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Abstract 

 

This project seeks to find any influence that chaos theory had upon the field of population biology. 

For this reason, several papers, from 1974 up until the present day, were analysed with a view to 

obtaining an overall perspective of some of those influences. Two major factors were found; a better 

understanding of nonlinear systems and the rejection of the linearization of them, from this came a 

different view on the predictability of natural systems, in which it was found that accuracy diminishes 

with time, due to the fundamental characteristics of nonlinear systems, attributed to a sensitivity on 

the initial conditions. 
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1.Introduction  

 

 

It is the job of the physicist, not the mathematician, to extract and discover the set of natural laws and 

rules that govern the external world. For example, distances in space between two points can be 

calculated using Euclidean geometry, however, close to the speed of light, we must use a different set 

of rules, a different type of Geometry (Ekeland 1998). This does not necessarily mean that the rules of 

Euclidean geometry are any less true, even if reality refuses to conform. Chaos theory, much like 

Euclidean geometry, is a set of mathematical statements independent of observed phenomena it is a 

necessary consequence of the modelling of time dependent, dynamical systems, a sensitivity to initial 

conditions and accordingly. 

 

An approach is presented showing the development of chaos theory through mathematical modelling 

of populations in dynamical systems. The historical context is presented through several case papers 

as an outline of the most important developments surrounding chaos theory. A summation of each 

paper is provided with relevant arguments as to their pertinence and significance to chaos 

 

This paper will convey the most important effects of the recognition of chaos through its influence 

upon population modelling, the discovery of extreme sensitivity to initial conditions and the 

consequent unpredictability of dynamical modelling in nonlinear systems which has changed the way 

in which standard modelling is to be considered. From the beginnings of linearization to the 

distinction between variability, noise and non-periodic chaos, the findings of chaos theory will be 

shown to be progressively more inclusive to the field, over the past 40 or so years through a series of 

case studies. 

 

 

2. Research Question and Problem Area 

 

How did chaos theory influence population biology? 

 

In 1974 Robert May published an article in which he stated that chaos was ‘overlooked’ by 

linearization (May, 1974).  Our hypothesis is that the development of chaos theory resulted in 

significant changes in population biology, mainly the standard linearization and its consequences. 

This project seeks to find out, if, after the evidence of chaos in nature, any significant changes 

appeared in population biology. For this purpose, several articles were considered, from 1974 up until 

the present.   

 

This project's target group was ourselves before we started working on the project, thus with no prior 

knowledge about chaos theory. It is also aimed more generally at 3rd semester students of natural 

science and our supervisors. 
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2.1 A short history of Chaos 

 

Chaos theory conjures up images of fractals, bifurcations, and water wheels; it is a theory that is well 

known but little understood. An early proponent of chaos theory from the 1880's was Henri Poincaré, 

while studying Newton’s proposed three-body problem1, he discovered that there existed orbits which 

were non-periodic and yet not forever increasing or approaching a fixed point (Wolfram, 2002).  

 

This unpredictability was given a name in the 1960's and is what we now know as Chaos theory. The 

meteorologist Edward Lorenz, whose interest for chaos came accidently through his work with 

weather predictions created simulations of the weather using a set of differential equations on his 

computer. His model showed a very high sensitivity to the initial conditions, as it turned out that 

rerunning the same simulation with the same initial settings produced drastically different results each 

time. Although the paper was published in a little known journal its significance remained 

unrecognised for a long time. 

 

The first scientific paper to expose the existence of chaos in nature was by the English scientist Robert 

May in 1974. Robert May had a physics background and was familiar with mathematical modelling 

techniques which were not so familiar to Biologists. By demonstrating that chaos was present in 

simple models of population, May was successful in showing that random behaviour occurred even 

when the initial equations were known. (May, 1974). The paper turned out to be seminal and was the 

beginning of the application of chaos theory to the field of population biology. Although it took over a 

decade for anybody to really acknowledge the presence of chaos in population biology, (Gilpin, 1984) 

its application proved to be successful at improving predictions, yielding more accurate results in 

population modelling as well as other scientific fields (Li et al. 2013).  

  

3.Theory 

 

In this section, we will explore the general theory of chaos using real world examples, this will 

provide an overview and general outline of what chaos is. The succeeding part will delve more deeply 

into the characterising mathematics of chaos theory, the distinction between linearity and nonlinearity 

and the distinctions between chaos, noise, and variability. There are also some definitions of terms 

that the reader may be unfamiliar with, but will encounter throughout the paper. 

 

The term chaos and chaos theory are somewhat interchangeable, the distinction being that the theory 

of chaos can be defined by several mathematical characteristics in which the behaviour of a dynamical 

system descends into chaos, the point at which predictability cedes.  

 

                                                
1 The three-body problem is a problem of taking a set of initial conditions of three particles or bodies (the moon, 

sun, and earth for example) and then determining the motion for them as they interact. Poincare could show that 

there was no general analytical solution for this problem as it was non-repeating (except in special cases). 

(Wolfram 2002) 
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3.1 Bifurcation 

 

Bifurcation literally means the splitting of one body into two parts, for example; the forking of a river 

from its main body into two separate tributaries. It can also be seen in the structure of a tree root or 

the arteries of the circulatory system of a human body.  

3.2 Attractors, strange and otherwise 

 

Attractors are the set of states in phase space, invariant under the dynamics, towards which 

neighbouring states in a given basin of attraction asymptotically approach in the course of their 

dynamic evolution. In chaos theory, systems evolve towards states called attractors. The evolution 

towards specific states is governed by a set of initial conditions. An attractor is generated within the 

system itself. (Zeng, 1993) 

There are several types of attractors. The first is the point attractor, for humans, this would-be death. 

The end is inevitable no matter what the path. the second is the limit cycle or periodic attractor where 

a system sets into a regular cycle through which it oscillates. Finally, the third type is called the 

strange attractor, it is chaotic and never repeats itself. The values will move towards a certain value, in 

the shape of a double spiral but the pattern never repeats itself. It is here that the significance of 3 

variables appears most prominent. In 2D space the trajectory of a particle must cross its own, previous 

path when in motion around an attractor, to do so violates the condition of chaos by returning to a 

previous point. However, in 3D space a particle can escape this condition as it has a 3rd direction in 

which it can travel and 'avoid' the previous path. The double spiral shape of the strange attractor 

represents all the points in phase space occupied by all trajectories of the system. (Blesser, 2006) 

Strange attractors have fractional dimension in that they are too detailed to be 2 dimensional, but too 

simple to be 3 dimensional. In this sense, they are fractals. They represent how details of a pattern 

change with scale, how it may grow in complexity as the scale changes, it can be thought of also, as 

an infinitely long line in a finite space. A fractal will scale differently to the space that it is embedded 

in. This is a difficult concept to understand and I hope it’s a little clearer, there are many examples of 

how they can be visualised some of which are represented by nature in; the pulmonary system, 

dendrites of the nerves, tree roots etc.  (Mandelbrot, 1967) 

 

Left - The Lorenz strange attractor 

 

The Lorenz strange attractor is a model based on 3 differential 

equations, in 3D space. Each component can be considered a 

separate species e.g. foxes, rabbits, grass. Each one’s state is 

dependent upon the other 2 and the system generally tends towards 

a set of values as it evolves. Lorenz used this idea using the 

parameters of weather and the Oberbeck-Boussinesq 

approximation (a set of ODE's) to model, where he discovered 

what is now known as the strange attractor. Simply put, it is a 

butterfly pattern in 3d space where the trajectory of a particle never 

returns to the same space twice. Attractors come in other shapes, 
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this is just the example of the Lorenz model. This is also an example of chaotic behaviour; the 

sensitivity of the initial conditions mean that any arbitrary starting point will never lead to the same 

trajectory twice. (Boeing, G. 2016) 

 

 

 3.3 The Double Pendulum (Levein 93’) 

 

In a dynamical system of more than two variables it is possible to witness chaotic behaviour, below is 

a description of the double pendulum, a dynamical system that exhibits chaotic behaviour. 

 

The double pendulum system is a dynamical system of one pendulum attached to another. It is a 

simple physical design that exhibits rich, dynamical behaviour with a strong sensitivity to the initial 

conditions. Below is a graph of two identical, double pendulums (Fig. 1) alongside each other with 

their trajectories plotted out in red and blue. They start with the same initial conditions but quickly 

descend into different paths due to the sensitivity on these initial conditions. The pendulums both 

obey the same laws of physics but their behaviours progress in different manners, this is an inherent 

characteristic of chaos theory.  

 

For a system to be chaotic it must be either nonlinear or infinite dimensional (Rosario, 2006). In the 

case of the double pendulum, with small motions (when the angles between the pendulums and the 

vertical axis are small, less than 1 radian) the system can be considered a linear system, by using the 

small angle approximation, we find that the system behaves like a harmonic oscillator and the 

nonlinear term(s) can be approximated by a linear term(s), (Boas, 2006). However, for large angles 

(greater than 1 radian), when we derive the equations of motion we find that the nonlinear terms 

cannot be so easily approximated and the system can become chaotic. 

 

 
 

Fig 1. Double pendulum graph. Plot of trajectories in red and blue. Same initial conditions but different outcomes.
2 

 

 

                                                
2 Taken from http://visualizingmath.tumblr.com/post/86258138836/chaos-and-the-double-pendulum 
In the following link is a website with a computer simulation of the double pendulum with variables that can be manipulated. Also, the 

equations of motion are herein derived. http://www.myphysicslab.com/pendulum/double-pendulum/double-pendulum-en.html 
 

http://visualizingmath.tumblr.com/post/86258138836/chaos-and-the-double-pendulum
http://www.myphysicslab.com/pendulum/double-pendulum/double-pendulum-en.html
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3.4 Taken’s Delay Embedding Theorem 

 

Taken’s delay embedding theorem is a method whereby the recreation of the behaviour of a chaotic 

dynamical system can be accomplished by manipulating (essentially time lagging) the data from the 

generic dynamical system.  

Below you can see several graphs of a predator prey model. In this example, there are 3 variables; the 

variable x can be the grass, y the prey and z the predator. In a system of 3 or more variables it is 

possible to have chaotic behaviour. In this case the plotting of the relationship between these 3 

variables creates a strange attractor in the form of a butterfly type shape. The first image below (figure 

1.2) is a time projection from each axis creating a mapping of the behaviour of one variable in relation 

to the others. Using just one data set it is possible to create a time lagged projection and recreate the 

behaviour of the system with a degree of success (figure 1.3). Recombining two lagged versions of 

one time projected data set we can recreate something very like the original manifold. This newly 

generated manifold gives a one to one mapping between the original manifold and the shadow 

manifold (figure 1.4), this is known as cross mapping. Cross mapping allows us to estimate the states 

of the other two variables from the 3d space e.g. x from y or vice versa. Using the embedding 

theorem, it is also possible to determine causal relationships between the variables and subsequently 

improved selection of them. (Sugihara 2015).  

 

Figure 1.2 above; a time series projection creates a strange attractor. Figure 1.3 The recreated manifold with time lagged data. 

Figure 1.4; bellow; Cross mapping manifolds. 
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As the historical points of Mx are close to the historical points in My, it is possible to estimate the 

state of each variable from the other, a technique called ‘cross mapping’. With longer time series, the 

mapping gets closer and more densely packed, increasing the accuracy of the predictions. This 

phenomenon is known as ‘convergent cross mapping’ and is helpful for predicting causation. 

(Sugihara 2015) 

3.5 A note on noise and variability 

 

Noise and variability were historically defined as when a system began to break down, this was 

interpreted as the system being no longer stable. This chaotic behaviour prompted scientists to spend 

years looking the other way, trying to reduce complex systems but rejecting ones that were chaotic. 

Robert May put it best when he spoke of ‘the pedagogical importance of studying nonlinear systems 

to counter balance the often-misleading intuition fostered by linearity and traditional education.’ (May 

1984). We will discuss linearity a little more later. 

3.6 Formal Definition of Linear and Nonlinear Systems  

 

Before going into the characteristic of chaos theory, it would be pertinent to first make the distinction 

between linearity and nonlinearity. The following section aims to provide this detail. 

Linear systems must verify two properties, superposition, and homogeneity. The principle of 

superposition states that the net response at a given place and time caused by two or more stimuli is 

the sum of the responses which would have been caused by each stimulus individually. 

The principle of homogeneity simply states that the output of a system is directly proportional to its 

input. Homogeneity is implied from additivity for all rational, real, and continuous functions. Any 

function that does not satisfy superposition or homogeneity is nonlinear. It is worth noting that there is 

no unifying characteristic of nonlinear systems, except for not satisfying the two above-mentioned 

properties. (Hinrichsen 2005) 

An example of a linear system is that of the equation for the straight line of a graph; 

𝑦 =  𝑚𝑐 +  𝑥  (1) 

In this case, we know that this equation produces a straight line with an intercept at c and the gradient 

of the line determined by the value of m. We can see from our first definitions that this equation 

satisfies the conditions of being both additive and a scalar. It should be noted here that if x is the input 

then we don't have direct proportionality between input and output, and we don't have superposition. 

But if the input is a change in x, then we do. An example is given below; 

If y=2x+3 then we can take x=3 and get y=9 but if we double x i.e. x=6 then we get y=15, which is 

not 18. So, in that sense the output is not directly proportional to the input. But if we take x=3 as some 

starting point (and y=9), then consider as our input a change in x of +1 i.e. we go to x=4, then the new 

y = 11 i.e. a change of 2. If our change in x was +2, (so x=5) then the new y would be y=13, i.e. a 

change of 4, which is twice the change we got from changing x by +1. So, in this sense it is 

proportional. 
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Nonlinear can also be more casually defined as the disproportionality of an output to an input. Thus, 

not satisfying the homogeneity property mentioned above. An example of a nonlinear equation would 

be 

𝑦 =  𝑎 + 𝑥2  (2) 

We can see from this that y would not be proportional to x due to the exponent.  

3.7 Linearization 

 

Also, known as linear approximation, linearization is the process of estimating a value. It is based on 

the tangent of a function near a given point. The tangent is describing the function best, for a certain 

point, as it goes in the same direction as the function. For the analytical function f(x), the following 

formula can provide a linearization of the function near the point a. 

𝐿(𝑥) = 𝑓(𝑥) − 𝑓′(𝑥)(𝑥 − 𝑎) 

Figure 1.5: Given a curve, as function y=f(x), the straight-line L(x) is drawn at the tangent taken from f(a). The points on 

the line L(x) are best approximating the values near the point a.  

 

In the case of the logistic growth equation, the former linearization cannot apply to the formula used 

in the logistic map section, as the equation is a discretized version of the function. Linearization can 

be applied in the case of a differential equation. The differential equation for logistic growth can be 

written as: 

               
𝑑𝑁

𝑑𝑡
 =  𝑟𝑁(1 −

𝑁

𝐾
)     (3)  

  

Eq. (3) has 2 stable points. One is when N=0, and the second one is when N=K. The stable points are 

the ones which, when the plugged in, the population tends towards equilibria.  

The linearization equation for the logistic grow will take the following form: 
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𝑑𝑁(𝑡)

𝑑𝑡
=

𝜕𝑟(𝑁(𝑡)(1−
𝑁(𝑡)

𝐾
)

𝜕𝑁
∗ ∆𝑁(𝑡)  (4) 

It can be observed that when derivation the logistic equation, the N2 term is transformed in N. This 

transformation is the key to the problem faced when linearizing the nonlinear equations. Due to this, 

the rich dynamical behaviour is lost, and lead to the ‘overlooking’ of chaos.  

3.8 Best fit line 

 

In the case of an experiment, or a survey, lists of data are usually gathered. Aiding in calculations or 

predictions, that data can be fit usually in one type of function. For example, if the data seems to fit a 

linear pattern, a linear equation can be produced to describe the general behaviour. It is important to 

note that while linearization is a tool used in modelling of a function, the best fitting line, or 

regression line, is just a statistical tool to describe a specific set of data. 

 

Figure 1.6: Data from a gel filtration experiment of a mix of proteins, obtained in the course Biological Chemistry by 

Teodora Radut. The input data was fit into a line with the equation visible on the graph. This regression line aids further 

calculations for this data. As it can be seen, the line does not perfectly fit all the data as there are some points, above or 

below it, so it is not a perfect fit. 

3.9 Lyapunov exponent 

 

A quantity that characterizes the rate of separation of infinitesimally close trajectories in a dynamical 

system. Quantitatively; two trajectories diverge with initial separation δz_0 diverge at a rate given by 

the following equation 

|𝛿𝑍(𝑡)| ≈  𝑒𝜆𝑡|𝛿𝑍0|  (5) 

Were λ is the Lyapunov exponent. There is a spectrum of exponents, equal in number to the 

dimensionality of the phase space. The largest of which, the Maximal Lyapunov exponent (MLE), 
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determines the predictability of a dynamical system and a positive value for this is usually interpreted 

as a chaotic system. (Boeing, 2016) 

 

3.10 Modelling 

 

Population modelling studies populations sizes, regarding matters such as reproduction, 

starvation, or even the effects of introducing another species into an ecosystem.  Murray 

states that the size of a population usually fluctuates between certain values, which are often 

defined as the carrying capacity of one habitat3 (Murray, 1979). The size of a population is 

also dependant on many factors such as: birth rate, interaction with other species, mortality 

rate, immigration, and emigration rates (Thieme, 2003). A special type of factor is found to 

have an importance in the population size, and those are the density-dependant factors; these 

include predation and disease, or competition for resources and are one of the regulating 

influences on the number of individuals in a population (Murray, 1979). They can explain, 

for example, why in some populations, after a period of exponential growth, the population 

clashes (Murray, 1979). 

  

One example of a population model expresses the change in the population size, as a function 

of time (Thieme, 2003).  A model of this type can predict the number of individuals in a 

population, and provide an estimation for the different effects that act upon it, for example 

how much does affect does a lower food supply have on the overall population4. 

  

 The specific model we will focus on in this report is the logistic model which is based on the 

modelling of birth rate, and population from the previous year. Some of the cases that are 

discussed also consider the effects of several correlating populations and how they 

dynamically vary with each other. i.e. the predator-prey model. 

  

3.10.1 The Logistic map 

 

The logistic map will serve as a mathematical example of how chaos appears in natural systems. The 

logistic map is a recursive equation that demonstrates fluctuations of a population over a time series. 

 

Firstly, we define the logistic equation (Eq.1 below). We can consider a simple theoretical population 

of insects. The model assumes there is only one population and does not include the effects of 

interference from any other population. We consider xn as the number of individuals in one year 

                                                
3 [1] The carrying capacity of one habitat is the maximum number of individuals that can live 

in a certain habitat. 
 
4 Taken from An Introduction to Population Ecology - Introduction to Population Modelling | Mathematical Association of 

America,” n.d. 
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(defined as the ratio of the existing population to the maximum population) and xn+1 the number of 

individuals in the next year. 

 

𝑥𝑛+1 =  𝑟𝑥𝑛 (1 − 𝑥𝑛)   (6) 

 

This model has distinct behaviour depending on the values of r. 

1. If 0 < r < 1 xn tends to 0, meaning the population becomes extinct. 

2. If 1 < r < 3 xn approaches a fixed value dependent upon a 

3. If 3 < r < 3.56 xn does not approach a fixed value, it oscillates between 2 fixed points. 

4. If r > 3.56 xn doesn’t approach a fixed value or oscillate; the movement is chaotic. 

 

This model becomes chaotic because of the sensitivity to the initial conditions, meaning in our case 

the sensitivity to r. It is important to realise here that no matter the number of individuals in one year, 

the number of individuals next year is dependent on the birth rate, and the population from the 

previous year. Below is a picture of the logistic map in which you can see the transition into chaos 

where the birth rate exceeds 3.56.  

 

 
Fig. 2. Logistic map; the mapping of the logistic growth equation; after an r value of 3.56, the chaotic state can be 

observed. 
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3.10.2 The first Feigenbaum constant 

 

As you approach chaos, each periodic region (defined by the point at which it bifurcates) is smaller 

than the previous by a factor approaching a number, this number is the first Feigenbaum constant. It is 

important because it is the same for any function or system that follows the period-doubling route to 

chaos. To show this mathematically we will use two examples, firstly a standard nonlinear equation. 

(Yorke et al. 1996) 

 

𝑓(𝑥) =  𝑎 −  𝑥2  (7) 

 

In this case a is the bifurcation parameter and x is the variable. The values for a at which the period 

doubles are tabulated below. We then define the Feigenbaum constant as the limiting ratio of the 

interval between each bifurcation, as it converges to the Feigenbaum constant from equation 8 below. 

Again, in this case a is the bifurcation parameter and delta is the Feigenbaum constant. an is the 

discrete value of a at the nth period doubling. Period doubling being where a system switches to a 

new behaviour with twice the period of the original system. (Yorke et al. 1996) 

 

𝛿 = lim
𝑛→∞

(
𝒂𝒏−𝟏 − 𝒂𝒏−𝟐

𝒂𝒏 − 𝒂𝒏−𝟏
)

 
  

 

   (8) 

As we can see in the table below (2.1), the value for delta converges at the first Feigenbaum constant 

with each successive doubling. This value holds for all functions that follow the period doubling route 

to chaos. 

 

 

n Period Bifurcation parameter (an) Ratio an−1 − an−2/an − an−1 

1 2 0.75 — 

2 4 1.25 — 

3 8 1.3680989 4.2337 

4 16 1.3940462 4.5515 

5 32 1.3996312 4.6458 
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6 64 1.4008286 4.6639 

7 128 1.4010853 4.6682 

8 256 1.4011402 4.6689 

Table 2.1; Nonlinear data set showing the convergence to the first Feigenbaum constant 

 

This behaviour is consistent for iterations of other, nonlinear sets such as the logistic map as we can 

see in the table below (2.2). A slight change in the systems parameter values (in the case of the 

logistic map this would-be r, the birth rate, (see Eq. 1) causes a bifurcation and the convergence of the 

successive ratios of this period doubling once again tends towards the Feigenbaum constant. (Yorke et 

al. 1996) 

 

n Period Bifurcation parameter (an) Ratio an−1 − an−2/an − an−1 

1 2 3 — 

2 4 3.4494897 — 

3 8 3.5440903 4.7514 

4 16 3.5644073 4.6562 

5 32 3.5687594 4.6683 

6 64 3.5696916 4.6686 

7 128 3.5698913 4.6692 

8 256 3.5699340 4.6694 

Table 2.2; Logistic data set showing the convergence to the first Feigenbaum constant 
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3.10.3 Model in MATLAB 

 

The following section shows our work with some actual modelling of chaos, using scripts in 

MATLAB we could generate chaotic behaviour and analyse the transition between stable, periodic 

behaviour and Chaotic non-periodic behaviour. We began with the logistic map. Below (2.3) is a copy 

of the script and the graph generated from it.  

 

 
Fig 3 Logistic map script in MATLAB 

 

Most of the commands are explained in green above and next to each line of code. We created a plot 

also with an iteration up to a value of r = 4 by which time we have achieved chaos (Fig 3.1). We also 

created a graphic of an enlarged point at the transition into chaos illustrated in Figure 1.6 where the 

continual bifurcations become increasingly difficult to see but can just about be made out. 
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Fig. 3.1 Iterations of logistic map in the figure above, it can be observed, the system's ‘reaction’ to the value of r. For a 

value below 4, simple bifurcation can be observed. For a value of 4, chaos can be observed.  

 

 
Fig. 3.2 Zoom on the logistic map. In the figure above we can see an enlarged portion of the transition into chaos, the 

continuation of the bifurcations and period doubling with some big spaces were oscillations almost halts completely. 
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Analysis 

 

 In the following section, we will summarise a series of cases that best reflect the influence and use of 

chaos theory in population modelling. The cases were selected per their relative accessibility, which 

year they were published (we want to give sense of progression over the last 4 decades) and how well 

they reflected the most significant aspects of chaos theory (sensitivity to initial conditions, short term 

prediction vs. long term and nonlinear dynamics).  

The cases that are explored in the report, can be divided in 3 major categories; 1) The first cases that 

discovered chaotic behaviour in natural systems, 2) The cases that considered the intrinsic 

characteristics of nonlinearity in natural system, and 3) The cases that applied chaos theory in 

modelling. Presented for each article, are the H5 index, which is the largest number (h), for which at 

least the same number (h) of articles in that journal have been cited at least h times; and the citation 

number. For example, if one publication has an H5 index of 312, such as Science, it means that the 

journal has at least 312 articles that were cited 312 times.  

The first cases that discovered chaos in natural systems 

  

The seminal case by Robert May, in which he introduces chaos theory and its effect on modelling in 

population biology, was the first to apply the characteristic mathematics of chaos theory to population 

modelling. May paved the way for others as we will see later. 

1. Biological Populations with Nonoverlapping Generations: Stable Points, Stable Cycles, and 

Chaos. May R. Science, vol. 186, issue 4164 (1974) (Cited by 1517 articles, H5 index for Science 

312) 

This was the first paper that explored the possibility of the existence of chaos in population modelling. 

Here, May succeeded in showing evidence of the existence of chaos in population modelling, often 

overlooked due to the convention of linearization. This exhibition of rich and dynamical behaviour, 

shown to be present in population models was not really acknowledged by ecologists until little over a 

decade later (Gilpin 1984). In 1989, it was shown to arise, theoretically, in almost any population 

model (Robert, 1989).    

May takes a simple nonlinear equation and analyses it with a focus on the fluctuations of the birth 

rate, denoted with the same variable ‘r’ as in our previous examples. His purpose is to show that these 

types of equations (nonlinear equations) have been ‘discussed inadequately, as having either a stable 

equilibrium point, or being unstable with growing oscillations’ (May, 1974) when in fact as the rate r 

increases, the system is displaying behaviour from ‘stable  equilibrium point to stable cyclic 

oscillation between 2 population points to stable cycles with 4 points then 8 points and so on through 

a regime which can only be described as chaotic’(May 1974). ). Thus, they found oscillations 

between 2, 4,8 or more points, and then a chaotic state. In this paper, May had successfully proven 

that chaos was to be found in nonlinear equations, he had uncovered a rich dynamical behaviour 

which had been hidden by linearization.  
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This discovery has significant importance for population biology, as he states: ‘For population 

biology in general (...) the implication is that even if the natural world was 100 percent predictable, 

the dynamics of populations with ‘‘density dependent’’ regulation could be nonetheless 

indistinguishable from chaos, if the intrinsic growth rate r is large enough’ (May 1974).   

Showing that chaos can arise in simple models of population biology, this seminal article is the first 

one to propose that important dynamical behaviour is lost during linearization. Modelling in 

population biology now had to face a consideration that linearizing may not be such an accurate 

approach and that nonlinearity should be considered more thoroughly. 

 

2. Nonlinear forecasting as a way of distinguishing chaos from measurement error in time 

series. Sugihara G May R. Nature, vol. 344, issue 6268 (1990) (Cited by 1534, H5 index for 

Nature, 359) 

This article was published in 2 different journals, and for understanding the article fully, we shall 

regard both, one is focussed on explaining the method of May and Sugihara, while the second one, on 

their results. The general focus is that of creating a distinction between that of chaotic behaviour and 

errors in measurement (noise) in dynamical systems. 

 

The first article investigates the importance and effect of environmental and biological factors, in 

terms of regulating the population size, while taking into consideration the system’s nonlinear 

behaviour and the incorporating the idea that it could be chaotic. Starting from the premises that the 

environmental factors and the biological factors are ‘often thought to’(Sugihara & May, 1990) 

determine two different types of behaviour, the authors ‘revise this idea in the light of recent 

work’(Sugihara & May, 1990), and determine which factors are correlated with the specific 

behaviour. The authors then present a method of distinguishing between noise, and chaotic behaviour, 

which is applied to different data sets; measles, chickenpox, and marine plankton. It was in relation to 

this relative new theory in dynamics, concerning non-linearity and chaos that the authors divide the 

report into 4 major parts: first they present the shortcomings of traditional approaches in population 

dynamics, next they present their new method of distinguishing between noise and chaos; the third 

part consists of the application of this method to several data sets, and lastly their conclusions and 

future perspectives. 

 

1) Limitations; 

The authors exemplify one case in which (based on the old approach of linearizing) the data set would 

be characterised as having external influences, leading to a model with erratic results. They infer 

though, that this is not the case, as it is a simple model of chaotic behaviour. ’Yet these data do not we 

summarize as follows, represent density-vagueness at all, but are an example of simple chaotic 

dynamics that were generated from the deterministic tent map’’ (Sugihara & May, 1990). Clearly here 

Sugihara and May claim to have found chaotic dynamics in a system long since disregarded as erratic. 

When regarding the limitation of the single factor approach-which is the regression of ‘one 

explanatory variable against another’ they found that critical relationships are lost, appearing 

unrelated. 

2) The new method; 

By using Taken’s embedding theorem, they can develop their approach. ‘(..)we follow the short-term 

destiny of nearby points in the attractor to see where they end up after p time steps. This is a 

nonparametric method, and it should apply to any stationary or quasi-ergodic process, including 
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chaos.’ (Sugihara & May, 1990) From this quote we can see the beginnings of the application of 

Taken’s embedding theorem and thus the beginnings of empirical dynamic modelling. Their method 

seeks to predict the trajectories of points nearby the attractor, which we will later see, is a method of 

determining the dynamics of the system. 

3) Application of the method; 

The data sets chosen are rather large, making it easier to detect patterns, this is because the 

chickenpox and measles cases are very well documented. When the new method is applied, the 

authors state that they could make short term predictions on the data that was presenting chaos, but 

not on the ‘noisy’ data.  (*It is important to note that, when the article was published in Nature 

another time series was added, namely the marine plankton time series). Regarding their application 

of the method we shall consider the Nature article in more detail as it provides more information than 

the review. For the measles data set, the nonlinear predictions have a p value5 of 0.0005, thus the 

predictions are optimal. In the case of the chickenpox time series, it is found the linear regression 

model has the same performance as the nonlinear model. The authors explain this, referring to several 

biological factors, such as the ‘brief interval of infectiousness’(Sugihara & May, 1990), and because 

of the legal differences in reporting the cases. In the case of measles, informing the relevant 

authorities was mandatory, which was not the same for chickenpox. For the last data set, the marine 

plankton time series, to quote the authors: ‘significantly better fit of the nonlinear predictor, as 

compared with the optimal linear autoregressive model(P<0.0005)’ (Sugihara & May, 1990). Thus, a 

nonlinear model could predict more accurately than a linear regression model.   

4) Conclusion and Future perspectives; 

Sugihara and May conclude that their approach is feasible for the considered time series, and that this 

approach can be applied to other ‘noisy’ time series in population biology. 

 

The article is thus demonstrating a new method in distinguishing between noise and chaotic 

behaviour. May and Sugihara apply their method to different data sets, and then analyse the forecast 

from both the autoregressive model and the nonlinear model, with more success coming from the new 

technique. 

  

3. Spiral chaos in a predator-prey model – Gilpin, M. The American Naturalist, vol. 113, issue 2 

(1979) (Cited by 299, The American Naturalist H5 index 45) 

This rather short article, is further studying a predator prey model in which quasi-cyclic behaviour is 

found as stated in a previous paper (Vance, 1978) by a previous article. The important part of this 

report, is that the author is studying this trajectory of the predator prey population and classifies this 

specific type as spiral chaos. This paper is also important for their conclusion as they state: ‘The 

message from this is that even the simplest possible models of community interaction require 

exhaustive cybernetic analysis before their repertoire of behaviours can be known, and some of these 

are likely to be complex. It is hardly any wonder that IBP-type models
6

, assembled from many 

nonlinear component models whose parameters are necessarily inaccurate and probably improperly 

lumped, have blown up, (...). The degree to which real ecosystem behaviour is chaotic is possibly the 

                                                
5 The p value is the result of a statistical test, which gives the researcher an approximation of the probability of 

any of the results appearing in nature. A good p value depends, usually, on the research too, but any value below 

0.05 is normally considered to be good, as it means the found results would match in 95% of the cases.  
6  IBP models are the models constructed during the International Biological Programme(IBP), which were 

meant to develop ecosystem models as a whole. (http://www.encyclopedia.com/earth-and-environment/ecology-

and-environmentalism/environmental-studies/international-biological)  

http://www.encyclopedia.com/earth-and-environment/ecology-and-environmentalism/environmental-studies/international-biological
http://www.encyclopedia.com/earth-and-environment/ecology-and-environmentalism/environmental-studies/international-biological
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most fundamental question facing community ecology’ (Gilpin, 1979). Thus, the authors are 

highlighting the rich dynamical behaviour than is found in their model, as well as the fact that 

nonlinear systems should be modelled accordingly.  

 

In summary; this article is further investigating chaos in population models, and it can show that 

chaotic behaviour can be found in the simplest models, thus supporting May’s claim from 1974. This 

is an example of further evidence that chaos is encounterable in population biology models, as far 

back as the late 70’s. 

 

 

4. Seasonality and period-doubling bifurcations in an epidemic model. Aron J Schwartz I. 

Journal of Theoretical Biology, vol. 110, issue 4 (1984) (Cited by 273, Journal of Theoretical 

Biology H5 index 44) 

This paper is focusing on how seasonal variation is actually influencing an epidemic model, by 

describing ‘a simple epidemic model with seasonal transmission and (we will) explore numerically its 

periodic solutions ‘(Aron & Schwartz, 1984). The model divides the population into 4 categories: the 

people who can contract the disease, the susceptible (S); the people who have been infected, but are 

not infectious, the exposed (E); the people who can infect other people, the infective (I); and the last 

are the people who cannot contact the disease anymore, the recovered (R). Using the SEIR epidemic 

model, they can show that as the ‘amplitude of the seasonal variation increases the solution may pass 

from a period 1 (annual) cycle to period 2 to period 4, etc., tending to a Feigenbaum transition to 

chaotic behaviour’ (Aron & Schwartz, 1984). The authors also emphasise the importance of more 

detailed studies to understand the interepidemic periods. As the papers before, this article is further 

evidence that chaotic behaviour is found in natural systems, in this case in an epidemic model. The 

exploration of chaos begins to further into more diverse fields. 

 

5. Spatial structure and chaos in insect population dynamics. Hassell, M. Comins, H. May, R. 

Nature, vol. 353 (1991) (Cited by 844, Nature H5 index 359) 

This article is regarding a mathematical model of host-parasitoid interaction. They consider that the 

environment ‘consists of a square grid, containing many patches’(Hassell, Comins, & May, 1991). In 

these patches they apply one equation to ‘find how many hosts and parasitoid’s will emerge in that 

patch in the next generation’(Hassell et al., 1991). Then they are considering that some fractions of 

the hosts and parasitoid’s are distributed in other patches. They are dispersing the individuals only in 

their neighbouring patches with an equal distribution. Their results are divided, as they can distinguish 

3 patterns, among which is also chaos. To confirm their results by using cellular automaton; ‘For a 

cellular automaton approach, we abandon detailed host and parasitoid population values, and 

acknowledge only these nine qualitative categories of patch densities. We then define a set of 

‘movement rules’ that specify the colour of each patches next generation in relation to its present 

colour and the colour of its eight neighbours’(Hassell et al., 1991).Thus in the cellular automaton 

method, the authors only consider the patch density, and they provide the rules for the insects to move 

from patch to patch. By using this they found the same 3 patterns, including one of chaotic behaviour. 

This article was also chosen due to its citation number and its publisher; Nature.   
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The cases that consider the intrinsic characteristics of nonlinearity in 

natural systems. 

 

These are the articles which applied and included the idea of chaotic behaviour in ecosystems, and 

used it to understand the systems better. 

6. Transition to spatiotemporal chaos can resolve the paradox of enrichment. Petrovskii S, Li B, 

Malchow H. Ecological Complexity, vol. 1, issue 1 (2004) (Cited by 99, Ecological complexity H5 

index 21)  

In 1971 Michael Rosenzweig coined the term ‘paradox of enrichment’, roughly defined as an effect in 

predator-prey models terminate their progression with a tendency to extinction for the predator. This 

occurs when the food for the prey is left unbounded, it destabilizes the population of the predator 

indirectly by allowing a proliferation of prey. (Rosenzweig, 1971). In the 2004 paper on 

spatiotemporal chaos, Petrovskii et al. demonstrate how, using two different models, a transition from 

stability into chaos can prevent species extinction in a predator prey model. This demonstration, 

acknowledging the presence of chaos, (which had also been shown in previous papers (Wave of 

Chaos, Petrovskii, 2000) enables a richer dynamical model to be produced. In regular dynamic 

modelling the predator would have tended to extinction thus validating the Rosenzweig paradox. A 

consideration of chaotic dynamics in the model enables a more realistic model to be produced. 

7. Frequency dependence and viral diversity imply chaos in an HIV model. Iwami S, Nakaoka S, 

Takeuchi Y, Physica D: Nonlinear Phenomena, vol. 223, issue 2 (2006) (Cited by 6, Physica D: 

Nonlinear phenomena H5 index:33) 

It is shown in this paper, that viral diversity and the frequency dependent proliferation of CTL’s7 (T-

cells that attack viruses) and elimination of infected cells in an immune system can produce strange 

attractors when the behaviour of two or more viruses are modelled. Considering an individual who is 

infected with HIV; the susceptibility of the body to viruses increases due to a weakened immune 

system, the proliferation of the diversity of these viruses and the frequency dependent behaviour of 

CTL’s which attack the infected cells is shown to produce chaotic behaviour in the form of strange 

attractors. This chaotic behaviour is thought to lead to the collapse of the immune system. 

It is also shown that the modelling of single viruses and the proliferation of frequency dependent 

CTL’s produces stable cycles. The paper concludes that the frequency dependence caused by the 

random search, with viral diversity (more than one virus), can make the behaviour of the system 

complex (for example quasi-periodic or chaotic). ‘The frequency dependence leads to continuous 

alternating changes of the dominant, infected cells and corresponding specific immune cells so that 

chaotic behaviour will occur’. The paper also shows that ‘the interior equilibrium of the one-virus 

model can become unstable because of the frequency dependence’ and that the ‘numerical simulation 

results suggest that only a stable limit cycle exists when the interior equilibrium is unstable’. Finally 

concluding that the ‘numerical simulation results suggest that viral diversity can cause the emergence 

of chaotic behaviour’.  

                                                
7 CTL’s (Cytotoxic T-lymphocytes) – Also known as T-Cells. 
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8. Ye, H., & Ding, Y. (2009). Nonlinear dynamics and chaos in a fractional-order HIV model. 

Mathematical Problems in Engineering, 2009, 1–12. http://doi.org/10.1155/2009/378614 (H5 

index 33, citations numbers:29) 

Based on the research done by Iwami et.al in 2006, this article is taking into consideration the 

fractional order in HIV modelling. Their reasoning for considering their approach, is due to the fact 

that modelling with fractal differential equations proved beneficial for other systems such as the 

conductance of the biological membranes, as well as the fact that ‘fractional order models possess 

memory while the main features of immune response involve memory.’(Iwami, Nakaoka, & Takeuchi, 

2006) Their goal is to observe the effect of such introduction to the dynamics of the system. The 

unstable internal equilibrium, present in the Iwami et al, is becoming asymptotically stable in this 

approach. When taking into consideration the viral diversity, strange chaotic attractors are present, 

thus ‘chaos does exist in the fractional order HIV model with viral diversity’ (Ye & Ding, 2009). 

 

The cases that used chaos theory for forecasting 

 

The last category provides a series of cases where modelling with consideration of nonlinear 

dynamics enabled the authors to show greater accuracy in the short-term forecasting of populations. 

8. Does Chaos Exist in Ecology? Evidence from a Rodent Population. Li B, Wang Y, Rong X, Su 

J, Wang R. International Journal of Nonlinear Sciences and Numerical Simulation, vol. 11, 

issue 6 (2010) (Cited by 2, International Journal of Nonlinear Sciences and Numerical 

Simulation H5 index: 10) 

This paper is all about the dynamics of a rodent population (T. Triton, A long haired Hamster). In it, 

the authors show how, by applying different mathematical analyses, it is possible to reveal dynamics 

of populations that are closer to nonlinear, even chaotic patterns. The introduction to this paper talks 

directly about how the use of linear forecasting is inaccurate and somewhat limited in its reflection of 

actual population dynamics and the how the subsequent study is an attempt at improving this shortfall 

in accuracy. 

In the analysis section of their report they point to the identification of nonlinearity in the population 

dynamics (p.470), this is, they say ‘the necessary precondition for the detection of chaos, but not a 

sufficient precondition’. Thus, there is an implication for the presence of chaos which can now be 

examined using Lyapunov exponent and correlation dimension analysis. The time series was later 

found to be chaotic, having a positive Lyapunov exponent, a usual indicator of chaotic behaviour. The 

analysis and prediction was done using a small data set algorithm to create short term predictions. 

Long term predictions were not easy to obtain owing to the complexities of wild data research. The 

authors also state that the intrinsic factors such as litter size, sex ratio and age structure were much 

more important and affecting than the extrinsic factors (climate, agricultural policies, and geographic 

condition) in determining population fluctuations. 

Finally, the authors state that the goal of the paper was not to verify chaos but simply to acknowledge 

it as an important step in the forecasting of animal populations. It appears from the modelling that 

short-term prediction is possible, even fairly accurate but anything long term provides greater margins 

of error. 

http://doi.org/10.1155/2009/378614
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9. Equation-free mechanistic ecosystem forecasting using empirical dynamic modelling. Ye H, 

Beamish R, Glaser S, Grant S, Hsieh C, Richards L, Schnute J, Sugihara G. Proceedings of the 

National Academy of Sciences, vol. 112, issue 13 (2015) (Cited by 25, Proceedings of the National 

Academy of Sciences. H5 index: 215). 

This paper shows a more modern perspective on modelling in ecology using no parameterizing 

equations. Parameterizing equations usually have fixed constants to represent environmental factors 

(growth rate, carrying capacity), but these can vary in time and relation to each other. By showing the 

application of these dynamical variables the paper claims a higher level of accuracy in the prediction 

of populations of sockeye salmon. 

The paper begins by describing the evidence of nonlinear dynamics in the case of the guppy fish, 

whose preference for prey will vary depending upon its abundance or scarcity. Factors such as these 

are usually modelled as constants, unrelated to each other and are evidence of the nonlinearity in the 

dynamics of natural systems. The separation of these factors, it is supposed, leads to less accurate 

modelling when they are in fact deterministic and can be modelled as such. The authors go on to talk 

of the effect of causal variables and how it is difficult to determine which are the most important to 

identify due to negative and positive correlations. Incorrect selection of these variables leads to less 

accurate modelling. In the case of the Seymour-spawner recruit data8, it was demonstrated that a 

correlation between surface sea temperatures and recruitment was unrealistically high, indicating an 

inaccurate relation between the selection variables of SST and consequent recruitment rate derived 

from analysis of it. The subsequent coupling of these variables as constants proved to provide less 

accurate data. Indicating that careful selection of variables provides important correlation information. 

The authors then go on to demonstrate the presence of nonlinear dynamics using data from the 

previous 60 years and test the EDM9 against another modelling technique (The Ricker technique)10. 

They go on to say ‘In both cases, if the inclusion of environmental variables significantly improves 

forecast’. Thus, demonstrating that the inclusion of dynamical variables (rather than static ones) 

improves results. 

The paper concludes with a discussion of the data analysis and the confirmation of the hypotheses that 

the inclusion of nonlinear dynamics in population modelling yields more accurate results. EDM itself 

appears to provide an interesting method for highlighting the significance of environmental variables 

in dynamical modelling (particularly parameterizing) and aids by way of highlighting causal 

relationships between variables. Moreover, it can serve as a substitute for parametric equivalents. 

The system: EDM (Empirical dynamical modelling) claims to ‘recover the mechanistic relationship 

between the environment and population biology that fisheries models dismiss as insignificant’. By 

applying Taken’s embedding theorem, the system ‘instead relies on time series data to reveal the 

dynamic relationships among variables as they occur’. 

 

                                                
8 A comparative data set (Seymour is the name of the stock). Spawner recruit data is the number of spawning adult salmon.   
9 Empricial Dynamic Modelling. Explained more rigorously in the theory section. For a video of EDM please go here; 

http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1417063112/video-1 

10 The Ricker technique gives the expected number of individuals in a generation as a function of the previous generation. 

http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1417063112/video-1
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1417063112/video-1
http://movie-usa.glencoesoftware.com/video/10.1073/pnas.1417063112/video-1
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10. Glaser, S. M., Fogarty, M. J., Liu, H., Altman, I., Hsieh, C. H., Kaufman, L., … 

Sugihara, G. (2014). Complex dynamics may limit prediction in marine fisheries. Fish 

and Fisheries, 15(4), 616–633. http://doi.org/10.1111/faf.12037 

 (Cited by 24, H5 index:45) 

  

This article is using nonlinear models, of two different ecosystems, one consisting of fished species, 

and the other of unfished species, to ‘quantify the predictability achievable’.   By comparing more 

than 200-time series, they can show that the dynamical behaviour of fished species is ‘significantly 

different from the dynamics of the underlying fish population’, as the ‘fished species are more likely to 

display nonlinear dynamics than unfished species’ (Glaser et al., 2014).  This difference in dynamics 

was attributed to human intervention through fishing, and the nonlinearity caused an incline in the 

species to ‘rapid and unpredictable population fluctuations that can severely impact food security and 

economic well-being (Mullon et al.2005)  and highlighting the short time horizon over which these 

populations may be predictable’(Glaser et al., 2014). When regarding the prediction, the authors 

found that 2-5 years’ predictions are also limited, not only long term ones (>10 years). ‘Over 1-year 

horizons, nonlinear models produced better forecasts for species with nonlinear dynamics 

than linear models did for species with linear-stochastic dynamics. ’ (Glaser et al., 2014) Their 

forecast was accurate in 70% of the time series, while for the remaining 30% of the time series, it is 

suggested that is due to the strong noise associated with the data. The article concludes with the fact 

that predictions of complex systems ‘may be more limited than we would prefer.’ (Glaser et al., 

2014) 
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5. Discussion 

 

This project sought to investigate whether the development of a new theory-the theory of chaos -had 

any significant impact on population biology.  Chaos theory revealed a new niche in the mathematical 

world that could not be seen before, mostly due to the linearization process. By not linearizing the 

data of dynamical systems, researchers could develop another way of modelling dynamical systems 

that led to several advantages, as well as some disadvantages. 

  

In 1974, Robert May, whilst working with population models, discovered a rich dynamical behaviour 

that was overlooked due to the standard convention of linearization (May, 1974). This was the starting 

point of this project, as any influence of chaos theory in population biology emerged after this point. 

This seminal article, acknowledging the presence of chaos in biological systems, did not have a great 

impact initially, as over a decade later in 1989, Robert Pool states that; the majority of population 

biologists did not take into consideration chaos and that the data is only ‘suggestive’ of chaos (Pool, 

1989). Several reasons for not considering chaos were found, among which were the noise levels of 

the data for population, which made it hard for the researchers to distinguish recognisable patterns, 

and that the data sets were usually not long enough to display chaotic behaviour (Pool, 1989). 

  

Bearing these impediments in mind, in 1990 Robert May and George Sugihara published an article in 

Nature in which a method of distinguishing between chaos and noise (using Taken’s embedding 

theorem) was created based on short term predictions (Sugihara & May, 1990). Chaotic time series 

predictions seem to be dependent on the prediction time interval, as the accuracy drops with 

increasing time, whereas unrelated noise predictions are independent of the period time interval 

(Sugihara & May, 1990). Robert May also went on to highlight ‘the pedagogical importance of 

studying nonlinear systems to counter balance the often-misleading intuition fostered by linearity and 

traditional education....’ (Sugihara & May, 1990). 

  

For this project to be able to find an influence on population biology, chaos had to be recognized as 

being present in biological systems and accordingly considered when modelling them. Several 

research studies were conducted in which chaos was demonstrated to be present. For example, as 

early as 1979 a model of a predator prey interaction was found to have chaotic behaviour, in the form 

of a chaotic trajectory in the model (Gilpin, 1979). Even though his model is revealing chaos, the 

author is raising the problem of relevance: the degree that the model is resembling the real ecosystem 

(Gilpin, 1979). Models in general are just an imitation of complex dynamics, so in this case, the 

author is highlighting the problem of models in general: whether the model of predator prey is 

representative of the true nature of the ecosystem and can be improved somehow. 

  

In 1984, a link between chaos and epidemics was found by Aron and Schwartz which demonstrated 

the presence of period doubling bifurcations in the model of epidemics (Aron & Schwartz, 1984).  

Evidence of chaos thus had begun to accumulate after only 10 years. The search for chaos in natural 

systems didn’t stop, in 1991 researchers found a range of dynamical behaviour, including chaotic, in 

host-parasite interactions in insects (Hassell et al., 1991). 
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An important breakthrough came, due to the growing understanding of chaos as a part of biological 

systems, namely populations. In 2004, Petrovskii et. al could demonstrate a connection between 

chaotic behaviour and the paradox of enrichment (Petrovskii, Li, & Malchow, 2004). This explanation 

could become known mostly due to the acknowledgement of chaos theory and the significance of 

nonlinear dynamics, as the demonstration relies on including chaos, and considering it when 

modelling as a realistic consequence instead of simply linearizing. 

  

Another point of reference when considering the influence of chaos on population biology was the 

presence of chaotic behaviour in HIV studies. As May hypothesized in 1989, chaos proved to be 

helpful in studying the interaction between the virus and the immune system (Pool, 1989).  In 2006, 

Iwami et al. while studying the effect of viral diversity on the human immune system, found that the 

model was not stable without viral diversity, but also that the viral diversity can generate strange 

attractors (Iwami, Nakaoka, & Takeuchi, 2006). This article was not alone as just 3 years later, 

another article, that was considering fractals too, found chaos to be present in HIV models with viral 

diversity (Ye & Ding, 2009). We consider this evolution in the studies of models of HIV an important 

influence that the theory of chaos had upon population biology. Even though Ye and Ding are 

mentioning that the biological meaning of their model is to be further studied, progress has been made 

into understanding how the viral diversity influences the immune system, and it would have not been 

possible without reconsidering the ‘norm’, or standard linearization, in modelling dynamical systems. 

  

Another important point in considering the influence of chaos theory on population biology are the 

consequences that it has on predictability. As implied by the name, in a state of chaos, no predictions 

can be made. We considered this point, and regarded several articles to understand what implications 

did this fact have on population biology. 

  

To start with, a research paper from 2004 on rodent populations with data from 1982-2003, showed 

that the population was following a nonlinear, non-periodic and even chaotic dynamic (Li, Wang, 

Rong, Su, & Wang, 2010). They authors were also able to successfully do short term predictions 

about the T. Triton population (Li et al., 2010). Since the population clearly did not follow a linear 

model, we consider this example as a successful model with more accurate predictions. This article is 

not the only one that we considered in order to evaluate the influence of the theory of chaos in 

predictability in population biology. Sugihara and May, in 1990, not only developed a technique to 

distinguish between chaos and noise, but also compared predictions from 3 different populations: 

measles, chickenpox, and marine plankton, and the two types of approaches: non-linear and linear 

(Sugihara & May, 1990). The results varied, as for measles and marine plankton the nonlinear 

predictions seemed to fit the data better than the linear approach (Sugihara & May, 1990). For 

chickenpox though the predictions seemed to be the same either for the nonlinear approach or linear; 

the underlying reasons for this being either biological, such as the reproductive rates, or simple 

measurement data error as reporting of cases for chickenpox was not compulsory, compared to the 

measles (Sugihara & May, 1990). 

  

A more recent article also used chaos theory in an empirical dynamical model and it was found that 

the model could make more precise predictions for the population of sockeye salmon than that of the 

pacific Salmon Population Commission’s non-inclusive model. The new model proposed by them 

estimated the population as being between 4.5 and 9 million whereas the Salmon Population 

Commission’s model estimated a value between 6.9 and 20 million fish, with the final number being 

8.8 million (Glaser et al., 2014) (“Chaos Theory in Ecology Predicts Future Populations | Quanta 

Magazine,” n.d.). Predictions based on nonlinear models seem to be a better fit for data that is 
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exhibiting nonlinear behaviour, but it is important to note that these predictions are usually short term 

as any long-term predictions are impossible due to the system’s sensitivity to the initial conditions. 

  

In 2013, researchers worked with non-linear forecasting models for fished and unfished species, using 

over 200 times series of survey abundance and landings; the two types of species showed different 

behaviour, as the fished species tended to display non-linear behaviour and the non-fished species 

linear behaviour. By comparing these two different mathematical behaviours, Glaser et al. could 

conclude that predictions over the fished species tended to be less accurate; over the period of one 

year, the predictions fit 70% of the cases while over a 5-year period the accuracy of the predictions 

declined exponentially (Glaser et al., 2014). 

  

For this project, the articles provided us with the evidence that the inclusion and consideration of 

chaos instead of linearizing models of populations, has two effects: first, the short-term predictions 

are better and secondly, the long-term predictions are not accurate due to the core of chaos: sensitivity 

to the initial conditions. Our conclusions are based on the findings of the papers we have presented, 

although somewhat limited in their scope, there is a definite correlation in the findings. This could be 

somewhat attributed to our bias, after all we did select the papers ourselves deliberately, but we also 

looked at a lot of other papers and a theme was apparent. Initially cited by Robert May, it was 

regularly occurring throughout our research and proved to be unavoidable. Whilst we have only 

scratched the surface, one thing can be said for sure; Chaos theory has a place in population 

modelling. 

 

Bibliometric data  

 

Another consideration in the selection of our cases was that of the bibliometric data, although 

somewhat retrospectively, we did discover that some of the very many cited papers, mostly those of 

Robert May’s showed a great interest in the work that was being done. Although over 30 years ago, 2 

of these papers have been cited over 1000 times, a clear indication of the significance of them. The 

1991 paper on population dynamics of insects shows a citation of 884, again a very large figure and 

an indication of sheer significance. This could be attributed to the fact that it was Robert May who 

wrote it, but for such a high number there must be something of importance going on here. Finally, 

the most modern papers on the fish species (sockeye salmon and marine) show citations of 24 and 25 

respectively, although it only being 1 and 2 years since publication, this is another hint that the papers 

contain data that has value to others and significance in the scientific field. 
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6. Conclusion 

 

The purpose of this report was to find what (if) any significant changes appeared in population 

biology after the theory of chaos was applied within the field. We found that significant changes 

appeared in two areas: modelling with nonlinear systems and predictability. Considering chaos in the 

modelling of dynamical systems gave rise to a new method of handling these systems: the rejection of 

linearization, and modelling them as nonlinear systems. This lead to several benefits, which were 

inaccessible before, as certain characteristics could not be seen in a linearized system. The second 

change that arose was in the field of predictability. The scientific world had to consider now, that 

there were well defined limits to predictability for nonlinear systems, long term predictions of which 

are virtually unfeasible. On the other hand, short term predictions for these systems appear to be 

becoming more accurate as the models are a better representation of the natural state and progression 

of the system. This short-term predictability (or lack of) has been observed for years in the form of 

weather predictions, the field in which Lorenz was working when he discovered chaos lurking in the 

models. Weather predictions tend to be useless after less than a week, and the underlying reason for 

this is, the sensitivity to the initial condition, the essence of chaos theory. 

 

In conclusion, we found that chaos theory did have an influence on population biology, by helping to 

increase the understanding of natural systems and providing a new tool for modelling, as well as 

redefining the predictability of nonlinear systems and the consideration of nonlinear dynamics in 

population modelling. 

 

7. Future perspectives 

 

Given the limitations of time for this project, there was inevitably a great deal of information that was 

be left out, undiscovered or overlooked. There would also be a lot of detail yet to be uncovered and a 

greater depth at which we could delve into chaos theory. With this in mind, we considered a further 

six months or so on the project and what it would look like. 

Although we uncovered, what we consider, the most significant characteristics of chaos theory, it is 

believed that there is a lot more to be understood. For example, the 15-year gap from Robert May’s 

seminal paper on nonlinear forecasting is barely examined, this could prove to be an area rich in 

information. There is also the details themselves, somewhat complex and only generally applied and 

basically understood; it would be interesting to study the mathematics of chaos theory in a much 

greater depth, applying the knowledge with MATLAB scripts and real world data. A more thorough 

understanding is sure to be gained in this manner. Finally, the advent of EDM appears to be a new and 

exciting technique for dynamical modelling, one that it would have been fascinating to really explore 

in detail. 
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