

Battleship
- Design and Implementation

Computer Science – 1st module – University of Roskilde

Project supervisor: Mads Rosendahl
Student: Søren Loft Andersen
Student id: loft@ruc.dk

Resumé
Dette projekt omhandler udvikling af et Sænke Slagskibe spil i programmeringssproget Java.
Ambitionerne er at udbygge forfatterens kendskab til Java programmeringssproget, samt at opøve
en vis færdighed i strukturering af programmel og formidling af dette.

I rapporten undersøges først eksisterende udgaver af spillet, hvorefter specifikationerne for dette
projekt udarbejdes. Dernæst analyseres og diskuteres mere konkrete muligheder og alternativer, alt
imens programmelstrukturen gradvis opbygges. Derefter gennemgås den kode der udvikles til
spillet, både på et overordnet, grafisk plan (vha. skemaer og diagrammer osv.), men også på et
mere kodenært niveau. Slutteligt er den udviklede kode genstand for en afprøvning, som
dokumenteres med skærmbilleder af programmet.

Projektrapporten konkluderer, at der findes mange mulige måder at strukturere programmellet på,
og at der er fordele og ulemper ved dem alle. Ligeledes konkluderes det, at projektet i sin helhed
har været succesfuldt, i den forstand at de i indledningen formulerede mål og ambitioner er blevet
opfyldt.

Abstract
This project aims to develop a Battleship game using the Java programming language. The main
ambitions are to develop the author’s knowledge about Java, and, to some extent, learn about
designing software and communicating about it.

In the report existing versions of the Battleship game are examined, after which the specifications
for this Battleship game project are developed. Then specific options and their alternatives are
analysed and discussed, along with the build-up of a feasible software design for the Battleship
game. Next, the actual code developed for this project is examined. This is done both graphically
(with schemas, diagrams etc.) and with code examples. At last the developed software is subject to
a test run, documented with screenshots from the program.

The report concludes that several possible and feasible software design options exist, and that these
all have advantages and drawbacks. It is also concluded that the project as a whole has been
successful, as all of the formulated goals and requirements have been met.

Contents

1 INTRODUCTION 1

1.1 THE REPORT – STRUCTURE AND CONTENTS 2
1.1.1 LAYOUT AND TYPES 2

2 DESIGNING A BATTLESHIP GAME 4

2.1 EXISTING BATTLESHIP GAMES 4
2.1.1 BROWSER BASED FLASH IMPLEMENTATION 4
2.1.2 BROWSER BASED TWO-PLAYER IMPLEMENTATION 5
2.1.3 CLIENT/SERVER IMPLEMENTATION 6
2.2 SPECIFICATION OF THIS BATTLESHIP GAME 8
2.3 CREATING A DESIGN 8
2.3.1 TOOLS 9
2.3.2 OBJECT ORIENTATION 9
2.3.3 MODEL-VIEW-CONTROLLER DESIGN PATTERN 9
2.3.4 BATTLESHIP OBJECTS 10
2.3.5 CLASS DESIGN 11
2.3.6 DATA STRUCTURES 11
2.3.6.1 The game board 11
2.3.6.2 The group of ships (the fleet) 12
2.3.6.3 Coordinates 12
2.3.6.4 Ship memory 12
2.4 AI CONSIDERATIONS 12
2.4.1 PLACING SHIPS ON THE GAME BOARD 13
2.4.2 OTHER POSSIBILITIES 13
2.4.2.5 Intelligent distribution of shots 13
2.4.2.6 Distributing shots - advanced 15
2.4.2.7 User experience issues 15

3 THE BATTLESHIP JAVA CODE 16

3.1 THE BOARD CLASS 17
3.2 THE SHIP CLASS 19
3.3 THE PLAYER AND AIPLAYER CLASSES 20
3.4 THE GUI CLASS 20
3.4.1 THE CONSTANT CLASS FIELD 21
3.5 THE COORDINATE CLASS 21
3.6 INITIALIZING THE BATTLESHIP GAME 21

4 INSTALL AND RUN THE BATTLESHIP GAME 23

4.1 INSTALLATION AND EXECUTION IN ECLIPSE 23
4.2 USING PRECOMPILED BINARIES 23
4.3 COMPILING FROM SOURCE 23
4.4 RESOURCES 24

5 PLAYING BATTLESHIP 25

5.1 TESTING SOFTWARE 25

5.1.1 TESTING CORE COMPONENTS 25
5.1.2 BLACK-BOX TESTING THE BATTLESHIP GAME 25
5.2 PLAYING A ROUND OF BATTLESHIP 26
5.2.1 STARTING THE GAME 26
5.2.2 A SHIP WAS HIT 27
5.2.3 A SHIP WAS SUNK 28
5.2.4 FIELD ALREADY HIT 29
5.2.5 TOO CLOSE TO FIELD BORDER 30
5.2.6 ALL SHIPS SUNK – GAME OVER! 31
5.3 FINAL NOTES ON TESTING 31

6 CONCLUDING REMARKS 32

6.1 THE WORK PROCESS 32

7 LITERATURE AND SOURCES 34

APPENDIX A – JAVA CODE 35

List of figures

FIGURE 1-1 EXAMPLE HEADER... 3
FIGURE 1-2 EXAMPLE CODE BLOCK FIGURE ... 3
FIGURE 2-1 PLACING SHIPS ON THE GAME BOARD.. 4
FIGURE 2-2 PLAYING AGAINST COMPUTER... 5
FIGURE 2-3 TV2 SPIL: PLACING SHIPS.. 6
FIGURE 2-4 TV2 SPIL: PLAYING THE GAME.. 6
FIGURE 2-5 BATALLA NAVAL: MULTIPLAYER CLIENT VIEW... 7
FIGURE 2-6 MODEL VIEW CONTROLLER DIAGRAM .. 10
FIGURE 2-7 BATTLESHIP MVC CONCEPT ... 10
FIGURE 2-8 POSSIBLE DISTRIBUTION OF AI SHOTS ... 14
FIGURE 2-9 AI STRATEGY FOR FIRING SHOTS ... 14
FIGURE 2-10 AI ADVANCED STRATEGY.. 15
FIGURE 3-1 DEPENDENCIES AND INHERITANCE.. 16
FIGURE 3-2 FIELDSTATUS ARRAY - BOARD.JAVA .. 17
FIGURE 3-3 THE CANPLACESHIP() METHOD - BOARD.JAVA ... 17
FIGURE 3-4 THE PLACESHIP METHOD() - BOARD.JAVA .. 18
FIGURE 3-5 A SHIP IS HIT – BOARD.JAVA ... 18
FIGURE 3-6 METHOD SIGNATURES - BOARD.JAVA ... 19
FIGURE 3-7 DATA STRUCTURE AND METHODS - SHIP.JAVA .. 19
FIGURE 3-8 CONTROLLER: METHOD CALL SEQUENCE.. 20
FIGURE 3-9 CONFIGURATION FIELDS - GUI.JAVA... 21
FIGURE 3-10 CALCULATION WITH CONSTANT CLASS FIELD ... 21
FIGURE 3-11 INITIALIZATION SEQUENCE.. 22
FIGURE 5-1 INITIAL SCREEN ... 26
FIGURE 5-2 SHOTS FIRED AND A SHIP WAS HIT ... 27
FIGURE 5-3 ENTIRE SHIP DESTROYED... 28
FIGURE 5-4 SHOOTING AT PREVIOUSLY HIT FIELD.. 29
FIGURE 5-5 CLICKING WITHIN THE NO-CLICK AREA ... 30
FIGURE 5-6 ALL SHIPS ARE GONE, AND GAME IS OVER... .. 31

List of tables

TABLE 2-1 FEATURE COMPARISON... 8

 1

1 Introduction

The purpose of this project is to explore the basics in the Java language, including its data
structures and graphical components. The purpose is not to define and develop new and original
software or academic knowledge; hence a game of Battleship serves as a case study, for exploring
the basics of software design and programming in Java. By using a simple game as a case study,
the focus quickly arrives at software design, structure and code, thus skipping the art of defining all
software features from scratch – a time consuming process.

The intended reader for this report is probably a BA student, doing a 1st module report at Computer
Science at Roskilde University, or equivalent. The experienced programmer will probably only find
this report interesting, when reading it from a teachers perspective. That being said, there are of
course several reasons to continue reading.

Firstly, the choice of programming a game of Battleship, allows one to gain experience with both
the concepts of the Java programming language (its object oriented design for instance) and the
details and methods of data structures. Secondly, it also allows for experimenting with user
interface design, without the risk of getting bogged down in user interface details, compared to
designing more elaborate software systems. And finally, as pointed out in the opening sentence, the
features required are more or less pre-defined, which might leave out important aspects of software
design, but nonetheless the choice of creating a Battleship game is beneficial to a one-person, BA
student project, having only a limited timeframe.

The game of Battleship is a classic game, but several stories about its origin apparently exist. At
neweranet.com it is suggested that the Battleship game has its origin in Russia, invented by Russian
soldiers between 1917 and 1922. It is also suggested that a predecessor of the Battleship game
existed as far back as 18901. On wikipedia.org the writer John Toland is referenced, suggesting that
American convicts sat in their cells during the 1920’s, shouting to each other their strategic moves
and results thereof2. Undoubtedly this would have been possible, since the game can be played
using only pen and paper. According to gamesmuseum.uwaterloo.ca the first commercial version
of the Battleship game was produced in the 1930’s, crediting French soldiers for inventing the
game during the First World War. Although the history of the Battleship game is interesting, this
project isn’t a history assignment. The characteristics of the Battleship game are of greater interest.

The game of Battleship normally features two players playing against each other, each having two
game boards, divided into squares of equal size. Each game board typically has 10 squares both
horizontally and vertically. Each player also has five ships to be placed on her own, private game
board, which the other player cannot see. The ships have to be placed within the board, and the
players have to place all the ships on their private boards, and cannot leave any ships out. The
second game board is then used by the players to record the results of the shots they in turn have to
fire on each others private boards. When, and if, a player hits a ship on the other players board, the
shooting player has the right to shoot again, continuing until nothing is hit on the enemy’s game
board. When a player is successful in sinking an enemy ship (hitting all parts of it), he receives a
certain amount of points, dependant on the type of ship that was sunk. There are five ships, the
largest and most valuable being the aircraft carrier. There is a battleship, the second largest ship,
and a destroyer and a submarine which are equal in size and value. The smallest ship, and often the
most difficult to find on a game board is the mine sweeper. The players keeps taking turns at firing
shots, and the game ends, when one of the players has lost all ships on her own board. The other
player then wins, since points are given when a ship is sunk.

The approach taken in this project is based on an analysis of other, existing Battleship games ‘out
there’. The features and ideas of these other implementations will be distilled into a specification

1 http://neweranet.com
2 http://www.wikipedia.org

 2

and possible design for a new Battleship game, which will then be discussed thoroughly, carefully
considering alternatives and consequences.

This discussion will lead into an actual software design for a new Battleship game, taking into
account desirable design pattern considerations. More concretely, actual well documented and well
commented Java code will result from this discussion and the laid out software design.

My motivation for working on the project, which is defined above, stems from the desire to better
my Java understanding and coding skills. This semester (autumn 2007) I have been following my
first Java course at the University of Roskilde, and I then decided that the best way to further my
abilities would be to design and program a game of Battleship, all things considered. I also work on
my own, and therefore need to choose a subject and project goals that are not too comprehensive,
given the time and space available.

The goal of this project, then, is to develop a basic implementation of a Battleship game. The game
will allow a single player to start the game, and play a round against the computer. To accomplish
this, a basic user interface will be created, that displays a Battleship game board. On this board the
computer will place ships when the game is started. Then the player must fire shots at this board
until there are no more ships, at which point the player wins the game (she can never loose). For
each action the player takes, the result is displayed in a status message. If a ship was destroyed,
points are assigned to the player’s total score. Of course, the underlying Java code features (classes,
their methods and data structures) that supports this specification of the game will also be
developed. This is also discussed in section 2.2.

1.1 The report – structure and contents
The structure of the report mirrors the project outline, which was described above. The first chapter
is the chapter you’re reading now.

The second chapter is about the existing Battleship games that I’ve come across during the projects
research phase. A brief overview over these games will be presented, as will, in more elaborate
form, my intentions with the project. Once the intentions are firmly established, some design
possibilities and alternatives will be discussed, while developing a feasible design for a Battleship
game. Also in this chapter, related to the game design, a discussion about possible Artificial
Intelligence features will be had. It is of importance to notice, that when applying the term
Artificial Intelligence (or AI) I refer only to certain ‘automatic functions’ that the Battleship game
must perform. I do not refer to an intelligent system that is able to ‘learn’ and change behaviour
based on previous experience, for example.

The third chapter seeks to describe and illustrate the actual design and code that resulted from the
previous chapter. This will be done by presenting certain important code parts to the reader, and
sketch the program structure and flow visually.

The fourth chapter concerns installation and execution of the Battleship game. The chapter covers
download and installation of prerequisites and the Battleship game. Examples will be given, on
how to get the program running.

The fifth chapter covers testing and a trial run of the software that was developed. Considerations
regarding testing are put forward, and a full game is played, while observing features and game
play in action. A series of screenshots will serve as reference.

The sixth and final chapter contains concluding remarks on the project and the process as a whole.

1.1.1 Layout and types
As the observant reader may have noticed, each chapter and/or section of the report has a headline,
prefixed with a number, as the following example shows.

 3

Figure 1-1 Example header

The first number indicates the chapter to which the section belongs. The second number indicates
to which section the section you’re reading is a subsection, and so on.

When code is reproduced in the report, a separate type is used for this. If the code is in-line this
type is used. If presenting a code block to the reader, the special code type is also used, but this
time in a figure.

system.out.println(“Java code example - “);
system.out.println(“in a figure...“);

Figure 1-2 Example code block figure

 4

2 Designing a Battleship game

As a preliminary exercise, this chapter is about electronic versions of the Battleship game that have
already been developed. Two online implementations of the game will be examined, as will briefly
a standalone version that includes both server and client software. Finally, the requirements for this
project’s Battleship game will be formulated. Next, the possibilities for developing a sensible
design will be discussed. Finally, certain implications regarding a machine player, or AI player,
will be analysed.

2.1 Existing Battleship games
As indicated in the Introduction there are many ways of constructing a game of battleship as a
software system. When browsing the internet, an often seen solution is to embed the game into a
web page, as an applet or embedded object of some kind.

2.1.1 Browser based Flash implementation
The following screenshots shows an implementation of the game as an embedded Flash object:

Figure 2-1 Placing ships on the game board

 5

Figure 2-2 Playing against computer

These screenshots are of an elaborate and complete implementation3, with very detailed graphics
and very navy-like theme. The game play, however, is exactly as described in the Introduction,
with one of the players being an ‘AI player’, meaning that this player is non-human, but still able to
make informed decisions about where to shoot next. For example, as it can be seen in Figure 2-2,
the AI player fired a successful shot, and hit the human players mine sweeper. Immediately
following the successful shot, the AI player tries to fire at one of the neighbouring fields, knowing
that there must be more parts of the ship that was hit previously. In the case above, the AI player
did not hit anything with the second shot fired, but will remember its previous shots in the next
round, and it will then fire at the other neighbouring fields, and eventually sink the human player’s
mine sweeper.

2.1.2 Browser based two-player implementation
It is also possible to envision other designs and implementations of the Battleship game. In the
applet/object approach described above, the AI player could be replaced by another human player.
The game could be designed as a two-player game, in other words. This could be a feasible
implementation of the game, for an online gaming portal, such as spil.tv2.dk, where members of
the gaming community can play Battleship against each other, with almost the same setup and rules
as the ones outlined in the Introduction chapter. The implementation at spil.tv2.dk is based on Java,
and very comprehensive regarding extra features, such as hi-score, the possibility of creating a
table to sit at, excluding players from the game and more. These features are not just for the
Battleship game, but part of a complete framework for the online game portal4. One shortcoming of
the game, that distinguishes it from the Flash implementation depicted in the previous section, is
the fact, that when a successful shot has been fired, the player doesn’t get an extra shot. Whether
this actually is a shortcoming, depends on preferences for game play, of course. Below a couple of
screenshots from the TV2 implementation are shown.

3 Source: http://www.battleships.f-active.com
4 Source: http://spil.tv2.dk

 6

Figure 2-3 TV2 spil: Placing ships

Figure 2-4 TV2 spil: Playing the game

2.1.3 Client/server implementation
Yet another approach could be to implement the game as a standalone application with network
support, to be installed independently from browsers and gaming service providers, requiring only
Java Runtime (if the application was developed in Java) and network connectivity on the client.
One could then consider whether it would be desirable to program the game as a ‘true’ peer-to-peer

 7

application, with connections only between the two clients playing the game, or the implementation
should include a central server, hosting information about online gamers, their IP addresses and so
on. The latter would of course make it easier to find other gamers, and the players would not have
to know anything about host names or IP addresses, whereas the peer-to-peer approach would
require the players to know how to connect to other players, typically by entering IP address or
DNS host name. One advantage to this approach would be complete independence from any central
servers and services.

A very comprehensive version of the Battleship game that illustrates some of the possibilities
available is ‘batalla naval’5. This game has 3 main components: A client, a server and a robot. It is
a multiplayer game, where each of the participating players can be represented by human players or
robots (AI players). Of the three components mentioned, only the client has a fairly comprehensive
graphical user interface. This game is an example of a Battleship implementation, which requires a
fair amount of user experience, since the current version (2002) only runs on GNU/Linux with the
GNOME desktop installed. The game does exist in Debian package repositories, so installation
should be relatively simple, at least on the Debian Etch operating system.

Figure 2-5 Batalla naval: Multiplayer client view

5 http://batnav.sourceforge.net

 8

2.2 Specification of this Battleship game
The ambition of creating something similar to what we have studied so far is, however, a task that
requires a great deal more time than is available for this student project. But several central aspects
of the game can, nonetheless, be programmed. The following is a non-technical outline, of what
this student version of the Battleship game is supposed to do.

The core part of the Battleship game is the ability for players to fire at the opponent, the game
being over when one’s counterpart has no more ships left. Furthermore the concept of an AI player
is perhaps more challenging from a programmers point of view, than the remainder of the game.
Also, the concept of intelligent, autonomous systems is a widely used one, the appliance of it
ranging from computer games to lunar landings. It therefore seems relevant to include at least some
AI aspects in the game, with regards to AI’s widespread use. Independently from the number or
nature of players and the platform on which the game is implemented, the core part of the game,
one could argue, is the ability to register ships and shots fired on a gaming board. To put it in
another way: If we design this core part of the game, we have gone a long way in developing the
game, which could then easily be extended with regards to user interface and secondary features.
Based on these thoughts, the overall goal with this student project and the report you are currently
reading, is to develop a core component of the game, which is able to represent a Battleship game
board, and furthermore, to develop a simplistic user interface, where it is possible for a player to
interact with the game board (place shots and score points). Of course this makes little sense, if the
game board has no ships on it. Hence an AI player will be partly developed. This AI player will not
be a ‘real’ player, in the sense of being able to fire shots, score points and win games, rather it will
an ‘invisible pseudo-player’ that is able to randomly place ships on the game board, for the human
player to fire shots at. In the following sections, we shall examine the implications of these
ambitions in greater detail, but before doing so, this section is summarized into the following table.

Features f-active.com TV2 batalla naval This project
Manual ship placing X X X
Automatic ship placing X X X
AI player X X
Play online (network) X
Play online (web) X X
Single-player X X X
Two-player X X
Multiplayer X
Basic graphics X
Rich on graphics X X X

Table 2-1 Feature comparison

2.3 Creating a design
Since the author of this report has been following a Java programming course this semester the
ambition has been to gain further insight into the object oriented approach sported by the Java
programming language. Of course other languages could have been used, Microsoft’s C# language
on the .Net platform being one possible alternative. Java was chosen however, because of the (lack
of) skills of the author, and because, simply put, it is able to do the job required: It supports an
object oriented approach to programming; it has support for complex data types and structures, and
has a strong type system. Furthermore Java is considered ‘safe’ compared to other languages such
as C (with the renowned susceptibility to buffer overflows). One major advantage of Java is
platform independence. It is possible to run the same Java application on different operating system
platforms, without putting a lot of effort into porting the code. Furthermore the Java SWING and
AWT libraries make it possible to develop a graphical user interface for the Battleship application.

 9

2.3.1 Tools
Although not directly relevant to the outcome of the coding efforts, the integrated development
(IDE) chosen is Eclipse. Not because it is better than other alternatives (of which I know very few),
but simply because its free, and it has the ability to assist in Java syntax and type checking, and
because it is very straightforward to compile and execute code. Furthermore I find the structure of
the user interface very useful, and it is easy to change your working environment and setup,
according to your preferences (maybe you are working at home on a 20” display or you are on the
move with a 12.1” display.

To display the user interface and its components I use the JCanvas class. This is a Java class, which
simplifies the task of programming 2D-graphics, albeit being suitable for our purposes. Another
auxiliary class that the Battleship game relies on is JEventQueue, which is also a simplified version
of the standard Java library. Both these classes have been obtained from
akira.ruc.dk/~madsr/swing.html, the homepage of this project’s supervisor.

2.3.2 Object Orientation
In using the object oriented approach and an object oriented language, such as Java, it has often
been difficult for programmers with experience from other languages, to grasp the concept of
‘object orientation’. I know from myself that one tends to think in functions (equivalent to the Java
methods), and do not quite see the benefit or purpose of using object orientation as a way to model
the real world. Of course a complete model of almost any reality is unrealistic, but nonetheless we
can extract characteristics from the real world that is useful when designing software. In other
words we selectively pick the features we require in our software, and ‘assemble’ these into
classes. Think of a class as a container, which can contain several objects, for which the class
contains methods (functions) that defines the ‘things you can do’ with the objects contained
therein.

Using the object oriented logic outlined above leads us to develop entities for our program that
models the ‘real world’ – the real world in this case being our Battleship game. One can easily
distinguish several abstractions over the game which could be useful. For instance there are ships,
players, shots, boards, score and a fleet of ships, all of which could (or should) have varying
degrees of detail associated with them. For instance one could consider the concept of a ship. One
property of a ship would in the real world be colour. Since the colour of a ship plays no role in our
game, we would probably not include this in our design. On the other hand, if we were to display
different ships in different colours (if the ships of one player were to have another colour than the
counterpart’s) we would need to include colour as a property of an object. Many such decisions
would have to be made, and one will have to give careful consideration to future requirements of
the software and the amount of detail needed to create a satisfying design model. We will explore
this in greater detail later in this section, since we also need to take other factors into account.

2.3.3 Model-View-Controller design pattern
Another perspective on designing software that requires user interaction, is the concept (or design
pattern) of Model-View-Controller (MVC), which separates the tasks of the different components
of the software in a way such that three general roles can be singled out: The model, the View and
the Controller. The Model contains the basic, underlying data access methods and data storage. The
View represents the visual user interface and the Controller is the part of the software that listens
for user input and reacts accordingly. In the original MVC design concept (see figure of MVC
model below), all three elements are separated, which typically would be reflected in the final
project code. When coding the Battleship game, however the View and Controller will be
somewhat integrated in the sense that the use of a MVC design pattern, does not entirely separate
the code relating to the View from the code relating to the Controller – this is due to Java’s
implementation of event listeners. Conceptually we will still be able to think about separate
elements however.

 10

Figure 2-6 Model View Controller diagram

Figure 2-7 Battleship MVC concept

The benefit of using the MVC design pattern is separation of data (the Model) and the View and
Controller. This separation makes it easy to update the implementation of the Model, for instance,
since the Model and its underlying data structures are independent of the View and the Controller.
We could then easily accommodate changes relating to for example persistent data storage or data
structures. It would also be possible to use the Model as a Model for a whole different system, for
example if we wanted to use the same model in an online implementation our Battleship game. If
we did not apply the MVC concept to our design, this would present quite a challenge, since
reprogramming most of the software for another platform would possibly be required. Thus the
MVC design pattern allows us flexibility, maintainability and code reusability.

2.3.4 Battleship objects
Now, after considering design issues on a somewhat abstract level, we need to focus our attention
to some of the details pertaining to the design and coding of the Battleship game. Let us start by
considering the objects and classes needed in our Battleship game, and relate these to the MVC
concept.

A list of possible objects was suggested above. They were: Ships, players, shots, boards, score and
fleet. The question now is: Which objects make sense to include in our game, what properties
should they have, and how should they be structured (in classes)?

Some of the suggested objects seem obvious to include right away. A ship is an important part of
the game, since the game cannot be started (or ended) without ships. Also ships have to be placed
on a game board, and the game also cannot be played without a game board. This kind of reasoning
also applies to the players. We now have identified three distinct objects to include in our design
and program: Ship, Board and Player. Remembering our MVC pattern, the Model element is
represented by these three objects, since these three entities also represent the core parts of the
Battleship game which can be briefly summarized as ‘a game where players fires shots at a board,
and (possibly) hits each others ships’. The concept of a fleet was mentioned and it is another
candidate for ‘objectification’. We need some way of tracking the association between ships and
the game board, and for now we will decide on an object of type fleet. This is also discussed in
section 2.3.6.2.

Shots, then, does not really qualify as objects, since they can be seen as an action and not an entity.
If shots fired could have different characteristics, such as velocity, explosive charge and so on, it
would probably make more sense to include a shot as an object in our design. The suggested object,
‘score’, is more a property of a player, than an object in its own right. There is going to be no
advanced ‘score mechanics’ in this game – it’ll just be a number that changes whenever the human
player destroys a ship.

 11

2.3.5 Class design
The ‘business’ part of the game, is, as mentioned, above, the objects board, player and ship.
Together these constitute the Model in the MVC design pattern. Each of these objects have several
characteristics and must be able to perform certain tasks, such as keeping track of ships on the
board, shots fired and the status of each ship on the board, just to mention a few.

Following Cay Hortsmann’s conventions (Horstmann 2007: 336-337) a class should represent a
single concept. This is also the approach used in identifying the objects of the Battleship game.
Following this principle, we can now state three classes for the Model of our game: Board, Ship
and Player, the latter being conceptually similar to what Horstmann describes as an actor
(Horstmann 2007: 336). In addition to these classes we need a class to represent the graphical user
interface of the game; hence the class GUI is created. This class is, in design terms, a representation
of the View and Controller parts, from the MVC design pattern. All graphics display and user
interaction will lie here.

As was outlined in the previous section, some AI functionality is required in the game. We shall
give this a closer look in section 2.4 of the report, but is bears some relevance on class design, or
class inheritance. In future versions of the game, it would make good sense to increase the AI
capabilities of the game. It would make the game more complete and more fun to play. It therefore
seems wise to take this into account when designing the Player class. Also, we already have certain
AI requirements; the automatic placing of ships on the game board. Therefore the AIPlayer class is
created which inherits from the Player class. This way AI related functionality can be implemented
here, while the AIPlayer inherits characteristics from Player, such as player name and player score.

As a way of making sure, that no errors occur when placing ships on the board, or firing shots at
the board, it would make sense to define our own exceptions. This way it would be possible to
ensure that the game keeps running, without seeing weird placement of ships (ships placed on top
each other, for example). Also we can throw an error when attempts are made to fire a shot on a
field that is non-shootable. By throwing these errors we also ensure that the game does not exit due
to runtime errors. As a final note on exceptions, it would also make sense to use inheritance. Of
course, to create any form of custom exception classes, inheritance would be required from the
general Java ‘Exception’ class. As an exercise in the use of inheritance and exceptions, I will define
a Battleship specific ‘BattleShipException’ class with subclasses ‘FieldOccupiedException’ and
‘InvalidShotException’.

2.3.6 Data structures
Since we defined the Board, Player and Ship classes as being central parts of the Battleship game,
comprising the Model abstraction in the MVC design pattern, let us know consider the data
structures herein more carefully. If deemed necessary auxiliary classes will be created as well.

2.3.6.1 The game board
We need a sensible way to represent the game board, the concept which we developed earlier.
There are of course several different ways of representing the game board. One way is to
implement a two-dimensional array, where each array index points to an integer that represents a
certain field and its status. A field can have a ship on it or be empty, and it can at the same time be
hit or not hit. Besides this information the two-dimensional array contains nothing else, if the array
stores the status of a field only as data type integer.

This has one particular advantage. The two-dimensional array is very easy to use, and each element
can be accessed simply by using the x and y coordinates of the game board as array index.
Furthermore, the efficiency and scalability of this two-dimensional array data structure is very
good. It takes constant time to lookup any element, independent of the number of elements stored
in the array.

 12

The disadvantage of implementing such a data structure is its simplicity. If the two-dimensional
array stores only an integer, no other information than field status, can be retrieved. To determine,
for example, which ship is placed on a given coordinate, one must then implement this
functionality elsewhere; it cannot be read directly from the two-dimensional array, unless we
choose an alternative approach by storing not integers in the array, but objects, for example of a
custom type ‘Field’. This way we could store the field status, along with any other necessary
information, such as a reference to a ship, if any.

For simplicity, we will go along with storing the field status in a two-dimensional array, containing
only integers.

2.3.6.2 The group of ships (the fleet)
Another central data structure is the group of ships placed on a board. Because we chose to
implement the two-dimensional array storing only integers, we need some way of identifying the
ship that could potentially lie on a board field. For this purpose we developed the concept of a fleet.
Again we have several options when choosing the appropriate data structure. But since the game
specification does not require us to allow for a random number of ships, efficiency and scalability
is of little importance. Thus it seems sensible to use an array list in the Board class, for storing the
ships associated to the game board. This, then, will be a central data structure for finding ships,
when these are hit or sunk.

2.3.6.3 Coordinates
Derived from the fact that the game board’s central data structure is a two-dimensional array,
where access to a certain board field is achieved through x, y value pairs we need some way to deal
with coordinates, that will be more agile than simply using x and y value pairs all the time. Also we
need a more intuitive way than using x and y values to search for ships. Hence we introduce an
object (and a class) of type coordinate. This is more due to practical coding concerns, than other
design issues. As a side note, this decision is also in line with Hortsmann’s recommendations, since
a coordinate class represents a single concept – a coordinate.

2.3.6.4 Ship memory
Speaking of concepts, in a real world concept of a ship, one would expect that any given ship
would have knowledge of its whereabouts (hopefully the crew has, anyway). Deducting from this
kind of logic, we should implement some data structure in our Ship class for storing the coordinates
of any instance of type Ship. But programming logic can of course be different from real world
logic, and one could argue, that the game board, for each field on it, is aware of ships. This leads us
back to the discussion concerning the data structure used in the Board class. Since we earlier
decided to implement this by means of a two-dimensional array storing integers, we are now forced
to either remake our decision, or choose an appropriate data structure to use in the Ship class, for
storing coordinates. We will do the latter. Based on the fact that a Ship can only have five or less
coordinates (the maximum length of a ship is five, this is equivalent to five coordinates) efficiency
and scalability is of little importance, and therefore it will suffice to use an array list for storing
coordinates.

2.4 AI considerations
In this section we will discuss how to implement the intelligent machine player, and also spend
some time reflecting on other features that would or could be desirable to include in future versions
of the game.

As described earlier, it was decided to add an AIPlayer class to the game design. This is a subclass
of the Player class, and it currently should inherit characteristics such as player name and score,
along with trivial methods to set and get player score and player name and so on. All these

 13

characteristics apply to the artificial player as well as the human player, since, to add to the
excitement of the game, it could be a good idea to display both computer score and human player
score – but in this version of the game it is not a priority.

2.4.1 Placing ships on the game board
What is a priority, on the other hand, is for the computer to be able to place ships on the board, so
that the human player can start shooting and sinking ships. This functionality requirement, along
with the possibility of extending AI functionally in future versions of the game, leads us to the
design of an AIPlayer object and class. And the approach taken in designing this software, partly
based on Hortsmann’s notion of ‘one class – one concept’, suggests that AI related functionality
should be considered part of the AIPlayer subclass, since certain operations pertain only to the
machine player. One could of course consider, again in future versions of the game, to allow the
human player to use parts of the AI functionality. If the game really should be expanded, one could
imagine a ‘quick game’ menu option, where the human player is then able to utilize the automatic
placing of ships on the game board, simply to get started playing right away, not spending any time
placing ships manually on the board.

Regarding automatic placement of ships on the game board the simplest and easiest way to do this,
would probably be to define the properties of the required ship objects in the AIPlayer subclass. In
a simple method call upon execution of the game, placement of ships on the board could then be
initiated.

The properties of any ship are in this version of the game fairly simple. Any given ship can have a
size (length of the ship) and an orientation (it can lie either horizontally or vertically on the board).
The size of the ship can then be represented as a set of coordinates, the number of which
determines the length. It doesn’t require a lot of programming effort to develop some routines that
are able to generate a random starting coordinate for placing the first part of a ship, and then, based
on a random orientation, creating a set of coordinates needed for creating and placing a ship on the
board. And this procedure would then have to be followed for each ship that is to be placed on the
game board. The constraints in this situation will (of course) be that no ship can have any of its
parts on a game board field that’s already occupied by another ship. Also all the parts of a ship
must lie within the borders of the game board.

2.4.2 Other possibilities
A few other relevant observations regarding AI features can be made. One possibility would be to
extend the capability of the ship placing mechanism, and add some tactical sense to the procedure.
For example, measures could be taken, to ensure that each ship has a minimum distance to other
ships, so that ships will not end up right next to each other, which would make it easier for the
human player to sink the ships, once the group of ships was found on the board.

Possibly there would be some advantage to the machine player (i.e. it would make the game harder
for the human player) if thought was given to the distribution of ships on the game board. Without
going into detail here, one could calculate the probability of hitting ships when these are placed in a
certain way, and apply this calculation to the placing of ships.

2.4.2.5 Intelligent distribution of shots
But the placing of ships is only one aspect of the AI functionality that a game of Battleship could
have. Like a human player, the machine player would also have to fire shots at the human player’s
game board. The firing of shots is in itself pretty straightforward if not considering tactics or some
sort of intelligence added to the action. A random set of coordinates within the borders of the game
board could easily be generated, and then the shot could be placed on the board. This would be a
very basic implementation of shooting capabilities, but it would probably not feel very authentic to
play against such a machine – it would simply be too easy to win. Therefore it would make sense to

 14

adopt some systematic approach to firing shots. One way could be to consider the fact that any ship
on the board has a length of minimum 2. Hence it makes no sense to start firing shots at the north-
west corner of the board, and shooting at each and every field of the game board. Instead shots
could be fired at every second field along the borders of the game board, working gradually
inwards on the board after each ‘round trip’. This approach is illustrated in the following figure,
where the X represents a shot and the arrows represent the order in which to shoot at the game
board fields.

Figure 2-8 Possible distribution of AI shots

One thing is the distribution of shots on the game board; another is machine player memory and
playing behaviour. The machine player must, of course, remember the previous shot, but it must
also remember the result of the previous shot. At least if the goal is to simulate human behaviour.
When a shot is fired and a ship is hit for the first time, we will know as humans, that there must be
more of that ship on at least one of the neighbouring game board fields, depending on the number
and type of ships left on the game board. The machine player should therefore be able to simulate
this kind of inductive behaviour. After a successful first shot the machine player should then
consecutively try each of the direct neighbours to the field in question. When another shot becomes
successful, the machine player should then be able to induct, that it now knows the orientation of
the ship it is firing at. In other words, if two shots are successful, and they are oriented horizontally,
the machine player should not fire shots to either the north or south of the previously hit fields, but
only to the east and/or west of the previously hit fields. Hence, after having had a second successful
shot on one of the neighbouring game board fields, the machine player should continue firing in the
direction suggested by the successful second shot. The machine player should then continue
placing shots in this direction, until the ship is sunk, or an unsuccessful shot occurs. If an
unsuccessful shot occurs, and the ship is still not sunk, the machine player should continue firing in
the opposite direction from where the first successful shot occurred, until the ship is sunk. The
following figure shows a section of the game board, and sketches the placing of shots.

Figure 2-9 AI strategy for firing shots

 15

2.4.2.6 Distributing shots - advanced
The paragraph above merely suggests a basic outline of how a reasonable level of intelligence
could be applied to the machine player. It doesn’t take into account how the machine player should
react if an unsuccessful shot occurs for the second time, working in the opposite direction from the
direction initially taken. If this situation occurs it must be because there are several ships adjacent
to one another. Then the machine player, to behave human-like, should also be able to induct this,
and behave like the basic outline described above suggests, for each of the possible ships adjacent
to each other. This would certainly require a more capable machine player, since it must not only
remember the last successful shot; it must also be able to pursue the sinking of all the ships in
adjacency to each other, and finally it must return to the strategic firing of shots, remembering
where the next shot should be played, according to whatever strategy has been laid out for firing
shots. To clarify, the above considerations are sketched in the following figure.

Figure 2-10 AI advanced strategy

2.4.2.7 User experience issues
Some final thoughts on the subject of a machine player suggest certain variations in its behaviour.
If the machine always placed its ships in exactly the same way, the game would soon become
trivial. Thus we need variations in ship placement. To keep the game interesting and more difficult
to predict, also after the first couple of games played, variations should be introduced in the way
the machine player fires shots, i.e. it should not always start firing at the same field, and then
distribute the shots identically around the game board. This would make it easy for the human
player to place her ships in a way that avoids detection.

Finally a couple of minor details could be considered in relation to user experience. Firstly, a small
time delay probably should be introduced after the human players last unsuccessful shot and before
each of the machine players shots. This should be done to simulate ‘thinking’ on behalf of the
machine player. Secondly, it would be interesting to develop some ideas regarding an intended
introduction of errors in the way the machine player behaves. The idea of a computer player that
‘looses its attention’ seems kind of fun, and this concept could perhaps be fostered and developed
further, into a machine player skill level option.

By now it seems obvious, that really good machine player design is a student project in its own
right, and hence no further details will be explored. The avid reader can look up the book
“Artificial Intelligence - A Guide to Intelligent systems“, by Michael Negnevitsky (2004), which is
an introduction to the field of artificial intelligence. This book is also used on the KIIS computer
science course at the University of Roskilde.

 16

3 The Battleship Java code

Up till now the area of interest has been clarified in various perspectives, and some more general
and abstract considerations regarding design of the Battleship program have been made. The reader
has also been presented with a whole range of possible additions that could be made, in order to
develop a more comprehensive solution for the Battleship game. The goal of this chapter, then, is
to look into the more intricate and detailed parts of the actual code that was developed in line with
the requirements stated earlier. The design process spawned several classes, all of which were
described earlier. To provide an overview of the code design and structure, the following UML
diagram illustrates the classes developed and the relationship between them. Furthermore, methods
and class fields have been included in the diagram to provide a schematic overview of the complete
project code.

Figure 3-1 Dependencies and inheritance

Recalling the fact, that the core parts of the Battleship program are considered to be the Board,
Player and Ship classes, those classes, their data structures and methods will primarily be
investigated and explained here. To some extent other features of the software will be considered as
well, since especially the GUI class contains methods that are best understood when accompanied
by a written explanation.

 17

3.1 The Board class
Decided upon earlier, the Board class contains a couple of vital data structures and methods that act
as interfaces to these classes. This class is vital to the game, in that it provides the players (in this
version only the AIPlayer) with the ability to place ships on and fire shots at the game board. It is
also responsible for storing the status of each of the game board fields. Observe the following code
snippet:

// Default no. of fields in board grid
private static int boardX = 10;
private static int boardY = 10;

// Field status array
// 0: empty, not hit
// 1: empty, but hit
// 2: not empty, not hit
// 3: not empty, but hit
private static int[][] fieldStatus;

Figure 3-2 fieldStatus array - Board.java

The class field, or variable, fieldStatus, is a two-dimensional array, storing the status of each
game board field as type int. This is, as described earlier, a very simple and efficient solution for
representing the game board. The limitation is, of course, that other objects cannot be stored in the
array; hence we are forced to develop an alternative solution for associating ships with fields on the
game board. Also notice, the variables boardX and boardY. These actually determine the game
board dimensions and are preset with a value of 10, which is typical for the Battleship game.
Alternative sizes can be supplied to the constructor of the Board class.

Since fieldStatus is the main data structure for representing the game board, several methods
have been developed to provide access to it. These methods handle the placing of ships on, and
firing of shots at, the game board.

The operation of placing a ship on the board has been split into 2 methods, as can be seen in these
pieces of code:

public boolean canPlaceShip(Ship theShip) {
 Iterator<Coordinate> iterate = theShip.coords.iterator();
 while(iterate.hasNext()) {
 Coordinate fieldCoord = iterate.next();
 int x = fieldCoord.getX();
 int y = fieldCoord.getY();
 if(x >= boardX || y >= boardY) {
 return false;
 }
 // If ship allready in this field
 if(fieldStatus[x][y] != 0) {
 return false;
 }
 }
 return true;
 }

Figure 3-3 The canPlaceShip() method - Board.java

 18

public void placeShip(Ship theShip)
 throws FieldOccupiedException {
 Iterator<Coordinate> iterate = theShip.coords.iterator();
 while(iterate.hasNext()) {
 Coordinate placeCoord = iterate.next();
 int x = placeCoord.getX();
 int y = placeCoord.getY();
 // If ship allready in this field
 if(fieldStatus[x][y] != 0) {
 throw new FieldOccupiedException(placeCoord, "Field
allready occupied");
 }
 else {
 // Set fields to not empty, not hit
 fieldStatus[x][y] = 2;
 }
 }
 // Add the ship to the fleet
 fleet.add(theShip);
 }

Figure 3-4 The placeShip method() - Board.java

The methods illustrated in the above examples demonstrate the ways in which the core data
structures are accessed. Besides the fieldStatus array we see the use of the ArrayList<Ship>
fleet data structure that stores all ships currently on the game board. This data structure will be
examined shortly. Both the canPlaceShip() and placeShip() methods take an object of type
Ship as an argument, as can be observed from the figures. These methods provide a way of making
sure a ship can actually be placed on a given location – specified by the Ship parameter. First the
method canPlaceShip() must be called and, depending on its return value (true or false),
placeShip() can be called with an identical parameter. Should this procedure fail (if other parts
of the Battleship program neglects to query canPlaceShip()), the placeShip() method is
designed in such a way, that it handles this situation by throwing an exception, if a ship is already
present on the specified game board fields. To summarize, the order in which these methods are
called matters.

Other routines exist for accessing the fieldStatus array. The most important ones, that remains
to be examined, are the public boolean canPlaceShot(Coordinate coord) and public
int placeShot(Coordinate coord) methods. They are similar in structure to the methods
that handle placing of ships, in the sense that the order in which they are called matters.
Furthermore the placeShot() method throws an exception if a coordinate it receives is invalid.

An important feature in the placeShot() method, is illustrated by the following code segment,
which belongs inside the method.

// We have a succesful shot, and the ship must remember that it
// has been hit
for(Ship ship : fleet) {
 if(ship.hasCoordinates(coord)) {
 ship.shipHit(coord);
 }
}

Figure 3-5 A ship is hit – Board.java

The code in Figure 3-5 is executed whenever a shot is successful, and it is an example of the
concept developed earlier in this report, that a ship should be able to remember its own status. It is
also evident here, that the fleet array list is used. This means, that for each of the ships stored in
the array list fleet the coordinate on which the shot was fired is searched for. When found the
ship with the coordinate in question must register that it has been hit. This is what the shipHit()
method of the Ship class does, as will be shown shortly.

 19

Finally, three other methods exist that are all important to be aware of. They all operate on the
fleet data structure, as well the Ship object. Their purpose is to determine the name of the ship
that was destroyed (if any), get the points for the ship that was destroyed (if any) and determine
whether the game is over or not (if there are no more ships left on the game board). Their
signatures are as follows:

public String shipNameIfKill(Coordinate theCoord)
public int shipPointsIfKill(Coordinate theCoord)
public boolean isGameOver()

Figure 3-6 Method signatures - Board.java

Common for all these methods, is that they must be called after each shot fired at the board, and in
the order listed. This means, that the only way of finding out the name of a ship (mine sweeper,
battleship etc.) is to call the shipNameIfKill() method which checks whether a ship was sunk
as a consequence of any previous shot. If a ship indeed was sunk it returns the name of that ship,
otherwise it returns an empty string. Similarly, the shipPointsIfKill() method returns the
number of points for a ship that was destroyed. In addition to this it then deletes the ship in
question from the fleet array list. This leads to the final method, isGameOver(). Since a ship
that is destroyed is also deleted from the fleet array list, isGameOver() can simply check
whether the fleet array list is empty. If it is, the game is over, and this method will return true.

3.2 The Ship class
Most of the code contained in this class is self-explanatory. The code also has Javadoc comments
embedded, from which the issues not discussed here, can be inferred. A brief summary will,
however, be provided here, after which the core data structure and methods will be described.

When examining the code in Ship.java, one will notice the presence of 5 constructors. Each
constructor takes a number of Coordinate objects as parameter, and also a String representation of
the name of the ship. Based on the number of parameters supplied to the constructor of this class, it
is possible to set the points a player should be given for sinking a ship. If the number of Coordinate
objects is 5, the type of this ship must be an aircraft carrier, so instead of supplying the name of the
ship as a parameter to the constructor, it could just as easily be hard coded in the constructors of
this class.

The core data structures, and methods for accessing it, are outlined in the following figure, showing
field initialization, and method signatures. Coordinates are added to coords in the constructors.

// An array list for storing this ships coordinates
ArrayList<Coordinate> coords = new ArrayList<Coordinate>();

// Registers that this ship has been hit
public void shipHit(Coordinate coord)

// Checks if there are any parts left of this ship
public boolean noMoreShip()

// Tests whether this ship is placed on these coordinates
public boolean hasCoordinates(Coordinate theCoord)

Figure 3-7 Data structure and methods - Ship.java

As have been stated several times throughout the report each ship must remember its status. The
array list coords stores this information, and through the mutator method shipHit() the status
information is then manipulated.

 20

The method hasCoordinates() utilizes the Coordinate.equals() method, which returns
true if both the x and y values are equal. The hasCoordinates() method is utilized, when a shot
has been fired (the Board.placeShot() method) and the status of the game board field in
question indicates that a ship is present. The hasCoordinates() method is then called on each
ship in the fleet array list, to search for the ship with the coordinates of the shot being fired.
When this ship is found, the shipHit() method, delete the coordinates of the ship that was hit,
from the array list coords. This way the noMoreShip() method can easily determine if an object
of type ship has any remaining parts, since the coords array list will be empty. This idea is similar
to the isGameOver() method of the Board class. The following figure illustrates the structure of
these method calls in the Board, Ship and Coordinate classes. Since the GUI class represents the
Controller part of the MVC design pattern, this has been included in the graphical representation.

Figure 3-8 Controller: Method call sequence

3.3 The Player and AIPlayer classes
The Player class is very simple and self-explanatory. It just contains 2 class fields. A class field of
type integer, to store a player’s score, and a class field of type String to store a player’s name. A
couple of methods exist, to get and set the values of these class fields.

The AIPlayer class inherits these class fields and methods, and thereby shares these characteristics.
In addition to this, the AIPlayer class contains an important method, generateShips(), that is
the only AI functionality included in the game, as was discussed in the previous chapter. This
method contains a block of code for each ship that is to be placed on the game board. For each ship,
the code block constructs an object of type Ship, with random orientation and appropriate length.
Then the canPlaceShip() method of the Board class is called to determine if a ship can be
placed on the board. If it can, the placeShip() method of the Board class is called, and the code
block exits, continuing to place the next ship. If the ship cannot be placed, another ship is created,
until it can be placed.

3.4 The GUI class
Moving on from the Model part of the MVC design pattern, a few comments is in place for the
View and Controller parts. The details of this class will not be laid out here rather a few central
features will be discussed.

First and foremost, the class contains some configuration options, in the form of static class fields.
The ones requiring some explanation are listed in the following figure.

// Constant (pixels) used to draw fields that fits screen
// resolution of 1024 * 768
// Also used when translating mouse click coordinates to row
// and column coordinates
// Used also for checking if a click on the board is valid
// 100 / CONSTANT must produce a real int number, ie. 1, 2, 4,
// 5, 10, 20, 25, 50 are valid numbers
private static final int CONSTANT = 50;

// Distance in pixels from NW corner of Center area to NW
// corner of guiBoard

 21

private static final int gridOffsetX = 15;
private static final int gridOffsetY = 15;

// Offset in pixels that, for each field square, is non-
// clickable
private static final int nonClick = 5;

Figure 3-9 Configuration fields - GUI.java

The code comments, denoted by ‘//’, explains a lot about the different class fields. Perhaps the class
field CONSTANT is the only variable requiring further explanation.

3.4.1 The CONSTANT class field
The reason for introducing a constant in the GUI class has to do with the approach taken in drawing
the game board fields on the screen. Since each of these game board fields is not represented as a
separate container object, the role of the CONSTANT field is to draw the game board grid, with fields
of appropriate size in pixels. For example, a size of 100 pixels (width and height) for each field is
too large for a computer screen with a resolution of 1024 x 768 pixels. So an option to adjust the
size of the game board on screen is needed.

Since grid fields are not contained within individual container objects, we cannot associate any
event listeners with each field. This introduces a need for translating the screen coordinates (from
mouse clicks) into coordinates that can be used for passing to the methods of the Board class. This
is done by relying on calculations that use the value of the CONSTANT field, along with the integer
data type of Java, so decimals can be ignored. The following figure gives an example of such a
calculation.

int y = ((realy - gridOffsetY) * (100 / CONSTANT)) / 100

Figure 3-10 Calculation with CONSTANT class field

The ‘trick’ of this calculation is that by dividing the number 100 with the CONSTANT we take into
account that a board field size of 100 x 100 pixels isn’t possible. The translation from the clicked
coordinates to the game board coordinates would have been easier, had this been the case; the first
digit of each coordinate value could have been extracted to use as the game board coordinate. The
calculation listed solves this problem, by multiplying the coordinate in question (taking into
account the offset from NW corner, if present) with the relationship between the constant value
and 100. This yields a number which by simple division by 100 can be considered a valid
coordinate for a game board field, when it is of data type integer, since this data type doesn’t store
decimals.

3.5 The Coordinate class
This class merely serves as a tool for representing coordinates; hence it has only 2 central class
fields, which are both integers, representing an x value and a y value. The only thing left to note
about this class, then, is the definition of an equals() method, that overrides Java’s default
definition. The Coordinate.equals(Coordinate coord) method returns true if 2 objects of
type Coordinate have equal x and y values. According to common Java principles (Horstmann
2007: 716), when one defines a custom equals() method, one must also define a compatible
hashCode() method, and so this has been done.

3.6 Initializing the Battleship game
After considering various important aspects of the software, the following figure illustrates the
complete initialization procedure when executing the game. The numbers indicate the order in
which instantiation of new objects (or method calls) must occur. The dashed line indicate when one

 22

of the previously instantiated objects are passed to the constructor of another class. Class methods
and fields have been left out, unless instantiation depends on them, or they are vital to the game.
The following initialization is also used in Tester.java, the class containing a main() method for
executing the game.

Figure 3-11 Initialization sequence

 23

4 Install and run the Battleship game

This short chapter contains instructions on installing and running the Battleship game. The steps to
take in order to get the program running, depends on the environment in which it is installed. The
instructions presented here, are for installation on a Windows PC, with a recent version of
Windows (XP or Vista). If installing on GNU/Linux or UNIX, there are no drive letters, and a full
path is represented as something similar to: /home/loft/src. Also UNIX and GNU/Linux are
case sensitive environments. If these issues are taken into account, the instructions in this chapter
will get the Battleship program up and running on GNU/Linux and UNIX as well.

For all installation scenarios, at least version 1.5 of the Java Runtime Environment (JRE) must be
installed on the computer. The latest version can be obtained from http://www.java.com. If you
intend to compile the source code yourself, then install the Java Development Kit (JDK), which
will also install the JRE.

Under Resources you can see where to get both source code and precompiled Java .class files. Both
packages include the custom Swing package, developed by, and courtesy of, Mads Rosendahl,
University of Roskilde.

4.1 Installation and execution in Eclipse
If the Battleship game is to be installed in an Integrated Development Environment (IDE), the
required installation procedure of course depends on the particular IDE. For installation into an
Eclipse environment, obtain the source code (see Resources below), and use Eclipse’s ‘Import…’
function (located under the ‘File’ menu), and adjust your project settings to support the Battleship
game. You must also import the JCanvas, JEventQueue and JBox class files developed by Mads
Rosendahl of Roskilde University, into the same project as the Battleship game. Finally you must
make sure, that the project has access to the default Java Runtime Environment System Library, but
this is normally created by default in Eclipse. To execute and run the Battleship program from
within Eclipse, one would typically have to open the class containing the main() method
(Tester.java), and then hit Shift + Alt + X and then J.

4.2 Using precompiled binaries
If you haven’t got an IDE installed on your machine, the easy way to get up and running, is to
download the pre-compiled version of the game (see under Resources). This way you get a
compressed bundle of Java .class files, which you will need to unzip (the unzipping functionality is
built in to almost all fairly recent operating systems). Unzip the package into a known location and
then open a terminal (Unix/Linux) or command prompt (Windows). Then type cd <path-to-
save-dir> and check that this directory contains one folder: dk. <path-to-save-dir> is the full
path, including drive letter, to the directory to which you unzipped the downloaded package. To
execute the Battleship game, type the following command: java

dk.ruc.loft.battleships.Tester and play the game.

4.3 Compiling from source
To compile the source code on your own, obtain the downloadable source code (see under
Resources). Unzip the compressed file to a directory somewhere on your computer, and then open
a terminal or command prompt and type cd <path-to-save-dir> and check that this directory
contains one folder: dk. <path-to-save-dir> is the full path, including drive letter, to the
directory to which you unzipped the downloaded package. Execute the following command to
compile the source code: javac dk\ruc\loft\battleships* and when this command
finishes, execute java dk.ruc.loft.battleships.Tester and play the game.

 24

4.4 Resources
Java Runtime Environment or Development Kit: http://www.java.com/
Eclipse IDE: http://www.eclipse.org/downloads/
Battleship program .class files: http://akira.ruc.dk/~loft/battleship_class.zip
Battleship program source code: http://akira.ruc.dk/~loft/battleship_source.zip

Mads Rosendahls Swing classes: http://akira.ruc.dk/~madsr/swing.html

 25

5 Playing Battleship

Since the previous chapters have all been concerned with the design and coding of the Battleship
game, this chapter is going to examine and document that the design and code actually works and is
reliable. Initially, potentially critical issues will be discussed – what could go wrong and what are
possible flaws in the software? Then a few remarks about adequate software testing will be made –
what is adequate testing? Finally the approach taken in this chapter is described – how is the
Battleship game tested?

5.1 Testing software
As have been stated earlier in this report, the core parts of the Battleship game are the Board,
(AI)Player and Ship classes. From a user perspective, also the GUI class is central since this
delivers the whole interface to view and control the game (which again brings to mind the Model-
View-Controller concept described earlier). In this chapter the focus will be on the above
mentioned classes, but in a real world scenario all classes would require thorough testing.

5.1.1 Testing core components
Section 2.3.5 (Class design) described the data structures developed for the Battleship game; the
Board class is vital to the game, hence consideration must be given to possible errors that could
occur here. Obvious issues of importance are the placing of ships and shots. All ships and shots
should lie or be fired within board boundaries, and ships should not be able to lie on top of each
other. Since a common mistake in programming, according to Horstmann (2007: 233), is off-by-
one errors, one should ensure that placing ships or firing shots at the outermost fields of the game
board work like they are supposed to. Throughout the programming phase of this project, I’ve been
using console output (system.out.println()) to ensure that all these critical cases do not
generate errors (‘on-the-fly unit testing’ would be an appropriate term for this). For example I
deliberately tried placing ships on occupied game board fields, and outside the game board.

Other core features of interest are: The method AIPlayer.generateShips(), the array lists
Ship.coords and Board.fleet and their accessor and mutator methods, and several other
methods pertaining to the GUI class, for example the translation of mouse clicked coordinates to
game board coordinates. Also the validation of mouse clicks in relation to field margins is
important. The list of critical cases to test is long, and a systematic approach would be required if
any guarantees about software stability would have to be issued (if such guarantees can ever be
issued?). One approach would include testing all classes in isolation (unit testing), and for each
feature added to a class, a new feature should be added to the tester class, a least if full test
coverage is the goal. This way a whole library of test cases would be compiled over time, and
comprehensive white-box testing would then be achieved.

5.1.2 Black-box testing the Battleship game
This report will not include unit testing of data structures and methods; rather an attempt will be
made to simplify the testing procedure, by displaying a sequence of 6 screenshots, obtained from
playing a complete round of Battleship – in essence black box testing. The ships in this game of
Battleship have been placed by the AIPlayer, but a scenario has been chosen, where whole ships
and parts of ships have been placed on the outskirts of the game board. Also the 6 screenshots will
demonstrate the way incorrect user input will be handled (if the player clicks too close to a
neighbouring field or fires at an already hit field). Furthermore the screenshots should demonstrate
that the above mentioned data structures (and associated methods) work appropriately – if they did
not work, the placing, hitting and sinking of ships would not succeed. Finally, by using screenshots,
it is possible to convey the look and feel of the Battleship game, which is important from a user
perspective.

 26

The outlined testing procedure will of course not guarantee that the software is completely free of
bugs; hopefully it will aid in convincing the reader that the software is stable and reliable.

5.2 Playing a round of Battleship

5.2.1 Starting the game

Figure 5-1 Initial screen

This screenshot shows the first screen that a player is presented with. It is the Battleship game
board, which consists of 10 x 10 fields. Notice the ‘0’ on the right – this displays the players score.
Also notice the text at the bottom ‘Start shooting…’ – this area relays messages to the player.
Finally, notice that the game board has a small offset to the north-west corner of the window. This
shows the configuration of the gridOffsetX and gridOffsetY class fields in the GUI class; in
this example they hold a value of 15 (pixels) each.

 27

5.2.2 A ship was hit

Figure 5-2 Shots fired and a ship was hit

Now the player has started playing the game. Observing the game board in Figure 5-2, 6 fields
have been hit (they are brighter than the other game board fields). Upon firing the seventh shot, the
player hits part of a ship. This information is relayed to the player, through the status message at
the south-west corner of the window, and also through the red colour of the field upon which the
ship is placed.

 28

5.2.3 A ship was sunk

Figure 5-3 Entire ship destroyed

In Figure 5-3 a situation occurs, where the player actually sinks a ship. A row of 4 fields are now
drawn in a red colour indicating that a ship was present here. The player is also informed about her
success in the status message area, and about the type of ship that she sunk. The status message
also tells the player about the points assigned for sinking this particular ship, and, observing the
east area of the game window, the players score has been incremented by the number of points
given for the enemy’s battleship, in this case 40.

 29

5.2.4 Field already hit

Figure 5-4 Shooting at previously hit field

If the player accidentally fires a shot at an already hit game board field, a message will be
displayed stating that it is not possible to fire at this particular area. If the player tried to fire at a
field that previously held a ship, the message given would be identical.

 30

5.2.5 Too close to field border

Figure 5-5 Clicking within the no-click area

In this screenshot an example is given of how the game reacts when a player clicks too close to a
field’s border. As always, information is displayed in the south-west area of the game window.
Currently the margin value is 5 pixels; it can be configured by adjusting the value of the class field
nonClick in the GUI class. This feature exists so the player (and the developer) can always feel
sure about which field she actually clicked in.

 31

5.2.6 All ships sunk – game over!

Figure 5-6 All ships are gone, and game is over...

As can be seen in the status message field, the game is now over. This information is displayed
since the player has destroyed the last remaining ship on the game board. Several things are worth
noticing. First of all, the score have steadily been incremented since the first ship was sunk. This
can easily be verified, since each ship gives a number of points equal to its length multiplied by 10.
Thus 20 + 30 + 30 + 40 + 50 equals 170, the final score. Also this screenshot illustrates the fact that
the ships are placed all over the board: They can lie entirely on the outer fields of the game board,
or they can be only partly located on outer fields. Ships are also oriented in both horizontal and
vertical directions, and they don’t lie on top of each other, or outside the game board. Also the
above figure illustrates, that all 5 ships are present, as they indeed should be.

5.3 Final notes on testing
This final screenshot concludes the black-box testing procedure. The Battleship game has been
successfully played from start to end; without errors. Ships have been placed, hit and sunk, points
have been given, user input errors have been committed and the game is over. To conclude that the
game is bug-free would be risky, but functional vital components ensure that the game and game
features work, also when considering possible pitfalls as was outlined in the previous section. The
black-box testing performed in this chapter, should render the fulfilment of the objectives stated in
the beginning of this report probable.

 32

6 Concluding remarks

Through examining the field of interest, Battleship games, and formulating the requirements
needed for a basic implementation of such a game, a plausible software design was arrived at,
decided and implemented.

The preliminary investigations concerning previous implementations of the Battleship game,
revealed a fairly wide range of applications. At this point in time, of course, the obvious platform
for implementing this type of game is in an online, web based context, as was described earlier.
Although different flavours exist the characteristics and game play of the various implementations
were very similar, if not identical, between the examples that were examined in this report. In this
manner, the requirements of this Battleship game were not different from other implementations,
although they might have been somewhat minimal.

Stipulated by the requirements stated in the projects preliminary phase, certain possible design
alternatives were discussed. This discussion revealed that certain key decisions in the design
process, will dictate other choices later on in the process, as the decision to use a certain data
structure for storing the game board status showed. This illustrates the importance of working
thoroughly when contemplating software designs. The discussion on design also clearly showed
that there are several possible ways to design software, and that it is hard, if not impossible, to
decide on a single best option. Sometimes you just have to make an informed choice, carefully
weighing benefits and drawbacks.

By performing sound analysis and carefully thinking about software design, this project produced a
functional and Java coded Battleship game, as was witnessed in the previous chapter of the report.
The game can be installed, executed and run, with the computer automatically placing the ships on
the game board, enabling a player to shoot at ships while scoring points.

The design process proved its justification, as did the Java language, since they both assisted in
creating a design and code that fulfils the goals of this project.

If development of the Battleship game should continue in the future, it would certainly be
interesting to look at the possibilities for implementing more AI functionality, similar to that of
section 2.4.2, where several desirable options were discussed. It would also make sense, to develop
a manual ship placing functionality, so the human player would be able to place ships herself. If the
Battleship game featured both AI functionality and manual placing of ships, it would be a really
complete solution that could be distributed on the web or run as an applet on one’s homepage.

6.1 The work process
When studying at the University of Roskilde, it is very common, although not compulsory, to work
on student projects in groups of 3-5 students. This way one’s people skills are trained as well as
ones academic skills. Also there is the advantage of having other people to discuss with, the
challenges involved in working on a project. If you’re having difficulties figuring something out,
chances are that one of the other members of the group will have some useful ideas to contribute to
solving the problem at hand. Several perspectives on the project will of course exist, probably as
many perspectives as there are students in the group.

That being said, I chose to work on my own. There are many advantages to this, that I feel
outweigh the benefits of collaborating with others. First of all, a lot of time can be saved. Decisions
can be made when necessary, and not only when the whole group is together. Secondly, the work
does not need to be planned nearly as much. There is no risk of redoing someone else’s work, and
random parts of the project can be started whenever it is convenient to do so. Also, on the logistical
side of things, a lot of time can be saved planning when and where to meet next and the schedules
of all the group members do not have to be taken into account.

 33

I feel that this project in its coding phase, has shared a lot of characteristics with the eXtreme
Programming development process, as Xiaoping Jia sees it (Jia 2002: 15-16). From the very first
part of the code written, I have always had a functional software system. It has been very simple in
the beginning, but the software has gradually become more and more comprehensive. So this
approach is actually an iterative process, always keeping the code executable, and gradually
expanding it. Between these iterations, I have frequented a piece of paper using a pencil –
sketching, drawing and calculating software features. This way, all aspects of the design process
have been part of each iteration. A part of the eXtreme Programming development process, that I
highly cherish, is the notion of sane work hours, simply because it makes sense not to work when
already exhausted. A great deal of errors will sneak into the code, and there’s only one person (me)
to debug the software later.

The report has been challenging to write, since this is my first Computer Science project. I have a
background in Social Science and have adopted a certain way to present ideas and write student
projects. Thanks to the project supervisor, Mads Rosendahl, I didn’t panic completely. I hope the
report explains and clarifies the ideas I’ve had regarding the Battleship game.

 34

7 Literature and sources

Books:

Horstmann, Cay: Big Java, 3rd Edition, John Wiley & Sons, Inc., 2007. ISBN: 9780470105542

Jia, Xiaoping: Object Oriented Software Development using Java, 2nd Edition, Addison-Wesley,
2002. ISBN: 0201737337

Web:

Flash object Battleship implementation:
http://www.battleships.f-active.com/
- Content present on 11th of December 2007.

Two-player Battleship implementation:
http://spil.tv2.dk/spil/slagskibe
- Content present on 13th of December 2007.

Model View Controller concept:
http://en.wikipedia.org/wiki/Model_view_controller
- Content present on 11th of December 2007.

Information on the history of the Battleship game:
http://www.gamesmuseum.uwaterloo.ca/VirtualExhibits/Whitehill/Battleship/index.html
- Content present on 11th of December 2007.

Information on the history of the Battleship game:
http://neweranet.com/battleship/battleshipinfo.htm
- Content present on 11th of December 2007.

Information on the history (and rules) of the Battleship game:
http://en.wikipedia.org/wiki/Battleship_(game)
- Content present on 11th of December 2007.

Client/server multiplayer implementation (‘batalla naval’):
http://batnav.sourceforge.net/batnav-en.html
- Content present on 11th of December 2007.

Other resources:

Java Runtime Environment or Development Kit: http://www.java.com/
Eclipse IDE: http://www.eclipse.org/downloads/
Battleship program .class files: http://akira.ruc.dk/~loft/battleship_class.zip
Battleship program source code: http://akira.ruc.dk/~loft/battleship_source.zip

Mads Rosendahls Swing classes: http://akira.ruc.dk/~madsr/swing.html

35

Appendix A – Java code

This appendix contains the Java code that was developed for the Battleship game. The appendix
has been structured by means of an extra index – listing the different class files and their page
numbers in this section of the report. This index can be seen at the bottom of this page, and on the
following page.

To recap, observe the following diagram of the class structure (it was also presented in section 3).
A Tester class has now been added. This class contains the main() method for executing the
Battleship game.

It was stated earlier in the report, that the core components of the Battleship game were the Board,
Ship, Player, especially AIPlayer and GUI classes. Along with the Tester class, these are listed
first, as they are considered a priority.

The Tester class – Tester.java page 1

The Board class – Board.java page 2

The Ship class –Ship.java page 6

The Player class – Player.java page 9

The AIPlayer class – AIPlayer.java page 10

The GUI class – GUI.java page 14

The code presented in this appendix, is using the usual code typeface. Unfortunately the code has
no syntax highlighting. There are a few line breaks in the code sections, as they are presented here,
on A4-sized pages. I have eliminated line breaks when I felt it was distracting to read, primarily
inside Javadoc comments. I have left those line breaks that occur inside methods or constructors as
they are. I feel that the ‘;’ ending the line suggests clearly to the reader when the line ends. Each
class has its own sequence of line numbers in the left margin – this is of little importance to the

36

reader, but should one wish to discuss the code with others, it is convenient to refer to line numbers
instead of only page numbers.

Finally we have the auxiliary classes. These are the Coordinate and exception classes. These can be
found on the pages listed below.

The Coordinate class – Coordinate.java: page 19

The Exception class – BattleshipException.java: page 20

The FieldOccupiedException class – FieldOccupiedException.java: page 21

The InvalidShotException class – InvalidShotException.java: page 22

1

1. The Tester class – Tester.java 1
 2
package dk.ruc.loft.battleships; 3
 4
public class Tester { 5
 6
 public static void main(String[] args) { 7
 Board theBoard = new Board(); 8
 9
 AIPlayer ai = new AIPlayer(); 10
 11
 Player player = new Player("Player"); 12
 13
 ai.generateShips(theBoard); 14
 15
 GUI theGUI = new GUI(theBoard, player); 16
 17
 theGUI.drawBoard(); 18
 19
 theGUI.setEventQ(); 20
 21
 /* Print board on console 22
 for(int y = 0; y < theBoard.getYdim(); y++) { 23
 System.out.println(); 24
 for(int x = 0; x < theBoard.getYdim(); x++) { 25
 int tmp = theBoard.getFieldStatus(x, y); 26
 System.out.print("[" + tmp + "]"); 27
 } 28
 } 29
 */ 30
 } 31
} 32

2

2. The Board class – Board.java 1
 2
package dk.ruc.loft.battleships; 3
 4
import java.util.Iterator; 5
import java.util.ArrayList; 6
 7
/** 8
 * Class that represents the game board. 9
 */ 10
public class Board { 11
 12
 // Default no. of fields in board grid 13
 private static int boardX = 10; 14
 private static int boardY = 10; 15
 16
 // Field status array 17
 // 0: empty, not hit 18
 // 1: empty, but hit 19
 // 2: not empty, not hit 20
 // 3: not empty, but hit 21
 private static int[][] fieldStatus; 22
 23
 // An arraylist for storing the ships 24
 // Need this collection for keeping track of 25
 // ships their points, names and status (hit or sunk) 26
 ArrayList<Ship> fleet = new ArrayList<Ship>(); 27
 28
 /** 29
 * Constructs board with default size and initialize status fields 30
 */ 31
 public Board() { 32
 // Set array size 33
 fieldStatus = new int[boardX][boardY]; 34
 // Initialize all fields as empty, not hit 35
 for(int i = 0; i < boardX; i++) { 36
 for (int j = 0; j < boardY; j++) { 37
 fieldStatus[i][j] = 0; 38
 } 39
 } 40
 } 41
 42
 /** 43
 * Constructs a board of given size and initialize status fields 44
 * @param the x size 45
 * @param the y size 46
 */ 47
 public Board(int x, int y) { 48
 boardX = x; 49
 boardY = y; 50
 // Set array size 51
 fieldStatus = new int[x][y]; 52
 // Initialize all fields as empty, not hit 53
 for(int i = 0; i < boardX; i++) { 54
 for (int j = 0; j < boardY; j++) { 55
 fieldStatus[i][j] = 0; 56
 } 57
 } 58
 } 59
 60
 /** 61
 * Get field status 62
 * @param x coordinate 63
 * @param y coordinate 64

3

 * @return the status of x, y field 65
 */ 66
 public int getFieldStatus(int x, int y) { 67
 return fieldStatus[x][y]; 68
 } 69
 70
 /** 71
 * Check if it's OK to place ship 72
 * @param ship object 73
 * @return true if ship can be placed, false if not 74
 */ 75
 public boolean canPlaceShip(Ship theShip) { 76
 Iterator<Coordinate> iterate = theShip.coords.iterator(); 77
 while(iterate.hasNext()) { 78
 Coordinate fieldCoord = iterate.next(); 79
 int x = fieldCoord.getX(); 80
 int y = fieldCoord.getY(); 81
 if(x >= boardX || y >= boardY) { 82
 return false; 83
 } 84
 // If ship allready in this field 85
 if(fieldStatus[x][y] != 0) { 86
 return false; 87
 } 88
 } 89
 return true; 90
 } 91
 92
 /** 93
 * Places a ship on the board 94
 * @param ship object 95
 */ 96
 public void placeShip(Ship theShip) 97
 throws FieldOccupiedException { 98
 Iterator<Coordinate> iterate = theShip.coords.iterator(); 99
 while(iterate.hasNext()) { 100
 Coordinate placeCoord = iterate.next(); 101
 int x = placeCoord.getX(); 102
 int y = placeCoord.getY(); 103
 // If ship allready in this field 104
 if(fieldStatus[x][y] != 0) { 105
 throw new FieldOccupiedException(placeCoord, "Field allready occupied"); 106
 } 107
 else { 108
 // Set fields to not empty, not hit 109
 fieldStatus[x][y] = 2; 110
 } 111
 } 112
 // Add the ship to the fleet 113
 fleet.add(theShip); 114
 } 115
 116
 /** 117
 * Check if it's OK to place shot 118
 * @param coordinate to hit 119
 * @return true if OK to place shot, false if not 120
 */ 121
 public boolean canPlaceShot(Coordinate coord) { 122
 int x = coord.getX(); 123
 int y = coord.getY(); 124
 int field = fieldStatus[x][y]; 125
 // If field value 0 or 2, it's OK to shoot 126
 if(field == 0 || field == 2) { 127
 return true; 128

4

 } 129
 return false; 130
 } 131
 132
 /** 133
 * Places shot on the board 134
 * @param the coordinates to hit 135
 * @return the result (1 or 3 - the two possible outcomes) 136
 */ 137
 public int placeShot(Coordinate coord) 138
 throws InvalidShotException { 139
 int x = coord.getX(); 140
 int y = coord.getY(); 141
 // If this field has been hit before, throw exception 142
 if(fieldStatus[x][y] == 1 || fieldStatus[x][y] == 3) { 143
 throw new InvalidShotException(coord, "This field has allready been hit"); 144
 } 145
 else if(fieldStatus[x][y] == 0) { 146
 fieldStatus[x][y] = 1; 147
 return fieldStatus[x][y]; 148
 } 149
 else { 150
 fieldStatus[x][y] = 3; 151
 // We have a succesful shot, and the ship must remember that it has been 152
 // hit 153
 for(Ship ship : fleet) { 154
 if(ship.hasCoordinates(coord)) { 155
 ship.shipHit(coord); 156
 } 157
 } 158
 return fieldStatus[x][y]; 159
 } 160
 } 161
 162
 /** 163
 * Get board X dimension 164
 * @return an int representing the no of fields on X-axis 165
 */ 166
 public int getXdim() { 167
 return boardX; 168
 } 169
 170
 /** 171
 * Get board Y dimension 172
 * @return an int representing the no of fields on Y-axis 173
 */ 174
 public int getYdim() { 175
 return boardY; 176
 } 177
 178
 /** 179
 * Gets the name of a ship if it was destroyed. This method must be called 180
 * after every shot. 181
 * @param the field coordinate 182
 * @return the name of the ship it is was destroyed (if noMoreShip returns 183
 * true). 184
 * Or an empty string if ship was not destroyed. 185
 */ 186
 public String shipNameIfKill(Coordinate theCoord) { 187
 for(Ship ship : fleet) { 188
 if(ship.noMoreShip()) { 189
 return ship.getName(); 190
 } 191
 } 192

5

 return ""; 193
 } 194
 195
 /** 196
 * Gets the points for the ship if it was destroyed, and deletes the ship from 197
 * the fleet. 198
 * This method must be called after every shot, and after the shipNameIfKill() 199
 * method. 200
 * @param the coordinate of the ship 201
 * @return the points for ship, or 0 if it was not destroyed. 202
 */ 203
 public int shipPointsIfKill(Coordinate theCoord) { 204
 for(int i = 0; i < fleet.size(); i++) { 205
 if(fleet.get(i).noMoreShip()) { 206
 int retval = fleet.get(i).getPoints(); 207
 fleet.remove(i); 208
 return retval; 209
 } 210
 } 211
 return 0; 212
 } 213
 214
 /** 215
 * Game is over if fleet arraylist is empty 216
 * @return true if game is over, false if not 217
 */ 218
 public boolean isGameOver() { 219
 if(fleet.isEmpty()) return true; 220
 else return false; 221
 } 222
} 223
 224

6

3. The Ship class –Ship.java 1
 2
package dk.ruc.loft.battleships; 3
 4
//import java.util.Set; 5
//import java.util.HashSet; 6
import java.util.ArrayList; 7
/** 8
 * Class for representing a ship 9
 */ 10
public class Ship { 11
 12
 // Coordinates for the different ship parts 13
 private static Coordinate coord1 = null; 14
 private static Coordinate coord2 = null; 15
 private static Coordinate coord3 = null; 16
 private static Coordinate coord4 = null; 17
 private static Coordinate coord5 = null; 18
 19
 // Set for storing Coordinates - iteration is then possible 20
 // Set<Coordinate> coords = new HashSet<Coordinate>(); 21
 22
 // An array list for storing this ships coordinates 23
 ArrayList<Coordinate> coords = new ArrayList<Coordinate>(); 24
 25
 // An int for the points that this ship gives when sunk 26
 private int points = 0; 27
 28
 // Type (and name) of ship 29
 private String shipName = ""; 30
 31
 /** 32
 * Constructs a ship of size 2 33
 * @param 1st coordinate set 34
 * @param 2nd coordinate set 35
 */ 36
 public Ship(Coordinate coord1, Coordinate coord2, String name) { 37
 this.coord1 = coord1; 38
 this.coord2 = coord2; 39
 coords.add(coord1); 40
 coords.add(coord2); 41
 points = 20; 42
 shipName = name; 43
 } 44
 45
 /** 46
 * Constructs a ship of size 3 47
 * @param 1st coordinate set 48
 * @param 2nd coordinate set 49
 */ 50
 public Ship(Coordinate coord1, Coordinate coord2, Coordinate coord3, String 51
name) { 52
 this.coord1 = coord1; 53
 this.coord2 = coord2; 54
 this.coord3 = coord3; 55
 coords.add(coord1); 56
 coords.add(coord2); 57
 coords.add(coord3); 58
 points = 30; 59
 shipName = name; 60
 } 61
 62
 /** 63
 * Constructs a ship of size 4 64

7

 * @param 1st coordinate set 65
 * @param 2nd coordinate set 66
 */ 67
 public Ship(Coordinate coord1, Coordinate coord2, Coordinate coord3, 68
Coordinate coord4, String name) { 69
 this.coord1 = coord1; 70
 this.coord2 = coord2; 71
 this.coord3 = coord3; 72
 this.coord4 = coord4; 73
 coords.add(coord1); 74
 coords.add(coord2); 75
 coords.add(coord3); 76
 coords.add(coord4); 77
 points = 40; 78
 shipName = name; 79
 } 80
 81
 /** 82
 * Constructs a ship of size 5 83
 * @param 1st coordinate set 84
 * @param 2nd coordinate set 85
 */ 86
 public Ship(Coordinate coord1, Coordinate coord2, Coordinate coord3, 87
Coordinate coord4, Coordinate coord5, String name) { 88
 this.coord1 = coord1; 89
 this.coord2 = coord2; 90
 this.coord3 = coord3; 91
 this.coord4 = coord4; 92
 this.coord5 = coord5; 93
 coords.add(coord1); 94
 coords.add(coord2); 95
 coords.add(coord3); 96
 coords.add(coord4); 97
 coords.add(coord5); 98
 points = 50; 99
 shipName = name; 100
 } 101
 102
 /** 103
 * Registers that this ship has been hit 104
 * @param the coordinate that is hit 105
 */ 106
 public void shipHit(Coordinate coord) { 107
 for(int i = 0; i < coords.size(); i++) { 108
 if(coords.get(i).equals(coord)) { 109
 System.out.println("Removed a coordinate from ships own array"); 110
 coords.remove(i); 111
 } 112
 } 113
 } 114
 115
 /** 116
 * Checks if there are any parts left of this ship 117
 * @return true if there are no more coordinates - hence the ship is destroyed 118
 */ 119
 public boolean noMoreShip() { 120
 return coords.isEmpty(); 121
 } 122
 123
 /** 124
 * Get the points for this ship 125
 * @return the points given for destroying this ship 126
 */ 127
 public int getPoints() { 128

8

 return points; 129
 } 130
 131
 /** 132
 * Tests whether this ship is placed on these coordinates 133
 * @param the coordinates to test 134
 * @return true if ship is on these coordinates, false if not 135
 */ 136
 public boolean hasCoordinates(Coordinate theCoord) { 137
 for(Coordinate coord : coords) { 138
 if(coord.equals(theCoord)) { 139
 System.out.println("Ship.hasCoordinates(): true"); 140
 return true; 141
 } 142
 } 143
 return false; 144
 } 145
 146
 /** 147
 * Gets the name of the ship 148
 * @return a string representing the name of the ship 149
 */ 150
 public String getName() { 151
 System.out.println("Ship.getName(): " + shipName); 152
 return shipName; 153
 } 154
} 155
 156

9

4. The Player class – Player.java 1
 2
package dk.ruc.loft.battleships; 3
 4
public class Player { 5
 // The name of the player 6
 protected String playerName; 7
 // Player's score - initially 0 8
 protected int score = 0; 9
 10
 /** 11
 * Default constructor 12
 */ 13
 public Player(){ 14
 } 15
 16
 /** 17
 * Constructs player with playername 18
 * @param the playername 19
 */ 20
 public Player(String name){ 21
 playerName = name; 22
 } 23
 24
 /** 25
 * Adds points to the players score 26
 * @param points 27
 */ 28
 public void setScore(int points) { 29
 score += points; 30
 } 31
 32
 /** 33
 * Method to get score 34
 * @return the score for this player 35
 */ 36
 public int getScore(){ 37
 return score; 38
 } 39
} 40

10

5. The AIPlayer class – AIPlayer.java 1
 2
package dk.ruc.loft.battleships; 3
/** 4
 * Class that extends Player class 5
 * Main feature of this class is to generate random shots 6
 * and random placement of ships. 7
 */ 8
import java.util.Random; 9
 10
public class AIPlayer extends Player { 11
 12
 // Initialize ship field to be used for creating ships 13
 private static Ship ship; 14
 15
 // Ship names 16
 private static String aC = "Aircraft carrier"; 17
 private static String bS = "Battleship"; 18
 private static String dS = "Destroyer"; 19
 private static String sM = "Submarine"; 20
 private static String mS = "Mine sweeper"; 21
 /** 22
 * Constructs a player with name "Computer" 23
 */ 24
 public AIPlayer() { 25
 playerName = "Computer"; 26
 } 27
 28
 /** 29
 * Method that autogenerates ships 30
 * @param the board to use 31
 */ 32
 public void generateShips(Board theBoard) { 33
 // Used to generate pseudo-random coordinates 34
 Random random = new Random(); 35
 // The highest number to generate 36
 int max = theBoard.getXdim(); 37
 38
 // Generate AirCraftCarrier - size 5 39
 boolean placeACC = true; 40
 while(placeACC) { 41
 // Direction of vessel 42
 // 0: East-west, 1: NS (add to X) 43
 int dir = random.nextInt(2); 44
 // Generate random offset coordinates 45
 int x1 = random.nextInt(max); 46
 int y1 = random.nextInt(max); 47
 // Offset coordinate 48
 Coordinate coord1 = new Coordinate(x1, y1); 49
 // If dir == 0 (add to Y, X stays the same) 50
 if(dir == 0){ 51
 // Make coordinates 52
 Coordinate coord2 = new Coordinate(x1, y1 + 1); 53
 Coordinate coord3 = new Coordinate(x1, y1 + 2); 54
 Coordinate coord4 = new Coordinate(x1, y1 + 3); 55
 Coordinate coord5 = new Coordinate(x1, y1 + 4); 56
 // Make ship 57
 ship = new Ship(coord1, coord2, coord3, coord4, coord5, aC); 58
 } 59
 // If dir == 1 (add to X, Y stays the same) 60
 if(dir == 1) { 61
 // Make coordinates 62
 Coordinate coord2 = new Coordinate(x1 + 1, y1); 63
 Coordinate coord3 = new Coordinate(x1 + 2, y1); 64

11

 Coordinate coord4 = new Coordinate(x1 + 3, y1); 65
 Coordinate coord5 = new Coordinate(x1 + 4, y1); 66
 // Make ship 67
 ship = new Ship(coord1, coord2, coord3, coord4, coord5, aC); 68
 } 69
 // Test if ship can be placed, if true, place ship 70
 if(theBoard.canPlaceShip(ship)) { 71
 try { 72
 theBoard.placeShip(ship); 73
 // We're done placing aircraft carrier 74
 placeACC = false; 75
 } 76
 catch (FieldOccupiedException foe) { 77
 System.out.println("An error occured: " + foe); 78
 foe.printStackTrace(); 79
 } 80
 } 81
 } 82
 83
 // Generate BattleShip - size 4 84
 boolean placeBS = true; 85
 while(placeBS) { 86
 // Direction of vessel 87
 // 0: East-west, 1: NS (add to X) 88
 int dir = random.nextInt(2); 89
 // Generate random offset coordinates 90
 int x1 = random.nextInt(max); 91
 int y1 = random.nextInt(max); 92
 // Offset coordinate 93
 Coordinate coord1 = new Coordinate(x1, y1); 94
 // If dir == 0 (add to Y, X stays the same) 95
 if(dir == 0){ 96
 // Make coordinates 97
 Coordinate coord2 = new Coordinate(x1, y1 + 1); 98
 Coordinate coord3 = new Coordinate(x1, y1 + 2); 99
 Coordinate coord4 = new Coordinate(x1, y1 + 3); 100
 // Make ship 101
 ship = new Ship(coord1, coord2, coord3, coord4, bS); 102
 } 103
 // If dir == 1 (add to X, Y stays the same) 104
 if(dir == 1) { 105
 // Make coordinates 106
 Coordinate coord2 = new Coordinate(x1 + 1, y1); 107
 Coordinate coord3 = new Coordinate(x1 + 2, y1); 108
 Coordinate coord4 = new Coordinate(x1 + 3, y1); 109
 // Make ship 110
 ship = new Ship(coord1, coord2, coord3, coord4, bS); 111
 } 112
 // Test if ship can be placed, if true, place ship 113
 if(theBoard.canPlaceShip(ship)) { 114
 try { 115
 theBoard.placeShip(ship); 116
 // We're done placing battleship 117
 placeBS = false; 118
 } 119
 catch (FieldOccupiedException foe) { 120
 System.out.println("An error occured: " + foe); 121
 foe.printStackTrace(); 122
 } 123
 } 124
 } 125
 126
 // Generate Destroyer - size 3 127
 boolean placeDS = true; 128

12

 while(placeDS) { 129
 // Direction of vessel 130
 // 0: East-west, 1: NS (add to X) 131
 int dir = random.nextInt(2); 132
 // Generate random offset coordinates 133
 int x1 = random.nextInt(max); 134
 int y1 = random.nextInt(max); 135
 // Offset coordinate 136
 Coordinate coord1 = new Coordinate(x1, y1); 137
 // If dir == 0 (add to Y, X stays the same) 138
 if(dir == 0){ 139
 // Make coordinates 140
 Coordinate coord2 = new Coordinate(x1, y1 + 1); 141
 Coordinate coord3 = new Coordinate(x1, y1 + 2); 142
 // Make ship 143
 ship = new Ship(coord1, coord2, coord3, dS); 144
 } 145
 // If dir == 1 (add to X, Y stays the same) 146
 if(dir == 1) { 147
 // Make coordinates 148
 Coordinate coord2 = new Coordinate(x1 + 1, y1); 149
 Coordinate coord3 = new Coordinate(x1 + 2, y1); 150
 // Make ship 151
 ship = new Ship(coord1, coord2, coord3, dS); 152
 } 153
 // Test if ship can be placed, if true, place ship 154
 if(theBoard.canPlaceShip(ship)) { 155
 try { 156
 theBoard.placeShip(ship); 157
 // We're done placing destroyer 158
 placeDS = false; 159
 } 160
 catch (FieldOccupiedException foe) { 161
 System.out.println("An error occured: " + foe); 162
 foe.printStackTrace(); 163
 } 164
 } 165
 } 166
 167
 // Generate Submarine - size 3 168
 boolean placeSM = true; 169
 while(placeSM) { 170
 // Direction of vessel 171
 // 0: East-west, 1: NS (add to X) 172
 int dir = random.nextInt(2); 173
 // Generate random offset coordinates 174
 int x1 = random.nextInt(max); 175
 int y1 = random.nextInt(max); 176
 // Offset coordinate 177
 Coordinate coord1 = new Coordinate(x1, y1); 178
 // If dir == 0 (add to Y, X stays the same) 179
 if(dir == 0){ 180
 // Make coordinates 181
 Coordinate coord2 = new Coordinate(x1, y1 + 1); 182
 Coordinate coord3 = new Coordinate(x1, y1 + 2); 183
 // Make ship 184
 ship = new Ship(coord1, coord2, coord3, sM); 185
 } 186
 // If dir == 1 (add to X, Y stays the same) 187
 if(dir == 1) { 188
 // Make coordinates 189
 Coordinate coord2 = new Coordinate(x1 + 1, y1); 190
 Coordinate coord3 = new Coordinate(x1 + 2, y1); 191
 // Make ship 192

13

 ship = new Ship(coord1, coord2, coord3, sM); 193
 } 194
 // Test if ship can be placed, if true, place ship 195
 if(theBoard.canPlaceShip(ship)) { 196
 try { 197
 theBoard.placeShip(ship); 198
 // We're done placing submarine 199
 placeSM = false; 200
 } 201
 catch (FieldOccupiedException foe) { 202
 System.out.println("An error occured: " + foe); 203
 foe.printStackTrace(); 204
 } 205
 } 206
 } 207
 208
 // Generate mine sweeper - size 2 209
 boolean placeMS = true; 210
 while(placeMS) { 211
 // Direction of vessel 212
 // 0: East-west, 1: NS (add to X) 213
 int dir = random.nextInt(2); 214
 // Generate random offset coordinates 215
 int x1 = random.nextInt(max); 216
 int y1 = random.nextInt(max); 217
 // Offset coordinate 218
 Coordinate coord1 = new Coordinate(x1, y1); 219
 // If dir == 0 (add to Y, X stays the same) 220
 if(dir == 0){ 221
 // Make coordinates 222
 Coordinate coord2 = new Coordinate(x1, y1 + 1); 223
 // Make ship 224
 ship = new Ship(coord1, coord2, mS); 225
 } 226
 // If dir == 1 (add to X, Y stays the same) 227
 if(dir == 1) { 228
 // Make coordinates 229
 Coordinate coord2 = new Coordinate(x1 + 1, y1); 230
 // Make ship 231
 ship = new Ship(coord1, coord2, mS); 232
 } 233
 // Test if ship can be placed, if true, place ship 234
 if(theBoard.canPlaceShip(ship)) { 235
 try { 236
 theBoard.placeShip(ship); 237
 // We're done placing mine sweeper 238
 placeMS = false; 239
 } 240
 catch (FieldOccupiedException foe) { 241
 System.out.println("An error occured: " + foe); 242
 foe.printStackTrace(); 243
 } 244
 } 245
 } 246
 } 247
} 248
 249

14

6. The GUI class – GUI.java 1
 2
package dk.ruc.loft.battleships; 3
 4
import javax.swing.*; 5
import java.awt.*; 6
import dk.ruc.madsr.swing.*; 7
import java.util.*; 8
 9
public class GUI extends JFrame { 10
 11
 // The board to display and use 12
 private static Board theBoard; 13
 14
 // The frame to display things in 15
 private static Frame theFrame = new JFrame(); 16
 17
 // The canvas to draw the fields on 18
 private static JCanvas guiBoard = new JCanvas(); 19
 20
 // The event queue for processing user input 21
 private static JEventQueue eventQ = new JEventQueue(); 22
 23
 // Colors to use in board display 24
 private static Color blue = new Color(0, 0, 255); 25
 private static Color lightBlue = new Color(120, 120, 255); 26
 private static Color red = new Color(255, 0, 0); 27
 private static Color white = new Color(255,255,255); 28
 private static Color fieldColor = blue; 29
 30
 // Stroke to use for painting grid lines 31
 private static BasicStroke gridStroke = new BasicStroke(1); 32
 33
 // Containers, labels and so on 34
 private static JLabel info = new JLabel("Start shooting..."); 35
 //private static JLabel scoreHeader = new JLabel("Score: "); 36
 private static JLabel score = new JLabel("0"); 37
 38
 // Constant (pixels) used to draw fields that fits screen resolution of 1024 * 39
 // 768 40
 // Also used when translating mouse click coordinates to row and column 41
 // coordinates 42
 // Used also for checking if a click on the board is valid 43
 // 100 / CONSTANT must produce a real int number, ie. 1, 2, 4, 5, 10, 20, 25, 44
 // 50 are valid numbers 45
 private static final int CONSTANT = 50; 46
 47
 // Distance in pixels from NW corner of Center area to NW corner of guiBoard 48
 private static final int gridOffsetX = 15; 49
 private static final int gridOffsetY = 15; 50
 51
 // Offset in pixels that, for each field square, is non-clickable 52
 private static final int nonClick = 5; 53
 54
 // The player that plays this game 55
 private static Player player; 56
 57
 58
 /** 59
 * Constructs a new GUI object with graphics and event queue 60
 * @param the board to use 61
 */ 62
 public GUI(Board board, Player player) { 63
 theBoard = board; 64

15

 this.player = player; 65
 setSize(new Dimension(550, 565)); 66
 setTitle("Battleship"); 67
 setDefaultCloseOperation(EXIT_ON_CLOSE); 68
 setLayout(new BorderLayout()); 69
 add(guiBoard, "Center"); 70
 add(info, "South"); 71
 //add(scoreHeader, "West"); 72
 add(score, "East"); 73
 setVisible(true); 74
 } 75
 76
 /** 77
 * Will generate all visual components 78
 */ 79
 public void drawBoard() { 80
 // First delete all existing graphics 81
 guiBoard.clear(); 82
 guiBoard.setPaint(white); 83
 guiBoard.fillRect(0, 0, 2000, 2000); 84
 // Next loop through each element in Board.fieldStatus[][] 85
 for(int i = 0; i < theBoard.getXdim(); i++) { 86
 for(int j = 0; j < theBoard.getYdim(); j++) { 87
 // Set current field properties based on current field status 88
 switch(theBoard.getFieldStatus(i, j)) { 89
 case 0: 90
 fieldColor = blue; 91
 break; 92
 case 1: 93
 fieldColor = lightBlue; 94
 break; 95
 case 2: 96
 fieldColor = blue; 97
 break; 98
 case 3: 99
 fieldColor = red; 100
 break; 101
 default: 102
 info.setText("Suspicious field value encountered..."); 103
 } 104
 // Fill and draw rectangles 105
 guiBoard.setPaint(fieldColor); 106
 guiBoard.fillRect(i * CONSTANT + gridOffsetX, j * CONSTANT + 107
gridOffsetY, CONSTANT, CONSTANT); 108
 guiBoard.setPaint(white); 109
 guiBoard.setStroke(gridStroke); 110
 guiBoard.drawRect(i * CONSTANT + gridOffsetX, j * CONSTANT + 111
gridOffsetY, CONSTANT, CONSTANT); 112
 // Draw player info 113
 score.setText("".valueOf(player.getScore())); 114
 } 115
 } 116
 } 117
 118
 public void setEventQ() { 119
 eventQ.listenTo(guiBoard, "fields"); 120
 while(true) { 121
 EventObject event = eventQ.waitEvent(); 122
 if(eventQ.isMouseEvent(event)) { 123
 int x = eventQ.getMouseX(event); 124
 int y = eventQ.getMouseY(event); 125
 if(eventQ.isMouseClicked(event)) { 126
 // Translate clicked coordinates to field coordinates 127
 int realx = mouseXtoCol(x); 128

16

 int realy = mouseYtoRow(y); 129
 // Check if coordinates are valid (-1 if non-valid) 130
 // Also check if we are within clickable boundaries 131
 if(realx >= 0 && realy >= 0 && isClickable(x, y)) { 132
 shoot(realx, realy); 133
 drawBoard(); 134
 } 135
 } 136
 } 137
 } 138
 } 139
 140
 /** 141
 * Tries to place a shot at given coordinate. 142
 * Also handles any messages to relay to the user. 143
 * @param the x coordinate picked up by event listener 144
 * @param the y coordinate picked up by event listener 145
 */ 146
 public void shoot(int x, int y){ 147
 int result = 0; 148
 String shipName = ""; 149
 int points = 0; 150
 boolean gameOver = false; 151
 Coordinate coords = new Coordinate(x, y); 152
 if(theBoard.canPlaceShot(coords)) { 153
 try { 154
 result = theBoard.placeShot(coords); 155
 shipName = theBoard.shipNameIfKill(coords); 156
 points = theBoard.shipPointsIfKill(coords); 157
 gameOver = theBoard.isGameOver(); 158
 } 159
 catch(InvalidShotException ivs) { 160
 info.setText("Couldn't place shot: " + ivs); 161
 } 162
 if(result == 1) { 163
 info.setText("You didn't hit anything."); 164
 } 165
 if(result == 3 && shipName.length() == 0 && points == 0) { 166
 info.setText("You hit a ship... Try again."); 167
 } 168
 if(result == 3 && shipName.length() != 0 && points != 0) { 169
 info.setText("You sunk the enemys " + shipName + ". You get " + points + 170
" points. Try again."); 171
 player.setScore(points); 172
 } 173
 if(gameOver) { 174
 info.setText("Game over...!"); 175
 } 176
 } 177
 else { 178
 info.setText("You can't shoot here..."); 179
 } 180
 } 181
 182
 /** 183
 * Translates the coordinate from getMouseX() to field coordinate (array 184
 * index) 185
 * @param the getMouseX() coordinate 186
 * @return the field coordinate (array index) or -1 if translated value not 187
 * valid 188
 */ 189
 public int mouseXtoCol(int realx) { 190
 int x = ((realx - gridOffsetX) * (100 / CONSTANT)) / 100; 191
 // x must be a valid field 192

17

 if(x >= 0 && x < theBoard.getXdim()) { 193
 return x; 194
 } 195
 else { 196
 return -1; 197
 } 198
 } 199
 200
 /** 201
 * Translates the coordinate from getMouseY() to field coordinate (array 202
 * index) 203
 * @param the getMouseY() coordinate 204
 * @return the field coordinate (array index) or -1 if translated value not 205
 * valid 206
 */ 207
 public int mouseYtoRow(int realy) { 208
 int y = ((realy - gridOffsetY) * (100 / CONSTANT)) / 100; 209
 // y must be a valid field 210
 if(y >= 0 && y < theBoard.getYdim()) { 211
 return y; 212
 } 213
 else { 214
 return -1; 215
 } 216
 } 217
 218
 /** 219
 * Checks whether the clicked coordinate is "clickable", ie. not too close to 220
 * edge of field 221
 * @param the x coordinate from getMouseX() 222
 * @param the y coordinate from getMouseY() 223
 * @return true or false 224
 */ 225
 public boolean isClickable(int x, int y) { 226
 x = x - gridOffsetX; 227
 y = y - gridOffsetY; 228
 229
 int fieldXStart = ((x * (100 / CONSTANT)) / 100) * CONSTANT; 230
 int fieldXEnd = fieldXStart + CONSTANT; 231
 int xLow = fieldXStart + nonClick; 232
 int xHigh = fieldXEnd - nonClick; 233
 234
 int fieldYStart = ((y * (100 / CONSTANT)) / 100) * CONSTANT; 235
 int fieldYEnd = fieldYStart + CONSTANT; 236
 int yLow = fieldYStart + nonClick; 237
 int yHigh = fieldYEnd - nonClick; 238
 239
 /* Debugging 240
 System.out.println("xLow: " + xLow); 241
 System.out.println("xHigh: " + xHigh); 242
 System.out.println("X is: " + x); 243
 System.out.println("yStart: " + yLow); 244
 System.out.println("yEnd: " + yHigh); 245
 System.out.println("Y is: " + y); 246
 System.out.println(); 247
 */ 248
 249
 if(x > xLow && x < xHigh && y > yLow && y < yHigh) { 250
 return true; 251
 } 252
 else 253
 { 254
 info.setText("This click was too close to border - try again"); 255
 return false; 256

18

 } 257
 } 258
} 259
 260

19

7. The Coordinate class – Coordinate.java 1
 2
package dk.ruc.loft.battleships; 3
/** 4
 * This class represents a set of coordinates 5
 */ 6
public class Coordinate { 7
 8
 // Coordinate fields 9
 private int x; 10
 private int y; 11
 12
 // Hashcode multiplier - prime number 13
 private static final int HASH = 31; 14
 15
 /** 16
 * Constructs a coordinate set 17
 * @param the x coordinate 18
 * @param the y coordinate 19
 */ 20
 public Coordinate(int x, int y) { 21
 this.x = x; 22
 this.y = y; 23
 } 24
 25
 /** 26
 * Get value of x coordinate 27
 * @return the x value of this coordinate 28
 */ 29
 public int getX() { 30
 return this.x; 31
 } 32
 33
 /** 34
 * Get value of y coordinate 35
 * @return the y value of this coordinate 36
 */ 37
 public int getY() { 38
 return this.y; 39
 } 40
 41
 /** 42
 * Test this coordinate for equality with other coordinate. Overrides 43
 * java.lang.equals 44
 * @param the coordinate to test 45
 * @return true or false 46
 */ 47
 public boolean equals(Coordinate coord) { 48
 if(this.x == coord.getX() && this.y == coord.getY()) { 49
 return true; 50
 } 51
 else return false; 52
 } 53
 54
 /** 55
 * Generates hashCode. Not used, but if equals() is specified, so must 56
 * hashCode() 57
 * @return the hashcode value for this object 58
 */ 59
 public int hashCode() { 60
 return x * 31 + y; 61
 } 62
} 63
 64

20

8. The Exception class – BattleshipException.java 1
 2
package dk.ruc.loft.battleships; 3
/** 4
 * Custom exception class 5
 */ 6
abstract class BattleShipException extends Exception { 7
 8
 /** 9
 * Constructs new exception 10
 */ 11
 public BattleShipException() { 12
 } 13
 public BattleShipException(String msg) { 14
 super(msg); 15
 } 16
} 17
 18

21

9. The FieldOccupiedException class – FieldOccupiedException.java 1
 2
package dk.ruc.loft.battleships; 3
/** 4
 * Exception class for handling situations when a ship is allready 5
 * on the board 6
 */ 7
public class FieldOccupiedException extends BattleShipException { 8
 Coordinate problemCoord; 9
 10
 /** 11
 * Constructs new exception 12
 * @param the Coordinate with the problem 13
 * @param the string with the error message 14
 */ 15
 public FieldOccupiedException(Coordinate coord, String msg) { 16
 super(msg); 17
 problemCoord = coord; 18
 } 19
 20
 /** 21
 * Method for getting the X coordinate 22
 * @return the X coordinate 23
 */ 24
 public int getX() { 25
 return problemCoord.getX(); 26
 } 27
 28
 /** 29
 * Method for getting the Y coordinate 30
 * @return the Y coordinate 31
 */ 32
 public int getY() { 33
 return problemCoord.getY(); 34
 } 35
} 36
 37

22

10. The InvalidShotException class – InvalidShotException.java 1
 2
package dk.ruc.loft.battleships; 3
/** 4
 * Exception-class for handling problematic shots fired 5
 */ 6
public class InvalidShotException extends BattleShipException { 7
 8
 Coordinate problemCoord; 9
 /** 10
 * Constructs new exception 11
 * @param the coordinates that was hit 12
 * @param the string with the error message 13
 */ 14
 public InvalidShotException(Coordinate coord, String msg) { 15
 super(msg); 16
 problemCoord = coord; 17
 } 18
 19
 /** 20
 * Method that gets the X coordinate 21
 * @return the x coordinate 22
 */ 23
 public int getX() { 24
 return problemCoord.getX(); 25
 } 26
 27
 /** 28
 * Method that gets the Y coordinate 29
 * @return the y coordinate 30
 */ 31
 public int getY() { 32
 return problemCoord.getY(); 33
 } 34
} 35
 36

