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PROCEEDINGS OF THE EIGHTH CONGRESS OF THE
EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS
EDUCATION: GENERAL INTRODUCTION

Maria Alessandra Mariotti Ferdinando Arzarello

University of Siena University of Turin

We are glad to present the Proceedings of the Eighth Congress of the European
Society for Research in Mathematics Education (ERME), which took place 6-10
February 2013, at Manavgat-Side/Antalya in Turkey.

The story of ERME begins at its first congress in Osnabrueck, Germany, in 1998 and
develops all along the CERME congresses that have taken place every two years
since CERME2 in 2001. The vision shared by the first group of founders was that of
establishing a community to promote communication, cooperation and collaboration
in mathematics education research in Europe. At the very beginning of the ERME
story, considerable time was spent talking about the nature of our conferences.
Especially we wondered how were we going to achieve the communicative,
cooperative and collaborative spirit we envisaged. It was clear that the conference
should offer more than just a platform for presenting and listening to papers, as many
other conferences do. We wanted that CERME could allow groups of researchers in a
particular scientific area really to work together on their area of research, with
sufficient time to get to know each other, to share and discuss their research and to
engage in deep scholarly debate. At the same time we wanted to support the scientific
development of young researchers fostering their active participation to our research
community.

Therefore it was decided that CERME should abandoned the common format of
parallel research report presentations and adopt a new format based on Working
Group activities where participation by all who attend the congress could be
promoted. Such a format has been developed stating a clear policy for the
organization and the management of thematic Working Groups. At CERME
participants spent most of the time in discussion and debate within the thematic
Working Groups (WGs), during 6 or 7 working sessions of 90-120. Each CERME
participant selects the membership of just one such Group, on the base of her/his
personal scientific interests. For each WG, a team of leaders is nominated by the
Scientific Program Committee, the leaders have in charge the complex organization
of the WGs, preparing and managing what will happen at the Conference. Though
participation to the conference is completely free, prospective participants are
encouraged to contribute with submitting a paper or a poster. The leaders’ team
organizes the peer review process among the member of the Group according
significantly devolved and distributed responsibility in criticising but also supporting
the elaboration of the single contributions. This process aims not only at rising the
quality of the papers but also at developing a sense of belonging to a community, for
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all participants. At the end of this first phase all the accepted paper will be posted on
the website of the conference and participants are expected to read all the papers
related to their own WGs, before attending the conference. This corpus of papers will
constitute the first working material for the WGs activities, and a great deal of time
and intellectual efforts are spent by the leaders to outline the structure of the working
sessions where the different contributions will be fully discussed and related to the
other contributions.

At CERME 8, different ways of organizing the working group sessions were set up
by the different leaders teams. The main objective was always that of fostering the
discussion exploiting the richness of the contributions. In some cases the discussion
was structured according to subthemes focussing on specific clusters that emerged
from the variety of the papers. Other times the leaders proposed the participants
specific questions that were sent in advance to the authors of the papers who were
requested to focus a short contribution on this question. The variety in the
organization structure witnesses of the complexity of the task that the leaders team
are asked to face but also of their passion and commitment in accomplishing their
work, for which the ERME community is highly grateful to them. In the introduction
to the collection of papers of each WG, the reader will find a description of the
different organizations that were adopted.

The particular format of the conference gives the participants the opportunity of
getting fruitful feedbacks that can enlarge and enrich their own perspectives; thus,
after the conference the authors have the possibility to further revise their papers,
integrating significant elements emerged from their WG’s discussion: this will be the
latest form in which papers will pass the final review process and when accepted will
appear in the proceedings. The double review process that is used at CERME
congresses - papers are firstly accepted for discussion in the WGs and than their final
version has to be accepted for being published in the proceedings - not only aims at
raising the quality of the papers but also at assuring a fair balance between quality
and inclusion, two goals that seem to pull in different directions, and may create
tension, sometimes frustration. However, the attainment of a good balance between
quality and inclusion constitutes the main challenge of our community according to
our main objectie: to ensure the ERME spirit® of communication, cooperation and
collaboration.

The number of WGs increased in the years and since CERME7 we have 17 WGs,
and excepting of the WG 15 and WG 17, the number of participants in each is around
25-30 on average, including about 4 WG leaders.

The themes of the WGs are as follows:
WG1: Argumentation and proof

WG2: Arithmetic and number systems
WG3: Algebraic thinking

WG4: Geometrical thinking

CERME 8 (2013)
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WGS5: Stochastic thinking

WG6: Applications and modelling

WG7: Mathematical potential, creativity and talent
WGS: Affect and mathematical thinking

WG9: Mathematics and language

WG10: Cultural diversity and Mathematics Education
WG11: Comparative studies in Mathematics Education
WG12: History in Mathematics Education

WG13: Early Years Mathematics

WG14: University mathematics education

WG15: Technologies and resources in mathematics education

WG16: Different theoretical perspectives / approaches in research in mathematics
education

WG17: From a study of teaching practices to issues in teacher education

The success of the ERME Conferences is witnessed by the constant increasing
number of participants and presentations. In Manavgat 520 participants attended the
congress, from 45 countries within and beyond Europe.

In addition to the WG activities, the congress was enriched by in a number of plenary
scientific activities, and a varied social and cultural program.

The opening session included a plenary address by Paolo Boero who proposed a deep
reflection on how to deal, as researchers, with the unavoidable complexity of big
problems concerning the teaching and learning of mathematics in our societies. On
the base of a long personal elaboration, strictly and functionally interwoven with the
evolution of the experimental activity in the school carried out with the Genoa
research group since the seventies, Boero offered us some answers to those big
questions emerging from complex phenomena, particularly those concerning societal
needs and values and related educational choices.

As at previous CERME congresses, two other plenary talks were given by former
WGs leaders, Alain Kuzniak and Candia Morgan.

Kuzniak presented a vivid account of what are today the core items and the
contributions of researches in the didactics of geometry, and he did it in the light of
the rich discussions which have been occurring in the CERME Working Group on
geometry from its beginning in 1999. Candia Morgan delineated a superb survey of
the complex field of study of language in mathematics education. As she said, she
offered her map, her personal and critical account, on previous studies in this field,
and especially a theoretical elaboration as it emerged from the active discussion

CERME 8 (2013)



INTRODUCTION

taking place at the CERME Working Group on Language and Mathematics over the
years.

Three papers corresponding to these three plenary addresses are included in these
proceedings.

Though these proceeding do not contain any document related to it, let me mention
another fundamental event that took place one day before the opening of the
Congress: the YERME (Young European Researchers in Mathematics Education)
day. This is now a constant appointment where young researchers — doctoral students
or post-doctoral researchers - meet expert scholars in thematic discussion groups.
This event, together with the YERME Summer School (YESS), is based on the
volunteering of some members of the society. At CERME 8 the organization of the
YERME day was coordinated by Jodo Pedro da Ponte, Ferdinando Arzarello and
Behiye Ubuz; the activities were led by professors Paolo Boero, Uffe Thomas
Jankvist, Barbara Jaworski, Ester Levenson, Maria Alessandra Mariotti, Jodo Pedro
da Ponte, Susanne Prediger, Mario Sanchéz, Susanne Schnell, Behiye Ubuz.
(http://cerme8.metu.edu.tr/yerme.html)

As said, our Conference has a very particular format, it promotes the active
involvement of all the participants and its success highly depends on their
contributions; however, success also depends on the commitment of those who made
this involvement possible, to them we want to express our gratitude in behalf of the
ERME community: to the members of the Scientific Program Committee, for the
inspiration and support that they offered in the scientific planning of the conference,
to the Leaders of the WGs, for the competence, the energy and the engagement that
they invested in their responsibility, and last but not least to the President, Behiye
Ubuz, and the members of the Local Organizing Committee, for the incredible work
done in preparing and supervising the organization of the conference, they allowed
all the participant enjoy the conference days of intensive intellectual work in a
efficient, comfortable and delightful place. Their attentive support did not finished
with the end of the conference but continued in the patient and competent work of
editing these proceedings.

We are certain that the reader will appreciate the richness of the contributions
collected in this text that we hope will offer the opportunity to share with us
something of the exciting experience of our congress, and encourage interested
researchers to meet us at the next CERMEs.

Maria Alessandra Mariotti Ferdinando Arzarello
(Chair of the program Committee) (ERME President )
Information on-line
The CERME website was at : http://cerme8.metu.edu.tr/

These proceedings can be accessed online from: http://www.mathematik.uni-
dortmund.de/~erme/doc/cerme7/CERME7.pdf

CERME 8 (2013)



EDITORIAL INTRODUCTION FOR THE EIGHT CONGRESS OF
THE EUROPEAN SOCIETY FOR RESEARCH IN
MATHEMATICS EDUCATION

http://www.cerme8.metu.edu.tr/

Behiye Ubuz and Cigdem Haser Maria Alessandra Mariotti
Middle East Technical University, Turkey University of Siena, Italy

The Eight Congress of the European Society for Research in Mathematics
Education (CERMES) was held at the Starlight Convention Center, Thalasso &
Spa Hotel in Manavgat-Side, Antalya, Turkey from 6th to 10th February, 2013,
chaired by Prof. Dr. Behiye Ubuz (Local Organizer Chair) and Prof. Dr. Maria
Alessandra Mariotti (International Program Committee Chair). It aimed to
promote the development of mathematics education through intellectual
communication and cooperation by attending thematic working groups, plenary
talks, poster sessions, and so forth. At CERMES there were 3 invited plenary
talks given by Paolo Boero, Alain Kuzniak, and Candia Morgan together with
17 thematic working groups (WGs). The main work of the congress took place
in these Thematic Working Groups, facilitated by some 73 Working Group
leaders. The congress was preceded by a meeting of Young European
Researchers in Mathematics Education (YERME) on 5th and 6th February 2013.

A total of 375 Research Papers and 90 poster proposal were submitted for the
congress. Following peer review, 310 Research Papers and 57 poster proposals
were accepted for publication in the proceeding.

o

"""""

Around 520 participants attended the congress, from 45 countries within and
beyond Europe. Many participants from European countries were there: UK
(31), Portugal (29), Germany (98), Italy (22), Greece (10), Finland (6), Spain
(30), Netherlands (8), Sweden (54), Cyprus (2), Denmark (16), Norway (24),
Austria (1), Czech Republic (5), France (41), Ireland (5), Romania (1), Russia
(4), Belgium (4), Iceland (4), Estonia (2), Latvia (1), Poland (2), and
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Switzerland (4). Moreover, there were 34 researchers from Turkey, 12 from
Israel, 20 from the US and 16 from Canada, and 1 from Australia, 1 from the Far
East (Japan), 27 from Latin America (Brazil, Chile, Colombia, Mexico) and
several others from non-affluent countries, such as Iran (2), South Africa (1),
Saudi Arabia (3), Algeria (1), Kuwait (1), Tunisian (2), Lebanon (1), and Zaire
(1).

In the first section of this proceeding, the plenary talks by Paolo Boero, Alain
Kuzniak, and Candia Morgan are presented. They kindly accepted the invitation
of the scientific program committee and provided a written account of the ideas
they presented in their plenary talks. The second section documents the research
papers and poster communications accepted for publication in the proceeding.
The papers and the posters are presented under each WG following the
introduction written by each WG’s leaders. Introductions summarize the scope
of the WGs’ works and the value of the studies presented.

A view from Side-Antalya (Taken from http://www.resim11.com/Antalya.html)

CERMES8 must surely be regarded as a great opportunity for teachers,
mathematics educators, teacher educators, and policy makers around the world
and in Turkey who are interested in mathematics education and its development.
It also provided a valuable development opportunity for the young researchers
through YERME.

The proceeding for CERMES is produced electronically both in CD format and
n the website http://www.mathematik.uni-
dortmund.de/~erme/doc/cerme8/CERMES.pdf . You can access the individual
research papers and poster contributions via the hyperlinks provided on the
contents page. We hope that every participant enjoyed the conference and their
stay in Turkey!

Behiye Ubuz Cigdem Haser
(Chair of Local Organising Committee) (Congress Secretariat)

Maria Alessandra Mariotti
(Chair of the Program Committee)

CERME 8 (2013)
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MATHEMATICS EDUCATION TODAY:
SCIENTIFIC ADVANCEMENTS AND SOCIETAL NEEDS

Paolo Boero
Universita di Genova

How to deal, as researchers in mathematics education, with big, complex problems
related to societal needs? Through a chronological presentation of some steps of my
personal and group research trajectory, I will try to show the potential inherent in
establishing a dynamic relationship between: the design, experimentation and
analysis of broad, long term classroom activities, planned according to wide scope
theoretical constructs, and research activities performed in that context according to
well established research methodologies. The research generative power of such an
approach will be demonstrated, together with the necessity of further elaboration
concerning local integration of different theoretical perspectives. As an example, a
problem related to the PISA definition of mathematical literacy will be dealt with.

INTRODUCTION

Thanks to the organizers of CERME-8, this is an occasion for me to reflect on how to
deal, as researchers, with the unavoidable complexity of big problems concerning the
teaching and learning of mathematics in our societies. I will try to get some answers
by considering my personal forty years experience and that of the Genoa research
group in mathematics education.

Focusing on a few variables and low levels of complexity allowed mathematics
education researchers to perform rigorous, reproducible experiments and, thus, get
partial insights into many phenomena. In several cases, methodology was borrowed
from other disciplines - particularly experimental psychology - through adaptations to
classroom teaching and learning situations: see many Research Reports in the first
two decades of PME conferences; see also the volume on the first thirty years of
PME research, Gutierrez & Boero (2006). In most cases results were used to try to
improve teacher education and teaching practices within the current perspective of
schooling in western societies, without putting into question that perspective.

The difficulty met when we want to move towards more complex phenomena,
particularly those concerning societal needs and values and related educational
choices, depends on the usual scientific methods. Such methods seem to be too
limited to deal with non-reproducible phenomena involving a long time span, a lot of
inter-related variables, a lot of agents and cultural influences (be they on the scene of
the classroom, or outside). As a result of the limit of usual research methods,
researchers often tend to refuse the constraints of rigorous research methodology
when they want to deal with those complex phenomena. Hence, we have a shift from
ordinary scientific papers in the field of mathematics education to political or
ideological or philosophical essays.
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As an example of the difficulty to deal with complex, big problems, let us consider
the following PISA definition of Mathematical Literacy (retrieved from page 4:
http://www.oecd.org/pisa/pisaproducts/46961598.pdf):

Mathematical literacy is an individual’s capacity to formulate, employ, and interpret
mathematics in a variety of contexts. It includes reasoning mathematically and using
mathematical concepts, procedures, facts, and tools to describe, explain, and predict
phenomena. It assists individuals to recognize the role that mathematics plays in the
world and to make the well-=founded judgments and decisions needed by constructive,
engaged and reflective citizens.

In many countries, given the importance attributed to mathematical literacy, the
feeling of inadequacy of the educational system to face the challenges of the so-called
globalization puts into question the traditional content to be taught (usually, a set of
notions and techniques) and the traditional methods of teaching mathematics. In those
countries (and in others too), PISA comparative studies and PISA - related
elaborations, like the above definition, are going to be very influential on long-term
educational choices, teaching methods, and also cultural values and the answer to
societal needs. The above definition is not neutral: it implies a specific personal
relationship to mathematics, specific ways of dealing with "phenomena", a specific
role of mathematics in making "well-founded judgments and decisions", and also a
specific status of mathematics as an universal cultural entity. As such, the definition
may result in specific curricula, teaching strategies, teacher preparation.

A big, complex problem inherent in the PISA definition of mathematical literacy is
the identification of its specific epistemological and cultural features, of the
consequences that it may have (if coherently adopted) on teachers, students, culture,
and of possible alternatives to it (if it is the case of).

In this paper I will try to motivate and present the idea that the interplay between
wide-scope theoretical framing and practices (rooted in philosophical,
epistemological, anthropological, psychological elaborations), resulting in activity
and reflection on activity in school, and related “local” scientific studies, may
contribute: to a scientific approach to big, complex problems (like the one related to
PISA definition of mathematical literacy) in mathematics education; and also to the
generation of research hypotheses, further constructs, and new actions (planning and
experimentation of innovative teaching sequences).

The above idea is the conclusion that I am able to derive now from a long personal
and group elaboration, strictly and functionally interwoven with the evolution of our
experimental, extensive activity in the school since the seventies. Therefore, I think
that the best way to present the above idea is to follow a chronological thread, in
order to put into evidence the origin and the "why" of it, and "how" it may contribute
to develop research and to tackle big educational problems.

Forty years ago we tried to build an alternative, in primary and lower secondary
school, to the "New Mathematics" movement, a big challenge at that time! At the end

CERME 8 (2013)



PLENARY LECTURE

of the eighties, after more than fifteen years of work in hundreds of classrooms, as
well as our involvement in the international community of mathematics educators
(ICME, PME and CIEAEM conferences; French Summer Schools of Didactics of
Mathematics), and our readings in anthropology, history and epistemology of
mathematics, the need for theoretical clarification and framing emerged. This need
resulted in the wide-scope construct of Field of Experience (FoE). We will present
the FoE construct as a tool to frame the teaching of mathematics as a component of a
broader enculturation process, according to the need of that time (and present time
too!) to overcome the fragmentation of the cultural offer of school and provide
opportunities to tackle some important educational problems in mathematics
education, like that of the approach to proof.

Afterwards, we will show how the extensive experience of classroom work and
related analyses in the perspective of the FOE construct suggested to revisit, fifteen
years later, the Vygotskian everyday concepts/scientific concepts dialectics. In
particular we will see how some "local" studies put into evidence the potential variety
of ways of dealing with concepts in a scientific way (inside and outside mathematics),
related to their roots in cultural practices and personal experiences, and to different
cultural horizons. Our answer to the needs emerging from such work was the
adaptation of Habermas' elaboration on rationality to educational purposes; we will
present it, with some examples of its use in research.

In the perspective of the adapted construct of rationality, the teacher must act, in
particular, as an interpreter, mediator and promoter of rationalities. Specific
implications for teacher education derive from it; we will see how the competence of
Cultural Analysis of the Content to be taught is needed for such a teacher.

As an example of the use of our present theoretical toolkit, we will show how it
allows to tackle the problem related to the PISA definition of Mathematical literacy;
the elaboration on that problem will result in some elements for an alternative,
possible definition of Mathematical literacy.

The paper will end with some general “method” conclusions and research directions,
particularly those related to the networking and, possibly, integration with other
theoretical constructs.

THE FIELD OF EXPERIENCE DIDACTICS

For me (and for the research group that I lead at the Genoa University) one of the
main research aims was since the beginning, and still is, to widen the borders of
scientific investigation in mathematics education in order to encompass big problems
raising from the reality of ordinary classrooms: they are situated in a socially and
culturally more and more fragmented and diverse society, in spite of the pressures
towards globalization exercised through media and political and economic decisions.

In the seventies, the initial challenge for our group was to react in a constructive way
against the strong political and cultural pressures in OCSE countries aimed at
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reforming school teaching of mathematics according to the New Mathematics
perspective. During the sixties New Mathematics had been advocated as a universal
means to promote an effective teaching of mathematics, overcome social differences
and cultural discriminations in mathematics education, and convey the real flavour of
mathematics. But in those countries (like France) where New Mathematics had been
adopted in national programs, by the half of the seventies it was already clear that all
those aims were very far from being achieved, and the quality and extension of
learning results were rather scarce. Available epistemological and didactical analyses,
like those by Freudenthal, helped us to take distance from the theoretical background
of New Mathematics and better understand its consequences. Our alternative was
initially inspired by the fascinating work of Emma Castelnuovo ("Mathematics in the
reality"- see Castelnuovo & Barra, 1980) and by what would have become, following
Freudenthal's seminal work, the Realistic Mathematics Education movement. Since
1976, one project for the integrated teaching of mathematics and sciences in grades 5-
8 and one project for teaching mathematics and other main disciplines in elementary
school (grades 1-5) were elaborated and implemented in school, with the help of
specialists in experimental sciences, linguistics, economy, history and psychology. In
the period 1976-1985, more than one hundred teachers were involved in the design
and experimentation of the teaching units.

During the eighties, problems arising from the design and experimentation of the
teaching units (see Boero, 2011) brought us to refer to Vergnaud' s elaboration on
concepts (with the key role of reference situations as depositary of their "sense":
Vergnaud, 1990), to Vygotsky's everyday concepts/scientific concepts dialectics, and
to Bishop's perspective of "mathematical enculturation": a thoughtful analysis of
how, in the history of mankind, basic mathematical knowledge is rooted in everyday
practices (Bishop, 1988). The resulting action-oriented construct of "Field of
experience" (FoE) was presented in my plenary lecture at PME-XIII in 1989 (see
Boero, 1989) and further elaborated on the educational and epistemological sides (see
Boero, 1992; Boero & al, 1995; Dapueto & Parenti, 1999).

The FoE construct was proposed as a means to frame the teaching and learning of
mathematics according to the aim of providing students with the opportunity of both
accessing mathematical knowledge, and developing the knowledge of natural and
social reality. We may note that, at the moment of its elaboration, the FoE perspective
did not escape a pretension of universal objectivity, since it aimed at promoting
students’ access to "the" knowledge.

A FoE is made up of three evolutionary components: the student's inner context
(specific experiences, mental representations, schemes, ways of reasoning, and so
on); the teacher's inner context; and the external context (artefacts, material and social
constraints, social practices, etc.). The FoE didactics consists of suitable actions
performed by the teacher in order to promote the evolution of the students' inner
context according to the teacher's aims and expectations. At the core of FoE didactics
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are argumentative activities that make reference to specific features and opportunities
offered by the external context.

FoEs are cultural domains characterized by specific practices, constraints, ways of
behaving and knowing. In our Project for grades 1-5, non-mathematical FoEs deal
with subjects like Money and purchases, Time and calendar, Seasonal changes, Sun
shadows, Machines. As concerns mathematical FoE, arithmetic and geometry
gradually become FoEs: they develop in classroom, thanks to the mediating role of
the teacher, around those mathematical tools of knowledge that are needed to deal
with non-mathematical problem situations.

The FoE didactics is based on the fundamental didactic cycle (Douek, 1999; Boero &
Douek, 2008), which consists of three phases: an initial task requiring written
individual productions (possibly supported by the teacher, when needed); the
subsequent classroom comparison and discussion, orchestrated by the teacher
(Bartolini Bussi, 1996), of some individual texts selected by the teacher, which
allows the teacher to play a direct or indirect (i. e. based on students' productions)
mediating role; the collective production, under the guide of the teacher, of a
provisional synthesis, which may open a new cycle of activity. Such phases allow an
equilibrium between the students' constructive involvement in the activity, and the
mediating role of the teacher. While practicing FoE didactics, the fundamental
didactic cycle is sometimes integrated with other activities according to the
specificity of the subject to be dealt with: a preliminary classroom discussion may
prepare the initial individual task; small group discussions on individual productions
may precede the classroom discussion mediated by the teacher.

In the perspective of the FoE didactics, mathematics is a "culture" (Hatano &
Wertsch, 1991), consisting of activities, artefacts, transmissible practices: an
alternative to mathematics as a tool of knowledge, or as an ontologically established
domain of knowledge, or as a cultural construction reflecting minds' structures.

Non-mathematical FoEs are cultural domains with their own criteria of validity and
problem solving strategies; at the beginning of the ninetieths we engaged in studies
aimed at ascertaining their potential for mathematics education as sources of
mathematical concepts and ways of reasoning (rooted in their typical practices). The
first one was a longitudinal study in primary school, reported in Boero (1990),
concerning, in particular, the emergence of conditional reasoning in written texts in
non-mathematical and mathematical FoE contexts. The implications of those studies
for solving important mathematics education problems as well as their research
developments are exemplified in the next sub-section.

A research contribution in the context of the FoEs didactics: The Cognitive
Unity of Theorems

As a first example of the research generative power of the FoE construct, I report
here what happened in our group during a study aimed at identifying the mechanisms
of production and argumentative validation of hypotheses in the FoE didactics. The
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analysis of the relationships between those processes in space problem situations in
the FoE of Sun shadows suggested the idea of a Cognitive Unity of theorems: the
continuity that for some theorems may be established by students between arguments
used for generation and plausibility of the conjecture, and arguments used for
proving. Such continuity may work as a facilitator of proving, thus leading students
to a smooth access to mathematical proof (Boero, Garuti, Lemut & Mariotti, 1996) -
a very demanding aim for teaching in secondary school. Our perspective was in
contrast with current ideas in those years about the unavoidable cognitive and
epistemological gap between argumentation and mathematical proof (cf Duval,
1991).

At the beginning, the idea of Cognitive Unity arose when analyzing VIII-grade
students' written productions during their work related to the following task:

In the past years we observed that the shadows of two vertical sticks on the horizontal
ground are always parallel. What can be said of the parallelism of shadows in the case of
a vertical stick and an oblique stick? Can shadows be parallel? At times? When? Always?
Never? Formulate your conjecture as a general statement.

More than one half of the students were able to produce a "conjecture" and, according
to the didactical contract, some reasons for its plausibility. After the comparison and
discussion of the conjectures, two shared statements, corresponding to two ways of
reasoning in students' productions, were formulated under the guide of the teacher:

If sun rays belong to the vertical plane of the oblique stick, shadows are parallel.
Shadows are parallel only if sun rays belong to the vertical plane of the oblique stick.

If the oblique stick is on a vertical plane containing sun rays, shadows are parallel.
Shadows are parallel only if the oblique stick is on a vertical plane containing sun rays.

Then the individual task: "What do you think about the possibility of testing our
hypotheses by experiment?" and the 2-hours discussion of the students' answers
brought students to realize that "an experimental testing is very difficult, because one
should check what happens in all the infinite positions of the sun and in all the
infinite positions of the sticks". These activities prepared students to engage in the
individual production of a general justification of the statements.

By comparing the production of the "conjectures" with the production of the
"proofs", we found several couples of texts like those reported below, in which the
arguments developed to find the "conjecture" and justify its plausibility were re-
invested in the production of the "proof™.

Formulation of the conjecture with the shifting of the stick (Beatrice):

I tried to put one stick straight and the other in many positions (right, left, back, front)
and with a ruler I tried to create the parallel rays. I sketched the shadows on a sheet of
paper and I saw that: if the stick moves right or left shadows are not parallel; if the stick
is moved forward and back shadows are parallel. Shifting the stick along the vertical
plane, forward and back, the two sticks are always on the same direction, that is to say
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they meet the rays in the same way, therefore shadows are parallel. Whereas shifting the
stick right and left the two sticks are not on the same direction anymore and therefore do
not meet the Sun rays in the same way and shadows in this case are not parallel. Shadows
are parallel if the oblique stick is moved forward and back in the direction of sunrays.

Proof:

Shadows are parallel because, as we already said, Sun rays belong to the vertical plane of
the oblique stick. But all this does not explain to us why this is true. First of all, though
the sticks stand one in an oblique and the other in a vertical position, they are aligned in
the same way and if the oblique stick is moved along its vertical plane and is left in the
point in which it becomes vertical itself we see that they are parallel and, as a
consequence, their shadows must naturally be also parallel, and also parallel with the
shadow of the oblique stick, which has the same direction of that produced by the
imaginary, vertical stick.

In this case the justification produced during the conjecturing phase ("meet the Sun
rays in the same way") is reworked in the subsequent proof, where Beatrice imagines
the oblique stick moving along the vertical plane containing Sun rays.

Formulation of the conjecture with the movement of the Sun (Sara):

They could be parallel if [ imagine being the Sun that sees and I must place myself in the
position so as to see two parallel sticks. In this way the sun sends its parallel rays to
enlighten the sticks. But if the Sun changes its position it will not see the parallel sticks
and, therefore, their shadows will not be parallel either. Shadows can be parallel if the
oblique stick is on the same vertical plane as the Sun rays.

Proof:

If the Sun sees the straight stick and the oblique stick parallel it is as if there were another
vertical stick at the base of the oblique stick. If this stick is in front of the oblique stick its
shadow covers the shadow of the oblique stick. These shadows are on the same line,
therefore, the oblique and vertical sticks shadows are parallel.

In this case the initial idea "I imagine being the Sun” seems to suggest the main
argument of the proof (the shadow of the imaginary, vertical stick covers the shadow
of the oblique stick).

The construct of Cognitive Unity of theorems (further elaborated through other
teaching experiments - see Garuti, Boero & Lemut, 1998) contributed to clarify the
nature of the conjecturing and proving processes, to put into evidence the necessary
tension between the direction of the proving process and the features of the product to
be achieved, and to open the way to further studies. In particular Pedemonte (2007,
2008) introduced the distinction between the continuity that in the case of the
Cognitive Unity of theorems exists between the content of the arguments used in the
conjecturing and in the proof construction phases, and the structural break that may
happen (particularly in the case of synthetic geometry theorems) between the
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abductive or inductive nature of argumentation in the conjecturing and early proving
phases, and the deductive nature of the proof to be achieved.

The teaching experiment reported in Boero & al. (1996) not only suggested the
possibility of the Cognitive Unity of theorems as a facilitator of the proving process,
but offered also an example of how in non-mathematical FoEs students can develop
ways of reasoning, which are consistent with those that are fundamental in
mathematics. Indeed we can see how in the case of the "two sticks problem" the FoE
of Sun shadows offers a physical counterpart for a space geometry problem situation
of conjecturing and proving: if we replace sticks, parallel Sun rays, Sun shadows with
segments, parallel straight lines, parallel projections on a plane surface we get a
conjecture and a semantically-based proof in space geometry. In this case we can say
that the logical-linguistic organization of mathematical proof develops in a non-
mathematical context suitable for an immediate transfer to a mathematical setting.
FoE didactics offers several opportunities for such kind of transfer, significant for
solving important educational problems arising within mathematics education, like
that just considered, of a smooth access to mathematical proof. Some evidence will
be provided also through the first examples of the next section, which at the same
time aims at introducing the discourse concerning further theoretical developments
related to more general educational problems.

FROM STUDIES IN THE EDUCATIONAL CONTEXT OF FoE DIDACTICS
TO THE NEED OF FURTHER THEORETICAL DEVELOPMENTS

The following episodes and excerpts are derived from past or ongoing studies
performed in the educational context of the FoE didactics since the end of the
ninetieths. This section is aimed at showing the necessity of re-interpreting the
Vygotskian everyday concepts - scientific concepts dialectics, in order to deal (in the
specific field of mathematics education) with general, important and complex
educational problems such as:

How to cope with the necessity that students acquire cultural tools deriving from the
present dominating scientific culture, at the same time avoiding students' alienation from
their cultural roots?

How to exploit the potential richness of students' personal contributions and social
cultural background, in order to develop a culture related to personal dispositions and
societal needs?

Examples in the FoEs of Money and purchases, and Calendar

The first two examples refer to grade 1 and grade 3 students engaged in reflective
activities on the writing of numbers in the decimal - position system. In the first case
the teacher helps the students to deal with some semiotic aspects of the FoE of
arithmetic. In the second case she wants to develop students' knowledge and
awareness of the decimal-position system.
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The first example was collected at the beginning of December, in grade 1: after two
months of work in the FoEs of "Money and purchases" and "Calendar", the teacher
exploited one child's mistake (Anna had written tredici - thirteen - as 31) to ask
students: "Explain Anna why her writing is a mistake”. Four types of individual
productions (oral sentences dictated to the teacher) were collected:

It is a mistake because...

...three and one are exchanged;

...in a month, the day thirteen comes much before the day thirty one;
...with thirteen cents I can buy less than with thirty one cents;

...thirteen cannot be written as we write thirty one, otherwise we could not understand
which number it is.

The second example was collected in another class, at the beginning of grade 3.

Mario wrote centodieci (one hundred and ten) as 1010. The teacher asked the
students to produce an individual text: "Explain to Mario why his writing is a
mistake". Five types of individual productions were collected.

It is a mistake because there are four digits instead of three, you should delete the second
digit;

1010 means that the number is one thousand and ten, it cannot mean another number at
the same time;

1010 means a big quantity of money, you can buy a bike, while with 110 you can buy
only a roller;

Mario, you have made a mistake because you have thought: one hundred and one, 101,
one hundred and two, 102,..., one hundred and 9, 109, then one hundred and ten, 1010;
you had to move 1 to the left, in the place of tenths;

1010 means one thousand, zero hundreds, one tenth, zero units, differently from
centodieci, while 110 is composed by one hundred, one tenth and zero units, exactly like
centodieci.

According to the didactical contract (see below), both tasks engaged students in
explanations. In both cases, the explanations given by the students are of different
kinds: in particular some of them refer to the shape of signs (morphologic aspect: like
in the first texts of both cases), others to pragmatic reasons (the third texts in both
cases), others to the meaning of digits according to the decimal-position system of
written representation of numbers (like in the last text of the second case). Different
epistemic criteria and related ways of thinking emerge as indicators of different
potential directions for the development of conceptualisation towards consciousness
and explicitness.

Where these productions come from? The didactical contract plays a crucial role: in
the FoE didactics, since the very beginning of Grade 1 children are used to engage in

CERME 8 (2013)

16



PLENARY LECTURE

supporting positions (or explaining the why of mistakes) of their schoolmates, and to
move from the individual effort to the discovery of different positions and search for
consensus, or the identification of unbridgeable differences. The fact that in Italy
usually the same teacher teaches the same group of students over a period of five
years (in the case of primary school, grades 1-5) or of three years (in the case of
lower secondary school, grades 6-8) amplifies the effects of the didactical contract on
students' intellectual maturation.

What to do with this kind of productions? In the perspective of a straightforward
approach to structural knowledge of the decimal-position system of writing numbers,
the teacher might drive the attention on those contributions that are oriented towards
it. But pragmatic arguments (and even morphological arguments!) are important to
enter a reflective, conscious, intentional attitude towards knowledge; thus, after
comparison and discussion of the different arguments (i.e. an exposure to the others'
reasoning) the conclusion should be that different reasons (conveniently reported) can
be advocated to explain the mistake. While valuing different personal contributions,
this might represent a first step in the direction of becoming aware that different ways
of reasoning can offer different (possibly, complementary) keys to ascertain the truth
(or fallacy) of a statement.

Example in the field of experience of Sun shadows

In a study reported in Boero (2002), two sets of grade 3 students' written productions
concerning Sun shadows are compared and analysed.

After observations and games with Sun shadows in the courtyard in some subsequent
days, students write a report about what they have discovered. The percentage of
those who juxtapose "low Sun" - "long shadows" (with sentences such as "In the
early morning, the Sun is low and its shadows are long") is higher than 70%. Then
the teacher gradually introduces, on the basis of students' drawings and observations,
the elementary geometric model of Sun shadows and its use in some problem solving
activities: e.g. to establish whether the lengths of the shadows of two equal vertical
sticks in two near courtyards are equal or not at the same moment.

After those activities the wording of the phenomenon dramatically changes: more
than 70% produce a causal or conditional description, with sentences such as "In the
early morning the shadows are long because the Sun is low", but also: "If the Sun is
low, the shadows are long".

This example shows how suitable activities led by the teacher in a given FoE,
resulting, in this case, in the appropriation by students of a new sign, may allow
students to move to a higher level of understanding of the same phenomenon; and it
shows also how the choice of suitable non-mathematical fields of experience may
allow students to access high level mental activities in a "natural" way.

Anyway, in a grade 7 classroom in Eritrea some completely different productions
were collected:
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The shadows are long in the early morning because the strength of the Sun is not yet
sufficient to win the darkness, while the shadows will become shorter and shorter till
midday because the light has gradually taken strength, and then again darkness will
prevail, and it will happen everyday.

This conception allowed students to solve several problems (e.g. the problem of the
shadows of the sticks in two near courtyards) in a straightforward way; afterwards
they used the geometrical model introduced by the mathematics teacher to
accomplish their duty as "mathematics students".

Here we see how FoE didactics may put into evidence significant aspects of students’
background culture: Taking background culture into account and developing the
classroom debate on it could help students becoming aware of the differences with
the culture brought by the teacher and, finally, appreciating the richness of cultural
diversity. Indeed we may observe that for Eritrean students the phenomenon was
framed within a broader system of knowledge, based on a cyclic, dynamic
equilibrium: something that traditional farmers currently use; that was already
conceived in pre-socratic Greek philosophy, particularly in Heraclitus' notion of
dynamic dualism (Graham, 2008); that we find in the history of Chinese culture
(again as a dynamic version of dualism, see Cheng, 1997); that Western mathematics
succeeded to model in the second decade of the XX Century in the case of Lotka-
Volterra predator-prey differential model. At that time the idea of a cyclic, dynamic
equilibrium gained full scientific legitimacy in western culture by relying on the role
of mathematics. This point reminds me of my experience as a mathematics teacher in
university courses for natural sciences students. Usually those students experienced
many difficulties in entering the cyclic dynamic equilibrium perspective, before my
introduction of the Lotka-Volterra model and the related graphical representations.
The cyclic dynamic equilibrium perspective seemed completely alien for them.

Example in the FoE of arithmetic in primary school

In Boero, Douek & Garuti (2003) the following excerpt is reported; it comes from a 5
grade classroom dealing (within the FoE of arithmetic) with the problem of "how
many numbers exist between 1 and 2"; students are discussing the hypothesis of
"infinite numbers" proposed by a schoolmate:

Valentina ~ What does it mean to say that infinite numbers exist, if we cannot count
them because we must die?

Stefano I do agree, man is not everlasting but life is everlasting.

Valeria The woman’s body ends, but she creates another woman, and so life goes
on to infinity.

Emanuele = Numbers create other numbers, to infinity, by multiplying. Each number is
finite, but an infinite list is produced.

Valeria's metaphor, conceived outside mathematics, works as a grounding metaphor
(Nunez, 2000) for Emanuele, who exploits it to produce a strong argument in favour
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of the infinity of numbers. This is an interesting example of contamination between
different domains. In the educational context of the FoE didactics such kinds of
phenomena frequently occur in our classes. Still as concerns contamination between
mathematical and non mathematical domains, we may consider grounding metaphors
derived from concrete physical situations (like the balance) to support the solution of
quadratic inequalities in grade 8 (see Boero, Bazzini & Garuti, 2001).

Example in the FoE of arithmetic in lower secondary school

As an example of different, potential evolutions of spontaneous students' productions,
which could be driven by the teacher towards different scientific outcomes, we may
consider the case of the "Think a number" game in Grade 7 (see Morselli & Boero,
2011). Students try to understand why the teacher is able to discover the result of a
sequence of operations performed by students on a number chosen by them; the
sequence is aimed at introducing algebra as thinking tool. Under the guide of the
teacher, students move from verbal productions describing the game, towards the
representation of the sequence of calculations performed on a given number and then
to the representation of the sequence of calculation on a letter, that is to say “any
number”. In some classes two kinds of mathematical representations emerged: a
procedural one, consisting of a more or less complete sequence of instructions like
N=N+3; and a relational one, consisting of one more or less correct algebraic
expression. Starting from their own productions, students may arrive, under the guide
of the teacher, to two different and correct models of the game, which exemplify two
different ways (procedural and relational) of representing a sequence of calculations
in general. Further activities could bring to an early approach to two different
mathematical domains (computational mathematics and algebra).

REVISITING THE EVERYDAY CONCEPTS / SCIENTIFIC CONCEPTS
DIALECTICS

Several studies in the perspective of the Field of Experience didactics brought us,
through episodes and reflections such as those reported in the previous section, to
reconsider the everyday concepts /scientific concepts dialectics hypothesized by
Vygotsky as the key component of the enculturation process. With reference to
Vergnaud' definition of concepts (Vergnaud, 1990), Nadia Douek's in-depth work on
conceptualization (Douek, 1989; 2003; 2006) suggested that:

- "scientific" is not an ontological quality of concepts; it consists of specific
(intentional, conscious, systemic, explicit) relationships that the subject develops with
concepts. In the classroom those relationships depend on the cultural and didactical
choices of the teacher, as we put into evidence in the discussion of previous cases.
We may add that scientific relationships to a concept frequently evolve in the long
term towards an everyday use of it;

- everyday concepts may evolve towards different, even conflicting "scientific"
horizons under the influence of different agents (the teacher, but also the cultural
environment) - see in the previous case of Sun shadows: the evolution of students'
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ways of thinking the phenomenon after the introduction of the model by the teacher;
and an alternative, non geometric consistent conception, rooted in students' culture;

- the evolution of everyday concepts in a mathematical FoE may depend on non-
mathematical arguments elaborated in different FoEs as grounding metaphors
(Nunez, 2000) for their systemic links and inferences - see the example on the infinity
of numbers;

- moreover, "pragmatic" (but still intentional, conscious and explicit) relationships to
a concept (cf Verillon, 2011; Verillon & Rabardel, 1995) pose the research problem
of the relationships between two possible kinds of evolution of conceptualization: the
pragmatic one and the scientific one - see the cases of the writing of numbers.

All the above points concern the relationships between the potential inherent in
students' dispositions and their cultural background, on the one hand, and the
educational aims to be achieved in school, on the other; thus they seem to be relevant
in order to deal in mathematics education with the enculturation problems evoked at
the beginning of the third section. But even our enlarged interpretation of Vygotsky's
everyday concepts - scientific concepts dialectics seems insufficient to analyze, and
take decisions in those situations where students' cultural diversity and their personal
contributions pose problems like: how to identify and characterize students'
resources, in the perspective of possible, different evolutions of their everyday
concepts? How to frame the educational choices and plan the classroom activities
aimed at promoting: the evolution of students' everyday concepts towards scientific
concepts; and their awareness of the potential and limitations inherent in different
cultural perspectives and tools, inside and outside mathematics?

A COMPREHENSIVE FRAMEWORK FOR DIVERSITY OF "SCIENTIFIC"
CONCEPTS AND WAYS OF ACCESSING THEM

Cultural contaminations and different, possible "scientific" horizons for the evolution
of students' everyday concepts towards scientific concepts required a new toolkit in
order to deal with such a diversity in an educational perspective. The key idea to get
it derived from the observation that diversity concerns strategies to achieve the aim of
the activity, ways of communicating with other people, and criteria of validation of
statements, as three inter-related components of the same process. For instance, in the
case of the writing of numbers in the decimal-position system some students refer to
an extra-mathematical experience and to social constraints in order to invalidate
Anna's and Mario's written representations, while other students' reasoning remains
within arithmetic and refers to structural properties of the writing system. In the case
of the debate on the infinity of numbers it is remarkable the shift from ordinary
language to natural language in the mathematical register (cf Halliday, as quoted in
Boero, Douek & Ferrari, 2008, p. 265), and from the everyday experience with its
well known true facts to arithmetic properties and related inferences.

These reflections brought us to consider Habermas' elaboration on rational behaviour
as a possible analytical tool to identify and compare different ways of solving

CERME 8 (2013)

20



PLENARY LECTURE

problems, validating statements and communicating in mathematical FoEs, in
mathematical modelling and when dealing with non-mathematical subjects. Indeed,
Habermas (1999; 2001, Ch. 2, pp. 100-107) proposed a definition of rational behavior
in discursive practices based on three inter-related criteria:

- epistemic rationality: it concerns accounting for validation of statements according
to shared principles and rules of inference ("shared" in a given cultural context);

- teleological rationality: it concerns accounting for the choice of tools and strategies
to achieve the aims of the activity;

- communicational rationality: it concerns the intentional choice of means to
communicate with others in a given social context.

Initially, we adapted Habermas' idea of rational behaviour in order to encompass the
complexity of mathematical activities, which develop effectively when the adopted
strategies keep into account the epistemic constraints of the product to be achieved
(e.g.: the case of proving and proof). Then we extended its use to plan and analyze
classroom activities aimed at promoting students' rational behaviours in mathematics
and in mathematical modelling. At present, we use (or foresee the use of) Habermas’
construct in order to deal with different speculative and operational aims, in
mathematics education and in general education.

As regards mathematics education the construct can be used:

-to characterize and compare different kinds of rational behaviours within
mathematical activities (e.g. rational behaviours in analytic geometry and in
Euclidean geometry are very different - cf Boero, Guala & Morselli, 2013, in press);

- to put into evidence the different levels and kinds of awareness needed to behave
rationally in mathematics, which concern the three components of rational behaviour;
for instance, on the epistemic side of proving, awareness concerns particularly the
rules of inference and the nature of definitions, axioms and theorems in a theory, and
also the role of examples;

- to promote and analyze the evolution of students' behaviour towards the intended
mathematical behaviour, according to the components of rational behaviour;

- to compare the student's actual behaviour with the expected one; and to realize how,
in some cases, the student behaves in a rational way, but according to a rationality
that is different from the expected one.

As regards general education (thus, with a different level of zooming) the construct
can be used:

- to characterize and compare rational models of behaviour of different disciplines, or
even informal cultural domains (like traditional agriculture), and establish
relationships between them,;
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- to help teachers and students to cross the borders between different domains of
knowledge in the perspective of a wide-scope enculturation, thanks to the possibility
of identifying common requirements of rationality and differences.

We may note that the problems quoted at the beginning of the third section can be re-
formulated in terms of rationalities: how to combine the possibility of keeping the
contact with the rationalities rooted in the students' cultural background, with the
necessity of accessing rationalities developed within the global system of cultural
production (including present mathematicians' mathematics); and how to promote the
development of rationalities by exploiting the potential inherent in the diversity of
individual dispositions and cultural backgrounds.

The elaboration concerning the adapted construct of rational behaviour was exploited
to perform studies involving students at different age levels. The construct was
initially used to plan and analyze specific classroom mathematical activities,
particularly those intended to approach conjecturing and proving with/without the use
of algebraic language; afterwards, it was used also for planning and promoting a
reflection on different rationalities within mathematics.

As regards the first line of research, concerning rationality in conjecturing and
proving, I mention the following studies:

- in Morselli & Boero (2011), the authors adapt Habermas' construct of rational
behaviour to deal with the case of the use of algebraic language in conjecturing and
proving, and describe teaching experiments planned, performed and analyzed
according to that construct. In particular, epistemic constraints concern two different
aspects of those mathematical activities: checking for correctness of algebraic
manipulations according to syntactic rules of algebraic language; and checking for
validity of algebraic formalization and interpretations (i.e. for the passage from a
non-algebraic situation to its linguistic representation through the algebraic language;
and for the interpretation of the algebraic expressions deriving from suitable
transformations);

- in Boero, Douek, Morselli & Pedemonte (2010), the authors show how rational
behaviour in conjecturing and proving may work as an useful theoretical construct to
design, manage and analyze suitable classroom activities aimed at the students'
approach to the culture of theorems (i.e. to the knowledge of some crucial features of
a theorems as a statement and its proof within a theory - see Mariotti, Bartolini Bussi,
Boero, Ferri & Garuti, 1997).

As regards different rationalities within mathematics and their relevance in
mathematics education, Boero & al (2013, in press) considered the following
problem, belonging to a selective test for candidates (having a MD in Mathematics)
to become high school mathematics teachers:

To characterize analytically the set P of (non degenerated) parabolas with symmetry axis
parallel to the ordinate axis, and tangent to the straight line y=x+1 in the point (1,2).
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To establish for which points of the plane does it exist one and only one parabola
belonging to the set P.

To find straight lines that are parallel to the ordinate axis and are not symmetry axes of
parabolas belonging to the set P.

Candidates met big difficulties in solving the problem; most of them were not able to
choose and exploit well known tools from synthetic geometry, analytic geometry,
algebra, which would have allowed them to get straightforward answers to the three
questions or to identify their mistakes in an easy way. Even discussing "how to solve
it" in a-posteriori interviews was difficult for them. In Boero & al (2013, in press)
difficulties are interpreted in terms of different rationalities inherent in those
mathematical domains, which contribute to a rigid, unilateral approach to the
problem, and of lack of awareness about the potential and limitations (on the
teleological and epistemic sides) of the tools at disposal in the different domains.

In general, in the already performed studies the development of students' awareness
about what they would like to do, or might do, or should do seems to be an
educational aim difficult to achieve; but awareness (so important in both Habermas'
elaboration on the idea of rationality, and Vygotsky's characterization of "scientific
concepts") is a crucial requirement for a mature relationship with the scientific
enculturation promoted by the teacher.

The early development of awareness is a key educational aim in an ongoing teaching
experiment, which concerns another use of the construct of rationality. It consists in
the approach to, and promotion of, different kinds of rational behaviour to deal with
the same extra-mathematical subject. In the case of the FOE of Sun shadows we are
developing, in two classes (grades 3 and 4), a multi-disciplinary approach (involving
mathematics, physics, natural sciences, visual arts, literature) to the study and
representation of the phenomenon. Students experience different ways of validating
statements, of posing and solving problems, of communicating; they reflect on the
differences under the guide of their teachers. This experiment is intended to explore
the possibility of making students aware of what distinguishes a discipline from the
others in terms of rationality, just at the beginning, in Italy, of the systematic study of
different disciplines.

Concerning the relationships between different cultural domains, we are also engaged
in the analysis of analogies and differences between the rationalities inherent in
different FoEs, in order to search for new, more "natural" connections for students
between mathematics and other domains of knowledge. Two FoEs emerge as
candidates from already performed activities in primary school. The first is the FoE
of Grammar rules; students' activities consist of reflective work on texts, aimed at
searching for regularities, rules and exceptions. The second is the FoE of Rules
concerning students' behaviours in the school; rules are motivated, negotiated and
written in the classroom under the guide of the teacher. Inevitably the consideration
of these fields of experience recalls one of the possible "externalist" interpretations of
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the raising of mathematical rationality in Greece, around the V-th Century B.C., as
rooted in the philosophical debate on truth and language (Sophists) and the
formulation and interpretation of laws (see Szabo, 1978). In early grades, when
argumentative activities in the fields of arithmetic and geometry are limited to easy
questions, the domain of rules seems particularly promising, because it allows to
develop rather complex argumentation, as it is shown in the following episode.

After an incident, grade 2 students are debating about a rule that concerns how the
class should go from the second floor to the ground floor at the end of the school
time. Barbara had proposed the following text:

Children must be in couples, from the exit of the classroom to the exit of the school; on
the staircase each child keeps a schoolmate with his hand.

Danilo reacts in this way:

I do not agree with Barbara's rule for two reasons: first, if one child falls down also his
schoolmate falls down; second, which schoolmate? Because ‘a schoolmate’ means any
schoolmate, not ‘the’ schoolmate of the couple!

While Danilo’s first criticism comes from figuring out possible dangerous
consequences of the rule given by Barbara, the second one refers to a grammatical
rule with a high sensitivity to the logical features of natural language. Both criticisms
by Danilo offer evidence for the emergence of skills that are important for the
development of mathematical argumentation: to find the scope and consequences of a
given rule; and to identify the logical meaning of articles and conjunctions in a text.

The educational context of the FoE didactics allows to perform such kind of studies
under appropriate conditions, due to its specific didactical contract and the fact that
teaching involves different FoEs and disciplines.

According to our intentions, these studies should prepare us to deal in the future with
two much more demanding and complex problems, strictly related to the big
educational problems quoted at the beginning of the third section: how to deal with
different rationalities brought in the classroom by students belonging to different
cultures; how to develop mathematical rationalities, in pure mathematics as well as in
the application of mathematics to other subjects, taking into account different cultural
environments.

Evoking such past, present and (possibly) future uses of the construct of rational
behaviour outlines a broad research perspective, to be necessarily shared by experts
of different disciplines. In such a perspective the richness of everyday concepts
carried by learners, with their different sources (ethnic, familial, personal), should be
exploited to develop knowledge and awareness of the variety and potential of human
cultures, and to prevent breaking the roots with students' native cultures. Today this
educational aim looks like one of the necessary conditions for exercising the
informed freedom of choice, advocated by Habermas in his introduction to the
elaboration on rationality, and a culturally-based tolerance as well.
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THE ROLE AND THE COMPETENCES OF THE TEACHER

Dealing with the everyday concepts/scientific concepts dialectics in the perspective
of different rationalities needs a "competent" mathematics teacher (as an interpreter,
promoter and mediator of rationalities) with additional competencies, if compared
with those usually considered in teacher education literature.

Shulman's Pedagogical Content Knowledge, as well as Mathematical Knowledge for
Teaching (Ball & Bass, 2003), are defined in terms of knowledge the teachers should
be provided with in teacher education programs. In our perspective of multiple
rationalities within mathematics and in comparison with other cultural domains, the
teacher must have the competence of Cultural (=epistemological, anthropological,
historical) Analysis of the Content to be taught (CAC: see Boero & Guala, 2008).
Such a competence should enable the teacher to recognize the cultural potential
inherent in students' productions and make short term and long term conscious
choices concerning: in which direction, and in which way, to drive students’
attention; when and how to mediate pieces of established mathematical knowledge,
criteria for validating statements, strategies, ways of communicating knowledge, etc..

In our elaboration CAC is a competence to be developed by practicing it through
suitable tasks in a suitable mathematics teacher education context, and not a set of
pieces of knowledge. In the CAC perspective, the teacher must be able to bring the
cultural dimension of mathematics into the classroom. Under the guide of the
competent teacher, who has experienced such kind of reflections and practices at an
adult level, students may become aware of the potential and limitations of
mathematical tools to deal with "real" problems, of the different rationalities inherent
in mathematical activities, and of their connections/ conflicts with other rationalities.

Concerning the issue of the different rationalities inherent in mathematical activities,
we are working on the design of tasks for teacher education, suitable for promoting
prospective teachers' awareness about the deep differences, in terms of rationality,
between activities in different mathematical domains (see Boero & al., 2013, in
press). The already quoted task concerning the set of parabolas that are tangent in
(1,2) to the straight line y=x+1 is exploited by us in teacher education; it seems
suitable to drive pre-service teachers' attention towards different rationalities and the
necessity of avoiding to teach mathematics as a set of closed domains.

WHAT ABOUT MATHEMATICAL LITERACY?

By employing the theoretical toolkit developed during our research trajectory, what
can we say now about the PISA definition of mathematical literacy?

First of all, that definition does not take in charge what may be derived from the
cultural context the teachers and students belong to. Potential and obstacles inherent
in the teacher's and students’ inner contexts and in the external context are not
explicitly considered. Indeed, culture may be a source of mathematical experiences
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for students (D'Ambrosio, 1999), and a source of problem situations that can be
considered for a treatment with mathematical tools in the classroom (Brenner, 1998).

Second, the differences between the rationalities in different mathematical domains
are not considered, as concerns both their inner epistemic and teleological characters,
and their descriptive, interpretative and predictive potential and limitations.

Third, the definition conveys the idea of mathematics as a universal, privileged
toolkit "to make the well -founded judgments and decisions needed".

Consequences of such a perspective on teachers and students (future citizens) may
be: cutting the links with people's cultural background (a well known premise to
alienation); and not supporting, or even preventing, the evolution of people's cultural
background, which may result in a loss of potential richness in a historical moment in
which some important aspects of dominating western culture are put into question.
Furthermore, this definition may convey an image of mathematics as an absolute,
homogeneous body of knowledge and tools to solve every kind of problem; this
image, in turn, may be an obstacle in the choice of the appropriate tools to deal with
extra-mathematical problems.

Keeping the above critical considerations and the adapted Habermas' construct into
account, I have tried to write down a provisional, alternative definition of
Mathematical Literacy (trying to keep it near to the length and the scope of the PISA
definition, in order to make comparisons easier). The resulting, "draft" definition is:

ML consists in the capacity of consciously moving from the subject's perception of a
problem, rooted in his/her socio-cultural background and experience, to possible
mathematical treatments; and at the same time it consists in the awareness of the
epistemic and teleological constraints and limitations inherent in the different
mathematical rationalities and of the consequences that they impose on the solving
process and the related solutions, in comparison with non-mathematical rationalities.

The proposed draft definition is different from the PISA definition as concerns the
conception of mathematics, the students’ and adults’ relationships with mathematical
knowledge, the use of mathematical knowledge to deal with questions related to
societal needs, and the attempt to keep into account the issues evoked at the
beginning of the third section.

In our tentative definition the cultural, mathematical and non mathematical,
background is brought to the fore and related to possible mathematical horizons;
moreover different mathematical treatments might be compared, integrated, or even
rejected. In particular our definition leaves the possibility, in the case of non-
mathematical problems, of identifying non-mathematical ways of reasoning as more
effective on the teleological side and even more secure on the epistemic side, in
comparison with a standard mathematical treatment with mathematical tools.
Concerning this issue, it is interesting to observe how today, and differently from
fifty years ago, the degree of mathematization is no more considered as a measure of
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the quality of an investigation in some domains - not only biology, but also
economics (a subject of lively debate today!) and ecology.

CONCLUSION AND FURTHER DIRECTIONS OF RESEARCH

Keeping the research trajectory described in this paper into account, I will try to offer
some elements to answer the question posed at the beginning of this paper: "How to
deal, as researchers in mathematics education, with big, complex problems related to
societal needs?" I will also outline some further directions of research concerning
questions that are emerging in our research activities.

It is evident that our research trajectory cannot be replicated: it depended non only on
specific historical circumstances (e.g., at the very beginning, the failure of the New
Mathematics reform and even the post-'68 climate) but also on the personalities of the
protagonists, including researchers in history, economics, linguistics, psychology
who plaid an important role in the initial phase of our work. However I think that
from our experience some indications can be derived, in order to create the conditions
that may allow to tackle "big and complex problems" in an effective way.

First of all, I think that it is important to create a research team (including school
teachers as researchers) to plan and perform long term experimental activities in
order to meet societal needs of the time, related to the big problems that one wants to
tackle. The elaboration of a consistent, wide scope theoretical framework, with the
collaboration of experts from different disciplines, is necessary to plan and analyse
the experimental activities. Indeed, mathematics is not an isolated fragment of
contemporary culture, but an important component of the historical development of
cultures, strictly related with practical and speculative issues. As a consequence, if we
want to tackle in an effective way big and complex problems in mathematics
education (like those evoked at the beginning of section 3) it is very useful to
experience on the field, and analyse with suitable theoretical lenses, the complexity
of the school teaching of mathematics, of its relationships with other subjects and
extra-school cultures, and of the cultural role of the mathematics teacher in the
classroom. As concerns the role of the teachers in the research team (cf Malara &
Zan, 2008), their research commitment offers the opportunity of a "research eye" on
what happens in the classrooms, on students engaged in the planned activities, on
their cultures, on the difficulties that they meet to achieve the intended educational
aims and on their potential for intellectual development.

In such an educational and research environment, "local" studies should be
performed, according to appropriate and well established methodologies, in order to
answer specific research questions. Such questions may come from the long term
experimental activities or from current research on related issues, in mathematics
education or in other fields. In turn, such local studies might put into evidence the
need (or the opportunity) for further developments of the general theoretical
framework, provide the research team with results useful to tackle the big problems,
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and also offer opportunities to improve the effectiveness of the experimental
activities for students.

As concerns our work in such a perspective, further investigation is needed in order
to progressively develop a suitable theoretical toolkit to deal with the problems that
are emerging now in our research trajectory. Some directions are outlined in the
subsequent part of this section. What follows is partly influenced by the important
work developed in the European community of mathematics educators, and
particularly in the CERME context, under the name of "networking of theories".
Indeed, our adaptation of Habermas’ construct of rationality to the case of
mathematics education does not exclude the use of other frameworks aimed at
dealing with the complexity of mathematics education phenomena from different
viewpoints; on the contrary, we think that complementary constructs are needed, and
that some work in that direction should be made. The articulation between the FoE
perspective and the construct of rational behaviour is per se an example of possible
complementarity, and even integration, between different theoretical perspectives: the
FoE construct offers a way of conceiving a cultural context in terms of its educational
potential, the FoE didactics offers criteria for exploiting that potential. The adapted
Habermas' construct works as an analytical tool to describe and compare different
rationalities within a given FoE and between different FoEs, and to plan and analyse
the transition from one rationality to another.

As an example of further development in a “networking perspective”, we may
consider the fact that both the original Habermas' construct and our adaptation do not
encompass the institutional dimension, so relevant when we consider (for instance)
the mechanisms that determine the kind of epistemic rationality that teachers should
promote at a given school level. Here we acknowledge the necessity of taking into
account the work done within the frame of Chevallard's Anthropological Theory of
Didactics (ATD) (see Wozniak, Bosch & Artaud, 2012). A contact point concerns the
possibility of analyzing mathematical activities according to semiotic and epistemic
criteria (cf Chevallard's model of mathematical praxeologies). However, some
components of rational behaviour have a marginal weight in the ATD: in particular,
the teleological rationality, as concerns both intentionality and consciousness of
problem solving strategies.

Another development concerns the situated cognition perspective, in particular the
construct of Legitimate peripheral participation (Lave & Wenger, 1991): some
aspects of the practical implementation of the FoE didactics, particularly those related
to the development of specific forms of rational behaviour, can be seen as an
enculturation process that develops according to a Legitimate peripheral participation
model. Furthermore, that model accounts for the specific social contexts, for instance
the school setting, in which rational behaviours are passed over to young generation,
an issue that is not dealt with in Habermas' elaboration. For these reasons, we feel the
situated cognition perspective could enrich our elaboration. On the other hand, the
situated cognition perspective lacks a specific discourse concerning the
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epistemological side of the enculturation process, whilst this aspect would be so
important to qualify, in the school setting, the mediation exercised by the teacher and
the output of the enculturation process in terms of rationalities.

Another possible development is the integration with H. Simon’s construct of
bounded rationality (Simon, 1991), which takes into account the complexity of
factors that intervene in decision making in economics and in other fields of decisions
at risk. In term of Habermas' construct, Simon's construct concerns teleological
rationality. In an ongoing research on the use of Habermas' construct in mathematics
education, carried out between the Genoa team and the Turin team lead by F.
Arzarello, we are engaged in comparing and, possibly, integrating Habermas’ and
Simon’s constructs in order to deal with the approach to game theory in school (the
Turin team is performing teaching experiments on it at different school levels).

Particularly due to the challenges deriving from ongoing experiences of teacher
education and innovative teaching in different cultural contexts, which some
members of our group are involved in (in Africa, Latin America, and multicultural
[talian classes as well), further needs and elements for developing our theoretical
framework will probably emerge. In particular power relationships and identity issues
in the relationships with different cultures will be likely to oblige us to take into
account related relevant theoretical elaborations (see Engestrom & Sannino, 2010).

All the above examples, even if just sketched here, suggest that a single theoretical
perspective is not sufficient to encompass the complexity of mathematics education
phenomena and related big problems, and that a modesty attitude seems to be the
most appropriate to develop a productive dialogue and, possibly, local integrations
and complementarities between different theoretical perspectives.
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Geometry and its teaching have always been a problematic and exemplar issue
regardless of the period. Torn between utilitarian and idealistic visions, the very
nature of geometry has moved within very wide margins from regarding it as sacred
to aiming at its disappearance. Regarding mathematics education, researches on
geometry have raised the attention of many prominent researchers in the domain
such as for instance Freudenthal and Brousseau. What are today the core items and
the contributions of researches in the didactics of geometry, a domain in which the
current development of specific software has caused quick changes? We address this
question in the light of the results of recent researches and also the rich discussions
which have been occurring in the CERME Working Group on geometry from its
beginning in 1999. We also develop some ideas about the perspective of geometric
paradigms and spaces for geometric work (SGW) and show how it allows describe
and change the nature of geometric activity in various educational contexts.

First of all, I would like to thank the organizers and the members of the scientific
Committee for their invitation to give this plenary on geometry teaching and learning.

During this talk, I present some possible orientations for researches within the field of
geometry didactics. The main point is, to me, that we should take advantage to focus
on what I call Geometric work to advance and to develop new views on geometry
education. And I develop, with some details, this idea and the framework related to it
during the presentation. Another point is that we would get some benefits by linking
geometry to other maths areas and to technological tools. That explains partially the
meaning of Beyond in the title.

WHY TEACH AND LEARN GEOMETRY TODAY?

For a long time mathematics has been synonymous with geometry and questioning
the usefulness of mathematics was equivalent to questioning geometry. Today, it is
somehow different but we can learn from the past in order to think on the question
but keeping in mind how the current situation is specific.

In An essay on the usefulness of mathematical learning written in 1701, Arbuthnot,
an English physician, tried to persuade the rich people of his time to learn and
practice mathematics. He based his argumentation on three points which are always
interesting to consider:

1. Develop Mind and Reasoning. “Truth is the same thing to the Understanding as Music
to the Ear and Beauty to the Eye”, he wrote in the flourishing style of his time. This
argument is classic and will be used and summarized later with the famous “For the
honour of human spirit” of Jacobi (1830) quoted by Dieudonné (1987).
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2. For their applications in a wide variety of fields. Arbuthnot favoured Trade,
Navigation, Art of War...

3. To learn how to get to the results and not only the results. This means that the path is
as important as the result. Arbuthnot praised mathematics and geometry as a method of
freeing the mind from superstition.

The third argument keeps its value today in a world with a lot of technologies
meaningless for common people and at the same time an increasing strength of
superstitions.

Nearer from to-day and into the field of maths education, the “modern maths”
revolution and the subsequent counter-reform have questioned geometry through the
name of Euclid. “A bas Euclide” was Dieudonné’s provoking motto against
traditional geometry based on an amount of triangle properties disconnected from the
evolution of contemporary science. In a same way but for different reasons, teachers
and researchers involved in the counter-reform rejected Euclid because he did not
give any efficient method to apply it in the real world problems. Another marginal
and provoking view was Brousseau's idea of considering Euclid as the first
didactician. Indeed, Euclid wrote a text organizing knowledge and used, with some
adaptations, as a base for textbooks during centuries and up to the beginning of the
XX™ century.

To view the variety of points of view, eventually conflicting, it is interesting to quote
this remark by Fletcher, a well-known math educator, in an ESM special issue on
geometry published in 1971

The cry "Euclid must go!" has gained a certain notoriety in recent years. Our reaction to
this in England was merely mild surprise since as far as we were concerned Euclid had
already been gone for a long time. (Fletcher, ESM. 3-3, 1971).

This remark shows how the teaching traditions and the relationships with geometry
are different among countries which may be geographically very close.

Nowadays, all these questions and conflicting viewpoints coexist and the teaching
and learning of geometry have been to be developed in a changing context
characterized by the tension between utilitarian and idealist visions on mathematics
with an advantage to the utilitarian approaches. At the same time the use and
potentialities of Dynamic Geometry Software (DGS) have deeply changed the way of
discovering and proving in the domain and created a new relationship with Truth and
Proof within maths education.

To progress in the direction of making our knowledge grow on how and what to teach
and learn in Geometry, researchers in the domain can use the great amount of texts
elaborated for the group on geometry which was existing in the Conferences of
ERME since the first Conference. Among the numerous papers presented in the
working group on Geometry, we can distinguish some recurrent and relevant points:
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1. Development of spatial abilities and geometrical thinking through consecutive
educational levels.

2. Geometry education and the "‘real world": geometrisation and applications
3. Instrumentation: artefacts such as, computers and the way they are used
4. Explanation, argumentation and proof in geometry education.

To this four classic topics in the domain we can add some theoretical aspects which
in a certain sense are local and specific to the domain: Van Hiele's levels; Duval's
registers of semiotic representation; Houdement and Kuzniak's geometrical
paradigms.

The need for a common framework related to Geometry education appeared
necessary in the working group in order to facilitate exchanges among members and
to allow a capitalisation of knowledge in the domain. Due to collaborations initiated
during Cerme meetings with colleagues from Cyprus, Spain and Canada or other
from Mexico and Chile, it has been made possible to develop a theoretical framework
that I will introduce. In our mind, the framework should be dedicated to study the
teaching and learning of elementary geometry on the whole educational system that
means during compulsory education and also teacher training. It should be neutral in
the sense that is can be used to compare the teaching of geometry in different
countries and institutions without any a priori on “best” directions. For that it
appeared very soon, that it could be interesting to focus on the nature and form of the
effective geometric work made by students and teachers in Geometry.

MATHEMATICAL WORK CONSIDERED A CRUCIAL POINT

As it has been underlined above, the notion of geometric work is central in the
approach and we start by detailing what is geometric work for us. First we need to
precise, more generally, our view, oriented by educational perspectives, on
mathematical work.

In the special issue of ESM already quoted, Freudenthal (1971) found it useful 