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Viewpoint

Mathematics: Easy
and Hard. Why?
BERNHELM BOOß-BAVNBEK

The Viewpoint column offers readers of The

Mathematical Intelligencer the opportunity to write

about any issue of interest to the international

mathematical community. Disagreement and

controversy are welcome. The views and opinions

expressed here, however, are exclusively those of the

author, The publisher and editor-in-chief do not endorse

them or accept responsibility for them. Articles for

Viewpoint should be submitted to the Editor-in-Chief,

Marjorie Senechal.

SS
ince the beginning of the economic crisis in 2008, and
perhaps even earlier, student enrollment in mathe-
matics and in mathematically heavily loaded subjects

has shown continuing growth. Students who study these
subjects expect to experience better chances in the job
market because they have chosen subjects that are consid-
ered hard and where the money is. Most of these students
were good at mathematics in high-school and they liked it.
Many of them, however, were surprised at how difficult it
was to proceed and to master new abstract ideas every
week. Consequently, there are an increasing number of
students who do not do what we want them to. In various
places, both in Demark and abroad, I have seen how the All
Administrative University (Ginsberg

1
) has increased the

pressure to reduce the curricula in mathematics and to
allow students to pass with a modest schematic training in
some tools and without an introduction into a mathemati-
cian’s way of thinking. I consider that a great folly. My
suspicion is that many administrators simply have too little
appreciation of a good mathematician’s strong capacity for
abstract thinking, and that in many job functions this
capacity is more important than the superficial acquain-
tance with a finite number of tools embedded in fixed
applications. Most mathematicians will probably agree with
that. But even so, many of us succumb to the pressure.
Moreover, it is a bit painful to see how difficult mathemat-
ical thinking is for many students. Here it may help to recall
the working experience of research mathematicians who
know, when honest, the hardness of mathematical work
very well from their own struggles and frustrations, but they
know also the gratifying feelings experienced when one has
achieved something and understood, and finally all appears
easy and natural.

Preface
When talking to students, colleagues, and administrators,
we often deal with a wonderful mix of contrasting
conundrums. In mathematics, we see the contrast of easy
and hard, but also the visible and invisible, teacher and
students, understanding versus proof, publication versus
explanation, results versus processes, mathematical think-
ing versus mathematical tools, inspiring versus misleading,
useful versus destructive, free and under restraint, and
abstraction versus context. We see it and understand it
based on our daily work. Others, the novices and the
outsiders, see it as well, but do they understand it?

In my view, understanding of the two faces of mathe-
matics, being easy and hard at the same time, may prevent
some misunderstanding among our students, collaborators
from other branches, and administrators. To upgrade the

Dedication In respectful memory of Ivor Grattan-Guinness (23 June 1941 to 12 December 2014).
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argumentation, I draw on the working experience of
selected outstanding mathematicians by using the trial
court format: to present strong evidence for one point of
view (mathematics is hard) and then to counter it with
evidence of the opposite.

Many of my witnesses are retired or passed away, some
of them centuries ago. Is their testimony still valid when
administrators1 ask us to tune our teaching to the modern
zap generation? Haven’t the students changed, for example,
since I was a beginner?

After a short autobiographical introduction, I address the
question of the alleged change of mind in Part I before
proceeding to my trial court in Part II. So, in Part I, I’m
looking back to see whether the students’ mind-set has
changed. In Part II, I summarize why mathematics is,
rightly, perceived as hard. After that I shall turn to the
opposite position, that mathematics is easy and that it is a
pity when mathematics is not perceived as easily
accessible.

Autobiographical Introduction
The logo for this article (Figure 1) is from the front page of
my latest monograph on the index theory of M. F. Atiyah
and I. M. Singer,2 which started with lectures I gave in 1971
in Allende’s Chile. The President had given orders that
there should be Further Education for all junior and senior
high-school teachers in the country to mark the new era.
So, some Chilean mathematicians invited me after I had
recently finished a Ph.D. on that subject in Bonn. Perhaps
overly optimistic, they asked me to give a series of ele-
mentary lectures to their teachers so that everybody could
understand what modern mathematics was about and what
the content of the Atiyah-Singer Index Theorem was. While
I was giving these lectures, someone took notes, so that I
came back to Europe in September 1971 with a 120-page
manuscript. This was my first attempt at making a hard
topic easy.

These 120 pages turned into a book of 769 pages in
2013. The publisher chose as the front page the famous
Escher graphic of knights walking around a never-ending
ascending path that never reaches higher levels: a good
symbol of mathematical studies, easy and hard at the same
time. You walk and walk, and you think you have made no
progress. And yet, after a while, you think it’s easy; you are
on the same level now, with a better understanding, but

you feel that that little was gained. This is probably the
ambiguity of all learning, but it is especially so for mathe-
matics. That is the topic of this paper.

General Meaning of Mathematical Working
Experience
Here is an indication of why mathematical working experi-
ence has something to say to the general intellectual public.

Pulls and Pushes

Sometimes we who teach mathematics are told: Make it
easy and Don’t lose a student! However, our working
experience shows that:

• mathematics is confusing and damned hard as long as
one has not understood it, and when one has understood
it, it is easy and clear; and

• mathematics is invisible for the students in their envi-
ronment, unless they look a bit beneath the surface.3

All people have had their own personal experience: that
they received bruises from mathematics. We got them
ourselves as students. Later, as professionals, we also got
bruises from working with mathematics. And for all people
(laymen, students, and professionals) it can be difficult to
recognize how mathematics works behind the scene in the
real world. Of course, we may share the hope that, for
doing, learning, applying, and teaching mathematics, we
get something interesting out of the theories of communi-
cation and psychology; get some hints at how to make
research, development, and teaching better. But do we?

Part I

Looking Back—Have the Students’ Mind-Sets

Changed?

Recall the functional administrators’ claim: The mind of the
student has changed and your teaching is worthless unless
you change yours, too.That claim is supported by the general
‘‘wisdom’’ that we deal with a browse-generation or a me-
generation, but it is misleading. In the sociology and neu-
ropsychology literature, there is no evidence of such sudden,
general, and deep changes regarding our students’ or our
own capacity for learning and teaching mathematics.4

1Following the call of Benjamin Ginsberg (The Fall of the Faculty: The Rise of the All-Administrative University and Why It Matters, Oxford University Press, 2011,

288 pp., ISBN 9780199782444), I wish to support the resistance of mathematicians against administrators’ uninformed and purely functional demands. We shall not

obey but refuse the mentioned demands; and we shall further develop original, even risky ideas in our research and not just increase numerically our publication output

to satisfy budget claims and funding agencies’ priorities.
2Bleecker, David D., Booß-Bavnbek, Bernhelm. Index Theory—With Applications to Mathematics and Physics. International Press, Somerville, MA, 2013.

xxii + 769 pp., ISBN: 978-1-57146-264-0. MR3113540.
3In the words of my Roskilde colleague Mogens Niss, Secretary-General of the International Commission on Mathematical Instruction (ICMI) from 1991–1998, we have

to deal with’’the combined obstacle of the invisibility of mathematics in society and the fact that mathematics is a difficult subject to learn, regardless of the approaches

applied.’’ (Niss, Mogens. Mathematics in Society. In: Biehler, I., et al. (eds.), Didactics of Mathematics as a Scientific Discipline. Kluwer Academic Publishers, Dordrecht,

1994, ISBN 0-306-47204-X, pp. 367-378.).
4For the systematic underestimation of dedicated students’ capacity to protect themselves against the media dominance see McLuhan, Marshall; with Fiore, Quentin;

produced by Jerome Agel. The Medium is the Massage: An Inventory of Effects. 1st Ed.: Random House, 1967; reissued by Gingko Press, 2001. ISBN 1-58423-070-3;

see also Hurrelmann, Klaus. Selbstsozialisation oder Selbstorganisation? Ein sympathisierender, aber kritischer Kommentar. Zeitschrift für Soziologie der Erziehung und

Sozialisation, 22/2 (2002), 155–166; see also Sutter, Tilmann. Medienanalyse und Medienkritik: Forschungsfelder einer konstruktivistischen Soziologie der Medien. VS

Verlag für Sozialwissenschaften. Wiesbaden, 2010, ISBN 978-3-531-16910-1. Girls of 12 or 13 years who cannot resist the social pressure or their own wish to upload
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Evolutionary Evidence

Our ancestors have bred dogs for at least 20,000 to
30,000 years, perhaps for 500,000 years.5 Most modern
dogs do not look like wolves and each breed looks dif-
ferent. But the animal psychologists write in their books
that we must expect 80% of the behavior of our dog to be
lupine.6 I do not know how they measure and quantify, but
every dog owner can confirm: After 5000 generations of
breeding adjustments, the basic behavior shows almost no
change. There is an astonishing stability.

When talking about learning and teaching mathematics,
we deal with the human mind: it is quite different from that
of dogs, much more variable, namely much more able to
adapt to new situations. But is there evolutionary evidence
for deep changes in basic human behavior?

One answer is the Cro-Magnon aesthetics in La grotte de
Lascaux, in Le tombe di Tarquinia, and in the works of
Tiziano Vecellio, Paula Modersohn-Becker, and Jackson
Pollock (see Figure 2). All of them provide strong evidence
of the apparently indestructible stability of human curiosity
and imagination, of concentration and creativity. This is
exactly what we want from our students.

What Is the Supposed Momentous Historical
Media-Generated Change of Consciousness
About?
Can we easily discard all the present talk on ongoing media-
generated changes of our own and our students’ lifestyle and
ways of thinking? The short answer is yes and no!

• No: social influences cannot be discarded. Otherwise,
showingourpersonal example anddelivering our teaching
would be dispensable. And we don’t want to believe that.

• Yes: to do mathematics, disturbing social influences must
be eliminated or at least confined; learning mathematics
requires full concentration and time, and a student will
hardly make progress if he or she is not able to let
himself or herself be absorbed by mathematics for hours,
days, and years.

A. R. Luria

A. R. Luria lived from 1902 to 1977. In 1974, the Soviet neu-
ropsychologist and developmental psychologist Alexander
Romanovich Luria published a comprehensive empirical
study about cognitive changes induced by social conditions—
under the extreme social changes of the first years after the
Bolshevist revolution.7

He indeed found remarkable differences. For example,
people raised in larger and more urban places were good at
taxonomic classification, that is, the use of abstract cate-
gories such as tools (assigning an ax, saw, shovel, quill, and a
knitting needle to the same group), whereas people raised
in remote areas were better at classifications regarding
practical situations such as the work process of sawing and
chopping wood or reconstructing a meal situation by
grouping together objects such as a table, a tablecloth, a
plate, a knife, a fork, bread, meat, and an apple. So, different
cultural environments can induce different mind-sets.

Even so, Luria found something more, which now is
relevant for doing mathematical research and developing
applications, for learning and teaching mathematics,
namely that all people can easily adapt to radical new ways

Figure 1. Cover art of my book with Bleecker: M. C. Escher,

Ascending and Descending, 1960, Logo for this paper.

Footnote 4 continued
naked selfies to the Internet most probably must change later when they wish to study mathematics; see Politiken Digitalt. Unge sender
hinanden afslørende nøgenbilleder i stort omfang. 3 April 2014.
5Larson, Greger; et al. Rethinking dog domestication by integrating genetics, archaeology, and biogeography. Proc. Natl. Acad. Sci. U.S.A. 5 June 5 2012; 109, 8878–

8883.

6Svartberg, Kenth; Forkman, Björn. Personality traits in the domestic dog (Canis familiaris). Applied Animal Behaviour Science 79 (2002), 133–155; McBride, Anne. The

human–dog relationship. In: Robinson, I. (Ed.), The Waltham Book of Human–Animal Interaction: Benefits and Responsibilities of Pet Ownership. Pergamon, Oxford,

1995, ISBN 978-1483234748, pp. 99–112; Tami, Gabriela; Gallagher, Anne. Description of the behaviour of domestic dog (Canis familiaris) by experienced and

inexperienced people. Applied Animal Behaviour Science 120 (2009), 159–169.
7Luria, Alexander R. The Cognitive Development: Its Cultural and Social Foundations. Harvard University Press, 1976 (Translation from the Russian original of 1974),

ISBN 0-674-13731-0. Here pp. v and, in particular, pp. 64 and 164. Similarly, but from a religious (Roman Catholic) perspective, the essay: Ong, Walter J. Interfaces of

the Word: Studies in the Evolution of Consciousness and Culture. Ithaca, N. Y. Cornell University Press, 1977, 352 pp., ISBN 0-8014-1105-x.
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of thinking in new environments. The only precondition is
that the new environments are presented in a peaceful way,
notwithstanding how dramatic and even painful the chan-
ges and the challenges may be.

Preliminary Conclusion

There is no evidence of short-term changes of the students’
mind-sets. Neither the media nor twelve years of possibly
poor schooling can squander the natural mathematical
curiosity of an attentive audience in young minds.

Part II

Mathematics IS Hard—How and Why?

The Vest Trick

Some time ago, I was consultant/supervisor for a third-
semester project. In the semester opening I presented

myself doing the entertaining vest trick8 to illustrate what a
topologist (my specialty) is doing (Figure 3), namely to
think about questions such as How is it possible that I can
remove a vest under my jacket? Has it something to do with
the uneven number of my heads or the even number of my
arms etc.? The students asked Is this mathematics? We
discussed it. I had to admit that a similar problem in two
dimensions is well understood. It is the question of whe-
ther a closed curve in the punctured plane (a plane in
which one point, e.g., the origin, is removed) is con-
tractible. The question can be easily decided by calculating
the winding number of the curve; and there are various and
seemingly very different methods for doing that (calculat-
ing a path integral, solving a differential equation, by
combinatorics, etc.). The curve is contractible if and only if
the winding number vanishes. But what can we do with the
three-dimensional case?

Figure 2. Art evidence of long-time mind stability makes students’ alleged short-term mind changes highly improbable. (All

reproductions from Wiki, public domain.)

8Nicely discussed in Stewart, Ian. Mathematical Recreations—The Topological Dressmaker. Scientific American, July 1993. A related topological puzzle is The Dirac

String Problem, thoroughly explained in Hansen, Vagn Lundsgaard. Braids and Coverings: Selected Topics. With appendices by Lars Gæde and Hugh R. Morton.

London Mathematical Society Student Texts, 18. Cambridge University Press, Cambridge, 1989, x + 191 pp., ISBN: 0-521-38479-6, pp. 39–45.
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Those were not the questions that the students were
most interested in. Neither were they surprised that I could
not tell them a solution at once. What triggered their
curiosity and resulted in a full semester’s work was their
own question, namely, if can one tell from the outside
whether a mathematical problem is hard or easy. More
precisely: How can it be that many problems in mathe-
matics are easy to formulate but difficult to solve? They
investigated that question by looking carefully at various
historical examples (long and fascinating stories). Anyway,
in this way they gave me the idea for this Part II of my
article: What were the answers of the giants of mathematics?

J.-L. Lagrange

J.-L. Lagrange lived from 1736 to 1813. To me, Giuseppe
Lodovico (Luigi) Lagrangia (Joseph-Louis Lagrange) is one
of the most important figures in the history of mathematics.
He was extremely successful in introducing radically new
and often highly abstract concepts, making mathematical
ideas clear and comprehensible even to a non-genius.
Otherwise these ideas would have remained the domain of

the intuition of outstanding people. He replaced Euclid’s
polygons and Descartes’ curves by homotopies; his Second
Letter to Euler, of 12 August, 1755,9 is the birth certificate of
deformation theory and differential topology; and he
replaced the Eulerian mechanics that attempted to follow
the ever–more-confusing visible orbits of single pieces by
his mechanics of the more easily tangible underlying in-
visible potentials.

When he died on 10 April 1813, there was an official
obituary (by Delambre)10 and a ‘‘Supplement’’ by a person
designated G. The supplement dealt with his last days and
the thoughts he expressed shortly before his death.
Nobody knows who G. was. There are some speculations,
which were investigated and reported in a paper by the
mathematics historian Ivor Grattan-Guinness.11 He argues
that G.’s Supplement is believable.

The following quotes by Lagrange are from Grattan-
Guinness’s paper. Until his death, according to these doc-
uments, Lagrange felt sorry for his students that they had to
read his textbooks, Lagrange’s masterpieces in mechanics,
which are so much more elaborate, intricate, and harder

Figure 3. The author demonstrating the vest trick: exploring counterintuitive 3D. Photograph courtesy Poul Erik Nikander

Thomsen, Roskilde University.

9Bleecker & Booß-Bavnbek, l.c., pp. 65f, Latin with English translation.
10Delambre, Jean-Baptiste Joseph. Notice sur la vie et les ouvrages de M. le Comte J.-L. Lagrange. In : Œuvres de Lagrange. Gauthier-Villars, 1867

(1, pp. ix–li). https://fr.wikisource.org/wiki/Notice_sur_la_vie_et_les_ouvrages_de_M._le_Comte_J.-L._Lagrange.
11Grattan-Guinness, Ivor. A Paris Curiosity, 1814: Delambre’s Obituary of Lagrange, and Its ‘‘Supplement.’’ In: Mathemata, pp. 493–510, Boethius Texte Abh. Gesch.

Exakt. Wissensch., XII, Steiner, Wiesbaden, 1985. MR0799763.
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than all previous mechanics treatises. Of course, Lagrange
was right: His books were dispensable for the calculation of
simple mechanical systems—but indispensable for making
complex mechanical systems transparent, understandable,
and calculable for the human brain. He felt ‘‘…sorry for the
young geometers who have such thorns to swallow. If I
had to start again, I would not study: These large in-4�
would make me too scared.’’ He proposed instead a one-
volume reprint of original works of the calculus by Fermat,
Leibniz, l’Hôpital, and especially John Bernoulli’s lectures
on the integral calculus, together with another volume
comprising items by Euler and d’Alembert.

Delambre had quoted Lagrange, ‘‘If I had had a fortune,
I would probably not have made my profession [état] in
mathematics.’’ G. supplemented this by recalling an occa-
sion when Lagrange had met ‘‘a young man devoting
himself to the exact sciences with much ardour,’’ and on
asking him ‘‘Do you have a fortune?’’ and receiving a
negative answer had replied: ‘‘so much the worse, sir. The
lack of fortune and of the existence it can give in the world,
is a constant stimulus which nothing can replace, and
without which one cannot bring to hard tasks all the nec-
essary progress [suite].’’ Lagrange knew what he was
talking about. His father had been rich after an advanta-
geous marriage, but he had lost all in risky businesses. To
Lagrange this was not deplorable. Because he knew how
hard mathematics can be—and he knew that its hardness is
widely recognized and rewarded with a quiet and studious
life of doing something difficult that other people cannot
do.

When Lagrange was teaching, his ‘‘researching intelli-
gence’’ (G.) could cause sudden lapses in conversation. G.
described the effect on his lectures at the École
Polytechnique:

‘‘Who has not seen him suddenly interrupt himself
thus in the lectures which he gave at the École
Polytechnique, appearing sometimes embarrassed
like a beginner, leaving the blackboard and coming
to sit down opposite the audience, while teachers
and students, confused on the seats [bans] expected
in a respectful silence that he would have led his
thought back from the spaces that it had gone to
travel through.’’

To Lagrange, all mathematics was hard, also when it was
seemingly easy for the student and would reveal its
hardness only for the expert. So, the main goal of a
mathematician’s life was to think of how to make
mathematics easier and more accessible, sometimes at
the cost of introducing further abstract, and more elabo-
rate concepts.

In essence and in my reformulation: Mathematics can be
made easy and comprehensible only by accepting and
enduring its hardness. Students are exposed to the cultural
clash immanent in abstractions, formalism, and symbol
processing. Teachers must help them to experience that
clash as a positive step, like the processes of adolescence or
seeking work abroad, and not as a series of defeats. For

sure, it does not help with well-intended lies or self-de-
ception about easy access to mathematical abstractions as
demanded by the new caste of administrators. Acquiring
mathematical experience is nothing that falls from
heaven or comes from playing on the ground. It
requires work, concentration, exercises, and endurance:
Ὁ μὴ δαρεὶς ἄνθρωπος οὐ παιδεύεται  (‘‘The non-flayed human
will not be educated,’’ Menander, c. 341/342– c. 290 BCE,
disseminated by J. W. Goethe as a motto over his autobi-
ography Dichtung und Wahrheit), or less draconic, Ohne
Fleiß kein Preis (‘‘No pain, no gain,’’ after Hesiod, thought
by scholars to have been active between 750 and 650 BCE).

The mathematicians I admire most are very close to
Lagrange’s position in continuing a lifelong interest in
teaching mathematics and insisting that the essence of
mathematics, triggering curiosity and creativity and its true
place in applications, is that it is hard, and that it becomes
dispensable and replaceable by engineering arts and
econometric analyses, etc., when it becomes easy.

I. M. Singer

I. M. Singer (born 1924) can rightly take pride in his
achievements, among others, the Index Theorems, which
brought him the Abel Prize in 2004 jointly with M. F. Atiyah.
When afterward he was asked what he would do next, he
did not hesitate: ‘‘Now I want to use more sophisticated
mathematics not yet available to physics.’’12 Clearly, to
Singer, the role of mathematics is to handle extremely hard
problems.

Part of the story is that this same man, during all his
recent years (he is now 93 years old), participates at MIT in
teaching beginning mathematics and, as he says with great
intellectual satisfaction, nursing and watching the emerging
mathematics understanding of young students:

A while back, I decided to be a TA in the freshman
calculus course. I think I was motivated to do so
because I had been too far removed from under-
graduates. Making contact with freshmen again was a
wonderful experience… Teaching does integrate
with my other work. I’m inclined to understand
rather than solve. For me, doing research means
understanding something nobody has understood,
and then telling others about it. What makes me a
good teacher is empathy. I can put myself in the
position of a student and know what they don’t
understand. If I know them well enough, I can
explain what they don’t understand in terms they can
comprehend.13

V. I. Arnold

Some attribute to V. I. Arnold (1937–2010), and his former
students, the most decisive advances in the mathematical
understanding of dynamical systems since the seminal
work of H. Poincaré more than 100 years ago. When he
was asked about the situation of mathematics in Russia
after the fall of the Soviet Union, he deplored it in his

12Singer, I. M. Transcript of May 12, 2010, MIT150 interview, http://mit150.mit.edu/infinite-history/isadore-singer, accessed May 21, 2015.
13L.c.
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sarcastic way: ‘‘Well, it’s terrible. Now the professors are
cleverer and know more than the students.’’

How sad. Indeed, teaching and learning mathematics is
only interesting when the teacher in each meeting with the
students, say of one hour, gets at least one new mathe-
matical idea. Otherwise it does not work with our goal,
namely to socialize a new generation of mathematics stu-
dents to the way of mathematical thinking.14 The hour
would have been lost—or could have been left to an
electronic instruction device—with the same default result.

In an article15 tracing the history of his own research,
Arnold showed how apparently unrelated subjects are
linked by a kind of mycelium from which theorems pop
up like mushrooms (see Figure 4). Continuing his lifelong
battle against formalism and Bourbakism, he distinguishes
the ease of communicating formal theorems from the
hardship of explaining the underlying ideas in the fol-
lowing parable:

‘‘When you are collecting mushrooms, you only see
the mushroom itself. But if you are a mycologist, you
know that the real mushroom is in the earth. There’s
an enormous thing down there, and you just see the
fruit, the body that you eat.
‘‘In mathematics, the upper part of the mushroom
corresponds to theorems that you see, but you don’t
see the things which are below, that is: problems,
conjectures, mistakes, ideas, and so on.
‘‘You might have several unrelated mushrooms being
unable to see what their relation is unless you know
what is behind. And that’s what I am now trying to
describe. This is difficult, because to study the visible
part of the mathematical mushroom you use the left
half of the brain, the logic, while for the other part the
left brain has no role at all, since this part is highly
illogical. It is hence difficult to communicate it to
others.’’

E. Artin

In the same vein, Artin (1898–1962) wrote in his famous
Bourbaki review of 1953:

‘‘We all believe that mathematics is an art. The author
of a book, the lecturer in a classroom tries to convey
the structural beauty of mathematics to his readers, to
his listeners. In this attempt he must always fail.
Mathematics is logical to be sure; each conclusion is
drawn from previously derived statements. Yet the
whole of it, the real piece of art, is not linear; worse
than that its perception should be instantaneous. We
all have experienced on some rare occasions the
feeling of elation in realizing that we have enabled
our listeners to see at a moment’s glance the whole
architecture and all its ramifications.’’16

F. Hirzebruch

Since the 1950s, Hirzebruch (1927–2012) was the out-
standing figure of mathematics in Western Germany. He
was the natural candidate as director of a Max-Planck
Institute (MPI) in mathematics, and he became the director
of the first MPI in mathematics in Bonn in the 1980s. But for
decades there had been no MPI for mathematics.

Shortly after the end of World War II, many MPIs were
founded and lavishly financed to bring the sciences in the
Federal Republic of Germany rapidly back to a top inter-
national level after their decline and demolition during the
Nazi period.

Once I asked Hirzebruch why the Bonn MPI for math-
ematics came so late? He told me frankly that at least one
reason was a controversy between him and the Board of
the Max-Planck Gesellschaft (MPG).

Contrary to the MPI tradition of teaching-free research,
Hirzebruch had insisted that research in mathematics
without teaching is meaningless, that, as a rule, new
mathematical results are too hard to be digested at a dis-
tance; that they will falter rapidly when they are not
forwarded instantaneously to new generations in interper-
sonal communication; that most young students need the
contact and the role model of a successful researcher to
overcome the hardships of acquiring mathematics. Conse-
quently, there should only be very few permanent
positions for the directors and support staff, whereas the
main human resources should consist of university teachers
on leave as guest researchers for midterm stays. It took him
several decades to reach the MPG’s acceptance for this
deviating status of mathematics research, that is, that it is
meaningless without the umbilical cord to teaching and
that all members of the MPI for mathematics had to have an
association with teaching.

Y. I. Manin

Like Artin and Hirzebruch, Manin (born 1937) is a magician
who can create a world of deep interrelated concepts and

Figure 4. The mathematical mushroom, according to V. I.

Arnold (2004). Reprinted with permission of the Mathematical

Association of America.

14In essence, this goal is expressed in S. Eilenberg’s sententious teaching advice: ‘‘Mathematics is a performance art, but one whose only audience is fellow

performers.’’ Cited from Bass, Hyman. Mathematics and Teaching. Notices Amer. Math. Soc. 62/6 (June/July 2015), 630–636.
15Arnold, Vladimir I. From Hilbert’s superposition problem to dynamical systems. The American Mathematical Monthly 111, No. 7 (Aug.–Sep., 2004), 608–624, preview

at https://www.jstor.org/stable/4145164?seq=1#page_scan_tab_contents. Reprinted in: Mathematical Events of the Twentieth Century, pp. 19–47, Springer, Berlin,

2006. MR2182777.
16Artin, Emil. Éléments de mathématique. by N. Bourbaki. Book II, Algebra. Chaps. I–VII. Book review. Bull. AMS 59/5 (1953), 474–479, here p. 475.
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results for his audience within 60 min, so that most people
in his audience have a strong feeling of having understood
a lot, of being almost able to walk on water. Of course,
when you go home and begin to work your way through
your notes, your feeling will change, and you will feel
stupid and discouraged: there are too many things you
can’t understand in detail, and in mathematics that means
that you don’t understand.

Manin himself commented in his textbook on mathe-
matical logic17 that mathematical abstractions are hard to
grasp; that thinking in symbols, although extremely
effective in many contexts and indispensable in some, is
deeply against human nature. He explains that concept
very carefully in his book and partially with references to
facts based on some observations made by the psychol-
ogist A. Luria on patients with brain injuries. Some of the
patients had preserved a sound judgment of the situation
in hospital, for example, of differences between various
doctors and nurses in their competences and engagement,
but they lost the ability to think in relations: is an elephant
bigger than a fly or a fly bigger than an elephant? His
claim: Abstraction is in essence more difficult for human
nature than making judgments on personal relationships,
etc.

Note that fully, consciously, and explicitly, Manin’s
insight or claim is directed against the traditional claims of
all logicists and many adepts of mathematization who
consider the process of abstraction and formalization as a
process of simplification and clarification.

C. S. Peirce

C. S. Peirce (1839–1914) had an anthropological message
that our concepts, also our scientific concepts, have
evolved in human praxis during more than 100,000 years of
experience with the various contexts humans have had
throughout time.

The good side of the message is that in most situations,
common sense and scientific, mathematics-based argu-
ments need not contradict each other. The bad side of the
message is, with a view toward the emerging quantum
mechanics at Peirce’s time, we have a problem when
dealing with phenomena in an artificial environment that
our mind for thousands of years has not been accustomed
to. Then we must transgress common sense because it will
for the most part be systematically misleading.18

C. F. Gauss and L. Hörmander

C. F. Gauss (1777–1855) and L. Hörmander (1931–2012)
were masters in standard formulations when they reviewed

the work of other mathematicians: Incomprehensible—
wrong—I did it a long time ago.

To me, such typical referee reports prove that reading
mathematics papers is always hard, even for the greatest
mathematics geniuses. Correspondingly, we have in
mathematics two very different exclamations of agreement,
it’s trivial and it’s clear. The first is pejorative: don’t waste
my time with your boring stuff; the second is highest
acclamation: aha, now I see; this is really hard stuff you are
telling me!

H. Cramér

H. Cramér (1893–1985), in his monumental monograph
Mathematical Methods of Statistics of 1945, proved that the
Chi square test statistic, that is, the sum of relative errors
between observed and expected magnitudes with f degrees
of freedom, is distributed like the corresponding Chi square
distribution with f degrees of freedom. For f = 1, it is the
classical result by Karl Pearson of 1900, and its proof is
reproduced in most textbooks of mathematical statistics.
For applications in material sciences, biology, and medi-
cine, Cramér’s theorem is applied. Perhaps it is the most
applied mathematical theorem of the 20th century. But to
my best knowledge, its proof has never (!) been repro-
duced. You can only find it in Cramér’s textbook.19 It is
lengthy and not very inspiring. It is laborious—and boring.
The main idea is much clearer for f = 1 than in the general
case.

Such is mathematics that it has theorems that are easy to
apply but hard to understand and, in practice, perhaps
understood only by the author of the theorem and a
handful of readers of the original publication.

P. J. Davis

In a public talk in Roskilde, P. J. Davis (born 1923) gave a
similar example when he confessed that he never had
completed his checks of the proof of the principal axis
theorem on block-diagonalization of normal matrices in
linear algebra in spite of the fact that this theorem was a
central tool in many of his works on effective numerical
methods.

In a paper, Davis expanded on his view that we must
live with some imperfections also in mathematics, that
some basic tasks in numerical analysis are too hard to
admit a rigorous approach.20 Among his examples he
refers to the concept of numerical stability in iterations,
when, contrary to the toy examples of elementary classes
in numerical analysis, no estimates are available about

17Manin, Yuri I. A Course in Mathematical Logic for Mathematicians. Second edition. Chapters I–VIII translated from the Russian by Neal Koblitz. With new chapters by

Boris Zilber and the author. Graduate Texts in Mathematics, 53, Springer, New York, 2010. Xviii + 384 pp. ISBN: 978-1-4419-0614-4 MR2562767.
18Peirce, Charles Sanders. The Architecture of Theories. The Monist, 1891 (CP 6.7–25, 31–34). Reprinted in Philosophical writings by Peirce—Selected and edited with

an introduction by Justus Buchler. Dover Publications, New York, 1955, ISBN 0-486-20217-8, pp. 315–323, here p. 317: ‘‘Thus it is that, our minds having been

formed... under the influence of phenomena governed by the laws of mechanics, certain conceptions entering into those laws become implanted in our minds, so that

we readily guess at what the laws are. Without such a natural prompting, having to search blindfold for a law which would suit the phenomena, our chance of finding it

would be as one to infinity. The further physical studies depart from phenomena which have directly influenced the growth of the mind, the less we can expect to find

the laws which govern them ‘simple,’ that is, composed of a few conceptions natural to our minds.’’
19Cramér, Harald. Mathematical Methods of Statistics. Princeton Mathematical Series, vol. 9. Princeton University Press, Princeton, N. J., 1946. Xvi + 575, pp.

MR0016588, here chapter 29.
20Davis, Philip J. The Relevance of the Irrelevant Beginning, Science Open Research, 2014, 5 pp., DOI: 10.14293/A2199-1006.01.SOR-MATH.6G464.v1.
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the achieved precision of an approximate result. Never-
theless, we have to stop the iterations at some point. For
solving systems of differential equations, a common stop
rule is when the results become unchanged under further
iteration or refinement of the underlying discretization.
Then a result seems to become stable and reliable, while
we have examples in which numerical stability can be
achieved far from the true result. To comfort our math-
ematical fears and uncertitude, Davis usually cites
Richard Hamming (1915–1998) for having said, ‘‘I would
never fly with a plane where the construction depends
on the difference between the Riemann and Lebesgue
integral.’’21

Davis points to another symptom of the difficulty of
doing mathematics, namely our almost unlimited freedom
to add or to remove assumptions, although sharply re-
strained by logical demands regarding the formulation and
consistency, and even more sharply restrained by respect-
ful regard for the history of a topic and which examples or
expansions might be considered meaningful and which
might not be.

Warning 1

From a technological point of view, hard and presently
unsolved problems are wonderful and highly applicable,
like the present lack of efficient algorithms to factorize a
given product of two large prime numbers into its two
components, or other presently unsolved problems
regarding elliptic curves that keep the common public keys
in cryptology relatively safe!

Warning 2

For numerical algorithms in the analysis of dynamical
systems and of combinatorial tasks, for example, in
graph theory, mathematicians try to give asymptotic
estimates about the complexity (i.e., the expected time
necessary for a solution) of a problem. By definition,
the problems that are hardest to solve are the so-called
NP-complete problems such as the traveling-salesman
problem. For practical purposes, the perfect organiza-
tion of just-in-time delivery for retail store chains shows
that one never should become blocked in the search for
practical solutions by seemingly insurmountable asymp-
totic estimates.

Piet Hein

Piet Hein (1905–1996) wrote the following verse:
Problems worthy
of attack
prove their worth
by hitting back.

Mathematics IS Easy—Really?

In the previous section ‘‘Mathematics is Hard—How and
Why?,’’ I tried to explain why learning and doing mathe-
matics is hard, by necessity. But what about the many
people, pupils, students, teachers, and researchers, who
love to spend many hours thinking about a mathematical
problem; some early in the morning when one is fresh,
some late in the night when one is not disturbed, some on
their desk and some while jogging or walking their dogs?
And what about the rich treasures of investigations, sug-
gestions, and predictions of how doing mathematics can be
made easier and more accessible?

I comment on the most outspoken positions.

A. Schopenhauer

In his treatiseDie Welt als Wille und Vorstellung (The World as
Will and Representation), philosopher Arthur Schopenhauer
(1818)—or rather a philosopher-poet like the many other
Germanphilosopher-poetsHegel, Nietzsche, Heideggerwith
their love for extensive formulations—released the following
torrent of words22 against themathematicians’ arrogance and
stupidity making mathematics, according to Schopenhauer,
unnecessarily hard and nonintelligible, and that Euclid’s
classical arguments were monstrous and dispensable:

…mathematical knowledge that something is the case
is the same thing as knowledge of why it is the case,
even though the Euclidean method separates these
two completely, letting us know only the former, not
the latter. But, in Aristotle’s splendid words from the
Posterior Analytics, I, 27: ‘A science is more exact and
more excellent if it tells us simultaneously what
something is and why it is, not what it is and why it is
separately.’ In physics we are satisfied only when our
recognition that something is the case is united with
our recognition of why it is, so the fact that the mer-
cury in a Torricelli tube is 28 inches high is a poor kind
of knowledge if we do not add that it is held at this
height to counterbalance the atmosphere. So why
should we be satisfied in mathematics with the fol-
lowing occult quality of the circle: the fact that the
segments of any two intersecting chords always con-
tain equal rectangles? Euclid certainly demonstrates it
in the 35th proposition of the third book, but why it is
so remains in doubt. Similarly, Pythagoras’ theorem
tells us about an occult quality of the right-angled
triangle: Euclid’s stilted (stelzbeinig), indeed under-
hand (hinterlistig), proof leaves us without an
explanation of why, while the following simple and
well-known figure (Figure 5) yields more insight into
the matter in one glance than that proof, and also
gives us a strong inner conviction of the necessity of
this property and of its dependence on the right angle:

21Hamming, Richard W. Mathematics on a Distant Planet. Amer. Math. Monthly, 105 (1998), no. 7, 640–650. http://www.ams.org/mathscinet-getitem?mr=1633089.

The full quote is ’’for more than 40 years I have claimed that if whether an airplane would fly or not depended on whether some function that arose in its design was

Lebesgue but not Riemann integrable, then I would not fly in it. Would you? Does Nature recognize the difference? I doubt it!’’ [p. 644]. Certainly, Hamming’s insistence

on robustness in applications is a relief. However, it is a fact that certain highly applicable concepts, such as the Hilbert space L2 of equivalence classes of measurable,

square-integrable functions, can only be established by embracing all Lebesgue integrable functions to obtain the indispensable completeness.
22Schopenhauer, Arthur. Die Welt als Wille und Vorstellung. Werke in 5 Bänden, hrsg. von L. Lütkehaus. Haffmans, Zürich, 1991, vol. 1, §15, p. 119. English translation

in: The world as will and representation; translated and edited by Judith Norman, Alistair Welchman, Christopher Janaway; with an introduction by Christopher

Janaway. The Cambridge Edition of the Works of Schopenhauer. Cambridge University Press, Cambridge and New York, 2010, p. 98.
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Often when outsiders comment on mathematics it strikes
me how little they understand of the crux of a mathematical
achievement. So also Schopenhauer: The crux of
Pythagoras’ Theorem is its validity for all right triangles in
the plane, that is, even when the sides at the right angle are
unequal. By the way, that’s until today the most typical
application of the theorem in construction: To check
whether the walls in a room or a house are rectangular, a
carpenter would mark a 3-meter (or yard) point upward in
a corner, a 4-meter (or yard) point along a wall on the floor,
and then check whether the straight line between the two
marks is exactly 5 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32 þ 42
p

meters (or yards).
One would expect an error term; but no, Pythagoras

claims and Euclid proves that the error term vanishes even
when we deform the right triangle, within the class of right
triangles. Later generations proved that Pythagoras’ theo-
rem remains basically valid even for non-right triangles,
incorporating an error term coming from the cosine of the
included angle, and for right triangles on a sphere, incor-
porating a curvature error term coming from the sphere’s
radius. So, for a mathematician, the Pythagoras’ Theorem is
an approximation theorem, in which you can change
something with controlled effects, sometimes with zero
effect, sometimes with nonvanishing, but calculable effects.

Of course, mathematics can be much easier when we
remove the key points and reduce it to trivialities. Actually,
we can answer Schopenhauer, that mathematics would
become even easier when we reduce it to the empty set. So
far, Schopenhauer only shows his lack of understanding.

However, he rightly points to the difference between
checking a proof, line by line, as opposed to grasping the
reason for the validity of a claim. Every mathematician has
experienced it: that we still do not understand a given
proof after we have checked it step-by-step. Hence, in
modern textbooks and for papers in learned journals,
authors are praised when they explain the underlying idea
of a proof before the reproduction of the proof in its
details.

C. F. Gauss

Gauss’ (1777–1855) reply to Schopenhauer was: ‘‘On the
contrary! Mathematics is so difficult that we never should
tell the reader how we got the idea. In most cases it will be
either impossible or distracting to make the idea explicit.
To make results accessible we shall hide all complications

we had to meet and overcome, and keep silent about the
wrong tracks we went when searching and finding the
proof. What counts in mathematics is only a presentation of
the purified final form.’’23 For 200 years, Gauss’ perception
of simplicity through hiding the birth pangs and presenting
only the sleek version has dominated the publication cul-
ture of mathematics. Fortunately, it has been on the retreat
along with the retreat of Bourbakism.

M. F. Atiyah

Although Atiyah (born 1929) has personally contributed
to the creation of many new mathematical theories,
concepts, and methods, he insists that mathematics is
becoming easier and more transparent by the emergence
of each new mathematical achievement. He compares
mathematics with a warehouse: ‘‘Looking for a box of
nails in a small country shop and finding the right ones
can be harder than looking around in a big specialized
department store like Bauhaus.’’ Clearly, it is easier to
find your way around in a big, well-organized modern
department store than an old-fashioned mom-and-pop
store. Making mathematics more complex opens many
new crossroads and makes search and communication
easier. Such is the argument.24

Atiyah’s optimistic claim is based on his view of an ever
clearer emerging unity of mathematics. In a paper, Davis
and I refuted that unity belief as a myth.25

Figure 5. Schopenhauer’s fantasied ‘‘simplification.’’ Reprinted

from the second German edition of Die Welt als Wille und

Vorstellung, Leipzig 1844, vol. 1, book 1, §15, public domain.

23A typical example is provided by Gauss’ first proof of the Fundamental Theorem of Algebra of 1799. Gauss, Carl Friedrich. Demonstratio nova theorematis

omnem functionem algebraicam rationalem integram unius variabilis in factores reales primi vel secundi gradus resolvi posse. Helmstedt: C. G. Fleckeisen. 1799

(tr. New proof of the theorem that every integral rational algebraic function of one variable can be resolved into real factors of the first or second degree). German

translation in: Netto, Eugen (ed.): Die vier Gauss’schen Beweise für die Zerlegung ganzer algebraischer Funktionen in reelle Factoren ersten oder zweiten Grades

(1799–1849), Ostwald’s Klassiker der Exakten Wissenschaften Nr. 14, Wilhelm Engelmann, Leipzig, 1890, pp. 3–36, 83 (figures). Accessible at University of

Toronto, https://archive.org/details/dieviergausssche00gausuoft. Contrary to d’Alembert’s proof of 1746, Gauss keeps this proof deliberately in purely real terms.

However, one can easily trace the underlying complex constructions in the real presentation.
24Atiyah, Michael F. Trends in Pure Mathematics. In: Proc. of the 3rd Internat. Congress on Mathematical Education (Karlsruhe 1976). 1979, pp. 61–74. Reprinted in

Collected Works, vol. 1, pp. 261–276. MR0951896. In H. Bass, l.c., p. 633, a similar thought is elaborated under the heading compression, which means ‘‘a process by

which certain fundamental mathematical concepts or structures are characterized and named and so cognitively rescaled so that they become, for the expertly

initiated, as mentally manipulable as counting numbers is for a child.’’.
25Booß-Bavnbek, Bernhelm; Davis, Philip J. Unity and Disunity in Mathematics. Newsletter of the European Mathematical Society, No. 87 (March 2013), 28–31.

Reprinted and extended in Davis, Philip J. Unity and Disunity, And Other Mathematical Essays. American Mathematical Society, Providence, RI, 2015. pp. Ix + 149,

ISBN: 978-1-4704-2023-9, MR3495468.
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J.-L. Lagrange

This is the same Lagrange (1736–1813) who appeared
previously as witness of the inevitable hardness of mathe-
matics. Now I call him as witness for the ease and simplicity
of mathematical physics. Regarding the celestial bodies of
our solar system, he noticed that the planets are moving on
almost circular orbits and most comets on very eccentric
elliptic orbits. He concluded that ‘‘nature favors planetary
approximations by grouping heavenly bodies according to
very small and enormous eccentricity.’’26 Indeed, for each
of the two extreme cases we have specific and very pow-
erful expansions, which would fail in the middle range.
Modern astrophysics teaches us, however, that this is a very
special property of our solar system because of the domi-
nance of the two gas planets Jupiter and Saturn, which, on
the whole, make our system so surprisingly stable. Other
solar systems in the Milky Way seem to provide for more
challenging mathematical problems.

We may expand Lagrange’s argument for nature pro-
vided simplicity to large parts of mathematical physics
where we, for example, do not have to deal with very
general differential equations with arbitrarily varying coef-
ficients but with geometrically defined operators with
strong inherent symmetries such as the Laplace or the Dirac
operator that are, moreover, often controlled by potentials
and other background fields. Therefore, large parts of
mathematical physics that are based on first principles and
geometry are mathematically easier and more accessible
than some parts of biology that are less mathematized,
based on ad hoc assumptions and so tangled up in non-
controllable generalizations.

More, and More Trustworthy Arguments

Until now, in this Section, I discarded common suggestions
and beliefs about why and how doing mathematics can
become easier, no matter how brilliant they are. I shall now
turn to considerations that are also controversial, but defi-
nitely not to be discarded by me. It seems to me that they
have the potential to explain why and how learning and
doing mathematics can appear personally satisfactory,
natural, and, from time to time, even easy for some people
in lucky moments and periods of their lives.

I have written about the following quite different
approaches separately and extensively27 and I shall be brief
in this article.

N. Chomsky

Based on Chomsky’s (born 1928) linguistic research, his
message, or at least the message disseminated by his stu-
dent Pinker,28 is: ‘‘Every child has solved the greatest
mathematics exercise of her or his life at the age of two,

when it forms the generative grammar of the child’s mother
tongue and assembles the patterns and basic structures out
of single words.’’ Hence, we may conclude: ‘‘Basically,
mathematics is easy. Everyone has done it; everyone can
do it.’’ I had better add that some of Chomsky’s claims are
controversial, in particular his biologistic assumptions of
special genetic grammar traits of the human race that are
not confirmed by molecular geneticists.

C. S. Peirce and P. Naur

To me, the names Peirce (1839–1914)29 and Naur (1928–
2016)30 both stand for

• deep insight into the complexity of human thinking and
communication, and for

• demystification of feeling, learning, and doing by relating
it to human habits and forms of life.

Their teaching for our topic can be roughly summarized in
the following short formula:

1. Trace the habits of nature;
2. relate our feeling, thinking, and doing to our form(s) of

life, take the risks and jumps of adolescence, and accept
the related clash of cultures;

3. for mathematics, exploit the translational power (and
handle the two contradictions that follow) by coding
mathematics experiences and make them transferrable
for adaption in new contexts.

Two Contradictions

All mathematics learning and teaching has to live with, and
to handle, the two following contradictions:

A. Result v. process. We need to teach results, not only
processes, not only ways of thinking; one needs results
in sciences and mathematics.

B. Context v. abstraction. Students learn best in context,
when they can see meaning and embedding in context;
however, the power of mathematics is that it can be
separated from the context; the true power of abstrac-
tions is that we can transport experiences from one
context to another one.

We cannot discard or bridge these two contradictions
firmly. We cannot deliver what the mathematics education
administrators want, an easier, faster, and more accessible
teaching in the sense that they want. We must tell them that
doing, learning, and teaching mathematics is difficult and
requires time for the body, peace for the mind, and passion.

26Here is the full quote of Lagrange given in his obituary cited earlier by the anonymous G., offering a Lagrange-type witticism:’’ It seems that nature had disposed these

orbits [of the heavenly bodies] specially so that one may calculate them. Thus the [sic] eccentricity of the planets is very small, and that of the comets is enormous.

Without this disparity [,] so favourable to approximations, and if these constants [of the orbits] were of an average magnitude, goodbye geometers; one could do

nothing.’’.
27Booß-Bavnbek, Bernhelm. On the difficulties of acquiring mathematical experience, EM TEIA—Revista de Educação Matemática e Tecnológica Iberoamericana 5—

número 1 (2014), 1–24. Also: http://thiele.ruc.dk/*Booss/Math_Easy-and-hard_Presentation/2014_BBB_EMTEIA.pdf.
28Pinker, Steven. The Language Instinct. William Morrow, New York, 1994.
29l.c.
30Naur, Peter. Computing: a Human Activity. ACM/Addison-Wesley, New York, 1992.
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S. Kierkegaard

In Enten-eller, Kierkegaard (1813–1855) explained the two
most difficult situations in life for him, the love for another
human and the love for God.31 I don’t agree fully with
Kierkegaard, neither with the first situation where I have
some personal experience, nor with the second, where I’m
blank. Anyway, Kierkegaard emphasizes that both of these
two situations require deep feelings: Let yourself be se-
duced and develop the passion!

Afterword

Mathematics doing, learning, and teaching is rewarding
when it is successful. On some occasions you’d better lie
and follow the love advice of Elias Canetti (1905–1994):
‘‘Don’t tell me who you are. I want to adore you.’’ So you
need not tell the students the full truth32 every day, for
example, about

• the destructive sides of mathematics-supported
technology;

• the mathematics-induced inhuman formatting of social
organization; and

• the deformations of the mind by the naı̈ve belief in logic
and modeling.
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31Kierkegaard, Søren. Either/Or. Volume I. Princeton University Press, Princeton, 1959. See The Immediate Stages of the Erotic or the Musical Erotic, pp. 43–134, in

particular pp. 62, 93, 114.
32In Hardy, G. H. A Mathematician’s Apology. With a foreword by C. P. Snow. Reprint of the 1967 edition. Canto. Cambridge University Press, Cambridge, 1992,

153 pp. ISBN: 0-521-42706-1, MR1148590, p. 33, n. 16, Hardy ponders his 1915 quote:’’a science is said to be useful if its development tends to accentuate the

existing inequalities in the distribution of wealth, or more directly promotes the destruction of human life.’’ See also Arnold, Vladimir I. Polymathematics, l.c., p. 403,

paraphrasing Hardy:’’All mathematics is divided into three parts: cryptography (paid by CIA, KGB, and the like), hydrodynamics (supported by manufacturers of atomic

submarines), and celestial mechanics (financed by military and other institutions dealing with missiles, such as NASA),’’ and the anthology Mathematics and War.
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Viii + 416 S. ISBN: 3-7643-1634-9, MR2033623, free download at http://www.springer.com/gp/book/9783764316341#otherversion=9783034880930.

THE MATHEMATICAL INTELLIGENCER

http://www.springer.com/gp/book/9783764316341%23otherversion%3d9783034880930

	Mathematics: Easy and Hard. Why?
	Preface
	Autobiographical Introduction
	General Meaning of Mathematical Working Experience
	Part I
	Looking Back---Have the Students’ Mind-Sets Changed?

	What Is the Supposed Momentous Historical Media-Generated Change of Consciousness About?
	Part II
	Mathematics IS Hard---How and Why?
	Mathematics IS Easy---Really?

	Acknowledgments




