Matematikkens fundament i krise

Videnskabsfagprojekt ved IMFUFA, RUC

Udført af: Thomas Høyer
             Karl-Kristian Sol Bjerregaard
             Katrine Voigt Rasmussen

Vejlender: Anders Madsen

December 2012
Resumé

Abstract

This project gives an account of the crisis of the foundation of mathematics as it prevailed around 1900. After a brief description of the background for Russell’s Paradox we describe selected elements of formal logic in general and propositional logic in particular, of predicative logic, and of naive set theory with a view to understanding in what sense one could speak of a crisis at all. We delineate the basics of the formalisation of axiomatic systems, and in particular we show how Zermelo and later Fraenkel succeeded in formulating set theory in such a way that it was able to serve as a foundation of mathematics. Russell’s type theory, which was another attempt at providing a sound basis for mathematics, is described as far as it relates to the handling of the paradox. Finally, we argue that it is only reasonable to describe the situation as a crisis for that branch of mathematics which purports to establishing a foundation of mathematics solely based on logic, without any reference to intuition and without the arbitrariness of axioms.
Indholdsfortegnelse

1 Baggrund for projektet ............................................................................................................. 6
  1.1 Problemformulering ........................................................................................................ 6
  1.2 Den historiske ramme ...................................................................................................... 7
  1.3 Projektrapportens opbygning ....................................................................................... 7

2 Matematisk logik ..................................................................................................................... 9
  2.1 Logikkens historie ........................................................................................................... 9
  2.2 Det formelle system ......................................................................................................... 10
    2.2.1 Det formelle systems egenskaber .......................................................................... 11
  2.3 En formel teori for udsagnslogik .................................................................................. 12
    2.3.1 Udsagnslogik ........................................................................................................... 12
    2.3.2 Udsagnslogikkens bestanddele og sammenhænge ............................................... 13
    2.3.3 Nødvendigheden af konnektorer .......................................................................... 16
    2.3.4 En formel teori for udsagnslogikken ................................................................... 16
    2.3.5 Den formelle teori anvendes ................................................................................. 18
  2.4 Sammenfatning ................................................................................................................ 21
  2.5 Sammenhæng mellem funktion, prædikat og mængde ....................................................... 22
    2.5.1 Prædikat og funktion ............................................................................................... 22
    2.5.2 Mængder .................................................................................................................. 22

3 Freges formelle logik .............................................................................................................. 24
  3.1 En formalisering af matematikken og logikken ............................................................... 24
    3.1.1 De logiske paradokser som konsekvens af en ufuldstændig formalisering ....... 24
  3.2 Freges system .................................................................................................................. 24
    3.2.1 Overblik over Begriffsschrift .............................................................................. 25
    3.2.2 Alkvantoren og eksistenskvantoren ................................................................... 25
    3.2.3 Definitionen af en funktion ............................................................................... 26
    3.2.4 Værdiforløbet af en funktion og Law of Extensions .......................................... 28
    3.2.5 Loven om dobbelt negation ............................................................................... 29

4 Den naive mængdelære og Cantors teorem ....................................................................... 30
  4.1 Den naive mængdelære .................................................................................................... 30
    4.1.1 Relationer ................................................................................................................ 31
    4.1.2 Funktioner ............................................................................................................... 32
  4.2 Cantors teorem ............................................................................................................... 33
    4.2.1 Beviset for Cantors teorem .................................................................................. 33
    4.2.2 Cantors diagonaliseringsargument ..................................................................... 35

5 Russells paradoks ...................................................................................................................... 36
5.1 Mængden af alle mængder, som ikke er medlemmer af sig selv .......................................................... 36
5.2 Paradokset som et problem i prædikatlogikken ................................................................................. 36

6 Løsninger på paradokset ......................................................................................................................... 39
   6.1 Typeteorien ........................................................................................................................................ 39
       6.1.1 Selvreference eller Vicious Circle Principle ............................................................................ 39
       6.1.2 Udsagnsfunktioner i Principia Mathematica ......................................................................... 40
       6.1.3 Ramified Theory of Types ..................................................................................................... 42
   6.2 Zermelos axiomer ............................................................................................................................ 45
       6.2.1 Grundlæggende definitioner .................................................................................................. 45
       6.2.2 Axiomerne ............................................................................................................................. 46
   6.3 Fraenkels bidrag .................................................................................................................................. 49

7 Diskussion og konklusion ....................................................................................................................... 52
   7.1 Opsamling på de elementer, vi har præsenteret .............................................................................. 52
   7.2 Zermelos krav om definitivitet og Russells krav om prædikativitet ............................................. 53
   7.3 Modstriden i Cantors teorem ......................................................................................................... 54
   7.4 Hvorfor vandt axiomerne over typeteorien? ................................................................................. 54
   7.5 Matematikkens fundament i krise? ................................................................................................. 55

Litteraturliste ............................................................................................................................................... 57


1 Baggrund for projektet

Dette projekt er først og fremmest et matematikhistorisk projekt. Vi har derfor lagt vægt på at forsøge at forstå matematikken sådan som den så ud i den periode, vi beskæftiger os med.

Datidens fremstillinger af de pågældende matematiske områder er ikke så entydig og formel, som vi ellers er vant til, og det vil fremgå af de rapportafsnit, der omhandler den historiske matematik: Disse er ikke nær så stringente som afsnittet om matematisk logik, der tager udgangspunkt i en nutidig fremstilling. Dette skyldes, at det historiske stof stammer fra ca. 1879-1920’erne, hvor de områder, der har projektets fokus, gennemgik en rivende udvikling. Desuden var formaliseringen af matematikken endnu undervejs, og fælleslægt er fremstillingen af stoffet i de historiske kilder primært uformel.

1.1 Problemformulering

Den oprindelige inspiration til dette projekt var sammenhængen mellem matematik og logik. Vi havde, muligvis som følge af vores fælles baggrund som ingeniører, en opfattelse af, at matematik er, eller bør være, logisk. Det kunne derfor være interessant at undersøge grænsefladen mellem filosofisk og matematisk logik for bedre at forstå, hvordan de to størrelser hænger sammen.

Ret hurtigt blev det klart for os, at mængdelæren spiller en central rolle i den sammenhæng, idet den udgør en slags overgang mellem logikkens og matematikkens sprog. Mængdelæren etablerer matematiske objekter gennem definitioner, der umiddelbart forekommer logiske, og den definerer grundlæggende relationer såsom større end, mindre end, lig med etc., der ikke blot er relevante for matematikken, men for vores generelle opfattelse af verden omkring os. Ligeledes måtte vi sætte os grundigt ind i udsagnslogikken og prædikatlogikken som en form for bindeled mellem filosofisk og matematisk logik.

Russells paradoks blev et tilbagevendende problem, som vi efterhånden har diskuteret igennem på kryds og tværs og i utallige formuleringer. Ét var at forstå selve paradokset, et andet var, hvordan det kunne gå til, at et sådant paradoks kunne dukke op og tilsyneladende slå et stort hul i selve matematikkens logiske fundament, uden at den matematik, der byggede på dette fundament, faldt sammen. Deraf projektets arbejdstitel: Matematikkens fundament i krise. Vi undrede os over, hvordan man mon havde båret sig ad med at “lukke hullet”, og det satte vi os for at undersøge.

For at afgrænse projektet valgte vi at fokusere på to sådanne teorier, som havde til formål at sørge for, at paradokset ikke kunne opstå: Russells typeteori og Zermelo-Fraenkels axiomer for mængdelæren. Vi fik det indtryk, at axiomerne blev eftertidens foretrukken løsning på problemet, mens typeteorien trådte i baggrunden som et unødvigt besværligt alternativ, der slet ikke stod mål med axiomerens enkelhed. Derfor fandt vi det nærliggende også at undersøge, hvorfor det forholdt sig sådan. Dette indtryk har vi dog i en vis udstrækning måttet revidere, og spørgsmålet blev derfor i stedet, hvilken rolle de to teorier spiller i dag.

Hen ad vejen erfarede vi desuden, at det forholdt sig mindre dramatisk end som så med krisen. Matematikken brød jo ikke sammen – så hvori bestod problemet egentlig? I hvilket

1.2 Projektrapportens opbygning

Der er en del teori og begreber, som hurtigt viste sig at være en forudsætning for at kunne forstå og arbejde i dybden med paradokset, dets baggrund og den udvikling, det satte gang i. Derfor begynder vi med en relativt detaljeret gennemgang af matematisk logik og det formelle system for formalisering af matematiske teorier, som anvendes i dag. Efterfølgende præsenteres Freges formelle matematiske teori og hans formalisering af prædikatlogikken. Dernæst er der behov for at få rigtset den naive mængdelære op, før man er klar til at forstå Cantors teorem, som spillede en væsentlig rolle i forhold til Russells paradoks. Efter en forståelsesmæssig præcisering af paradokset i forhold til henholdvis prædikatlogikken og mængdelæren følger en gennemgang af to forsøg på at "løse" paradokset: Russells typeteori samt Zermelo og Fraenkel's axiomer.

Afslutningsvis diskuteres projektet. Hvad har vi opdaget? Hvilke sammenhænge er der mellem typeteorien og axiomsystemet? Hvorfor blev den ene først anerkendt efter adskillige revisioner og forenklinger, mens den anden hurtigt blev almindeligt anerkendt og anvendt? Og hvilke ting har givet anledning til undren undervejs?

1.3 Den historiske ramme


Holdningen til mængdelæren kølnedes hurtigt, og en så betydelige matematiker som franskmanden Henri Poincaré, der selv havde bidraget til udbredelsen og anvendelsen af mængdelæren, havde ikke meget til overs for Russells forsøg på at rehabilitere mængdelæren fra 1902 og frem.

I denne sammenhæng er det også værd at nævne den tyske matematiker David Hilbert, der betragtes som én af århundredets mest indflydelsesrige matematikere. I 1899 holdt Hilbert en forelæsning, der blev skelsættende for udviklingen af moderne matematik og logik. Skønt emnet egentlig var geometriens fundament, addresserede Hilbert sine idéer om, hvilken rolle axiomer spiller i matematiske teorier generelt og hvordan man systematisk bør behandle sådanne teoriers konsistens og uafhængighed. Hilbert håndterer matematisk teori, hvad enten det drejer sig om geometri eller aritmetik, på måde, der mere interesserer sig for
teoriens formelle regler end for hvilken substans, teorien handler om. Det var ganske kontroversielt på det tidspunkt, og Hilberts tanker om konsistens, uafhængighed og formalisering blev for eksempel aldrig godtaget af kollegaen Gottlob Frege. Frege er en anden væsentlig bidragyder til udviklingen af den matematiske logik, der, som det vil fremgå i det følgende, også har en væsentlig plads i de begivenheder, der udspillede sig omkring Russells paradoks. [Stanford Encyclopedia of Philosophy 2012c]
2 Matematisk logik


2.1 Logikkens historie

Formaliseringen af logikken og matematikken er resultatet af en lang række bidrag gennem tiden, og følgelig vil det være for omfattende at gøre rede for den fulde historiske baggrund. Dette afsnit har blot til formål at nævne de væsentligste personer og deres bidrag. Afsnittet er baseret på [Walicki 2012].

Den tyske matematiker og filosof Gottfried Leibniz (1646-1716) var den første, der præsenterede idéen om

1) Et universelt sprog af symboler, som let kunne forstås af alle læsere lige meget hvad deres modersmål var.

2) En kalkule for logikken baseret på egne symboler, som kunne manipuleres ud fra vedtagne regler og benyttes til at opdage nye sandheder og eftervise antagne konklusioner.

I midten af det nittende århundrede bidrog den engelske matematiker, logiker og filosof George Boole med det første succesfulde formelle system for logik. Hans fokus var udsagnslogikken, og han var i stand til at opstille kalkulationer ud fra formelle regler uden at skulle tage hensyn til den underliggende fortolkning af logikkens udsagn.

“(...) the validity of the processes of analysis does not depend upon the interpretation of the symbols which are employed, but solely upon the laws of combination.”

[Boole 1847]

Gottlob Frege og Bertrand Russell, som vil blive omtalt mere indgående i de følgende kapitler, havde også stor betydning for formaliseringen af logikken og anstrengelserne for at basere matematikken på et rent logisk grundlag. Albert North Whitehead, som arbejdede tæt sammen med Bertrand Russell, skrev:
Den sidste person, der skal nævnes, er den polske logiker, matematiker og filosof Alfred Tarski, som i 1920’erne og 1930’erne bidrog til en beskrivelse af det formelle system i tre komponenter: Symboler, følgeslutningsregler og semantik. Denne inddeling er central for det formelle system sådan som det ser ud i dag, og dette vil blive anvendt i de følgende kapitler.

2.2 Det formelle system

Dette samt afsnit 2.3 og 2.4 er baseret på [Niss 2012]. Den følgende beskrivelse af det formelle system er en udbygning af de tre komponenter, der er beskrevet af Alfred Tarski, hvor den semantiske del er opdelt i velformede sætninger og axiomer. Der skelnes mellem et formelt system, som er betegnelsen for den generelle formaliserede struktur, og en formel teori, som betegner en teori, der er formaliseret ved brug af det formelle system.

Det formelle systems fire komponenter er

1) **Symboler og sætninger**
   En mængde af symboler, som vi kan kalde $S$. Det kræves, at denne mængde er tællelig, det vil altså sige enten endelig eller tælleligt uendelig.
   Symbolerne kan sammensættes til sætninger. Der er ingen krav til denne sammensætning; den kan bestå af vilkårlige symboler fra $S$, blot må sætningen ikke være uendelig.

2) **Velformede formler**
   Visse af sætningerne kaldes ”velformede formler” (forkortet vf). Det er de sætninger, der giver mening inden for den teori, der formaliseres. Der skal være en præcis og effektiv metode til at afgøre, om en sætning er en velformet formel. Denne metode kan være en begrænset liste af entydige spørgsmål.
   Eksempelvis er der i det danske sprog, om end i mere løs forstand end for et matematis/ogisk sprog, et antal regler, der er med til at sørge for, at en sætning er velformet og dermed forståelig. Hvis reglerne brydes, og man skriver en sætning som: ”op Nordsøens slipper olie”, så kan det godt være, at der kan udrages en mening af ordene, men den er ikke klart tilgængelig, fordi reglerne for sætningsdannelse ikke er blevet fulgt.

3) **Axiomer**
   En undergruppe af disse velformede formler udpeges som teoriens axiomer. Sættet af axiomer kan som sådan frit vælges af teoriens ophavsmænd, men, hvis der på samme måde som med de velformede formler er en præcis og effektiv metode til at afgøre om en vf er et axiom, så kaldes den formelle teori for en axiomatisk teori. Det vil sige, at axiomatiske teorier er en undergruppe af de formelle teorier, hvor axiomerne klart kan
udpeges; der er altså en metode eller en struktur for dem ud over den, der beskriver en velformet formel. 
Det er værd at pointere, at når vi skriver, at disse vf'er og axiomer vælges eller udpeges, så betyder det, at skaberen af den specifikke formelle teori selv vælger, hvilke regler, der gælder for udpegningen af de velformede formler, og hvilke af de velformede formler, der beskriver de fundamentale axiomer. Samtidig vil der højst sandsynligt ligge en logisk udledning bag, og et klart mål med, hvad de valgte vf'er og axiomer skal kunne bruges til. Mere om dette i afsnit 2.2.1.

4) **Følgeslutningsregel**

Der er et endeligt sæt af følgeslutningsregler. Disse regler beskriver relationen mellem velformede formler. Således kan de velformede formler opbygges i ordnede kæder, hvor den sidste velformede formel i kæden er en direkte konsekvens af de foregående led, i kraft af en specifik følgeslutningsregel.

Et eksempel på en følgeslutningsregel er *modus ponens* fra udsagnslogikken, som siger: 
Hvis $P \Rightarrow Q$ og $P$ er sand, så er $Q$ sand. Følgeslutningsreglen er altså en logisk konklusion. Eksempler på hvordan den bruges ses i afsnit 2.3.5.


De velformede formler kan som nævnt i 4) opstilles i ordnede kæder som denne:

$$F_1, \ldots, F_k$$

Hvert $F_i$ i denne kæde er enten et axiom eller en direkte konsekvens af $F_1 \ldots F_{i-1}$ i kraft af en følgeslutningsregel. Den sidste velformede formel $F_k$ er et teorem i en formel teori, hvor $F_1, \ldots, F_k$ er beviset for $F_k$. Det følger også heraf, at den første velformede formel $F_1$ må være et axiom. Den er et bevis for sig selv og kan ikke udledes af andre vf'er.

### 2.2.1 Det formelle systems egenskaber

Det er en række egenskaber, som man efterstræber, når man vil formalisere en teori eller dele af en teori. Det drejer sig om følgende:

**Afgørbarhed**

Handler om, hvorvidt vi kan opstille et teorem som overholder reglerne for at være en vf for en given teori og derpå afgøre, om dette teorem tilhører/kan bevises indenfor teorien. Når det er en formel teori vi har med at gøre, så er de ordnede kæder af beviste sætninger og sættet af axiomer en hjælp til at afgøre dette, mens det for ikke formelle teorier kan være meget mere besværligt at afgøre. Formelle teorier kan have metoder til at fastslå om et givet teorem tilhører teorien, men det er ikke ensbetydende med, at alle formelle teorier har den egenskab at være afgørbare.

**Uafhængighed**

De velformede formler, der udgør sættet af axiomer for en formel teori, kan frit vælges. Teorien kaldes dog kun for uafhængig, hvis det ikke er muligt at udlede nogen af teoriens axiomer fra de resterende axiomer. Teorien er således uafhængig, hvis sættet af axiomer ikke kan reduceres. Så snart en teori er bevist afhængig, idet man har fundet frem til, at et af
axiomerne kan bevises, så kan dette axiom omdøbes til et teorem. Dermed er teorien igen uafhængig, og mængden af axiomer er reduceret med én. Udfordringen i uafhængighed er, at der kan være axiomer i teorien, hvis uafhængighed ikke er bevist.

**Konsistent**

En formel teori er konsistent hvis og kun hvis det ikke er muligt på baggrund af teoriens axiomer og følgeslutningsregler både at bevis en velformet formel $F$ og negationen af $F$.

**Ækvivalens**

To formelle teorier $T_1$ og $T_2$ kan siges at være ækvivalente, hvis sættet af symboler og sættet af velformede formler for $T_1$ og $T_2$ er ens. Det vil sige, at selvom de valgte axiomer og følgeslutningsregler er forskellige, kan tilsvarende sæt af formler bevises i de to teorier. I så fald er $T_1$ og $T_2$ ækvivalente.

**Axiomatisering og fuldstændig repræsentation**


**Opsamling på egenskaberne**


### 2.3 En formel teori for udsagnslogik


#### 2.3.1 Udsagnslogik

Udsagnslogik forholder sig som navnet antyder til udsagn, og her defineres et udsagn som en hvilken som helst sætning, hvor det giver mening at udtale sig om, at sætningens indhold
enten er sandt eller falsk. Eksempelvis kan man overveje udsagnene ”sne er hvid” eller ”Jorden er flad”.

Læg mærke til det ”eller”, der står mellem de to udsagn i eksemplet. Det leder os nemlig frem til en anden egenskab ved udsagnslogikken. ”Eller” skaber en forbindelse mellem to udsagn, så vi på samme måde som for det enkelte udsagn kan vurdere, om udsagnet ”a eller b” er sandt. Dette ”eller” kaldes for et bindeord, der forbinder de atomare udsagn a og b.

I udsagnslogikken er vi ikke interesserede i, om a er sandt, men i hvilke sandhedsværdier de sammensatte udsagn, vi kan opstille, kan antage. Vi er altså jævnfør eksemplet ikke interesserede i at diskutere, om sne nu er hvid, men i udfaldsrummet for de sammensatte udsagn, vi kan bygge op.

### 2.3.2 Udsagnslogikkens bestanddele og sammenhænge

I det følgende beskrives udsagnslogikkens vigtigste bestanddele og sammenhængene mellem dem.

**Atomare udsagn:** Er udsagn, der ikke kan reducieres. Et atomart udsagn udtaler sig om en ting og vil enten være sandt eller falsk. Indholdet af disse udsagn er ikke af interesse for udsagnslogikken. Udsagnene skrives ikke ud; de navngives normalt med et bogstav om hvilket v i så ved, at det kan antage værdien sandt eller falsk.

**Konnektorer:** Binder de atomare udsagn sammen til sammensatte udsagn. De mest almindelige konnektorer i udsagnslogikken er

”eller”-symbolet: ∨ (disjunktion),
”og”-symbolet: ∧ (konjunktion),
”hvis ..., så ... ”-symbolet: ⇒ (implikation),
”hvis og kun hvis”-symbolet: ⇔ (biimplikation).

**Negation:** Negation relaterer sig til et enkelt udsagn og er således ikke en konnektor. Sammen med konnektorerne gør negationen det muligt at opstille alle de mulige sandhedsfunktioner for de atomare udsagn. Negation angives ved

”ikke”-symbolet: ¬ (negation).

**Sammensatte udsagn:** Består af udsagn forbundet med bindeord. Udfaldet for det sammensatte udsagn afhænger af bindeordene og antallet af atomare udsagn, det er opbygget af, og det beskrives ved at se på alle kombinationer af udfald for de atomare udsagn. Eksempelvis kan et sammensat udsagn bestående af 2 atomare udsagn (der, som beskrevet, hver kan tage værdien sandt/falsk) beskrives ved 4 mulige udfald. Der er således 2^n mulige kombinationer af input til et sammensat udsagn, hvor n er antallet af atomare udsagn i det sammensatte udsagn.

**Sandhedstabeller:** Udfaldet for et udsagn skrives op i en sandhedstabell, hvor alle mulige kombinationer af sandhedsværdier (udfald) for udsagnets deludsagn A og B skrives op og sammenholdes med det samledes udsagns udfald. Sandhedstabellerne for udsagn med hver af
de nævnte konnektorer samt negationen opstilles her som eksempler med en kort uddybende kommentar til hver:

**Disjunktion**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A ∨ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Falsk</td>
<td>Falsk</td>
<td>Falsk</td>
</tr>
<tr>
<td>S</td>
<td>Sandt</td>
<td>Falsk</td>
<td>Sandt</td>
</tr>
<tr>
<td>F</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>S</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
</tbody>
</table>

Sandhedstabellen for et udsagn med konnektoren ”eller” er forholdsvist intuitiv. Den eneste situation, der kan være forvirring omkring, er når både A og B er sande. Her gælder det ikke i formen ”enten er det ene sandt, eller også er det andet”. Det skal i stedet forstås således, at hvis blot den ene er sand, så er udsagnet sandt.

**Konjunktion**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A ∧ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Falsk</td>
<td>Falsk</td>
<td>Falsk</td>
</tr>
<tr>
<td>S</td>
<td>Sandt</td>
<td>Falsk</td>
<td>Falsk</td>
</tr>
<tr>
<td>F</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Falsk</td>
</tr>
<tr>
<td>S</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
</tbody>
</table>

Sandhedstabellen for et udsagn med konnektoren ”og” er ret indlysende. Det skal forstås således, at både A og B skal være sande for at udsagnet er sandt.

**Implikation:**

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>A ⇒ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Falsk</td>
<td>Falsk</td>
<td>Sandt</td>
</tr>
<tr>
<td>S</td>
<td>Sandt</td>
<td>Falsk</td>
<td>Falsk</td>
</tr>
<tr>
<td>F</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>S</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
</tbody>
</table>

Sandhedstabellen for et udsagn med konnektoren ”hvis ..., så...” kræver en uddybende forklaring, da udsagnet ”hvis A, så B” kan være svært at forstå. I stedet vil vi bruge den sproglige form ”A medfører B” i det følgende. Lad os starte med linje 4, hvor begge udsagn har samme sandhedsværdi: ”Noget sandt medfører noget sandt”. Det kan rationelt accepteres, at det må være et sandt udsagn. I linje 1 er værdierne begge falske, så sprogligt giver det: ”Noget falsk medfører noget falsk”. At vi kan få noget falsk af noget falsk er også et sandt udsagn.

De andre er lidt sværere at indse. Lad os først se på linje 3: ”Noget falsk medfører noget sandt”. Det er et sandt udsagn, fordi det vi får ud af det er sandt. At vi bruger noget falsk til at komme frem til det, er ikke vigtigt. Udsagnet er sandt, fordi vi er kommet frem til noget sandt. Vi kan også sige, at det, der afgør, om udsagnet er sandt, er, at det, vi kommer frem til, er sandt. Dette argument gælder for den sidste situation i linje 2: ”Noget sandt medfører noget falsk”. Vi kommer frem til noget falsk af noget sandt. Det er den eneste situation, hvor det sammensatte udsagn bliver falsk.
Biimplikation

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>A ⇔ B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsk</td>
<td>Falsk</td>
<td>Sandt</td>
</tr>
<tr>
<td>Sandt</td>
<td>Falsk</td>
<td>Falsk</td>
</tr>
<tr>
<td>Falsk</td>
<td>Sandt</td>
<td>Falsk</td>
</tr>
<tr>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
</tbody>
</table>

Konnektoren "A gælder 'hvis og kun hvis' B" opfører sig på den måde, at det kun er sandt når de to udsagn A og B har samme sandhedsværdi.

Negation

<table>
<thead>
<tr>
<th>A</th>
<th>¬A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsk</td>
<td>Sandt</td>
</tr>
<tr>
<td>Sandt</td>
<td>Falsk</td>
</tr>
</tbody>
</table>

Negationen af et udsagn tager den modsatte sandhedsværdi af det oprindelige udsagn.


Parenteser: For at kunne sætte sammensatte udsagn sammen er det vigtigt at kunne afgøre udsagnets interne hierarki. Til dette formål indfører vi parenteser. Her følger et eksempel på betydningen af parentesens placering i et sammensat udsagn:

Sandhedstabellen for: A ∨ (B ∧ ¬A)

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C: (B ∧ ¬A)</th>
<th>A ∨ C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsk</td>
<td>Falsk</td>
<td>Falsk</td>
<td>Falsk</td>
</tr>
<tr>
<td>Sandt</td>
<td>Falsk</td>
<td>Falsk</td>
<td>Sandt</td>
</tr>
<tr>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>Sandt</td>
<td>Sandt</td>
<td>Falsk</td>
<td>Sandt</td>
</tr>
</tbody>
</table>

Sandhedstabellen for: (A ∨ B) ∧ ¬A

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C: (A ∨ B)</th>
<th>C ∧ ¬A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Falsk</td>
<td>Falsk</td>
<td>Falsk</td>
<td>Falsk</td>
</tr>
<tr>
<td>Sandt</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Falsk</td>
</tr>
<tr>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Falsk</td>
</tr>
</tbody>
</table>

Udsagnsform: Indtil videre har fokus været på udsagnenes sandhedsværdi, altså om udsagnet er sandt eller falsk, sådan som det er skrevet op i sandhedstabellerne. Når vi ser bort fra sandt/falsk-spørgsmålet, kan vi imidlertid bedre forholde os til to andre spørgsmål, nemlig om vores udsagn holder den rette form, og hvordan udsagn udledes af tidligere udsagn. Vi
bevæger os således til et højere abstraktionsniveau, som også bruges i det formelle system, idet vi gerne vil kunne bevise sætningen \( P_k \) ud fra nogle fastlagte regler samt de \( P_1, \ldots, P_{k-1} \) sætninger, der allerede er bevist. Ved at kalde et udsagn for en udsagnsform angives det, at udsagnet ikke længere skal undersøges ved at opstille en sandhedstabelfor det. Udsagnet skal i stedet bevises ud fra de teoremer, der opstilles inden for teorien.

**Sandhedsfunktion:** Sandhedsfunktionen udtrykker den unikke kombination af udfald for udsagnsformen eller det sammensatte udsagn. Vi kan starte med at etablere en forståelse for dette ved at se på de sandhedstabeller, vi har været igennem indtil nu. Sandhedsfunktionen er sandhedstabellens output, altså kolonnen til højre, som beskriver, hvordan det sammensatte udsagn forholder sig til inputtet. Når et input består af 2 udsagn, så består sandhedsfunktionen af en unik kombination af 4 udfald/sandhedsværdier. Der er altså 4 pladser, som hver kan have værdien sandt eller falsk. Det betyder, at der er \( 2^4 \) (16) mulige sandhedsfunktioner for input bestående af 2 variable. En specifik sandhedsfunktion afhænger således af udsagnsformen. Konnektorerne, negationen og parenteserne kan sammensættes på utallige måder for at frembringe en specifik sandhedsfunktion ud af de 16 mulige. Eksempelvis kan det ses ud fra de sandhedstabeller, vi allerede har gennemgået, at udsagnsformerne \( A \lor (B \land \neg A) \) og \( A \lor B \) resulterer i den samme sandhedsfunktion.

**Tautologi:** Er en udsagnsform, som altid er sand, uanset hvilken sandhedsværdi dens deludsagn \( A, B, \ldots \) har. Med andre ord er tautologier betegnelsen for de udsagnsformer, som udtrykker den unikke sandhedsfunktion, der kun har sande udfald. En tautologi kan også opstå ved at et deludsagn er en tautologi. Hvis eksempelvis \( A \) er en tautologi, så vil \( A \lor B \) også være det.

### 2.3.3 Nødvendigheden af konnektorer

Inden for logikken er der lagt meget arbejde i at undersøge, hvor mange konnektorer, der er nødvendige for at afdække alle sandhedsfunktioner, samt i at opfinde nye konnektorer, der kan reducere det højst nødvendige antal. Det essentielle er at kunne bruge udsagnslogikken fuldt ud; det vil sige, at det må være muligt at konstruere udsagnsformer til alle sandhedsfunktioner. Det er bevist, at blot én af konnektorerne \( \land, \lor \) eller \( \Rightarrow \) samt negationen \( \neg \) er tilstrækkeligt. De øvrige konnektorer kan sammensættes af disse, eksempelvis \( \neg \) og \( \Rightarrow \):

<table>
<thead>
<tr>
<th>Begreb</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>( A \lor B )</td>
<td>( \neg A \Rightarrow B )</td>
</tr>
<tr>
<td>( A \land B )</td>
<td>( \neg (A \Rightarrow \neg B) )</td>
</tr>
<tr>
<td>( A \leftrightarrow B )</td>
<td>( (A \Rightarrow B) \land (B \Rightarrow A) )</td>
</tr>
</tbody>
</table>

Negationen \( \neg \) og konnektoren \( \Rightarrow \) er udgangspunktet for den formelle teori for udsagnslogikken, der præsenteres i det følgende afsnit.

### 2.3.4 En formel teori for udsagnslogikken

Det første, der skal til for at formalisere udsagnslogikken, er de 4 komponenter fra det formelle system. Den formelle teori for udsagnslogikken vil herfra blive omtalt som \( L \).
1) Symbolerne for $L$

De eneste symboler, der benyttes i $L$, er: $\neg$, $\Rightarrow$, ($,$, $)$ og indekserede små bogstaver $p_i$, hvor $i \in N$. Vi kalder $\Rightarrow$ og $\neg$ for primitive konnektorer. $p_i$ er udsagns-bogstaver. Med disse har vi mulighed for at danne alle de udsagn, der måtte være behov for, da udsagnsbogstaverne har de naturlige tal som indeks. Udsagnsbogstaverne dækker således over teoriens logiske udsagn, som enten er sande eller falske.

Igen er det ikke af interesse, hvorvidt teoriens udsagn er sande eller falske. For at forstå den formelle teori er det en fordel at se bort fra dette og blot holde sig for øje, om de velformede formler, der opbygges i $L$ på baggrund af de 4 grundlæggende komponenter, er lovlige. En dybere forståelse af sandhedsværdien af teoriens sætninger følger, når axiomerne defineres som den tredje komponent.

2) Definitionen for $L$'s velformede formler

a) Ethvert udsagnsbogstav er en vf.

b) Hvis $P$ og $Q$ er vf'er, så er $\neg P$ og $P \Rightarrow Q$ det også. Læg mærke til, at dette kan anvendes rekursivt, så hvis $Q_3$ er bevist ved $Q_1 \Rightarrow Q_3$, så kan en efterfølgende vf være $Q_3 \Rightarrow P$, og denne vil også kunne skrives som $(Q_1 \Rightarrow Q_3) \Rightarrow P$.

Disse 2 regler skal være overholdt for at en sætning tilhører kæden af vf'er i $L$. Altså er $P$ en vf hvis og kun hvis der findes en kæde $P_1, \ldots, P_k$ således at $P_k = P$ og hver $P_1, \ldots, P_k$ enten er et enkelt udsagn angivet ved sit bogstav (som i $p_j$), eller af formen $\neg p_j$ eller $p_j \Rightarrow p_l$ hvor $j, l \in \{1, 2, \ldots, k-1\}$. Dette er en effektiv proces til at fastslå, om en sætning er en vf.

3) Følgende vf'er vælges til at være $L$'s axiomer

Axiom 1: $P \Rightarrow (Q \Rightarrow P)$

Axiom 2: $(P \Rightarrow (Q \Rightarrow R)) \Rightarrow ((P \Rightarrow Q) \Rightarrow (P \Rightarrow R))$

Axiom 3: $(\neg Q \Rightarrow \neg P) \Rightarrow ((\neg Q \Rightarrow P) \Rightarrow Q)$

$P$, $Q$ og $R$ er vf'er som beskrevet i 2). De kan altså være hvilke som helst 3 vf'er, og således kan der dannes uendeligt mange axiomer, hvor $P$, $Q$ og $R$ er substitueret med andre vf'er.

Eksempelvis kan $P$ i axiom 1 (herefter kaldet A1) substitueres med $\neg Q$, da denne holder formen for en vf i $L$. Substitutionen skal selvfølgelig ske for alle forekomster af $P$ i A1: $\neg Q \Rightarrow (Q \Rightarrow \neg Q)$. Dette er således stadig et axiom for $L$. Denne form for substitution i axiomerne vil blive brugt mange gange i det følgende. Da der findes en effektiv metode til at fastslå, om $P$, $Q$ og $R$ er vf'er, er der nu også en effektiv metode til at fastslå, om en vf er et axiom.

Sandhedstabellerne for $L$’s axiomer er opstillet her. Husk på, hvordan implikationen $\Rightarrow$ er beskrevet i afsnittet om udsagnslogik. Det resulterende udsagn er kun falsk i den situation, hvor et sandt udsagn medfører et falsk udsagn.
A1: $P \Rightarrow (Q \Rightarrow P)$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>Del 1: Q ⇒ P</th>
<th>A1: P ⇒ (Q ⇒ P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>Sandt</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>Falsk</td>
<td>Sandt</td>
<td>Falsk</td>
<td>Sandt</td>
</tr>
<tr>
<td>Falsk</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
</tbody>
</table>

A2: $(P \Rightarrow (Q \Rightarrow R)) \Rightarrow ((P \Rightarrow Q) \Rightarrow (P \Rightarrow R))$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>Del 1: (P ⇒ (Q ⇒ R))</th>
<th>Del 2: ((P ⇒ Q) ⇒ (P ⇒ R))</th>
<th>A2: Del 1 ⇒ Del 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>Sandt</td>
<td>Sandt</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Falsk</td>
<td>Sandt</td>
</tr>
<tr>
<td>Sandt</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>Falsk</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>Falsk</td>
<td>Falsk</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
</tbody>
</table>

A3: $(\neg Q \Rightarrow \neg P) \Rightarrow ((\neg Q \Rightarrow P) \Rightarrow Q)$

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>Del 1: (¬Q ⇒ ¬P)</th>
<th>Del 2: ((¬Q ⇒ P) ⇒ Q)</th>
<th>A3: Del 1 ⇒ Del 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>Sandt</td>
<td>Falsk</td>
<td>Falsk</td>
<td>Falsk</td>
<td>Sandt</td>
</tr>
<tr>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
<tr>
<td>Falsk</td>
<td>Falsk</td>
<td>Sandt</td>
<td>Sandt</td>
<td>Sandt</td>
</tr>
</tbody>
</table>

Det fremgår af disse 3 sandhedstabeller, at L's axiomer altid er sande. Det er selvfølgelig en grundbetingelse for en hvilken som helst formel eller uformel teori baseret på axiomer, at axiomerne skal være sande.

Da axiomerne således er tautologier, kan vi nu begive os ud i at bevise sætninger for L på baggrund af axiomsættet.

4) **Følgeslutningsregler for L**


2.3.5 **Den formelle teori anvendes**

Med dette fundament kan der nu udledes en række teoremer i den formelle teori L, som sammen vil kunne anvendes til demonstrere, at L er en komplett formel teori for udsagnslogikken. Vi vil dog ikke gøre dette i detaljer, men blot beskrive de teoremer, vi finder
vigtigst for at give en forståelse af den formelle teori. Desuden vil vi gennemføre et par af udledningerne, som kan give os en fornemmelse af, hvordan den formelle teori med de 4 beskrevne komponenter benyttes til at føre beviser.

**Proposition 1**

Proposition 1 siger, at der gælder $\vdash P \Rightarrow P$.

Det virker måske indlysende, at $P$ medfører $P$, men beviset for det er nødvendigt, og det vil give en forståelse af, hvordan MP virker.

<table>
<thead>
<tr>
<th>1. A2 med $P \Rightarrow P$ i stedet for $Q$ og $P$ i stedet for $R$: $[P \Rightarrow ((P \Rightarrow P) \Rightarrow P)] \Rightarrow [(P \Rightarrow (P \Rightarrow P)) \Rightarrow (P \Rightarrow P)]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. A1 med $P \Rightarrow P$ i stedet for $Q$: $P \Rightarrow ((P \Rightarrow P) \Rightarrow P)$</td>
</tr>
<tr>
<td>3. 1,2 og MP benyttes. Forklaring: Linje 1 og 2 er sande, da de er axiomer for L, og linje 2 siger det samme som første del af linje 1, så kan vi bruge MP til at sige, at anden del af linje 1 må være sand. Dette er anvendelsen af følgeslutningsreglen: $(P \Rightarrow (P \Rightarrow P)) \Rightarrow (P \Rightarrow P)$</td>
</tr>
<tr>
<td>4. A1 med $P$ i stedet for $Q$: $P \Rightarrow (P \Rightarrow P)$</td>
</tr>
<tr>
<td>5. 3, 4 og MP benyttes. På samme måde som i linje 3 kan vi se, at linje 4 udtrykker første del af linje 3. Deraf kan vi slutte, at anden del af linje 3 holder: $P \Rightarrow P$ Hermed er udsagnet beviset.</td>
</tr>
</tbody>
</table>

Bemærk, at vi substituerer $P \Rightarrow P$ ind i L’s axiomer i stedet for $Q$. Ligeledes sættes $P$ i stedet for $R$ i linje 1 og $P$ i stedet for $Q$ i linje 4. Ved substitution opstår der simpelthen en anden ”udgave” af axiomet. Axiomet holder (tautologien holder) under substitution.

**Proposition 3 (deduktionsteoremet)**

Lad $P$ og $Q$ være $vf'$er og $P$ være en kæde af $vf$'er. Så gælder der, at $P, P \vdash Q$ hvis og kun hvis $P$ $\vdash P \Rightarrow Q$, specielt gælder at $P \vdash Q$ hvis og kun hvis $P \Rightarrow P \Rightarrow Q$.

Med andre ord er $Q$ beviset ved $P$ eller kæden $P$, $P$ hvis og kun hvis det er beviset, at $P$ medfører $Q$, enten på baggrund af kæden $P$ eller i sig selv, som beskrevet i specialtilfældet. Man kan også sige, at deduktionsteoremet drejer sig om forholdet mellem forskellige $v$’er i kæden.

**Proposition 4**

Proposition 4 vedrører også deduktion. Hvis kæden af beviste $v$’er $P$ er bevis for $P$, altså $P \vdash P$, så vil det for enhver $v$ Q gælde, at $P \vdash Q \Rightarrow P$.

Det er egentlig indlysende, for vi ved, at når $P$ er sand, så vil ”$Q$ medfører $P” også være sandt, selvom $Q$ ikke nødvendigvis er sandt/bevist. Specielt gælder der, at hvis $P$ (P er et bevis for sig selv), så gælder $P \vdash Q \Rightarrow P$ for enhver $v$.  

19
**Proposition 5.1, 5.2 og 6.1**

Her følger beviset for proposition 5.1, 5.2 og 6.1 for at give os nogle flere eksempler på, hvordan de velformede formler, vi har udledt, gør det muligt at udbygge anvendelsen af den formelle teori, samt hvordan de sætninger, vi allerede har, anvendes. Disse sætninger er også anvendt i afsnit 3.2 og 5.2 i forbindelse med Freges formelle logik.

Proposition 5 siger, at for vilkårlige vอาคารer P, Q og R gælder der følgende:

5.1: P ⇒ Q, Q ⇒ R ⊢ P ⇒ R

Det vil sige, at hvis det i kæden af beviste vอาคารer er bevist at "P medfører Q" og "Q medfører R", så er det bevist at P medfører R.

<table>
<thead>
<tr>
<th>1. Hypotese: P ⇒ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Hypotese: Q ⇒ R</td>
</tr>
<tr>
<td>3. Hypotese: P</td>
</tr>
<tr>
<td>Linje 1-3 opstiller hypotesen, så den kæde, der skal bruges, er til stede. Tilbage er blot at bevise, at P medfører R.</td>
</tr>
<tr>
<td>4. 3, 1, MP: Da kæden af beviste vอาคารer indeholder 3 og 1 kan MP benyttes til at udlede: Q</td>
</tr>
<tr>
<td>5. 4, 2, MP: Da kæden af beviste vอาคารer indeholder 4 og 2 kan MP benyttes til at udlede: R</td>
</tr>
<tr>
<td>Kæden af beviser indeholder nu: P ⇒ Q, Q ⇒ R, P ⊢ R, og dermed giver deduktionsteoremet, at 5.1 holder.</td>
</tr>
</tbody>
</table>

5.2: P ⇒ (Q ⇒ R), Q ⊢ P ⇒ R

Det vil sige, at hvis det er bevist, at "P medfører, at Q medfører R" og Q er bevist i sig selv, så er det bevist, at P medfører R.

<table>
<thead>
<tr>
<th>1. Hypotese: P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Hypotese: P ⇒ (Q ⇒ R)</td>
</tr>
<tr>
<td>På samme måde som før opstilles hypotesen, så kæden er til stede.</td>
</tr>
<tr>
<td>3. 1, 2, MP: Da kæden af beviste v århuser indeholder 1 og 2 kan MP benyttes til at udlede: (Q ⇒ R)</td>
</tr>
<tr>
<td>4. Hypotese: Q</td>
</tr>
<tr>
<td>Yderligere er det nødvendigt, at Q er bevist.</td>
</tr>
<tr>
<td>5. 4, 3, MP: Da kæden af beviste v århuser indeholder 4 og 3 kan MP benyttes til at udlede: R</td>
</tr>
<tr>
<td>Kæden af beviser indeholder nu: P, P ⇒ (Q ⇒ R), Q, P ⊢ R, og dermed giver deduktionsteoremet os, at 5.2 holder.</td>
</tr>
</tbody>
</table>
Med 5.1 og 5.2 kan 6.1 bevises:

6.1: ⊢ ¬¬P ⊨ P

Det vil sige, at den dobbelte negation af P medfører P.

1. A3 med P i stedet for Q og ¬P i stedet for P:
   
   \[ (¬P ⇒ ¬¬P) ⇒ ((¬P ⇒ ¬P) ⇒ P) \]

2. Proposition 1 benyttes med ¬P i stedet for P:
   
   \[ ¬P ⇒ ¬¬P \]

3. 1, 2 og proposition 5.2 benyttes nu, idet P sættes lig første del af linje 1: (¬¬P ⇒ ¬¬P). Q er lig med linje 2 (og altså bevist) og R fra proposition 5.2 udgør det sidste P i linje 1. Vi får altså:
   
   \[ (¬P ⇒ ¬¬P) ⇒ P \]

4. A1 med ¬¬P i stedet for P og ¬P i stedet for Q:
   
   \[ ¬¬P ⇒ (¬P ⇒ ¬¬P) \]

5. 3, 4 og proposition 5.1 benyttes nu, idet første del af linje 3 og anden del af linje 4 er ens, hvis vi ser det som Q i proposition 5.1 og P udtrykt ved første del af linje 4 og R udtrykt ved anden del af linje 3. Dermed får vi i kraft af 5.1:
   
   \[ ¬¬P ⇒ P \]

2.4 Sammenfatning

Afslutningsvis ønsker vi at gøre rede for, hvorledes den uformelle udsagnslogik og den formelle teori for udsagnslogikken indeholder de samme beviste teoremer og dermed kan udtrykke nøjagtigt det samme. Dette indses gennem følgende:

1. Alle teoremer i L udtrykker tautologier i L. Man kunne bevise dette ved at opstille sandhedstabeller for dem alle på samme måde som for axiomerne. Men da vi ved, at axiomerne for L er tautologier, og at substitution i axiomerne og følgeslutningsreglen MP bevarer tautologierne, ved vi også, at alle de beviste teoremer sande. De er altså selv tautologier, og dette er tilstrækkeligt til at konkludere, at L er en axiomatisering af udsagnslogikken.

2. Den formelle teori har den egenskab at være en komplet formel teori for udsagnslogikken. Dette er tilfældet, fordi enhver vf i L, som er en tautologi, også kan bevises. Det vil sige, at den er et teorem i L.

3. Dette gælder også, når de omtalte konnektorer ∧, ∨ og ⇔ fra udsagnslogikken overvejes. Det eneste, der kræves, er, at hvis P er en vf i udsagnslogikken, som indeholder ∧, ∨ og/eller ⇔, så er P kun en tautologi, hvis den i sin uforkortede form, altså udtrykt udelukkende med symbolerne ¬ og ⇒, er et teorem i L.

5. Sidst men ikke mindst er axiomerne i L uafhængige, det vil sige, at ingen af dem kan udledes af de andre.


2.5 Sammenhæng mellem funktion, prædikat og mængde

Med udsagnslogikken således på plads kan vi gå videre med Freges formelle system og teori for prædikatlogikken. Inden da er der dog behov for at binde begreberne funktion, prædikat og mængde sammen.

2.5.1 Prædikat og funktion

Udsagnslogikkens udsagn defineres som lukkede, fordi de kun kan indeholde værdierne “sandt” og “falsk”. Imidlertid findes der inden for andre grene af matematikken udsagn, som indeholder variable elementer, således at det ikke umiddelbart er muligt at tildele endelige værdier til udsagnet. Et sådant åbent udsagn kaldes for et prædikat og skrives f.eks. som P(x, y, z), hvor x, y og z er variable. Et prædikat er således en funktion med booleske værdier (sand eller falsk) som output, hvor sandhedsværdien afhænger af en eller flere variable. En sådan funktion kaldes også en udsagnsfunktion [Zermelo 1908]. Dette kan skrives som:

P: x → {sand, falsk}

Hvilke værdier af x, der gør P(x) henholdsvis sandt eller falsk, afhænger af, hvilket domæne x kan vælges fra, men x kan også vælges fra et domæne, som medfører, at P(x) ikke kan afgøres som hverken sandt eller falsk. I udsagnslogikken er det tilstrækkeligt at se på sætningens form. Dermed kan man opskrive en sandhedsstabel og observere, hvad udfaldet er. Men i prædikatlogikken er det også nødvendigt at se på, hvordan en sætning skal for tolkes, altså hvilket domæne x tilhører. Det, at vi har variable i sætningen, kan således godt betyle, at sætningen er lukket, da prædikatet kan have en veldefineret sandhedsværdi for et givet domæne. Derfor er udsagnslogikken inkluderet i prædikatlogikken, så prædikatlogikken repræsenterer en udvidelse af udsagnslogikken.

2.5.2 Mængder

Prædikater kan anvendes til at definere mængder, idet prædikatets sandhedsværdi afgør, om variablen x er medlem af en bestemt mængde eller ej. For eksempel er prædikatet “x er lettere end kuldioxid” sandt, hvis den variable er hydrogen. Dermed tilhører hydrogen mængden af stoffer, som er lettere end kuldioxid. Indsættes i stedet “nitrogendioxid” som variabel, fås et
udsagn, som er falsk. Nitrogendioxid tilhører således ikke mængden af stoffer, som er lettere
end kuldioxid.
Prædikater anvendes dermed også til at angive egenskaber for objekter ved at definere
mængden af alle de objekter, der har en bestemt egenskab til fælles. At P er et prædikat om x
can også udtrykkes som at x har egenskaben P. Mængden defineret af P(x) skrives som
{x | P(x)}
og er altså mængden af objekter for hvilke udsagnet P er sandt [Meyer & Rubinfeld 2005].
3 Freges formelle logik

3.1 En formalisering af matematikken og logikken

Før slutningen af 1900-tallet havde det stort set ikke været nødvendigt eksplicit at skelne mellem forskellige klasser eller typer af matematiske objekter, mængder og funktioner. Det matematiske sprog var primært uformelt, og det samme var brugen af disse forskellige typer. Da de første formaliseringer af dele af matematikken og logikken dukkede op, eksisterede en opfattelse af, at der var væsensforskel på eksempelvis objekter og funktioner således allerede. Typerne var ikke eksplicit beskrevet, men spillede en vigtig om end nærmest usynlig rolle i matematikken. I forbindelse med de første formaliseringer blev disse forskellige typer blot ladt implicitte; de var til stede i baggrunden, men ikke en formelt repræsenteret del af teorien. En væsentlig fordel ved formaliseringen var, at abstrakte koncepter kunne defineres præcist [Kamareddine et al. 2004].

3.1.1 De logiske paradokser som konsekvens af en ufuldstændig formalisering

Den første formalisering af logikken blev præsenteret af den tyske matematiker Gottlob Frege i Begriffsschrift fra 1879. Frege fandt det almindelige sprog utilstrækkeligt til præcist at beskrive matematiske og logiske begreber. Hans mission var derfor at fremsætte et komplet formelt system, hvis

"first purpose is to provide us with the most reliable test of the validity of a chain of inferences and to point out every presupposition that tries to sneak in unnoticed, so that its origin can be investigated."

[Frege 1879]

Med formaliseringen fulgte en generalisering af de matematiske begreber. Dermed kunne begrebet "funktion" også generaliseres, så det ikke blot inkluderede funktioner med tal som argumenter\(^1\) og tal som funktionsværdier, men også funktioner, der kunne have andre former for argumenter, som f.eks. propositioner eller endda funktioner. Desværre gav dette også grønbind for logiske paradokser i den formelle teori, uden den (på det tidspunkt uformelle) skelnen mellem forskellige typer til at forhindre det. Logiske paradokser opstår, når funktioner anvender sig selv som argumenter. Intuitivt er det en umulighed, men dette glemmer man nemt, når man arbejder i et formelt system, hvor selvanvendelse er en formel mulighed, og det kan resultere i et logisk paradoks [Kamareddine et al. 2004; Landini 2011].

3.2 Freges system

Frege udarbejdede i virkeligheden både en formel teori og et system for formalisering i den hensigt dels at udtrykke visse grundlæggende matematiske begreber præcist, og dels at udlede en række matematiske love ud fra logikkens love. I Begriffsschrift præsenterer han sin version af en formel teori for prædikatlogik og anvender denne teori til at definere matematiske begreber samt til at postulere og bevise matematiske udsagn [Frege 1879; Stanford Encyclopedia of Philosophy 2012a]. Således udgør Freges system i Begriffsschrift en

\(^1\) Et argument er et input til en funktion, også kaldet funktionens variable – f.eks. variablen \(x\) i funktionen \(f(x)\).
slags forløber for det formelle system og den formelle teori for prædikatlogik, der anvendes i dag. Frege skelner ikke mellem systemet for formalisering og den formelle teori for prædikatlogik, hvilket fremgår af brugen af begreberne i det følgende.

Dette afsnit har til formål at forklare de dele af Freges formelle system, der har betydning i forhold til paradokset og derfor er nødvendige for at kunne udlede og forklare det. Freges system gennemgik en udvikling fra sin første udgave, som blev præsenteret i *Begriffsschrift*, til den senere udgivelse *Grundgesetze der Arithmetik* [Frege 1893/1903], idet der er færre grundlæggende love (dét, vi i dag ville kalde axiomer) og flere regler (udledt fra axiomerne og følgeslutningsreglerne) i *Begriffsschrift*, mens det modsatte er tilfældet i *Grundgesetze* [May 2002]. Endvidere hævdede Frege selv, at hans system kun havde én følgeslutningsregel, modus ponens, men i virkeligheden specificerede han flere i *Grundgesetze* [May 2002]. Som følge heraf er det vanskeligt at få et fuldt overblik over axiomer og følgeslutningsregler i Freges system. Endvidere har det helt op til i dag været genstand for varierende fortolkninger [Haddock 2006; Macbeth 2005; May 2002; van Vugt 2002]. Af den grund er systemet, eller systemerne, ikke præsenteret i sin helhed i dette afsnit, da en sådan gennemgang ville blive alt for omfattende. I det følgende vil vi derfor tage afsæt i de af Freges grundlove og begreber, som er nødvendige for dette projekts formål, uden at baggrunden for dem nødvendigvis bliver forklart til bunds.

### 3.2.1 Overblik over Begriffsschrift

*Begriffsschrift* består af tre hoveddele. Del I har som overskrift “Definition of the symbols”, men ud over systemets symboler defineres også funktioner, følgeslutningsreglen modus ponens, som allerede er beskrevet i afsnit 2.2, samt alkvantoren og eksistenskvantoren. Del II, kaldet “Representation and derivation of some judgments of pure thought”, præsenterer det, der i mere dagligdags, nutidigt sprog må kaldes grundlæggende love eller axiomer. Del III består af nogle udledte regler, der har til formål at demonstrere systemets anvendelse.

### 3.2.2 Alkvantoren og eksistenskvantoren

§ 11 og 12 i *Begriffsschrift* definerer det, vi i dag ville kalde alkvantoren og eksistenskvantoren, som gør det muligt at lade udsagn gælde om en mængde af objekter og ikke blot et enkelt objekt. I al væsentlighed siger de to paragraffer følgende (udtrykt med moderne notation)²:

Formlen

\[
\forall x(P(x))
\]

hvor P(x) er en udsagnsfunktion, betyder, at for alle objekter, der i det følgende refereres til som x, gælder P(x). Sagt med andre ord er P(x) sand for alle x. Tilsvarende betyder formlen

\[
\exists x(P(x))
\]

---

² Freges præsentation er mere omstændelig og benytter sig af en anden notation.
at der findes mindst ét objekt, der i det følgende kaldes x, som medfører, at P(x) gælder. Således findes der mindst ét objekt x for hvilket P(x) er sandt, hvis og kun hvis det ikke gælder, at P(x) er falsk for alle x. Udtrykt formelt kan det skrives

\[ \exists x(P(x)) \leftrightarrow \neg \forall x(\neg P(x)) \]

3.2.3 Definitionen af en funktion

I første omgang definerede Frege "en funktion" uden restriktioner for, hvad der kunne udgøre et argument. Således skriver han i § 9:

"If in an expression, (...) a simple or a compound sign has one or more occurrences and if we regard that sign as replaceable in all or some of these occurrences by something else (but everywhere by the same thing), then we call the part that remains invariant in the expression a function, and the replaceable part the argument of the function."

[Frege 1879]


"If, given a function, we think of a sign that was hitherto regarded as not replaceable as being replaceable at some or all of its occurrences, then by adopting this conception we obtain a function that has a new argument in addition to those it had before."

[Frege 1879]

Med generaliseringen af begrebet "funktion" blev systemet mere abstrakt og mindre intuitivt. Frege introducerede et formelt system, men den hidtil implicitte skelnen mellem forskellige typer af argumenter blev ikke formaliseret. At der således ikke blev lagt begrænsninger på, hvilke typer af argumenter en funktion kan have, kom til at udgøre grundlaget for Russells paradoks [Kamareddine et al. 2004].

Frege var dog ikke blind for problemet. I Begriffsschrift skriver han videre i sit afsnit om funktioner, at der kan være situationer, hvor argumentet er en ubestemt størrelse (på engelsk: indeterminate). Med reference til Lagranges teorem, som siger, at et hvilket som helst tal n ∈ N kan skrives som summen af fire heltal i anden, giver Frege som eksempel

\[ \ldots \]

3 I dette og følgende afsnit (gennem resten af rapporten) vil tegnet → blive anvendt for implikation og ↔ for biimplikation, da denne tegnsætning er anvendt i den litteratur, der ligger til baggrund for de pågældende afsnit.

4 Abstraktion: En tankeproces i hvilken nye idéer opstår ved at betragte flere objekter eller idéer og udelade de egenskaber, der adskiller dem [Stanford Encyclopedia of Philosophy 2012b].
sætningen: "Et hvilket som helst positivt heltal kan være argument for funktionen ”at kunne repræsenteres som summen af fire heltal i anden” uden at det resulterende udsagn bliver falsk.” Her er argumentet ikke en fast størrelse eller et objekt, som f.eks. tallet 20, idet argumentet selv er en funktion, nemlig ”at være et positivt heltal”. Der findes indtil flere udlægninger af Freges tekst, idet den sine steder er noget uklar [Haddock 2006; Macbeth 2005]. I denne sammenhæng er det dog tilstrækkeligt at konstatere, at Frege tilsyneladende ønskede at påpege, at en sætning, der udtrykker underrapordningen af én funktion i forhold til en anden, ikke må opfattes på samme måde, som en sætning, der udtaler sig om objekter. Men Frege skriver endvidere følgende:

"On the other hand, it may also be that the argument is determinate and the function indeterminate."

[Frege 1879]

Det er denne sætning, Bertrand Russell henviser til i et brev til Frege 23 år senere. Russell påpeger, at der er et problem i Freges system, som danner grundlag for et paradoks, idet han tydeligvis opfatter Freges formulering således, at en funktion kan have sig selv som argument [Russell 1902]. Russell beskriver paradokset i blot tre linier (detaljerne i paradokset er forklaaret nærmere i kapitel 5 og de efterfølgende under afsnittet):

"Let w be the predicate: to be a predicate that cannot be predicated of itself. Can w be predicated of itself? From each answer its opposite follows."

[Russell 1902]

I sit svar til Russell skriver Frege, at Russells udledning af paradokset ikke er korrekt, idet udtrykket ”a predicate is predicated of itself” ikke er præcist. Et prædikat er som grundregel en funktion af første orden, og en sådan funktion kræver et objekt som argument og kan ikke have sig selv som argument [Frege 1902]. Forvirringen skyldes efter alt at dømme Freges uklare formulering i Begriffsschrift. I en senere udgivelse har Frege mere eksplicit skrevet:

"Now just as functions are fundamentally different from objects, so also functions whose arguments are and must be functions are fundamentally different from functions whose arguments are objects and cannot be anything else. I call the latter first-level, the former second-level."

[Frege 1891]

Ved således at forbyde selvanvendelse forsøgte Frege at eliminere paradokserne fra sit system. Men gennem sin anvendelse af begrebet ”værdifløb" levnede han alligevel plads til, at paradokser kunne opstå, og det var på denne baggrund, at Frege anerkendte Russells paradoks i et appendix til anden del af Grundgesetze der Arithmetik [Frege 1903], som allerede var sendt til trykning, da Frege modtog Russells brev [Frege 1902; Kamareddine et al. 2004; van Heijenoort 1967]. Freges udledning af paradokset vil blive uddybet i afsnit 5.2. Inden da har vi behov for at gennemgå lidt mere af Freges formelle system for at få begreberne på plads.

5På engelsk: "Course-of-values"; på originalsproget tysk: "Werthverlauf” – egen oversættelse.
3.2.4 Værdiforløbet af en funktion og Law of Extensions

At to funktioner $\Phi(x)$ og $\Psi(x)$ har samme værdiforløb definerede Frege som at $\Phi(x)$ og $\Psi(x)$ altid har samme værdi for de samme argumenter. Han betegnede værdiforløbet af en funktion $\Phi(x)$ som $\dot{\Phi}(x)$. To funktioner, der er defineret forskelligt, kan godt have samme værdiforløb. F.eks. er funktionerne $f(x) = 2x/3$ og $g(x) = 4x/6$ defineret forskelligt, men deres værdier er ens for alle $x$. Værdiforløbet kan således opfattes som en lang række af par, der binder værdien $f(x)$ sammen med argumentet $x$. Eksempelvis viser værdiforløbet til funktionen ”mor til x”, at Dronning Margrethe II er værdien af funktionen når Kronprins Frederik er argumentet. Og værdiforløbet til funktionen ”$2x$” viser, at tallet 4 er værdien når tallet 2 er argumentet.

Frege brugte også det mere generelle udtryk ”koncept” om den særlige type funktion, som tilskriver hvert argument en sandhedsværdi. Denne type funktion blev også af Zermelo kaldt en udsagnsfunktion (se afsnit 6.2), og denne betegnelse vil vi bruge fremadrettet. Værdiforløbet for en sådan funktion kaldte han også ”omfanget af et koncept”6. Omfanget af en udsagnsfunktion kan opfattes som mængden af alle objekter, udsagnet gælder for. Dermed er et objekt $x$ medlem af omfanget af en udsagnsfunktion $f$, hvis det er sandt, at $f(x)$. Eksempelvis er omfanget af udsagnsfunktionen ”$x$ er et positivt, lige heltal mindre end 8” mængden bestående af tallene 2, 4 og 6, idet omfanget af denne udsagnsfunktion viser ”sand” som værdien når 2, 4 og 6 er argumenter og ”falsk” for et hvilket som helst andet argument. Idet udsagnsfunktioner er funktioner fra objekter til sandhedsværdier, er omfanget af en udsagnsfunktion simpelthen værdiforløbet, der viser, hvilke objekter funktionen tilskriver værdien ”sand” [Stanford Encyclopedia of Philosophy 2012a; van Vugt 2005].

Definitionen på, at to funktioner har samme værdiforløb, skrives som:

$$\dot{\Phi}(e) = \dot{\Psi}(e) \iff \forall a \ [f(a) = g(a)]$$

Denne sætning er også kendt som Law V i Freges Grundgesetze [van Vugt 2005]. For eksempel har $\Phi(x)$ og $\Psi(x)$ samme værdiforløb, hvis de har den samme graf. Frege behandlede værdiforløb som almindelige objekter, og konsekvensen heraf blev, at en funktion, der har objekter som argumenter, også kunne have sit eget værdiforløb – eller sin egen graf – som argument. Eftersom funktionens graf indeholder al væsentlig information om funktionen, vil et system, hvori en funktion kan have sin egen graf som argument, rumme de samme muligheder for paradoxer som et system, hvori funktionen kan have sig selv som argument. [Frege 1902; Kamareddine et al. 2004; Stanford Encyclopedia of Philosophy 2012a; van Heijenoort 1967]

Som en korollar til Law V udledte Frege Law of Extensions, som dog først blev præsenteret i Grundgesetze:

$$\vdash \forall f \forall x \ (x \in \dot{\Phi}(\varepsilon) \iff f(x))$$

---

6 På engelsk: ”Concept”, hhv. ”extension of a concept” – egen oversættelse.
Law of Extensions formaliserer det, der er beskrevet ovenfor om omfanget af en udsagnsfunktion; nemlig at for alle prædikater f og alle x gælder der, at hvis x tilhører værdiforløbet for f (eller omfanget af f), så er f(x) sandt [Stanford Encyclopedia of Philosophy 2012a; van Vugt 2005].

3.2.5 **Loven om dobbelt negation**

Fra del II skal blot nævnes en enkelt lov, som vil blive anvendt senere, nemlig loven om dobbelt negation, som præsenteres i § 18. Loven siger, at benægtelsen af en benægtelse er en bekræftelse. a kan altså ikke både benægtes og bekræftes på samme tid. Med nutidens notation⁷ har loven følgende form:

\[ a \rightarrow \neg\neg a \]

Dette udsagn er desuden bevist i afsnit 2.3.5.

---

⁷ Frege benyttede sig af en anden notationsform, men meningen er den samme.
4 Den naive mængdelære og Cantors teorem

4.1 Den naive mængdelære

Mængdelæren er den gren af matematikken, som studerer principielle egenskaber ved matematiske objekter såsom mængder, tal, rækkefølge og funktion. Dette afsnit er baseret på [Devlin 1992].


Man indfører nu variable, a, b, c, x, y etc. til at betegne mængder eller objekter. Næste skridt er at etablere en notation. Her tabelleres 10 tegn, hvis betydning her blot forklares sprogligt:

1. Tilhører $\in$
2. Medfører $\rightarrow$
3. Ensbetydende med $\leftrightarrow$
4. Ikke $\neg$
5. Eller $\lor$
6. Og $\land$
7. For alle $\forall$
8. Der eksisterer $\exists$
9. Er lig med $=$
10. Er en delmængde af $\subseteq$

Disse symboler kan siges at have en vis redundans derved, at nogle symboler på listen er logisk ækvivalent med kombinationer af andre symboler på listen. Man kan vælge at etablere en minimal notation af et minimalt sæt af begreber:

1. Tilhører $\in$
2. Ikke $\neg$
3. For alle $\forall$
4. Og $\land$

relation
negationen
kvantor
konnektor

De øvrige symboler kan herefter indføres ved at definere dem ud fra listen over symboler. Så snart et symbol er defineret, kan vi bruge det til definition af flere symboler. Hele øvelsen går
ud på at etabler nogle forkortelser for ellers lange symbolske udtryk, og at indføre sådanne forkortelser, som er simple for vores logiske sans.

De følgende symboler defineres ud fra, hvorledes de virker på variableer, som repræsenterer mængder eller elementer (x, a, b), eller udsagn (φ og ψ). For eksempel kan "eller" defineres således: For de to udsagn, φ og ψ, må det ikke gælde, at de begge er falske samtidigt.

"Medfører" defineres således, at der ikke må gælde både at første led, φ, er sandt og at andet led, ψ, er faldsk.

<table>
<thead>
<tr>
<th>Begreb</th>
<th>Tegn</th>
<th>Definition</th>
<th>Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Eller</td>
<td>φ ∨ ψ</td>
<td>¬[(¬φ) ∧ (¬ψ)]</td>
<td>konnektor</td>
</tr>
<tr>
<td>2. Medfører</td>
<td>φ → ψ</td>
<td>¬[φ ∧ ¬ψ]</td>
<td>konnektor</td>
</tr>
<tr>
<td>3. Ensbetydende med</td>
<td>φ ↔ ψ</td>
<td>(φ → ψ) ∧ (ψ → φ)</td>
<td>konnektor</td>
</tr>
<tr>
<td>4. Der eksisterer</td>
<td>∃ x φ</td>
<td>¬(∀x (¬φ))</td>
<td>kvantor</td>
</tr>
<tr>
<td>5. Er lig med</td>
<td>a = b</td>
<td>∀x [(x ∈ a) ↔ (x ∈ b)]</td>
<td>relation</td>
</tr>
<tr>
<td>6. Er en delmængde af</td>
<td>a ⊆ b</td>
<td>∀x [(x ∈ a) → (x ∈ b)]</td>
<td>relation</td>
</tr>
</tbody>
</table>

For kort at opsummere: Vi går ud fra, at man kan betragte en samling af objekter som et hele, og vi indfører fire symboler, hvis betydning forklares sprogligt, og som er logiske. På det grundlag definerer vi så en række andre symboler, og præciserer derved samtidigt vores sproglige brug af logiske begreber. Af definitionerne på de sekundært indførte symboler ser man, at det ville være meget besværligt at skulle betjene sig udelukkende af de fire primitive symboler, dels fordi selv simple sammenhænge skulle udtrykkes ved lange symbolister, og dels fordi vi allerede har sproglige udtryk for (og derfor foretrækker) de begreber, notationen indfører og præciserer, og disse sproglige udtryk er i overensstemmelse med vores logiske sans.

Et eksempel på, hvorledes definitionen af et symbol præciserer den sproglige brug har vi i tegnet ∨. I dagligsproget benyttes glosen "eller" som i sætningen: "Du gør sådan, eller det får konsekvenser", og man kan på en enkel måde definere dette "eller":

φ "eller" ψ = (¬φ ∧ ψ) ∨ (φ ∧ ¬ψ)

Dette "eller" er et andet "eller" end det, som defineres ved symbolet V, nemlig:

¬[(¬φ) ∧ (¬ψ)]

4.1.1 Relationer

Man får brug for at beskrive relationer mellem objekter, f.eks. at et tal "er mindre" end et andet. Sådanne relationer kan også defineres ved brug af de mest primitive begreber fra mængdelæren.

Først må man definere et cartesisk produkt mellem mængder. Det cartesiske produkt mellem mængderne A og B skrives A × B, og defineres som \{ (x,y) | x ∈ A ∧ y ∈ B \}. Det er altså en mængde af talpar. (Definitionen udvides let til højere dimensioner end 2, men det kommer vi
(ikke ind på her.) Nu kan relationen så defineres som en mængde af talpar. At der består en relation R mellem to elementer x og y i mængderne A og B vil sige, at talparret (x, y) tilhører en delmængde af A x B; den delmængde som relationen R definerer. At R definerer en delmængde af A x B vil sige, at der er knyttet et udsagn til A x B, som er sandt for nogle talpar, og falskt for andre. Vi skriver: \{(x, y) \in A \times B \mid P(x, y)\}, hvor P(x, y) er det udsagn, der definerer relationen. Efter at have set, hvorledes relationen kan defineres ved primitive begreber som "mængde", "tilhører" osv. kan man nu fortsætte med at bruge den dagligdags notation, x R y.

Som eksempel anføres relationen "mindre end" og det cartesiske produkt af de naturlige tal, N, med sig selv. Relationen er altså mængden defineret som R = \{(x, y) \in N \times N \mid x \text{ er mindre end } y\}, og til daglig skriver vi simpelthen, i stedet for at (x, y) tilhører denne mængde, x < y.

Relationernes egenskaber bestemmer hvilke relationer der eksisterer, når man sammensætter flere instanser af relationen og de objekter, den står imellem:

<table>
<thead>
<tr>
<th>Relation</th>
<th>Egenskab</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>R</td>
<td>Refleksiv</td>
<td>(\forall a \in x) (a R a)</td>
</tr>
<tr>
<td>R</td>
<td>Symmetrisk</td>
<td>(\forall a, b \in x) (a R b \rightarrow b R a)</td>
</tr>
<tr>
<td>R</td>
<td>Antisymmetrisk</td>
<td>(\forall a, b \in x) (a R b \land a \neq b) \rightarrow (\neg b R a)</td>
</tr>
<tr>
<td>R</td>
<td>Forbundet</td>
<td>(\forall a, b \in x) (a \neq b) \rightarrow (a R b) \lor (b R a)</td>
</tr>
<tr>
<td>R</td>
<td>Transitiv</td>
<td>(\forall a, b, c \in x) (a R b \land b R c) \rightarrow (a R c)</td>
</tr>
</tbody>
</table>

Til eksempel anføres nedenfor egenskaberne for fire relationer.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Refleksiv</th>
<th>Symmetrisk</th>
<th>Antisymmetrisk</th>
<th>Forbundet</th>
<th>Transitiv</th>
</tr>
</thead>
<tbody>
<tr>
<td>=</td>
<td>Refleksiv</td>
<td>Symmetrisk</td>
<td></td>
<td></td>
<td>Transitiv</td>
</tr>
<tr>
<td>\in</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\leq</td>
<td>Refleksiv</td>
<td>Antisymmetrisk</td>
<td>Transitiv</td>
<td></td>
<td></td>
</tr>
<tr>
<td>\leq</td>
<td>Refleksiv</td>
<td>Antisymmetrisk</td>
<td>Transitiv</td>
<td>Transitiv</td>
<td></td>
</tr>
</tbody>
</table>

### 4.1.2 Funktioner

Med relationer ved hånden kan man nu definere funktioner på samme primitive basis. Givet en relation R kan man først definere to mængder, definitionsmængden og værdimængden for R:

\[
\text{Def}(R) = \{ x \mid \exists y \ [(x, y) \in R ] \} \\
\text{Vær}(R) = \{ y \mid \exists x \ [(x, y) \in R ] \}
\]

Herefter kan en funktion defineres som en relation med det særlige krav, at der til ethvert x i Def(R) findes netop ét y i Vær(R).

\[
\forall a \in \text{def}(R) \ [\exists b \in \text{vær}(R): (a, b) \in R \land \exists c \in \text{vær}(R): (a, c) \in R \rightarrow b = c]
\]

Eller skrevet i ord: Hvert a i definitionsmængden er ved funktionen f relateret til ét og kun ét b i værdimængden. Det er denne egenskab, som kendetegner en funktion.
En funktion kan så besidde egenskaber af interesse i det følgende; den kan være injektiv:

\[ a \neq b \rightarrow f(a) \neq f(b) \]

At funktionen er surjektiv på mængden B betyder, at ethvert b i B er relateret, ved funktionen f, til et element a. Funktionen siges at være bijektiv, hvis den er både injektiv og surjektiv.

### 4.2 Cantors teorem

Som nævnt i afsnit 3.2 opstod Russells paradoks som følge af muligheden for, at en funktion kunne have sig selv, eller i bedste fald sit eget værdiforløb, som argument, hvilket var tilfældet i Freges formelle system. Men Russell opdagede i første omgang paradokset under sine studier af Cantors teorem, som siger, at potensmængden af en mængde X har større kardinalitet end mængden X [Landini 2011]. Teoremet giver en god baggrund for at forstå paradokset, og derfor gennemgås det relativt detaljeret i dette afsnit.

Georg Cantor beskæftigede sig især med teorier vedrørende uendelige mængder. Cantor definerede en mængde som

> “any collection into a whole M of definite and separate objects m of our intuition or thought.”

[Katz 2009]

Med andre ord kunne en mængde ifølge Cantors definition bestå af stort set hvad som helst. Russell fandt, at denne brede definition fører til modsigelser, hvis man opererer med mængder, der indeholder sig selv som elementer [Katz 2009], hvilket i Freges terminologi svarer til, at en funktion har sig selv som argument. Analogien fremgår af afsnit 5.2. En mængde, der er defineret ved funktionen \( P(x) \) er mængden af x’er, for hvilke \( P(x) \) er sand, det vil sige værdiforløbet af \( P \). At undersøge, om mængden har sig selv som element, svarer derfor til at indsætte værdiforløbet af \( P \) i \( P(x) \). Denne sammenhæng vil blive tydeligere i det følgende.

#### 4.2.1 Beviset for Cantors teorem

Baggrunden for beviset for Cantors teorem er, at to mængder A og B har samme kardinalitet hvis og kun hvis deres elementer kan sættes i forholdet 1:1 [Katz 2009, Klement 2010]. Hvis det er tilfældet, findes der en funktion F, som afbilder alle elementer x i mængden A over i mængden B, dvs. F(x) er bijektiv (både injektiv og surjektiv). Dette er netop definitionen på kardinalitet [Katz 2009].

Cantor viste, at der ikke findes en sådan funktion, som afbilder alle elementerne i en mængde X over i mængden P(X), som er mængden af alle delmængder, også kaldet potensmængden, af X. Det er et bevis ved modstrid (på latin: *reductio ad absurdum*), og beviset tager derfor udgangspunkt i en antagelse om, at en sådan funktion findes.

Hvis det er tilfældet, findes der en funktion F, som afbilder hvert eneste element a i X over i en bestemt delmængde s i P(X) (se Figur 4.1). Dette element i P(X) betegnes F(a), og vi kan skrive \( s = F(a) \).

Nogle elementer i X er selv medlemmer af den delmængde, der er billedet af dem, andre er ikke. Hvis f.eks. delmængden s = \{a\} (dvs. den delmængde, som kun indeholder elementet a)
for en given delmængde $s$ i $P(X)$ og et element $a$ i $X$, og $a$ er det bestemte element i $X$, som $s = F(a)$ er billedet af, så er $a$ medlem af sin korresponderende delmængde.

Figur 4.1: Illustration til beviset for Cantors teorem. [Egen figur]

Men hvis eksempelvis $s = F(a) = \{b, c\}$, er $a$ ikke medlem af sin korresponderende delmængde.

Betragt nu mængden $q$ bestående af netop de medlemmer af $X$, der ikke er medlemmer af deres korresponderende delmængde i $P(X)$. Den kan skrives som

$$q = \{a \in X \mid a \notin F(a)\}$$

$q$ er selv en delmængde af $X$ og må derfor nødvendigvis være billedet af et element i $X$. Ergo må der findes et medlem $r$ af $X$ således at $F(r) = q$. Undersøg nu, om $r \in q$, $q$ er defineret som mængden af alle medlemmer $a$ af $X$, som ikke er indeholdt i delmængden $s = F(a)$, dvs. som ikke er medlemmer af de delmængder, der er billedet af dem i $P(X)$. Hvis $r$ tilhører $q$, følger det af definitionen på $q$, at $r$ ikke tilhører $F(r)$, som er $q$. Omvendt, hvis $r$ ikke tilhører $q$, så opfylder det inklusionskriteriet for $q$ og tilhører derfor $q$. Altså gælder der

$$r \in q \iff r \notin q$$

hvilket er en modsigelse. Funktionen $F$ kan altså ikke afbilde elementerne i $q$ over i $P(X)$. Dermed må antagelsen om, at der findes en bijektiv funktion $F$, som afbilder alle elementerne i en mængde $X$ over på mængden $P(X)$, være falsk, og dermed er det bevist, at der er flere elementer i $P(X)$ end i $X$. [Klement 2010; Stanford Encyclopedia of Philosophy 2010a]
### 4.2.2 Cantors diagonaliseringsargument

Den netop gennemgåede udgave af Cantors bevis stiller store krav til læserens overblik og forestillingsevne og kan følgelig være svær at forstå. Derfor gennemgås en alternativ udledning her.

I det tilfælde, hvor der er tale om endelige eller tællelige mængder, brugte Cantor en metode til sit bevis, som kaldes diagonalisering. I denne udgave af beviset opstilles en tabel, hvor medlemmerne $a_0, a_1, a_2, \ldots$ af X udgør den første celle i hver kolonne og delmængderne $s_0, s_1, s_2, \ldots$ i $P(X)$ udgør den første celle i hver række. For hver delmængde sættes et kryds ud for de elementer, som er medlemmer af delmængden. Det vil sige, at hvis $a_0 \in s_0$, skal der være et kryds ud for $s_0$ og $a_0$, og hvis $a_1 \notin s_1$, skal feltet ud for $s_1$ og $a_1$ være tomt. Se eksemplet i Figur 4.2.

<table>
<thead>
<tr>
<th></th>
<th>$a_0$</th>
<th>$a_1$</th>
<th>$a_2$</th>
<th>$a_3$</th>
<th>$a_4$</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>$s_0$</td>
<td>$x$</td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td>$x$</td>
</tr>
<tr>
<td>$s_1$</td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_2$</td>
<td>$x$</td>
<td>$x$</td>
<td>$x$</td>
<td></td>
<td>$x$</td>
<td></td>
</tr>
<tr>
<td>$s_3$</td>
<td></td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$s_4$</td>
<td>$x$</td>
<td>$x$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figur 4.2: Cantors diagonaliseringsargument. Tilpasset efter [Klement 2010].

Delmængden q opnås ved at følge diagonalen gennem tabellen fra øverste venstre hjørne nedad mod højre (markeret med lysegrå baggrund) og medtage netop de medlemmer af X, som ikke har et kryds dertil hvor diagonalen løber gennem deres kolonner. I eksemplet vil dette indkludere $a_1$ og $a_4$. Delmængden q skal imidlertid også selv være repræsenteret ved en række, som i det felt, hvor diagonalen løber gennem den, burde have et kryds (betydende at det pågældende element er medlem af q) netop hvis der ikke er et kryds. Dermed opnås en modsigelse svarende til den, der opstod i det foregående bevis. [Klement 2010]
5 Russells paradoks

Russell opdagede oprindeligt paradokset under sine studier af Cantors arbejde med mængdelæren, men han var også klar over, at et tilsvarende paradoks kunne udledes fra Freges formelle definition af funktioner.

5.1 Mængden af alle mængder, som ikke er medlemmer af sig selv


5.2 Paradokset som et problem i prædikatlogikken

I sit brev til Frege formulerer Russell paradokset lidt anderledes, idet han søger at forklare problemet i forhold til Freges logik. I stedet for mængden af alle mængder, der ikke er medlemmer af sig selv, påpeger Russell prædikatet w, som er egenskaben “at være et prædikat, som ikke gælder for sig selv” (se citat i afsnit 3.2). Egenskaben “visdom” opfylder prædikatet w, idet selve egenskaben visdom ikke selv er vis. Egenskaben “abstrakthed” er derimod selv abstrakt. Men hvad så med egenskaben w – “at være et prædikat, som ikke gælder for sig selv”? Gælder prædikatet w for sig selv? Hvis det ikke gør, har det jo netop egenskaben w og gælder derfor for sig selv. Russell konkluderer, at w ikke er et prædikat, og tilsvarende at mængden af alle mængder, som ikke er medlemmer af sig selv, ikke er en mængde. [Landini 2011; Russell 1902]

Som nævnt i afsnit 3.1.1 opstår problemet som følge af den selvreference, der opstår, når en funktion tillades at have sig selv som argument. Prædikatet w er en funktion, der i Russells beskrivelse af paradokset har sig selv som argument. Sættes w = P(x), fås følgende:

P(x) = “x er et prædikat, som ikke gælder for sig selv”
At undersøge, om prædikatet w gælder for sig selv, svarer til at indsætte funktionen P(x) på x's plads, hvilket betyder, at funktionen P(x) anvendes som argument for sig selv. Eller med andre ord:

\[ P(P(x)) \]

Som nævnt i afsnit 3.2 anerkendte Frege Russells paradoks som et problem i sit formelle system, selvom han var ikke helt enig i Russells fortolkning. Ifølge Freges system er et prædikat en første-ordens funktion, og da en sådan funktion må have et objekt som argument, kan den ikke have sig selv som argument. Frege foretrækker at udtrykke det som "et koncept gælder om dets eget omfang\(^8\)". Inden for Freges egen terminologi kan det også udtrykkes som "en (udshags-)
funktion har sit eget værdiforløb som argument" [Frege 1902]. Freges udledning af paradokset er gengivet i det følgende, men med en mere moderne notation og i en forkortet udgave, da den originale udledning fylder 11 sider i et appendix til Grundgesetze. [Kamareddine et al. 2004]

Udsagnsfunktionen, eller prædikatet, f(x) er defineret ved:

\[ f(x) := \neg \forall \varphi \left( \left( \epsilon \varphi(\epsilon) = x \right) \rightarrow \varphi(x) \right) \]

f er med andre ord et udsagn, som siger, at det ikke gælder for alle udsagnsfunktioner \( \varphi \), at hvis \( x \) er lig med \( \varphi \)'s omfang, så er \( \varphi(x) \) sandt. f siger altså, at der eksisterer en udsagnsfunktion \( \varphi \), som ikke gælder for sit eget omfang.

Nu defineres K som værende værdiforløbet af f.

\[ K = \epsilon f(\epsilon) \]

Fra Law V har vi, at der for enhver udsagnsfunktion g(x) gælder:

\[ \epsilon g(\epsilon) = \epsilon f(\epsilon) \rightarrow g(K) = f(K) \]

hvilket medfører

\[ f(K) \rightarrow (\epsilon g(\epsilon) = K \rightarrow g(K)), \quad (1) \]

idet vi per definitionen af K har, at hvis \( \epsilon g(\epsilon) = K \), så er \( \epsilon g(\epsilon) = \epsilon f(\epsilon) \) og dermed har f og g samme værdiforløb. f og g tildeler altså samme sandhedsværdi til de samme argumenter. Hvis f(K) er sandt, er g(K) altså også sandt.

Nu generaliseres der: Eftersom dette gælder for enhver udsagnsfunktion g har vi, at for alle udsagnsfunktioner \( \varphi \) gælder der, at hvis omfanget af \( \varphi \) er lig med K, er \( \varphi(K) \) sandt, altså

\[^{8}\text{På engelsk: “A concept is predicated of its own extension” – egen oversættelse.}\]

\[^{9}\text{I visse tekster noteres værdiforløbet med variablen } \alpha \text{ i stedet for } \epsilon, \text{ men det er blot et udtryk for Freges forsøg på at skelne mellem to forskellige funktioner med samme værdiforløb. Nogle steder finder man således notationen } \epsilon g(\alpha) = \epsilon f(\epsilon), \text{ mens andre blot skriver } \epsilon g(\epsilon) = \epsilon f(\epsilon) \text{ [Kamareddine et al. 2004; Stanford Encyclopedia of Philosophy 2012; van Vugt 2005].}\]
f(K) → ∀ϕ ([(ϕ(ε) = K) → ϕ(K)].

\[ (2) \]

Omvevd gælder der for enhver udsagnsfunktion g, at at hvis det for alle udsagnsfunktioner φ gælder, at hvis omfanget af φ er lig med K, er φ(K) sandt, så gælder det samme for udsagnsfunktionen g:

∀ϕ [(ϕ(ε) = K) → φ(K)] → ((ϕ(ε) = K) → g(K))

Substitueres g(K) med f(K) fås

∀ϕ [(ϕ(ε) = K) → φ(K)] → ((ϕ(ε) = K) → f(K)).

Eftersom K = ϕ(ε) per definition ved vi, at ϕ(ε) = K er sandt, og fra (1) har vi, at (ϕ(ε) = K) → f(K). Ved brug af modus ponens får vi dermed, at f(K) også er sandt (se evt. udledningen af proposition 5.2 i afsnit 2.3.5), og vi kan skrive

∀ϕ [(ϕ(ε) = K) → φ(K)] → f(K).

Fra definitionen på f fås

∀ϕ [(ϕ(ε) = K) → φ(K)] → ¬∀ϕ [(ϕ(ε) = x) → ϕ(x)]

og vi har altså, at

¬∀ϕ [(ϕ(ε) = x) → ϕ(x)]

hvilket er lig med f(K), så vi har dermed

f(K). \[ (3) \]

Da vi nu har vist, at f(K) er sandt, har vi fra (2) at

∀ϕ [(ϕ(ε) = K) → φ(K)],

hvilket i kraft af loven om dobbelt negation medfører

¬¬∀ϕ [(ϕ(ε) = K) → φ(K)],

eller på kort form

¬f(K). \[ (4) \]

Det behøver næppe påpeges, at (3) og (4) modsiger hinanden, og dermed er paradokset vist inden for Freges system. [Kamareddine et al. 2004; Stanford Encyclopedia of Philosophy 2012a; van Vugt 2002]
6 Løsninger på paradokset

6.1 Typeteorien

Russell kastede sig selv over at finde en løsning på paradokset, og i sin bog *The principles of mathematics*, som udkom i 1903, præsenterede han første gang typeteorien i kort form som sit forsøg på en løsning [Russell 1903; van Heijenoort 1967]. En mere gennemarbejdet og detaljeret teori blev først udgivet i 1908 i artiklen *Mathematical logic as based on the theory of types* [Russell 1908]. I den mellemliggende periode havde Russell først forkastet typeteorien og dernæst forsøgt sig med ikke mindre end tre alternative teorier, kun for at vende tilbage til typeteorien, som blev yderligere uddybet i 3-bindsværket *Principia Mathematica* [Russell & Whitehead 1910/1912/1913]. Dette værk, hvis formål var at beskrive matematikkens logiske grundlag, skrev Russell sammen med sin tidligere vejleder og kollega i matematik og filosofi, Albert North Whitehead [Kamareddine et al. 2004; van Heijenoort 1967], og det blev et af de mest indflydelsesrige værker om logik, der nogensinde er skrevet, med afgørende betydning for det 20. århundredes forskning i matematikkens grundlag [Stanford Encyclopedia of Philosophy 2010b].

6.1.1 Selvreference eller Vicious Circle Principle

I *Mathematical logic as based on the theory of types* lægger Russell ud med at gennemgå syv forskellige paradokser, inklusive sit eget, hvorpå han konkluderer:

“In all the above contradictions (which are merely selections from an indefinite number) there is a common characteristic, which we may describe as self-reference or reflexiveness. (…) In each contradiction something is said about all cases of some kind, and from what is said a new case seems to be generated, which both is and is not of the same kind as the cases of which all were concerned in what was said.”

[Russell 1908]

Således skriver Russell om sit eget paradoks, at problemet opstår, fordi mængden w defineres som mængden af alle mængder, der ikke er medlem af sig selv (se evt. afsnit 5.1). Dermed må w nødvendigvis selv være én af de pågældende mængder. Prøver man at afhælpe problemet ved at beslutte, at ingen mængder er medlemmer af sig selv, bliver w blot mængden af alle mængder, og der må så gælde, at w ikke er en mængde. Dette kan kun lade sig gøre, hvis der ikke findes en "mængde af alle mængder". Hvis vi antager, at en sådan mængde findes, men at den ikke kan være medlem af sig selv, vil der opstå nye mængder, som ligger uden for den antagede mængde af alle mængder [Russell 1908]. I denne diskussion aner man allerede optakten til en inddeling af mængder i forskellige typer.

For at undgå den selvreference, der var årsagen til paradokserne, indførte Russell en regel, som han kaldte for Vicious Circle Principle:

“This leads us to the rule: “Whatever involves all of a collection must not be one of the collection”, or, conversely: “If, provided a certain collection had a total, it would have members only definable in terms of that total, then the said collection has no total”.”
For at undgå at forbyde sig mod dette princip, må der opbygges en logik, der slet ikke gør brug af sådanne mængder af "alle af en slags". Det bør slet ikke være nødvendigt at sige, at sådanne mængder udelukkes, for i det øjeblik, man har nævnt dem, har man erkendt, at de eksisterer, og problemet forsvinder jo ikke, blot fordi man undlader at tale om det. Eksklusionen af sådanne mængder må derfor være et naturligt resultat af en logik i hvilken "alle udsagn" og "alle egenskaber" er meningsløse begreber [Russell 1908].

6.1.2 Udsagnsfunktioner i Principia Mathematica


En udsagnsfunktion defineres i *Principia Mathematica* således:

"By a "propositional function" we mean something which contains a variable x, and expresses a proposition as soon as a value is assigned to x."  

[Russell & Whitehead 1910]

Udsagnsfunktioner konstrueres ud fra udsagn gennem anvendelse af Freges definition af en funktion, idet én eller flere forekomster af et bestemt tegn\(^{10}\) i et udsagn udskiftes med en variabel.

**Grundlæggende symboler**

Til en formel præsentation af typeteorien er der behov for følgende grundlæggende symboler:

- En mængde \(A\) af individuelle symboler (de grundlæggende tegn)
- En mængde \(V\) af variable (de tegn, som indikerer udskiftelige objekter)
- En mængde \(R\) af relationssymboler sammen med en afbeeldning \(\alpha: R \rightarrow \mathbb{N}^+\), som indikerer ariteten\(^{11}\) af hvert relationssymbol (disse anvendes til at forme basisudsagnene)

\(^{10}\) På engelsk "a sign" i betydningen "et element i udsagnet", f.eks. "kuloxid" i udsagnet "hydrogen er lettere end kuloxid".

\(^{11}\) Aritet: Antallet af argumenter, en funktion tager.
Det antages, at $A$ og $V$ er tælleligt uendelige og $\{R \in \mathcal{R} \mid \alpha(R) = n\}$ er tælleligt uendelig for ethvert $n \in \mathbb{N}^+$. Endvidere antages det, at $\{a_1, a_2, \ldots\} \subseteq A$, $\{x, y, z, x_1, y_1, z_1, \ldots\} \subseteq V$ og $\{R, S, \ldots\} \subseteq \mathcal{R}$. Her er $a_1, a_2, \ldots$ metavariable over $A$ mens $x, y, z, x_1, y_1, z_1, \ldots$ er metavariable over $V$ og $R$, $S, \ldots$ er metavariable over $\mathcal{R}$. Det antages, at $V$ er alfabetisk ordnet, således at $x < y$ betyder, at $x$ er ordnet før $y$ og ikke lig med $y$, og således at

$$x < x_1 < \ldots y < y_1 < \ldots z < z_1\ldots$$

Det antages desuden, at for hvert $x$ findes der et $y$ således at $x < y$. [Kamareddine et al. 2004]

**Atomiske udsagn og udsagsfunktioner**

Udsagn af formen $R(a_1, \ldots, a_n(R))$ kaldes atomiske udsagn eller elementære udsagn. Der er to måder, hvorpå udsagsfunktioner kan genereres ud fra atomiske udsagn:

- Ved anvendelse af logiske konnektiver og kvantorer.
- Ved abstraktion fra tidligere genererede udsagsfunktioner gennem anvendelse af Freges abstraktionsprincippet. Det vil sige ved at lade én eller flere komponenter i udsagnet være variable – se afsnit 3.2.3.

På denne baggrund defineres mængden af udsagsfunktioner $\mathcal{P}$. Bogstaverne $f, g, h$ anvendes som metavariable over $\mathcal{P}$. For hvert element $f$ i $\mathcal{P}$ defineres $FV(f)$, som er mængden af frie variable i $f$. Der gælder følgende for $\mathcal{P}$ og $FV(f)$:

1. Hvis $i_1, \ldots, i_n(R) \in A \cup V$ så gælder der, at $R(i_1, \ldots, i_n(R)) \in \mathcal{P}$.
   $$FV(R(i_1, \ldots, i_n(R))) = \{i_1, \ldots, i_n(R)\} \cap V$$

2. Hvis $f, g \in \mathcal{P}$ så gælder der, at $f \lor g \in \mathcal{P}$ og $\neg f \in \mathcal{P}$.
   $$FV(f \lor g) = FV(f) \cup FV(g); FV(\neg f) = FV(f)$$

3. Hvis $f \in \mathcal{P}$ og $x \in FV(f)$, så gælder der, at $\forall x[f] \in \mathcal{P}$.
   $$FV(\forall x[f]) = FV(f) \setminus \{x\}$$

4. Hvis $n \in \mathbb{N}$ og $k_1, \ldots, k_n \in A \cup V \cup \mathcal{P}$ så gælder der, at $z(k_1, \ldots, k_n) \in \mathcal{P}$.
   $$FV(z(k_1, \ldots, k_n)) = \{z, k_1, \ldots, k_n\} \cap V$$

5. Alle udsagsfunktioner kan konstrueres ved at bruge reglerne 1-4.

Regel nr. 1 betyder, at en relation $R$ mellem en række komponenter, som kan være individuelle symboler eller variable, er en udsagsfunktion. Funktionens frie variable er fællemængden mellem disse komponenter og mængden $V$ af variable, det vil sige de komponenter, der rent faktisk er variable (og ikke individuelle symboler).

Regel nr. 2 betyder, at hvis $f$ og $g$ er udsagsfunktioner, så er deres disjunktion og deres negation det også. Den funktion, som er disjunktionen mellem $f$ og $g$ har foreningsmængden af
frie variable for henholdsvis f og g som frie variable. Den funktion, som er negationen af f, har de samme frie variable som f.

Regel nr. 3 betyder, at hvis f er en udsagnsfunktion og x er en fri variabel i f, så er funktionen “for alle x gælder f” også en udsagnsfunktion. Denne funktion har de samme frie variable som f, med undtagelse af x. Dette skyldes, at x nu er bundet til nogle specifikke værdier og derfor ikke længere kan indgå som fri variabel. x er med andre ord blevet en bunden variabel.

De funktioner, der kan dannes ud fra Regel nr. 1-3, er første ordens funktioner. Det vil sige, at de kun kan tage objekter som variable. Med Regel nr. 4 kan der nu dannes højere ordens funktioner; det vil sige funktioner, der tager funktioner som variable. Hvis f eksempelvis er en bestemt udsagnsfunktion i hvilken k₁, ..., kₙ optræder, så kan f generaliseres til z(k₁, ..., kₙ), som altså repræsenterer en hvilken som helst funktion z, der har k₁, ..., kₙ som sine argumenter. Sådanne højere ordens funktioner fællesmængden af de variable z, k₁, ..., kₙ og V som frie variable. Ligesom i Regel nr. 1 vil det altså sige de komponenter, der rent faktisk er variable (og ikke individuelle symboler eller relationssymboler).

Endvidere gælder der, at en udsagnsfunktion f er et udsagn, hvis mængden af frie variable er den tomme mængde Ø.

Det er værd at bemærke, at udsagnsfunktioner som de er defineret indtil videre ikke opfylder Vicious Circle Principle. Eksempelvis er funktionen ¬z(z) en udsagnsfunktion ifølge Regel 1-5, og det er netop en funktion af denne form (”prædikatet z gælder ikke om sig selv”), som ligger til grund for Russells paradoks. For at efterleve Vicious Circle Principle indførte Russell typerne. [Kamareddine et al. 2004]

6.1.3 Ramified Theory of Types

Som tidligere nævnt (se afsnit 3.2.3) skelnete Frege mellem funktioner, der tager objekter som argumenter og funktioner, der tager funktioner som argumenter, idet han kaldte førstnævnte for første ordens funktioner og sidstnævnte for anden ordens funktioner. Frege argumenterede ikke nærmere herfor, men fremførte blot, at funktioner er grundlæggende forskellige fra objekter, og at funktioner, der tager funktioner som argumenter således også er grundlæggende forskellige fra funktioner, der tager objekter som argumenter. I Principia Mathematica foretager Russell og Whitehead en lignende distinktion med udgangspunkt i følgende argumentation:

“The difference between objects and propositional functions arises from the fact that a propositional function is essentially an ambiguity, and that, if it is to occur in a definite proposition, it must occur on such a way that the ambiguity has disappeared, and a wholly unambiguous statement has resulted.”

[Russell & Whitehead 1910]

En udsagnsfunktion, der optræder som argument for en anden udsagnsfunktion, skal altså optræde på en sådan måde, at det resulterende udsagn er entydigt. Et sådant entydigt udsagn kalder Russell også prædikativt [Russell 1908], mens et flertydigt udsagn som døt, der opstår,

**Typer og ordener**

Prædikativitet sikres ved at indføre typer og ordener. Typerne defineres ikke eksplicit i Principia Mathematica; i stedet defineres det, hvad det vil sige at have den samme type. Selv denne definition viser sig dog ikke at være fuldstændig [Kamareddine et al. 2004], og derfor vil vi undlade en detaljeret gennemgang her. Vi vil blot notere os, at hovedpunkten med definitionen er, at typen af en udsagnsfunktion afhænger af, hvor mange argumenter funktionen tager samt hvilken type disse argumenter har. Således er udsagnsfunktioner, der tager et forskelligt antal argumenter, ikke af samme type, ligesom udsagnsfunktioner, der tager forskellige typer af argumenter, ikke er af samme type. Objekter tilhører den første, eller laveste, type, udsagn om objekter er den anden type, udsagn om udsagn om objekter den tredje type, og så fremdeles. Der er altså tale om en trin-for-trin definition, hvor definitionen af højere typer sker under forudsætning af definitionen af lavere typer. [Russell 1908; Russell & Whitehead 1910]

Udsagn, der kun har objekter som variable, kaldes første ordens udsagn. Udsagn, der har første ordens udsagn som variable, kaldes anden ordens udsagn og så videre. Objekter (som altså er af den første, eller laveste, type) tildeles orden 0. En udsagnsfunktion, der kun har objekter som variable og hvis værdi følgelig altid er et første ordens udsagn, kaldes tilsvarende for en første ordens funktion. En udsagnsfunktion, der har første ordens udsagn som variable, kaldes en anden ordens funktion og så videre. En funktion, hvis orden er ét niveau over sine argumenters orden kaldes en prædikativ funktion [Russell 1908; Russell & Whitehead 1910]. Eksemplet med Epimenides’ paradoks demontrerer, hvordan systemet virker. Hvis Epimenides i stedet for at sige “alle kretensere lyver” havde sagt “alle første ordens udsagn, som jeg bekræfter, er falske”, så ville han bekræfte et anden ordens udsagn. Dette kan han gøre, således at det er sandt, uden at nogen første ordens udsagn bekræftes som sande, og dermed er der ingen selvmodsigelse [Russell 1908].

Denne inddeling i typer og ordener betyder således også, at egenskaber, der defineres i kraft af en totalitet af egenskaber af en given orden, tilhører en højere orden. Det vil sige, at en udsagnsfunktion $P(x)$, som definerer mængden af alle $x$, der har egenskaben $Q$, må være af en højere orden end udsagnsfunktionen $Q(x)$.

**En kompliceret teori**

Under læsningen af og om ramified theory of types er det svært at bevare overblikket og ikke lade sig forvirre. Vil man forstå teorien til bunds, sådan som Russell udtænkte og formulerede

den, kræver det en indsats ud over det, der er muligt inden for rammerne af et projekt som dette. Encyclopædia Britannica skriver om Russells arbejde:

“In their place he substituted a bewilderingly complex theory known as the ramified theory of types, which, though it successfully avoided contradictions such as Russell's Paradox, was (and remains) extraordinarily difficult to understand. By the time he and his collaborator, Albert North Whitehead, had finished the three volumes of Principia Mathematica (1910-13), the theory of types and other innovations to the basic logical system had made it unmanageably complicated. Very few people, whether philosophers or mathematicians, have made the gargantuan effort required to master the details of this monumental work.”

[Encyclopædia Britannica 2012]


Typeteoriens udfordringer


\[ y = \inf(E) \iff \forall x \in E \ (y \leq x \land z \leq x \iff z \leq y) \]

Det vil sige, at \( y \) er infimum for \( E \) hvis og kun hvis \( y \) er mindre end eller lig med \( x \) for alle elementer \( x \) i \( E \), og ethvert \( z \) mindre end eller lig med alle elementer i \( E \) er mindre end eller lig med \( y \). Definitionen af \( \inf(E) \), eller den største nedre grænse for mængden \( E \), sker altså i kraft af den mængde, hvis medlemmer er \( E \)’s nedre grænser, blandt hvilke man finder \( \inf(E) \) selv. Russells krav om prædikativitet umuliggør altså denne definition.

For at undgå dette problem indførte Russell Axiom of Reducibility, som siger, at for enhver udsagnsfunktion af en hvilken som helst orden eksisterer der en ækvivalent udsagnsfunktion af første orden [Kamareddine et al. 2004; Russell 1908; Stanford Encyclopedia of Philosophy 2010a]. Forklaringen er, at en udsagnsfunktion af en hvilken som helst orden antages at være ækvivalent, for alle værdier af \( x \), med et udsagn af formen ”\( x \) tilhører klassen \( \alpha \)”. Dette udsagn er af første orden, eftersom det ikke henviser til alle, dvs. en totalitet af, funktioner af en given
type. Derfor antages det, at enhver funktion af højere orden for alle sine værdier er ækvivalent med en første ordens funktion [Russell 1908].

Dette axiom mødte udbredt kritik, og lige fra begyndelsen blev der stillet spørgsmålstegn ved dets validitet [Kamareddine et al. 2004]. Blandt andet pointerer den amerikanske filosof og logiker W. V. Quine i en introduktion til *Mathematical logic as based on the theory of types* i [van Heijenoort 1967], at axiomet er selvdannelsende, for hvis det virkelig holder, betyder det, at den forgrening i typer og ordener, som axiomet har til formål at håndtere, var meningsløs til at begynde med. Senere førte denne indsigt til den såkaldte deramification, hvor ordenerne af typerne blev udeladt. Resultatet blev den simple typeteori og senere hen Churches typeteori eller lambda calculus, som i dag blot andet har fundet anvendelse inden for specifikation af computersoftware og kunstig intelligens [Kamareddine et al. 2004; Stanford Encyclopedia of Philosophy 2009].

6.2 Zermelos axiomer

Indenfor den naive mængdelære kunne Russell opstille en definition af en mængde $w$, og vise at der derved opstod et paradoks. Definitionen af mængden $w$ kan skrives således:

$$w = \{ x | x \notin x \}$$

Hvad er det, som er forkert med denne definition af mængden $w$? Indenfor Zermelo-Fraenkel axiomaticke mængdelære anses problemet at ligge i selve mængdebegrebet. Zermelo var på vagt overfor at tillade mængder at blive for store, såsom mængden af alle ting. Konkret formulerer Zermelo et fundament for mængdelæren, som på flere måder gør det en imod Russells paradoks.

6.2.1 Grundlæggende definitioner

Han anser, at man først skal have en mængde $M_0$ af alle objekter, der kan komme på tale, og indenfor denne kan man så plukke elementer ud til at danne nye mængder med. Dette syn på mængdelæren fører til et hierarki af mængder. Zermelo nævner også kravet til den udsagnsfunktion, hvormed mængden $w$ dannes; den skal være definit. Disse betragtninger gives et præcist udtryk i fundamentet for Zermelo-Fraenkl endingmdelære. De vigtigste, for vores undersøgelse af Russells paradoks, af Zermelos definitioner og axiomer gennemgås nedenfor, baseret på [Zermelo 1908].

Første skridt består i, at han betragter et domænet $D$ af ”individer”, som han kalder objekter. I dette domæne finder man mængderne. Det er formuleret ganske kort hos Zermelo, men han nævner i indledningen til sin artikel, at det ikke er tilladt blot at lade enhver logisk definierbar egenskab resultere i en tilhørende mængde. Grundlaget for at bygge mængder ligger altså i domænet af objekter og mængder, og ikke i logiske udsagn. Et objekt ”eksisterer” hvis det findes i domænet, og en klasse ”eksisterer”, hvis der findes blot et enkelt objekt af klassen i domænet.

Herefter indføres nogle definitioner af symboler, således at axiomerne kan formuleres. Lighedstegnet indføres ved definition: $a = b$ betyder, at symbolerne $a$ og $b$ refererer til samme mængde. Han beskriver altså betydningen af lighedstegnet ved at henvise til den dagligdags
forståelse. Zermelo definerer tegnet $\epsilon$ således at det betegner en fundamental relation (nemlig "tilhører") mellem objekterne i $D$. Delmængder defineres som den følgende relation mellem mængder: hvis alle $x$ der tilhører mængden $N$ også tilhører mængden $M$, så siges $N$ at være en delmængde af $M$ ($N \subseteq M$). Han præciserer betydningen af delmængderelationen ved at bestemme, at hvis $N \subseteq M$ og $M \subseteq R$, så følger $N \subseteq R$.


Inden axiomerne opstilles, definerer Zermelo nu det definite udsagn. Han skriver at et udsagn er definit, hvis domænets fundamentale relationer som fastlagt gennem axiomerne, kombineret med "logikkens universelt gyldige love", altid afgør, om udsagnet er sandt eller faldsk. Der må ikke levnes en tredje mulighed åben. Henvisningen til logikkens universelt gyldige love har fået senere tider til at betragte denne del af Zermelos teori som tåget, for Zermelo forklarer ikke nærmere, hvad det er for nogle love, han taler om. Derimod siger han ganske klart, hvad han mener med definit. I øvrigt bruger Zermelo betegnelsen definit om både udsagn og spørgsmål.

[Pinter 1971] referer det således, at Zermelo kræver af betingelsen $S(x)$, at det skal være "meningsfuldt" for ethvert objekt i $A$ for at kunne definere mængden \( \{x \in A \mid S(x)\} \). Nu skriver Zermelo ikke, at udsagnet skal være "meningsfuldt", men at det skal kunne afgøres som sandt eller falsk ved hjælp af axiomerne, som er klare nok, og så logikkens love, som Zermelo ikke bestemmer nærmere. [Fraenkel et al. 1973] skriver:

"The difference between Zermelo’s axiom of subsets and our axiom is that the notion of a "condition $P(x)$ on $x$" in our axiom is a well defined notion, since (in the beginning of 2 we described explicitly what our object language is and at the end of 1 we said that a condition $P(x)$ on $x$ is an open statement of our object language) in which the variable $x$ is free: on the other hand, Zermelo did not have any particular object language in mind and therefore his notion of a statement $P(x)$ is quite vague."

[Fraenkel et al. 1973]

På samme måde indføres betegnelsen definit for udsagnsfunktionen $U(x)$, hvis den for hvert eneste $x$ i klassen $K$ er et definit udsagn. Med sin definition af relationerne, tilhører og delmængde, fastslår Zermelo, at udsagnene $a \in b$ og $N \subseteq M$ altid er definite. Med disse definitioner kan Zermelo opstille axiomerne.

### 6.2.2 Axiomerne

Axiom I: "Axiom of extensionality" siger at en mængde er defineret alene ved sine medlemmer (mængden har f.eks. ikke en indre struktur). Den præcise formulering er, at hvis $N$ er en delmængde af $M$, og $M$ er en delmængde af $N$, så er $N$ lig med $M$. Axiomet tillader os også at definere mængder ved at liste deres elementer, \{a, b, c, ...\}.
Axiom II: "Axiom of elementary sets" siger at der findes en mængde, som ikke indeholder nogen elementer, nemlig den tomme mængde Ø. Hvis a er et objekt i domænet D, så eksisterer der en mængde, \{a\}, som har dette objekt som eneste element; hvis a og b er objekter i D, så eksisterer der en mængde, \{a, b\}, som har a og b og ingen andre objekter som elementer. Det præciseres, at den tomme mængde er delmængde af enhver mængde, \Ø. At en mængde, A, har \Ø som delmængde betyder ikke, at \Ø, eller \{Ø\} optræder blandt A's elementer, men det betyder, at definitionen på delmængde er opfyldt, nemlig at ethvert element som tilhører \Ø (og det er der nemlig ingen, der gør) også tilhører A.


Axiom III: "Axiom of separation" siger, at hvis udsagnsfunktionen \(U(x)\) er definit for ethvert element i mængden M, så indeholder M en delmængde \(M(U)\) af præcis de elementer, x, for hvilke \(U(x)\) er sand.

\[
M(U) = \{x \in M \mid U(x)\}
\]

Udsagnsfunktionen er altså ikke i stand til at skabe en mængde uafhængigt af andre mængder, men kan, brugt i forbindelse med Axiom III, altid kun udskille den som en delmængde af en allerede eksisterende mængde. Hermed udelukker Zermelo at betragte "mængden af alle mængder" som en mængde.

For helt klart at vise, hvorledes hans mængdelære løser problemet med Russells paradoks, anfører Zermelo straks i artiklen fra 1908 et første teorem:

Teorem: Enhver mængde M har mindst én delmængde \(M_0\), som ikke er element i M. Beviset gengives her nøjagtigt som anført i [Zermelo 1908].

"It is definite for every element \(x\) of \(M\) whether \(x \in x\) or not; the possibility that \(x \in x\) is not in itself excluded by our axioms. If now \(M_0\) is the subset of \(M\) that, in accordance with axiom III, contains all those elements of \(M\) for which it is not the case that \(x \in x\), then \(M_0\) cannot be an element of \(M\). For either \(M_0 \in M_0\) or not. In the first case \(M_0\) would contain an element \(x = M_0\) for which \(x \in x\), and this would contradict the definition of \(M_0\). Thus \(M_0\) is surely not an element of \(M_0\), and in consequence \(M_0\), if it were an element of \(M\), would also have to be an element of \(M_0\), which was just excluded.

It follows from the theorem that not all objects \(x\) of the domain \(D\) can be elements of one and the same set; that is, the domain \(D\) is not itself a set, and this disposes of the Russell antinomy so far as we are concerned."

[Zermelo 1908]
Ræsonnementet er altså, at hvis enhver mængde $M$ har en delmængde, der ikke er indeholdt som element, så kan vi ikke tale om mængden af alle ting, for heri ville der også findes en delmængde, som ikke var element – altså der vil findes elementer, som "mangler" uanset, hvor inklusivt man definerer mængden.

Selvom både axiom III og teoremet nævner kravet om, at udsagn og udsagnsfunktioner skal være definite for alle de $x$, hvorpå de skal anvendes, så synes det som om, at Zermelo tillægger det størst vægt, at axiom III kun tillader en udsagnsfunktion at definere en delmængde af en allerede eksisterende mængde ved at afgøre, for hvilke af dens elementer, udsagnsfunktionen er sand. Axiom III betyder, at man ikke kan skrive (som Russell anholdt Cantor for at gøre)

$$w = \{x | x \notin x\},$$

men at man må skrive

$$w = \{x \in M | x \notin x\}$$

for at definere delmængden $w$ af en allerede eksisterende mængde $M$. Forsøges definitionen anvendt på det af $M$'s elementer, som hedder $w$, opstår en modstrid, som Zermelo henfører til prædikatet $x \in M$.

Det bliver tydeligt med følgende omskrivning:

$$w = \{x \in M | x \notin x\} \leftrightarrow x \in w \leftrightarrow x \in M \land x \notin x$$

Indsættes $w$ på den fri variable $s$ plads (for at afgøre, om $w$ er element i $w$), så får man nu:

$$w \in w \leftrightarrow w \in M \land w \notin w$$

Heraf kan man konkludere $w \notin M$. Ræsonnementet er, at hvis venstre side er sand, kan højresiden ikke være sand som følge af "og"-tegnet kombineret med negationen af venstresiden. Dermed må venstresiden være falsk, og følgelig må også højresiden være falsk. Da udsagnet til højre for "og"-tegnet er sandt, må udsagnet før "og"-tegnet derfor være falsk.

Zermelo formulerer derefter et fjerde axiom om potensmængder:

Axiom IV: "Axiomet om Potensmængder" siger, at hvis $x$ er en mængde og $\varphi(v_0)$ er et velformet udsagn indenfor mængdelæren, så vil man i $P(x)$ finde mængden af alle medlemmer $a$ af $x$, for hvilke $\varphi(a)$ gælder. $P(x)$ betegner her potensmængden af $x$.

6.3 Fraenkels bidrag

Dette afsnit bygger på [Fraenkel et al. 1973]. Fraenkel anser for at have bragt Zermelos axiomatiske mængdelære på fast grund, hvad angår den formelt teoretiske opbygning af axiomsystemet. Han formulerede axiomerne indenfor rammerne af et veldefineret sprog, som det beskrives ovenfor i indledningen til afsnittet om matematisk logik.

Fraenkel’s Axiom of Extensionality lyder således:

”Axiom of Extensionality”: Hvis x er en delmængde af y, og y er en delmængde af x, så er x og y den samme mængde.

\[ \forall x \forall y [\forall z (z \in x \leftrightarrow z \in y) \rightarrow x = y] \]


De tre følgende axiomer i Fraenkel’s fremstilling drejer sig om dannelsen af nye mængder hvis eksistens ikke var givet på forhånd.

”Axiom of Pairing”: For ethvert par af elementer a og b eksisterer der en mængde y, som indeholder netop a og b.

\[ \forall a \forall b \exists y \forall x [x \in y \leftrightarrow (x = a \lor x = b)] \]

”Axiom of Sum Sets”: For enhver mængde a eksisterer der en mængde, som indeholder netop de elementer som er elementer i a’s elementer.

\[ \forall a \exists y \forall x [x \in y \leftrightarrow \exists z (x \in z \land z \in a)] \]

Denne sum-mængde af a betegnes \( \cup a \). Danner man en mængde af to mængder, a og b, nemlig \( \{a, b\} \), så skrives \( \cup \{a, b\} \) også som \( a \cup b \).

”Axiom of Power Set”: For enhver mængde a eksisterer der en mængde, hvis elementer er netop alle delmængder af a.

\[ \forall a \exists y \forall x [x \in y \leftrightarrow x \subseteq a] \]

Denne mængde betegnes potensmængden af a og skrives \( P_a \).
Axiomerne for par-mængder og sum-mængder tillader os at etablere større mængder ud fra allerede givne mængder, og ved at gentage anvendelsen af disse axiomer et tælleligt antal gange, vil man kunne etablere tælleligt store mængder. Som allerede vist af Cantor, giver potensmængden os mulighed for at etablere mængder med højere kardinalitet. Axiomet om potensmængder tjener altså til at opbygge store mængder, men det forudsætter, at de delmængder, det omtaler, allerede er etableret. Derfor er der i systemet også brug for et axiom til etablering af delmængder, idet det første axiom, “Axiom of Extensionality”, jo kun taler om egenskaber ved delmængder som allerede måtte være etableret. Mest interessant for håndteringen af Russells paradoks er det første af disse delmængde-axiomer, ”Axiom Schema of Separation”.

”Axiom Schema of Separation”: For enhver mængde A og enhver betingelse P(x) om x eksisterer der en mængde, som indeholder netop de elementer x i A, som opfylder betingelsen P(x).

∀z₁ ... ∀zₙ ∀a ∃y ∀x [x ∈ y ↔ x ∈ A ∧ P(x)]

Hvor zₙ er alle de frite variable (forskellig fra x) som eventuelt måtte indgå i P(x). I dette axiom optræder der ikke nogen betingelse om, at P(x) skal være et definit udsagn (som hos Zermelo), fordi Fraenkel arbejder inden for rammerne af et formelt sprog (object language), hvori han eksplicit formulerer hvad ”en betingelse P(x) om x” er for noget. Det, at der i ”Axiom Schema of Separation” optræder en simpel betingelse om x (en velformet formel indenfor førsteordens prædikat logik), tilskrives Skolem - og er bredt accepteret i dag som en brugbar formulering.

Undersøger man, hvad formuleringen af Axiom Schema of Separation betyder for Russells paradoks, så er det faktisk ikke så meget den nærmere specifikation af en betingelse P(x), der får betydning, men det, at axiomet kun tillader at danne, og garanterer eksistensen af, en delmængde af en allerede eksisterende mængde. Russells paradoks fremkom med

P(x) = x ∉ x,

et udsagn, som ikke tager nogen variable z. Man kan opskrive axiomet under denne betingelse om fravær af yderligere variable, z:

∀A ∃y ∀x [x ∈ y ↔ x ∈ A ∧ x ∉ x]

Heri kan man specielt indsætte x lig med y, da axiomet for et givet y netop skal gælde for alle x, herunder y selv.

∀A ∃y [y ∈ y ↔ y ∈ A ∧ y ∉ y]

Ser man nærmere på biimplikationen, kan man forkaste den mulighed, at y ∈ y. Det ville nemlig kræve, at begge udsagn på højre side af biimplikationen skulle være sande, herunder,
at $y \notin y$. Man har altså, at $y \notin y$. Da nu venstresiden af biimplikationen er usand, må udsagnet før konnektoren $\land$, være usandt. Samlet set siger axiomet i dette særtilfælde, at

$$\forall A \exists y \left[ y \notin A \land y \notin y \right]$$

Med andre ord findes der for alle mængder $A$ en mængde $y$, som ikke er element i $A$. Således forbyder axiomet os at tale om ”mængden af alle mængder”. At det er et axiomskema og ikke bare et axiom betyder blot, at man kan opfatte det som en samling af axiomer; ét for hver betingelse $P(x)$, hvor hver instans af axiomskemaet altså garanterer os eksistensen af én ny mængde, vel at mærke en ny delmængde af en allerede eksisterende mængde.

Axiomskemaet har den særlige egenskab, at det er ikke-prædikativt [Fraenkel et al. 1973].

“Axiom V has the awkward property of being impredicative. (A definition of a set is called impredicative if it contains a reference to a totality to which the set itself belongs. One may also say that a definition written in symbols is impredicative if it defines an object which is one of the values of a bound variable occurring in the defining expression).”

[Fraenkel et al. 1973]

Fraenkel taler her om faren ved at indføre selvreference i en definition.
7 Diskussion og konklusion

Dette afsnit har to formål: Dels at samle op på de spørgsmål, som blev stillet i rapportens indledning, og dels at gøre rede for de spørgsmål, der er opstået undervejs, som har været kilde til undren, men som vi ikke har kunnet besvare endegyldigt.

7.1 Opsamling på de elementer, vi har præsenteret

Vi har i løbet af projektet arbejdet i flere forskellige spor, som vi gerne vil runde af her. Dels har vi fulgt et historisk spor, der havde til formål at gøre rede for krisens baggrund og kronologiske udvikling. Et andet spor har forfulgt det logiske projekt; det vil sige det forsøg på at fundere matematikken på logik, som blandt andre Frege og Russell stod for. Det tredje spor har rettet sig mod formaliseringen af matematikken.

Det historiske spor


Det logiske projekt

**Formalisering af matematikken**


“In the end, the paradoxes of set theory have probably been the most important argument for generalized use of formal axiom systems and formal logic in mathematics.”

[Ferreirós 2007]

### 7.2 Zermelos krav om definitivitet og Russells krav om prædikativitet

Vi undrer os over, at Zermelo indfører begrebet definit udsagn, men så ikke går videre og bruger det alene, uden kravet om, at elementer skal udvælges blandt en eksisterende mængdes elementer, til at håndtere Russells paradoks

\[ w = \{x \mid P(x)\} \]

Paradokset er jo ikke et teorem, men en definition af mængden w. Inden vi går videre med den idé, skal det understreges, at definitionen består af hele linien ovenfor; det er ikke kun P(x), der definerer mængden w. Vi må kræve af definitionen af mængden w, som angivet ovenfor, at den er sand, således at den kan anvendes både på de objekter, der tilhører w og på dem, som ikke tilhører w. Hvis definitionen ikke er sand, betyder det, at P(x) ikke er inklusionskriterium, eller at w ikke er den mængde, der defineres. Definitionen er skrevet på den sædvanlige måde ovenfor, men vi omskriver det på følgende måde for at anskueliggøre dets bestanddele klarere:

\[ D: P(x) \leftrightarrow x \in w \]

Hermed mener vi: Definitionen D siger, at P(x) er ensbetydende med at x tilhører w. Udsagnet D må kræves at være sandt for alle x (D er altid den sande afgrænsning af, hvilke x der tilhører w og hvilke x, der ikke gør), mens udsagnet P(x) kun er sandt for w’s elementer. Kræver vi af en definition, at den er sand, så giver det visse begrænsninger på, hvad prædikatet P kan være. Sættes f.eks. \( P(x) = x \not\in x \) ser man straks, at D ikke længere er et sandt udsagn for alle værdier af x; indsættes nemlig specielt \( x = w \), får vi:

\[ D: w \not\in w \leftrightarrow w \in w \]

Dermed er D ikke en definition af mængden w, for D er ikke sand for alle x. Godtager man denne argumentation, som bygger på hvad en definition overhovedet er, så kan Zermelos krav i hans axiom III om, at udsagnsfunktionen skal være definit for alle x, der kandiderer til at være element i en mængde, altså stå alene, forudsat at man betragter hele

Tilsvarende kan man undre sig over, hvorfor Russell begiver sig ud i den omstændelige proces med at definere typer og ordener efter at have stillet kravet om, at det resulterende udsagn af en udsagnsfunktion skal være prædikativt (afsnit 6.1.3). I grunden er dette krav jo tilstrækkeligt til at undgå Russells og tilsvarende paradokser. Men dette skal formentlig ses i lyset af den bevægelse mod en fuldstændig formalisering af matematikken, som var i gang på det tidspunkt. Som det udtrykkes i citatet af Frege i afsnit 3.1.1 var formålet med formaliseringen blandt andet at sikre, at antagelser, der kunne føre til forkerte følger. Zermelo skriver i punkt 4 i de indledende definitioner for sit system, at hans begreb om defnite udsagn implicit forudsætter eksistensen af “logikkens universelt gyldige love”, men hertil må det ovenfor anførte krav til begrebet “definition” henregnes.

7.3 Modstriden i Cantors teorem

En anden kilde til undren har været Cantors bevis for at kardinaliteten af de naturlige talts potensmængde er større end de naturlige talts egen kardinalitet. Vi undrer os ikke over, at det forholder sig således, som beviset siger, men over, at beviset har gyldighed. Opstår modstriden i Cantors bevis ikke kun, fordi Cantor definerer mængden q (se afsnit 4.2.1) på en sådan måde, at definitionen bliver meningsløs for visse elementer? Det er værd at overveje, om Cantors modstrid i virkeligheden opstår, fordi han foretager et kunstgreb, der forbryder sig mod logikkens regler. Cantor benytter sig i sit bevis af mængden q af elementer, der ikke er medlem af q – altså en mængde af elementer, der er defineret ved, at de ikke er medlemmer af mængden. I overensstemmelse med Russells argumentation ville man kunne sige, at modstriden opstår, fordi q indgår i definitionen på sig selv, hvilket er i modstrid med Vicious Circle Principle. [Klement 2010] påpeger, at det er tvivlsomt, om en sådan egenskab, som definerer mængden q, nødvendigvis eksisterer, blot fordi vi kan beskrive, under hvilke betingelser den instantieres. Spørgsmålet, vi stillede os selv, er om modstriden i Cantors bevis overhovedet beviser det, han ønskede at bevise, eller om det blot er konsekvensen af manglende eller forkert anvendt logik.

7.4 Hvorfor vandt axiomerne over typeteorien?

Overskriften på dette afsnit er det måske lidt naive spørgsmål, vi stillede, inden vi begav os ud i den større undersøgelse, som denne rapport redegør for. Sandheden er, viste det sig, at det ikke er rimeligt at tale om en vinder, idet Zermelo-Fraenkel-axiomerne og typeteorien ikke har ikke haft det samme formål og dermed ikke været i direkte konkurrence. Zermelo-Fraenkel-axiomerne skulle axiomatisere mængdelæren og derved danne et formaliseret grundlag for den og for de matematiske discipliner, der bygger på den. Typeteoriens formål
var at bevise, at mængdelæren kunne baseres på logikken alene. Den bedste måde, hvorpå vi kan sammenligne de to, er ved at holde os hver deres formål for øje og vurdere, hvor succesfulde de har været i at opnå det.

Det skal her understreges, at vi ikke i dybden har undersøgt, hvordan eftertiden har forholdt sig til de to teorier og hvilke drejninger historien har taget, men at denne diskussion sker på baggrund af vores studie af de to teorier, som de oprindeligt blev beskrevet. Zermelo-Fraenkel-axiomerne er i dag det mest anvendte fundament for mængdelæren og danner grundlaget for en formaliseret tilgang til matematiske analyser og andre discipliner inden for matematikken. Denne udvikling må med rette kunne kalde en succes, i tråd med det ønske Hilbert fremlagde for matematikken i starten af det nittenårti.


7.5 Matematikkens fundament i krise?

Som det blev beskrevet i indledningen nåede vi undervejs i projektet til at stille spørgsmålet om, hvorvidt der overhovedet var tale om en krise for matematikkens fundament. For Cantor var der ingen krise. Han var ganske vist ikke i stand til at møde den udfordring, som Russells paradoks udgjorde, men han troede fortsat på ideen om mængder i deres oprindelige, ubegrænsede forstand. Andre matematikere anså krisen som mindre væsentlig, fordi de mente, at paradokset var kunstigt eller uden praktisk betydning. Mange matematikere genoptog snart anvendelsen af mængdelæren, da det viste sig muligt uden større besvær at tage de nødvendige forholdsregler for at undgå at formulere teoremer, der hvilede på usikker grund.

"...deep in their hearts most modern mathematicians did not want to be expelled from the Paradise into which Cantor’s discoveries had led them."

[Fraenkel et al. 1973]

Man havde simpelthen opnået så store landvindinger med mængdelæren, at man ikke med rimelighed kunne lægge den fra sig. Det ville svare til at smide barnet ud med badevandet.

Det arbitrære, der hviler over axiomatiske systemer, ville logikere og matematikere gerne være foruden, sådan som Russells og Freges bestrebelser demonstrerer. De ønskede brændende at formulere et grundlag for matematikken, som var udelukkende logisk, og mængdelæren så en tid ud til at være det ideelle bindeled mellem den rene logik og matematikken. Mængdelæren, i sin naive form, var nemlig ikke axiomatisk, men hvilede kun på Cantors idé om en mængde:
"Unter einer ‘Menge’ verstehen wir jede Zusammenfassung $M$ von bestimmten wohlnerschiedenen Objekten in unserer Anschauung oder unseres Denkens (welche die ‘Elemente’ von $M$ genannt werden) zu einem Ganzen."

Georg Cantor citeret i [Zermelo 1908]

Den krise, som fremkomsten af Russells paradoks indvarslede, skal derfor først og fremmest forstås som en krise for det projekt at fundere matematikken på logikken alene, uden nogen arbitrære valg. Russells mission, som Principia Mathematica blev sat i verden for at opnå, var jo i al væsentlighed at reducere matematikken til ren logik, men ved fremkomsten af paradokset måtte han sætte sit projekt i bero, indtil han havde fundet en logisk løsning på problemet. Det samme gjorde sig gældende for Frege, der i sit svar til Russell skrev

"Your discovery of the contradiction caused me the greatest surprise and, I would almost say, consternation, since it has shaken the basis on which I intended to build arithmetic."

[Frege 1902]

Derimod stillede Zermelo ikke samme krav til, at alt skulle være fuldkommen logisk funderet. Paradoksets fremkomst forårsagede derfor ikke en krise for matematikken som sådan, men alene for det logiske projekt.

13 Egen oversættelse: "En mængde er en samling til et hele af defnitte og distinkte objekter i vores intuition eller tanke. Objekterne kaldes mængdens elementer (eller medlemmer)."
Litteraturliste

Boole, George. [1847]. The Mathematical Analysis of Logic. Toronto: University of Toronto.


