighbour to our currentNode with a lower cost in our pathfinding.

26 of 60

Chapter 3. Design

Last but not least there is a contains method with a return-type "boolean". This will
return true if the heap contains a specific item T which can be passed through the
method. This is to check if a lower cost neighbour of a currentNode is already in
the heap.

3.6
Pathfinding

We consider the A* algorithm as the most complex of the three algorithms. There-
fore we will present this one first in detail, and then follow up by describing our
implementation of the dijkstra algorithm and lastly - the Breadth first search algo-
rithm.

The Pathfinding script contains three data structures. A List, a Heap, and a Hash-
Set. The List and the Heap’s function is that of the openlist 2.2.3. and the HashSet
is the closedList 2.2.3. We then instantiate a grid of Grid1 because we want to be
able to use the methods from the Grid1 in our pathfinding and initialize it in our
awake method.

most noticeable in this script is the two different pathfinding methods. We are
using !Enumerator for calling the optimized and not optimized version of the A*.
The logic behind using the IEnumerator was because we wanted the seeker to be
able to follow the path, however this is for future improvements and we are not
utilizing its properties.

3.6.1
FindPathLoop

FindPathLoop takes in two vector3, startPos and targetPos. These are used on line
9 and 10 to provide the method from grid with the coordinates to get the position
for the start, and the end of the search. Also there is an instantiation of Stopwatch
which is provided to see the time it takes the Unity to run the code, this is to make
us able to compare the different pathfinding algorithms.

The first that need to be checked is if the two points of the search is walkable,

27 of 60

3.6. Pathfinding

because if this isn’t the case - there is no need to start the search. Now it initialize
the openList and the closedSet, and the loop of the search begins and will run for
now, until openList size is bigger than 0. Now it has to loop over the openList and
set currentNode equal to the element in the openList with either the lowest FCost
or, if the currentNode and a given element in the openList loops through have a
equal FCost, then it checks if the hCost in the element is less than the currentNode
hCost and set the currentNode equal to that element in the openList. After the loop,
the currentNode will be removed from the openList and added to the closedSet to
mark it as visited and not loop over it in the loops to come. On line 34 there’s
created a stop for the search, if the currentNode is equal to the targetNode then it
prints the time it took to run in milliseconds, and set pathSucces to true which, at
line 68 and triggers the if statement and it sets the closedSet in the grid equal to
the closedSet which is the area searched through so its possible to visualize it.

From line 43 to 64 the Getneighbours method from grid is used in order to get
the neighbour nodes of the currentNode. If one of the neighbours are either not
walkable or are in the closedSet then its skipped, and proceeds to the next. Then
an integer is initialized, newMovementCostToNeighbour and set its value equal to the
currentNode gCost and use the GetDistance method from the grid, and add the dis-
tance between the currentNode and the neighbour. If the newMovementCostToNeigh-
bour value is less than the currentNode gCost, or the openList doesn’t contain the
neighbour then the neighbour gCost is set equal to newMovementCostToNeighbour,
and the hCost equal to the distance from the neighbour to the targetNode and the
the parent of neighbour to curretnNode. If the openList doesn’t contain the neighbour
then its added. This will run until the currentNode is equal to the targetNode or the
openList is empty.

1

2 IEnumerator FindPathLoop(Vector3 startPos , Vector3 targetPos){
3

4 Stopwatch swLoop = new Stopwatch ();
5 swLoop.Start ();
6

7 Vector3 [] waypoints = new Vector3 [0];
8 bool pathSuccess = false;
9

10 Node startNode = grid.NodeFromWorldPoint (startPos);
11 Node targetNode = grid.NodeFromWorldPoint (targetPos);
12

28 of 60

Chapter 3. Design

13 if (startNode.walkable && targetNode.walkable) {
14

15 openList = new List <Node >();
16 closedSet = new HashSet <Node > ();
17 openList.Add (startNode);
18

19 while (openList.Count > 0) {
20

21 Node currentNode = openList [0];
22

23 for (int i = 1; i < openList.Count; i++) {
24

25 if (openList[i]. FCost < currentNode.FCost || openList[i].FCost ==
currentNode.FCost && openList[i]. hCost < currentNode.hCost) {

26

27 currentNode = openList[i];
28 }
29 }
30

31 openList.Remove (currentNode);
32

33 closedSet.Add(currentNode);
34

35 if (currentNode == targetNode) {
36

37 swLoop.Stop();
38 print("Path found in: " + swLoop.ElapsedMilliseconds + " ms");
39 AStarMilliseconds = swLoop.ElapsedMilliseconds;
40 pathSuccess = true;
41 break;
42 }
43

44 foreach (Node neighbour in grid.GetNeighbours(currentNode)) {
45 if (! neighbour.walkable || closedSet.Contains (neighbour)) {
46 continue;
47 }
48

49 int newMovementCostToNeighbour = currentNode.gCost + GetDistance
(currentNode , neighbour);

50

51 if (newMovementCostToNeighbour < currentNode.gCost || !openList.Contains
(neighbour)) {

52

53 neighbour.gCost = newMovementCostToNeighbour;
54 neighbour.hCost = GetDistance (neighbour , targetNode);
55 neighbour.parent = currentNode;
56

57 if (! openList.Contains(neighbour))
58

59 openList.Add(neighbour);
60

29 of 60

3.7. Dijkstra

61 }
62 }
63 }
64 }
65

66 yield return null;
67 if (pathSuccess) {
68 waypoints = RetracePath (startNode , targetNode);
69 grid.closedSet = closedSet;
70 }
71 }

3.6.2
FindPathHeap

The optimized version essentially works by the same principles. The major differ-
ence is, that the list openList is substituted with our Heap instead. Then it’s not
needed to loop over the openList because, it sorts the Heap by values so the lowest
always is at the top and therefore as seen on the code snippet below the first item
from the heap is removed, and sets the currentNode equal to that item.

1 Node currentNode = openSet.RemoveFirst ();

3.7
Dijkstra

The dijkstra implementation which has been made during this project uses the
Dnode, and all Dnodes gCost are set to the maximum value of the variable type
integer. This algorithm make use of the same principles as the approach on the
A* algorithm. It contains a openList and a closedList, for the same purpose and it
also instantiates a grid to use its methods. What’s different here is that, instead of
using the fCost and hCost, it only make use of the gCost. Therefore essentially we
search in all directions, but find the path through the assignment of parents. This
can be seen from line 3 to 7 below. Here it’s looping through the openList to check
which element gCost is lower than the curretnNode gCost. And if this is the case,
currentNode is set equal to that element.

1 for (int i = 1; i < openList.Count; i++){
2

3 if(openList[i].gCost < currentNode.gCost){
4

30 of 60

Chapter 3. Design

5 currentNode = openList[i];
6 }
7 }

Next it loops through all the neighbour Dnodes of the curretnNode, and again, if a
neighbour is either not walkable, or is in the closedList it will ignore it and continue
to examine the next neighbour. That’s where it initializes an integer tentative dist
which is the temporary value consisting of the currentNode gCost added to the
movement cost of the neighbour. Then if the tentative dist is less than the neighbour
gCost which is the maximum value of integers. Then the neighbour gCost is set to
the value of tentaive dist. Then we assign the parent of neighbour to currentNode,
and finally adds the neighbour to the closedList. If the openList doesn’t contain the
neighbour we wrap the loop up by adding it for the next iteration of the loop.

1 foreach (DNode neighbour in grid.GetDNeighbours(currentNode)){
2

3 if(! neighbour.walkable || closedList.Contains(neighbour)){
4 continue;
5 }
6 int tentative_dist = currentNode.gCost + GetDistance(currentNode , neighbour);
7

8 if(tentative_dist < neighbour.gCost){
9 neighbour.gCost = tentative_dist;

10 neighbour.parent = currentNode;
11 closedList.Add(neighbour);
12

13 grid.dClosedList = closedList;
14 }
15 if(! openList.Contains(neighbour)){
16 openList.Add(neighbour);
17 }
18 }
19 }
20 }

3.7.1
Optimized

The optimization of our implementation of dijkstra is essentially the same as the
A*. But the openList is substituted with the Heap. The Difference is, that the
sorting of Dnode isn’t based upon the fCost, but the gCost instead.

31 of 60

3.8. Breadth first search

3.8
Breadth first search

Like dijkstra, the logic behind Breadth first search is essentially the same, there is
a while loop and the openList and closedList are also present. What separates it
is, that instead of having a focused search, it searches in all directions like in the
implementation of the dijkstra algorithm. This can be seen on line 1 to 3 where
we assign currentNode to the first index of the openList. We do not loop over the
openList, but simply use the first index, assign it and remove it from the openList
and finally add it to the closedList.

1 currentNode = openList [0];
2 openList.Remove(currentNode);
3 closedList.Add(currentNode);

After this, the GetNeighbours method is used again from the grid which we’ve also
instantiated in this script to get the surrounding neighbours. The check to see if
the neighbour is walkable or if the closedList is also used. But after that we only
check if the neighbour is in the openList. And if it isn’t the case, it will be assigned
the currentNode to the parent of the neighbour and adds it to the openList.

1 foreach (Node i in grid.GetNeighbours(currentNode))
2 {
3 if (!i.walkable || closedList.Contains(i))
4 {
5 continue;
6 }
7

8

9 if (! openList.Contains(i))
10 {
11 i.parent = currentNode;
12 openList.Add(i);
13 }
14 }
15 }
16 }
17 }

32 of 60

4 Methodology

4.1
Journal

As a group it was decided to keep a journal of the progress throughout the months
of this project. Several group members have tried this method before, and it turned
out to be a good way of keeping track of every decision and move throughout the
project work. The point of the journal is to give an honest impression of how the
project have evolved. The journal is not meant to be a way of making our work
effort look especially impressive. The important thing is to be completely honest
of how the weeks have looked. It will therefore show weeks where there was done
very little on the project, as well as weeks where there have been more intense
work on the project. While this is a method to show readers how the work have
progressed, it is also working as a way for the group to see how well it spent the
time. To see if the work hours could have been prioritized differently or made
other choices, that would perhaps have had a more beneficial outcome. It also
works so that the group in the end of the project, can read through the journal,
and make a reflection of the entire project. Often it is hard to remember how every
week of the project have been, and here the journal is working phenomenally. It
keeps track of every single step that we as a group have made. But its also useful
regarding looking up design decisions, because remembering all the small deci-
sions in a progress can be difficult.

With a group project like this, the believe is that it’s often interesting to know
how people are working together. Working together as a group, can at times be
difficult. Personal interests and different schedules can interfere, and in worst
case cause trouble between members. With the journal the intentions are to give

33 of 60

4.2. Benchmarking

an impression of how everything have been worked out during the elapse of the
semester. All members of the group have different courses to attend. This means
that meetings can’t always be scheduled and exams are also occurring at different
dates. As shown in the journal, this has at times caused the work to be paused.
However, we have still managed to keep close contact with each other and remem-
bered to update the journal as often as possible.

4.2
Benchmarking

In this project its relevant to test our code and how fast it runs. This is especially
with how fast the algorithms are. When benchmarking takes place in this project
then its using the build-in Unity profiler which acts as a benchmarking mechanism
where its possible to see, in great detail how the CPU runs the code with different
algorithms. Benchmarking, simply put is a standard or point of reference against
which things may be compared. The focus of the tests is only how fast the CPU
will run the different algorithms from start to finish, but there is a lot of other stuff
to test besides how fast they are.

Figure 4.1: How the CPU tab looks in the Unity profiler

As seen in figure 4.1 above there is eight different things to measure in the "CPU
Usage" tab. The one being focused on in this report is the "scripts" section which is
seeing how fast the scripts were run with the CPU but there are two other param-
eters which also could have some usefulness in testing the algorithms in this case.
The first one is the rendering which is used for rendering the visual image on the
screen. That one is a bit more specific to how long it takes for the CPU to render
the visual path which we have in Unity. The second one is the "Garbage collec-
tion" section which is how it possible to optimise the speed of the algorithms. The
garbage collector works with the memory to go through it to find methods and in

34 of 60

Chapter 4. Methodology

general lines of code which is not in use any more and then remove them so not
to slow the process of the continued use of the algorithms.

When conducting the tests there will be done a total of 86 tests to see how fast
the CPU runs the algorithms. There will be made four different environments for
testing the code, one which is empty, one with a barnyard environment, one with
a enclosure environment, and finally one with a maze-like environment.

35 of 60

4.2. Benchmarking

Figure 4.2: The 4 different environments tested in

The four different environments used in the tests is ran about 28-30 times with
each algorithm which means each environment is tested 84-90 times. This means
that there are 14-15 test runs per algorithm with 4-5 warm up runs to make sure
that there will be as small a chance of deviation as possible. It will then be run on
all of the environments which ends up being a total of 336 to 360 tests ran in order
to get the numbers used for analysing.

36 of 60

Chapter 4. Methodology

4.3
Statistics

Statistics is a very broad term which can be used in many different instances of
daily life. Statistics can also be used in Technical problem, which is how this
project are going to use it in this report. To simplify it, statistics consists of a body
of method for collecting and analysing data.

Statistics also consists of a population and samples. These two things can be
seen in several different ways. First of all, population consists of the groups of
individuals or object which are being used for gathering data. Next up is the sam-
ples which is the specific objects in the population which are being collected upon.
Since the term population can be very vague and undefinable there is two ways
of viewing the population. First is the finite population. this population indicates
a population which is countable and therefore have a precise number over how
large the population is. That could for example be students at RUC, this is a finite
population and would be countable. Second is the hypothetical population. The
hypothetical population consists of of a much more abstract concept and would
normally be a population built upon the consideration under consideration. In this
case, the entire population is finite since it’s largely around how the algorithms are
doing in comparison with each other and in comparison with how they, according
to the literature, should be doing.

With that said, there is two different types of statistics. Descriptive and Inferential
statistics. Where descriptive statistics use methods for summarizing and orga-
nizing information, inferential statistics use methods for measuring and drawing
conclusions based on the information gathered. As seen in the way the two kinds
of statistics works, they overlap on a large scale since they in some sense, are in a
need of each other. Descriptive statistics uses different kinds of graphs, charts, and
tables, and also the calculation of stuff like averages, measures of variation, and
percentiles. Inferential statistics are all methods for point and interval estimation
and hypothesis testing. In this report both have been used since there is a need
to test and chart all those tests to find the variation in the algorithms while also
looking at the intervals, And since a lot of the testing is based on the hypothesis

37 of 60

4.3. Statistics

that some of the algorithms will do better than the others there’s need to test that
as well.

When the population is being chosen there is a specific set of numerical parameters
which are unknown and the samples is what’s going to be used to make inference
about them. A sample is used to describe the characteristics of it self which then
can be used to make inference about the parameters.

A parameter is an unknown numerical summary of the population. A Statistic
is a known numerical summary of the sample which can be used to make
inference about parameters.

Isotalo 2014, pp. 7

As the quote clearly states, the parameters and the samples statistics are overlap-
ping and are in need of each other to answer the research question. The question
in this case is more or less quite simple, which algorithm is the "best" there are
three different algorithms and with the use of benchmarking it will be possible to
see which is fastest and takes most effort to draw out.
Lastly is a model showing how one of the main objectives of statistics is to make
inferences about the population from all the sample statistics in question and how
the process from formulating the research problem to reporting the results from
the data collected and the analysis described from that (Isotalo 2014, pp. 2-8).

38 of 60

Chapter 4. Methodology

Figure 4.3: Statistical research from start to finish (Isotalo 2014, pp. 8)

39 of 60

5 Analysis & Discussion

In this chapter a decision was made to merge the discussion with the analysis
since there are large similarities between the two, and it seemed difficult to do one
without the other.

5.1
Introduction to tests

The foundation of the analysis is Unity’s build-in profiler to see how fast each
pathfinding algorithm is run. Each algorithms performance will be presented with
ten runs of each, both the optimized and not optimized versions. Thereafter a com-
paring to the theory will be included to see, if the results are consistent with the
theory, and finally see the difference between the implementations of the different
algorithms. The progress of the analysis section will be with an presentation of
the results, but in order not to repeat the same statements throughout this section,
there will be a more in depth analysis of the first test, in regards to the theory and
the other test results will be explained, with some minor elaborations.

5.2
No obstacles

In the first test, it’s clear that the heap optimized A* implementation out performed
the other algorithms. As seen on the graph, the algorithm closest is the A* without
optimization. So in this case, the heuristics of both of the A* implementations was
an advantage based upon the time it took to finish. Even though the A* imple-
mentation is going through more calculations than Breadth first search, it found
the target almost 5 times faster. If we examine the two dijkstra algorithms, the
Heap optimized version were around 0.6 milliseconds quicker than the one with-

40 of 60

Chapter 5. Analysis & Discussion

out, so it made a difference but not as noticeable as with the A*.

The Breadth first search implementation algorithm took around the same com-
pletion time as the unoptimized dijkstra and the explanation for this can be that
their search patterns are similar, while the A* implementation have a direction
of its search. But breadth first search seems like it’s executing according to the
theoretical basis. On the figure of the grid, there are a path of yellow nodes sur-
rounded by black nodes. The black nodes are on the closed list of the algorithm
which means that they have been processed. Since the whole grid is black then we
can safely say that BFS has run through the whole grid, and afterwards it found
our path. But contrary to both dijkstra and the A* algorithm, breadth first search
does not include weights to find the shortest path. It just makes sure what out of
all the given options it is possible to find a path.

In regards to dijkstra then it’s clear that it has the potential to run through the
whole grid, or in other words, process all the nodes. Contrary to the explana-
tion about dijkstra in the theory section where the concept behind it is explained
through examples with weighted-edge graphs. In the case of this projects dijkastra
algorithm it was run through a grid, where there were no cost assigned before the
execution. The algorithm assign costs to edges it follows, and they have a cost of
10 for moving vertically or horizontally and 14 for a diagonal edge. dijkstra runs
through the nodes and processes all the nodes that could have a path from the root
node to the goal node.

Regarding the A* algorithm in this test. On the figure it could seem like it just
takes the shortest path without checking the neighbouring nodes, But when the
contents of the heap are printed then it shows, that it contains more items, than
the nodes which generates the path. And that’s also what the theory says, that
from A*’s root node it will process the neighbouring nodes with the finishing
node as a reference point. And that’s why the path looks like it does and the rea-
son why there’s no black tiles in the grid, is because in the programming of the
heap it takes processed nodes and sort it by the useful ones.

41 of 60

5.3. Maze environment

Figure 5.1: The total measurements of time to complete all the algorithms, including
the optimized ones in an environment without obstacles. The average time can be
seen at the bottom

5.3
Maze environment

The second test was done in a maze environment. The test showed that the opti-
mized implementation of dijkstra was the fastest. It performed at 4.364 millisec-
onds which is 0.7 milliseconds faster than the unoptimized A* implementation
which were second in completion time. In this case, it seems that a not focussed
search, in a area with many obstacles is a little faster but overall the average com-
pletion of the different algorithms were within 1.848 milliseconds of each other.

Figure 5.2: The total measurements of time to complete all the algorithms, including
the optimized ones in a maze environment. The average time can be seen at the bottom

42 of 60

Chapter 5. Analysis & Discussion

5.4
Barnyard environment

The average completion of the third test showed, that the barnyard environment
in general took a longer time to complete. The best completion time was per-
formed by the unoptimized dijkstra implementation and was 5.482 milliseconds.
The second best completion time was performed by the breadth first search im-
plementation and was 5.663 milliseconds. Both the optimized dijkstra and A*
implementation, and the unoptimized A* implementation were all above 6 mil-
liseconds.

Figure 5.3: The total measurements of time to complete all the algorithms, including
the optimized ones in a barnyard environment. The average time can be seen at the
bottom

5.5
Enclosure environment

Fourth and last test, was performed looking for a target hidden in a square with
only one entrance. This was the most demanding task for the pathfinding im-
plementations. The results show, that the breadth first search implementations
completion time was 5.888 milliseconds. The optimized A* implementation came
second and performed at 6.11 milliseconds followed by both dijkstra implementa-
tions. Only slight fluctuations can be seen between the average completion time.
The only result that stands out is the unoptimized A* implementation which per-
formed at 6.862 milliseconds.

43 of 60

5.6. With or without heap

Figure 5.4: The total measurements of time to complete all the algorithms, including
the optimized ones in an enclosure environment. The average time can be seen at the
bottom

5.6
With or without heap

Our initial thought of the heap implementation was, that it would make the dijk-
stra and A*’s completion time faster. However, it seems that the heap optimization
only had an effect on the A* algorithm in test 1 where the search area was clear of
obstacles. In the case of the dijkstra optimization, on the test where it showed a no-
ticeable difference were in test 2. Therefore we would like to mention that, calling
it a optimized version depends on the context in which the algorithms perform,
rather than an overall optimization of the algorithm.

5.7
Hashset and lists

In the first implementation of both dijkstra and breadth first search, the completion
time was above 9 seconds in a simple maze like area. It lead to a lot of frustrations,
we realized that we were using a list as the closedlist. This lead us to think that,
since we in both of the algorithms when we check for neighbours, essentially in a
worst case scenario, use the contains method 8 times. What we then realized was,
that the list’s contain method’s performance fell every time a element is added. We
then tried to use a hashset instead and realized that, the 9 seconds fell to around
30 milliseconds. We can’t explain the exact behaviour of the hashset besides the

44 of 60

Chapter 5. Analysis & Discussion

completion time. But what we did realize when using a list was, that when we
moved the target closer, the completion time was quicker for both dijkstra and
breadth first search in an linear pattern. So for each element added to the list it
seems that the lock up time is getting slower on a linear pattern.

5.8
Sources of errors and uncertainties

In retrospective after generating the results it was discussed that having a different
seeker/start-node per algorithm, may not have been the best setup for the tests.
Although they are placed right beside each other, and there’s presumably talk
about a difference of microseconds its still considered as a source of error.
In a perfect world we would have had our own benchmarking script working
which would have equipped us with a lot more test results (We were striving for
240,000 results in total). This didn‘t come to fruition partly due to unforeseen
time constraints in the last part of our project work - we lost a group-member and
we spent a week trying to make our own benchmarking class work without any
success. We are very much aware that creating a time-average for our algorithms
would have been even more precise with a lot more tests.

5.9
Expectations

When we first started testing all the algorithms with and without optimization
there was a clear expectation from everyone in the group that the A* algorithm
would out perform the other algorithms. It turned out that, it wasn’t the case
and there was only one time where it actually was the fastest and that was the
completely empty environment. When the A* was the fastest it was with the
use of the heap optimization and it severely outperformed the others at that time
and that is because the heap wouldn’t get just as filled as it would when there is
obstacles and since the environment is empty it didn’t have to work through every
node.

45 of 60

6 Conclusion

Based on our analysis, we can conclude that our different implementations of
pathfinding algorithms serves different purposes. For an example, we can see
from our data, that the optimized version of our A* implementation outshines the
other algorithms on a grid with no obstacles. But as soon as the search area be-
comes more complex with obstacles of different shapes, the A* gets competition
in completion time by the remaining algorithms. The breadth first search algo-
rithm have a average completion time in all our four tests - this can be explained
by its search pattern, because it doesn’t do calculations, it simply searches in all
directions until it reaches its end point. Furthermore it doesn’t provide us with
the optimal path but rather guarantees that the target is reachable. The dijkstra
implementations works by the same principle, but assign a gCost to each node
the further we get away from the starting point, and will choose the one from the
openList with the lowest gCost. Throughout the search it assigns the child nodes
according to the gCost - and through this assignment of child nodes we are able
to track back the shortest path. Dijkstra also has an average that’s stable across the
tests, with the exception of the maze.
So what this report can conclude is, the A* algorithm with optimization outshines
the others on the empty environment, the BFS algorithm makes sure that there is a
way, it doesn’t necessarily find the most optimal way but a way is found, and lastly
the dijkstra is the best in maze environment. But overall the algorithms performed,
for the most part, very similarly.

46 of 60

7 Perspectivation

In this chapter we would like to come with some perspective for the entire report
and everything we would have liked to do as well as some future possibilities for
our product.

7.1
The game idea

This project started back in February with the idea of us creating a game of some
sorts, this was for a long time the path of the project. We had the idea of a 2D
RPG game with the player fighting different kinds of monsters and those monster
would have had the A* algorithm set on them so they would be hard to avoid and
they would chase the player, if he was inside the radius of them. That was all the
way up until the realisation that what we had in mind for a game and how high our
expectations were, we would never reach an acceptable level of game either for our
selves or the report. That brought some changes to the project which we thought
would bring the academical level a bit higher in the report. We implemented
two more algorithms in the forms of Breadth First Search and dijkstra’s algorithm
and changed our focus from wanting to create a game to wanting to compare
algorithms.

7.2
Benchmarking

When it comes to comparing the algorithms there was the idea of using bench-
marking for comparing the algorithms. At first it seemed that using benchmarking
in Unity was not something we could do easily, and there seemed to be a problem
with the way that Unity is built up from within. First we gave it a try to make it

47 of 60

7.3. Google Maps comparison

work with the ".NET Framework" which is a special cross-platform open source
developer platform, and following many different guides and reading a lot about
it, it turned out that within Unity there is a built-in framework that is too old to
follow along with newer frameworks. This meant that there were no way to install
the "BenchmarkDotNet" package from NuGet to get some kind of .NET bench-
mark code going.

The next thing we tried was to take the individual scripts from Unity and copying
them out into a new project created in Microsoft Visual Studio 2017. This idea was
followed by a different kind of problem. First of there was the issue of all the dif-
ferent kinds of methods and variables. Take for example our grid, which is built
from the bottom left corner using the "Vector3" data type in a 3D environment.
Other than that there arose a whole new problem of us using unity not only for
the visuals but also to see how fast the algorithms could create a visual path. If we
were to benchmark the code using only Microsoft Visual Studio without Unity, we
would not get the full picture.

In the end we found the profiler which we used to get the accurate numbers we
did. We did not code the benchmarking which isn’t optimal considering that when
we use the profiler we really don’t know what is going on behind the scenes; we
know what happens and what it calculates upon, but we do not know how it does
it other than on a theoretical level.

7.3
Google Maps comparison

After we got rid of the idea of producing our own game and took up the task of
creating more algorithms for comparisons we were suggested by our supervisor,
that we should try and get the algorithms to work with google maps and compare
that code. The whole idea arose around researching how much faster the Doogle
maps algorithm was compared to our algorithms and then analysing on those
data. In order to see how we either would be able to improve on the algorithms or
how Google Maps worked and if it took different routes from our algorithms and
why it did that. In the end, we decided that we couldn’t do that because we felt

48 of 60

Chapter 7. Perspectivation

that it would split the waters of the report too much. We wanted to keep the focus
on which of the algorithms did the best compared to each other and compared
to what the theory says, instead of seeing how they faired against Google Maps
which would always come out superior.

7.4
Alternative uses

7.4.1
A* Algorithm

What the A* algorithm really excels at, is finding the shortest path from A t B. With
this in mind there is an alternative use that quickly springs to mind, A* could have
served a purpose of finding way in a city in just like a GPS. Even though a GPS
always would be faster there is the argument that we could have created a GPS
like application to see if there was any rivalling the Google Maps algorithm and
compare it to real GPS’ to see if they found the same.

7.4.2
Breadth First Search

Breadth First Search really excels at finding a way, not necessarily the fastest way
but a way never the less. Breadth first search would be great to be used in a game
in the lines of a tower defence. A tower defence game works in the lines of enemies
going from one end of a map to the other, while the player has to kill them using
towers along the way. In the development of such a game there is the argument
for using BFS and apply it on the map since it would then check if there is a way
from A to B and stopping the player form placing a tower if that is not the case.

7.4.3
Dijkstra’s Algorithm

Staying on the track of tower defence, dijkstra’s algorithm would also serve a
purpose in the developing of a tower defence game. Usually in a tower defence
game the towers have a certain range for shooting the enemies, so since dijkstra
calculates how long there is from a certain point on the map to everywhere else the
algorithm could be put on the each individual tower and then it would be able to,

49 of 60

7.5. Costs

calculate how long there is from that specific tower to anywhere else and therefore
know when enemies are in range.

7.5
Costs

We find it important to mention that the costs could have been created in a more
dynamic manner for different applications be it computer games or real-life im-
plementation. In the same sense that we created a layer of un-walkable nodes, we
could have created layers with different costs representing varied terrain, traffic
considerations or other external factors that could influence a travel between point
"A" and point "B". Whether this would have given us much different comparison
results in times and paths are unclear at this moment, but these speculations could
have laid the ground for further experimentations.

50 of 60

Bibliography

Bhasin, Harsh. 2015. Algorithms, design and analysis [inlangeng]. Oxford: Oxford
University Press. isbn: 0199456666.

Cormen et al. 2009. Introduction to algorithms. Third edition. The MIT press.

Isotalo, J. 2014. Basics of Statistics. CreateSpace Independent Publishing Platform.
isbn: 9781502424655. https://books.google.dk/books?id=uUSvoQEACAAJ.

Oksa, Sampsa, et al. 2014. “Pathfinding in a 3D-environment Using Unity3D”.

SebLague. 2016. Pathfinding-2D. https://github.com/SebLague/Pathfinding.

Sedgewick, Robert. 2011. Algorithms [inlangeng]. 4. ed. Upper Saddle River, NJ:
Addison-Wesley. isbn: 032157351X.

Timeline of algorithms [inlangen]. 2018. Page Version ID: 839113808. Visited on
05/27/2018. https://en.wikipedia.org/w/index.php?title=Timeline_
of_algorithms&oldid=839113808.

Vinther, Anders Strand-Holm, Magnus Strand-Holm Vinther, and Peyman Af-
shani. 2015. “Pathfinding in Two-dimensional Worlds”. no. June.

51 of 60

https://books.google.dk/books?id=uUSvoQEACAAJ
https://github.com/SebLague/Pathfinding
https://en.wikipedia.org/w/index.php?title=Timeline_of_algorithms&oldid=839113808
https://en.wikipedia.org/w/index.php?title=Timeline_of_algorithms&oldid=839113808

Appendix

52 of 60

A Journal

Week 6

This week we started the making groups for the project. Before the day, several
members of the now existing group, had talked together about making a group
for the semester. We did this, because we made a project together the previous
semester, and it was therefore a good opportunity to make a group together
again.
Because we already knew each other, we quickly started talking about what
kind of project we could be interested in. There wasn’t any need for talking
about how we were going to meet, or talk about other social relations.
After the group were made, we came to talk about the idea of a pathfinding
algorithm. We liked the use one, and with possibility in a game.

Week 7

This week all the courses starts, and this brings a talk about how and when we
can have meetings. We also got assigned a different project supervisor than we
wanted. That made some troubles, since we were prepared to have a project
in english, but was assigned a danish supervisor. After a little struggle, we got
the supervisor we wished for, and Junia is guiding us.
We started slowly with programming this week as well. We want to get a
good feeling out of Unity and how the program works. Everything is still in
discussion, so nothing is being sat in stone this week.

Week 8

A group meeting this week. We talked about what kind of methods were going
to be used, when the programming starts.
There were talk about using a SCRUM method and pair programming. The
pair programming is optimal for this group

53 of 60

Week 9

Short meeting where we talked about the methods we would like to use. Also
delegated work regarding future work -as in where would we like to move
towards: make a UML (class diagram) for the code we have so far. Think
this could provide us with a picture of how far we are, regarding future pair
programming.

Week 10

This week nothing really happened with the project.

Week 11

Preparation for midt term. Talking about what we want to present, and what
features we find important in the work we have done so far.
Had a meeting with our supervisor Junia.

Week 12

Midt term this week. Some group members were away, and others were sick,
so we were quite challenged. Thankfully, one person carried the project to
victory. We got a lot of feedback and reflected on it at later point.

Week 13

Week 13. This week had easter holidays, and therefore didn’t ford for much
meeting. Several members of the group were working on an assignment for at
course, and the project were therefore put on hold this week.
However we did manage to agree on a meeting the following week, to talk
about how we were going to progress further.

Week 14

We started early wednesday with a meeting. Connected one of the computers
to a tv screen and went through Unity. We want to make sure that everybody
is comfortable with Unity. Because of that, we have talked about taking a day,
where we complete one of the tutorials associated with Unity. That should
hopefully provide a good understanding of how the program works, and with
that, ensure a more smooth transition from IntelliJ to Unity.

54 of 60

Appendix A. Journal

The basic parts of the game are being discussed. How the player is going to
be set up, what kind of interactions there will be, the idea of a backpack in a
game. With these classes, we are trying to figure out how the code is being
designed and what code is usable where. Also how the different classes are
losing health. A talk about using a temporary enemy in the game is being
discussed. This could potentially test how the interaction is sorting out, and
see if we can find a pathfinding algorithm that suits the purpose.

Week 15

Tuesday a short skype meeting, to set in date what to do now. Talking about if
we are actually using SCRUM, since so far it hasn’t been used at all. We would
like to start on some writing, besides the coding. Have found some algorithm
books and will see if we can use them, and divide the work between group
members.
Starting to enter a period where we have close to no courses, and are talking
about have meetings on mondays now, in addition to tuesday/wednesday,
where we usually meet.
Talking about setting up a meeting with our supervisor for possibly wednesday
or friday week 16. At this point it has been some time since we last talked with
our supervisor, so it would be good to update her on where we are now.
We are setting up future programming days. Some of us are planning on trying
to find out how unity works. Other are going to read in some books and the
rest is trying to implement an enemy in the game we are working on in Unity.

Week 16

So far, 4 out of 5 members are taking a computer science course, which is
taking up a big amount of time. We are finding it hard to make time for the
project, since we are struggling with the computer science course.
The plan as of tuesday 17/4, is to try and have a clear plan for the next week
or two. At this point, we are spending close to all time on the course, and are
setting aside some to little time for the project. We want to have a clear plan
for what is going to happen, so we don’t get too many surprises. After today
tuesday, everybody in the group should know what they should be doing for
the next 7 days.
Today we also talked about an upcoming supervisor meeting on thursday 19/4.
We wish to prepare for the meeting, and have some questions ready.

55 of 60

Monday 07-05-2018

Today we have worked with pathfinding. We are working with unity game
engine, and since we have no prior experience with it we decided, as a starting
point, to use Sebastian Lague’s Github repository (SebLague 2016)
we got the path finder to work. It should be noted, that we haven’t imple-
mented the heap optimization, since it’s to complex for us at this given time.
instead we focused on the PathRequestManager script and the Unit script. the
idea here is, that if we get it to work properly according to our expectations,
we have a solid foundation, and this we give us the tools we need to rework
it and implement some more personalized code (standing on the shoulders of
giants).
For the moment the non playable characters are called seekers, and is a cylin-
der Object. We fear, that if we have more than a few “seekers” we will see
performance issues if we do not queue them, and they can calculate their paths
sequentially instead of simultaneously.
In order to get our pathfinder working, we’ve created a 2d node array, that
is out grid and it’s from here we get the X and Y coordinates that feeds the
pathfinder.
We have also created a cylinder target object so we have two points that makes
up the start and end of the path. we have not been able to ge the seeker objectto
move yet, but tommorow tuesday the 08-05-2018 we will continue and focus
on that.

Wednesday 09-05-2018

Today our main focus where on getting the two pieces of code stitched together
- those are the pathfinding with its respective scripts, and the player movement.

first off, we wanted to get more than one npc moving. after that where sorted,
we merged the scripts of both unity projects, and ended up struggling with
the camera movement. we havn’t figured out exactly why, but we think it has
something to do with the fact that we want to make the camera static on the
player game object to be continued tommorow.

Then we decided, that we need a finite state machine. After some search we
located a template that makes us able to create an easy flexible state machine,

56 of 60

Appendix A. Journal

and the second goal for tommorow will be on how we can implement it in our
code, and understand the principles behind it.

Friday 10-05-2018

Today we implemented a very simple version of a statemachine. At the mo-
ment it works by simple boolean’s that tells every state when to activate and
when to be on idle. The next iteration will be to implement it with our
pathfinding, and make it work by adding a proximity circle to each game
object, that tells it when to activate the pathfinding, if the player moves within
range of the proximity.
We have also been working on merging our different code snippets, since we
are working on several computers, we need to see if it works when we combine
it.

Monday 14-05-2018

Today we are working at home. The reason for this is, that we all have some-
thing to do individually so we focus on finishing the theory section of the
report so that we can focus on our technical section which will describe our
code and how it works.
also one of the groups members are struggling to merge our code, so this will
hopefully finished today.

Tuesday 15-05-20180

Two group members are writing and coordinating their process among each
other, the remaining members are at Roskilde University. Today marks a
change in the project - we have come to the conclusion, that making a full
on game have proven to be too big of a challenge for us. Therefore a discus-
sion about our focus of the rapport have started. What we have agreed on is,
that tomorrow 16-05-2018 we will bring our thought with us and share our
concern with our supervisor.

Wednesday 16-05-2018

Meeting with our supervisor. After sharing our thought and concerns, we are
advised to build upon what we already have, and that is a working A* path
finding algorithm. So if we can implement more algorithms - our personal goal
i at least three preferably five, benchmarking could be a tool to compare each

57 of 60

algorithms performance and also we aim to get a visual output to check the
paths that are found. finally we are also encouraged to compare google’s path
finding algorithm with our. So we now have a new direction for the project
and most important alot of work to do.

Thursday 17-05-2018

Today we have restructured our focus from game creation to implementing
path finding algorithms. Our first goal is to implement breath first search. the
plan is obviously to do that as quick as possible, and when that is done to
implement dijkstras algorithm to be able to compare those, and afterwards see
what time we have remaining if other algorithms shall be implemented.
We have started to research on benchmarking and how we can use it in unity.
A members of our group have decided that he is not going to continue on this
education, and therefore have left the group.

Friday 18-05-2018

We now have a working breath first search algorithm that searches outwards,
until it reaches the goal node - we have problems with setting the right parent
node, so for now the path we visualize are some places two nodes wide, we
suspect that it have something to do with our assignment of parent nodes
when we check for neighbours.
Our research on benchmarking continues. we havn’t been able to get it to work
yet.

Monday 21-05-2018

Some work have been done over the weekend on Dijkstras algorithm. It isn’t
complete, but we are working on it while also trying to structure our rapport.
Benchmarking research is still going on.

Tuesday 22-05-2018

Dijkstra is working. Our theory is in the process of being restructured to fit our
new approach. Benchmarking have not yet been a success so we have decided,
to implement a text field to show the time it takes to complete the algorithm
in unity, and this will be our tool to compare the algorithms. further more,
we have two version of A* algorithm one with a heap optimization and one

58 of 60

Appendix A. Journal

without. Also Dijkstra got the heap optimization and one without for further
analyses.
We now decide, that it is not realistic for us to compare our algorithms with
the google path finding algorithm unfortunately.

Wednesday 23-05-2018

Wednesday has been spent on trying to get the "BenchmarkDotNet" to work
with the Unity game engine too see if we can test our codes speed. There has
been created an issue on the GitHub website where the code for Benchmark-
DotNet is found in the hopes of us getting some answers to our issues with
using the correct framework for implementing .NET properly. Other than that
there has been made great strides towards the finishing of the theory.

Thursday 24-05-2018

The work towards getting the BenchmarkDotNet working is still in progress.
Meanwhile the rest of the group are working full power to get the report ready
for our test day, which have - for now been scheduled for Saturday , unless of
course we are ready before that.

Friday 25-05-2018

BenchmarkDotNet has been dropped becasue of the problems it caused in
Unity and the answer we got on GitHub but Junia pointed out something we
could do instead. We have tried taking the code we use in Unity outside of
Unity and open it up in a new project in Visual Studio. That aswell did not
work since there are a lot of datatypes and methods which we have in the code
and only works in Unity as a starting point so in the end of the day the Bench-
marking has been put away. We have decided to focus our energy on getting
results with our existing algorithms and design some different environments
to test them in.

Saturday 26-05-2018

Test day. Today we’ve planned to perform the test of our implementations.
Originally the benchmarking where dropped yesterday, but fortunately we
have now discovered that unity have an in build profiler, which enables us
to see how much time is spent on each of our pathfinding scripts when they

59 of 60

are runned. So we quickly saddled the tests horse and decided that each im-
plementations should have 4 warm up runs, before the actual test and then
followed up by 10 tests each. The tests have been carried out, and all focus is
now on getting the report finished.

Sunday 27-05-2018

We are putting the finishing touches on the report and are starting the whole
correction process. We have looked at doing some quality of life improve-
ments on the report and we have finished correcting the report tonight and are
handing in the report.

60 of 60

	Front page
	Contents
	1 Introduction
	1.1 Problem framing

	2 Theory
	2.1 Algorithms
	2.2 Pathfinding
	2.3 Optimization

	3 Design
	3.1 Node
	3.2 Grid
	3.3 Heap
	3.4 Swap items
	3.5 Additional methods
	3.6 Pathfinding
	3.7 Dijkstra
	3.8 Breadth first search

	4 Methodology
	4.1 Journal
	4.2 Benchmarking
	4.3 Statistics

	5 Analysis & Discussion
	5.1 Introduction to tests
	5.2 No obstacles
	5.3 Maze environment
	5.4 Barnyard environment
	5.5 Enclosure environment
	5.6 With or without heap
	5.7 Hashset and lists
	5.8 Sources of errors and uncertainties
	5.9 Expectations

	6 Conclusion
	7 Perspectivation
	7.1 The game idea
	7.2 Benchmarking
	7.3 Google Maps comparison
	7.4 Alternative uses
	7.5 Costs

	Bibliography
	Appendix
	A Journal

