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The overall theme of this work has been to experimentally test the shoving
model and isomorph theory related to the dynamics of glass-forming liquids,
both of which, rather than being universal explanations, are expected to work
in the simplest case.

We test the connection between fast and slow dynamics in light of the shoving
model from the temperature dependence of the mean-squared displacement
from neutron scattering at nanosecond timescale and the elastic modulus from
shear mechanics. We find the fast dynamics to correlate with the alpha relax-
ation time and fragility in agreement with predictions from the shoving model.
The shoving model is tested on three liquids with simple dynamic behaviour in
two versions, one formulated in terms of the instantaneous elastic modulus and
one expressed in terms of the mean-squared displacement. We also test the
underlying assumption connecting the two versions, directly relating the tem-
perature dependence of the mean-squared displacement and that of the shear
modulus. In the viscous liquid, we find this to hold. We interpret the discrepancy
at higher temperatures where the mean-squared displacement has a stronger
temperature dependence than the shear modulus, as the alpha relaxation en-
tering the neutron instrument window. In the view of the shoving model, the
short-time properties govern the viscous slowing down.

We have developed a new sample cell for doing simultaneous dielectric and neu-
tron spectroscopy at elevated pressure. This new high-pressure cell allows us
to do experiments with high accuracy. From the dielectric signal, we can deter-
mine the alpha relaxation time fast and with high precision in a large area of
the temperature-pressure phase diagram while studying nano- and picosecond
dynamics from neutron spectroscopy.

We use the new sample cell to locate isochrones, i.e. lines of constant alpha re-
laxation time in temperature and pressure with the purpose of testing isomorph
theory on three systems, two simple van der Waals and a hydrogen bonded liq-
uid. We find density scaling and isochronal superpositioning to hold for all three
systems on alpha relaxation dynamics, and for the two van der Waals liquids,
also when we have separation of timescales, i.e. the alpha relaxation is not
contributing to the picosecond dynamics. The concept of isomorphs is observed
to break down in two cases for the hydrogen bonding system: in density scal-
ing of intramolecular motion and in isochronal superposition of the picosecond
dynamics when there is separation of timescales. We show for one of the van
der Waals liquids how the picosecond dynamics can be expressed as a function
of the alpha relaxation time in agreement with the prediction of the existence of
a one-dimensional phase diagram from isomorph theory, where one parameter
is believed to control all dynamics.
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Abstract

The overall theme of this work has been to experimentally test the shoving model
and isomorph theory related to the dynamics of glass-forming liquids, both of which,
rather than being universal explanations, are expected to work in the simplest case.

We test the connection between fast and slow dynamics in light of the shoving
model from the temperature dependence of the mean-squared displacement from
neutron scattering at nanosecond timescale and the elastic modulus from shear me-
chanics. We find the fast dynamics to correlate with the alpha relaxation time and
fragility in agreement with predictions from the shoving model. The shoving model
is tested on three liquids with simple dynamic behaviour in two versions, one formu-
lated in terms of the instantaneous elastic modulus and one expressed in terms of
the mean-squared displacement. We also test the underlying assumption connecting
the two versions, directly relating the temperature dependence of the mean-squared
displacement and that of the shear modulus. In the viscous liquid, we find this to
hold. We interpret the discrepancy at higher temperatures where the mean-squared
displacement has a stronger temperature dependence than the shear modulus, as
the alpha relaxation entering the neutron instrument window. In the view of the
shoving model, the short-time properties govern the viscous slowing down.

We have developed a new sample cell for doing simultaneous dielectric and neu-
tron spectroscopy at elevated pressure. This new high-pressure cell allows us to do
experiments with high accuracy. From the dielectric signal, we can determine the
alpha relaxation time fast and with high precision in a large area of the temperature-
pressure phase diagram while studying nano- and picosecond dynamics from neutron
spectroscopy.

We use the new sample cell to locate isochrones, i.e. lines of constant alpha
relaxation time in temperature and pressure with the purpose of testing isomorph
theory on three systems, two simple van der Waals and a hydrogen bonded liquid.
We find density scaling and isochronal superpositioning to hold for all three systems
on alpha relaxation dynamics, and for the two van der Waals liquids, also when
we have separation of timescales, i.e. the alpha relaxation is not contributing to
the picosecond dynamics. The concept of isomorphs is observed to break down in
two cases for the hydrogen bonding system: in density scaling of intramolecular
motion and in isochronal superposition of the picosecond dynamics when there is
separation of timescales. We show for one of the van der Waals liquids how the
picosecond dynamics can be expressed as a function of the alpha relaxation time in
agreement with the prediction of the existence of a one-dimensional phase diagram
from isomorph theory, where one parameter is believed to control all dynamics.
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Resumé

Det overordnede tema for denne afhandling har været eksperimentelt at teste shoving-
modellen og isomorfteorien, begge relateret til dynamik i glas-dannende væsker, og
som begge snarere end at være universelle, er forventet at virke i det simpleste
tilfælde.

Vi tester forbindelsen mellem hurtig og langsom dynamik ud fra shoving-modellen
ved hjælp af temperaturafhængigheden af middelvejsforskydningen m̊alt med neu-
tronspredning p̊a nanosekond-tidskala og det elastiske modul m̊alt med shear-mekanik.
Vi tester shoving-modellen p̊a tre væsker med simpel dynamik i to forskellige ver-
sioner, én udtrykt ved det instantane shear-bidrag og én udtrykt ved middelvejs-
forskydningen. Vi tester ogs̊a den antagelse, der opst̊ar fra de to versioner, nemlig
den direkte sammenhæng mellem temperaturafhængigheden af middelvejsforskyd-
ningen og den for det elastiske modul. Antagelsen holder i den viskøse væske. Vi
fortolker afvigelsen ved højere temperaturer, hvor middelvejsforskydningen vokser
hurtigere med temperatur end shear-modulet, som alfa-relaksationen, der kommer
ind i vinduet p̊a neutronspredningsinstrumentet. Ud fra et shoving-model perspektiv
er den langsomme dynamik styret af den hurtige dynamik.

Vi har udviklet en ny prøveholder til at lave samtidige m̊alinger med dielektrisk
og neutron-spektroskopi ved høje tryk. Med den nye prøveholder kan vi m̊ale med
stor nøjagtighed; fra det dielektriske signal kan vi hurtigt m̊ale alfa-relaksationstiden
i et stort omr̊ade i temperatur og tryk, mens vi studerer dynamik p̊a nano- og
picosekund-tidsskalaer med neutronspredning.

Vi bruger den nye prøveholder til at identificere isochroner, som er linjer i et
temperatur-tryk fasediagram med konstant alfa-relaksationstid, med det form̊al at
teste isomorfteorien p̊a tre systemer, to van der Waals-væsker og en med hydro-
genbindinger. Vi finder, at isomorfteorien virker for de to van der Waals-væsker,
men bryder ned for den hydrogen-bundne væske i to tilfælde: n̊ar vi kigger p̊a
intramolekulære bevægelser, og n̊ar vi har separation af tidsskalaer og kigger p̊a dy-
namik p̊a picosekund-tidsskala, som er helt separeret fra alfa-relaksationen. Vi viser
for en af de van der Waals-bundne væsker, at den hurtige dynamik kan udtrykkes
som funktion af alfa-relaksationstiden i overenstemmelse med forudsigelse fra iso-
morfteorien om, at én parameter styrer dynamik p̊a alle tidsskalaer.
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Jean-Paul Gonzales and Yohan Memphis from cryogenics. Louise, James Maurice
and Claude Payre from high-pressure, in particular, the first for making my life a lot
easier and the latter for teaching me how to do everything in French. I also thank the
technician at IN16B, Richard Ammer, who helped me modify bits and pieces time
and time again. I thank Paolo Mutti and Yannick Le Goc from the Instrument Con-
trol Service on NOMAD related issues. I thank Simone Cappacioli for many great
inputs and for taking part in beamtimes. I thank Marian Paluch for contributions
on the cell design. I thank Judith Peters, Michael Marek Koza and Jacques Olivier,
for assistance on IN13, IN6 and IN5, respectively, and of course, Bernhard Frick for
assistance on my favourite instrument, IN16B. And heartfelt thanks to everyone I
came to know in Grenoble, especially to College 10 for making me one of you. I am
happy to consider you my friends.

I am grateful for having been introduced to the warm and welcoming environment
at IMFUFA, I have really come to appreciate and value its culture. I thank Mette
C. Nielsen for help on practical problems, and Heine Larsen for help on computer-
related issues.

Last but not least, I thank my family and friends for moral support and for
understanding how time-consuming a PhD can be. Especially my parents for their
confidence in me and for all the times that I could go home to recharge, especially
after beamtimes. My dear brother and my good friends for sharing what is my life
with me. I thank Johanne for being the best office mate, and Daria, Kristijan and
Ursula for moral support towards the end. I look forward to new adventures in 38.

Henriette, October 2017

vi



You’re off to Great Places!
Today is your day!
Your mountain is waiting.
So ... get on your way!

– Dr. Seuss, “Oh, the Places You’ll Go”

vii



viii



Contents

Abstract i

Resumé iii
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Chapter 1

Introduction

Materials science and in particular condensed matter physics are important branches
of science that through their role in technological development shapes our society.
Looking back, many historical eras have been named after the material that defined
that exact period in time, for example, the stone age, the bronze age and the iron
age up until the current period of time, sometimes referred to as the silicon age.
Throughout the industrial revolution, two main breakthroughs were the engineering
of metal alloys and chemical manufacturing, opening a new world of machinery and
mass production. While research in general and materials science in particular is
often done with the purpose of doing something better or more efficient, fundamen-
tal research plays an equally important role. The more we understand, the better
questions we can ask. Breakthroughs have sometimes shown to take off when accom-
panied by blue skies research, be it the world-changing discovery of the transistor
at Bell Labs or the serendipity that led Röntgen (and his wife) to discover X-rays.
Fundamental research should be done for the sake of fundamental research: to ed-
ucate, to push boundaries, to work across boundaries, to enlighten and to provoke
and develop new ideas and ways of thinking. And in the end, most likely some-
thing useful will come out of it. This work is done with one such blue skies research
problem in mind, namely, the understanding of the glass transition.

The title of this thesis was inspired by a conference held in Copenhagen in April
2017 organised by the author of this thesis and her supervisor, named exactly ’Dy-
namics of glass-forming liquids: Will theory and experiment ever meet?’. This was a
meeting with the purpose of promoting the communication and not just coexistence
between experimentalists and theoreticians in the glass science community. Reflect-
ing the author’s background and own experience as a young scientist in spe, the title
could just as well have asked the question ’will physicists and chemists ever meet?’.

As a physicist, one is taught to simplify problems using, for example, Occam’s
razor or by turning everything into spherical cows, searching for solutions that are
universal. And with large success in many aspects, although reality often turns
out to be more complex. An example is how in quantum mechanics, as a physics
student, you are not likely to make it much further than the hydrogen atom, while
treatment of more complex systems is saved for chemistry courses attacked from a
slightly different angle. A glass is a good example of a simple, yet complex system
that physicists are trying to theorise with universal laws, and chemists are trying to

1



Chapter 1. Introduction

describe in great detail. The work in the present thesis will be this author’s small and
humble contribution to give an example of how theory and experiment can meet and
develop together. This work is fostered by the scientific environment in the Glass
& Time group at Roskilde University where the two communities, theoreticians and
experimentalists, physicists and chemists, meet, talk and challenge each other every
day.

A lot of the materials that surround us and constitute what we are made of are
complicated systems that cannot be described by a single equation or law; we are
past the hydrogen model, so to speak. A glass is a textbook example of a complex
system which is simple in nature, and it is intriguing to think that solving this
problem will make us capable of solving more complex problems.

Glass is a material that has been used as far back as the stone ages from natural
occurring glasses from volcanoes. The first human-made use of glass dates back,
according to archaeological findings, to ancient Egypt some 3000 BCE. Through
the ages of the Roman Empire and the Middle Ages, glass developed from being a
luxurious material used for beads, cups and cathedral windows to being something
that has now effectively moved into every household in the western world with highly
advanced triple-paned solutions for heat insulation. This is glass as we typically
know it from household and history, but as a scientist, how do we define a glass?

A glass is per definition a liquid that upon cooling does not crystallise, but a
frozen-in, non-ergodic, non-equilibrium system, in short, a disordered or an amor-
phous solid. The curious thing, however, as we will come back to in present work, is
perhaps not the glass itself, but the glass transition, the nature of the glass transi-
tion and the dynamics related to the glass transition – the latter being the scope of
this work. It is crucial to expand the phenomenology from normal glass to include
all glass formers. With that, we want to include all kinds of glass formers and not
just the transparent silica-based glass that we know from window panes, mirrors
and drinking glass. A good glass-former is defined as a material which is readily
supercooled below its melting point avoiding the crystalline state. Materials such
as organic molecular liquids, metallic glasses, electrolytes or ionic liquids, and poly-
mers are all examples of good glass formers. In fact, all materials can form a glass,
and biological systems such as membranes, DNA and proteins have been shown to
exhibit glassy behaviour. One of the reasons why the glass transition is such an
interesting problem is that the ability to form a glass is universal, and it is therefore
intriguing to think that a universal law can be formulated that can describe exactly
the glass transition for all kinds of glass formers.

In 1995, Noble laureate Philip W. Anderson stated in a viewpoint on the future
in Science [5]:

“The deepest and most interesting unsolved problem in solid state theory
is probably the theory of the nature of glass and the glass transition. This
could be the next breakthrough in the coming decade. The solution of
the problem of spin glass in the late 1970s had broad implications in
unexpected fields like neural networks, computer algorithms, evolution,
and computational complexity. The solution of the more important and
puzzling glass problem may also have a substantial intellectual spin-off.

2



Whether it will help make better glass is questionable.”

Although perhaps a bit optimistic regarding the timescale and possibly a bit pes-
simistic regarding the applicability, the nature of the glass transition is still very
much a means of research in both theoretic and experimental work. To quote the
professor of physics at Harvard, David A. Weitz, “There are more theories of the
glass transition than there are theorists who propose them.” [33]. This is quite
telling of the complexity of the problem in hand. From an experimentalist’s point
of view, many theories are in principle a good thing and we could start from one
end and test and challenge the theories, but to do so we have to speak the same
language and it requires that theories are coupled to real systems. While theoreti-
cians can lose their way in infinite dimensions, experimentalists can be caught up
in the meaning of a methyl-group’s rotation (as we shall see later). Although both
scenarios are equally important and necessary, sometimes it may be useful to try
and meet on common ground, to build bridges in order to develop experiment and
theory together. A prerequisite for this to happen is to develop theories that have
predictive power and to design experiments that can test theories.

Reading guide

The work presented in this thesis concerns experimental tests on the dynamics of
glass-forming liquids close to, at, and below the glass transition related to theories
that have mainly been developed in the Glass & Time group. We will present
experimental tests of the shoving model and the isomorph theory.

First will follow a general introduction to glass-forming liquids and the glass
transition and in particular to the associated dynamics from a phenomenological
and theoretical point of view, introducing aspects relevant for this work (Ch. 2),
before moving on to present examples of insight and progress made by introducing
pressure in experiments and an introduction to isomorph theory (Ch. 3).

Following the introduction to literature is an introduction to the most important
aspects of the experimental techniques used in this work, namely on dielectric and
neutron spectroscopy (Ch. 4). We will then move on to the actual experimental
work done in relation to this thesis. In Ch. 5, we will present the shoving model
that belongs to the class of models referred to as elastic models that relate fast and
slow dynamics close to the glass transition and the work done in testing the model.
The work is published in [71].

Hereafter, we present a new sample cell developed for doing simultaneous di-
electric and neutron spectroscopy at high pressure (Ch. 6), which is published in
[140].

We have used this new sample cell to test isomorph theory, which is presented
in two parts. Part I in Ch. 7, will mainly deal with alpha relaxation dynamics in
the liquid state, whereas Part II in Ch. 8, will focus on the dynamics at the glass
transition and in the glass. The work presented in the first section of Ch. 8 is
published in [72]. A summarising discussion and outlook are presented in Ch. 9.

There is a lot of experimental data presented in this thesis, and one could argue
that some of it could have been put in an appendix, but to paint the full picture of
what we have observed, all data is presented in the main part. The presentation of
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Chapter 1. Introduction

the data has been tried kept in the same way throughout the two last chapters for
ease of the reader, hopefully, with some success.
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Chapter 2

Dynamics of glass-forming
liquids

This chapter will serve as a general introduction to the glass transition and in partic-
ular to the dynamics of glass-forming liquids. The dynamics in glass-forming liquids
that will be treated in this work spans many orders of magnitude and is different
in nature on the different timescales. In this chapter, we will try to elucidate some
of the differences and set the reference frame for this work, by presenting different
models, theories and experimental observations relevant for this work. Several mod-
els and theories have been suggested in relation to the nature of the glass transition
and the possible connections between fast and slow dynamics, in particular as the
glass transition is approached. Some are phenomenologically based while others take
a more theoretical approach, a few of them will be mentioned here. The shoving
model that we test experimentally in this work will be presented in Ch. 5. The
shoving model belongs to the class of elastic models presented at the end of this
chapter.

The glass transition can be reached from the liquid either by cooling or com-
pression, and while this chapter will solely deal with the more traditional approach,
namely looking into temperature dependence, the next chapter will expand to in-
clude pressure dependence of the dynamics and try to sum up what insight has been
gained by introducing pressure and introduce isomorph theory (Ch. 3).

2.1 Viscous liquids and the glass transition

The glass transition takes place when a liquid is supercooled below its melting point,
i.e. by avoiding crystallisation (Fig. 2.1). Unlike an ordinary phase transition that
occurs at a well-defined temperature, such as the melting temperature, the glass
transition is defined as when within some experimental timescale, the liquid is no
longer able to reach equilibrium. The glass transition and the glass itself therefore
depend on the cooling rate, i.e. they depend on the timescale of the experiment. The
ability to form a glass is universal, although some materials are better glass-formers
than others. While some organic molecular liquids and polymers can be difficult or
even impossible to crystallise, other systems require fast cooling rates in the order
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Chapter 2. Dynamics of glass-forming liquids

of hundreds of Kelvin per second to supercool, for example some metal alloys [98].

Figure 2.1: A sketch of volume or enthalpy change upon cooling from the liquid
state into the supercooled liquid and the glass, or into the crystal state. An abrupt
change in enthalpy as a function of temperature is observed at the transition from
liquid to crystal state.

A liquid cooled below its melting point without crystallization, i.e. a supercooled
liquid, is in a metastable thermodynamic equilibrium. Upon some external pertur-
bation, the supercooled liquid will recover a state of equilibrium, but this will not
happen instantaneously. An example is the change in volume given by the expansiv-
ity of a material caused by a change in temperature. The time it takes a system to
reach its new position of equilibrium is given by the structural alpha relaxation time,
τα. Usually and in this work, the glass transition temperature Tg is defined as when
the structural alpha relaxation τα = 100 s. We will in general refer to the alpha re-
laxation as the slow dynamics. In 1867, Maxwell [105] introduced a relation between
the structural relaxation time and shear viscosity, η, via the infinite-frequency shear
modulus, G∞: η = G∞τα. In terms of viscosity, the glass transition at τα = 100 s
corresponds to η ∼ 1012 Pa s. For comparison, the viscosity of bitumen in the pitch
drop experiment from 1927 at the University of Queensland, Australia, which has
so far shed nine drops, roughly one every ten years, is around 108 Pa s at room
temperature, while the viscosity of water at room temperature is in the order of
10−3 Pa s.

Thus, a glass is in every way a solid. In the glass, the molecules are essentially
frozen in and are no longer able to rearrange and relax into an equilibrium state
within some experimental timescale. The volume in the glass will still decrease
upon cooling, but the temperature-dependence will be much smaller than in the
supercooled liquid and the volume changes are only due to the change in distance
between the molecules as in the crystal. The lack of long-range order in the glass
is illustrated in the static structure factor in Fig. 2.2, which can be probed for real
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2.1. Viscous liquids and the glass transition

systems by different diffraction techniques or simulated in computer simulations from
molecular dynamics models. The position of the atoms in the glass resembles that
in the liquid; the atoms are frozen-in in an isotropic state and lack the long-range
order seen as Bragg peaks for crystals, i.e. there is no structural change associated
with the glass transition. The shift in peak position towards higher Q in the glassy
state compared with the liquid, is a signature of the closer packing of molecules.

0 1 2 3
0

0.01

0.02

0.03

0.04

Figure 2.2: Static structure factor of ethanol in the liquid (Tm = 159 K), crystal and
glassy state from neutron diffraction at D1B at ILL from A. Sanz [139]. Comparing
the liquid and the glass, we observe only little difference in the static structure factor
compared to the crystal with distinct Bragg peaks where only ∼ 10% of the peak
height is shown here. From the liquid to the glass, we observe a general increase
in intensity, corresponding to less mobility, and a shift in the first peak position
towards higher Q from the decrease in volume upon cooling.

While there is practically no difference in structure between a glass and a liquid,
a tremendous change in the dynamics is observed on cooling: As the glass transition
is approached in the supercooled liquid, there is a dramatic slowing down of the
alpha relaxation. Within a fraction of the glass transition temperature, the alpha
relaxation time changes orders of magnitude. The fundamental question within our
field is what causes and governs this tremendous slowing down of dynamics close to
the glass transition.

A simple and compelling picture was introduced by Goldstein in 1969 [62] with
the potential energy landscape. For a system of N particles, the landscape is the
potential energy as a function of the 3N particle coordinates plotted in a 3N + 1
dimensional space. Dynamics of a system can then be thought of as movement
around in the potential energy landscape. Goldstein proposed that the dynamics
are controlled by the potential energy landscape, where slow dynamics corresponds
to jumps between potential energy minima, while fast vibrations around the energy
minima will take place on short timescales. As a liquid is cooled and the glass
transition is approached, the potential energy barrier is overcome more and more
rarely, resulting in slower relaxation time.

In this view, the relaxation process is governed by a potential energy barrier that
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Chapter 2. Dynamics of glass-forming liquids

can be overcome by thermal activation, similar to an activation energy for chemical
reactions, which would suggest that the relaxation time or viscosity slowing down is
exponential with temperature. However, the behaviour of almost all glass-forming
liquids deviates from such Arrhenius behaviour, and the degree of deviation is mate-
rial dependent. The viscous slowing down shows super-Arrhenius behaviour with a
temperature-dependent activation energy, which results in the following expressions:

τ(T ) = τ0 exp
(

∆E(T )
kBT

)
η(T ) = η0 exp

(
∆E(T )
kBT

)
, (2.1)

where τ0 and η0 are high-temperature limits, typically a microscopic time τ0 ∼
10−14 s and viscosity of η0 ∼ 10−5 Pa s.

Figure 2.3: Angell fragility plot showing the non-Arrhenius behaviour of a range of
glass-forming liquids. Reprinted from [103].

The deviation from Arrhenius behaviour is illustrated in the standard Angell
plot (Fig. 2.3), where the logarithm of the viscosity or relaxation time is plotted
against the inverse temperature normalised to Tg. Liquids with close-to-Arrhenius
behaviour are referred to as strong liquids, closely following the straight exponential
line in the Angell plot, while those with super-Arrhenius behaviour are referred to
as fragile liquids. The fragility, m, is a measure of the deviation from Arrhenius
behaviour [6]:

m = d log10 τ(T )
d(Tg/T )

∣∣∣∣∣
Tg

. (2.2)

A fragility of m = 16 corresponds to Arrhenius behaviour with a constant activation
energy. Typical values of fragility for a strong liquid like Si2O is m ∼ 20 and for
fragile molecular organic liquids is around ∼ 80, while an extremely fragile liquid
such as decahydroisoquinoline holds a value of m ∼ 160 [131].
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For an ordinary phase transition, one would expect a discontinuity in the viscosity
and thermal properties at the phase transition. Instead, the change in viscosity
happens gradually and will in principle continue to do so into the glassy state if
one is patient enough for that kind of equilibration times. In the picture presented
above, the curious thing may not be the glass transition as such, which in this view is
understood as a simple falling out of equilibrium, but instead the major temperature-
dependent increase in relaxation time or viscosity in liquids upon cooling as the glass
transition is approached. And we then return to the fundamental question: what
causes and governs the temperature dependence of the activation energy that seems
to almost always increase upon cooling with only a few exceptions, causing the
super-Arrhenius behaviour.

2.2 Timescales

The dynamics in glass-forming liquids and its various characteristics on different
timescales is a key element in this work, and we will therefore in this section go
through some definitions and key elements that will be used throughout this work.

When a liquid is cooled below its melting point and enters the supercooled regime,
a separation of timescales is observed as the glass transition is approached. If we
stay in the potential energy landscape view, the timescale of the slow structural
dynamics on longer timescales, corresponding to jumps between potential energy
minima, separates from that of fast vibrations, corresponding to vibrations around
the energy minima on shorter timescales. This type of separation was shown in
molecular dynamics simulations by Schrøder in 2000 [147]. In the potential energy
landscape, the structural alpha relaxation is thus governed by the potential energy
barrier heights between minima while the vibrations are governed by the shape of
the minima; the softer the potential, the larger the vibrations.

Another view is the cage view [162], in which the dynamics of a particle is
considered free at short times. The cage is formed by the nearest neighbours and
jumps from one cage to another, corresponding to the alpha relaxation, are then
caused by thermally activated collisions. On long timescales the jumps will cause
a rearrangement of cages resulting in diffusion, supporting a notion of cooperative
behaviour of the alpha relaxation. At low temperatures, the particles are blocked
by neighbouring particles hindering long-time diffusion.

In Fig. 2.4, we have sketched different dynamic scenarios represented by their
incoherent intermediate scattering functions, I(Q, t). The space-Fourier transform
of the incoherent intermediate scattering function is a self-correlation function that
gives the probability of finding a particle with an initial position at time t′ at the
same position after some time t. In the liquid, close to and above the melting point,
the intermediate scattering function decays to zero almost instantaneously: The
liquid comes into a new equilibrium really fast, i.e. the relaxation time is short.
As the liquid is cooled into the supercooled regime, the different dynamic processes
will begin to separate. From a state where fast relaxations and vibrations, taking
place on short timescale, are merged with the alpha relaxation, to a state where the
fast dynamics separates completely from the structural alpha relaxation as the glass
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Figure 2.4: Top: Sketch of an incoherent intermediate scattering function above Tg
where relaxations and vibrations are merged (left) and at the glass transition where
there is separation of timescales (right). Bottom: Intermediate scattering function
in the glass where the liquid will not reach equilibrium within some experimental
timescale.
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transition is reached. A plateau in the intermediate scattering function can appear
close to the glass transition, completely separating fast and slow dynamics. Finally,
in the glass, one can still find vibrations and even fast relaxational processes taking
place on very short timescales as illustrated in Fig. 2.4, but the alpha relaxation
will be so slow that within an experimental timescale, it will no longer be able to
reach equilibrium. As a consequence, a glass is a non-equilibrium system, and the
dynamics will be history or path-dependent.

In general, fast dynamics refer to dynamics taking place on timescales shorter
than the structural alpha relaxation. In this work, fast dynamics will typically refer
to nano- and subnanosecond motion. The separation of timescales around the glass
transition can cover more than ten orders of magnitude; all the way from picosecond
timescales where fast relaxations and vibrations typically take place and all the
way up to hundreds of seconds, the timescale of the alpha relaxation at the glass
transition.

The dynamic scenarios sketched in Fig. 2.4 obviously represent very simple cases,
in some views this would be over-simplified [108]. One can imagine all sorts of
secondary relaxational processes taking place on timescales between picosecond and
seconds in the proximity of the glass transition. Secondary relaxations are very
system dependent, and typically much less temperature-dependent compared to the
alpha relaxation, e.g. [104]. A lot of work has been put into understanding and
modelling secondary relaxations that can appear in the relaxation map of liquids,
e.g. [109, 66, 83, 110]. The work in relation to this thesis has been carried out on
liquids with as simple dynamic behaviour as possible, trying to imitate the simple
dynamic scenarios sketched in Fig. 2.4 without large secondary relaxation. While the
term ’simple liquids’ historically has also been used to identify liquids constituted of
a single type of molecular species, ’simple’ as opposed to ’complex’ will throughout
this work refer to the dynamic behaviour of a liquid, and not the composition or
molecules themselves.

Another curious aspect of glass-forming liquids is also illustrated in Fig. 2.4,
namely the fact that the alpha relaxation itself in the time or frequency domain is
non-exponential. Typically, the relaxation is fitted with a stretched exponential to
obtain the relaxation time. Thus, not only is the temperature-dependence of the
relaxation time non-Arrhenius, but the relaxation is also non-exponential. The non-
exponential behaviour adds to the curious behaviour of the dynamics related to the
glass transition.

Numerous empirical and theoretical models have been developed in trying to
encompass the nature of the glass transition and with that, a connection between
the fast and slow dynamics. We will take a brief look at some theories and models
below.

2.3 Theoretical approach

Many different models and theories have tried to explain the deviation from Ar-
rhenius behaviour of the relaxation time towards the glass transition. This section
contains a small introduction to a few of them, which will be useful for discussing
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pressure-induced changes to dynamics and isomorph theory in the next chapter
(Ch. 3) and the shoving model in Ch. 5.

The free volume model by Turnbull and Cohen from 1959 [39] explains the large
increase in viscosity close to the glass transition by the mobility of molecules and is
based on the Doolittles’ equation on viscosity [43]:

η(T ) = C exp
(
B · V0
Vf (T )

)
, (2.3)

where C and B are constants. V0 is the limiting specific volume of a liquid, which
is defined as the volume to which a real non-associated liquid would contract to
without any phase change all the way down to absolute zero and is not the same
as the volume of the molecule itself. Vf is then the free space or available volume,
the free volume, defined as the difference between the specific volume of the liquid
and V0, i.e. the part of the volume associated with thermal expansion. Turnbull
and Cohen suggested that when the free volume, Vf , is larger than some critical
volume, Vc, there is an excess of free volume, and the molecule can move outside of
its cage. Thus, diffusion can take place. This model and related modified versions
[39, 38] imply that the viscosity or alpha relaxation time should only be governed
by volume, or density, which we shall see in the next chapter is not the case.

A different approach was taken by Adam and Gibbs in their entropy model from
1965 [1] based on ideas developed from a lattice model for polymers by Gibbs and
DiMarzio in 1958 [60]. In the Adam-Gibbs model, the increase in relaxation time
close to the glass transition is understood as a large decrease of available configura-
tions, which is reflected in the small equilibrium entropy close to the glass transition.
The relaxation time is then given by

τ(T ) = τ0 exp
(

C

T · Sc(T )

)
, (2.4)

where C is a constant, and Sc(T ) is the configurational entropy, i.e. entropy related
to structure rather than dynamics. The dynamics is connected to the thermody-
namics by assuming that there exists an underlying second-order phase transition
to a state often referred to as an ideal glass, a state of zero configurational entropy.
This is related to the ’apparent paradox’ presented by Kauzmann in 1948 [85]. In
the supercooled liquid, the difference in entropy between the liquid and the crystal
decreases. By extrapolation of enthalpy below the glass transition, a temperature
can be found where the entropy of the supercooled liquid is equal to that of the crys-
tal, the Kauzmann temperature, TK (Fig. 2.1). Below the Kauzmann temperature,
imagining that one could supercool at a rate so slow that Tg would be lower than
TK , the entropy of the disordered system, the supercooled liquid, would be lower
than that of the crystal, hence, the paradox.

If one allows the configurational entropy to be equal to the difference between
the entropy in the liquid and that in the glass, arguing that the vibrational part of
the entropy in the liquid is approximately equal to that of the crystal, then

Sc(T ) ≡ Sliq − Scrystal =
∫ T

TK

∆cP
T

dT, (2.5)
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where the specific heat is defined as ∆cP ≡ cliq
P − c

Tg
P . Under this assumption,

the configurational entropy is zero at TK and a second-order phase transition is
predicted to take place here into an ideal glassy state. Moreover, it is argued in the
entropy models that the configurational entropy is expressed in terms of the size of
regions of cooperative molecular rearrangements, suggesting that the temperature
variation of the size of a cooperative rearranging region is related to the temperature
dependence of the relaxation time. At low temperatures the regions of cooperative
rearrangement are large, and assuming their volume is proportional to the activation
energy, this results in slower relaxation. A growing length scale is thus associated
with the liquid approaching the glass transition.

Substituting T0 for TK in Eq. 2.5 and assuming ∆cP ∝ T−1, one finds the Vogel-
Fulcher-Tammann (VFT) expression [164, 58, 155], which is often used to fit the
super-Arrhenius behaviour of relaxation times or viscosity data. Questions have
been raised about the assumptions going into the Adam-Gibbs model, e.g. [48], and
it has been shown that T0 is in fact not TK [156], and that there is not much evidence
for any divergence in the relaxation time suggested by the VFT equation, suggesting
a phase transition at the glass transition [75]. But the Adam-Gibbs model remains
a celebrated model and the VFT equation is often used to fit experimental data and
works well in the proximity of the glass transition.

A first-principles approach based on Newton’s equation of motion was taken in
the development of the mode-coupling theory (MCT) that took off in the 1980’s, e.g.
[18, 17, 63]. Mode-coupling theory is mathematically tedious, and we will therefore
just state the main idea here. According to MCT, all dynamics in a system is
determined from the fast modes of the system. The fast modes lead to a ’memory’
term in the dynamical equations, thus, connecting fast and slow dynamics. The slow
part of the dynamics is related to the autocorrelation of a fluctuation force, i.e. the
fast modes or vibrations. Moving away from the ideal version of MCT by making
some non-trivial assumptions, one ends with the prediction of a dynamic transition,
a crossover temperature. At this bifurcation of the dynamics, the plateau sketched
in Fig. 2.4 becomes infinite and results in a breaking of ergodicity, which means that
even at long times, the system is no longer able to relax into an equilibrium state.
Above the dynamic crossover temperature, the dynamics are often well described
by MCT. In the idealised mode-coupling theory, the relaxational process above the
dynamic crossover begins with a fast relaxation followed by the structural alpha
relaxation whereas only the fast relaxation persists below the crossover. Over the
past decades a lot of fast dynamics studies have been analysed with the MCT in
mind.

Another set of models that also deal with a connection between fast and slow
dynamics are the elastic models, [50, 49, 45], which are conceptually related to the
free-volume models. In Ch. 5, we will take a closer look at a version of the elastic
models called the shoving model and its predictions connecting fast and slow dy-
namics. In the elastic models we return to the energy landscape view, where a flow
event, a molecular rearrangement, takes place on short timescales by energy barrier
transition. The conjecture is that the transition itself is a fast process which, as
the liquid is cooled down towards the glass transition, becomes rare, resulting in
the viscous slowing down. In these models, fast and slow dynamics are thus inti-
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mately connected; the transitions are considered to be governed by the properties of
a liquid at short timescales, where the liquid appears solid-like, and the frequency
of the transitions determines the relaxation time. In this way, the slow, long-time
relaxation is linked to the vibrational, short-time elastic properties of a liquid. As
a liquid is cooled, it becomes harder and the mechanical moduli will increase, while
the vibrational amplitude decrease, leading to an increase in barrier height or ac-
tivation energy. The increase in activation energy upon cooling will again lead to
a slower relaxation, resulting in the super-Arrhenius behaviour of a liquid’s alpha
relaxation time. In this way, the elastic models can also be thought to be coupled
to a liquid’s fragility, the degree of deviation from Arrhenius behaviour. The details
of the argument vary for different versions of the elastic models.

The above serves as a selected introduction to different ways of thinking about the
glass transition. There exist numerous other models and theories trying to encom-
pass the viscous slowing down close to the glass transition, see for example reviews
[45, 154, 93, 171]. We will now proceed to present some experimental observations.

2.4 Phenomenological connections

A series of phenomenological results support the notion that there is a connection
between fast and slow dynamics. One of the first observations was made in 1992 by
Buchenau and Zorn [25], who found a relation between the temperature dependence
of the slow structural relaxation in terms of viscosity and the fast picosecond mean-
squared displacement studied with neutron time-of-flight.

Phenomenological observations that supports a connection between fast vibra-
tional and slow structural dynamics can crudely be divided into two: one group that
directly connects fast vibrational dynamics to the fragility, and one that connects
the temperature-dependence of the fast dynamics to the alpha relaxation time, along
the same lines as the original observation by Buchenau and Zorn [25] and the idea
of the elastic models.

Starting with the direct connection, Sokolov et al. found in 1993 [152] from Ra-
man spectroscopy a correlation between the fragility and the ratio between the vibra-
tional and relaxation contribution to the dynamics; stronger glass formers showed a
higher value of the ratio than more fragile systems. A similar correlation, although
experimentally more challenging to obtain, was also found from Sokolov et al. in
1997 [151], between the intensity of the Boson peak relative to the Debye density
of states and the fragility, showing that this ratio was large for strong liquids and
small for fragile liquids. Scopigno et al. (2003) [148] found that the fragility of
a liquid could be determined from the glassy state from the non-ergodicity factor.
The non-ergodicity factor was determined from the ratio between elastic and inelas-
tic scattering intensity in inelastic X-ray scattering. The non-ergodicity factor is a
measure of the correlation of density-density fluctuations from vibrational dynam-
ics and is well-described in mode-coupling theory. Novikov and Sokolov [116, 115]
showed in 2004 for a number of systems how the Poisson’s ratio is linked to the
fragility of a system, which is the ratio between the transverse expansion and the
longitudinal contraction when a solid is compressed in one direction, i.e. the rela-

14



2.5. Glassy dynamics

tive strength between the shear and bulk moduli. The relation suggested that the
better a system can resist shear deformation rather than dilatation, the stronger the
behaviour in terms of fragility. However, this was shown not to hold in general [170].

Another group of observations regarding the connection between fast and slow
dynamics is the connection between the temperature-dependence of short-time prop-
erties to the alpha relaxation time observed by Ngai [108] and Larini et al. [94, 19].
These observations are more in line with the observations from 1992 by Buchenau
and Zorn [25]. Larini et al. argued from computer simulations that there is a
universal correlation between the ’rattling amplitude’ and the structural relaxation
time and that a glass softens once the amplitude of the vibrations exceeds a critical
value. Such value implies a glass criterion similar to the Lindemann criterion for
melting of a crystalline solid, that melting of a crystal takes place when the vibra-
tional mean-squared displacement exceeds a certain value, e.g. [45]. We will from
neutron scattering and shear mechanics look into connections between fast and slow
dynamics in Ch. 5.

2.5 Glassy dynamics

Until now, this chapter has been dealing with dynamics in the liquid state, in partic-
ular in the supercooled liquid in the proximity of the glass transition. This section
will serve as a brief introduction to the dynamics observed at the glass transition
and related to the glassy state.

As mentioned previously in this chapter, a glass is a frozen-in liquid. While the
structure and density of a liquid are to a large degree frozen at Tg, the fast dynamics
in the liquid can prevail into the glass. Short-time properties such as vibrations are
often much less temperature dependent in the glass compared to in the liquid state.
Close to the glass transition and in the glass, most glass-forming systems exhibit
fast relaxational processes on picosecond timescales as illustrated in Fig. 2.4 that
are visible in for example neutron scattering. Intramolecular dynamics, like methyl-
group rotation, can also be observed contributing to the fast dynamics in the glassy
state, visible with scattering techniques, see e.g. [56, 86].

As mentioned, another dynamic contribution that prevails into the glass is the vi-
brations. In particular, the excess vibrational density of states observed in all glassy
systems referred to as the Boson peak. In crystalline materials, at low frequencies,
the Debye vibrational density of states for acoustic modes, gD(ω), is known to be
proportional to ω2. However, in all amorphous materials, a higher intensity than
the Debye level show up over a range of frequencies or energy transfer. The Boson
peak is the observation of an excess in the vibrational density of states compared
to the Debye level found at low energy transfer, typically between 0.1 and 5 meV.
The Debye value of a system can be estimated from the sound velocity. One way
of probing the vibrational density of states is with neutron scattering, which can
measure the vibrational density of states directly and the Boson peak as we shall
see in Ch. 8.

The origin of the Boson peak is not well understood, even if it has kept experi-
mentalists and theoreticians occupied for decades [123]. A basic question is whether
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the excess modes arise from (i) collective motion associated with a modified version
of the crystalline state with a heterogeneity in the elastic force constants [36, 65] or
(ii) (quasi)local motion that is distinct from the phonons and can be ascribed to soft
modes of the potential that arise from interatomic forces [161]. The Boson peak and
glassy dynamics in general are closely related to the phenomenological observations
presented above in Sec. 2.4.

The idea that there is a connection between fast vibrational dynamics and the
slow alpha relaxation is intriguing in itself as the dynamics are separated by many
orders of magnitude, exceeding ten close to the glass transition. Whether the con-
nection falls out of a model or a theory or is based on experimental observations, a
lot of work points in the direction that the fast and slow dynamics of glass-forming
liquids are somehow related, and that an understanding of the viscous slowing down
must encompass dynamics on an exceedingly large range of timescales.
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Chapter 3

Introducing pressure and scaling
behaviour

Pressure experiments on dynamics and transport properties of liquids have within
the past couple of decades, opened up a new window into understanding the dynam-
ics of glass-forming liquids. Pressure experiments on liquids began in the 1930’s with
Bridgman’s pressure-temperature-volume measurements high above Tg, e.g. [23, 24],
and extended by Barlow et al. in the 60’s to include viscosity, e.g. [14]. Pressure
has since then increasingly been introduced in experimental work in an attempt to
disentangle thermal contributions to the dynamics from those arising from changes
in volume or density. This is an approach similar to one often taken in computer
simulations and theoretical work. But pressure experiments are, because of the
requirements to experimental equipment that has to withstand elevated pressure,
much more demanding than those done at ambient pressure.

A successful model or theory on the nature of the glass transition or the dynamics
in glass-forming liquids should also encompass pressure and density effects. In that
sense atmospheric pressure, as we know it, is somewhat arbitrary and there is no a
priori reason to believe that the dynamics of liquids should be significantly different
inside the core of the Earth or on top of the Himalayas.

This chapter will take the reader through some of the, for this work, key ele-
ments of what insight we have gained from introducing pressure into our experi-
ments, challenging some of the models presented in the previous chapter. We will go
through phenomenological findings from high-pressure studies related to the scaling
behaviour, isochronal superposition and density scaling. Finally, in this chapter, we
will present isomorph theory, which rationalises and explains exactly this kind of
observed scaling behaviour. Isomorph theory is a key element in relation to the ex-
perimental work presented in Ch. 7 and 8. But first will follow a general introduction
to how the dynamics is altered with increased pressure.

3.1 Pressure-induced changes in dynamics

In experimental work, pressure and temperature are the control variables. While
theories and simulations are usually expressed in terms of temperature and density,
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making the separation of dynamics into density and temperature induced contri-
butions much simpler. In experiments, the study of the dynamics slowing down
towards the glass transition is most often done along an isobar, as was introduced
in the previous chapter for the atmospheric isobar. But as already mentioned, the
alpha relaxation can be slowed down towards the glass transition in two ways, either
by cooling or by compression. This gives rise to lines of constant alpha relaxation
time in the temperature-pressure phase diagram, τα(T, P ). These lines are through-
out this work referred to as isochrones, but have also sometimes been referred to as
isoviscous or isokinetic curves, e.g. [160, 78]. Isochronal lines as a function of tem-
perature and pressure are sketched in Fig. 3.1. Using the glass transition definition,
τα(T, P ) = 100 s, the glass transition line, Tg(P ), is one example of an isochrone
in the temperature-pressure phase diagram. Moving across or perpendicular to the
isochrones away from the glass transition isochrone towards higher temperature or
lower pressure, the alpha relaxation time becomes faster. Moving the other way
away from the glass transition towards lower temperature or higher pressure, into
the glass, the system will no longer be able to reach thermodynamic equilibrium,
causing hysteresis. The density in the glass is therefore history or path dependent.
As is illustrated in Fig. 3.1, isochronal lines or isochrones are not the same as iso-
chores, i.e. lines of constant volume or density. Therefore, density alone does not
control the relaxation time, and the free volume models presented in the previous
chapter can therefore not explain the viscous slowing down.
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s
u
re

Glass transition line
Isochrones

Isochores

glass liquid

Temperature

Figure 3.1: Temperature-pressure phase diagram illustrates line of constant relax-
ation time, isochrones, and constant density, isochores. The glass transition is de-
fined as τα = 100 s. Moving towards higher temperature and lower pressure, away
from the glass transition isochrone and perpendicular to the isochrones, the alpha
relaxation time increases. The isochores in the glass are history dependent and are
therfore illustrated with dashed lines.

Fragility as it was introduced in Eq. 2.2, was a measure of the deviation of the
alpha relaxation time or viscosity from Arrhenius behaviour with changing tempera-
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ture at atmospheric pressure where most experiments are done, i.e. the atmospheric
pressure isobaric fragility. Fragility can also be measured along isobars at elevated
pressure, where different systems show different trends, see e.g. the review by Roland
[137]. When a liquid is cooled isobarically, both temperature and density will change
and the isobaric fragility will therefore contain information on both the temperature
and the density effect on the relaxation time. A way of isolating the effect from ther-
mal energy is to examine the alpha relaxation time under constant density. Thus,
in addition to the isobaric fragility, we define the isochoric fragility with constant
density:

mρ = d log10 τα(T, P )
d(Tg/T )

∣∣∣∣∣
ρ

(T = Tg). (3.1)

Isochoric fragility assumes isochoric cooling and measures the deviation from Arrhe-
nius behaviour with temperature along an isochore, i.e. constant volume. In com-
puter simulations, density is an easyly accessible variable, whereas, experimentally,
we can in practice only move along isobars and isotherms, i.e. with constant pressure
and temperature, respectively. This means that for example state points along an
isochrone of constant relaxation time, are in fact given by (Tτα(P ), ρ(Tτα(P ), P )).
Isochoric fragility was used to check the robustness of phenomenological observa-
tions of the connection between fragility and for example the non-ergodicity factor
(Ch. 2.4) evaluated at the glass transition, which was found not to hold for elevated
pressure [114]. Through the short-time properties, fragility has also been suggested
to be correlated with the intensity of the Boson peak and connected to fast relax-
ations as was discussed in the previous chapter.

Pressure has also been introduced in studying the glassy dynamics and the Boson
peak. Hong et al. [79, 78] suggested a correlation between the pressure dependence
of the Boson peak and the quasi-elastic fast relaxation intensity, while other studies
have shown that the two intensities have different temperature and pressure depen-
dencies, e.g. [118]. Niss et al. [112] showed that the shape of the Boson peak remains
the same on compression, even if the position in energy and intensity is shifted to-
wards higher energy and lower intensity, which they suggest cannot arise from soft
intramolecular modes, but must instead be a result of a hardening of the system.
The shift in Boson peak position on applied pressure has also been suggested to be
due to a suppression of the fast relaxational contribution [53]. Chumakov et al. [35]
found from pressure studies a correspondence between the Boson peak in the glass
and the transverse acoustic phonon singularity observed in the crystal, suggesting
that the excess modes arise from collective motion. Whether we can learn anything
about the glass transition per se from the Boson peak is not certain, but it is another
interesting pending question that we can add to the list of things we do not quite
understand about glass formers. Regarding the dynamics of glass formers, adding
another control variable in terms of pressure has definitely led to some new insight.
One of those is related to the isochrones and was introduced in the beginning of this
section, namely the experimental discovery of the scaling behaviour we will discuss
in the next two sections.
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3.2 Isochronal superposition

In the pioneering work of Tölle from 1998 [160, 158], high pressure was introduced to
neutron scattering dynamic studies carried out at the Institut Laue-Langevin. They
found that the spectral shape was invariant for the nanosecond and picosecond dy-
namics, studied with the backscattering instrument, IN16, and the time-of-flight
instrument, IN6, respectively, for the van der Waals liquid o-terphenyl along state
points with constant viscosity, i.e. an isochrone corresponding to τα(T, P ) ≈ 1 ns.
The invariance of spectral shape for constant timescale is called isochronal superpo-
sition. This superposition of dynamic spectra was not found along isochores, lines
of constant density [159]. This observation suggests that temperature influences the
dynamics not only via free volume, but also from thermal contributions, an observa-
tion that had also been made from simulations using a Lennard-Jones potential in
1986 [17]. From light scattering data by Li et al. in 1995 [97], it was also suggested
that density alone was not the only relevant parameter for controlling the dynam-
ics, and they found the alpha relaxation dynamics measured on short timescales to
correlate with the corresponding viscosity. Isochronal superposition, shown by Tölle
for dynamics on nanosecond and picosecond timescales, was found to hold for dif-
ferent combinations of temperature and pressure corresponding to roughly constant
Γ ∝ ρT−1/4. This finding was motivated by results from soft spheres with an inverse
power-law potential ∝ r−n, where the equilibrium thermodynamic properties can
be characterised by a single variable Γ ∝ ρT−n/3 [80, 73]. The exponential of the
inverse power-law potential set to n = 12 gives the repulsive part of the Lennard-
Jones pair potential. Tölle noted that “It was not expected that these results would
apply literally in a complex molecular liquidlike OTP.” [160] These first intriguing
observations of isochronal superposition for o-terphenyl showed that the behaviour
of o-terphenyl could be modelled as soft spheres with n = 12. The analysis of
isochronal superposition of several van der Waals liquids by Tölle and Casalini et al.
[160, 136, 32] was carried out in the light of mode-coupling theory, and they found
that a dynamic crossover line would also coincide with an isochrone, implying that
the alpha relaxation is driven by the same parameter as a fast beta relaxation.

Isochronal superposition implies that the average relaxation time determines the
spectrum. In real systems, isochronal superposition has been shown to apply for
numerous van der Waals liquids and polymers, in particular studied with dielectrics,
while for hydrogen bonding systems this often breaks down [136, 137, 133]. In partic-
ular, for hydrogen bonded systems studied with dielectrics, isochronal superposition
will apply for the alpha relaxation, but break down for faster secondary relaxational
processes, e.g. [30, 66, 135, 2].

3.3 Density scaling

Where the implication of isochronal superposition is that the timescale of the relax-
ation determines the dynamics, density scaling is the observation that the timescale
of the relaxation is determined by one governing parameter, Γ = ργ/T .

Following up on Tölle’s observations, Dreyfus et al. showed in 2003 [44] that
relaxation times of o-terphenyl from light scattering data could be plotted as a
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Figure 3.2: Top: Relaxation time along three isotherms as a function of pressure
(left) and scaled with ργ/T (right) illustrating density scaling. Bottom: Illustration
of isochronal superposition of two dielectric spectra. Two pairs of temperature and
pressure with roughly the same alpha relaxation time have the same spectral shape.
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function of Γ = ρ4/T . The idea that the alpha relaxation time could be parametrised
in one function was extended by Alba-Simionesco et al. [3] in 2004 who showed for
several polymers that the alpha relaxation time found from dielectrics could be scaled
with density and temperature. Only now, the exponent was not set to 4 as for the
soft repulsive potential in the Lennard-Jones model that worked well for o-terphenyl,
instead γ was a free material-specific fitting parameter. The same year Casalini &
Roland [31], referring to the scaling as thermodynamic scaling, found this to apply
for a range of glass-formers with values of γ ranging from 0.1 for D-sorbitol to 8.5
for BMMPC. The material-dependent exponent, γ, can for example be found from a
power-law fit to density versus temperature. Density scaling suggests that in systems
with high values of γ, density plays a larger role in the relaxation dynamics than in
systems with low values of γ. A general trend seems to be that small values of γ
are found for density-scaling hydrogen-bonding systems. Density scaling has since
been generalised to a large part of the temperature-pressure phase diagram, and the
scaling behaviour has been shown to work for a very large number of different liquids
in particular studied with dielectric spectroscopy [157, 137, 29].

Tarjus, Alba-Simionesco et al. [3, 157] examined the consequence of density
scaling in terms of fragility. They suggested a way of disentangling density and
thermal contributions to the dynamics under constant pressure using two coefficients
for the expansivity. They found that the fragility is quantitatively independent of
density and instead controlled by a single parameter, corresponding to Γ = ργ/T .
The two coefficients for expansivity are αP and ατ ; one at constant pressure, αP =
−ρ−1(∂ρ/∂T )P , i.e. along an isobar, and one for constant alpha relaxation time,
ατ = −ρ−1(∂ρ/∂T )τ , i.e. along an isochrone. The ratio between the two parameters
are used to determine the relative effect of temperature and density at constant
pressure at a given relaxation time, typically at τα = 100 s. Using the fragilities
introduced in Eq. 2.2 and 3.1, one can define the fragility,

mP,τ (P ) = mρ,T (1 + αP /|ατ |). (3.2)

Density scaling has the consequence that the isochoric fragility is not dependent on
the absolute value of the density when it is evaluated at a specific relaxation time,
Tτ (P ). This can be seen from the relative slopes of the isochrones and isochores
in the temperature-pressure phase diagram in Fig. 3.1. The relaxation time will of
course change with pressure, and so will the density, but as a function of temperature
the deviation from Arrhenius behaviour will be the same along different isochores. In
the case of density scaling, where Γ controls the timescale of the relaxation, it can be
shown that the isochoric fragility does not depend directly on density [3]. Thus, the
variations in changing fragility with pressure that have been observed in experiments
must come from relative changes in temperature and density contributions to the
relaxation time.

3.4 Different classes of glass-formers

The idea of dividing and studying glass-forming liquids according to their type of
interaction is not new and includes many studies on correlations of dynamics with

22



3.4. Different classes of glass-formers

fragility. Its an attractive idea for both theoreticians and experimentalists; now that
a universal description of the glass transition seems slightly distant, perhaps looking
into different interaction mechanisms can help us move closer to a more general
description. Systematic studies on density scaling have been done on different classes
of systems, for example in [134] on three different classes of liquids, van der Waals,
H-bonding and ionic liquids, i.e. non-associated systems, systems with directional
bonding and systems with Coulomb interactions, respectively. In the latter two
systems, there are competing interactions. The relative strength of the competing
interactions varies for the specific system, in particular for ionic liquids.

Dielectric spectroscopy has especially been used for studies on density scaling
because of the easy access to the alpha relaxation time from the loss peak (Sec. 4.3),
but also viscosity measurements have been used, for example in the case of ionic
liquids, where the conductivity completely overshadows any relaxational signature
in the dielectric signal. For ionic liquids, density scaling has been shown for transport
properties [100], and for viscosity in [134, 51]. While the van der Waals liquids seem
to always obey density scaling, many hydrogen bonding liquids do not obey density
scaling nor isochronal superposition under high pressure, e.g. [135, 128, 110].

The breakdown of density scaling for hydrogen bonding systems is often inter-
preted as the destruction of the hydrogen bonding network at high pressure, thus
changing the physical structure of the system [66, 135, 2]. Although, it has been
pointed out in some papers that density scaling and isochronal superposition work
quite well also for hydrogen bonding systems, in particular for the alpha relaxation
dynamics [128, 52, 2, 125, 138].

Based on the observations of isochronal superposition and density scaling, the
invariance of spectral shape for constant timescale and the invariance of timescale
of the alpha relaxation for constant Γ = ργ/T , respectively, Ngai et al. [109] asked
rhetorically in 2005 if celebrated classical models such as the free-volume model
and the Adam-Gibbs model were in need of revision. They stressed the importance
of the observation that for many materials, the dynamics is independent of the
thermodynamic conditions, temperature and pressure, but instead controlled by the
alpha relaxation time.

Extended versions of the free-volume model [166], where the viscous slowing down
is identified as unoccupied volume, and the Adam-Gibbs model [28], where the alpha
relaxation time is governed by configurational entropy, have been proposed to also
implement the pressure behaviour, but neither of the models can explain or predict
the existence of isochrones, the lines of constant τα in temperature and pressure.
Ngai et al. [109] argue that, of course, one can imagine a scenario where τα is
constant for different combinations of T and P , even if for example specific volume
and configurational entropy change, where the effects of changing temperature and
pressure simply cancel out. But the spectral shape is not expected to be constant
for the same combinations of temperature and pressure, and specific volume and
configurational entropy may well have quite different T and P -dependencies.

Thus, so far, based on the experimental observations presented above and in the
previous chapter, a theory of the dynamics in glass-forming liquids should encompass
i) a connection between fast and slow dynamics as discussed, ii) an invariance in
dynamics for constant τα(T, P ), and iii) different behaviour that could be coupled

23



Chapter 3. Introducing pressure and scaling behaviour

to the class of liquids, in this case characterised by the interaction mechanism.

3.5 Isomorph theory

The isomorph theory has been developed in the Glass & Time group at Roskilde
University. The first version was published in a series of papers that came out in
2008-9 [11, 12, 145, 61], and was reformulated in a more generalised version in 2014
[146]. Isomorph theory is relatively simple in nature and rationalises exactly the
experimental observations of density scaling and isochronal superposition, see e.g.
[46]. A fundamental prediction from isomorph theory is the existence of isomorphs,
which are curves in the phase diagram along which all dynamical processes and
structure are invariant. The alpha relaxation, both its timescale and spectral shape,
is one of the invariant properties along an isomorph. This section will take the reader
through, for this work, relevant ideas and reasoning from isomorph theory [61].

From molecular dynamics simulations carried out at constant volume and tem-
perature in a system of N particles, in the NV T ensemble, pressure P is given by the
sum of the ideal gas term, NkBT/V , and a term from intermolecular interactions,
the virial W ,

PV = NkBT +W. (3.3)

This is the macroscopic virial, but we can also define the microscopic virial, where
W is a function of the particle positions with R ≡ (r1, . . . , rN ),

W (R) ≡ 1
3
∑
i

riFi = −1
3R · ∇U(R), (3.4)

and Fi is the force on the ith particle. If we consider a soft-sphere model with an
inverse power-law interaction potential ∝ r−n [80], then as mentioned in Sec. 3.2,
the excess thermodynamic properties can be determined from one parameter, and
we have that

W (t) = γU(t), (3.5)

with the proportionality given by γ = n/3. The surprising observation was then
that a Lennard-Jones potential approximated by what was referred to as an effec-
tive inverse-power law potential, consisting of an inverse-power law term plus a linear
term, also showed a strong correlation between the potential energy and the virial
[119]. By defining the instantaneous potential energy function minus its thermo-
dynamic average, ∆U , and ∆W , the instantaneous virial minus its thermodynamic
average, the degree of correlation for a given system can be found. The parameter R
will then at any given state point give the correlation between the potential energy
and the virial:

R = 〈∆U∆W 〉√
〈(∆U)2〉〈(∆W )2〉

. (3.6)

For the inverse-power law potential, we have perfect scaling with R = 1. From
extensive computer simulations of various types of systems, systems with R > 0.9
fall into the category of “strongly correlating” or “R-simple” liquids. Systems that
have proven to be strongly correlating include models of for example o-terphenyl
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[82], polymers [11], bio-membranes [121], and iron under high pressure, similar to
the core of the Earth [47].

Based on the observation that some liquids are R-simple, we make the assump-
tion that there exist curves in the phase diagram along which, for any two state
points there is a one-to-one correspondence between their respective microscopic
configurations. These curves are what we will refer to as isomorphs.

Two state points (ρ1, T1) and (ρ2, T2) are then isomorphic whenever the following

applies, represented in reduced units of ρ
1/3
1 R1 = ρ

1/3
2 R2:

exp
(
−U(R1)
kBT1

)
∼= C12 exp

(
−U(R2)
kBT2

)
, (3.7)

where U(R1) and U(R2) are potential energy functions, and where C12 depends
on ρ1 and ρ2, but not on the microscopic configurations. Eq. 3.7 implies that the
probability of two configurations with the same reduced coordinates are identical, i.e.
for two isomorphic state points it is possible to map the potential energy landscape
onto each other.

The only systems that obey Eq. 3.7 exactly, i.e. with an equality sign, are those
with inverse power-law potentials, which is of course not descriptive for real glass-
forming systems. Hence, as stated above, isomorph theory is approximate in its
nature and is not expected to work for all systems. Isomorph theory is expected to
work for R-simple systems. Directional bonding, as in for example water [11], or
strong Coulomb interactions [129] have shown to significantly weaken the correla-
tions. Thus, real systems with directional bonding and strong Coulomb forces are
not expected to obey isomorph theory.

A system with isomorphs exhibits hidden scale invariance, i.e. an invariance in
dynamics and structure, when its properties are presented in reduced units. The
reduced units are per definition dimensionless and will throughout this work be
presented with a tilde. Examples of length and time units, l0 and t0, respectively,
which will be used in this work are given by:

l0 = ρ−1/3

t0 = ρ−1/3(m/kBT )1/2,
(3.8)

where m is the average particle mass and ρ is the number density. For length, wave
vector and frequency, respectively, the reduced dimensionless units denoted with a
tilde are then given by,

r̃ = r/l0 = rρ1/3

Q̃ = Q l0 = Qρ−1/3

ω̃ = ω t0 = ω ρ−1/3(m/kBT )1/2.

(3.9)

To test whether a system obeys isomorph theory, variables must be presented in
reduced units.

In Eq. 3.7, two isomorphic state points were defined as when the probability
of the two configurations is identical in reduced units. A consequence of the near
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identical probabilities on the isomorphs is that the excess entropy, Sex, for two
isomorphic state points is also the same. The excess entropy in isomorph theory is
the difference in entropy between the ideal gas and the liquid state, and is different
from the configurational entropy in the Adam-Gibbs model (Eq. 2.5), which was the
difference between the crystal and the liquid. The excess entropy, in the definition
in the isomorph theory view, is per definition negative because the ideal gas state
will always be more disordered than the liquid state. In computer simulations, an
isomorph can be mapped out by following the curve of a configurational adiabat [61]

dSex =
(
∂Sex
∂V

)
T

dV +
(
∂Sex
∂T

)
V

dT = 0. (3.10)

This is (supposedly) a tedious method in computer simulations, not to think of
impossible to do in experiments. Instead, in experiments, one way of identifying
possible isomorphs is to use the alpha relaxation. Since the alpha relaxation is
one of the properties that should be invariant along an isomorph, experimentally,
possible isomorphs can to a good approximation be identified by the isochrones, i.e.
mapping out lines of constant alpha relaxation time. As we shall see in Ch. 7, the
relative difference between alpha relaxation times found from for example dielectric
spectroscopy on a frequency scale presented in Hertz and that represented in reduced
units is almost negligible.

The system or material dependent value of γ, used in density scaling, can be
found directly from simulations using

γ =
(
∂ lnT
∂ ln ρ

)
Sex

= 〈∆U∆W 〉
〈(∆U)2〉

. (3.11)

Gundermann et al. [70] showed in 2011 how γ can be found independently from
single state-point thermo-mechanical measurements for a real van der Waals liquid.
The relation between Eq. 3.11 and density scaling in real glass formers has been
shown in, e.g. [70, 21, 29]. Assuming that an isochrone to a good approximation
is an isomorph, we see that the exponent can be found from a power-law fit to
temperature and density.

Isomorph theory implies that the experimentalist’s temperature-pressure phase
diagram essentially can be turned into one of one dimension, where the only vari-
able controlling the dynamics is Γ = ργ/T . Remembering how density scaling was
the observation of invariance of the timescale of the experiment, this implies the
existence of lines of constant τα(T, P ), the isochrones. Thus, both density scaling
and isochronal superposition are in agreement with isomorph theory. But the one-
dimensional phase diagram extends beyond isochronal lines; the implication is that
dynamics on all timescales are invariant along these lines, i.e. from fast picosec-
ond vibrations to the much slower alpha relaxation in the viscous liquid. There
is no prediction from isomorph theory about how the dynamics behaves on differ-
ent timescales, but if a liquid has isomorphs, and the dynamics is invariant on one
timescale, it will also be invariant on all other timescales. In this way, there is
an indirect link between fast and slow dynamics for R-simple systems in isomorph
theory.
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Isomorph theory, however, does not reveal anything about causality between
fast and slow dynamics, unlike e.g. the elastic models or mode-coupling theory
discussed in Ch. 2, which suggest that fast dynamics is a precursor for the slow alpha
relaxation. Nor does it reveal anything about the nature of the viscous slowing down
towards the glass transition. Instead, isomorph theory deals with the consequence
of the correlations observed in some systems. In isomorph theory, for a glass-former
with isomorphs, this means that whatever underlying mechanism that drives the
slow dynamics, the viscous slowing down, it must also drive the fast dynamics, and
it must be controlled by the same governing parameter, Γ = ργ/T .

Based on extensive computer simulations, the conjecture is that isomorph theory
works for van der Waals liquids, metals and weakly bonded ionic liquids. Isomorph
theory has proven extremely efficient in describing Lennard-Jones types of systems,
even extending into higher dimensions [42], and including recently successful predic-
tions of the freezing and melting line [120].

The computer simulations that have been carried out for testing isomorph theory
have mainly been done on atomic models or flexible chains with rigid bonds. In an
attempt to imitate more realistic systems, spring-like bonds have replaced the rigid
bonds in some models. For such a system, the intra-molecular vibrations from the
spring-like bond were shown to cause a breakdown of the invariance along an iso-
morph [163], using the configurational adiabat definition of an isomorph. However,
it was shown that if the dynamics was separated into a contribution from intramolec-
ular vibrations and a contribution from intermolecular interactions, the isomorphs
could be recovered. It was then shown that the vibrations and the intermolecular
interactions were invariant on the same lines in the phase diagram [117]. Such lines
are referred to as pseudo-isomorphs.

The purpose of isomorph theory has not been to find a universal theory that
applies to all systems. But, with Occam’s razor in mind, to find a model that works
for the simplest case. This is an approach that is characteristic for a lot of the
work that has been done in the Glass & Time group, and we will see that a similar
approach is taken in the shoving model that we will present and test in Ch. 5.

Direct experimental tests of the isomorph theory so far, focus primarily on the
alpha relaxation dynamics [133, 168] and requires high precision measurements. In
Ch. 6, we will present a cell developed for doing simultaneous dielectric and neutron
spectroscopy under high pressure that secures neutron data collection done with high
precision. A large part of the experimental work in this thesis has been carried out
with the aim to test isomorph theory by studying dynamics on a range of different
timescales separated by more than 13 orders of magnitude mainly with neutron
scattering as we will see in Ch. 7 and 8. But first we will move the next chapter
where we will present what we can actually probe in experiments from dielectric
spectroscopy and in particular from neutron scattering.
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Chapter 4

Experiments and observables

Experiments play various roles in science, both of course, in terms of testing the
robustness of already put-forward theories, but also regarding observation of new
phenomena, new correlations and trends that can help guide theorists in new di-
rections. An example of the latter from studies of glass-forming liquids was given
in the previous chapter with density scaling and isochronal superposition (Ch. 3).
Before we move on to discuss actual experimental work, we will in this chapter deal
with how to present physical measurements, what we can observe, how and why.
This is discussed in relation to the two main experimental techniques used in this
work, namely neutron scattering and dielectric spectroscopy. But first, follows a
brief general introduction to linear response theory and correlation functions.

4.1 Linear response theory

Linear response theory is used to describe a system perturbed out of equilibrium
and its response thereto coming back into equilibrium. In linear response theory,
the external perturbation of a system is assumed to be so weak that the response
to adjust into a new equilibrium depends linearly on the input. The external per-
turbation is the input variable, and the time-dependent readjustment is the output
response. An example of a linear response function is the relative change in volume
of a liquid with temperature change as the input function. The measured quantity,
in this case, would then be the linear expansion coefficient, but one can think of all
sorts of linear responses to measure.

In the linear response regime, it can be described by

O(t) =
∫ t

−∞
µ(t− t′)h(t′)dt′, (4.1)

where O(t) is the time-dependent output, h(t) is the applied input and µ(t − t′) is
called a memory function.

We assume that the response function µ(t−t′) depends only on the time difference
t−t′, and is not affected by future perturbations, i.e. causality applies, and therefore
µ(t− t′) = 0 for t′ > t. We can rewrite Eq. 4.1 as

O(t) =
∫ ∞

0
µ(t)h(t− t′)dt′. (4.2)
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In the simple case, where the perturbation is the Heaviside step function with
an amplitude A,

h(t) = AH(t) = A

0 for t ≤ 0
1 for t > 0

, (4.3)

the response function in the time-domain, R(t), is:

O(t) =
∫ t

−∞
µ(t− t′)AH(t′)dt′ = A

∫ t

0
µ(t)dt′ = A R(t), (4.4)

and, thus,
dR(t)

dt = µ(t). (4.5)

Any time-dependent input can be Fourier transformed into the frequency domain,
and vice versa. If we introduce a harmonically oscillating as input, h(t) = h0e

iωt, the
output will oscillate with the same frequency. The output can be described by the
relative amplitude and phase with respect to the input from the frequency-dependent
response function, R(ω),

O0e
iωt+Φ = R(ω)h0e

iωt. (4.6)

The relation between the response function in the frequency domain and time domain
follows from Eq. 4.2 and 4.4:

R(ω) =
∫ ∞

0
µ(t′)e−iωtdt′ =

∫ ∞
0

dR(t)
dt e−iωtdt′. (4.7)

The response function in the frequency domain, R(ω), is a complex function, where
the relation between the real and imaginary part is given by the Kramer-Kronig
relation.

4.2 Correlation functions

A linear response function of a system is directly related to thermally driven fluctua-
tions that take place in a system in thermodynamic equilibrium via the fluctuation-
dissipation theorem. The fluctuations can be described by correlation functions
that we will introduce here, using the same notation as will be used in the section
on neutron scattering (Sec. 4.4) adapted from [16].

First, we will consider the pair correlation function, g(r1, r2), that gives the
probability of finding a particle at r2 given that there is a particle at r1. On a
perfect single crystal, the probability would be zero everywhere, but where r =
r2−r1 would correspond to one of the lattice parameters or any combination thereof.
For amorphous systems, however, it is meaningful to think in actual probabilities.
Because amorphous systems per definition are isotropic, the only relevant distance is
the magnitude of r, r = |r2− r1|, and we thus define the radial distribution function
g(r) for amorphous systems that gives the probability of finding another particle a
distance r away from the first particle (Fig. 4.1). The probability is proportional to
the number of particles found in a shell of radius r and thickness dr, a local density.
At shorter distances, this will give rise to peaks that correspond to coordination
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shells of large probability. At larger distances, this will go to unity where there is no
correlation between the position of the first and second particle. That is, in general,
there is only short-range order.
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Figure 4.1: Sketch of the radial distribution function, g(r), of an amorphous system.
Peaks are seen for values of r/σ corresponding to first, second, etc. coordination
shell in a liquid with molecules of size σ.

To follow correlations in both space and time of a system, we introduce the
time-dependent pair correlation function G(r, t), the van Hove correlation function,
defined from local atomic densities:

G(r, t) = 1
N
〈
N∑
i=1

N∑
j=1

δ(r− ri(t) + rj(0))〉, (4.8)

where the angled brackets refer to ensemble averages. The van Hove correlation
function gives the probability of finding a particle i at a distance r from the origin
at time t, knowing that a particle j was at r = 0 at time 0. At t = 0, we therefore
have

G(r, 0) = 1
N
〈
N∑
i=1

N∑
j=1

δ(r− ri(0) + rj(0))〉 = δ(r) + ρg(r), (4.9)

which except for a singularity at the origin, is proportional to g(r), the pair correla-
tion function, and the density. The van Hove correlation function can be split into
a self-part and a collective part:

Gs(r, t) = 1
N
〈
N∑
i=1

δ(r− ri(0) + ri(t))〉

Gc(r, t) = 1
N
〈
N∑
i 6=j

δ(r− rj(0) + rj(t))〉
(4.10)

and is defined for non-zero times. The self part gives the probability that a particle
has moved a distance r after some time t, whereas the collective part provides
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information on density fluctuations. It gives the probability of finding a particle at
a distance r after some time t, knowing that there was another particle at r = 0 at
t = 0.

We will use correlation functions in the section on neutron scattering (Sec. 4.4).
We will use that a measured response of a system to an external perturbation is
directly coupled to the system’s equilibrium thermal fluctuations, where the fluctua-
tions can be described by correlation functions. If we consider some time correlation
function,

FBB(t) = 〈A(t)B(0))〉, (4.11)

where the angled brackets refer to ensemble averages. A(t) is then the measured
physical quantity, the output, while B(0) is coupled to the input. If A = B, this is
an auto-correlation function. From the fluctuation-dissipation function, the relation
between a linear response and the self-correlation function is given by

dR(t)
dt = − 1

kBT

d
dtFBB(t). (4.12)

In the frequency domain, by Fourier transform, this is

FBB(ω) = 1
2π

∫ ∞
−∞

FBB(t)e−iωtdt, (4.13)

and contains the same information as Eq. 4.7. For a simple exponential decay, the
complex linear response function, R(ω), will give a peak in the imaginary part for
a relaxation process with a characteristic time τ ≈ 1/ωmax. In the self-correlation
function, FBB(ω), a relaxation process will give a peak with centre in ω = 0, where
the characteristic time is given by the width of the peak ∆ω ≈ 1/τ . These two
connections to a relaxation time are exactly what is utilized in dielectric and neutron
spectroscopy and will be discussed in the rest of the chapter.

4.3 Dielectric spectroscopy

Dielectric spectroscopy is an example of how linear response function can be used
to probe dynamic properties of a system. Dielectric spectroscopy has been used
extensively in the community of glass-forming liquids. It is a fast probe of dynamics
that covers many orders of magnitude in the frequency domain, allowing one to
study for example relaxational processes close to the glass transition. Dielectric
spectroscopy is based on the interaction of an external electric field with the electric
dipole moment or charges of a system.

In a molecular liquid with molecules with a permanent dipole moment, the
frequency-dependent dielectric constant, which is measured by dielectric spectroscopy,
provides information on the polarisation of the molecules. In the absence of an elec-
tric field, the dipole moments are distributed randomly in all directions. When the
system is perturbed by an external electric field, the molecules tend to rearrange so
the dipoles are aligned parallel to the electric field, resulting in a net dipole moment.
The dielectric displacement field is defined through the electric field:

D = ε∗ε0E, (4.14)
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where ε0 is the vacuum permittivity. The dielectric permittivity, ε∗, is a complex
function, which is time or frequency dependent if time-dependent processes take
place in a system, such as relaxational processes related to molecular fluctuations
of dipoles in glass-formers. The displacement field can be expressed in terms of the
polarisation, P, a measure of the dielectric displacement as a response to an external
field,

D = ε0E + P. (4.15)

The polarisation per volume is a macroscopic property that in general can be re-
lated to a molecule’s microscopic dipole moment, pi, where the macroscopic polari-
sation of a given volume is simply a sum of the microscopic dipoles P = V −1∑pi.
The macroscopic polarisation is related to the measured complex permittivity, ε∗,
through

P = (ε∗ − 1)ε0E. (4.16)

The microscopic dipole moment can be of permanent or induced character. The
induced dipole moment stems from a change in the electron clouds which to a good
approximation is instantaneous and therefore does not contribute to the frequency
dependence of the signal that we are mainly interested in. All data reported in this
work was done in low-field and can thus be assumed linear. Non-linear effects in
dielectrics is an entire area of exciting research in itself, e.g. [132, 4], that will not
be treated in this work.

In Fig. 4.2, we sketch a permittivity signal as a function of frequency, which is
measured in dielectric spectroscopy under the application of an alternating electric
field. Under the application of an electric field, the molecules in a system tend to
rearrange so the dipoles are aligned parallel to the electric field, causing an increase in
the permittivity. Under a steady field at a fixed temperature, this is the permittivity,
εeq. If an oscillating electric field is applied with a sufficiently low frequency, which
allows the rearrangement of the dipoles to follow the field orientation, then the
permittivity will stay constant at εeq, illustrated as the low-frequency plateau in the
real part in Fig. 4.2. As the frequency of the oscillating field is increased, the dipoles
will at some point no longer be able to reach their equilibrium position, and the
permittivity falls to its high-frequency limiting value ε∞. The difference between
the two plateau values εeq and ε∞ is the dielectric relaxation strength of a sample
and is a measure of reorientation of the molecules in a sample.

In practice, the permittivity is measured through the capacitance of a sample
as a function of a harmonically oscillating electric field through the sample between
two electrodes. The capacitance is given by the relation between the area of the
sample between the electrodes, A, the distance between the two electrodes, the
sample thickness, d, and the frequency-dependent dielectric constant of the sample,
ε∗(ω):

C∗(ω) = ε∗(ω)ε0
A

d
, (4.17)

where ε0 is the vacuum permittivity. The capacitance of the empty capacitor is
given by

C0 = ε0
A

d
, (4.18)
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Figure 4.2: Sketch of real and imaginary part of dielectric spectrum, ε′ and ε′′,
respectively, for an exponential and strectched exponential decay with two different
stretching exponents. A relaxation time can be determined from the maximum in
the imaginary part.

and the permittivity is found from the ratio between the capacitance of the sample
and that of the empty capacitor. Most standard dielectric setups can typically
cover the frequency range from 10−2 to 106 Hz, i.e. eight orders of magnitude in
frequency or time. In far from trivial setups by the Lunkenheimer group, the range
has been extended to cover as much as 17 orders of magnitude, e.g. [144]. Detailed
information on dielectrics in general, the data and interpretation thereof can be
found in the textbook by Kremer and Schönhals [92].

The alpha relaxation process is one of the relaxation phenomena that in many
glass-forming liquids will give a pronounced and distinct peak in the imaginary
part of the permittivity, and one of the reasons for the wide application within the
experimental field. The measured alpha relaxation process in glass-forming systems
is non-exponential, i.e. the measured dielectric response is broader than the expected
exponential or Debye behaviour. The dielectric response of the alpha relaxation has
empirically been described in the time-domain by the Kohlrausch-Williams-Watts
function or the stretched exponential, Φ(t) = exp(−(t/τ)β). This is illustrated in
the frequency domain in Fig. 4.2 for two different stretching exponents, β.

As for many experimental techniques, a disadvantage of the dielectrics is the
exact interpretation of the measurements. For dielectrics this, in particular, concerns
the translation from macroscopic to microscopic level and vice versa. Dielectric
spectroscopy is widely used in dynamic studies in glass-formers, but also for kinetic
studies of for example crystallisation and charge carrier properties. For example is
DC conductivity observed in some glass-forming systems as a power-law decrease
with frequency in the imaginary part of the capacitance, slower than the alpha
relaxation. In systems such as ionic liquids, the conductivity will be so strong that
it completely overshadows any signal from the alpha relaxation. In systems such
as mono-alcohols, a large Debye-like relaxation is observed to practically hide the
alpha relaxation.

For this work, dielectrics have primarily been used as a tool for finding the alpha
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relaxation time of different simple organic glass formers, where the alpha relaxation is
observed as a distinct peak. The particular setup used in this work and the cell that
was developed to combine dielectric and neutron spectroscopy under high pressure
is described in Ch. 6. We will now move on to introduce neutron spectroscopy.

4.4 Neutron scattering

Neutron scattering or neutron spectroscopy is used in many different sciencific disci-
plines such as solid state physics, molecular biology and polymer chemistry because
it is an effective means for studying nuclear and magnetic structure and dynamics on
atomic or molecular scale. In this section, we will focus on basic aspects of neutron
scattering relevant for the dynamics in glass-formers presented in this work. This is
in no way extensive and the reader is referred to one of many standard textbooks
there exist on this topic for more details, e.g. [16, 153, 101].

From neutron scattering, we can obtain information about atomic and molecular
position and movement because their length- and timescales overlap with that of
neutrons. The length- and timescales in neutron spectroscopy also overlap with
what can be reached in molecular dynamics computer simulations, which means
that computer simulations can be used to interpret data, e.g. [8], or that it is
possible to test more theoretical predictions based on computer simulations as we
will do in Ch. 7 and 8.

Basic principles

First things first, to do neutron scattering experiments, neutrons have to be removed
from the atomic nuclei. For neutron scattering experiments today, this is done either
in a nuclear reactor by spontaneous fission of 235U, which is the case at the Institut
Laue-Langevin (ILL) and therefore the scenario we will assume, or in a spallation
source by bombarding heavy elements with high-energy protons. Most experiments
in soft condensed matter are conducted with cold or thermal neutrons roughly in
the energy range 0.1 − 100 m eV or approximately λ = 30 − 1 Å. Neutrons leave
the nuclei with energies in the MeV-regime and are moderated to the meV-regime
through for example H2O or liquid H2.

As a consequence of quantum mechanics and wave-particle duality, neutrons
can be described as particles, as is the case in the process of neutron creation and
neutron detection for instance, and as interfering waves in the scattering processes
themselves. The de-Broglie wavelength is the wavelength associated with a particle
of mass, m, moving at velocity, v:

λ = h

mv = 2π
|k| , E = ~2k2

2m , (4.19)

where h is the Planck constant, and k is the wavevector, related to the momentum
of a neutron via p = ~k. The velocity spectrum of neutrons leaving a moderator at
a temperature, T , will be close to a Maxwell distribution around some average value
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v̄, with a maximum at

v̄ =
(

3kBT

m

)1/2

, (4.20)

which corresponds to a kinetic energy, Ē = 1
2mv̄

2 = 3
2kBT , where kB is the Boltz-

mann constant. Because of the relatively low velocity, we can disregard any rel-
ativistic effects. Standard velocity of thermal neutrons is around v̄ = 2200 m s−1,
which corresponds to a temperature of room temperature, an energy Ē ≈ 25 meV
and a wavelength λ ≈ 1.8 Å. The wavelength of thermal neutrons coincides with
atomic and molecular distances. The neutrons’ wavelength and energy along with
their penetrating abilities make them excellent for probing intermolecular distances
and energies, which is why neutron scattering is such an effective means for studying
excitations, dynamics and structure in condensed matter.

The basic principle is to let an incoming neutron beam with a well-defined veloc-
ity hit a sample and measure the energy and wavevector of the outgoing, scattered
beam. The difference in energy and momentum between the ingoing and outgoing
beam gives information on the exchange of energy between neutron and sample. As
a neutron passes close to a nucleus, there are in fact two possible interactions which
it can undergo: it can either be absorbed or scattered by the nucleus. When a
neutron is absorbed, the nucleus will be in an excited state from which it can decay
by for example gamma emission, by the emission of charged particles such as alpha
particles, a principle which is used in 3He neutron detectors, or it can decay by fis-
sion like uranium in fission reactors. Instead, in the scattering process, the direction
or energy of the neutron is changed. The two basic quantities that are measured
in neutron scattering experiments are therefore energy and momentum transfer be-
tween an initial and final state governed by conservation of energy and momentum,
respectively. From momentum conservation, the difference in wavevector between
the initial and final state, the momentum transfer, is given by:

Q = k0 − k,
Q2 = k2

0 + k2 − 2kk0 cos θ
(4.21)

where θ is the scattering angle. The energy transfer is given by

~ω = E0 − E = ~2

2m(k2
0 − k2), (4.22)

where E0, k0 and E, k are the energy and wavevector of the initial and final state,
respectively. For elastic scattering there is no transfer of energy, and we therefore
have ~ω = 0, and thus |k| = |k0|. However, the direction of the wavevectors is still
allowed to change, and also for elastic scattering, Q is a function of the scattering
angle as is seen from Eq. 4.21.

Atomic motion undergone by the nuclei is experienced by the neutron and gives
rise to inelastic scattering. In inelastic scattering there is transfer of energy, i.e.
|k| 6= |k0|. Inelastic scattering with a maximum in zero energy transfer is usually
referred to as quasi-elastic scattering. Quasi-elastic neutron scattering (QENS) is
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typically studied on high-resolution spectrometers and is relevant for studying dy-
namics, where the broadening around the elastic peak is related to a characteristic
time of the process.

The energy of thermal and cold neutrons is too small to create internal excitations
of the nuclei or electronic shell in a sample, but the atomic motions with much
smaller energies can be felt by the neutrons and will give rise to inelastic scattering.
In the limit where the interaction of the neutron beam and the sample is weak,
the exchange of energy and momentum is in the linear response regime, and will
therefore only depend on properties of the sample. The weak interaction also allows
us to treat both the ingoing and outgoing neutrons as plane waves according to the
Born approximation as we will use later.

The actual measured property is the cross section, which is a measure of the
number of neutrons scattered in a given direction as a function of their energy. The
differential cross section gives the probability that a neutron leaves the sample in a
solid angle element dΩ,

∂σ

∂Ω , (4.23)

where σ is the total number of scattered neutrons. The double differential cross
section then gives the probability that a neutron with incident energy, E0, leaves
the sample in the solid angle element with an exchange of energy between ~ω and
~(ω + dω):

∂2σ

∂Ω∂E = 1
~
∂2σ

∂Ω∂ω . (4.24)

Scattering processes

First, we will look at the general case for scattering processes that applies to all
kinds of spectroscopic techniques using the quantum mechanics formalism adapted
from [16]. If we consider a system in thermal equilibrium at a temperature, T , which
is composed of N particles and with the total energy of the system characterised
by the Hamiltonian, HR that has eigenvalues Em′ and eigenstates |m′〉, then the
probability of being in any state |m′〉 is given by

pm′ = 1
ZR

exp(−Em′/kBT ), (4.25)

where

ZR =
∑
m

exp(−Em/kBT ). (4.26)

Similarly, we define a probe characterised by a Hamiltonian, Hp, with eigenvalues
and eigenvectors, Em and |m〉, respectively. We let the probe and the reservoir
couple via a Hamiltonian, Hc, which is then used to investigate how the change in
molecular properties vary with time. The probe is in an initial state |m〉 and after
the interaction with the system in a final state |n〉. In the linear response regime,
where the coupling Hamiltonian is small compared with that of the system and
the probe, the system will go from an initial state |m′〉 to a final state |n′〉. The
interaction between the probe and the system will, according to Fermi’s golden rule,
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give the probability per unit time that the total system changes from initial state
|m〉|m′〉 to final state |n〉|n′〉:

Wnn′mm′ = 2π
~
|〈n′|〈n|Hc|m〉|m′〉|2δ(Em + Em′ − En − En′). (4.27)

The principle of scattering spectroscopy is then to measure a response function of
the system to the perturbation caused by the probe. In practice, this is done by
measuring some quantity proportional to Wnm as a function of either the final or
the initial state of the probe. Using the fluctuation-dissipation theorem, the above
probability can be rewritten as

Wnm = 2π
~2

∑
n′

∑
m′

1
ZR

exp(−Em′/kBT )|〈n′|H̄c|m′〉|2δ(ωn′m′ − ω). (4.28)

In practice, what is measured in experiments is a function of the initial and final state
of the probe and for simplicity, we therefore use the operator, H̄c that only works
on the system, H̄c = 〈n|Hc|m〉. The Dirac-delta function ensures a non-vanishing
transition probability when there is no net energy transfer, i.e. for elastic scattering,
where ~ωn′m′ is the energy gain of the system and ~ω is the energy loss of the probe.

We will now consider a system where the probe is a monochromatic beam of
neutrons with incoming energy E0 and wavevector, k0, reaching a sample, leaving
with energy E = E0 − ~ω and wavevector, k, in the solid angle Ω. If the initial and
final state are given by

|k0〉 = 1√
V

exp(ik0 · r)

|k〉 = 1√
V

exp(ik · r),
(4.29)

where V is the sample unit volume, the probability of a transition between the two
states is now given by Wk0k. With an incoming flux of neutrons on a sample, I0,
the number of scattered neutrons per second between k and k + dk is:

I = I0
mV

~k0
Wk0kρ(k)dk, (4.30)

where m is the neutron mass, and ρ(k) is the density of states of momentum k,
given by

ρ(k)dk = V

(2π)3k
2dΩdk. (4.31)

The double differential cross section in Eq. 4.24 is then

∂2σ

∂Ω∂ω = 1
∂Ω∂ω

I

I0
. (4.32)

The neutrons interact with nuclei in the sample either via the nuclear or the
magnetic force. Because neutrons are made up of quarks, they possess a magnetic
moment, which makes it possible to study magnetic properties in solids by the
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interaction between neutrons and unpaired electron spins in atoms. Magnetic in-
teractions are, however, negligible for diamagnetic systems compared to the nuclear
interactions, and they are therefore not treated further in this work.

Neutron scattering from a nucleus is considered isotropic because the neutrons
are scattered by the strong force in the nucleus, which is in the range of just fem-
tometers. This range is much smaller than that of neutron wavelengths in the range
of Ångström, which is also why neutrons cannot probe the internal structure of nu-
clei. The interaction is therefore considered pointlike. The short-ranged nature of
the nucleus-neutron interaction is described by the Fermi pseudo-potential:

V (r) = 2π~2

m
biδ(r−Ri), (4.33)

where Ri is the position of the nucleus while r is the position of the neutron. The
scattering process is characterised by the scattering length parameter, b, which is
independent of the neutron energy. The scattering length is a complex number
where the imaginary part represents absorption and the real part is positive or
negative depending on the attractive or repulsive nature of the interaction. The
scattering length does not only depend on the atom, but also the spin of the nucleus
and is therefore isotope-dependent. For all isotopes and spin states, the average
scattering length for atomic species i, 〈bi〉, is the coherent scattering length, while
the incoherent scattering length is defined as the mean-squared deviation of bi from
〈bi〉:

bcoh
i = 〈bi〉, (4.34)

binc
i =

(
〈b2i 〉 − 〈bi〉2

)1/2
, (4.35)

which refer to collective and self-motion, respectively. We can then define a cross
section as

σcoh = 4π〈bi〉 (4.36)

for the coherent cross section, and

σinc = 4π
(
〈b2i 〉 − 〈bi〉2

)
(4.37)

for the incoherent cross section, that applies in the simple case where it is assumed
that the scattering is from a single isotope. The total scattering cross section is the
sum of the two,

σ = σcoh + σinc. (4.38)

A way of experimentally distinguishing between coherent and incoherent scattering
is by use of polarised neutrons.

Using Fermi’s pseudo-potential for the short-ranged neutron-nucleus interaction
potential (Eq. 4.33), the matrix element of the coupling Hamiltonian between the
initial and final state can be written as

H̄c = 〈k0|Vr|k〉 = 2π~2

mV

∑
i

bi exp(iQ ·Ri), (4.39)
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where Ri is the position operator of an atom i. We then end up with a double
differential cross section:

∂2σ

∂Ω∂ω = k

k0

1
2π
∑
i

∑
j

∫ ∞
−∞

1
N
〈bibj exp(−iQ·Ri(t))×exp(−iQ·Rj(t))〉 exp(−iωt)dt,

(4.40)
where the terms in broken brackets refer to the ensemble average.

It is assumed that there is no coupling between the actual scattering length of
a nucleus and its position. The average can then be performed independently of
spin state and position of the nucleus. When there is no correlation between the
scattering lengths of different isotopes in a sample consisting of Nα and Nβ number
of atoms of type α and β, then the double differential cross section can be split into
two parts, a coherent and an incoherent part. The coherent part is given by:(

∂2σ

∂Ω∂ω

)
coh

= 1
N

k

k0

n∑
α=1

n∑
β=1

bcoh
α bcoh

β

√
NαNβS

αβ
coh(Q, ω), (4.41)

where Sαβcoh(Q, ω) is the scattering function, also known as the dynamic structure
factor:

Sαβcoh(Q, ω) =

1
2π
√
NαNβ

∫ ∞
−∞

Nα∑
iα=1

Nβ∑
jβ=1
〈exp(−iQ ·Riα(t))× exp(−iQ ·Rjβ (0))〉 exp(−iωt)dt.

(4.42)
Similarly, we can write up an expression for the incoherent cross section and its
dynamic structure factor:(

∂2σ

∂Ω∂ω

)
inc

= 1
N

k

k0

n∑
α=1

binc
α Sαinc(Q, ω),

Sαinc(Q, ω) = 1
2πNα

∫ ∞
−∞

Nα∑
iα=1
〈exp(−iQ ·Riα(t))× exp(−iQ ·Riα(0))〉 exp(−iωt)dt.

(4.43)
for a system with atoms of type α. We see immediately for both coherent and
incoherent cross sections that by selecting the incoming and outgoing value of the
wavevector, the change in energy and momentum, only show up in the dynamic
structure factor in the cross sections in Eq. 4.41 and 4.43. The dynamic structure
factor, S(Q, ω), which is what we probe in neutron scattering experiments, contain
all spatial and dynamic properties, independent on the neutron properties and the
type of sample.

The coherent and incoherent scattering functions are quite different in nature,
as we saw in the van Hove correlation functions (Eq. 4.10), due to interference
effects in the coherent part caused by the sum over the phase shifts of different
atoms. For isotopes in general it is true that bcoh

α � binc
α , which will result in

neutron spectra that stem mostly from coherent scattering either at the same time,
elastic scattering providing information on structure, or at different times, inelastic
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scattering reflecting the collective motion of the atoms, the density fluctuations.
However, for the special case of hydrogen, 1H, it is true that bcoh

α � binc
H , which

means that in samples with a relatively high concentration of hydrogen atoms, e.g.
molecular liquids, incoherent scattering will be the dominating contribution to the
signal, typically ∼ 90% for organic molecular liquids. For this reason, incoherent
neutron scattering is a powerful tool for studying self-correlations of hydrogen in all
sorts of systems, but in particular in organic systems.

For this work, the relevant scattering functions are those from incoherent scat-
tering, and while the above introduction deals with the general case of a multicom-
ponent system, we will from now on restrict ourselves to a one-component system,
assuming that the scattering arise from just one type of system. The double differ-
ential cross section is then simplified to

∂2σ

∂Ω∂ω = 1
4πN

k

k0

(
σcohScoh(Q, ω) + σincSinc(Q, ω)

)
, (4.44)

where σx is the isotope specific coherent or incoherent scattering cross section,
and the dynamic structure factor is related to the intermediate scattering function
through Fourier transform,

S(Q, ω) = 1
2π~

∫ ∞
−∞

I(Q, t) exp(−iωt)dt, (4.45)

with the coherent and incoherent intermediate scattering functions:

Icoh(Q, t) = 1
N

∑
i

∑
j

〈exp(iQ ·Ri(t)) exp(iQ ·Rj(0))〉

Iinc(Q, t) = 1
N

∑
i

〈exp(iQ ·Ri(t)) exp(iQ ·Ri(0))〉.
(4.46)

By taking the space-Fourier transform of the intermediate scattering function I(Q, t),
we can return to real space and obtain the pair-correlation function:

G(r, t) = 1
(2π)3

∫
I(Q, t) exp(−iQ · r)dQ. (4.47)

In the classical limit

In the classical limit, we can neglect any effects from quantum mechanics, i.e. for a
particle with mass m, both energy and momentum transfer are so small that

|~ω| � 1
2kBT and ~2Q2

2m � 1
2kBT, (4.48)

and a system can be described by classical mechanics. Here we can neglect kinematic
effects of the momentum transfer ~Q from the neutron to the sample, resulting in:

Scl(Q, ω) = Scl(−Q,−ω). (4.49)

This is only true for long times and large values of r, or equivalently, small ω and
Q. When quantum mechanical effects set in, S(Q, ω) is not symmetric in ω; there
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is a higher probability of a neutron transitioning from a state of higher energy to
a state of lower energy than the other way around, i.e. energy loss for a neutron
(energy gain for the sample) is preferred in the system to neutron energy gain. The
scattering function can be approximated with

S(Q, ω) = exp
(

~ω
kBT

)
Scl(−Q,−ω), (4.50)

which fulfils the detailed balance condition that gives the relation between the scat-
tering function in the two cases of neutron energy gain, ~ω < 0, and neutron energy
loss, ~ω > 0.

Assuming that our system can be described classically, r is no longer a non-
commuting operator, but instead a position vector. The pair correlation functions
can now be written as

Gcl
coh(r, t) =

∑
j

〈
δ(r + R0(0)−Rj(t))

〉
,

Gcl
inc(r, t) =

〈
δ(r + R0(0)−R0(t))

〉
.

(4.51)

Gcl
coh(r, t) expresses the probability, given an atom at origin at time t = 0, that

another atom will be found at position r at time t. Gcl
inc expresses the probability

that an atom which was at the origin at time t = 0 can be found at position r at
time t under the assumption that all particles are equivalent. This provides the same
information as the pair correlation functions in Eq. 4.10.

If we now look at the short-time limit, where we set t = 0. We see from Eq. 4.45
that the dynamic structure factor in this limit is the static structure factor, S(Q) =
I(Q, t = 0) with a coherent part that provides information on the structure of a
sample, and an incoherent part that does not provide any information as it will
always be equal to 1 as can be seen from Eq. 4.43:

Sinc(Q) = Iinc(Q, t = 0) = 〈exp(−iQ · Ri(0))× exp(−iQ · Ri(0))〉 = 1. (4.52)

If we instead go to the long-time limit of the incoherent part where we set t → ∞,
there is no correlation between the position of the ith atom at time t = 0 and∞, i.e.
between Ri(0) and Ri(∞). The incoherent intermediate scattering function found
by space-Fourier transform (Eq. 4.47) will take the form:

Iinc(Q,∞) = 1
2π

∫
Ginc(r,∞) exp(−iQ · r)dr

= 1
N

∑
i

|〈exp(−iQ ·Ri)〉|2.
(4.53)

We can split the intermediate scattering function into a time-independent and a
time-dependent component

Iinc(Q, t) = Iinc(Q,∞) + Iinc(Q, t), (4.54)

where the time-dependent component will go to zero when t → ∞. By taking the
time-Fourier transform, we arrive at an expression for the dynamic structure factor:

Sinc(Q, ω) = Iinc(Q,∞)δ(ω) + Sinc(Q, ω). (4.55)
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We see from the first term that there will be a purely elastic signal in ω = 0 with
the intensity of the elastic peak given by the long-time limit of the intermediate
scattering function, Iinc(Q,∞). This term is often referred to as the elastic incoher-
ent structure factor and has the dimension of a structure factor and is the fraction
of the total intensity which originates from the purely elastic signal. The elastic
signal thus determines the plateau value of the intermediate scattering function.
For Sinc(Q, ω), the first term is superimposed onto the quasielastic component, the
second term, with a non-vanishing broadening centred in ω = 0. The width of the
broadening provides information about characteristic times of the system, which we
will use in Ch. 7 and 8.

Separation of motion

We will in this section look into examples, relevant for this work, of what kind of
dynamics we can describe from the information we gain from neutron scattering
experiments. We will mainly deal with dynamics from incoherent single-scatterer
systems, and we will therefore leave out the subscript i in this section. Most molec-
ular glass-forming liquids contain a large fraction of hydrogen atoms, and because
of the dominating incoherent scattering length of hydrogen, to a good approxima-
tion, the measured neutron scattering intensity can be considered to arise from just
one isotope and to be incoherent, providing information on averaged self-motion
dynamics of the molecules.

If we consider the incoherent intermediate scattering function in Eq. 4.46, the
position vector R can be split into two components, a non-local and a local one:

R(t) = Re(t) + u(t). (4.56)

Re(t) is the time-dependent instantaneous position of equilibrium of the molecule
as a whole with respect to some fixed, external coordinate system. In the case
of a crystalline material, this would be the crystal lattice, whereas in amorphous
systems this position does not show translational symmetry. Re(t) represents the
time-dependent motion of the molecule as a whole. The local motion is represented
by u(t) and is the displacement of an atom away from its equilibrium position within
a molecule, e.g. internal vibrations. The external motion, Re(t), is in liquids specific
to the system and are often split into terms representing translational and rotational
motion. Taking into account all types of motion in the incoherent intermediate scat-
tering function is difficult, but often, different types of motion are assigned different
timescales with different spatial dependence and can in this way be distinguished.
This can for example be done by the slightly crude assumption that the different
types of motion are uncorrelated, and that the internal vibrational states of an atom
are not influenced by rotational motion or the lattice vibrations of a molecule, i.e.
the energy of the internal vibrational states is higher than the energy related to
reorientational motion.

The incoherent intermediate scattering function for a system can be written as
a product of the reorientational motion and the local vibrations:

Iinc(Q, t) = IR
inc(Q, t) · IV

inc(Q, t), (4.57)
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where
IR

inc(Q, t) =
〈
exp(iQ · (Re(t)−Re(0)))

〉
IV

inc(Q, t) =
〈
exp(iQ · (u(t)− u(0)))

〉 (4.58)

are the contributions from reorientational motion and intramolecular vibrations,
respectively.

From Eq. 4.57, where the total incoherent intermediate scattering function is
given as a product, the dynamic structure factor can be written as a convolution
product in frequency space:

Sinc(Q, ω) = SR
inc(Q, ω)⊗ SV

inc(Q, ω), (4.59)

where the convolution is given by the integral

SR
inc(Q, ω)⊗ SV

inc(Q, ω) =
∫

dω′SR
inc(Q, ω′)SV

inc(Q, ω − ω′). (4.60)

If we imagine the reorientational motion is composed of translational and rotational
components, each component will be a convolution product, and each of the convo-
lution products will result in a broadening of the spectrum.

If we model the system with a solid, i.e. the external motion is independent
of time, a reasonable assumption for highly viscous liquids or glasses, the position
vector is now:

R(t) = Re + u(t), (4.61)

and we can write the intermediate scattering function as

Iinc(Q, t) =
〈
exp(−iQ · (Re + u(0)))

〉 〈
exp(iQ · (Re + u(t)))

〉
=
〈
exp(−iQ · u(0)) exp(iQ · u(t))

〉 〈
exp(iQ · (Re −Re))

〉
=
〈
exp(−iQ · u(0)) exp(iQ · u(t))

〉
,

(4.62)

which only gives information on the dynamic part, u(t), and not on structure. In
the long-time limit of Eq. 4.62, we assume that u(0) and u(t) are uncorrelated and
that time is homogeneous, i.e. the ensemble average 〈u(t)〉 is constant in time. For
t→∞, we obtain

Iinc(Q, t) = 〈exp(2Q · u〉, (4.63)

which is also called the Debye-Waller factor, exp(−2W (Q)). In an amorphous solid,
we can moreover assume isotropic behaviour, i.e. the average of Q · u does not
depend on the direction of Q, and we can model the vibrations with a Gaussian
distribution, assuming they are harmonic. We thus end up with the expression for
the long-time limit:

Iinc = exp
(
−Q

2〈u2〉
3

)
. (4.64)

The incoherent intermediate scattering function must start in 1 for t = 0 and will
then decay to exp(−2W (Q)) for t → ∞. The long time-limit corresponds to the
elastic region in frequency-space. Eq. 4.64 can be used to determine the mean-
squared displacement of a system from the elastic intensity, which we will use in
Ch. 5.
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The inelastic contribution can be approximated by assuming one-phonon scatter-
ing, which is valid in the solid state, where only the harmonic forces are considered.
The displacement of each atom in a system can then be described as a sum of dis-
placements from a set of normal modes of the system, where each normal mode has
an associated frequency and eigenvector, see e.g [153, 87]. The incoherent, inelastic
contribution to the dynamic structure factor is

Sinc,inel(Q, ω) = exp(−2W )
2MN

∑
s

(Q · es)2

ωs
×
(
〈ns + 1〉δ(ω − ωs) + 〈ns〉δ(ω + ωs)

)
,

(4.65)
where ωs is the frequency of mode s with wavevector Q and a corresponding polar-
isation vector, es. The first and the second term in brackets are phonon emission
and phonon absorption, respectively, where 〈ns〉 is the Bose factor, which gives the
occupation number of the mode:

〈ns〉 =

exp
(

~ω
kBT

)
− 1

−1

and 〈ns + 1〉 = 〈ns〉+ 1. (4.66)

In the classical limit for ~→ 0, we have

〈ns〉 = 〈ns + 1〉 = kBT

~ω
. (4.67)

In this limit, the phonon annihilation and creation process are identical. By sub-
stituting the sum with an integral, assuming an isotropic system, we thus average
(Q · es)2 over all modes with frequency ωs, which we can then replace by Q2. By
introducing the vibrational density of states, g(ω), we end with:

Sinc,inel(Q, ω) = exp(−2W )
2M Q2n(ω)

ω
g(ω). (4.68)

We will use the fact that the inelastic part of the dynamic structure factor is directly
coupled to the vibrational density of states in Ch. 8.

Resolution

So far we have discussed the contributions to the dynamic structure factor from
elastic and inelastic scattering and how this can result in a broadening of the neutron
signal around the elastic peak, as we also saw in Eq. 4.55

Sinc(Q, ω) = exp(−2W (Q))[δ(ω) + Sinel(Q, ω)]. (4.69)

However, the elastic peak is of course not a delta function in real experiments, and
instead of an infinitely sharp signal, the elastic intensity is convoluted with the
instrument resolution, resulting in an elastic peak with a finite energy width. The
width depends on energy and momentum characteristics of the instrument at use,
which means that the resolution of the neutron instrument determines the timescale
of the elastic intensity and therefore the timescale of the experiment. The measured
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scattering function is a convolution between the resolution function of the instrument
and the actual dynamic structure factor:

Smeas(Q, ω) = R(Q, ω) ∗ S(Q, ω). (4.70)

The measured elastic intensity is thus everything that falls within 0 eV ± ∆Eres,
i.e. with correlation times longer than that given by the energy resolution, see e.g.
[57]. This is illustrated in Fig. 4.3. The resolution function and the elastic intensity
therefore determines the plateau value of the intermediate scattering function.

Figure 4.3: Illustration of the consequence of the instrument resolution. The relax-
ation time that coincides with the instrument resolution will be the lowest resolved
relaxation time (full line). Relaxations slower than that the instrument resolution
(dashed lines) will go into the elastic intensity and can therefore not be resolved.

The deconvolution of elastic intensity from the energy resolution can be a tricky
job when inelastic intensity is also centred around ω = 0 as in quasi-elastic scattering.
One approach is to take the inverse Fourier transform of the measured dynamic
structure to arrive at the intermediate scattering function, F (Q, t):

F (Q, t) = I(Q, t)R(Q, t). (4.71)

Instead of a convolution, it is now a product, and the intermediate scattering function
is obtained simply by division. However, this method has its drawbacks, for example
the loss of information doing numerical Fourier transform and cut-off effects, and
is in general a lot harder to do in practice than in theory, and in many cases, it
is therefore more convenient to stay in the frequency domain. In Ch. 7.4, we will
show an example of the determination of a relaxation time from the intermediate
scattering function in the time domain. Below we will introduce the two techniques,
time-of-flight and backscattering, which have been used for the work presented in
the next four chapters.

Time-of-flight

The velocity of a neutron and hence its energy can be determined by measuring
the time it takes for the neutron to move a certain distance. For thermal neutrons
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that move with a velocity of roughly 2 km s−1, the velocity and hence the energy
can be determined by measuring the time-of-flight over a distance of a few meters.
By creating a short starting pulse before the sample and knowing the instrumental
flight distance and the starting time, the time-of-flight is measured from the arrival
time after the sample. This section will deal with the direct geometry time-of-flight
(TOF) instruments IN5 and IN6 at ILL, where the energy resolution is roughly two
orders of magnitude coarser than for the backscattering instrument IN16B that is
described below. The dynamics accessible with the TOF instruments IN5 and IN6
is in the picosecond range.

IN5 is a multi-chopper TOF spectrometer, where a pulsed beam is created with
counter-rotating chopper disks, which is then sent through choppers that prevent
frame overlap in the neutron pulses. A system of choppers then selects the incoming
wavelength of the beam and the energy resolution by adjusting the speed of the
choppers. On this instrument, the choppers are monochromating the neutron beam
and provides a nearly Gaussian resolution function. The neutrons are detected in a
large array of pixelated position sensitive 3He detectors placed around 4 m from the
sample in a vacuum chamber.

IN6 at is a TOF chopper spectrometer, where crystal monochromators select
the incident energy. The beam is focused vertically by selecting the neutrons with
slightly different incident energy from three crystal monochromators. Higher order
neutrons reflected from the monochromators are removed using a beryllium filter.
The beam then passes a set of Fermi choppers that creates a pulsed beam and
prevents an overlap of the pulse into the next measurement frame. The sense of
rotation of the Fermi choppers, which are placed close to the sample, is such that
the slower neutrons are scattered first and the fastest neutrons last. The energy
resolution is determined by the rotation speed of the Fermi choppers. The scattered
neutrons are detected in 3He tubes in a large detector bank.

An advantage of TOF spectroscopy is the relatively broad range of energy and
momentum transfer, (Q, ω) space, that can be surveyed. The kinematic range can
be calculated by combining Eq. 4.21 and 4.19,

~Q2

2m = E + E0 − 2(EE0)1/2 cos θ (4.72)

which expressed as a function of initial energy and energy transfer is

~Q2

2m = 2E0 − ~ω − 2(E0(E0 − ~ω))1/2 cos θ. (4.73)

For direct geometry instrument like IN5 and IN6, the trajectory a detector traces
through (Q, ω) space will be determined from the energy transfer, ~ω, and the intitial
energy E0. Because of the large momentum and energy range and the geometry of
the instrument, we see from Eq. 4.73 that for studies in energy at constant values of
Q, one has to interpolate between the different detector angles. TOF instruments are
useful for studying picosecond dynamics in glass-forming liquids accessing inelastic
excitations and quasielastic broadening as we will see in Ch. 7 and 8.
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Backscattering

Neutron backscattering (BS) spectroscopy is an example of the use of inverse ge-
ometry. The neutron energy is determined from Bragg reflection from crystals by
using the largest possible Bragg angle, θ = 90°, which results in a very high energy
resolution, roughly given by

∆λ
λ

= ∆k
k
≈ ∆d

d
+ cot θ∆θ, (4.74)

which is the differential of the Bragg equation, where d is the lattice spacing. A
backscattering instrument can because of its narrow energy resolution access longer
dynamic timescales than for example time-of-flight instruments. In this section we
will take a look at the cold BS spectrometer IN16B at the ILL. The inverse geometry
settings mean that in this case, the incident energy is varied while the final energy
is held fixed.

A polychromatic neutron beam is pulsed by a chopper before it reaches a rotat-
ing deflector that sends the neutrons to the monochromator. To minimise the first
term in Eq. 4.74, the neutrons are reflected from perfect silicon single-crystal wafers
with [111] surface orientation in a 90° Bragg angle to minimise the second term in
Eq. 4.74. The monochromator is mounted on a Doppler drive whose speed deter-
mines the incoming wavelength. The linear motor Doppler drive has a maximum
monochromator speed of 4.7 m s−1 for a given velocity profile. For a full spectrum,
the moving spherical monochromator will create a sinusoidal velocity profile that
continuously selects a narrow band of wavelengths. The neutrons come back and
pass through windows in the rotating deflector. The pulsed beam with an energy
range determined from the Doppler drive then hits the sample and is scattered in
all directions. Only scattered neutrons from the sample with a certain final energy,
determined from the backscattering reflection of the analyser crystals, are reflected
back to the 3He detector tubes and counted. The counting is therefore a function
of the speed of the Doppler drive. The experiments carried out in relation to this
work were done with the standard settings: incident wavelength λ = 6.27 Å, Si(111)
monochromators resulting in an energy resolution of ∆Eres = 0.8 µeV, energy trans-
fer ±30 µeV and Q-range 0.1− 1.8 µeV.

Backscattering instruments moreover provide the option of doing fixed window
scans (FWS) with constant incident wavevector, where ’scan’ refers to a sample
property like temperature or pressure. When the incident and final wavevector are
set to the same value, this is called elastic fixed window scans (EFWS) for which
k = ki and ∆E = 0. This is achieved by stopping the Doppler drive in a fixed
position. The elastic fixed window scans provide an overview of the dynamics in a
sample by measuring S(Q, 0). It is a fast way of obtaining information on a sample,
and can for example be used to obtain the mean-squared displacement as a function
of temperature from the Q-dependence (Eq. 4.64 and Ch. 5).

While the elastic fixed window scans are standard on most backscattering instru-
ments, a reasonably new and refined technique that compliments the elastic fixed
window scans are the inelastic fixed window scans (IFWS) available on IN16B [54].
In IFWS, the wavevector is still held constant providing the fixed energy window,
but now k 6= k0. In IFWS, the tunable velocity profile of a linear motor Doppler
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Figure 4.4: Top: Examples of full spectra from IN16B are given for three different
temperatures with T1 < T2 < T3. The vertical coloured bars refer to the elastic
(∆E = 0 µeV) and inelastic (∆E = 2, 5, 8 µeV) window scan intensity that are
shown below as a function of temperature. The three temperatures at which the
spectra were taken are marked as dashed lines in the temperature scan. At T1,
the signal is mainly elastic with only a small wing visible for ∆E = 2 µeV. At T2,
broadening of the signal is observed, while the elastic intensity goes down. The
inelastic intensities undergo a maximum. At T3, the elastic intensity is basically lost
and only broadening is left.
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drive is utilised to periodically maintain a constant longitudinal Doppler velocity,
±vD. The Doppler velocity is kept constant for a long time with only short time
used for changing direction, aiming for a rectangular velocity profile. This means
that much shorter counting time is needed at a fixed energy in comparison to the
time it would take to acquire the same information from the full spectrum where a
sinusoidal velocity profile is used.

Doing alternating elastic and inelastic fixed window scan is an easy and fast way
of gaining information on not just how the elastic intensity changes upon a temper-
ature or pressure scan as a function of Q, but also on how relaxational processes
enter the instrument window, causing broadening in the signal. This is illustrated
in Fig. 4.4 comparing full spectra for three different temperatures to a FWS scan on
temperature for four different settings of ki, resulting in ∆E = 0, 2, 5, 8 µeV. We
will use the IFWS technique for example in the interpretation of the mean-squared
displacement found from EFWS in Ch. 5.

Corrections

All corrections of the measured neutron data presented in this work have been carried
out in the data treatment program LAMP developed at the ILL [130, 95]. The data
has been normalised to monitor, i.e. neutron count, and the incoherent signal from
vanadium. Background from sample cell has been subtracted and corrections have
been made for self-shielding, self-absorption and detector efficiency. On IN5 and
IN6 with large energy transfer ranges, data has been sliced and interpolated to hold
constant values of Q.

One thing that we have not discussed so far is the possibility that a neutron
can be scattered more than once from the sample. Multiple scattering refers to the
fraction of neutron scattering passing the sample twice. It is very difficult to make
a good estimate of this fraction. In general, ensuring that the sample thickness as
thin as possible will keep multiple scattering at a minimum.

Corrections for multiple scattering can be done in LAMP, where it was found
that it changes the relative level of intensity of a quasielastic spectrum but not the
shape. For the data presented in this work, we are mainly interested in comparing
spectrum to spectrum on the same sample. We will make the somewhat crude
assumption that the fraction of multiple scattering is the same for all state points
in the same sample and that the effect therefore is negligible.

In Fig. 4.5, we show the same sample and state point measured on different
instruments and with different instrumental settings. The measured intensities given
by S(Q,ω) are presented on surface plots as a function of energy transfer and Q-
dependence for a single state point from IN16B (top) and IN5 (bottom). The Q-
range spanned by IN16B covers the the Q-range spanned by both wavelength settings
on IN5. Because of the small energy range on IN16B, we can assume constant value
of Q for each detector angle. However, on the TOF instruments, the large energy
range require an interpolation between the different detectors to obtain constant
values of Q. This can be done in the data treatment program LAMP. For the data
presented in this work, the energy range was chosen to go to a neutron energy gain of

8 meV. This provides a Q-range on IN5 for λ = 5 Å of 1.2−1.9 Å
−1

, and for λ = 8 Å
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Figure 4.5: (Q,ω)-dependence of spectra at same sample and state point from IN16B
(top) and IN5 λ = 8 Å and 5 Å (bottom). The logarithm of the intensity is shown
in the respective colourbars. The two sets of data from IN5 is plotted on the same
intensity and energy scale.
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of 0.5 − 1.2 Å
−1

as shown in Fig. 4.5. There is only little overlap between the Q-

range spanned by the λ = 8 Å data and that at λ = 5 Å, in fact, only Q = 1.2 Å
−1

overlaps. The two sets of data from IN5 is plotted on the same intensity and energy
scale. We observe the same tendency for the three instrumental settings shown here:
high intensity is seen for low Q and low energy transfer, close to the instrumental
resolution and the elastic peak, whereas at higher energy transfer and higher Q, the
intensities become lower. The effects are less pronounced for the faster dynamics
measured on IN5 compared to IN16B. The timescale of the instruments given by the
HWFM elastic resolution is here calculated from:

Eres = 1
2mv

2 = ~ω = ~
ω

(4.75)

and corresponds to ∼ 2 ns for IN16B with a wavelength of 6.27 Å. For the time-of-
flight instruments and settings, we reach faster dynamics in the picosecond range.
The corresponding timescales in orders of magnitude which are used throughout this
work are provided in Table 4.1.

λ Eres ∼ tres
IN16B 6.27 Å 0.75 µeV 10−9 s
IN13 2.23 Å 8 µeV 10−10 s
IN5 8.0 Å 0.015 m eV 10−10 s
IN5 5.0 Å 0.10 m eV 10−11 s
IN6 5.1 Å 0.070 m eV 10−11 s

Table 4.1: Instrument energy resolution of the elastic intensity and the corresponding
time resolution for the different settings and instruments used in this work.

This ends the chapter on the main experimental techniques used in this work.
From the framework provided by the introduction to the experimental techniques in
this chapter and the research field in Ch. 2 and 3, we will in the rest of the thesis
present the experimental work, which has been carried out.
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Elastic models

One class of models which was introduced in Ch. 2 that connects fast and slow dy-
namics and tries to encompass the phenomena of the viscous slowing down as the
glass transition is approached is the elastic models. In the view of the potential en-
ergy landscape, the elastic models describe a flow event, a molecular rearrangement
as barrier transition at short timescales. Because the barrier transition takes place
on short timescales, it is governed by the properties of a liquid where it appears as
a solid. The transitions themselves are rare in the viscous liquid leading to a slow
relaxation. One example of an elastic model is the shoving model.

We test the shoving model for three different van der Waals liquids without
pronounced secondary relaxations. If the model is valid, we should find agreement
between assumptions and experimental data at least in the simplest case. The aim
is not to show if the shoving model is true in all cases, but we want to test if it
holds at least in the simplest situation. This is a necessary, but not sufficient test
of the model. Most of the work in this chapter is published in [71], here is included
one more sample. We use the vibrational mean-squared displacement measured on
nanosecond timescale from neutron spectroscopy, the mechanical shear modulus,
and the alpha relaxation time in the viscous liquid found from shear mechanics.
First will follow an introduction to the shoving model and its predictions. We will
then present the experimental data from neutron scattering and shear mechanics
used to test an underlying assumption for two versions of the shoving model and
our interpretation thereof. Finally, we test the shoving model and end this chapter
with a summarising discussion.

5.1 The shoving model

Elastic models provide a connection between fast and slow dynamics, a connection
that spans more than ten orders of magnitude close to the glass transition where the
alpha relaxation slows down dramatically. If we stay in the view of the energy barrier
landscape that was introduced in Ch. 2, the basic idea of elastic models is that a
molecular rearrangement takes place on very short timescales by barrier transition.
The molecular rearrangement can be thought of as a flow event (Fig. 5.1). The
relaxation caused by molecular rearrangements is slow because the energy barrier
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Figure 5.1: In elastic models, the idea is that fast sudden rearrangements of
molecules cause the relaxation, which is slow because the energy barrier for making
this rearrangement is high, even if the rearrangements themselves are fast.

is high, although the transitions themselves are fast processes. The idea is that the
height of the energy barrier can be determined from liquid properties probed on very
short timescales thereby connecting fast and slow dynamics.

One particular version of elastic models is the shoving model [50, 74]. In this
model, the activation energy for energy barrier transition is identified as the work
done shoving aside the surrounding liquid. It is assumed that the activation energy
is mainly elastic energy found in the surroundings of the flow event, and that this
energy is mainly shear elastic energy, i.e. there is no density change associated with
the expansion. Due to the fast rearrangement, which is a basic assumption of elastic
models, the surrounding liquid will behave as an isotropic solid during this spherical
expansion in some local region. This can be modelled by the two fundamental elastic
constants that are present in an isotropic solid, the shear and the bulk moduli, G and
K, respectively, through the transverse and longitudinal phonons. In an isotropic
solid, each wavevector has three degrees of freedom for phonons, two transverse
and one longitudinal. The relevant longitudinal modulus M is defined as M =
K + (4/3)G, while the transverse modulus is simply the shear modulus. Averaging
over the two types of phonons, it can be shown that the temperature dependence of
the instantaneous shear modulus G∞, i.e. the plateau value of G probed on short
time scales, constitutes more than 92 % of the total temperature dependence of
the elastic energy, regardless of how large the bulk modulus is compared with the
shear modulus [49]. Under the assumption that the work done is shear energy, the
activation energy can be found from the characteristic volume given by Vc, which
is assumed to be constant in temperature, and from the short-time elastic property,
G∞

∆E(T ) = VcG∞(T ). (5.1)

Inserting this into the expression for the relaxation time (Eq. 2.1), we arrive at the
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new expression for τα:

τα(T ) = τ0 exp
(
VcG∞(T )
kBT

)
. (5.2)

The shoving model predicts that the logarithm of the relaxation time is linearly
dependent on G∞(T )/T . We expect the shoving model to work at least in the range
of the dynamics, where we have separation of timescales (Fig. 2.4), i.e. the hopping
regime or the viscous liquid.

By normalising to the glass transition, τg = 100 s, and setting the prefactor to a
microscopic time τ0 = 10−14 s, we arrive at the shoving-model prediction

log10 τα(T ) = (log10 τg − log10 τ0)G∞(T )Tg
G∞(Tg)T

+ log10 τ0

= 16G∞(T )Tg
G∞(Tg)T

− 14.
(5.3)

which gives rise to a shoving plot [74]; a way of testing the shoving model without
any free parameters by direct comparison of normalised data to the shoving model
prediction.

In the shoving model, the viscosity or the alpha relaxation time is determined by
the rate of hopping between local energy minima, where the minima are positions
of equilibrium. The relaxation time was determined from the short-time elastic
properties under the assumption that a viscous liquid behaves like a solid on short
timescales. In the harmonic approximation, the short-time vibrations can also be
viewed as vibrational modes taking place around energy minima, resulting in a
Gaussian statistical-mechanical probability distribution ∝ exp(−a2/〈u2〉(T )) , where
〈u2〉(T ) is the vibrational mean-squared thermal average around a minimum, where
the softness of the potential determines the mean-squared displacement; a softer
potential means larger vibrations and a smaller energy barrier. By averaging over
the longitudinal and transverse phonons in the harmonically modelled vibrations,
the mean-squared displacement is connected to the shear and bulk modulus

〈u2〉(T ) ∝ T
(

2
G∞(T ) + 1

M∞(T )

)
. (5.4)

Again, we assume that the relevant modulus, in terms of temperature dependence,
is the shear modulus, we end with the proportionality,

〈u2〉(T ) ∝ T

G∞(T ) . (5.5)

Inserting this into the expression for activation energy, one finds

∆E(T ) = kBT
a2

〈u2〉(T ) , (5.6)

which leads to the following expression for the relaxation time:

τα(T ) = τ0 exp
(

a2

〈u2〉(T )

)
. (5.7)
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Here the temperature dependence of the relaxation time is governed by the temper-
ature dependence of the mean-squared displacement, thus, resulting in a different
version of the shoving model, which can also be tested directly in a shoving plot.

The shoving model implies a causality between the fast and the slow dynamics,
namely that the slow relaxation is controlled by the fast dynamics probed either from
the short-time elastic properties or the mean-squared displacement. The different
expressions for activation energy provide following proportionality:

∆E(T )
kBT

∝ a3G∞(T )
kBT

∝ a2

〈u2〉(T ) , (5.8)

Experimentally, we can test the proportionality between the temperature depen-
dence of the short-time elastic modulus scaled with temperature and the mean-
squared displacement, an underlying assumption for the shoving model. This is
presented in Sec. 5.4.

5.1.1 Simple liquids

In the rest of this chapter, the shoving model and the underlying assumption of har-
monic approximation will be tested on three different liquids with different fragility.
The liquids studied are what we refer to as simple liquids, in this work defined
as liquids without directional bonding, with no beta relaxations to complicate the
relaxation spectrum, but merely excess wings. The liquids have a high-degree of
time-temperature superposition (TTS), i.e. the shape of the spectrum does not
change with temperature, only the characteristic time as a function of temperature
changes.

The three van der Waals bonded liquids are isopropyl benzene (cumene), 5-
polyphenyl ether (PPE) and propylene carbonate (PC) with fragilities m ≈ 70, 80
and 90, respectively, determined from their relaxation time from the shear mechanics
in this work, and in agreement with literature values for cumene and PPE, e.g.
[14, 76], respectively. For PC, the fragility has been found to be m ≈ 100 from
dielectric spectroscopy reported in [22], while a fragility of m ≈ 80 was reported in
[32], although this was evaluated at τα = 10 s, which will give a lower value of the
fragility. The high-degree of TTS is shown in Fig. 5.2.

5.2 Shear mechanics

The shear moduli for the three samples were determined from a piezo-ceramic shear
transducer in the frequency range 10−2 to 104 Hz, where an electric field probes the
mechanical response in a viscous liquid [34]. The response function is complex and
the relaxation time of a liquid can be found from the maximum of the loss peak in
the imaginary part, similar to dielectric measurements. For some liquids, the glass
transition temperature defined as τα = 100 s varies a couple of Kelvin between shear
mechanics and dielectric spectroscopy. The glass transition temperatures reported
in this chapter are from shear mechanics. The shear mechanics data as a function
of frequency is presented in Fig. 5.3 for the three samples at different temperatures.
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Figure 5.2: Time-temperature superposition for the three samples used in this chap-
ter to illustrate the simple behaviour for cumene (m ≈ 70), PPE (m ≈ 80) and PC
(m ≈ 90). The shape of the shear mechanics spectra is practically the same for all
temperatures for all three samples. Only a small difference is visible at the excess
wing for cumene and PPE.
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Figure 5.3: Real (top) and imaginary (bottom) part of the shear modulus as a
function of frequency plotted for the temperatures measured. Cumene in steps of
1 K from 130 − 140 K. PPE measurements are from [76] in steps of 2.5 K from
245 − 260 K and at 265 K. PC measurements are from [59] in steps of 2 K from
157 − 169 K. Cumene and PC data have not been cut off at high freqencies, and a
small tendency is osberved towards a bending in the real part of the shear moduli,
most pronounced in the low-temperature cumene data.
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Figure 5.4: Extrapolation in G′′max accroding to Eq. 5.9 from [13] into the entire
temperature range in the liquid for which the mean-squared displacement has been
measured.

In shear measurements, the real part has a low plateau in the low-frequency
range, when the liquid is able to follow the shearing, and reaches a plateau in the
high-frequency range which is the elastic modulus, or the instantaneous shear modu-
lus, G∞. The instantaneous shear modulus is the term needed for testing the shoving
model (Eq. 5.2). The exact plateau value is experimentally difficult to determine
because of the frequency window of the shear mechanics accessible with the piezo-
ceramic shear transducer. Though it is possible to determine the mechanical moduli
in the mega- and gigahertz range from sound waves investigated with Brillouin scat-
tering [88, 77], this is out of the scope for this work. For testing the shoving model,
we need the temperature dependence of the instantaneous shear modulus, and we
will therefore, instead of the instantaneous shear modulus, use the maximum of the
loss peak which is well defined. The real and the imaginary part are related via the
Kramer-Kronig’s relation, and will therefore have the same temperature dependence.
Because we are not interested in the absolute value, but the temperature dependence
of the shear modulus, we can therefore substitute G∞(T ) with G′′max(T ).

For testing the underlying assumption of the shoving mode, the relation between
the shear modulus and the mean-squared displacement, we use an extrapolation from
Barlow et al. [13] to extend the shear temperature range into higher temperatures for
comparing with mean-squared displacement data in a larger temperature interval:

1
G∞

= 1
G0

+ C(T − T0), (5.9)

where C is a constant, and where we again substitute G′′max(T ) for G∞(T ). The
extrapolation is shown in Fig. 5.4. We use the value of G′′max and the alpha relaxation
found from the peak position in frequency in testing the shoving model, and the
extrapolated values of G′′max for testing the connection between the shear modulus
and the mean-squared displacement.

5.3 Mean-squared displacement

The mean-squared displacement of a sample can be found from the Q-dependence
of the incoherent elastic neutron scattering intensity as a function of temperature
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5.3. Mean-squared displacement

using the Gaussian approximation (Eq. 4.64). The energy resolution of the neutron
scattering instrument determines the timescale of the mean-squared displacement
(MSD). The MSD data presented in this chapter are from IN16B, i.e. nanosecond
timescale.

The elastic and inelastic fixed window scans (EFWS/IFWS) from IN16B de-
scribed in Sec. 4.4 can provide information on both relaxation and mean-squared
displacement upon a scan in temperature. Since hydrogen makes up ∼ 90 % of
the signal from the studied glass-formers, the detected neutron is to a good ap-
proximation incoherent and therefore provides information on self-motion. From
the Q-dependence of the incoherent intensity of the elastic scans, we can determine
the mean-squared displacement at some timescale. The energy resolution of the
instrument determines the timescale of the mean-squared displacement. At IN16B,
an energy resolution of ∆E ≈ 1 µeV gives access to nanosecond dynamic timescale.
The coarser the instrumental energy resolution, the faster dynamics one can access
(Table 4.1). If the dynamic timescale of the elastic intensity is t′, then for elas-
tic scans, I(Q, t′) will essentially be time independent and only dependent on the
wavevector or scattering vector, Q, and the temperature T of the sample. Thus, for
this purpose we introduce the incoherent intermediate scattering function I(Q,T ).
The mean-squared displacement, 〈u2〉, can then be found from the Q-dependence
of the intensity as a function of temperature using the Gaussian approximation in
Eq. 4.64. The Gaussian approximation has been shown to be valid both on short
timescales where particles are considered free, and on long timescales when the mo-
tion is governed by diffusion [16, 126, 149, 153].
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Figure 5.5: Mean-squared displacement as a function of temperature for the three
samples. The blue shaded area is the temperature interval in which the shear moduli
were measured (Fig. 5.3).

The mean-squared displacement is found by fitting a straight line to the loga-
rithm of the elastic intensity versus Q2 for each temperature according to Eq. 4.64.
For each temperature, the data is normalised to the lowest temperature data, thus
removing any zero point motion. Normalisation to low-temperature data will also
account for any detector deficiency. For the three liquids studied here, the mean-
squared displacement as a function of temperature is shown in Fig. 5.5.

The glass transition is observed as a kink in the mean-squared displacement at
Tg,cumene = 127 K, Tg,PPE = 243 K and Tg,PC = 155 K. These glass transition tem-
peratures are obtained from shear modulus data for τα ≈ 100 s. The glass transition

59



Chapter 5. Elastic models

temperature can usually be determined from the mean-square displacement within
a couple of Kelvin. The blue shaded area in each MSD plot illustrates the tempera-
ture range for which shear mechanics was measured for the three samples (Fig. 5.3).
In this narrow range in the MSD, we observed the alpha relaxation move four-five
orders of magnitude in the imaginary part of the shear moduli.

5.4 Testing the models: G∞ and MSD

First we will test an underlying assumption for the short-time properties, namely
the proportionality defined in Eq. 5.8 between the elastic constants in the kilohertz
range and the mean-squared displacement measured on nanosecond timescales. The
timescales are separated with five orders of magnitude. In Fig. 5.6, the temperature
dependence of the mean-squared displacement is plotted versus the inverse of the
maximum of the loss peak scaled with temperature. We use the relation from Eq. 5.9
to extrapolate the shear temperature range in the viscous liquid into the entire
temperature range of the mean-squared displacement.
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Figure 5.6: Testing the proportionality from Eq. 5.8, which is shown to hold up
to some value. The black crosses refer to the shear temperature range. The green
circles refer to the MSD temperature range.

We observe the same trend for all three samples: from the glass transition up
to 1.13 − 1.2 Tg we observe the proportionality expected from Eq. 5.8. The black
dashed line is a one parameter fit through the origin to the data that clearly falls on
a straight line. Above the temperature where the data separates from the dashed
line, the mean-squared displacement is observed to increase faster with temperature
than the corresponding decrease in the shear moduli.

We now take advantage of having acquired both elastic and inelastic fixed window
scans on cooling at IN16B, the principle was illustrated in Fig. 4.4. The fixed window
scans from IN16B (Fig. 5.7) offer an interpretation of the faster increasing mean-
squared displacement, which is observed as the proportionality in Fig. 5.6 breaks
down. We observe from the inelastic fixed window scan, the alpha relaxation entering
the dynamic window of IN16B. We therefore interpret the stronger temperature
dependence of the mean-squared displacement above a threshold temperature as
when the alpha relaxation enters the neutron instrument window. In Fig. 5.7, a black
dashed line is shown at the temperature where the proportionality in Fig. 5.6 breaks
down. In agreement with what was proposed for protein dynamics by Capaccioli et
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al. [27], we define a dynamic transition, Td, for when the alpha relaxation time and
the instrument dynamic window intersect.
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Figure 5.7: Fixed-window scan from IN16B offering an interpretation of the mean-
squared displacement.

The glass transition and the dynamic transition are illustrated on a zoom of the
mean-squared displacement (Fig. 5.8), where we show dashed line along the three
different suggested types of behaviour. The two transitions are seen as changes in the
slopes of the mean-squared displacement, where the black lines intersect. In this in-
terpretation of the mean-squared displacement, the first change in slope at the glass
transition is due to a stronger temperature dependence of the modulus going from
the glass into the liquid state; it is not due to changes in the mechanism of nanosec-
ond dynamics, which is still vibrational. This interpretation of the mean-squared
displacement is supported by the IFWS scans. In the temperature range just above
the glass transition where the linear relation applies, the temperature dependence of
the mean-squared displacement can be predicted from the high-frequency modulus.
The second change of slope in the mean-squared displacement comes from the relax-
ation when it enters the instrument window. The higher the fragility, the closer to
Tg we expect the alpha relaxation to enter the instrument window. We can define
an index, Tg/Td, which should then be correlated with fragility. For cumene, PPE
and PC this index is 0.85, 0.87 and 0.89, respectively. These are quite small changes
in the percent range, and their fragilities are also rather close, but the trend is as
we would expect.
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Figure 5.8: Zoom of the mean-squared displacement. Three lines have been fitted
to the data in three regions: in the glass, between Tg and Td, and above Td.
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5.5 Testing the shoving model

To test the shoving model, we construct a shoving plot with the shoving prediction
(Eq. 5.3), which under the assumption G∞(T ) ∝ G′′max(T ) becomes:

log10 τ(T ) = 16G
′′
max(T )Tg

G′′max(Tg)T
− 14 (5.10)

and in the mean-squared displacement version:

log10 τ(T ) = 16 〈u
2〉g

〈u2〉(T ) − 14. (5.11)

A shoving plot for the three samples are shown in Fig. 5.9. The black line is the
prediction from the shoving model with a typical prefactor set to a microscopic
timescale, τ0 = 10−14 s. The circles (◦) show a typical Angell fragility plot with Tg/T
versus the alpha relaxation time. The squares (�) are the mean-squared displacement
scaled to the glass transition value. The mean-sqaured displacement data were
interpolated between data points to find the mean-squared displacement at the exact
temperatures of the shear mechanics, where the relaxation time was found. The
triangles (4) are the normalised shear loss peak maximum scaled with temperature.
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Figure 5.9: Shoving plot for the three samples. Circles (◦) are the typical Angell
fragility plot with Tg/T versus alpha relaxation time. Squares (�) are the mean-
squared displacement scaled to the glass transition value. Triangles (4) are the
normalised shear loss peak maximum.

The three samples follow the same general trend, with the experimental data
lying quite close to the shoving prediction, in particular the cumene data, whereas
the data from PPE and PC are observed to lie on either side of the prediction,
but following the same trend. From Fig. 5.9, we conclude that the shoving model
works well for the three simple, van der Waals liquids, and in particular, that the
two versions of the shoving model in this dynamic range are in agreement. One
version tested the connection between the mean-squared displacement measured on
nanosecond timescales and the alpha relaxation, and one connected the short-time
elastic modulus measured in the kilohertz range with the alpha relaxation.
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5.6 Summarising discussion

The elastic models, here represented by the shoving model and the relation between
the MSD and the instantaneous shear modulus, work well in describing the three
simple systems investigated in this chapter. We use the IFWS as a way of interpret-
ing the mean-squared displacement data and the stronger temperature dependence
of the mean-squared displacement above what we refer to as the dynamic transi-
tion Td compared to the corresponding decrease in the shear modulus. The dynamic
transition is in this view defined as when the alpha relaxation time intersect with the
timescale of the instrument given by the neutron instrument resolution, leaving (at
least) three regimes of the mean-squared displacement with different dynamics: the
glassy state, the state between the glass transition and the dynamic transition where
the elastic modulus becomes more temperature dependent moving out of the glass,
and that above Td, where the alpha relaxation is in the neutron window. Just above
the glass transition, the temperature dependence of the mean-squared displacement
can be predicted from the temperature dependence of the high-frequency modulus.

Mean-squared displacement data could be collected from other neutron instru-
ments with coarser energy resolution; this would allow studying the mean-squared
displacement on faster timescales in an attempt to separate contributions to the
mean-squared displacement from vibrations and relaxations [57, 25, 113]. We have
in this study utilised the IFWS in an attempt to interpret different contributions to
the mean-squared displacement on nanosecond timescale. Moving to an instrument
with an elastic resolution that corresponds to a shorter timescale, should in principle
make the relation between the mean-squared displacement and the modulus hold to
higher temperatures.

A natural next step in testing the shoving model is to include more complex
systems with for example large beta relaxation or nanoscale structure, and test if
and when the model will break down. Buchenau [26] suggested that elastic models
cannot account for the full temperature-dependence of the activation energy for all
liquids, included in this study are samples with very different fragility and behaviour.

One can imagine systems that have for example a large beta relaxation will
show a discrepancy between the elastic modulus on millisecond timescale and the
temperature-dependence of the mean-squared displacement on nanosecond timescales
or even faster. It is also possible that the relaxational contribution on nanosecond
timescales to the mean-squared displacement is larger for liquids with a more com-
plex behaviour. If the temperature-dependence of a fast relaxation has a weaker tem-
perature dependence than the alpha relaxation, this could cause a weaker temperature-
dependence of the mean-squared displacement in comparison with that predicted
from Eq. 5.8, and will therefore no longer be proportional to the activation energy.

Finally, the shoving model should also be tested under high-pressure. Especially
here, one can suspect that the elastic models will only hold for simple liquids; that
the relaxational map for more complex liquids will have different temperature and
pressure dependencies and that they will no longer follow the predictions of the
elastic models.

A lot of theoretical work has proposed that the alpha relaxation time is controlled
by a growing length scale. A growing length scale on slowing down of the alpha

63



Chapter 5. Elastic models

relaxation has been shown to exist, e.g. in [20, 4]. However, in recent theoretical
work, the shoving model and related elastic models have gained ground, e.g. [165,
167, 169, 91, 111], and suggest that perhaps it is worth looking at local dynamics
rather than structure. Based on the experimental work presented in this chapter,
we will join those of the opinion that dynamics is the relevant place to look to gain
more insight into what governs the viscous slowing down.
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Chapter 6

High-pressure dielectric and
neutron spectroscopy

This chapter will contain details on the design of the sample cell developed for doing
simultaneous dielectric and neutron spectroscopy under high pressure. The work
has been carried out as a three-year Long-Term Proposal (LTP-6-7) at the Insti-
tut Laue-Langevin (ILL) and is a collaboration between Roskilde University, the
Service of Advanced Neutron Environment at the ILL, Simone Capaccioli at the
University of Pisa and Marian Paluch from the University of Silesia. The sample
design was reported in [140]. As we have seen in previous chapters, dynamics in
glass-forming liquids covers a large range of timescales from atomic vibrations on
picosecond timescales to the alpha relaxation time close the glass transition ap-
proaching hundreds of seconds. An understanding of the dynamic behaviour in
glass-forming liquids must therefore encompass how the dynamics are related over
many orders of magnitude in timescales, and include both temperature and pressure
as variables. This leaves an enormous playground for an experimentalist to explore.

The large dynamic range and all the different contributions to the dynamics
cannot be covered with just one experimental technique, and we rely on combining
and comparing different techniques. The larger the area one wants to (un)cover in
terms of temperature, pressure and timescales, the higher is the demand for com-
bining different experimental techniques. In the previous chapter (Ch. 5), the alpha
relaxation was shown to change with orders of magnitude within just a few percent
of the glass transition temperature. Because of the sensitivity of the dynamics, it is
important to know the state of the sample with high accuracy.

In this chapter, we will present the design of the different components of the
high-pressure cell for doing combined dielectric and neutron spectroscopy, the two
experimental techniques discussed in Ch. 4, and argue why this has significantly
improved the way a high-pressure neutron beamtime can be spent and improved the
kind of information one can expect to obtain. First, we will try to persuade the
reader that combining these two techniques is a good idea in the first place.
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6.1 Why this is a good idea

Both the neutron and the dielectric community have strong traditions in study-
ing dynamics of glass-forming liquid. Neutron scattering because the self-motion of
molecules can be probed directly from the dynamic structure factor, S(Q,ω), di-
electrics because of the fast and easily accessible data that are relatively simple to
understand and because a basic dielectric setup can readily and at quite low cost be
set up in a lab.

A considerable amount of papers have shown the benefits of comparing dielectric
and neutron spectroscopy in the analysis and interpretation of dynamic data, e.g.
[7, 9, 41, 113, 141, 150]. A neutron diffraction cell for doing simultaneous dielectric
measurements for crystallisation studies where developed by Jiménez-Ruiz et al.
[84, 142] to ensure that the measurements were done at exactly the same sample
conditions, a critical issue in kinetic studies such as crystallisation.

In the dielectric as well as the neutron community, pressure studies have become
more popular in recent years and many things have been learned from pressure ex-
periments from both techniques. In Ch. 3, we discussed how pressure was introduced
as an additional variable to temperature to separate thermal and density contribu-
tions to the dynamics, and how this has pushed forward experiments and theories
to gain further insight into the behaviour of dynamics of glass-forming liquids.

From an experimental design point of view, the two techniques complement each
other. The optimal geometry for both dielectric and neutron spectroscopy coin-
cide: in neutron scattering a large sample area will give a strong signal and a small
sample thickness is desired in order to avoid multiple scattering, while in dielectric
spectroscopy a large area and a small sample thickness will provide the strongest
dielectric signal (Ch. 4). Neutron spectroscopy is an excellent technique for studying
the fast dynamics from self-correlations on pico- to nanosecond timescales, while di-
electrics provides fast (within minutes) and precise measurements in the range from
microseconds to hundred of seconds via dipole-dipole correlations. Although, it is
different types of dynamics that are probed with the two techniques, as we will see,
they supplement each other well.

The two techniques do not overlap in timescales, but they are not as far separated
as one might think. This is illustrated in Fig. 6.1 for different dynamic scenarios
for the liquid PPE (Ch. 7.1) at T = 295 K and at Tg = 245 K. We sketch the two
corresponding states of the intermediate scattering function of simple dynamic be-
haviour, in the sense that was defined in Sec. 2.2. The hatched areas correspond
roughly to the timescales available with the neutron spectroscopy instruments IN5
and IN16B on pico- and nanosecond timescales, respectively. By changing the in-
coming wavelength on IN5, the gap in timescales between IN5 and IN16B can be
closed, although this will also change the Q-range (Ch. 4.4). The blue shaded area
represents the timescales accessible with dielectrics. The data shown from IN5 and
the dielectrics are taken simultaneously in the new combined cell. The nanosecond
dynamics data presented in this sketch are older spectra from IN16 with the same
energy resolution as IN16B. The IN16 spectra serve only illustrative purposes and
are only used in this sketch, otherwise we refer to IN16B.

In the upper part of the illustration, we show spectra in the scenario where
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Figure 6.1: Sketch of intermediate scattering function in two different dynamic sce-
narios illustrated with data on PPE. The hatched areas are the approximate regions
in time accessible with IN5/6 and IN16B, picosecond and nanosecond, respectively.
The shaded blue region is the time and frequency range accessible with dielectric
spectroscopy. Top: relaxation dominates the signal in all three spectrometeres.
Bottom: Close to Tg, the alpha relaxation is in the dielectric window, there is no
broadening observed at IN16, while fast relaxation and vibrations are visible in the
spectrum from IN5. Resolution is shown as grey, dashed lines.
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relaxation dominates in all three spectrometers. The alpha relaxation stretches
out over many orders of magnitude in dynamics. In the dielectrics, we use time-
temperature superposition to estimate the maximum in the loss peak and from that
find the relaxation time, τα = 1/(2πνmax), which is roughly τα ≈ 10−7 s. On IN16
and in particular on IN5, we observe a broadening compared to the grey, dashed
resolution, indicating relaxation.

In the lower part, we have moved to the glass transition. In the dielectrics, the
alpha relaxation is now seen at the side of the frequency window. We estimate the
relaxation time from the dielectrics again using time-temperature superposition and
find it to be roughly τα ≈ 102 s. Moving to nanosecond timescales on IN16, the
sample signal and the resolution overlaps completely, and there is no broadening of
the signal. This was also observed at IN16B from the FWS for the same sample at
the glass transition (Fig. 5.7). We now proceed to picosecond dynamics on IN5, and
we observe a clear signal compared to the resolution. Here, we have contributions
from fast relaxations with a broadening around the elastic peak and a vibrational
contribution at higher energy transfer.

The dynamic range where it is possible to acquire useful information with di-
electrics can be extended further to even less viscous states, in particular for systems
with DC-conductivity, or deeper into the glass, for studies of for example secondary
relaxations or ageing processes.

6.2 The cell and setup

A drawing of the combined cell and the different components are shown in Fig. 6.2.
The basic principle is to place a capacitor inside a hollow cylinder neutron high-
pressure cell with a plug at one end, which can be used up to a maximum pressure
of 500 MPa connecting the capacitor to wires outside the cell for measuring the
capacitance inside the neutron beam, and the application of pressure using liquid
compression from the other end. Many things need to be taken into consideration
to ensure this is possible at all and to optimise the sample signal in both measuring
techniques. In this section, we will present the different components of the cell with
reasons and choices for the design, starting with the outer body of the cell, then
the capacitor inside the cell, before moving on to the plug and its feedthroughs and
finally, the sample stick and how everything is assembled.

Outer body

The outer body serves as the sample chamber, i.e. the actual sample cell. The
outer cell should have a reasonably low background and should be able to withstand
high pressure. The design of the outer neutron cell is inspired by that developed by
Peters et al. [122] for doing high-pressure studies on liquids in solutions. A cell that
we have used before the design of the new combined cell, e.g. for taking the cumene
data at IN16B presented in Ch. 7.

The signal that we are investigating from glass-forming liquids is mainly located
in an energy band centred around the elastic peak. We are therefore looking for a
material that has a low elastic signal both on nanosecond and picosecond timescales,
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Figure 6.2: Drawing of the high-pressure cell for doing simultaneous dielectric and
neutron spectroscopy in exploded and assembled view. See text for details.
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and that does not have a large broadening around the elastic peak. This should
ensure a large sample-to-noise ratio and easy subtraction of the empty cell. We
tested the signal from three different compounds that are well known in high-pressure
neutron studies: CuBe commonly used in magnetic studies because it is diamagnetic,
TiZr which is often used in diffraction but has a flat incoherent signal, and Al-7049-
T6 which is not as strong as the other two materials, but with a large percentage of
aluminium which suggests a low neutron attenuation [89]. Data acquired at room
temperature from IN6 (picosecond) and IN16B (nanosecond) on the three different
materials is presented in Fig. 6.3 and 6.4.

From IN6, we observe distinct phonon signals for CuBe and the aluminium alloy
at higher energy transfer, roughly from 10 to 40 meV. If we zoom in on the energy
range of particular interest for glass-forming liquids, up to ∼ 10 meV, we see that
the phonons are not pronounced in this energy range and that the elastic peak is
well resolved compared to TiZr where a quasi-elastic broadening is observed. The
elastic intensity of TiZr is also relatively higher as observed on the log-log scale. The
data is also shown relative to the elastic line of vanadium. As we want to resolve
the elastic peak and any broadening around the elastic peak, we also studied CuBe
and Al-7049-T6 on IN16B where the sample to cell signal in general is weaker and
the cell signal more temperature dependent than on the TOF instruments, which
increase the importance of the signal from the cell. On IN16B there is no longer
phonons in the energy window. We observe a higher neutron transmission for the
Al-alloy compared to CuBe, i.e. less signal. Outside the elastic peak at higher energy
transfer, we observe less noise from the aluminium alloy. Based on these tests and
the fact that the aluminium alloy, Al-7049-T6, has a higher thermal conductivity,
Al-7049-T6 was chosen as the material for the outer part of the sample cell. The
outer cell body is a hollow cylinder, also referred to as the monobloc. To ensure
enough space for the capacitor and a strong sample signal, the inner diameter of the
monobloc was set to 12 mm.

The next step is to harden the material for it to withstand elevated pressure. A
material has only a finite material strength when exerted to the forces on applied
pressure. In a certain pressure range, the material will act as a spring and only
deform elastically, this is the area in which we want to be working. Above some
threshold pressure called the yield stress, σY , the deformation of a material will
be plastic, i.e. the material will no longer be able to contract back to its initial
shape. A way to overcome the pressure limitation of a material is to expose it to
’autofrettage’, where pressure above the yield stress limit is applied to the monobloc
according to the relation for the maximum pressure:

Pmax = 2σY√
3

(K2 − 1)
K2 , (6.1)

where K > 2.2 and is the ratio between the outer and inner diameter. The yield
stress for Al-7049-T6 at 300 K is σy = 0.53 GPa [89] and is strongly dependent on
temperature, which also puts an upper limit to the temperature range of the cell, set
to 320 K. During the autofrettage process, the material is deliberately overstrained,
and the material close to the bore of the monobloc is plastically deformed. The
inner plastically deformed part will thus be under compression from the outer part
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Figure 6.3: Test of the signal of CuBe, Al-7049-T6 and TiZr on IN6 with λ = 5.12 Å
summed over Q. Top: data as measured. Bottom: data normalised to vanadium
elastic intensity.
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Figure 6.4: Test of the signal of CuBe and Al-7049-T6 on IN16B with λ = 6.27 Å
summed over Q.
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of the monobloc. The outer diameter of the hollow cell at the beam centre is 33 mm,
while the inner diameter is 12 mm, this gives a Pmax ≈ 530 MPa. The cell is first
drilled out with an inner diameter of 11.4 mm and then exposed to autofrettage to
eliminate effects of plastic deformation of the material, and finally drilled out in the
exact, desired 12 mm diameter. This should ensure that the pressure used in the
autofrettage process is the new pressure limit with only elastic deformation up to
that pressure value.

Given that the yield stress for CuBe is about twice the size of that of Al-7049-T6
and that it has a not so different background signal, it would be interesting to also
make a cell in CuBe, to push the pressure limit to higher pressure and see if this
would affect the signal, hoping that temperature changes will not be significantly
slower. It should be noted, however, that the rest of the pressure equipment at the
ILL has an upper limit of 7 MPa so this is really the maximum.

Capacitor

Now, with the outer body in place, we need an inner capacitor which will serve two
purposes, first of all, of course, to measure the capacitance of the sample, but it
will also serve as an inset to the monobloc that ensures a sufficiently low sample
thickness, in the sub-millimetre range, to have a strong neutron scattering signal
with lower risk of multiple scattering. The strength of the measured capacitance is
given as a function of the ratio between the area, A and the distance between the
two electrodes, d:

C = εε0
A

d
, (6.2)

where ε is the permittivity of the sample, and ε0 is the permittivity of vacuum. This
means that a small sample thickness also gives a strong signal in the dielectrics. We
use an annular, cylindrical capacitor with an empty capacitance of approximately
50 pF made from aluminium. The cylindrical capacitor is kept electrically isolated
with thin PEEK (polyether ether ketone) plates in the top and bottom, separating
the outer and inner electrode, and keeping the capacitor electrically isolated from
the outer neutron cell. The annular capacitor is 27 mm in height, with a diameter
of the inner electrode of 11.1 mm, while the outer electrode has an inner diameter of
11.4 mm and an outer diameter of 11.7 mm. This gives two compartments of sample
environment, one between the inner and outer electrode and one between the outer
electrode and the outer cell, each with a sample thickness of 0.15 mm.

Figure 6.5: Inner and outer aluminium electrodes and insulating PEEK spacers
with holes to ensure that the capacitor can be connected to the plug via small brass
screws.
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A great challenge in the design of the capacitor was how to connect the outer
and inner electrode to the plug, while ensuring that they were electrically isolated,
but also that it is sufficiently robust for high pressure and easy to work with. The
final design, depicted in Fig. 6.2 and 6.5, is a solution where the outer electrode with
the PEEK bottom acts as a cup with the inner electrode placed inside, held in place
by the PEEK spacers. Holes in the PEEK spacers (Fig. 6.5) allow electric contact
to the electrode through small brass screws to the plug. This design is easy to work
with and has proven to be able to withstand many, many pressure cycles, in fact
all data presented in this work using the new sample cell has been taken using the
same capacitor. The exact value of the empty capacitor needed to find the relative
permittivity of a sample varies with the exact experimental conditions, but it can
easily be determined with great precision before each experiment.

Plug and feedthrougs

This has been one of the greatest challenges of this cell, to design and make a plug
that can withstand pressure up to 500 MPa with electric feedthroughs so that the
capacitance of the sample can be measured across the inner and outer electrode from
outside the outer cell. This means that it has to offer electric as well as mechanical
shielding to the sample environment.

The design of the plug was partially inspired by [106], who developed a high-
pressure plug using dental cement for dielectric spectroscopy. The plug designed
for this cell is made of brass and filled with the epoxy encapsulant STYCAST ®

2850 FT. A drawing of the plug and a cross-sectional view are shown in Fig. 6.2 and
photographs are shown in Fig. 6.6. The wires are fed through a cylinder of brass,
and the empty space is filled with stycast, which is a dense paste that is cured into
a hard and electrically resistant material.

Figure 6.6: Plug before and after casting the stycast.

A rubber o-ring and a copper sealing ring ensure that upon applied pressure,
the cell is tight also around the plug. At low pressure, the o-ring will deform thus
keeping the sealing tight, and as pressure is increased the sealing ring will take over,
deform and prevent the plug from leaking.

The plug is the weak point of the cell, as they have a limited lifetime before they
will start leaking. In particular, because there is really no telling whether a plug
is approaching the end of its lifetime, or even if its a plug with a short or a long
lifetime. In general though, with the current status of the plug production, one plug
has been able to withstand numerous pressure cycles on a four-day beamtime in at
IN5 without leaking.
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Cell assembly and sample control

Putting everything together, the combined cell is assembled by first filling the ca-
pacitor using the capillary force. By placing the capacitor in a few millimetres of
sample, the small holes in the insulating PEEK in the bottom of the capacitor will
fill the cell. For samples that are relatively viscous at room temperature, heating
the sample liquid can speed up the process of filling the cell. A floating barrier or a
separator is placed in the outer body, the monobloc, to keep the pressure liquid sep-
arated from the sample. The monobloc with the floating barrier inside is then filled
with sample, and the capacitor attached to the plug is carefully placed inside and
closed with the copper sealing, o-ring and closing nut. There is a sample reservoir
between the capacitor and the floating barrier, which ensures that a) pressure is not
applied on closing the cell, i.e. the floating barrier can adjust upon closing, and b)
that when up to 5000 times atmospheric pressure is applied during the experiment
there is as a sample buffer between the floating barrier and the capacitor. When the
closing nut is closed, the rubber o-ring will start to give in, while just a little bit of
pressure is added to the sample, which is enough to avoid any air bubbles trapped
inside the sample volume.

Figure 6.7: The different components of the combined high-pressure dielectric and
neutron cell before assembling. The cell is attached to the sample stick from the
right, where pressure is applied through the capillary running through the sample
stick. The wires from the dielectric setup are attached to the plug at the bottom of
the cryostat, this would be on the left here.

Once the cell is filled and closed, it is attached to the sample stick and connected
to the dielectric setup. Wires from the sample stick are carefully connected to the
plug at the bottom of the sample cell, which goes to the bottom of the cryostat.
The connection from the capacitor to the dielectric setup is done via coaxial cables,
which are led up through the sample stick and can be connected outside the cryostat
with BNC-connectors to the dielectric setup.

For transmitting pressure we use a compression liquid, FluorinertTM, a fluoro-
carbon with high stability and small neutron signal. The compression liquid is led
down to the sample cell from the compressor via a heated capillary inside the sample
stick next to the cables for the dielectrics. The thermally isolated and heated cap-
illary makes sure that the pressure liquid does not freeze as it passes the cold point
in the orange cryostats, thus preventing blocking of the pressure transmission. The
pressure is transmitted onto the sample using the floating barrier that separates the
sample from the pressure liquid. The floating barrier is made of brass, and the two
liquids are kept isolated using a rubber o-ring. Pressure is controlled via a pressure
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multiplicator inside the pressure controller Louise [122]. The pressure tolerance of
Louise is set to ±3 MPa throughout this work, which decides the accuracy of which
we can determine pressure.

The position of the capacitor is held fixed by the plug, i.e. at the bottom of
the cell, and will therefore not move upon applied pressure. The cell can thus be
carefully covered in cadmium, a neutron absorber, except for the central part of the
capacitor to prevent neutron signal from any other part of the neutron cell than the
sample and aluminium to reach the detectors. The wires are led up along the cell
to the sample stick from the bottom of the cell, and are likewise covered in Cd, and
placed at a 90° angle to the neutron beam. The sample stick is then placed inside
the cryostat and adjusted to have the centre of the capacitor in the centre of the
neutron beam.

The dielectric signal is measured with an LCR-meter in the high-frequency range
from 102 to 106 Hz. A homebuilt setup with a multimeter is used in the frequency
range from 10−3 to 102 Hz, where a current-to-voltage converter is used to avoid
any leak currents. The dielectric setup is run with an input voltage of 1 V. The
multimeter-range is sensitive to the output voltage, and for samples for example
with high DC-conductivity, the input voltage can be lowered. This dielectric setup
is run and controlled through MatLab using code developed at Roskilde University.

The plug on the sample cell has two connectors, while the LCR-meter has four.
The wires are either collected two and two in T-connectors for BNC caples at the top
of the sample stick outside the cryostat for the two-wire sample stick, or collected
two and two just outside the sample cell at the bottom of the cryostat for the four-
wire sample stick. Regardless of which sample stick is used, to avoid any grounding
problems, the LCR-meter must be grounded to the sample stick or the cryostat.
This is done easiest be letting one of the masses from the BNC-connectors at the
sample stick be in electrical contact with the sample stick itself.

Both the control of the pressure controller and the dielectric setup is implemented
in NOMAD, the instrument control software at the ILL, for easy use and data
storage.

6.3 What we measure

In this section, we will outline what kind of information that can be obtained from
the dielectrics and have this has improved and optimised the use of time during
beamtimes of high-pressure studies.

An important point to stress is that this combined cell does not compromise the
neutron data, it is an additional probe providing extra information as a supplement
to the neutron data. The simultaneous dielectric spectra can be thought of as a
’timestamp’ for the neutron spectra of the dynamics of the investigated system,
when it gives information on the alpha relaxation time of the sample in a broad
temperature-pressure range. Even if the alpha relaxation is merely seen as a tail in
the dielectrics either in the low frequency-part close to the glass transition or in the
high-frequency part well into the liquid, time-temperature superposition often can
be used to extrapolate into the frequency-ranges that are not covered by the setup.
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Chapter 6. High-pressure dielectric and neutron spectroscopy

For samples with DC-conductivity, the signal will prevail in the dielectrics even after
the alpha relaxation has completely left the frequency window. Just as important,
as we will discuss below, the dielectrics provides information about the stability of
the sample. First, we will show an example of data from IN16B upon a pressure
scan, using the fixed window scan (FWS) technique and the dielectrics.
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Figure 6.8: An example of a pressure scan on dipropylene glycol (DPG) at T =
270 K. Left: fixed window scan from IN16B summed over Q. Right: dielectric
spectra.

In Fig. 6.8, we show an example of data from the backscattering instrument
IN16B with the combined cell on dipropylene glycol (DPG, Sec. 7.1). This shows a
pressure scan at 270 K alternating between elastic and inelastic fixed window scan
(Sec. 4.4) in neutrons combined with dielectric spectra. We observe the alpha re-
laxation in the inelastic fixed window is pushed out of the time window of IN16B
and enters the frequency window of the dielectrics upon compression. This data was
acquired in two hours and provides a lot of information on the dynamics along an
isotherm.
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Figure 6.9: Same data as in Fig. 6.8 including data obtained 15 h later at some of
the same state points: 0.1, 100, 200, 300 and 400 MPa.

The ability of the combined cell to reproduce data is shown in Fig. 6.9 for pres-
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sures 0.1, 100, 200, 300 and 400 MPa at 270 K. The second set of data was recorded
after more than 15 h, during which full spectra had been done and a few cycles up
and down in pressure. We observe a small discrepancy at 400 MPa where data from
the second set is a bit lower in intensity – this can be due to a technicality of the
high-pressure limit settings and ±3 MPa tolerance on Louise. But otherwise, the
data reproduces nicely in both the neutron and dielectric signal.

Experimental gain

Studying liquids under pressure in general, regardless of the dielectrics, the sample
cell and the sample stick are rather large in terms of the amount of material compared
to an ambient pressure setup, which makes temperature changes and waiting for the
sample to reach equilibrium a relatively slow process. In fact, during a beamtime,
a lot of the time is spent changing temperature and waiting for the sample to reach
thermal equilibrium, processes which can be monitored carefully in the dielectrics
due to the sensitivity of the probe.
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Figure 6.10: Data on dipropylene glycol from IN6 showing the dynamics coming into
equilibrium at T = 210 K and P = 200 MPa upon cooling and an attempt to reach
the same state point on compression. See text for details.

In Fig. 6.10, we show data from IN6 on DPG, summed over Q, as it approaches
the glass transition state point at T = 210 K and P = 200 MPa. All of the data
shown here has the same temperature and pressure reading from the instrument,
namely T = 210 K and P = 200 MPa. The difference between reaching the state
point upon cooling and compression is illustrated in the dielectrics. Upon cooling
(left), pressure is applied far above Tg and then cooled. It is seen from the dashed
line obtained with time-temperature superposition that the peak position after ∼ 4 h
reaches the glass transition with ν ≈ 10−3 Hz.

On compression (centre) from T = 210 K and P = 0.1 MPa to T = 210 K
and P = 200 MPa (centre), we observe that the dielectric peak stops moving after
having waited more than 5 h. The dashed curve illustrates the dielectric spectra at
the state point we want to reach. We interpret this as a sign that pressure is not
properly transmitted to the sample. Normally, the sample reaches a new equilibrium
on increased pressure within seconds, unlike the changes in temperature. A likely
scenario is that the sample simply becomes too viscous to properly transmit pressure.
From the neutron data (right), the blue data is the spectra at the glass transition at
T = 210 K and P = 200 MPa that we have reached upon cooling. The other three
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spectra are taken upon compression. We also observe in the neutron data that we
never reach the same spectral shape when we try to compress to Tg as we did on
cooling. Based on this observation, in this work, pressure has always been applied
in the liquid, far above Tg, monitored by the dielectrics, and then cooled.
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Figure 6.11: A spurious conductivity signal showed up in the dielectric signal as
pressure was increased and the cooling started, interpreted as pressure liquid mixing
with the sample.

In Fig. 6.11, we show how the dielectrics was used to, as we interpret the data,
detect that pressure liquid had mixed with the sample. The black line shows the
signal before compression, the red line shows the signal before cooling started, but
the peak is not yet visible here. Upon cooling with longer frequency scans to lower
frequencies, the peak is no longer visible in the dielectrics and instead a strange
conductivity signal shows up, which is most likely due to plasticising effect from
mixing.

These are examples of how the dielectrics can be used to monitor the sample.
Both are examples that would take forever to detect from the neutron signal along,
if at all. In summer 2015 before this new cell, we lost three days of beamtime on
IN16B measuring on DPG not understanding the data that we acquired, which was
supposedly due to problems with pressure transmission. Something that we would
have been able to detect with the dielectrics.

Example of kinetic study

The combined cell can also be used for doing real-time studies of kinetics, e.g. crys-
tallisation. Although this type of study will not play a role for the rest of this
work, this is an interesting topic for future projects and serves as an example of the
versatility of the cell.

In Fig. 6.12, we show crystallisation of the van der Waals bonded liquid, propy-
lene carbonate under pressure from IN16B. The real part of the capacitance at a
fixed frequency, ν = 10 kHz, and the normalised intensity of the fixed window scans
is shown as a function of time during the crystallisation process. In the dielectric
signal, we observe the crystallisation process starting just before 1 ks and decays to
a constant value just before 10 ks, where the crystallisation process seems to have
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Figure 6.12: Real part of capacitance at a fixed frequency, ν = 10 kHz (left) and
normalised intensity of elastic and inelastic FWS summed overQ (right) as a function
of time during crystallisation process on propylene carbonate (PC) measured at
IN16B.

come to an end. We observe the same kinetic behaviour in the FWS, that the crys-
tallisation process starts just before 1 ks, causing an increased intensity in the elastic
intensity and a decrease in the inelastic intensity because of reduced mobility. The
process is also seen in the FWS to come to an end approaching 10 ks.

A drawback of the design for kinetic studies that are also sensitive to the exact
sample environment, is the fact that we have two sample compartments making up
the sample environment in the neutron beam, whereas the dielectrics only measures
in the inner one, and although the two compartments are in principle identical,
this could be an issue for crystallisation. With respect to studying dynamics as we
do throughout the rest of this work, the two sample compartments are considered
identical and this should not give an effect.

6.4 Summarising discussion

The newly developed sample cell for doing simultaneous dielectric and neutron spec-
troscopy under high pressure has proven extremely useful during high-pressure beam-
times. The new cell also means that experimental protocols can be repeated offline
after an experiment to check the measured data, and that an experimental protocol
can be tested before a beamtime, for example to locate particular state points in
temperature and pressure, which can then be relocated online.

In this high-pressure design, where we also have the dielectrics, we have a plug in
the bottom of the cell, which makes the setup somewhat more fragile as it does leak
from time to time. Different measures have been made by the workshop in Roskilde
to improve the quality of the plugs, and the quality has gone up so that it was able
to last a four-day beamtime on IN5, cycling up and down in pressure repeatedly on
one plug.

There is a problem in the very high frequency end of the dielectric spectrum that
we have not discussed so far. In approximately the last decade in the high-frequency
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end, induction effects show up as a small increase in the sample signal. The four-
wire sample stick was thought to solve this problem, but instead this small increase
in the capacitance has turned into a small decrease. Either way, this has not been
observed to change signal dramatically, in particular, not the position of the alpha
relaxation.

Despite the imperfections, to sum up, the combined measurements provides cer-
tainty on state points and allow for repetition of measurements offline either before-
hand for preparation of beamtime or afterwards for checking reproducibility. Because
of the sensitivity of the dynamics in glass-forming liquids to relatively small changes
in temperature and pressure, the fast and precise spectra from the dielectrics, the
additional probe to the neutrons serve not only as an extension of the accessible
timescales, but also as a probe for checking experimental conditions. This includes
the monitoring of pressure transmission of the sample coming into and reaching
thermal equilibrium, that pressure liquid has not reached and mixed with the sam-
ple environment, that there is no leak, and so on. The new combined high-pressure
sample cell has meant that we have been able to do more accurate measurements in
temperature and pressure, but also to a large extent because of its role as sample
environment monitor, that we can optimise how we spend the valuable beamtime.
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Chapter 7

Searching for isomorphs in real
glass formers Part I

In this and the next chapter we will present experimental tests of isomorph theory
through density scaling and isochronal superposition of dynamic spectra. In this
chapter, we will focus on the dynamics where the alpha relaxation is in the win-
dow of the neutron scattering instruments, i.e. mainly from micro- to nanosecond
timescales. This corresponds to the ’merged’ scenario sketched in Fig. 6.1, where
the alpha relaxation is merged with faster dynamics such as vibrations and fast re-
laxations. In the next chapter (Ch. 8), we will test isomorph theory close to the
glass transition when we have separation of timescales. All studies presented in this
and the next chapter, except for cumene on IN16B, which was measured summer
2015 before the development of the new cell, have been performed with the combined
high-pressure sample cell for doing simultaneous dielectric and neutron spectroscopy
that was presented in Ch. 6. The combined cell has been a crucial part of this work,
for identifying isochrones on different timescales and ensuring that measurements
were indeed done along isochrones.

In isomorph theory (Sec. 3.5), we have assumed the existence of isomorphs, where
two points in the phase diagram are isomorphic when the probability of the two con-
figurations in reduced units are identical. The relevant scale according to isomorph
theory is in reduced units that per definition are dimensionless and identified with
a tilde (Eq. 3.9). From neutron scattering, the dynamic structure factor is mea-
sured as a function of wavevector and frequency, where the frequency becomes the
energy transfer when multiplied by the constant, ~, that relates wave properties to
the sample.

The frequency expressed in reduced units is

ω̃ = ωt0 = ωρ−1/3
√
m/(kBT ) (7.1)

where ω corresponds to the energy transfer if we set ~ = 1. Here, ρ is the number
density and m is the average particle mass, the latter assumed to be constant. We
set m = kB = 1. Effectively, the reduced energy unit thus becomes

ω̃ = ωρ−1/3T−1/2, (7.2)
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where ρ is now the volumetric mass density. This is the energy scale in reduced
units, which a lot of the neutron spectra will be shown on. We will use equations
of state from literature presented below (Sec. 7.1) to calculate the density at the
studied state points for the different samples. The change in density is in the percent
range, thus, the inverse of the cubic root of the density will only have a small effect
on the scaling. Plotting data in reduced energy units will mainly be affected by
temperature changes. As we shall see in Sec. 7.3, the scaling has little effect only
visible for higher energy transfer, and we will therefore ignore the reduced units for
the inelastic window scan.

Just like reduced energy units, the wavevector or momentum transfer, Q, should
also be presented in reduced units:

Q̃ = Qρ−1/3 (7.3)

The density changes are in the percent range in this study and scaling of Q will
be around 1%, which will be within the uncertainty of the data and is therefore
neglected throughout this study.

It is common in the neutron scattering community to correct the dynamic struc-
ture factor by the temperature-dependent Bose factor to account for the occupa-
tion number and arrive at the susceptibility via the fluctuation-dissipation theorem
(Sec. 4.2 and Eq. 4.50):

χ′′(Q,ω) = S(Q,ω)
1− n(ω) , (7.4)

where the Bose factor is

n(ω) =

exp
(
−~ω
kBT

)
− 1

−1

, (7.5)

defining ~ω < 0 as the neutron gain side. However, this only corrects the data for
the number of phonons in temperature and not in pressure, and we would then have
a pressure dependent susceptibility.

Before we present the data, will follow an introduction to the three samples
used for the experiments presented in this and the next chapter. Then we will
show density scaling and isochronal superposition for the samples on dynamics from
picosecond to millisecond dynamics focusing mainly on alpha relaxation dynamics,
before analysing the Fourier transformed spectra for one of the samples, cumene, in
the time domain.

7.1 Samples and data reduction

These experimental isomorph tests have been performed on the two van der Waals
liquid isopropyl benzene (cumene) and PPE (5-polyphenyl ether) and the hydrogen
bonding liquid dipropylene glycol (DPG) which will be presented below. The criteria
for choosing these liquids have been that they should have little or no beta-relaxation,
a strong incoherent signal, a relatively low glass transition temperature at ambient
pressure and a reasonable pressure response. The samples should preferably not be
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prone to crystallisation. The samples were chosen where PV T -data already existed
that could provide equations of state for converting the measured (T, P ) state points
into functions of temperature and density.

All experiments were carried out at the Institut Laue-Langevin (ILL) on the
backscattering instrument, IN16B and the time-of-flight instruments IN5 and IN6
(Sec. 4.4). All neutron data has been corrected in the standard way by normalising
to monitor and vanadium, subtracting background, and correcting for self-shielding,
self-absorption and detector efficiency in LAMP, a data treatment program devel-
oped at the ILL. The reader is referred to Ch. 4.4 for details on data correction and
instrument settings. Cumene and DPG were both measured at IN16B with an elas-
tic energy resolution of ∆Eres = 0.75 µeV accessing timescales up to roughly ∼ 1 ns.
The data is presented in the Q-range from 0.4 Å

−1
to 1.8 Å

−1
, roughly in steps of

0.1 Å
−1

and has been binned in steps of 0.1 µeV. To improve statistics, the data are
presented as a sum of Q unless otherwise stated.

Cumene and PPE were both measured at IN5 at a wavelength of 5 Å with an
elastic energy resolution ∆Eres ≈ 0.1 meV, roughly corresponding to ∼ 10 ps access-

ing a Q-range from 1.2 − 1.9 Å
−1

. The data was grouped for constant Q-values in

steps of 0.1 Å
−1

. Cumene has furthermore been measured on IN5 with λ = 8 Å,
corresponding to an elastic energy resolution ∆Eres ≈ 0.015 meV, which is roughly

∼ 100 ps in the Q-range 0.5 − 1.2 Å
−1

, grouped for constant Q in steps of 0.1 Å
−1

.
DPG was measured on IN6 with λ = 5.1 Å corresponding to ∆Eres ≈ 0.07 meV,

roughly accessing ∼ 10 ps in the Q-range from 1.2 − 1.7 Å
−1

, grouped for constant

Q in steps of 0.1 Å
−1

.

To study density scaling and isochronal superposition (Ch. 7.2 and 7.3), we will
mostly focus on the summed Q spectra for better statistics. According to isomorph
theory, the scaling behaviour should not depend on the length scale of which it is
studied, and the value of Q should therefore in principle not have any influence on
the results. For Q, because the scaling will only have a tiny effect, we ignore the
reduced units that in principle is required from isomorph theory. For cumene, we
take a closer look into the Q-dependence of the dynamics in the Fourier transformed
data (Ch. 7.4).

The dynamic structure factor, S(Q,ω), will in most cases be presented as a func-
tion of the reduced energy units, S(Q, ω̃). The intensity of the dynamic structure
factor is always presented on an axis of arbitrary units. The scale of the intensi-
ties of the dynamic structure factor is different from experiment to experiment or
instrument to instrument and will therefore be different in magnitude. Data from
the same instrument and sample are always shown on the same scale, i.e. there has
not been done any scaling on the y-axis within an experiment.

The uncertainty with which we can determine the temperature and pressure of
state points are given by limitations of the instruments and the pressure equipment.
The pressure can be determined with high precision, but has a ±3 MPa pressure
tolerance, which determines how precise it can be set according to a given set point.
The temperature stability of the neutron instruments is typically ±0.1 K, but the
exact temperature may vary a couple of Kelvin across different instruments according
to temperature calibrations and offsets. A couple of Kelvin and a few MPa, can
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change the alpha relaxation time with orders of magnitude. Because we rely on
locating isochrones very precisely in this study, we have benefited from the dielectric
measurements which allow us to make sure that we are actually on isochronal state
points, and that the same state points can be found on another instrument.

Figure 7.1: Sketches of the molecular structure of the three samples studied in this
chapter. DPG and PPE are mixtures of isomers.

Cumene

Cumene (isopropyl benzene) is a rather small molecule (Fig. 7.1) with a melting
temperature of Tm = 177 K and a glass transition temperature found from dielec-
tric spectroscopy of Tg ≈ 126 K, both at ambient pressure. Cumene is a van der
Waals bonded liquid with the molecular formula C9H12. The density at atmospheric
pressure and room temperature is 0.860 g cm−3. The estimated incoherent neutron
signal from cumene is ∼ 95 %. The ambient pressure fragility of cumene is m ≈ 70
([127], Sec. 5 from shear mechanics). Barlow et al. [14] measured the viscosity as a
function of temperature, extended to the low temperature region by Ling & Willard
[99]. The viscosity as a function of pressure was measured by Li et al. [97], who also
presented the light scattering data used for comparison in Sec. 7.4.

Ransom & Oliver [127] presented a modified equation of state to calculate the
density along the glass transition in a large pressure range up to more than 4 GPa.
The original equation of state from Cibulka and Takagi [37] was based on compression
measurements by Bridgman [24] and their own measurements and only valid for
temperatures around room temperature, far above the melting temperature:

ρ(T, P ) = ρ0(T )
1− C(T ) ln

(
B(T )+P

B(T )+0.0001 GPa

) (7.6)

where ρ0(T ) is the ambient pressure density, and C(T ) and B(T ) are temperature-
dependent parameters. Ransom and Oliver modified the equation of state to include
low temperatures by using the temperature dependence of toluene, a molecule similar
in structure to cumene, which has been measured in a much larger temperature

84



7.1. Samples and data reduction

interval, to better estimate the two parameters B(T ) and C(T ) [127]:

B(T ) =
4∑
i=0

bi

(
T − T0

100

)i
(7.7)

with T0 = 298.15 K and

b̄ =


0.111 102 GPa

−0.080 954 GPa K−1

0.0226 GPa K−2

−0.0034 GPa K−3

0.000 28 GPa K−4


and

C(T ) = 0.093736− 0.8
(

(0.005 004 K−1)(T − T0)
100

)
.

Ransom et al. made the viscosity data as a function of pressure and temperature
from Li et al. collapse using the density scaling exponent γ = 4.77 found by a power
law fit to Tg(P ) all the way up to 4.5 GPa. This equation of state and the exponent
γ = 4.77 from [127] have been used throughout this chapter. The large number of
significant figures on the fitting parameters for the equation of state and on γ has
been included in the data analysis in this work, although they by no means reflect
the uncertainty on the calculated density.

The glass transition line for cumene in the pressure interval of this study has
a slope of dTg/dP = 0.085 K MPa−1. The low glass transition temperature, the
high incoherent signal and the relatively high pressure-response of cumene makes it
a sample well suited for neutron scattering. However, working in the supercooled
state of cumene is tricky because of its ability to crystallise. There is a region
between the glass transition and the melting point where crystallisation takes place
quite easily, although at different rates. At ambient pressure, the region around
160 K±10 K is experimentally difficult to access in the supercooled regime. For this
reason, the first data measured on cumene from IN16B, without the dielectric cell
to monitor the sample, were taken around or above the melting temperature. In
this area of temperature and pressure, the alpha relaxation is completely out of the
dielectric frequency window, but coincides with where the relaxation is in the IN16B
instrumental window, nanosecond timescale, as was shown from the fixed window
scan in Fig. 5.7.

The dielectric relaxation strength for cumene is rather weak with ∆ε ≈ 0.3 with
a high-frequency plateau value of the permittivity ε∞ ≈ 2.3, exhibiting only a small
excess wing in the imaginary part. We use time-temperature superposition of the
spectrum to find relaxation times from the dielectrics for low temperatures close
to the glass transition where we do not have the entire loss peak in the frequency
window.

The data from IN16B on cumene was measured before the development of the
combined cell for doing simultaneous dielectric and neutron spectroscopy. This
means that when we studied cumene on IN5 in the new combined cell, we could
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not use the dielectric signal to accurately locate the same state points as the one we
had studied at IN16B, ensuring that the data were taken under the same conditions.
Because of the relatively high temperature and pressure region studied on IN16B,
there was no relaxational signal left in the dielectrics, thus we cannot use the di-
electrics to estimate the relaxation time for the high-temperature data on cumene
from IN5.

The sample was purchased from Sigma Aldrich with a purity of > 99 % and used
as acquired. Data from cumene will be presented in pink-purple colours.

PPE

PPE (5-polyphenyl ether) is a van der Waals bonded liquid and is a mixture of
isomers as sketched in Fig. 7.1. The molecular formula is C30H22O4 and the den-
sity at atmospheric pressure and room temperature is 1.25 g cm−3. The estimated
incoherent neutron signal from PPE is ∼ 90 %. The ambient pressure fragility of
PPE is m ≈ 80 ([76], Sec. 5 from shear mechanics). PPE is a diffusion pump oil
that has been well studied within the Glass & Time group with dielectrics and shear
mechanics in e.g. [76, 133, 168, 71]. The pressure response of PPE is relatively large
with dTg/dP = 0.18 K MPa−1 in the pressure range used in this study. However,
as was shown from the fixed window scan in Fig. 5.7, the relatively high Tg(Pamb)
means that we only just see the alpha relaxation entering the instrument window of
IN16B, nanosecond timescales, at ambient pressure at the maximum temperature of
the setup. Applying pressure will only move the relaxation further away from the
instrumental window on IN16B, which means that basically there is nothing to see.
Data on PPE in this chapter will therefore only be on picosecond timescales from
IN5 where there is still plenty of signal.

The dielectric relaxation strength for PPE is ∆ε ≈ 1.5 with a high-frequency
plateau value of ε∞ ≈ 2.95. PPE exhibits only a small excess wing in the imaginary
part. We use time-temperature superposition of the spectrum to find relaxation
times from the dielectrics when the loss peak itself is not in the frequency window.

The equation of state for PPE was found by Gundermann [69] from a fit of the
Tait equation to PVT data:

ρ(T, P ) =

V0 exp(α0T )

1− C ln
[
1 + P

b0 exp(−b1T )

]

−1

, (7.8)

where ρ is in g/cm3 and equal to 1/Vsp, the specific volume, P is pressure in MPa
and T is temperature in ◦C. The fitting parameters are V0 = 0.82, α0 = 6.5× 10−4,
C = 9.4× 10−2, b0 = 286 and b1 = 4.4× 10−3.

The density scaling exponent has been determined from previous experiments
[70] and found to be γ = 5.5 from PV T data. The equation of state and the density
scaling exponent were used by Xiao et al. [168] to predict the pressure dependence
of the alpha relaxation measured with dielectrics for PPE from isochronal superpo-
sition.

The sample was purchased from Santolubes and used as acquired. Data from
PPE will be presented in yellow-red colours.
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The two van der Waals liquids, cumene and PPE, compliment each other quite
well. For PPE, there is absolutely no risk of crystallisation and the intermediate
range where the alpha relaxation is in the dielectric window that was not accessible
with cumene, halfway between the glass transition and nanosecond dynamics, is
easily accessible with PPE. For cumene, on the other hand, because of its low glass
transition temperature, we are actually able to see the relaxation move through the
neutron instrument window. With the two liquids combined, we can cover quite a
large dynamic area in the temperature-pressure phase diagram.

DPG

To test the robustness of isomorph theory, we also test a hydrogen bonding sample.
A challenge for hydrogen bonding samples is that they typically do not respond as
well to pressure many van der Waals liquids. To compare the dynamics say along
an isotherm or an isochrone, we are interested in a sample where there is an actual
change in the dynamics with pressure. We chose to study DPG (dipropylene glycol),
which is a hydrogen bonding liquid and a mixture of isomers as sketched in Fig. 7.1.
The molecular formula is C6H14O3 and the density at atmospheric pressure and
room temperature is 1.02 g cm−3. The estimated incoherent neutron signal from
DPG is ∼ 95 %. The ambient pressure fragility of DPG is m ≈ 65 [96, 66]. The
glass transition line of DPG changes with a slope of dTg/dP ≈ 0.075 K MPa−1 in
the pressure range of this study. This is not too far from the slope of the cumene
glass transition, however, the glass transition temperature of cumene is only 2/3 of
that of DPG, which makes the relative change in the glass transition temperature
with pressure for cumene much larger than that of DPG.

DPG has a strong dipole moment, resulting in a strong dielectric relaxation
strength ∆ε ≈ 20 with a high-frequency plateau value of ε∞ ≈ 3 in agreement with
[15], who also show the change in dielectric relaxation strength with temperature.
For DPG, a DC conductivity power-law tail is visible in the imaginary part in fre-
quencies slower than the alpha relaxation. Moreover, a faster dynamic contribution
is visible as a pronounced excess wing in the dielectric spectrum, see e.g. [30, 66].
Grzybowski et al. [68] found that density scaling did not apply for DPG using a
best fit value of the density scaling exponent γ = 1.5. However, five years later they
revised the equation of state, and found density scaling to apply for PV T data of
DPG with the same gamma exponent [67]. The revised equation of state is used in
this work:

V (T, P ) = A0 +A1(T − T0) +A2(T − T0)2(
1 + (P − P0)b1 exp(b2(T − T0))

)1/γeos
(7.9)

with the fitting parameters A0 = 0.85907, A1 = 4.25× 10−4, A2 = 1.45× 10−6,
BT0 = 3436, b2 = 6.18× 10−3, γeos = 9.52, b1 = γeos/BT0 and T0 = Tg,amb = 195 K
and P0 = 0.1 MPa. Alpha relaxation times were measured with broadband dielectrics
all the way down to nanoseconds at ambient pressure for DPG in [15, 66, 90]. The
alpha relaxation time as a function of temperature was fitted using the VFT function
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in [90]:

τα(T ) = τ0 exp
(

DTVF
T − TVF

)
, (7.10)

where the fitting parameters are τ0 = 25 fs, D = 10, and TVF = 150. For dielectrics,
secondary relaxations were shown to have a much weaker temperature dependence
compared to the alpha relaxation [66], while a beta relaxation was found to show
practically no pressure dependence in dielectrics at T = 217 and 226 K [30].

DPG is relatively easy to work with, and as for PPE, there is no risk of crystalli-
sation. The relatively low glass transition temperature at room temperature means,
just like for cumene, that we are able to observe the alpha relaxation in the neutron
instrument window. Moreover, the strong conductivity signal means that we can
monitor DPG with the dielectrics in a much larger dynamic range than the two van
der Waals liquids.

The sample was purchased from Sigma Aldrich with a purity of 99 % and used
as acquired. Data from DPG will be presented in green-blue colours.

7.2 Density scaling

We will now move on to experimental tests, starting with density scaling that refers
to the observation of constant relaxation time as a function of Γ = ργ/T as was
introduced in Ch. 3.3. We test density scaling for elastic and inelastic fixed window
scans (EFWS/IFWS) from IN16B ([54] and Sec. 4.4) and for the dielectric measure-
ments, all in all, spanning dynamic timescales from nanosecond to second timescales
on the van der Waals liquid, cumene and the hydrogen bonding liquid, DPG.

To do density scaling, the dynamics must be plotted as a function of Γ = ργ/T ,
which cannot be done directly from experimental data where temperature and pres-
sure are our variables. Instead, we use the equations of state presented in the
previous section (Sec. 7.1) to find ρ(T, P ) for the given state points.

As was explained in Sec. 4.4, the fixed window scan technique available on IN16B,
and in particular the inelastic fixed window option, is an excellent tool for mapping
out relaxations as a function of temperature and pressure on nanosecond timescales.
By alternating between different instrumental settings, it is possible to do fast scans
as a function of temperature and pressure and in this way construct a sample-specific
relaxation map from which one can construct for example isochrones. Isochrones
are defined as lines with constant alpha relaxation time (Sec. 3.1), and can on any
timescale, for example is it possible to find isochrones based on nanosecond dynamics
from the IFWS when the alpha relaxation is in the instrument window of IN16B.
The data is presented in subsection according to the sample.

Cumene

Data from EFWS and IFWS is shown for cumene for three isotherms as a function
of pressure shown in Fig. 7.2 as a sum over Q. In the elastic intensity, the intensity
is observed to increase with increased pressure, as the liquid is moving closer to the
glassy state. In the inelastic intensity, we observe how the alpha relaxation is pushed
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through the experimental time window of the neutron instrument upon increased
pressure. In the lower part of Fig. 7.2, the data are plotted as a function of Γ = ργ/T
using γ = 4.77 from Ransom et al. [127]. The data in the density scaled plot is made
to collapse to a good degree in agreement with what we would expect from density
scaling. The scaling is not perfect as can be seen from the IWFS. An explanation
of this, other than it being due to experimental uncertainties on the pressure trans-
mission, can be that this is caused by detector efficiency in summing over Q as seen
in Fig. 7.4. Another possible explanation is that intra-molecular dynamics could
contribute to the dynamics on this timescale, although the full spectra in Fig. 7.16
does not support this. Cumene contains methyl groups and dynamics from methyl
group rotations are often observed on the timescale of backscattering instruments.
Methyl group rotation often prevails into the glass and can in this way be sepa-
rated from the alpha relaxation on nanosecond timescales. However, for cumene,
only one relaxation process is observed from the IFWS on temperature (Fig. 5.7).
Intramolecular dynamics is in general not pressure dependent and is therefore not
expected to scale with density scaling, which is a scaling in temperature as well as
density. One way of assigning the neutron signal to specific parts of a molecule is
by using partly deuterated samples. By deuterating the phenyl ring in cumene, it
would be possible to assign the part of the signal that stems from the motion of the
methyl groups to account for its dynamic contribution. This was unfortunately not
possible within the frame of this work. However, if the dynamics from the methyl
group rotation behaved significantly different from that of the alpha relaxation, it
would show up in the data; half of the hydrogen atoms on cumene are located on
the methyl groups.

From NMR studies it is suggested that the methyl group rotation on millisecond
timescale follows the overall dynamics of the molecule down to around 140 K [10],
in agreement with ab initio molecular calculations supporting a staggered molecular
arrangement [143]. From a solid-state spin relaxation study on partly deuterated
samples [124], it was shown that in the solid state between 100 and 150 K, methyl
group reorientation took place on microsecond timescales. This supports the fact
that we do not observe a distinct signal from methyl group rotation on IN16B.

In Fig. 7.3, we show the elastic intensity measured on the backscattering instru-
ment IN13 also at the ILL, which has a coarser energy resolution than IN16B. The
energy resolution on IN13 with an incident wavelength of λ = 2.23 Å is Eres = 8 µeV,
corresponding to a timescale of approximately 0.5 ns, i.e. an order of magnitude
faster than on IN16B. The data is shown summed over Q in the quite large range
from 0.1 to 4.9 Å. The pressure scans presented in Fig. 7.3 are done at the same
temperatures as those from IN16B. We observe that elastic intensity data is brought
to collapse on density scaling.

We now proceed to explore the Q-dependence of the alpha relaxation from the
IFWS, and we plot the three isotherms from Fig. 7.2 in a surface plot in Fig. 7.4,
where the colour code refers to the intensity. The data is shown as a function of
Q, and pressure and Γ = ργ/T , respectively. The data has been normalised to the
elastic intensity at lowest temperature and highest pressure, i.e. highest intensity,
to account for detector efficiency. For the two lowest values of Q, we observe a
relatively high intensity in the normalised data compared with the other Q-values
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Figure 7.2: EFWS (left) and IFWS (right) from IN16B on cumene summed over
Q from IN16B. Intensity of EFWS and IFWS plotted for three isotherms (200 K,
220 K, 230 K) as a function of pressure (bottom) and as a function of Γ = ργ/T .
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Figure 7.3: Elastic intensity from IN13 summed over Q. Left: three isotherms
(200 K, 220 K, 230 K) as a function of pressure. Right: Density scaling of left plotted
as a function of Γ = ργ/T .
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Figure 7.4: Q-dependence of the three IFWS from IN16B on cumene (Fig. 7.2). Pink
colours are high intensities, while light blue is low intensity. Top: Q-dependence of
the alpha relaxation for the three isotherms 200 K, 220 K, 230 K as a function of
pressure. Bottom: Density scaling of top panels.

Figure 7.5: Superposition of the density scaled pressure scans shown in Fig. 7.4. A
relaxation is observed to move through the instrumental window. The Q-dependence
suggest this is of translational character.

91



Chapter 7. Searching for isomorphs in real glass formers Part I

in the temperature scans at T = 220 and 230 K, which suggest some offset in the
detectors.

The relaxation process is observed to move through the instrumental window on
increased pressure, and also regarding length scale. The Q-dependence of the IFWS
provides information on the length scale dependence of the broadening. Because
there is a Q-dependence, this implies translational motion. On increasing pressure,
we observe the maximum in intensity of the broadening moving towards higher values
of Q, i.e. shorter distances, for each of the three isotherms.

The broadening can be moved into the same position for all values of Q by
plotting the data as a function of Γ = ργ/T . A superposition of the three density-
scaled pressure scans is shown in Fig. 7.5. The parameter Γ = ργ/T is believed to
control the timescale of the experiment, which is in agreement with the superposition
of data from the three isotherms in Fig. 7.5, where the same relaxation process is
not expressed in terms of temperature and pressure, independently, but in terms of
Γ = ργ/T . For cumene, the broadening is identified as the alpha relaxation.

The interpretation of the IFWS is only possible under the assumption that the
spectral behaviour is the same for all three pressure scans; that we have only one
relaxational process entering the instrument window and that it is the same for all
three temperatures. In this sense, isochronal superposition is assumed in order to
interpret the IFWS data.

For the study of isochronal superposition in the next section (Sec. 7.3), where
we use the full spectra, we use the fixed window scans to determine state points in
temperature and pressure of constant alpha relaxation time on nanosecond timescale.
From Fig. 7.2, where the data is summed over Q, we use from the EFWS S(E =
0 µeV) ≈ 0.6 and from IFWS S(E = 2 µeV) ≈ 0.06 on the right side of the alpha
relaxation maximum to identify the isochrone used for the isochronal study of the
alpha relaxation. The same state points are studied on IN16B and IN5.

DPG

The hydrogen bonding sample, DPG, was not treated in Ch. 5 in relation to elastic
models. To obtain an overview of the dynamic map on IN16B of DPG, we therefore
first present two temperature scans using the fixed window scan at two different pres-
sures (Fig. 7.6). The glitch in data observed around 150 K is related to a change in
temperature protocol on cooling. If we compare this data to the IFWS from cumene
and PPE in Fig. 5.7, we observe that the data from the temperature scan is slightly
more complex in the case of DPG. Around 300 K, we observe what we interpret as
the pressure-dependent alpha relaxation similar to what was observed for cumene
and PPE. But around 200 K, we see another much broader bump in the IFWS
which is more or less independent on pressure. The lack of pressure dependence
and Q-dependence (Fig. 7.13) suggest that the extra bump is from intramolecular
methyl-group rotation. This could suggest that the beta relaxation observed in [30]
that was assigned a relaxation time of 10−5 s at slightly lower temperatures, but also
independent of pressure, is related to intramolecular motion.

From a density scaling point of view, we will first present the pressure dependence
of the FWS along isotherms, similar to what we did for cumene, summed over Q.
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Figure 7.6: FWS from IN16B on DPG as a function of temperature at ambient
pressure and 300 MPa. The pressure-dependent alpha relaxation is observed to enter
the instrument window at around 300 K, while the pressure-independent methyl-
group rotation is visible over a broad temperature range with a maximum at roughly
200 K.

Fixed window scans on DPG were taken using the combined cell, which means that
not only do we have information from the EFWS and IFWS, but also from the
dielectrics. In Fig. 7.7, we present the EFWS and the IFWS along five isotherms
presented as a function of pressure and Γ = ργ/T . Using a gamma exponent from
literature [68, 67], γ = 1.5, we observe a collapse of data for the fixed window
pressure scans upon density scaling.

Combining the temperature and pressure scan, we can plot the density scaled
fixed window scans in a large temperature and pressure range. This is shown in
Fig. 7.8. We see that although the alpha relaxation dynamics that we assign to
be visible in the pressure scans at temperatures T ≥ 270 K collapse nicely, the
two temperature scans bifurcate at ργ/T ≈ 5× 10−3, corresponding to where the
pressure-independent motion assigned to methyl-group rotation sets in. Data on
temperature scans are only included down to the glass transition temperatures due to
the density estimations from the equation of state. We observe that the temperature
scans are a bit off compared to the pressure scans in the interval where they overlap.
The exact temperature is difficult to assign on a ’moving’ temperature scan with a
quite massive cell, even if tried to keep the cooling rate slow, 1 K min−1, there will
be a lack between the reading and the actual sample temperature, compared to the
pressure scans done in thermal equilibrium.

We can construct a plot similar to that from the fixed window scan technique
on IN16B from the dielectric signal to test density scaling on the dielectric data
on longer timescales. In Fig. 7.9, we show an example of the imaginary part of
the dielectric data for a pressure scan at 270 K on DPG. The logarithmic of the
imaginary part of the capacitance is plotted against frequency. DC conductivity
is observed as a straight line in the lower frequency part of the spectrum, while
at higher frequencies the alpha relaxation is pushed into the frequency window on
increased pressure. The frequencies marked by the vertical dotted lines are used
for doing a fixed frequency plot from the dielectric data similar to that from the
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Figure 7.7: FWS from IN16B on DPG. Top: Intensity of EFWS and IFWS plotted
for five isotherms (240 K, 270 K, 280 K, 300 K, 315 K) as a function of pressure.
Bottom: Density scaling of top panels.
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Figure 7.8: Density scaling of the combined temperature and pressure EFWS (left)
and IFWS (right) from IN16B on DPG that were shown in Fig. 7.6 and 7.7.
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FWS in Fig. 7.7. But first a few general comments on the dielectric data from
the pressure scan. We observe a slight increase in the minimum observed between
the DC conductivity and the alpha relaxation upon increased pressure. For the
published dielectric data on DPG where this minimum is included [66], this minimum
is observed to increase in permittivity as a function of both temperature and pressure
up to frequencies of the order of 104 Hz, above which the minimum is not included
in the data set. From our data set, it is clear that some of the increase in the
signal comes from the inductance problem mentioned in Sec. 6.4 in the combined
cell. However, repeated measurements offline in another cell and setup at Roskilde
University show similar behaviour for a pressure scan at T = 270 K. In any case, a
change in the minimum suggests that there is a decoupling between the conductivity
and the alpha relaxation, which means that estimating the relaxation time by time-
temperature superposition using both conductivity and alpha relaxation is perhaps
on the border of what is reasonable. However, we will do it in this study, assuming
the effect of decoupling is within the uncertainty that can be obtained from neutron
scattering.
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Figure 7.9: Imaginary part of dielectrics from pressure scan on DPG at 270 K on
IN16B. Black dotted lines at 1 kHz and 100 kHz.

In Fig. 7.10, the fixed frequency data from the dielectric spectra is shown for
the five isotherms as a function of pressure and Γ = ργ/T for two frequencies,
ν = 1 kHz and 100 kHz. For the data at 1 kHz, it is mostly the DC conductivity
that is in the frequency window, although for the 240 K isotherm we clearly see the
alpha relaxation passing through the window on applied pressure. For the 100 kHz
data, we see parts of the alpha relaxation for the three lowest temperatures. The
DC conductivity of the 270 K data seems to be somewhat high compared to the
other isotherms, especially visible in the 1 kHz data, both when plotted against
pressure and Γ. The dielectrics are extremely sensitive to tiny changes in sample
environment and it does not seem very likely that there is something happening at
270 K that would cause density scaling to break down at this specific temperature,
but not for those higher or lower, especially considering the collapse observed in the
neutron FWS at the same temperature. As with the neutron fixed window scans,
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Figure 7.10: Fixed frequency plots from imaginary part of the capacitance measured
at IN16B on DPG simultaneously with FWS data in Fig. 7.7. Top: Intensity plotted
for five isotherms (240 K, 270 K, 280 K, 300 K, 315 K) as a function of pressure.
Bottom: Density scaling of top panels plotted as a function of Γ = ργ/T .
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the data seems to collapse nicely, even if there is only little overlap between the
different parts of the curve close to the alpha relaxation. This also supports that
using the conductivity to estimate that alpha relaxation time from time-temperature
superposition is probably okay.

Comparing the two constructed fixed frequency curves from the dielectrics at
1 and 100 kHz, roughly timescales of 10−4 and 10−6 s, respectively, to the 10−9 s
timescale of the dynamics from the FWS on IN16B (Fig. 7.7), we observe the alpha
relaxation moving towards lower values of ργ/T on faster timescales.

In Fig. 7.11, we show the pressure and Q-dependence of the IFWS for the four
isotherms shown in Fig. 7.7 at T = 270, 280, 300 and 315 K. As we did for cumene,
the fixed window intensities have been normalised to the elastic intensity at a low-
temperature and high-pressure state point to account for detector efficiency. The
top panel shows the data as a function of pressure, while the bottom panel is the
density scaled data. From the density scaled data, it is clear that the overlap in Γ is
smaller between the different isotherms in comparison to the cumene data (Fig. 7.4).
But we observe the same kind of translational behaviour, suggesting that this signal
is indeed the alpha relaxation.

A superposition of the four isotherms is shown in Fig. 7.12 for the density scaled
data. As we observed for cumene, the relaxation is seen to pass through the instru-
ment window of IN16B in terms of γρ/T and Q.

Figure 7.11: Q-dependence of four IFWS isotherms from IN16B on DPG (Fig. 7.7).
Light green colours are high intensities, while dark blue is low intensity. Top: Q-
dependence of the alpha relaxation for the four isotherms at T = 270, 280, 300 and
315 K as a function of pressure. Bottom: Density scaling of top panels.

The intensity of the 240 K-isotherm presented in Fig. 7.13 is very low compared
to the other isotherms and is therefore plotted on a different intensity scale than
the other pressure scans in Fig. 7.11. We observe hardly any pressure effect on the
intensity on increased pressure. From theQ-dependence, we observe a stronger signal
at highQ, corresponding to shorter length scales. This suggests a local motion, which
we interpret as methyl-group rotation, often observed on nanosecond timescale [55,
54].

Similar to what we did for cumene, we use the FWS data to define an isochrone
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Figure 7.12: Superposition of the density scaled pressure scans shown in Fig. 7.11. A
relaxation is observed to move through the instrumental window. The Q-dependence
suggest this process is of translational character.

Figure 7.13: Q-dependence of the IFWS at T = 240 K as a function of pressure from
IN16B on DPG (Fig. 7.7).
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on nanosecond timescale for the study of isochronal superposition in the next section
(Sec. 7.3). We use S(E = 0 µeV) ≈ 0.5 and S(E = 2 µeV) ≈ 0.065 from the data
summed over Q, located on the right side of the alpha relaxation maximum as seen
in Fig. 7.7 to identify the isochrones. Only this time, we can use the dielectrics to
check that the state points are isochronal on different timescales at the same time.
We also use the dielectrics to make sure that we find the same state points on an-
other spectrometer, IN6, for comparison (Sec. 7.3).

Subconclusion

We have shown density scaling to work for two samples with different interaction, a
van der Waals liquid and a hydrogen bonding liquid, for the dynamics related to the
alpha relaxation in a fairly large range of temperature and pressure on the dynamic
timescale of IN16B, i.e. nanoseconds. For the alpha relaxation, density scaling of
the FWS for DPG seems to work better than for cumene, even if the overlap between
the different pressure scans in ργ/T is somewhat smaller. The dynamics of DPG
was extended up to milliseconds by using the combined cell for doing simultaneous
dielectric and neutron spectroscopy. The values of γ used for scaling with Γ = ργ/T
are quite different in nature for the two samples. For cumene, we have used γ = 4.77
found from Tg(P ) measurements from [127], which was found to also apply for
viscosity data from [97]. While for DPG, we have used γ = 1.5 from [68] based
on dielectric data. The two sample-specific gamma values were found on dynamic
timescales with experimental techniques very different from neutron spectroscopy,
but both work well on the data from the two samples within this work.

The low value of γ for DPG is quite typical for hydrogen bonding samples
(e.g. [29]) compared to for example cumene with a γ-value which is more than thrice
the size of that of DPG. On an absolute temperature scale, the two samples have a
similar pressure response of the alpha relaxation. For DPG, we observe that density
scaling breaks down for the intramolecular motion similar to what was observed for
faster relaxations for the hydrogen bonding glass-former ternidazole in [138].

Density scaling is predicted from isomorph theory, as was described in Sec. 3.5.
Isomorph theory turns the temperature-pressure phase diagram into one of one di-
mension where the governing parameter is Γ = ργ/T , where the timescale of an
experiment is determined from Γ. This is illustrated in Fig. 7.4 for cumene where
the alpha relaxation at nanosecond timescales is seen at the same Γ-values for the
three isotherms using a relatively high value of the scaling exponent, γ. This was
also shown to work well for the alpha relaxation of DPG. By expanding the accessible
timescales with the combined cell, for DPG, we did also fixed frequency plots. From
the IFWS and the fixed frequency plots, we observed the alpha relaxation moving
towards lower values of Γ = ργ/T on faster timescales.

We will now move on to study the dynamic behaviour along the isochrones
determined from the fixed window scans on IN16B.
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7.3 Isochronal superposition

We introduced isochronal superposition in Ch. 3.2, which is the invariance of dy-
namics along isochrones, i.e. for constant relaxation time, and implies that the
relaxation time determines the shape of the spectrum. Isochronal superposition is
another example of an experimentally observed phenomenon that can be explained
in the view of isomorph theory. In this section, we will study the alpha relaxation
dynamics on different timescales along isochrones and for comparison, along isobars
and isotherms. In the temperature-pressure phase diagrams, the errorbars in pres-
sure correspond to the pressure tolerance of the compressor and the uncertainty in
temperature is given by the symbol size. The data in this section will be presented
by sample: first the cumene data from IN16B and for the two different wavelength
settings on IN5, next PPE data from IN5 with dielectrics, and then the DPG data
from IN16B and IN6 with dielectrics.

180 200 220 240
0

100

200

300

400

Figure 7.14: Phase diagram for cumene showing the state points as a function of
temperature and pressure used on all spectrometers. Spectra were taken at IN16B
and at IN5 for λ = 8 Å and 5 Å. The dashed line corresponsd to the isochrone
determined from FWS on IN1B.

Cumene

We will begin with the cumene data from IN16B. State points where spectra were
measured are shown in the phase diagram in Fig. 7.14 as a function of temperature
and pressure. The dashed line is a guide to the eye to illustrate the isochrone de-
termined from the FWS also at IN16B (Sec. 7.2) with a gradient of dTα(P )/dP =
0.125 K MPa−1. Spectra from IN5 on cumene that we will discuss below were ac-
quired on the same state points.

First, to illustrate the effect of plotting in reduced units, we show the dynamic
structure factor as a function of energy transfer for an isobar and an isochrone on
an absolute energy scale and in the reduced energy units in Fig. 7.15. The effect
of plotting the data in reduced units is barely visible at low energy transfer, but a
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7.3. Isochronal superposition

small effect is observed for higher energy transfer from the isochronal state points.
Even if the effect is small, the spectra show slightly better superposition at higher
energy transfer when they are plotted in reduced units. In consistency with isomorph
theory, the data presented in this section will henceforth be shown in reduced energy
units.
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Figure 7.15: Spectra on cumene from IN16B summed over Q. Isochrone (top)
determined from FWS intensity and an isobar (bottom) as a function of energy
transfer on absolute energy scale (left) and in reduced units (right).

The data in Fig. 7.15 are shown on a semilog scale with the intensity on a
logarithmic scale. This is a typical way of plotting neutron quasi-elastic spectra to
enhance the effect of broadening to the eye, but the data can of course be presented
in different ways, conveying different information, and we will therefore present data
on both a linear scale, a lin-log scale and a log-log scale. In Fig. 7.16, we present
spectra from IN16B from an isochrone, an isobar and an isotherm. From the data in
Fig. 7.16, we observe an invariance of the nanosecond dynamics along the isochrone
in all three data presentations. As the isochrone was determined from the fixed
window scan that we assume gives an idea of the changes in the spectral shape from
the intensities around the elastic line E = 0 µeV and in an inelastic energy window
around E = 2 µeV from the same spectrometer, we would also expect the spectra
along this isochrone to have the same shape.

The resolution function is scaled to the elastic intensity and therefore only shown
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IN16B

∼ 10−9 s
cumene
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Figure 7.16: Spectra on cumene from IN16B. An isochrone determined from fixed
window scan, an isobar at 150 MPa and an isotherm at 220 K are plotted on a linear
scale (top panel), a lin-log scale (middle) and a log-log scale (bottom panel).
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in the isochronal spectra. From the spectra along the isobar, we observe a clear
change in dynamics on heating; more relaxation enters the instrumental window,
until the elastic peak has practically disappeared and only broadening or relaxation
is left. We observe a similar behaviour for the isotherm on releasing pressure; the
elastic peak disappears and mainly relaxation is left in the instrument window. In
the lin-lin representation, we have zoomed slightly in on the energy axis as there is
not much information conveyed at high energy transfer here compared to the two
log-representations.

We measured spectra at the same state points on IN5 at two different wave-
lengths, λ = 8 and 5 Å, corresponding to timescales of roughly ∼ 100 ps and ∼ 10 ps,
respectively. The dynamics are shown in Fig. 7.17 and 7.18 for λ = 8 and 5 Å, re-
spectively. The data from IN5 were done in the new combined pressure cell. But as
we discussed above (Sec. 7.1), this is in the part of the phase diagram where there
is only a constant signal left in the dielectrics, and we have therefore not been able
to check from the dielectrics that the state points were indeed isochronal across the
different instruments.

First, we present the 8 Å data in Fig. 7.17, where we have moved one order of
magnitude in timescale compared to IN16B, visible from the energy transfer which
is approximately a factor ten higher. The resolution is shown with the isochronal
spectra. We observe the same overall trend at this spectrometer and timescale as we
did on IN16B. The effects of changing pressure and temperature in the same intervals
are less pronounces compared to the nanosecond dynamics (Fig. 7.16). We observe
a decrease in the relaxational contribution and an increase of the elastic intensity
upon increased pressure or cooling. The dynamics along the isochrone based on
nanosecond dynamics from IN16B is to a good degree invariant, although the data
from the two lowest temperature state points do not fall exactly on top of the two
spectra at higher temperatures. We do not have dielectrics for these state points so
we cannot check that we are in fact at exactly the same state points as IN16B. The
changes in dynamics are, however, much larger for the data along the isotherm and
isobar than the isochrone. We ascribe the small variance in the spectral shape for
the isochronal state points to be from the difficulty in finding exact isochronal state
points without the dielectrics.

In Fig. 7.18, the data from IN5 at λ = 5 Å is presented. This corresponds
to an even shorter timescale with an energy resolution corresponding to ∼ 10 ps.
We notice that the invariance of dynamics along the isochrone found from FWS
at IN16B is less convincing at this timescale, again the data from the two lowest
temperature state points are not falling on top of the data from the two highest
temperature state points along the isochrone. As we have again jumped an order
of magnitude in timescale, the effects in changing temperature and pressure in this
region of the dynamics are smaller. The alpha relaxation was observed in the middle
of the instrument window on IN16B, which is two orders of magnitude slower, and
we have thus moved further away in the phase diagram from the alpha relaxation.
The isochronal overlap of spectra is not as convincing for the picosecond data as it
was for the slower dynamics.

The general behaviour is the same as for the dynamics on the other two timescales;
upon decreased pressure or heating more relaxation enters into the instrument win-
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IN5, λ = 8 Å

∼ 10−10 s
cumene
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Figure 7.17: Spectra on cumene from IN5 at λ = 8 Å. Isochrone determined from
fixed window scan on IN16B, isobar at 150 MPa and an isotherm at 220 K are plotted
on a linear scale (top panel), a lin-log scale (middle) and a log-log scale (bottom
panel).
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IN5, λ = 5 Å

∼ 10−11 s
cumene
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Figure 7.18: Spectra on cumene from IN5 at λ = 5 Å. Isochrone as determined
from fixed window scan on IN16B, isobar at 150 MPa and an isotherm at 220 K are
plotted on a linear scale (top panel), a lin-log scale (middle) and a log-log scale
(bottom panel).
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dow. The change in accessible timescale on IN5 is in particular seen for the low
pressure, high temperature state points in the isobars, where there is only little ef-
fect in changing pressure compared to IN16B. At IN16B, the elastic intensity was
more or less gone, but from both IN5 datasets, the elastic intensity is still quite
strong. The incomplete superposition could originate from short-range correlations
from coherent elastic contributions in the Debye-Waller factor that would move
towards lower Q on increased pressure. But it is more likely related to why the com-
bined high-pressure cell was build in the first place. The dynamics are very sensitive
to the exact temperature and pressure conditions and comparing measurements for
the same state points across different sample cells and instruments is challenging
and requires high precision.

As mentioned above and in Sec. 7.1, the state points for cumene discussed here
(Fig. 7.14) are close to the melting point and all out of reach for any relaxational
process in the dielectrics. The dielectric signal is constant in this region and does
therefore not provide much information. The dielectrics on IN5 for cumene at these
high temperatures were therefore used merely to monitor the sample: to make sure
pressure was properly transmitted and that crystallisation was avoided. The region
of the phase diagram where there would be signal from the alpha relaxation in
both techniques is kind of a no-man’s land for cumene because of its tendency to
crystallise. We will show below for PPE how precise we can find isochrones with
the combined cell when the dielectrics can be utilised properly with signal from
relaxation in dielectrics and in the picosecond dynamics from IN5.

We will analyse the Q-dependence of the Fourier transformed cumene spectra
in the next section (Sec. 7.4) to find relaxation times for the state points presented
above.

PPE

PPE was measured in the combined cell at IN5 with λ = 5 Å in a temperature
and pressure region, where we have signal in both techniques. The timescale of the
neutron spectrometer is here again roughly 10 ps. The studied state points are shown
in Fig. 7.19 as a function of temperature and pressure. We studied the dynamics
along two isotherms at T = 293 K and 315 K. From the dielectric signal, we were
able to identify two pairs of isochronal state points from the pressure scans along
the two isotherms. The dielectric data of the two pairs, labelled A and B, is shown
in Fig. 7.20. The two pairs of isochronal state points are connected by dashed lines
in the phase diagram.

The alpha relaxation time of the isochronal state points is found from the maxi-
mum in the dielectric loss peak and gives roughly τα ≈ 10−2 s and 10−6 s for isochrone
A and B, respectively. With isomorph theory in mind, we should in principle locate
isochrones from the dielectrics represented as a function of frequency in reduced
dimensionless units. However, in Fig. 7.20, we show that it does not change the
relative position nor the shape of the dielectric spectra to plot the loss peaks as a
function of the dimensionless reduced frequency. We, therefore, conclude that we
can determine meaningful isochrones with respect to isomorph theory from the al-
pha relaxation loss peak from dielectrics as a function of frequency on an absolute
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Figure 7.19: Phase diagram in temperature and pressure for PPE dielectics and
spectra from IN5 λ = 5 Å. The dashed lines are isochrones determined from di-
electrics.
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Figure 7.20: Two pairs of isochronal state points determined from the dielectric
loss peak on PPE measured on IN5, λ = 5 Å. Relaxation time for isochrone A is
τα ≈ 10−2 s and for B τα ≈ 10−6 s. Right: dielectric data plotted as a function of
frequency in reduced units.
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energy scale as measured in Hertz.
The pressure gradients for the two isochrones, A and B, are dTα(P )/dP =

0.22 K MPa−1 and 0.275 K MPa−1, respectively. Please note that the slope of the
isochrones as they are depicted in the phase diagram of Fig. 7.19 is the inverse of
the stated pressure gradients dTα(P )/dP . We note that the slower the alpha relax-
ation time, the steeper (flatter) the isochrone in the temperature-pressure (pressure-
temperature) phase diagram will be, also comparing to the pressure dependence of
the glass transition isochrone, dTg(P )/dP = 0.18 K MPa−1. This means that the
slower the alpha relaxation, the more pressure dependent it is. Out of the three
samples studied here, PPE is the one with the highest fragility, the highest pressure
dependence of the dynamics and highest value of γ.

The neutron spectra from IN5 on PPE are presented in Fig. 7.21. Spectra along
the two isochrones A and B are shown in the left column, while the two isotherms
at 293 K and 315 K are shown in the centre and right column, respectively. The
spectra are again shown in three different representations. The resolution function
is shown in the isochrone plots.

We observe the same dynamic behaviour along the two isotherms as we did for
cumene: on increased pressure, the dynamics becomes slower and less relaxation is in
the instrument window. The behaviour of the two isochronal state points follows the
relaxation time found from the dielectrics. The isochrone with the slowest relaxation
time, A, has a higher elastic intensity and less broadening, compared to B which has
a shorter alpha relaxation time. We observe a complete invariance in the spectra
from the two sets of isochronal state points in the left column in all three data
representations. This serves as an example of how precise we can do experiments in
temperature and pressure when we have the dielectric data as a complement to the
neutron data.

An interesting observation from the isochronal state points, which is clear from
the logarithmic plots, is that while we have the dielectric loss peak in the frequency
window of the dielectrics, we also observe a clear broadening around the elastic
resolution in the neutron spectra at picosecond timescale. We can imagine extending
the loss peak tails of the alpha relaxation in the dielectrics in Fig. 7.20 out to
frequencies of around 1010 Hz and that the tail of the alpha relaxation is what is
visible as a broadening in the time window of IN5.

The PPE spectra show isochronal superposition on a large range of timescales.
From alpha relaxation determined to be 10−2 s and 10−6 s from dielectric spec-
troscopy, we observe that spectra on picosecond dynamics superimpose completely.
The broadening we observe on picosecond timescale at IN5 for PPE could suggest
that a tail of the alpha relaxation is stretched out in time and can be observed
across many orders of magnitude, or at least that the dynamics observed on picosec-
ond timescale is somehow related to the much slower alpha relaxation.
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IN5, λ = 5 Å

∼ 10−11 s
PPE
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Figure 7.21: Spectra on PPE from IN5 at λ = 5 Å. Left: Two isochrones found from
dielectrics. Centre and right: isotherms at 293 K and 315 K, respectively, plotted on
linear (top panel), lin-log (middle) and log-log (bottom panel) scales.
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DPG

DPG was measured in the combined high-pressure cell for doing simultaneous dielec-
tric and neutron spectroscopy. The temperature-pressure phase diagram in Fig. 7.22
contains the state points for which full spectra have been taken on IN16B and IN6
for DPG. The dashed line corresponds to the isochrone as determined from the fixed
window scans on IN16B (Fig. 7.7) and from the simultaneous dielectric measurement.
Dielectric data are as shown in Fig. 7.23 for the three isochronal state points and
for the neighbouring state points where spectra were also taken at IN16B for com-
parison. The pressure gradient of the isochrone is dTα(P )/dP = 0.0875 K MPa−1.
In the dielectrics, the DC conductivity is visible for all state points and for almost
all of them, the tail of the alpha relaxation is just visible. We use the tail of the
alpha relaxation time and the conductivity to estimate the alpha relaxation time
using time-temperature superposition. As discussed previously in Sec. 7.2 for the
fixed window pressure scans on DPG, the change in minimum with temperature and
pressure between the conductivity and the alpha relaxation suggest that the two
processes are decoupled, however, we will use the time-temperature superposition
for a somewhat crude estimate of the relaxation time here.

The estimated loss peak in the dielectrics for the isochronal state points is lo-
cated roughly at log10(νmax) ≈ 7.5, which corresponds to a relaxation time of a
few nanoseconds and coincides with the timescale of IN16B, in agreement with our
interpretation of the IFWS in Fig. 7.7. The estimated relaxation time for the state
point at ambient pressure along the isochrone, T = 280 K, is also in agreement with
literature data [15].

We observe from the dielectric spectra that the three isochronal state points
determined from the FWS on IN16B have the same minimum between the DC
conductivity and the alpha relaxation. It seems that even if the two processes are
decoupled, they have the same isochrone. This is in agreement with what we would
expect from isomorph theory for isomorphs.
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Figure 7.22: Phase diagram in temperature and pressure for DPG spectra from
IN16B and IN6. The dashed line correspond to the isochrone determined from the
FWS on IN16B and dielectric data.
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Figure 7.23: Imaginary part of dielectric signal from the different state points on
IN16B. The state points represented by the dashed and dotted lines are isochronal
state points determined from FWS (Fig. 7.7). Full lines are neighbouring state points
for comparison.

In Fig. 7.24, we present the full spectra from IN16B. In the first column, we
show the isochrone determined from the FWS, also in IN16B (Fig. 7.7), and the
dielectrics (Fig. 7.23), in the second and third column are shown for comparison an
isobar and an isotherm, respectively.

We present the data in three different representations again, and we observe the
same kind of behaviour as was seen for the nanosecond dynamics for cumene: the
dynamics are to a good degree invariant along the isochrone, while the dynamics
change for the isobar and the isotherm in the same way as we observed for the
two other samples, where the alpha relaxation was observed to dominate for higher
temperature and lower pressure, while the elastic intensity goes down. This is in
particular visible from the data on the isotherm. There is a small offset in the elastic
intensity between the isochronal state points, best seen in the log-log representation,
although these changes are small compared to the changes observed along the isobar
and the isotherm.

Most of the state points that were studied at IN16B were also studied at IN6 at
λ = 5.12 Å with an elastic energy resolution corresponding to a timescale of ∼ 60 ps.
The spectra are shown in Fig. 7.25. The dielectrics were used to make sure that we
were found the same state points as on IN16B, which is especially important along
the isochrone. For the IN6 data on DPG, we see a trend similar to that observed for
the IN16B spectra, the two isochronal state points do not overlap completely, but
they vary less than the spectra taken along the isobar and isotherm. Just as was
observed for cumene, where the alpha relaxation dynamics was also in the IN16B
instrument window for the studied state points, changes in temperature and pressure
on faster timescales have a less pronounced effect, suggesting that a smaller fraction
of the alpha relaxation is visible on the IN6 picosecond timescale in this part of the
temperature-pressure phase diagram compared to IN16B.
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IN16B

∼ 10−9 s
DPG

270 280 290 300 310 320
0

50

100

150

200

250

300

350

400

450

-1 -0.5 0 0.5 1

10-3

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

10-3

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

10-3

0.2

0.4

0.6

0.8

1

1.2

-1 -0.5 0 0.5 1

10-3

10-3

10-2

10-1

100

-1 -0.5 0 0.5 1

10-3

10-3

10-2

10-1

100

-1 -0.5 0 0.5 1

10-3

10-3

10-2

10-1

100

-5.5 -5 -4.5 -4 -3.5 -3
10-3

10-2

10-1

100

-5.5 -5 -4.5 -4 -3.5 -3
10-3

10-2

10-1

100

-5.5 -5 -4.5 -4 -3.5 -3
10-3

10-2

10-1

100

Figure 7.24: Spectra on DPG from IN16B from an isochrone determined from FWS
and dielectrics (left column), an isobar (centre column) and an isotherm (right col-
umn) shown on linear (top row), lin-log (middle row) and log-log scales (bottom
row).
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IN6, λ = 5.1 Å

∼ 10−11 s
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Figure 7.25: Spectra on DPG from IN6 from an isochrone (left column) determined
from FWS on IN16B and dielectrics, an isobar (centre column) and an isotherm
(right column) shown on linear (top row), lin-log (middle row) and log-log scales
(bottom row).
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Subconlusion

In this section, we looked into isochronal superposition and found for all three sam-
ples to a good approximation of isochronal superposition. PPE was the most con-
vincing example, a van der Waals liquid, for which isochronal superposition was
shown to hold for picosecond dynamics and the dielectric data for alpha relaxation
time up to roughly 10−2 s, i.e. isochronal superposition on the same state points
separated by roughly ten orders of magnitude on dynamic timescales. For cumene,
which is also a van der Waals liquid, this was shown to apply on timescales on nano-
and picosecond from the three different neutron instrumental settings, unfortunately
we could not use the dielectrics to find the exact isochronal state points. For the
hydrogen bonding system DPG, we observed the same tendency as was seen for
cumene, that isochronal superposition works quite well in this region of the phase
diagram where the alpha relaxation is in the instrument window of IN16B. Like
for cumene, it does not work perfectly, but quite well. Isochronal superposition for
DPG was also observed on the timescales of the dielectrics, spanning ten orders of
magnitude in dynamics.

In the region of the temperature-pressure phase diagram treated in this and the
previous section on density scaling, the alpha relaxation is the dominating contrib-
utor to the dynamics. For the purpose of testing isomorph theory, we have shown
that isochronal superposition applies to the dynamics related to the alpha relax-
ation spanning timescales from milli- to picoseconds both for the two van der Waals
liquids and the hydrogen bonding sample that we have tested. This suggests that
isomorph theory is perhaps more robust than we expected or that there exists a
more fundamental explanation of isochronal superposition. From isomorph theory,
we expected isochronal superposition to work for the van der Waals systems that
are regarded R-simple (Sec. 3.5), i.e. they have no directional bonding and show no
large secondary relaxations. The hydrogen bonding system is on the other hand not
expected to be R-simple, and thus to follow the predictions from isomorph theory.
In this study, the hydrogen bonding system represents a class of liquids with strong
directional bonding, which from an isomorph theory point of view is predicted to
break down, for example by not showing isochronal superposition. Experimentally,
it is difficult to make a measure of how well isochronal superposition works, and
how well it works will depend on the lens of the looking glass in hand. This is quite
clear from for example the DPG spectra from IN6, where there are only few state
points to compare, and the pressure and temperature induced effects in the spectra
are rather small.

Roed et al. [133] compared the degree of isochronal superposition from several
systems, including both van der Waals liquids and hydrogen bonding liquids, in a
very detailed study of the shape of the dielectric loss peak where they were able
to define a measure of how well the isochronal spectra superimposed. They found
that isochronal superposition worked better for the van der Waals liquids than the
hydrogen bonding liquids. Unfortunately, the neutron scattering spectra do not
allow for the same kind of detailed study because of the more scattered data with
less statistics and therefore noisier. We will therefore based on the data presented in
this section, join a recent group of papers that agree that isochronal superposition
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works quite well also for hydrogen bonding samples, in particular on the alpha
relaxation dynamics [2, 138]. We will in Sec. 7.3 revisit isochronal superposition
on picosecond timescales close to the glass transition where the alpha relaxation is
completely out of the neutron instrument window. But we will first determine the
timescale of the alpha relaxation on cumene from the Fourier transformed spectra.

7.4 Fourier transform to time domain

The cumene data that was presented in the previous section was taken in a region
of the phase diagram where the relaxation time is outside the dielectric frequency
window. We will instead find the relaxation time of the spectra from the Fourier
transformed data and compare the obtained values to light scattering data analysed
in the mode-coupling view [97]. In Ch. 4.4, we described how it is possible to go from
the frequency-dependent dynamic structure factor, S(Q,ω), to the time-dependent
intermediate scattering function I(Q, t). The convolution of the dynamic structure
factor and the energy resolution provides the measured dynamic structure factor

Smeas(Q,ω) = S(Q,ω)⊗R(Q,ω). (7.11)

Taking the measured dynamic structure factor into the time domain, the convolution
of the resolution and the actual dynamic factor turns into a product:

F (Q, t) = I(Q, t)R(Q, t). (7.12)

The intermediate scattering function can then be found by dividing the Fourier
transformed signal with the resolution function. The data can then in principle be
fitted with an appropriate model, where the resolution has been eliminated from
data and the fitting procedure. In theory, this is a cleaner way of analysing the
data, e.g. [40, 81]. However, in practice, information is lost on doing numerical
Fourier transformation, and the transformed data is prone to artefacts for example
due to cut-off effects in energy. We will, however, make an attempt in this section.

As we saw from the FWS previously in this chapter (Fig. 7.4), the alpha re-
laxation dynamics probed with neutron scattering is Q-dependent. The relaxation
time found from neutron scattering will therefore, of course, also be Q-dependent
as we shall see below. The length scale dependence of the relaxation time is an
example of how different the nature of the information accessible from dielectric
and neutron spectroscopy is. In the previous section, we were not concerned with
the Q-dependence for investigating isochronal superposition. The dynamics on an
isomorph should be invariant on all length scales according to isomorph theory, and
we therefore expect in invariance of the dynamics also as a function of Q on an
isochrone. Given the relatively small range that we cover and that scaling is only
with density (Eq. 7.3), we ignore that the length scale, according to isomorph theory,
should be presented in reduced units.

The intermediate scattering function from the energy gain side obtained by
Fourier transform of the cumene data is shown for a state point in Fig. 7.26 for the
entire available Q-range for the settings used in this work. The IN5 data taken with
λ = 5 Å span timescales from log10(t) ≈ −13.2 to −11.5 in the Q-range from 1.2 to
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Figure 7.26: Q-dependence of Fourier transformed cumene spectra at 220 K 250 MPa
from IN16B and IN5, λ = 8 Å and 5 Å. See text for details.
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Figure 7.27: Example of fits of a strectched exponential to the Fourier transformed
cumene data at three different Q-values at 220 K 250 MPa. Two curves are fitted to

the two 1.2 Å
−1

data set. The dotted pink line is an exponential for comparison.
.
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1.8 Å
−1

, the λ = 8 Å data spans timescales log10(t) ≈ −12.4 to −10.8 in the Q-range

from 0.5 to 1.2 Å
−1

, while the IN16B data spans timescales from log10(t) ≈ −9.5 to

−10.9 in the entire Q-range, in the interval from 0.5 to 1.8 Å
−1

, which coincides with
the two sets of IN5 data. The data on longer timescales from IN16B is more scat-
tered in intensity than the IN5 data; a combination of the fact that more relaxation
is in the IN16B window, causing a lower intensity, and that we in general have worse
statistics for the IN16B data. The IN5 data at λ = 5 Å and the IN16B data have
been normalised to their respective low-temperature sample resolution. The levels in
intensity agree well for those data. We did not measure the sample resolution at low
temperature for the IN5 data at λ = 8 Å, and we therefore only have the resolution
measured with vanadium, which does not give the right level in intensity compared
to the other data. The Fourier transformed λ = 8 Å data from IN5 has therefore
been shifted in the log-log plot, corresponding to multiplying by a scaling factor, to
fit the data from IN5 at λ = 5 Å and IN16B. The same Q-dependent scaling factor
have been used for all the IN5 data taken with λ = 8 Å. We show an example of
the Q-dependence of the relaxation in Fig. 7.26, where the intermediate scattering
function is observed to decay faster for higher values of Q, corresponding to shorter
timescales.

In Fig. 7.27, we show an example of fits to the data with a stretched exponential,
the phenomenological Kohlrausch-Williams-Watts (KWW) function for three values
of Q:

Iw(Q, t) = Awe
−(t/τw)β , (7.13)

with an amplitude Aw, a characteristic relaxation time tw, and the stretching param-
eter β that determines the shape of the function, i.e. the deviation from exponential
behaviour. In Fig. 7.27, the dotted pink line illustrates an exponential function,
which clearly does not mimic the shape of the relaxation. For all of the state points
and Q values, the stretching parameter was first left as a free fitting parameter,
returning values around 0.5±0.1. The stretching parameter β was therefore fixed at
0.5 to eliminate one free parameter, leaving only two fitting parameters, the ampli-
tude Aw and the relaxation time τw. A constant stretching parameter is a stronger
statement than isochronal superposition because it implies that the shape of the
relaxation for all state points and values of Q is constant. We will return to the
value of the stretching parameter in the comparison below to light scattering data
[97]. The data at Q = 1.2 Å is at the only Q-value where there is overlap between
the IN5 data at λ = 5 Å and 8 Å in this energy range. For consistency, to make sure
there is agreement between the two data sets constructed from IN5 data at λ = 5 Å
and IN16B data at low Q and IN5 data at λ = 8 Å and IN16B data at high Q,
respectively, we check in Fig. 7.27 that the two fits match at Q = 1.2 Å where there
is an overlap.

All spectra from the state points shown in the phase diagram in Fig. 7.28 have
been Fourier transformed and are presented in Fig. 7.27. These were the same
state points that were presented in the isochronal study (Sec. 7.3) summed over
Q. In Fig. 7.29, for Q = 1.2 Å where there is overlap in Q, we present the Fourier
transformed data from IN5 at λ = 5 and 8 Å and IN16B, along an isochrone, an
isobar and two isotherms. These are data from the same state points as the spectra
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Figure 7.28: Phase diagram in temperature and pressure of cumene for the Fourier
transformed spectra from IN16B and IN5 with λ = 8 Å and 5 Å.
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Figure 7.29: Fourier transform of cumene spectra from IN16B and IN5 with λ = 5 Å

and 8 Å for Q = 1.2 Å
−1

. Full line is fit to data from IN16B and IN5 with λ = 5 Å,
and dashed line is fit to data from IN16B and IN5 at 8 Å.
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Figure 7.30: The relaxation time τw as a function of Q for cumene obtained from
a stretched exponential fit to the Fourier transformed spectra from IN5 and IN16B
along an isochrone, an isobar and two isotherms. The dashed lines corresponds to a
Q−2 dependence of the relaxation time.
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in Fig. 7.16, 7.17 and 7.18.
As in the frequency domain in the previous section, we observe a high degree of

invariance in dynamics along the isochrone. The superposition is not perfect, but the
intermediate scattering function is more or less constant along the isochrone. The
same dynamic behaviour is observed as in the spectra in Fig. 7.16, 7.17 and 7.18,
the alpha relaxation becomes faster and more relaxation is visible in the instrument
windows on increased temperature or decreased pressure.

The relaxation time is found from fits of Eq. 7.13 to the cumene data as a
function of Q. Examples of fit to the data are shown in Fig. 7.29 for Q = 1.2 Å,
the only value of Q where there is overlap in Q for these spectra. We observe that
while the two fits done to the two data sets, one from IN16B and IN5 with λ = 5 Å,
and one from IN16B and IN5 with 8 Å, in most cases agree well with each other
and the data, there is some scatter in the IN16B data at 220 K 150 MPa and 230 K
150 MPa. Going back to the IN16B spectra in Fig. 7.16, the elastic peak is almost
out of the energy window. It seems like there could be a small problem with the
subtraction of the empty cell along the elastic line which would then transfer into the
time-domain. We have used the empty cell measured at the highest temperature,
i.e. lowest background signal, for these state points. The fitting of the data at these
two state points is done to the IN5 data.

The relaxation time as a function of Q obtained from the fits are presented in
Fig. 7.30. We observe to a good approximation the same behaviour along the four
isochronal state points. We observe a clear change in relaxation time with Q at all
the state points, which is close to linear in a large range of Q with a slope close to
−2. For the highest Q-values, the relaxation time seems to bend off from a Q−2-
dependence to nearly constant values of τw. The Q−2-dependence suggests Gaussian
behaviour and the bending suggest that this does not hold for large values of Q.
Colmenero and Arbe [41] observed for both molecular liquids and polymers at low
Q-values a Q−2/β dependence that at high Q-values becomes a Q−2 dependence in
the same overall Q-range. This would in this case correspond to a Q−4 dependence.
They ascribe the difference in slope to heterogeneous and homogeneous nature of
the diffusion. For some of the state points, there could perhaps be a small tendency
to a change in slope at low Q that would suggest another Q-dependence. But it is
not clear if this change of slope is true for the dynamics in cumene in this region.

We compare the relaxation times found in Fig. 7.30 to those found from other
techniques. In Fig. 7.31, we compare relaxation times found from high-pressure light
scattering data from Li et al. [97] and own ambient pressure dielectric data. The

relaxation time is shown for the lowest value of Q = 0.5 Å
−1

, as this is the Q-value
closest to that used in the light scattering data. The relaxation times found from
the neutron data fits well into the general trend of the relaxation times. Fig. 7.31
illustrates density scaling of the alpha relaxation on timescales separated by more
than 12 orders of magnitude from three different techniques using the same value
of γ = 4.77 that was found from viscosity data [127] and used also on the glass
transition isochrone up to very high pressure, above 4 GPa.

Li et al. [97] also assumed an invariant shape of their spectra in their mode-
coupling analysis of the light-scattering data. The found values for the mode-
coupling parameter, γmct = 1/(2a) + 1/(2b), where a and b are fitting parameters
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Figure 7.31: Density of the alpha relaxation time for cumene spanning more than
12 orders of magnitude in relaxation time and including data from three different
techniques. Blue circles are form ambient pressure dielectric data. Black triangles
are obtained from high-pressure light scattering data [97]. The relaxation time
found from the Fourier transformed spectra from IN16B and IN5 are shown from
the different (T, P ) state points. Consult phase diagram for symbol, colour and
corresponding temperature and pressure.

and related to a critical point in the susceptibility. The found the same fitting pa-
rameters for isobaric and isothermal data. They reported the values a = 0.28 and
b = 0.48. They reported a value for the parameter λ that according to Götze et
al. [64] is directly related to stretching parameter β from the stretched exponential
(Eq. 7.13) through the relation

β = − log 2
log(1− λ) . (7.14)

From the reported value of λ = 0.8 by Li et al., one obtains β = 0.43. This is not
exactly β = 0.5 as was chosen for this study, but also not very far away, and it
supports the idea of fixing the stretching parameter in temperature and pressure.

Götze et al. [64] also suggest a fit to viscosity or relaxation time data using the
value of γmct

τmct = τ0
((T − Tc)/Tc)γmct

. (7.15)

Mode-coupling theory is not valid below a critical temperature and is therefore not
useful for viscous liquids. However, it has shown effective in analysing dynamics
on shorter timescales, e.g. in neutron scattering [160]. Both a critical density and
a critical temperature are reported for cumene by Li et al., Tc = 150 K and ρc =
0.982 g cm−3. If we substitute the temperatures in Eq. 7.15 with (ργ/T )−1, and
replace the critical temperature with (ργc /Tc)−1, we find an expression to fit the
relaxation times in Fig. 7.31 with only τ0 as a fitting parameter, found to be τ0 =
1011 s.

We will use this expression to make a simplistic model of the FWS on cumene
from IN16B (Fig. 7.2). If we assume a simplistic model of the cumene dynamics
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on IN16B, where the intensity is given as a sum of an elastic contribution and one
relaxational process modelled by a Lorentzian, which corresponds to setting β = 1,
i.e. neglecting any stretching, we have

I ∝ (1−A(Q)) τ

1 + ω2τ2 , (7.16)

where A is the elastic incoherent scattering factor. Here we have, also rather crudely,
ignored effects from the convolution of measured intensity with the energy resolution.
We furthermore ignore the Q-dependence of the elastic incoherent scattering factor
and assume it is constant in this temperature and pressure range.
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Figure 7.32: Comparison of simplified model in Eq. 7.17 (full lines), based on relax-
ation times obtained from the full spectra, and data on three isotherms from IFWS
on IN16B. The density scaled data is shown to the left and as a function of pressure
to the right.

By inserting the modified expression for τmct as a function of (ργ/T ) from Eq. 7.15
into the simple model in Eq. 7.16 and selecting an energy corresponding to the IFWS
with ∆E = 2 µeV, we compare in Fig. 7.32 the measured data and result of the
simplistic model:

IIFWS ∝
τmct(ργ/T )

1 + ω2
IFWSτmct(ργ/T )2 . (7.17)

This oversimplified model is not able to take into account the total inelastic form
factor. However, by using the density scaled alpha relaxation times and the mode-
coupling parameters from [97] as input into the model, we are able to construct our
own fixed window scan, where we extract the relative intensity at ∆E = 2 µeV. We
compare the modelled data to the IFWS from IN16B on the three isotherms, and we
find that from the model we can recreate the position of the maxima as a function
of pressure.

In this section, we have found the alpha relaxation time for cumene, which seems
to be in agreement with previously obtained data from other techniques. When the
Fourier transformed data where fitted to obtain the relaxation time, we fixed the
stretching parameter β to 0.5. The stretching parameter is what controls the shape
of the relaxation. As we fixed this value for all the state points we have measured,
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we assume that the spectral shape is the same everywhere in the studied phase
diagram, which makes isochronal superpositioning trivial if the relaxation looks the
same everywhere. If the alpha relaxation indeed has the same shape everywhere,
perhaps we need to look for something more fundamental or universal than isomorph
theory.

7.5 Summarising discussion

In this chapter, we studied density scaling and isochronal superposition for two van
der Waals liquids and a hydrogen bonding liquids. The alpha relaxation dynamics
were shown to density scale and superpose along isochrones for all three samples.
For DPG, the hydrogen bonding system, we observed that density scaling broke
down for the intramolecular motion of the methyl-group rotation.

From the observation that density scaling and isochronal superposition of the
alpha relaxation also work on the hydrogen bonding sample, and that the shape of
the alpha relaxation on the Fourier transformed spectra is invariant, suggest that
perhaps there exists a more fundamental and universal description of the alpha
relaxation that the one provided by isomorph theory.

The test of isochronal superposition which was presented in this chapter was
done along isochrones found from the alpha relaxation, while also probing dynamics
related to the alpha relaxation dynamics. Even if the probed dynamics was far away
in timescales from the actual alpha relaxation time, we saw, in particular for PPE,
that the alpha relaxation was stretching out across the timescales and visible in both
the dielectrics and the neutron spectra at the same time.

With the purpose of testing isomorph theory and the assumption that isomorphs
exist, the best we can do experimentally is to use the isochrones to identify possible
isomorphs. To do a more direct test of the existence of isomorphs, we will therefore
in the next chapter use neutrons to explore the region of the phase diagram close to
the glass transition where there is separation of timescales.
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Chapter 8

Searching for isomorphs in real
glass formers Part II

In this last chapter presenting experimental data, we will present a more direct test
of the existence of isomorphs according to isomorph theory (Ch. 3.5) by studying the
fast picosecond dynamics along the glass transition line, where the fast dynamics is
completely separated from the alpha relaxation. In the previous chapter (Ch. 7), the
search for isomorphs took us into nanosecond and picosecond dynamics in a part of
the temperature-pressure phase diagram where the alpha relaxation was also either
at the same timescale or stretching into that timescale. In this chapter, we will study
picosecond dynamics along the glass transition line and in the glass on the same
samples as in the previous chapter (Sec. 7.1). Referring to the simple dynamic view
sketched in Fig. 2.4 and 6.1, at the glass transition, we will have complete separation
of timescales. Using the combined high-pressure cell for simultaneous dielectric and
neutron spectroscopy (Ch. 6), we can follow and monitor the alpha relaxation on
timescales of hundreds of seconds at the glass transition with the dielectrics, while
measuring the picosecond dynamics with time-of-flight instruments like IN5 and IN6
(Sec. 4.4). The first section in this chapter concerns a test of isomorph theory and
is published in [72]. The second part of this chapter will be an analysis of the main
contributions to the dynamics on picosecond timescales at the glass transition and
in the glass, namely those from fast relaxation and vibrations.

8.1 Isomorphs

We tested density scaling and isochronal superposition in Ch. 7 for the alpha relax-
ation dynamics for a large range of timescales and showed that it works reasonably
well for all three studied samples, the two van der Waals liquids and the hydro-
gen bonding system, cumene, PPE and DPG, respectively (see Sec. 7.1 for sample
details). We will in this section present what we consider a more direct test of
isomorph theory. As we discussed in Sec. 3.5, an assumption in isomorph theory
is the existence of isomorphs, where dynamics on all timescales are invariant along
an isomorph. Experimentally, we can identify possible isomorphs, where isochrones
are defined as a line in the temperature-pressure phase diagram of constant alpha
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relaxation time. For state points with the same relaxation time, i.e. isochrones, e.g.
the glass transition, one way of testing an invariance in dynamics is by isochronal
superpositioning, which is the invariance in spectral shape (Sec. 3.2). We therefore
expect isochronal superposition to apply for isochrones if the system has isomorphs.

As we sketched in Fig. 6.1 close to the glass transition, the picosecond dynamics
will be completely separated from the alpha relaxation. This idea is supported by
the inelastic fixed window scans from IN16B (Sec. 4.4), which provides information
on the nanosecond dynamics, presented in Fig. 5.7 and 7.6 for the three samples. We
observed that at the glass transition, the alpha relaxation is too slow and therefore
completely out of the instrument window on nanosecond timescales. For the two
van der Waals liquids, there are no relaxational processes on nanosecond timescales
in the proximity of the glass transition or in the glass. For DPG, we observed a low
intensity methyl-group rotation on nanosecond timescale close to the glass-transition.
However, moving to faster dynamics on picosecond timescales, we observe dynamic
contributions for all three systems all the way into the glass (Sec. 2.5).

As mentioned, if a real liquid has isomorphs, the dynamics must be invariant
on all timescales along an isomorph. We therefore expect that the fast relaxational
and vibrational contributions to the dynamics on picosecond timescales are invariant
along the glass transition isochrone, Tg(P ). We do not expect this to apply to in-
tramolecular dynamics or systems with strong directional bonding, such as hydrogen
bonding. We will test the idea of isomorphs in this section and present data from
IN5 and IN6 along the glass transition isochrone, mapped out by the dielectrics,
for the two van der Waals liquids, PPE and cumene, and for the hydrogen bonding
liquid, DPG. The data will be presented in subsections by sample as in the previous
chapter. We will end this section by discussing and showing the consequences of a
real liquid that has isomorphs.

Sample and instrument-specific details are given in Sec. 7.1. All data was mea-
sured with the combined high-pressure cell for dielectric and neutron spectroscopy
presented in Ch. 6. Pressure has for all state points been applied in the liquid,
monitored by the dielectrics, and then cooled down to the desired state point. Glass
transition state points were found from dielectrics defined as when τα ≈ 100 s using
τα = 1/(2πν ′′max). This corresponds to a frequency value of ν ′′max ≈ 1.6× 10−3 Hz.
We have used time-temperature superposition of the spectra to extrapolate to the
decades below 10−1 Hz for cumene and PPE. Due to the relatively low flux on IN6
compared to IN5, which meant that the acquiring time for the spectra measured on
IN5 where about one fifth of that on IN5, we could measure longer dielectric spectra
to lower frequencies for DPG, and it is therefore only the last decade from 10−2 Hz
and down, which is missing for DPG.

The neutron data has been corrected in the standard way as discussed in Ch. 4.4.
The dynamic structure factor from IN5 and IN6 will be presented as a function of
energy transfer in the reduced dimensionless energy units, ω̃, that was discussed at
the beginning of Ch. 7, which are the relevant units for isomorph theory. We will
again assume Q̃ ≈ Q. The data has not been corrected or shifted on the y-axis in any
way. The data in this section are mostly shown summed over Q, the Q-dependence
will be studied in more detail in the next section. The errorbars are left out in the
spectra summed over Q in this chapter, the size of the symbols correspond to the
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errorbars.

Cumene

The state points on cumene from IN5 with λ = 5 Å that we will treat in this section
are shown in Fig. 8.1, where the focus is on the dynamic behaviour along the glass
transition isochrone marked with a full black line. Data along an isotherm in the
liquid and in the glass are shown for comparison.
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Figure 8.1: Phase diagram of state points in temperature and pressure that are
studied in this section. The black line is the glass transition isochrone found from
dielectrics.

In Fig. 8.2, we show the spectra as a function of energy transfer in the reduced
dimensionless energy units (Eq. 7.2) presented on a linear scale, lin-log and log-log
scale along the glass transition isochrone, an isotherm in the liquid and an isotherm
in the glass.

We observe isochronal superposition of the spectra from the glass transition
isochrone, i.e. an invariance in the dynamics. Along the isotherm in the liquid, we
observe a decrease in elastic intensity and an increase in inelastic intensity seen as a
large broadening of the spectrum when pressure is released from the glass transition
state point, i.e. we move to faster dynamics. In the glass, we observe along the
isotherm that the fast relaxational contribution, observed as a broadening around
the elastic intensity at the glass transition, disappears as we move deeper into the
glass. The black line in the plot of the glass, is a state point at 70 K and ambient
pressure, where we observe that there is no fast relaxation left, but only vibrational
contribution. The vibrational contribution shows up as a peak in the signal around
ω̃ ≈ 0.1, which we identify as the excess vibrational density of state, the Boson peak.
Along the glass transition the Boson peak and the fast relaxation are merged, and
the Boson peak merely shows up as a shoulder. In the log-log representation, where
we can compare the elastic peak intensity, we observe a very small discrepancy in the
intensity of the elastic peak, but the spectra overlap to great extent, in particular
comparing to the data from the two isotherms. From the data presented in Fig. 8.2
on cumene, we observe actual changes in the spectral shape very different in nature
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than what we observed for cumene in the previous chapter (Sec. 7.4). The alpha
relaxation is for completely out of the instrument window at the glass transition,
but we still observe isochronal superposition. Because of the observed invariance in
spectra shape along Tg(P ), we interpret this as a signature of an invariance in the
vibrational contribution and the fast relaxations along the glass transition isochrone.

IN5, λ = 5 Å

∼ 10−11 s
cumene

120 130 140 150 160
0

100

200

300

400

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3
-2

-1

0

1

2

0 0.1 0.2 0.3
-2

-1

0

1

2

0 0.1 0.2 0.3
-2

-1

0

1

2

-3 -2 -1 0
-2

-1

0

1

2

-3 -2 -1 0
-2

-1

0

1

2

-3 -2 -1 0
-2

-1

0

1

2

Figure 8.2: Spectra from IN5, λ = 5 Å, on cumene is represented on a linear scale
(top row), lin-log scale (middle row) and log-log scale (bottom row) along the glass
transition isochrone (left column), an isotherm in the liquid (centre column) and an
isotherm in the glass (right column) as a function of energy transfer in the reduced
energy units. Errorbars correspond to the symbol size.

In Fig. 8.3, we plot the same spectra as a function of energy transfer in absolute
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Figure 8.3: Comparison of the cumene spectra as a function of energy transfer
plotted as a function of energy on absolute scale and in reduced units.
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Figure 8.4: Comparison of the minimum and maximum Q-values along the glass
transition isochrone on cumene from IN5. Errorbars are included in this plot.
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energy units (m eV) next to the spectra shown as a function of the dimensionless
reduced energy units for comparison. We observe that plotting the spectra in reduced
energy units has an effect at larger energy transfer where it causes the signal to
collapse for the glass transition isochrone.

The data shown in this section are all plotted as a sum over Q to improve
statistics, but we show the glass transition isochrone for two values of Q in Fig. 8.4
to convince the reader that we observe isochronal superposition in the entire Q-range
that we have studied. The data are shown for the minimum and maximum value of
Q, 1.2 and 1.9 Å

−1
, respectively, used in this study. We observe the same trend for

both values of Q, and we observe that on increased value of Q, i.e. shorter length
scale, more inelastic signal enters the instrument window.

PPE

In Fig. 8.5, the state points of PPE spectra from IN5 that will be presented in this
section are shown in the phase diagram. We will for this system also look at the
spectra along an isotherm in the liquid and in the glass for comparison of the pi-
cosecond dynamics. In Fig. 8.5, we also show the dielectric signal from those state
points. The black line in the phase diagram represents the glass transition isochrone
found from the dielectrics by time-temperature-superposition. As discussed in the
previous chapter, the alpha relaxation time of PPE has a large response to compres-
sion and it does not crystallise in the region above the glass transition. Therefore,
as we will see, it has been possible to explore the liquid phase diagram to a larger
extent with PPE than it was with cumene.
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Figure 8.5: Left: Phase diagram of state points in temperature and pressure that
are studied in this section on PPE from IN5. The black line is the glass transition
isochrone found from dielectrics. Right: Imaginary part of capacitance from state
points shown to the left.

In Fig. 8.6, we show the spectra on PPE as a function of energy transfer in
reduced energy units represented on a linear scale, lin-log scale and log-log scale
along the glass transition isochrone, an isotherm in the liquid and an isotherm in
the glass. We observe again an overlap of the spectra along the glass transition
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isochrone, implying an invariance in dynamics. Along the isotherm in the liquid,
we observe that when pressure is released from the glass transition state point,
we move to faster dynamics with a decrease in elastic intensity and an increase in
relaxation. We note that releasing pressure at 300 K from 300 to 0.1 MPa changes
the alpha relaxation time observed as the maximum in the loss peak in the dielectrics
(Fig. 8.5), more than eight orders of magnitude. In the glass, we observe along the
isotherm that the fast relaxational contribution, observed as a small broadening
around the elastic intensity at the glass transition, disappears as we move deeper
into the glass. The black line in the plot of state points in the glass is a state point
at 100 K and ambient pressure, where we observe that there is practically no fast
relaxation left, but mostly vibrational contribution. The vibrational contribution
shows up as a peak in the signal around ω̃ ≈ 0.1 that we again identify as the
excess vibrational density of state, the Boson peak. We identify the Boson peak,
the vibrational contribution, as a shoulder in the spectra from the glass transition
isochrone, where it is merged with a fast relaxation process. We thus conclude that
for PPE both the vibrational contribution and the fast relaxation on picosecond
timescales invariant along the glass transition isochrone found from the dielectrics,
similar to what we observed for cumene.

In Fig. 8.7, we compare the effect of plotting the spectra as a function of energy
transfer on an absolute energy scale and in reduced energy units. We observe again
that the effect of plotting in reduced units is only seen at larger energy transfer.
The effect is hardly visible, but a small effect is observed along the glass transition
isochrone, where the tales are made to collapse on the reduced energy scale.

In Fig. 8.4, we show that the superposition of spectra also holds in the full
range of the studied Q-values. We observe the same kind of spectral overlap for the

minimum and maximum value of Q, 1.2 and 1.9 Å
−1

. The data in this section is
therefore summed over Q to improve statistics. The Q-dependence will be studied
in the next section.
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IN5, λ = 5 Å

∼ 10−11 s
PPE
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Figure 8.6: Spectra from IN5 on PPE as a function of energy transfer plotted in
reduced units represented on a linear scale (top row), lin-log scale (middle row) and
log-log scale (bottom row) along the glass transition isochrone (left column), an
isotherm in the liquid (centre column) and an isotherm in the glass (right column).
Errorbars correspond to the symbol size.

132



8.1. Isomorphs

-1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

-1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

-1 0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

Figure 8.7: Comparison of spectra as a function of energy transfer plotted on abso-
lute scale and in reduced units for the PPE spectra from IN5.
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Figure 8.8: Comparison of the minimum and maximum Q-values along the glass
transition isochrone on PPE from IN5. Errorbars are included in this plot.
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DPG

The picosecond dynamics on DPG were, like the ones presented in Ch. 7, studied
on IN6. The state points at which spectra were collected are shown in Fig. 8.9
with the isochrone found from dielectrics marked as a black line. DPG was the
first sample that we measured on picosecond timescales and the distribution of state
points in temperature and pressure is therefore slightly different from the two van
der Waals liquids studied on IN5. The dielectric spectra are also shown in Fig. 8.9.
The ambient pressure dielectric signal along the isochrone is missing here because
the connection to the dielectrics went. However, the peak position obtained with
time-temperature superposition for the two high-pressure state points match with
ambient pressure literature data [66] and high-pressure data [30].
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Figure 8.9: Phase diagram (left) of state points in temperature and pressure that
are studied in this section on DPG from IN6. The black line is the glass transition
isochrone found from dielectrics that are shown to the right.

The data are presented summed overQ as a function of energy transfer in reduced
energy units in three different representations along the glass transition isochrone,
compared to state points in the liquid and state points in the glass. At the glass
transition isochrone, we observe a clear shift in the Boson peak position. We identify
the Boson peak from the spectrum of the state point in the glass (black line) as we did
for the two previous samples. Along the glass transition, we observe the peak position
to move towards higher energy transfer and lower intensity on increased pressure.
For the state points in the liquid, we observe the alpha relaxation dominating the
signal for the state points at the highest temperature. In the glass, we observe for
the full black line at 100 K and ambient pressure that the fast relaxation is much
less intense and that mainly the Boson peak remains in the signal.

For completeness, we also show in Fig. 8.11, the data as a function of energy
transfer plotted on an absolute energy scale and in reduced energy units. Again, we
observe only a small effect of plotting the data in reduced units, which is mainly
visible at higher energy transfer. In Fig. 8.12, we show the data at Q = 1.2 and 1.7 Å,
the minimum and maximum values of Q used in this study from IN6, respectively.
This is a slightly smaller Q-range than at IN5. We observe same dynamic behaviour
for all values of Q. Thus to improve statistics, the data is shown as a sum over Q.

134



8.1. Isomorphs

IN6, λ = 5.1 Å

∼ 10−11 s
DPG
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Figure 8.10: The spectra on DPG from IN6 as a function of energy transfer in re-
duced energy units represented on a linear scale (top row), lin-log scale (middle row)
and log-log scale (bottom row) along the glass transition isochrone (left column),
state points in the liquid (centre column) and in the glass (right column). Errorbars
correspond to the symbol size.
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Figure 8.11: Comparison of the DPG spectra from IN6 as a function of energy
plotted on absolute scale and in reduced units.
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Figure 8.12: Comparison of the DPG spectra from IN6 along the glass transition
isochrone for two Q-values.
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Glass transition dynamics

We now zoom in on the picosecond dynamics along the three isochronal state points
along the glass transition isochrone for each of the three samples. The difference
in behaviour is clear: We observe an invariance of the dynamics for the two van
der Waals liquids, PPE and cumene, while we observe a change in dynamics for
the hydrogen bonding liquid, DPG. For DPG, upon increased pressure the peak
position of the Boson peak shifts towards higher energy transfer and lower inten-
sity. For the two van der Waals liquids, the invariance in dynamics is observed on
timescales separated by 14 orders of magnitude. We observed the fast relaxational
and vibrational contributions to have different temperature and pressure dependen-
cies in Fig. 8.6 and 8.2. Yet, the contributions are invariant along the glass transition
isochrone. For the two van der Waals liquids, these are dynamical contributions on
picosecond timescales that are completely separated from the alpha relaxation. We
interpret this as a signature that the two van der Waals liquids have real isomorphs.
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Figure 8.13: Zoom on picosecond dynamics along the glass transition isochrone for
the three studied samples.

An energy transfer of ω̃ = 0.06 is approximately ~ω = 1 meV, which corresponds
to a timescale of ∼ 1 ps, while the glass transition state points were found from
dielectrics with τα ≈ 100 s. For the two van der Waals liquids that are very different
in molecular structure and size (Sec. 7.1), this an invariance in dynamics observed
on timescales separated by 14 orders of magnitude. In Fig. 8.14, we attempt to
illustrate the degree of invariance for the different state points presented above.
We plot the intensity of all the spectra from the three samples in a fixed reduced
energy window for comparison along isochrones, isobars and isotherms, at ω̃ = 0.06
corresponding to a timescale of roughly a picosecond. The intensities at ω̃ = 0.06
along isochrones, isobars and isotherms are shown as a function of temperature and
pressure in Fig. 8.14, normalised to the value at the lowest temperature and ambient
pressure, respectively. In this plot, we have added the high-temperature isochrones
presented in Sec. 7.3 in the previous chapter for PPE and DPG, the two samples
where we have dielectric spectra to ensure that we are at isochronal state points.
We observe that the intensities from isochrones of the two van der Waals liquids
fall within the dashed grey lines that are guides to the eye at 1 ± 0.05, whereas
the dynamics of the hydrogen bonding liquid on picosecond timescale is observed to
change. This is in agreement with the observation of isochronal superposition for
the van der Waals liquids of the fast relaxations, the vibrational contribution and for
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the alpha relaxation dynamics. This represents both the dynamic scenarios sketched
in Fig. 6.1, when there is separation of timescales and when the alpha relaxation is
in the neutron energy window and the processes therefore are merged.
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Figure 8.14: Comparison between state points from Fig. 8.6, 8.2 and 8.10 from the
inelastic intensity in a fixed reduced energy window at ω̃ = 0.06 along isochrones,
isotherms and isobars. Top: as a function of temperature normalised to value at
lowest temperature. Bottom: as a function of pressure normalised to the value at
ambient pressure. Dashed lines are guides to the eye at 1 ± 0.05. Errorbars would
be smaller than the symbol size.
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One-dimensional phase diagram

A system that obeys isomorph theory must have isomorphs, and the prediction
from isomorph theory is the one-dimensional phase diagram with just one governing
parameter, Γ = ργ/T (Sec. 3.5). In real liquids, this means that the usual two-
dimensional phase diagram in temperature and pressure, should collapse into one of
just one dimension where the controlling parameter is Γ. What will determine the
dynamics is therefore not where on an isomorph you are, but on what isomorph you
are located. Experimentally, we have estimated isomorphs from the isochrones for
the two van der Waals liquids. Thus, the dynamics should be invariant for constant
alpha relaxation time.

The picosecond dynamics studied on IN5 for PPE presented in this section com-
bined with the data presented in the previous chapter (Fig. 7.20 and 7.21) span
around ten orders of magnitude in terms of the alpha relaxation time found from
the dielectrics. In Fig. 8.15, we therefore plot the inelastic structure factor for PPE
integrated over Q within different fixed energy windows in reduced energy units
against the alpha relaxation time found from dielectrics for three isotherms and an
isobar. We observe that the picosecond dynamics for all five values of fixed energy
window, ω̃ = 0.02, 0.04, 0.06, 0.08, 0.1, fall along the same lines. We observe that
close to the elastic line, for low energy transfer, the spectral change with τα is much
more pronounced than in the higher energy transfer region, which is also clear from
the full spectra shown in Fig. 7.21.
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Figure 8.15: Inelastic intensity at fixed reduced energy for PPE as a function of
τα(T, P ) for three isotherms, T = 293 K (�), 300 K (�), 315 K (4), and an isobar
(×) for the reduced energies ω̃ = 0.02, 0.04, 0.06, 0.08, 0.1 covering more than ten
orders of magnitude in alpha relaxation time.

The collapse of the two-dimensional (T, P ) phase diagram into one of just one
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dimension, here shown as a function of τα, illustrates the power of isomorph the-
ory. The dynamics are not determined explicitly from its temperature, pressure or
density, i.e. from its state point, but instead from what isomorph the state point
is located on. From an experimental point of view, this is approximated by what
isochrone the state point is on. We observe from Fig. 8.15 that the picosecond dy-
namics, the spectral shape can be expressed as a function of τα, which is in agreement
with the concept of a one-dimensional phase diagram.

In experiments, this one dimension will correspond to lines moving perpendicular
to the isochrones in the usual temperature-pressure phase diagram. A practical
example of the consequence of the one-dimensional phase diagram for a liquid with
isomorphs, such as what we believe is the case for PPE for example, is that the
picosecond dynamics in a very large region of the (T, P ) phase diagram can be
mapped out easily. In principle, it would be enough to do one scan in temperature
with the combined dielectric and neutron cell, and by combining this with a pressure
scan in the dielectrics to map out the isochrones, all information about the dynamic
behaviour on picosecond timescales from the neutron temperature scan can then be
mapped onto the rest of the (T, P ) phase diagram.

Isomorph theory does not predict the behaviour of the dynamics on different
timescales, i.e. we cannot predict the shape of the curves in Fig. 8.15, and an
assumption like the one we did for the shape of the alpha relaxation of cumene in
Sec. 7.4 would not be able to cover all the different contributions to the dynamics
on picosecond timescales for such a large range of the alpha relaxation time as we
have here.

In the previous chapter, we showed that isochronal superposition worked quite
well for all three studied samples, the two van der Waals liquids and the hydrogen
bonding liquid, when we are just looking at the alpha relaxation. In this section,
where we just look at fast relaxation and vibrational contribution to the picosecond
dynamics, we find a high degree of isochronal superposition for the two van der Waals
liquid over a dynamic range of 14 orders of magnitude. This observation implies
that the dynamics in some liquids show simple dynamic behaviour. However, from
Fig. 8.13, where we zoomed in on the inelastic broadening along the glass transition,
we saw a clear change in the spectral shape along the glass transition isochrone for
the hydrogen bonding system, DPG. This means that isomorph theory does not
work equally well for all systems. As we expected, isomorph theory is not in that
sense not universal.

But what we also notice is that even if the scaling is not perfect along the glass
transition isochrone for the hydrogen bonding system, the spectral shape is still not
completely off. If we compare the different spectra in Ch. 8.10, the dynamics is seen
to change much less along the glass transition compared to the isobar or isotherm.
The alpha relaxation is therefore still a quite good indicator of the picosecond dy-
namics and probably the best tool we have for predicting the spectral shape.
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8.2 Glassy dynamics

In this section, we will take a step back from isomorph theory and reduced energy
units to compare our data to other pressure experiments from the glassy state [78,
112]. The time-of-flight spectra from IN5 and IN6 are therefore shown in this section
as a function of energy transfer on an absolute energy scale. We will study the
shape and the Q-dependence of the spectra on compression along the glass transition
isochrone and on an isotherm in the glass for all three samples, cumene, PPE and
DPG. For cumene, the isotherm was chosen at 70 K, well below Tg(P ), while for
PPE and DPG that has much higher Tg(P ), the isotherm was studied at 100 K.

We have fitted the data using the same function as Hong et al. [78]. The data
are fitted outside the elastic peak to a sum of two terms, a Lorentzian to the fast
relaxational process and a log-normal to the Boson peak [102]:

I(ω) = A

(
ω0

ω2
0 + ω2

)
+ IBP exp

−(ln(ω/ωBP)
)2

2W 2
0

 . (8.1)

The width (HWHM) of the Lorentzian is given by ω0 and its amplitude by A,
the intensity and the position of the Boson peak are given by the parameters IBP
and ωBP, respectively. W0 is a shape parameter of the log-normal function. Fast
relaxations are often observed to have exponential decay, and a Lorentzian should
therefore in this case be valid for this kind of relaxation. Examples of fit to data for
one state point for each of the three sample are shown in Fig. 8.16.
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Figure 8.16: Top panel: Examples of fit to data summed over Q using Eq. 8.1 under
the assumption that the instrument resolution is a Gaussian. The total fit is a sum
of a gaussian fit to the energy resolution, a Lorentzian to fit the fast relaxation and a
log-normal to fit the Boson peak. Bottom panel: double logarithmic representation
of top panel.
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The energy resolution from IN5, where cumene and PPE were measured, is
assumed to be a Gaussian, and the total fit as illustrated in Fig. 8.16. Here, we have
not done a convolution between the energy resolution and the data, but the sum of
the fitting function and the Gaussian follows the data quite well for cumene and PPE.
However, for DPG, we observe a clear difference between fit and data in the log-log
comparison of fit and data close to the elastic energy resolution at ~ω ≈ 0.1 m eV.
DPG was measured on IN6, which is known to have an energy resolution with a tail
at low energy transfer. This is for example visible in the log-log representation in
Fig. 7.25. Unfortunately, the energy resolution that we measured is either vanadium
at room temperature or the sample at 50 K ambient pressure, and which seems to
give an overestimation of the energy resolution tail, which is not well described by
adding an extra Lorentzian or Gaussian term. The tail in the energy resolution at
IN6 could be what causes the discrepancy between the total fit and the data, which
is observed close to the elastic line. It is therefore difficult to say how much of the
part of the fit that is fitted with Lorentzian is actually fast relaxation and how much
would be the tail from the instrument resolution, or if the Lorentzian describes the
fast relaxation properly. There could also be other dynamic contributions centred
around zero which are not contained in this model, for example from methyl groups.
But for the comparisons in this section, we will assume that the dynamics can
be described by Eq. 7.25 and a Gaussian energy resolution, and use the extracted
parameters for comparison to other studies.

First, in Fig. 8.17, we show the spectra summed over Q along with the fit to the
data for the three samples along the glass transition isochrone and the isotherm in
a linear and a log-log representation. Compared to the previous section, the energy
range of the spectra is extended from 5 to 8 m eV in this section. For cumene, along
the glass transition isochrone, we observe a clear shift on increased pressure in the
intensity at large energy transfer, which more or less disappeared when the energy
transfer was plotted in the reduced energy units (Fig. 8.3). At large energy range,
the dynamics in the glass is often observed to be merely temperature-dependent and
a matter of occupation number that can be corrected for with the Bose factor. But
we can see from Fig. 8.17 that this is not always true, as we observe a decrease
in intensity on increased pressure along an isotherm at high energy transfer for
example for the PPE isotherm. For PPE, in the glass, we observe a very small
pressure response for PPE on the isotherm. We will remind the reader that for
each of the glassy state points, pressure was applied in the liquid and cooling was
then done along an isobar. For DPG and cumene in the glass, we observe a shift in
intensity on increased pressure towards higher energy transfer and lower intensity of
the Boson peak at higher energy transfer similar to what was observed in [53, 112].

In Fig. 8.18, we show the same data as in Fig. 8.17, but now scaled to the
intensity and the energy of the Boson peak obtained from the fits to compare the
spectral shapes. For PPE, we observe a complete superposition of spectra along
the glass transition and on the isotherm. The same seems to be true for the DPG
data; that when normalised to the Boson peak, the spectral shape does not change.
However, for cumene, along the isotherm in the glass there is a clear change on
applied pressure in the low energy transfer region. Cumene was also measured at
100 K 0.1, 200 and 400 MPa, where we observe the same trend. The fit results to the
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Figure 8.17: Time-of-flight spectra and fits to the data for cumene (left column),
PPE (centre column) and DPG (column) along the glass transition isochrone (upper
half) and an isotherm in the glass (lower half) in a linear representation (first and
third row) and log-log representation (second and fourth row).
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Figure 8.18: Same spectra as in Fig. 8.17, but y- and x-axis normalised to the
intensity and the energy, respectively, of the Boson peak found from the fitting
funtion in Eq. 8.1.
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100 K data on cumene are included in Fig. 8.19, and the data is shown in Fig. 8.20.

The shape of the Boson peak after rescaling with position and energy has previ-
ously been shown to be invariant on quenching [107], which implies that the relative
excess vibrational density of states compared to the Debye level remains constant,
and on compression [112], suggesting that the observed shift on compression is re-
lated to a hardening of the structure. We show a similar invariance for the spectral
shape of the scaled data for all three samples. For the low temperature data in the
glass on cumene, we observe clearly at lower energy transfer for the rescales Boson
peak, what seems like a suppression of the fast relaxational contribution closest to
the elastic line.

The fitting function used in this section was also used in Hong et al. [79, 78]
on high-pressure light scattering data. We plot some the fitting parameters against
each other and as a function of pressure in Fig. 8.19 for direct comparison with
[78]. Hong et al. [79, 78] studied seven different systems, including cumene, using
light scattering and found for most of their systems, including a 100 K isotherm for
cumene, a clear decrease in amplitude on increased pressure. Their pressure range is
three times than what we can access, but includes several data points in our pressure
range for cumene.

In Fig. 8.19, we therefore plot in the left column fitting parameters as a function
of pressure, the boson peak energy and intensity and the amplitude of the fast
relaxation. In the right column, we plot first the boson peak position in energy versus
its inverse amplitude, then the same plot normalised to the ambient pressure values,
and finally, the intensity of the fast relaxation versus the intensity of the boson peak.
In the normalised plots, dashed lines are shown at 1 ± 5 % as a guide to the eye.
On applied pressure, we observe a clear trend for the boson peak position moving
towards higher energy transfer. This is true also for the isochronal state points for
the van der Waals liquids; the spectra along the isochrone plotted as a function of
energy transfer on an absolute energy scale, and not in reduced energy units, are
observed to deviate at high energy transfer (Fig. 8.17). While the position of the
Boson peak moves away from the elastic line on compression, the intensity decreases
for isotherms, tendencies also shown to be true for many systems, e.g. [53, 112, 78].
However, the intensity of the Boson peak seems to be almost constant with the
±5 % along the glass transition isochrone for cumene, and constant in general for
PPE. When we plot the intensity of the Boson peak versus its inverse energy, we
see that it is more or less constant for PPE and for the cumene isochrone. For the
isotherm in cumene and the DPG data, there seems to be a connection between the
intensity and the inverse of its energy. We also show the pressure dependence of the
amplitude of the fast relaxation, and we observe that it hardly changes with pressure.
A small change can be observed for DPG, but this suggests that signal from fast
relaxation should increase on applied pressure, which seems somewhat unphysical,
and we therefore ascribe this to the tail in the instrument resolution or other kinds
of relaxation as discussed above.

Hong et al. [78] observed for all of their seven systems, including cumene at
100 K, a correlation between the amplitude of the fast relaxation and the intensity
of the Boson peak. As can be seen from the bottom row in Fig. 8.19, we do not
observe such a correlation from our cumene data or any of our data, using the same
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Figure 8.19: Fitting parameters from Eq. 8.1 to data shown in Fig. 8.17 plotted as a
function of pressure (left column). Right: boson peak versus inverse intensity (top),
same as top normalised to the ambient pressure values (middle), intensity of the fast
relaxation versus the intensity of the boson peak (bottom).
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fitting function as they did to our data. In Fig. 8.20, we show the fit to lowest
and highest pressure state points along the 100 K isotherm and the two dynamic
contributions that we have assumed when fitting the data. Here, we observe that
while the Boson peak clearly changes with pressure, there is only a very small change
in the fast relaxation. This suggests that the two processes have different pressure
dependencies, and that they are therefore not correlated as what was observed in
[78].
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Figure 8.20: Fit to cumene spectra at 100 K, 0.1 MPa and 400 MPa: a sum of a
Lorentzian relaxation and a log-normal function to fit the Boson peak. The ampli-
tude of the fast relaxation from the fit is three orders of magnitude smaller than the
elastic peak intensity.

Until now, we have studied the data summed over Q, and we will look at the Q-
dependence of our data. In Fig. 8.21, we show the fitting parameters from Eq. 8.1 as
a function of Q2. We observe a weak Q-dependence in the intensity of the Boson peak
and of the fast relaxation, which seems to be a bit steeper for the glass transition
isochrones compared with the isotherms in the glass for all three samples. The fast
relaxation is often assumed to be a local process, which agrees with the small change
in Q we observe. The Q- and pressure dependence of the Boson peak suggest that
this is not (strictly) a local process.

From the spectral shape in the cumene data scaled to the Boson peak intensity
and energy, it seemed that the shape of the Boson peak was invariant on compression
while the fast relaxation on compression. However, the fits seem to suggest that it is
in fact the fast relaxation which is invariant on compression. Also, we did not find
any correlation between the fast relaxation and the Boson peak as was observed in
[79, 78]. This supports observation from [118] that the two processes have different
temperature and pressure dependencies, which makes the isochronal superposition
along the glass transition in the previous section all the more striking.
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Figure 8.21: Q-dependence of the fitting parameters from Eq. 8.1 to the same state
points as in Fig. 8.17 plotted as a function of Q2.
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8.3 Summarising dicussion

We have shown isochronal superposition for the picosecond dynamics for two van der
Waals liquids studied with neutron time-of-flight along the glass transition isochrone,
where dielectrics was used to find the isochrone. We interpret this as a signature of
real isomorphs in these two liquids and that they therefore obey isomorph theory.
This is a connection between dynamics separated by 14 orders of magnitude. For
systems that obey isomorph theory the dynamics is believed to be controlled by
properties of the liquid that obey isomorph invariance.

We saw from Fig. 8.15, where the picosecond dynamics was shown as a function
of just one parameter, the alpha relaxation, spanning ten orders of magnitude in
relaxation time. This is in agreement with the existence of a one-dimensional phase
diagram from isomorph theory. Isomorph theory is approximate in nature, but it
seems that for some systems, where the dynamics are what we consider simple,
including the two van der Waals systems, we can identify actual isomorphs. We
also observed for the hydrogen bonding liquid with a more complex dynamic map
that the dynamics is not invariant and therefore cannot be mapped down into one
dimension as a function of the relaxation time. At least not as precise as for the two
van der Waals liquids.

An interesting observation from isochronal superposition of the picosecond dy-
namics in the scenario where there is timescale separation, i.e. where we assume
only fast relaxational and vibrational contributions, is that these two contributions
to the dynamics each have different temperature and pressure dependencies. From
Fig. 8.19, we saw the relative intensities of the Boson peak and the fast relaxation
vary independently along isotherms. We also note that this dynamic scenario is very
different in nature from the dynamic scenario where the alpha relaxation dominates
the spectral shape as we saw in the previous chapter (Ch. 7.3), where isochronal
superposition was shown to work to a good degree for all three systems.

Whether it is the hydrogen bonds or intra-molecular dynamics, such as the
methyl-group rotation (Sec. 7.2), that causes the break-down of isomorph theory
for DPG, we do not know. It would be interesting to either study DPG partly
deuterated to mask the methyl groups or another hydrogen bonding liquid without
methyl groups, to see whether such a system would show isochronal superposition
on picosecond dynamics along the glass transition isochrone.

Normally, the alpha relaxation is understood as being cooperative in nature, and
the fast relaxations are understood as some kind of local cage rattling, while the na-
ture of the Boson peak is still up for debate. But the findings of isomorphs presented
in this chapter for the simple liquids suggest that the distinct dynamic features are
all controlled by a single governing parameter, Γ, as suggested by isomorph theory.
From this perspective, we conclude that a universal theory of the glass-transition,
should such one exist, must be consistent with the one-dimensional phase diagram.
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Chapter 9

Concluding discussion

When a liquid is cooled and avoids the crystalline state, it enters a supercooled
regime before it reaches the glass transition and ends up in the glass. In the super-
cooled regime, a viscous slowing down is observed with a stronger than Arrhenius
behaviour. Changes in dynamics of glass-forming liquids can be induced either by
changing temperature or pressure. In this work, we have taken an experimental
approach to test first the shoving model, which is proposed to work in the vis-
cous regime, where we have separation of timescales, and then isomorph theory
that has been proposed as a more general explanation of the dynamic behaviour of
glass-forming liquids. These are primarily tested on liquids with simple dynamic
behaviour, which we consider a prerequisite for the proposed predictions to work.

In Ch. 2, we discussed previous work suggesting connections between fast and
slow dynamics in relation to the understanding of the slowing down through the
temperature-dependence of different properties. In Ch. 5, we tested the shoving
model belonging to the class of models referred to as elastic models. In the shoving
model, the relaxation is caused by molecular rearrangements that can be thought
of as a flow event. The molecular rearrangements are proposed to take place by
energy barrier transition that in itself is a fast process, but takes place more rarely
as the liquid is cooled, and the idea is that the height of the energy barrier can be
determined from a liquid’s short-time properties.

The shoving model was tested on three liquids with simple dynamic behaviour
in two different versions, one which is expressed in terms of the instantaneous shear
modulus and one as a function of the mean-squared displacement. We showed how
the temperature dependence of the short-time properties of local dynamics, the
mean-squared displacement found from neutron scattering on nanosecond timescale
and the elastic modulus from shear mechanics on second to kilosecond timescales,
correlates with the alpha relaxation time and the fragility in agreement with predic-
tions from the shoving model. This suggests that the slowing down of the alpha re-
laxation time is governed by these short-time properties. The underlying assumption
that connects the two versions of the shoving model was also tested, which is directly
connecting the shear modulus and the mean-squared displacement. We observe the
relationship to hold in the viscous liquid, but observe that once the alpha relaxation
enters the neutron instrument window, observed from inelastic neutron scattering,
the temperature dependence of the mean-squared displacement is stronger than the
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corresponding decrease in the shear modulus. The shoving model may break down
for systems with a more complex dynamic behaviour. The experimental observa-
tions reported in this work support the notion that the slow dynamics are controlled
by the fast dynamics, i.e. the viscous slowing down is governed by the short-time
properties.

The dynamics in glass-forming liquids can be altered by compression in a similar
fashion as on cooling, thus, the alpha relaxation can also be slowed down on applied
pressure. From pressure experiments (Ch. 3.3), where thermal and density contri-
butions to the dynamics can be separated, we learned from previous experimental
observations that an understanding of the viscous slowing down must encompass
the isochronal lines, i.e. constant relaxation time in the temperature-pressure phase
diagram, and density scaling, i.e. constant relaxation time for Γ = ργ/T . Iso-
morph theory has been proposed as a possible explanation of these observations by
assuming the existence of isomorphs that are curves in the phase diagram along
which structure and dynamics on all timescales is invariant in reduced dimensionless
units. Their potential energy landscape of two isomorphic state points can therefore
be mapped onto each other. To a good approximation, possible isomorphs can be
experimentally identified by isochrones.

We developed a new sample cell for doing simultaneous dielectric and neutron
spectroscopy at elevated pressure (Ch. 6). The new high-pressure sample cell allowed
us to do accurate measurements of dipole-dipole correlations in the range from mi-
croseconds to hundreds of seconds, while at the same time studying self-correlations
on nano- and picosecond timescales with neutron spectroscopy. This new sample
cell has improved how we can spend a high-pressure beamtime.

In Ch. 7 and 8, we presented an experimental test using the new high-pressure
sample cell of isomorph theory by checking isochronal superpositioning, i.e. an in-
variance in spectral shape for isochronal state points, which is interpreted as an
invariance in dynamics along isochrones. From the dielectric signal, we could de-
termine the alpha relaxation time in a large area of the temperature-pressure phase
diagram, which we used to identify isochronal lines in temperature and pressure,
while we studied the dynamics from neutron spectroscopy on nano- and picosec-
ond for testing isomorph theory. This was done on a range of different timescales
spanning from hundreds of seconds at the glass transition to the fast picosecond
dynamics for two simple van der Waals bonded liquids and a hydrogen bonding liq-
uid with a more complex relaxation map. We found the concept of isomorphs to
hold for the two simple van der Waals liquids. We consider this finding as a signa-
ture of real isomorphs. The hydrogen bonding system was observed to break down
in two cases: for density scaling of the intramolecular methyl-group rotation and
in isochronal superpositioning of the picosecond dynamics at the glass transition,
where the alpha relaxation is completely separated vibrations and fast relaxations
on picosecond timescales. This observation is in agreement with predictions from
isomorph theory. Whether it is the hydrogen bonds or intramolecular motion that
causes the isomorphic behaviour to break down we do not know. With this in mind,
it would be interesting to pursue the search for real isomorphs on other hydrogen-
bonding liquids without methyl-group rotation or van der Waals liquids with known
methyl-group rotation.
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Recent work on molecular dynamics computer simulations that incorporated
spring-like bonds [163, 117], suggested that isomorphs can only be found when in-
tramolecular dynamics are separated from intermolecular motion, which means that
if the intra- and intermolecular contributions are merged, the isomorphs are lost.
They found that isomorphs could be relocated, so-called pseudo-isomorphs, by sep-
aration of the dynamical processes where they only considered intermolecular vibra-
tions. They showed that the alpha relaxation was constant along the same lines in
the phase diagram. With this in mind, they rationalised the observation of density
scaling and isochronal superposition also in some systems with internal degrees of
freedom.

The aim of this work has been to try to build bridges between modelling of
theoretical character and experimental observations. It has not been the purpose
to claim that the models are of universal character, but rather to test them in the
simplest case. It is a minimum requirement that they should apply here if they are
to work at all. This has among other considerations been done by careful sample
selection. We found both the shoving model and isomorph theory to work well for
the two van der Waals liquids, cumene and 5-polyphenyl ether, molecules that are
quite different in size and nature. Cumene is a small molecule and it has been shown
from experiments presented in this and other work that the scaling properties work
well in a rather large area of the temperature-pressure phase diagram, including
several experimental techniques spanning many orders of magnitude in dynamics.
Cumene is an interesting molecule in many aspects, in particular because of its
size and chemical structure, which is close to what can be modelled in the kind of
molecular dynamics computer simulations that have been used for testing isomorph
theory so far. The experimental data reported in this work from neutron scattering
on nano- and picosecond timescales are within reach of the computer simulations,
and it shall therefore be interesting to see what we can learn from new computer
simulations on a more realistic system, or what the computer simulations can learn
from experimental observations.

From isomorph theory, we do not know whether the fast dynamics control the
slow relaxation as in the shoving model, or if the alpha relaxation controls the
picosecond vibrations, but for liquids with isomorphs, but there is undeniable a con-
nection. For the two van der Waals liquids, the observed connection span 14 orders of
magnitude in dynamic timescale. Isomorph theory, however, seems to suggest that
the dynamics are governed by the same underlying mechanism rather than there
being causality between the fast and slow dynamics. In the light of isomorph theory,
we would expect the shoving model to work also at elevated pressure for simple liq-
uids as the relative changes in temperature should be the same for simple systems.
For one of the van der Waals liquids, we show how the picosecond dynamics can be
expressed as a function of the alpha relaxation time rather than independently of
temperature and pressure. This is in agreement with the prediction from isomorph
theory on the existence of a one-dimensional thermodynamic phase diagram control-
ling the dynamics. We conclude from the observations that whatever is governing
the dynamics for R-simple liquids, in simulations as well as in real glass-formers, it
must be isomorph invariant.
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It is tempting to ask, a bit provocative perhaps, if we, the glass science com-
munity, became any wiser on the nature of the glass transition. Although isomorph
theory has predictive character in the sense that we can for example reduce the
dimensions of the experimental two-dimensional phase diagram in temperature and
pressure to one of just one dimension, it certainly has its limitations. It does not pro-
vide predictions as to how the different dynamic contributions behave in the phase
diagram on different timescales, only that they should be the same on isomorphs. It
provides correlations, but we need information on dynamic behaviour of the system
as input. Neither does it provide any explanation of the viscous slowing down, the
super-Arrhenius behaviour of the alpha relaxation observed in most glass-formers.
In that sense, a model like the shoving model is more useful as it provides a simple,
physical explanation of the viscous slowing down, although this is limited to the
dynamics in the viscous regime.

Another limitation of the shoving model and isomorph theory is that they are
only expected to work on simple systems. We know that the ability to form a
glass is a universal property, it is therefore intriguing to think that a universal
explanation exists. However, there is not much pointing in that direction. Some
systems have been observed to be particularly simple in terms of dynamics. This
is seen from the invariance in the shape of the alpha relaxation observed for some
systems across different experimental techniques on a broad range of timescales,
not just on isochrones, but everywhere in the phase diagram. The observation
of invariance of the spectral shape of the alpha relaxation suggests that there is
something more fundamental in play. The simplicity of the alpha relaxation is
perhaps a key to a more fundamental understanding of the glass transition. This is
another argument for studying simple systems as a first approach rather than more
complex systems, in this way to be able to study a ’cleaner’ system, the physicist’s
approach.

A problem with experiments is often the interpretation of what we measure. We
need to make assumptions on the systems, include modelling, interpolate, extrapo-
late, and interpret the data with this in mind. The signal we measure will very often
consist of a combination of different contributions, so when the simulation people
ask us, ’what is it exactly you are measuring? Relaxation or vibrations?’, we have
to answer that we do not know. We can assume a number of things and then make
a qualified guess, but the answer is that we do not know exactly.

The experiments presented in this work were designed to test theoretical pre-
dictions. They were not done to characterise systems, i.e. the systems as such are,
putting it a bit harsh, uninteresting and act as a tool, where we can tune the com-
plexity of a problem. On the other hand, to use a system to test a theory we also
need characterisation to interpret what we observe, and we may, of course, also learn
something about the system from understanding the theory better. Therefore we
cannot do one without the other. The experiments can support the theory or show
something different than what was proposed, but we can never show that a theory
is for example universal.

The glass transition is sometimes considered the simplest complex problem. And
we would like to think that understanding this problem, will help us in understanding
other complex problems. The stretched exponential is an example of an experimental
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observation that can be found across many disciplines, and we wonder what kind of
physics is hidden in that? Returning to the quote by Philip W. Anderson (Ch. 1),
we have no doubt that studies of glass-forming liquids will have intellectual spin-
off, but whether we have moved closer to an understanding of the nature of the
glass transition is questionable. In this research field of glass science on the border
between physicists and chemists, simplicity and complexity, there is still plenty of
work to do.
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