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Isolated molecule 
 
At this point, the system under consideration is a collection of mutually interacting 
particles, i.e., nuclei and electrons, a structureless “plasma”. 
 
We seek solutions to the time-independent, non-relativistic Schrödinger equation,

)()(ˆ Rr,Rr, enenenen EH Ψ=Ψ , involving the molecular Hamilton operator (atomic 
units, au): 
 

 
                  kinetic          attraction         repulsion          repulsion               kinetic 
                  energy          between           between           between                 energy 
                  of elec-         electrons          electrons          nuclei                    of nuclei 
                  trons             and nuclei         
 
The molecular wavefunction )( Rr,enΨ  is a dynamical function of the coordinates of 
all electrons (r) and all nuclei (R). The eigenvalue problem is a many-body problem 
and cannot be solved exactly. 
 
Born-Oppenheimer approximation 
 
The nuclei are much heavier than the electrons. Hence, the electrons move very much 
faster than the nuclei. In the Born-Oppenheimer approximation, the motion of the 
electrons is decoupled from that of the nuclei, and the molecular eigenvalue problem 
is divided into two separate problems: One involving the motion of the electrons, and 
another involving the motions of the nuclei. The molecular Hamilton operator is 
divided into two parts, neen HHH ˆˆˆ += : 
 

 
In the electronic eigenvalue problem, the nuclei are considered as classical point 
charges at fixed positions in space. The nuclear coordinates R are input parameters to 
the formulation of the electronic eigenvalue problem (see later), involving the 
electronic Hamiltonian, eĤ .  
 

 
 
The solutions Ψe(r;R) and Ee(R) are called the electronic wavefunction and electronic 
energy, respectively. They depend parametrically on the nuclear input coordinates R. 
Solution of the electronic eigenvalue problem for a particular set of input coordinates 
R is called a single point calculation, providing a “single point” on the potential 
energy surface (see below). In general, there are numerous solutions, corresponding to 
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the electronic ground state and excited electronic states. In most cases, we are only 
interested in the ground state and a few of the lowest excited states.  
 
Potential energy surface 
A mapping of the electronic energy Ee(R) as a function of R describes the potential 
energy surface for the molecule in the electronic state in question. In the case of a 
diatomic molecule, the surface is a potential energy curve.  As an example is shown 
some results for different electronic states of NO:  

 
 
 
 
 
 
 
 
 
 
 
In the general case, the potential energy is a function of many nuclear coordinates, 
and mapping of a multi-dimensional potential energy surface is less straight forward. 
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In most cases, the description is restricted to a few nuclear degrees of freedom that are 
of particular interest. In the following example (from the chapter by Hehre) a single 
degree of freedom is selected, corresponding to a single torsional angle, resulting in a 
torsional energy curve: 

 
 

Two-dimensional surfaces can be represented by a contour map, or a “fishnet” 
diagram: 
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Of particular importance is the location of stationary points on the surface, i.e., points 
where the gradient of Ee(R) is zero (also called extrema), corresponding to minima, 
maxima, and saddle points (first and higher order saddle points). Efficient computer 
algorithms are developed to locate these points. The global minimum of the surface, 
i.e., the point with the lowest energy, defines the nuclear equilibrium configuration 
for the molecule in the specific electronic state. Other minima correspond to local 
equilibria, indicating, e.g., rotamers or isomers. First order saddle points indicate 
transition structures, interrelating different minima. The reaction coordinate, 
describing the transition from one minimum, via a transition structure, to another 
minimum, amounts to the description of a molecular rearrangement or a chemical 
reaction: 
 

 
 
 
As a final example, the next two pages show color-coded representations of the 
computed two-dimensional energy surfaces spanned by two torsional angles of the 
compounds S-ethyl ethanethiosulfonate and S-isopropyl propane-2-thiosulfonate. The 
analyses revealed that these thiosulfonates are present as equilibria between several 
rotamers, giving rise to distinctly different IR spectra (T.X.T. Luu, F. Duus, J. 
Spanget-Larsen, J. Mol. Struct. 1049, 165-171 (2013)). 
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Nuclear eigenvalue problem 
 
The nuclear eigenvalue problem for the motion of the nuclei of a molecule with state 
wavefunction Ψe(r;R) and electronic energy Ee(R) is given by  
 

 
 
Note that the electronic energy function Ee(R), determined by solution of the 
electronic eigenvalue problem, serves as potential energy operator in the nuclear 
problem. The total Born-Oppenheimer wavefunction, which is an approximate 
eigenfunction to the molecular hamiltonian operator enĤ , is written as the product 
 

 
 
with total molecular energy Een.  
 
During the treatment of the nuclear problem, it is convenient to work with a “zeroed” 
potential energy function Vn(R) defined as Ee(R) – Ee(Req), where Req indicates the 
nuclear equilibrium configuration: 
 

 
 

 
 
The total energy of the molecule can then be written as the sum of an electronic and a 
nuclear energy, Een = Ee + En, where Ee is taken as Ee(Req). 
 
As a first approximation, the motions of the nuclei can be separated into molecular 
vibration, rotation, and translation and the nuclear wavefunction Φn(R) can be 
factorized as 
 

 
 
with associated energies Ee = Evib + Erot + Etrans.  The complete molecular wave-
function is then approximated by  Ψen = Ψe∙ Φn = Ψe ∙ Φvib ∙ Φrot ∙ Φtrans ,  and the total 
molecular energy is obtained as  
 

 
 
In general, we have En >> Evib >> Erot >> Etrans.  In a description of an isolated 
molecule we can neglect translation. As a starting point, molecular rotation is 
approximately described within the rigid rotor approximation, and molecular 
vibration within the harmonic approximation. In the latter, the function Vn(R) is 
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replaced by a second order polynomial in the displacement coordinates R – Req. This 
allows reformulation of the problem in terms of independent one-dimensional 
harmonic oscillators, one oscillator for each normal mode of vibration. The harmonic 
approximation leads to important selection rules for vibrational transitions (∆v = ±1, 
etc).  
 
Electronic eigenvalue problem 
 
This is the eigenvalue problem of the electronic Hamilton operator, as defined above: 
 

 
 
Solution of this problem is central to computational chemistry, but it is a very difficult 
task, and it can only be solved approximately.  
 
Molecular Mechanics 
The most radical procedure is to avoid solution of the electronic eigenvalue problem 
and proceed directly to the nuclear potential energy Vn(R), which is parameterized 
empirically. This amounts to considering the molecule as a system of atomic centers 
linked by bonds with prescribed mechanical properties, corresponding to a so-called 
molecular mechanics or force field model (containing carefully adjusted force fields 
for bond lengths, bond angles, and torsional angles, and possibly for steric, 
electrostatic, and other effects). The essential input data to the calculation is the 
molecular constitution, i.e., a molecular “graph” with indication of the types of bonds 
between the atomic centers. There is no explicit representation of the electrons in the 
model; hence, it cannot easily describe the formation and breaking of covalent bonds 
during a chemical reaction. However, several highly refined models have been 
developed, and they are very useful in the study of the molecular structure of large 
systems, such as polymers, proteins, etc. 
 
MO Theory 
A frequently applied and very useful model of the electronic system is the molecular 
orbital model. In the orbital model, the electronic ground state is described by a 
many-electron wavefunction Ψg, which is defined as a product of one-electron 
wavefunctions iψ . Hence, for a system with n electrons: 
 

ng ψψψψ ⋅⋅⋅⋅=Ψ 321  
 
The product wavefunction is an approximate eigenfunction to the electronic 
hamiltonian operator eĤ  for the molecule, with eigenvalue Eg. The one-electron 
wavefunctions  are called molecular orbitals (MOs). MOs play the same role in 
the description of molecules, as atomic orbitals (AOs) do in the description of atoms. 
In principal, the only difference between AOs and MOs is that an AO is a one-
electron wavefunction for an electron system in the field of one nucleus, while an MO 

iψ
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is a one-electron wavefunction for an electron system in the field of two or several 
nuclei. 

A wavefunction like Ψg which is constructed as a product of orbital 
wavefunctions is called a configuration wavefunction. More precisely, the 
wavefunction must be written as an anti-symmetrised product (a Slater-determinant), 
which means that the wavefunction Ψg changes sign “if two electrons are 
interchanged” (the Pauli principle). Here we shall not consider this aspect in detail, 
but it has the important consequence that two electrons can only be described by the 
same spatial MO if they have different spin. There can “be” at most two electrons in 
each MO, one with α and one with β spin. 

The MOs  and their energies  are determined as the eigenfunctions and 
eigenvalues of an effective one-electron energy operator ĥ , which can be written as 
 

en
ˆˆˆˆ vvth ++=  

 
Here t̂  represents the kinetic energy of the electron, nv̂ represents the electrostatic 
attraction from the nuclei in the molecule, and ev̂  represents the repulsion from the 
other electrons in the molecule. The last term ev̂  is problematic. In order to formulate 
ĥ  as a one-electron operator, the electron-electron interaction must be described by an 
effective mean field approximation: Each electron does not “see” the other electrons 
as individual particles; the field from the other electrons is represented by an 
averaged, static charge distribution. This charge distribution depends on the many-
electron wavefunction Ψg, and thus on the MOs iψ . This means that the operator  
depends on its own eigenfunctions!  These are not known by the start of the 
calculation, and in general, the solution of the eigenvalue problem requires an 
iterative technique, the Self Consistent Field (SCF) procedure. The variationally best 
solution, i.e., the solution of the MO model that leads to the lowest possible total 
energy Eg, is called the Hartree-Fock (HF) solution. For a mathematical definition, 
see the chapter by Hehre. 

The orbital model of a many-electron system involves a decoupling of the 
motions of the electrons (like the Born-Oppenheimer approximation separates the 
motions of nuclei and electrons). The model does not describe the instantaneous 
correlation of the individual motions of the electrons. It is important to understand 
that the model is only an approximation. Orbitals are one-electron wavefunctions that 
serve as useful elements in an approximate description of a many-electron system, but 
they do not, in principle, correspond to physically observable quantities! But it can be 
shown that in a model where electron correlation and reorganization effects are 
neglected, the negative of the orbital energy iε  is equal to the ionization energy iI  
required to remove an electron from the orbital iψ . This result is known as 
Koopmans’ theorem. The approximate relation  iI  ≈ iε−   is of great importance in the 
assignment of photoelectron spectra. However, the usefulness of the relation depends 
on the circumstance that the errors due to neglect of electron correlation and neglect 
reorganization effects have opposite sign and tend to cancel each other out. 

iψ iε

ĥ



 12 

In the MO model, the total energy of the electrons can be written 
 

∑ −=
i

i VE eeε  

where the sum is over the MO energies for all electrons i and Vee is the total electronic 
repulsion energy. The typical error due to the fact that the model neglects electron 
correlation amounts to about 1%.  Note that the total energy is not equal to the sum of 
the MO energies. This is because that in this sum, the contribution from electron 
interaction is counted twice (the repulsion between the i’th and the j’th electron 
contributes to iε  as well as to jε ).  Therefore, Vee must be subtracted.  Nevertheless, 
the sum of the MO energies is frequently useful as a qualitative measure of the energy 
of the molecule.  This can be rationalized by a consideration of the total energy of the 
molecule, which can be written 
 

nneee VVE
i

i +−= ∑ε  

where Vnn is the mutual repulsion of the nuclei. In many qualitative considerations, 
the difference Vnn – Vee can be set equal to zero or be taken as an approximately 
constant quantity (f. inst. during variation of a bond angle). In the “Free electrons”, 
Hückel, and Extended Hückel MO models (see later) where electron interaction is not 
considered explicitly, the “total energy” is traditionally taken as the sum of the MO 
energies,  E = Σ iε . 
 
The LCAO-MO procedure 
Most MO calculations are based on the LCAO-MO procedure (Linear Combinations 
of Atomic Orbitals).  In this model, an MO ψ  is written as a weighted sum of atomic 
orbitals (AOs) ϕν from the atoms in the molecule: 
 

∑=
ν

ννϕψ c  

There are great advantages associated with a description of MOs on the basis of AOs. 
In the first place, it must be expected that the AOs are particularly suitable; one can 
imagine that an electron close to a particular nucleus in a molecule is primarily 
affected by the field from this nucleus, and the MO of the electron should thus be 
related to the AOs of the isolated atom. Secondly, the circumstance that the AOs are 
orbitals for the constituting parts of the molecular system enables simplifications, not 
only what concerns calculational techniques, but also in a more conceptual vein (f.ex. 
in connection with the population analysis, see later).  
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The LCAO-MO Procedure 

Most MO calculations are based on the LCAO-MO procedure (Linear Combinations 

of Atomic Orbitals).  In this model, an MO i  is written as a weighted sum of atomic 

orbitals (AOs) from the atoms in the molecule: 

 




  ii c  

There are great advantages associated with a description of MOs on the basis of AOs. 

In the first place, it must be expected that the AOs are particularly suitable; one can 

imagine that an electron close to a particular nucleus in a molecule is primarily 

affected by the field from this nucleus, and the MO of the electron should thus be 

related to the AOs of the isolated atom. Secondly, the circumstance that the AOs are 

orbitals for the constituting parts of the molecular system enables simplifications, not 

only what concerns calculational techniques, but also in a more conceptual vein (f.ex. 

in connection with the population analysis, see later).  

 

Secular Equations 

The adopted set of AOs   is referred to as the basis set { in which the MOs are 

expanded, and the number of AOs included is the size (N) of the basis set. The weight 

factors c are called LCAO coefficients. The coefficient ic  indicates how much the 

AO  contributes to the MO i  (the contribution may be positive, negative, or 

zero).  The task now consists in determination of the LCAO coefficients and the 

corresponding MO energy. The MO   is an eigenfunction of the effective one-

electron operator ĥ  : 

 

0)ˆ(ˆ   hh  

 

 As previously mentioned, the operator ĥ  depends on its own eigenfunctions, and 

they are unknown at the start of the calculation; we must thus adopt a suitable starting 

approximation for ĥ . Introduction of the expansion 


 c  leads to  

 

0)ˆ()ˆ(   







  chch
NN

 

 

(for convenience, the MO index i is omitted). This equation can be transformed into 

system of linear equations. Multiplication from the left with an arbitrary AO, say , 

 

0)ˆ(  



  ch
N

 

   

and integration over all space leads to 
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0)ˆ(    



  cdqdqh
N

 

 

where dq = dxdydz. For simplicity, we introduce the notation  h for the integral ∫

ĥ dq. This integral is frequently referred to as a matrix element of the operator ĥ  in 

the basis {, and we have hh  (because of the properties of physically 

acceptable operators). We further introduce the symbol S for the integral  ∫dq. 

The integral  S = S  is called the overlap integral of the AOs   and . With 

these symbols the equation is written 

 

0)(  



  cSh
N

 

 

Above we multiplied from the left by an arbitrary AO  . Hence, we can generate as 

many different equations as the number of AOs in the basis set { }. The resulting 

system of N linear equations is termed the secular equations:  

 

0)()()(

0)()()(

0)()()(

222111

222222212121

112121211111







NNNNNNNNN

NNN

NNN

cShcShcSh

cShcShcSh

cShcShcSh















 

 

The AOs can be assumed to be normalized wavefunctions, which means that all 

‘diagonal’ overlap integrals are equal to unity, S = 1. The secular equations are often 

written in matrix form,  

(h – S)c = 0:  

 





































































0

0

0

2

1

NNN22NN11N

2N2N222121

1N1N121211











Nc

c

c

hShSh

ShhSh

ShShh







 

 

The equation system has a trivial solution, namely the one where all coefficients c 

are equal to zero. The equations only have a non-trivial solution if the secular 

determinant is equal to zero, |h – S| = 0: 

 

0

NNN22NN11N

2N2N222121

1N1N121211















hShSh

ShhSh

ShShh








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Expansion of the determinant yields an N’th order polynomium in , and the N roots 

of this polynomium are the MO energies i .  The LCAO coefficients for the i’th MO 

i  are obtained by solving the secular equations for i  , and then normalize i . 

Solution of the secular problem yields just as many MOs as the number of AOs 

in the basis set (i.e., N), and they are all mutually orthogonal: ∫ij dq = 0. The many-

electron wavefunction g is obtained by populating the lowest MOs according to the 

aufbau-principle (max. two electrons per orbital). On the basis of this wavefunction, 

the electron distribution in the molecular can be calculated, and a new and better 

approximation of the effective one-electron operator ĥ can be set up, and the 

procedure is repeated until self-consistency is achieved (SCF procedure). 

 

The Hartree-Fock Solution 

If no further approximations are introduced into the model, and a large basis set is 

applied, the MO calculation is called an ab initio Hartree-fock (HF) calculation. 

Within this framework, the effective one-electron energy operator ĥ  is called the 

Fock-operator f̂ . For a closed-shell molecule, where all MOs are either doubly 

occupied or empty, the matrix elements of the Fock-operator take the following form: 

 

 

 )|½()|( 


   pvtf  

Here t  is a matrix element of the kinetic energy operator, v is an element of the 

potential energy operator in the field of all nuclei, )|(   are two-electron 

interaction integrals in Mulliken's notation, and p are elements of the molecular 

density matrix (a.u.): 
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      ni = occupation number: 2 for doubly occupied MOs, 0 for empty 

 

The number of two-electron integrals )|(   increases as the fourth power of the 

number of basis functions, N. The cost of a calculation thus rises rapidly with the size 

of the basis set.  

 

Basis Sets 

The LCAO approximation requires a basis set of well-defined functions centered on 

each atomic nucleus in the molecule. In the early years of computational chemistry, 

many procedures applied so-called Stater-type orbitals (STOs), which are approx-

imate atomic orbitals (a.u.): 
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l

rn YerNr   

 

Here, N is a normalization constant, n, l, and m are the usual atomic quantum 

numbers, and  (“zeta”) is an effective nuclear charge:   = (Z – S)/n, where Z is the 

nuclear charge and S a screening constant. ),( m

lY  is a spherical harmonic function, 

defining the angular part of the basis function. STO-type functions are no longer used 

in ab initio calculations because they have been found to be computationally 

disadvantageous, particularly in the evaluation of the numerous two-electron 

repulsion integrals )|(   which represent the ‘bottle-neck’ in accurate 

computations (but STOs are still applied in many approximate, semi-empirical 

procedures). Today, most computational chemistry procedures apply functions 

expanded in terms of Gaussians: 

 
2

)( rkji

ijk ezyxNg r  

 

In this function, x, y, z are the Cartesian coordinates of the electron with respect to the 

nucleus of the atom, i, j, and k are positive integers, and  is an orbital exponent. 

 

s-type:  
2

)r(000

reNg   

p-type:  
2

)r(100

rexNg   
2

)r(010

reyNg   
2

)r(001

rezNg   

 

d-type functions are generated by combinations that give i + j + k = 2, and so forth. 

The Gaussian functions lead to integrals that are easily computed, but the radial 

dependence 
2re  means that a single Gaussian is a rather poor representation of an 

atomic orbital; in this respect the STO is much better.  The solution is to describe each 

atomic orbital by a normalized linear combination of 

several Gaussians: 

 


p

pp ga )(r  

The components gp in this expansion are called primitive 

Gaussians, and in general, these components are not 

considered as individual members of the basis set. The 

expansion coefficients ap are determined according to 

some optimization criterion, and the resulting linear 

combination is used as a basis function. The resulting 

function with fixed coefficients is called a contracted 

Gaussian. 
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Minimal Basis Sets 

A minimal basis set contains the minimum number of basis functions needed to hold 

the electrons of each atom, as in these examples: 

 

H – He:  1s 

Li – Ne:  1s, 2s, 2px, 2py, 2pz 

 Na – Ar: 1s, 2s, 2px, 2py, 2pz, 3s, 3px, 3py, 3pz 

 

One of the most well-known minimal basis sets is the so-called STO-3G basis, where 

each basis function is expanded in terms of three primitive Gaussians (the expansion 

coefficients are optimized to produce the best fit to Slater-type exponential functions). 

However, this and other minimal basis sets suffer from insufficient flexibility to 

describe distortion of the electron density around the atomic centers in a molecular 

environment. 

 

Split-Valence Basis Sets 

The first way to enlarge the basis set is to increase the number of basis functions per 

atom. Simple split-valence basis sets, such as 3-21G and 6-31G, have two sizes of 

basis function for each valence orbital: 

 

H – He:  1s, 1s’ 

Li – Ne:  1s, 2s, 2s’, 2px, 2py, 2pz, 2px’, 2py’, 2pz’ 

Na – Ar: 1s, 2s, 2px, 2py, 2pz, 3s, 3s’, 3px, 3py, 3pz, 3px’, 3py’, 3pz’ 

 

where the primed and unprimed orbitals differ in size. These basis sets are called split 

valence double zeta basis sets (remember the use of the symbol zeta () for the orbital 

exponent). Similarly, split-valence triple zeta basis sets, like 6-311G, uses three sizes 

of contracted functions for each orbital type. A split-valence basis set enables the 

electron density about an atom to expand differently in different directions, corres-

ponding to a non-spherical electron distribution: 
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Polarization Basis Sets 

Split-valence basis sets allow orbitals to change size, but not to change shape. This 

limitation is removed by adding polarization functions, i.e., orbital functions with 

angular momentum beyond what is required for the ground state, to the description of 

each atom. For example, polarization basis sets add d functions to carbon and f 

functions to transitions metals, and some of them add p functions to hydrogen atoms. 

Polarization functions provide flexibility for the orbitals to modify their shape, and, 

for example, shift the center of the electron distribution to the bonding region between 

atoms: 

 

 
 

A simple and robust polarization basis set is 6-31G(d), also known as 6-31G*. Its 

name indicates that it is the 6-31G basis set with d functions added to heavy (non-

hydrogen) atoms. This basis set is very popular in calculations on medium-sized 

molecular systems. Another popular polarization basis set is 6-31G(d,p), also known 

as 6-31G**, which adds p functions to hydrogen in addition to the d functions on 

heavy atoms.  

 

Diffuse Functions 

Diffuse functions are large-size versions of s- and p-type functions (as opposed to the 

standard valence-size functions). They allow orbitals to occupy a larger region of 

space, which is important in the description of systems where the electrons are 

relatively far from the nuclei. Typical examples are anions and molecules in excited 

electronic states. The inclusion of diffuse functions in the basis set is designated with 

a plus sign: The 6-31+G(d) basis set is the 6-31G(d) basis set with diffuse functions 

added to heavy atoms. The double plus version, 6-31++G(d), adds diffuse functions to 

the hydrogen atoms as well (diffuse functions on hydrogen atoms seldom make a 

significant difference in calculational accuracy). 

 

Approximate Hartree-Fock models 

For large systems, or if fast results are required, it may be desirable to adopt one of 

the many available approximate HF models. These models were particularly popular 

in the decades before the development of the present-day powerful computers. They 

involve a series of simplifications of the HF problem:  
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(1) The all-valence-electrons procedures include only a minimal basis of valence 

orbitals in the description, considering the inner shells as part of a fixed core. 

The basis functions are typically taken as a set of Slater-type orbitals (STOs). 

(2) The mathematical expression for the elements of the Fock operator is 

simplified in order to avoid calculation of the many integrals. In the neglect of 

differential overlap (NDO) procedure, the formalism is simplified by the 

approximation φ(r)φ(r) = φ(r)φ(r),  leading to the important 

simplifications S =  and (|) =  The latter result 

means that all three- and four-center electron repulsion integrals vanish, which 

makes calculations on very large systems feasible. Several NDO models (like 

AM1 and PM3) make exceptions from the strict NDO approximation for one-

center terms, and maintain, e.g., one-center electron repulsion integrals of the 

type (|).  

(3) Most of the remaining integrals are estimated by semi-empirical procedures. 

This means that they are not properly calculated, but they are assigned values 

by reference to empirical data.  

 

Popular semi-empirical all-valence-electrons NDO procedures are AM1 

(“Austin Model 1”) and PM3 (“Parametric Model 3”) which are included in 

commercial software packages like HYPERCHEM® and GAUSSIAN®. The PM-model 

is still being expanded and refined, the current version is PM7.  

The Extended Hückel Method (EHM) occupies a particular position among the 

semi-empirical all-valence-electrons methods. It should probably not be considered as 

an approximate HF model, since it is not easily derived from the formal expression 

for the Fock operator. The elements h are approximated in the following manner: 

 

 
)(2/)(75.1 







IISh

Ih
 

Here I is the ionization energy for an electron in the valence AO , S is the 

overlap integral ∫φ(r)φ(r)dr, and the factor 1.75 is a semi-empirical parameter. In 

contrast to the NDO procedures, EHM includes overlap integrals in the secular 

equations. As the EHM does not involve explicit electron interaction terms, it does 

not require an iterative procedure. It must be considered as a qualitative MO model, 

and it works best for non-polar molecules (e.g., hydrocarbons). On the other hand, it 

is simple and economic: it can be applied to very large molecules. 
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Limitations of the HF Procedure 

With few exceptions, equilibrium bond lengths are somewhat underestimated by the HF procedure. This can be 

explained by the fact that electron correlation effects are not accounted for in this model (see later). 

 
 

Vibrational frequencies computed by the HF model within the harmonic approximation tend to be 

overestimated by roughly 10%. This is due in part to errors inherent in the HF model, and in part to limitations 

of the harmonic approximation. Neglect of electronic correlation effects influences the shape of the computed 

potential energy surface, leading in general to slightly too large force constants. Neglect of anharmonic effects 

further contributes to the sum of errors. 

 
 

It is customary to transform the computed vibrational wavenumbers into empirical scale by multiplication by a 

scale factor . Scott and Radom have evaluated the effective scaling constants and resulting rms errors for a 

number of procedures, based on the results for a test set comprising 1066 experimental wavenumbers. For HF 

calculations with a variety of basis sets,  is around 0.9, with rms errors close to 50 cm
-1

: 
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Anthony P. Scott and Leo Radom*, J. Phys. Chem. 100 (1996)16502-16513: 

“Harmonic Vibrational Frequencies: An Evaluation of Hartree-Fock, Møller-Plesset, Quadratic 

Configuration Interaction, Density Functional Theory, and Semiempirical Scale Factors”  

 

 

 

 

 

 

In general, homolytic bond dissociation energies are significantly underestimated by the HF procedure. This 

can be explained by noticing that the products have one electron pair less than the reactants, leading to larger 

HF error for the latter.  
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Relative energies of structural isomers are predicted with errors that are an order of magnitude lower than 

those obtained for homolytic bond dissociation energies. This is due in part to cancelation of errors. 

 

 
 

Also the relative proton affinities of nitrogen bases are quite well predicted: 

 

 
 

In general, electric dipole moments are reasonably well predicted by HF calculations (being slightly too large), 

indicating that the computed charge distributions are realistic:  
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Post HF procedures 

The most important so-called post HF procedures are the configuration interaction (CI) model and Møller-

Plesset perturbation theory.   

 

Configuration Interaction (CI) 

In this procedure, the electronic wavefunction is described by using contributions from several configurations 

(not by a single configurational wavefunction like in HF):  

 
In principle, this leads to a CI secular problem within matrix elements of the many-electron Hamilton operator: 

 
The lowest energy obtained from solution of the CI secular problem corresponds to the energy of the electronic 

ground state. Limiting the configurations to be considered in the CI calculation to single-electron promotions 

only (the CIS procedure) leads to no improvement of the HF ground state. In order to introduce ground-state 

correlation effects, double-electron or multiple-electron promotions must be considered. In the CID procedure, 

only double-electron promotions are included: 

 
Typically, this amounts to admixture of contributions from unoccupied MOs 

with anti-bonding character into the ground state wavefunction, leading to 

prediction of weaker and longer bonds, thereby obtaining improved agreement 

with experimental data. More extensive CI schemes include additional 

promotions, such as CISD which considers single- as well as double-electron 

promotions, and CISDT which includes also triple-electron promotions. In 

principle, extending the CI expansion to include all promotions, correponding 

to a full CI, leads to an exact solution of the electronic eigenvalue problem, with full account of electron 

correlation (provided the basis set is complete!). However, the CI expansion converges very slowly, and the 

full CI solution can been approached only for small systems. 

 

Møller-Plesset 

theory is based on a mathematical approximation formalism called perturbation theory. The exact Hamiltonian 

is written as the sum of the HF Hamiltonian and a small perturbation representing the correlation energy. In the 

so-called second order Møller-Plesset model (MP2), the approximate correlation energy correction to the HF 

ground state energy is obtained as  

 
where  

, 

 
The integrals (ij|ab) involve orbitals over occupied and un-occupied MOs, and i, a, etc. are the corresponding 

MO energies. – It is apparent that the presence of low-lying un-occupied MOs is likely to produce large 

contributions to E
(2)

. 
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Density Functional Theory (DFT) 

The starting point of this approach is the electron density, (r), rather than the wavefunction  It has been 

shown by Hohenberg and Kohn that the total electronic energy E is uniquely determined by the electron 

density (r): 

 

E = E [ (r)] 
 

The electron density is a function of the coordinates r, defined such that  (r)dr is the number of electrons 

inside a small volume of space dr (this is what is measured in X-ray diffraction experiments). (r) is a function 

of only three coordinates, namely the three coordinates of space; in this sense, (r) is much simpler than the 

wavefunction which is a function of the coordinates of all the electrons in the system. In current DFT 

procedures, (r) is expressed in terms of the so-called Kohn-Sham MOs i, which enables a simple expression 

for the density: 

 
E is thus a function of (r), which is a function of r. A ‘function of a function’ is called a functional. The 

problem is that the exact form of the energy functional is not known. The approximate functional is generally 

written as a sum of several contributions: 

 

E = ET + EV + EJ + EXC
 

 

where ET is the kinetic energy term, EV the nuclear attraction term, EJ the electron repulsion term (also called 

the Coulomb term), and EXC is the so-called exchange/correlation term. The terms ET, EV, and EJ are carried 

over from HF theory, but the exchange/correlation term EXC accounts for the remaining terms in the energy: 

 

(1) The exchange energy arising from the quantum mechanical anti-symmetry requirement. 

 

(2) Dynamic correlation in the motions of the individual electrons. 

 

Many varieties of approximate DFT procedures have been developed, involving different models of the 

exchange/correlation functional EXC[ (r)]. This functional is usually divided into two parts, referred to as the 

exchange and correlation functionals, EXC[ (r)] = EX[ (r)] + EC[ (r)]. So-called local model functionals 

depend only on the electron density (r), while gradient corrected functionals depend also on the gradient of 

(r).  Some DFT procedures involve hybrid exchange functionals, which include a mixture of HF-type 

exhange into the DFT exchange functional EXC. A popular hybrid DFT procedure is B3LYP, which is based on 

Becke’s three-parameter hybrid exchange functional and the correlation functional of Lee, Yang, and Parr. – In 

actual practice, self-consistent Kohn-Sham DFT calculations are carried out in an iterative manner very similar 

to the HF SCF procedure, and the computing time is only slightly larger than that of a HF calculation. DFT 

calculations thus tend to much faster than CI and Møller-Plesset calculations, and they are frequently at least as 

accurate. DFT procedures have thus gained considerable popularity in recent years. 
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Comparisons of the results of HF, B3LYP, and MP2 calculations: 
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Scott and Radom (loc. cit.): 
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Excited Electronic States 

The prediction of the properties of excited electronic states is one of the most difficult tasks within quantum 

chemistry. HF CI calculations with inclusion only of single-electron promotions (CIS) tend to overestimate the 

transition energies seriously, because of different correlation effects for ground and excited states. A number of 

semi-empirical procedures are available, generally based on the CIS formalism, e.g., INDO/S and ZINDO/S. 

These methods are parameterized in order to predict transition energies of the right order of magnitude, but 

they should be used with caution. The so-called Time Dependent (TD) DFT procedure is very promising, and 

has performed remarkable well for a number of chromophores, but it has been reported to be problematic for 

transitions with a electron-transfer character. Fabian et al. have published a comparison of the performance of 

current calculational procedures to predict the UV-VIS absorbance spectra for a variety of organic 

chromophores:  
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J. Fabian et al.: J. Mol. Struct. (Theochem) 594 (2002) 41–53. 

“Calculation of excitation energies of organic chromophores: A critical evaluation” 

 

Sulfur-free chromophores: 

 
Sulfur-containing chromophores: 
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      (1 electron volt (eV) ˆ  8066 cm

–1
) 
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  The LCOAO procedure: 

 

 
   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://akira.ruc.dk/~spanget/LCOAO/PAH/!SUMMARY.htm 

http://akira.ruc.dk/~spanget/LCOAO/PAH/!SUMMARY.htm
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Solvent effects 

 

The Polarized Continuum Model (PCM) represents the influence of a solvent by considering the molecule in a 

cavity submerged in a polarizable dielectric continuum. A variety of PCM procedures have been developed, 

differing particularly in the definition of the solute cavity. 

 

Mixed discreet + continuum solvation model:  

An example: In basic alcoholic solution, Emodin is deprotonated at the 3-position. The exposed, negatively 

charged oxygen center is likely to be specifically solvated by hydrogen bonding to a solvent molecule. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
S.C. Nguyen, B.K.V. Hansen, S.V. Hoffmann, J. Spanget-Larsen: Chem. Phys. 352 (2008) 167–174 

“Electronic states of emodin and its conjugate base. Synchrotron linear dichroism spectroscopy and quantum 

chemical calculations”  
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