Exploring

Nitrogen Fixation and Assimilation

in Symbiotic Pea Root Nodules

by \textit{in vivo}^{15}\text{N} NMR Spectroscopy

Anne Marie Scharff
Ph.D. Thesis
November 2001

Roskilde University Centre, Dept. of Life Sciences and Chemistry
Risø National Laboratory, Plant Research Department
Roskilde, Denmark
Preface

This Ph.D. project was carried out at the Plant Research Department at Risø National Laboratory under supervision of Lis Rosendahl and Iver Jakobsen and at the Department of Life Sciences and Chemistry at Roskilde University Centre under supervision of Poul Erik Hansen. The work was financially supported by grants from the Danish Research Agency and the Danish Research Foundation.

Many people have helped and supported me during my Ph.D. period. I am greatly indebted to my supervisors Lis Rosendahl, Iver Jakobsen and Poul Erik Hansen, who believed in the project and in me. They have all been great inspirators and contributors to the process in different ways, and I have learned a lot from their experience. Mikkel Jørgensen was a supervisor in the beginning of the period and is thanked for getting me started with NMR spectroscopy. Helge Egsgaard has been a very special supporter all the way, and I always enjoyed his scientific enthusiasm and broad wit about many useful subjects. Helge is thanked for teaching me about mass spectrometry as well as always giving a hand with practical problems, especially the handling and analysis of gasses. The development of the MS techniques described in chapter 11.2 was performed in collaboration with Helge Egsgaard and Christian Schou, and both are acknowledged for their large and fruitful effort in the troublesome process. Per Ambus instructed me in gas chromatography and borrowed me the equipment and I appreciate very much his always kind readiness to assist me. Ernst Christensen, Copenhagen University Hospital, was a great help with the amino acid analyses presented in chapter 9. Ina Hansen, Anne Lise Gudmundsson and Anette Christensen are thanked for excellent technical assistance and many good talks about more important things than science. I visited two experienced in vivo plant NMR laboratories headed by Claude Roby at the Commissariat a l’Energie Atomique in Grenoble and George Ratcliffe at the Department of Plant Sciences, University of Oxford, respectively. It was a great pleasure to stay at these two prominent NMR labs, and I am very grateful for the encouragement and inspiring discussions as well as all the useful practical and technical information that I brought home. My dearest Peter has been a very important person in my Ph.D. project and assisted me in many ways. He always gave me support and love, when I needed it, for which I am deeply grateful. Apart from Peter always being ready to listen emphatically to my sorrows and difficulties I also benefited from his sharp scientific mind and all the annoying and most relevant questions and advice. Finally I would like to thank good colleagues, family and friends, whose encouragement over the years has been crucial.

The thesis is divided in four main parts: Part one contains a literature review and general theoretical introduction to the chosen subject. All my experimental work and obtained results are presented in part two, and the results are discussed in part three. Part four contains an article manuscript, which is in preparation for submission to Plant Physiology. The article manuscript contains a selection of the experimental work presented in part two in a more condensed form.

Anne Marie Scharff, November 2001
Table of contents

Summary .. 1
Dansk resume .. 3
Abbreviations .. 5

PART 1. INTRODUCTION
1 Legume-Rhizobium root nodules ... 6
 1.1 Establishment of the symbiosis ... 6
 1.2 Organisation and regulation of symbiosis specific genes 8
 1.3 Nodule morphology ... 9
 1.4 The oxygen dilemma ... 11
2 Carbon and nitrogen metabolism in root nodules ... 13
 2.1 Carbon metabolism ... 13
 2.2 N₂ is fixed by the nitrogenase enzyme complex .. 16
 2.3 Transport of ammonium/ammonia across bacteroid and symbiosome membranes ... 17
 2.4 Nitrogen assimilation in bacteroids .. 19
 2.5 Nitrogen assimilation in the plant .. 23
 2.6 Amino acid transport across bacteroid and symbiosome membranes 27
 2.7 Nutrient exchange cycles .. 28
3 In vivo NMR spectroscopy .. 31
 3.1 Fundamental principles of nuclear magnetic resonance (NMR) 31
 3.2 T₁ and T₂ relaxation ... 33
 3.3 Signal-to-noise ratio .. 34
4 Concluding remarks and objectives ... 36

PART 2. EXPERIMENTS AND RESULTS
5 Introduction .. 39
6 Biological material .. 39
7 The perfusion system ... 41
 7.1 Monitoring of nodule physiological status by ³¹P NMR spectroscopy 42
 7.2 Usual and unusual phosphorus metabolites in pea, Lotus and soybean nodules 44
 7.3 pH effects on phosphate chemical shifts ... 47
8 Nitrogen fixation rate ... 48
 8.1 Maximising the nitrogenase activity ... 49
 8.2 Nitrogenase activity in the perfusion system ... 51
9 Total amino acid pools ... 52
10 Nitrogen assimilation studied by ¹⁵N NMR spectroscopy 54
 10.1 Medium effects on ¹⁵N NMR properties of amino acids and ammonium 56
Summary

Symbiotic nitrogen fixation, the process whereby nitrogen fixing bacteria enter into associations with plants, provides the major source of nitrogen for the biosphere. Symbiosis occurs between members of the plant family Leguminosae and soil bacteria of the genera *Rhizobium*, *Sinorhizobium*, *Bradyrhizobium*, *Mesorhizobium*, and *Azorhizobium* (collectively called rhizobia). The prokaryotic partner of the symbiosis harbours the enzyme nitrogenase, which catalyses the conversion of atmospheric dinitrogen into ammonium, and thereby provides the host plant with fixed nitrogen in exchange for other nutrients and carbohydrates. The symbiosis occurs in specialised nodules that form on the roots of the plant and contain the nitrogen-fixing rhizobia.

In rhizobia-leguminous plant symbioses, the current model of nitrogen transfer from the symbiotic form of the bacterium, called a bacteroid, to the plant is that nitrogenase-generated ammonia diffuses across the bacteroid membrane and is assimilated into amino acids outside of the bacteroid. However, the transport of symbiotically fixed nitrogen across the membranes surrounding the bacteroid and the form in which this occurs has been a matter of controversy. Accurate estimation of the assimilation and translocation of fixed nitrogen in nodules would benefit from non-invasive and non-destructive measurements of the fate of the fixed nitrogen. Thus, the objective of the present Ph.D. study was to investigate nitrogen fixation and assimilation in $^{15}\text{N}_2$ fixing root nodules root by *in vivo* ^{15}N NMR spectroscopy.

Pea nodules were chosen as the model system and were used for the majority of experiments, but soybean and *Lotus* nodules were included in a few experiments. Specialised equipment and procedures for maintaining the nodules in a physiologically viable and $^{15}\text{N}_2$ fixing state while in the NMR tube have been developed and optimised in order to obtain informative *in vivo* ^{15}N NMR spectra. Especially the oxygen supply to the root nodules is a critical factor in maintaining the high oxidative phosphorylation level needed to support nitrogen fixation. *In vivo* ^{31}P NMR spectroscopy was used for monitoring the physiological state of the nodules.

A time course of *in vivo* ^{15}N NMR spectra of $^{15}\text{N}_2$ fixing pea root nodules was recorded, which has not previously been reported. It was demonstrated that it is indeed possible to apply *in vivo* ^{15}N NMR spectroscopy to the study of nitrogen fixation and assimilation in root nodules. By using NMR it was possible to observe directly the incorporation of ^{15}N into living nodules, but detection was limited to ammonium and some of the more abundant amino acids because of the relatively low sensitivity of the method.
In order to aid the interpretation of 15N NMR spectra, a new mass spectrometric technique, involving separation of amino acids by ion-pair reverse-phase liquid chromatography (IP-RPLC), was developed. This method made it possible to analyse the position of 15N in mono labelled glutamine and asparagine by using MS/MS and MS/MS/MS, respectively. The analysis could be done in a single experiment without any previous derivatisation procedures, which is a major simplification and improvement compared to GC-MS procedures, which are usually used for analysis of positional labelling.

Combining the results from in vivo NMR and IP-RPLC MS revealed that asparagine was 15N-labelled at both the amide and amino nitrogen, but the in vivo NOE factor of the asparagine amino group was presumably of an unfavourable size, which caused elimination of the signal in 15N spectra recorded with full decoupling. IP-RPLC MS analyses showed that γ-aminobutyric acid (GABA) was 15N-labelled in considerable amounts, but 15N GABA was NMR invisible in living pea root nodules. This may be due to immobilisation of GABA in root nodules.

The major new information, which was generated by in vivo 15N NMR, is that a substantial pool of free ammonium is present in the metabolically active and intact symbiosis, and that glutamine is not 15N-labelled to any great extent at the amide nitrogen. The intracellular environment led to very unusual in vivo 15N ammonium chemical shifts, whereas no changes in the expected in vivo chemical shifts of amino acids were observed. It was therefore suggested that ammonium ions and amino acids are in different compartments. This could indicate that ammonium ions are located in the bacteroids, whereas the 15N-labelled glutamine/glutamate and asparagine are located in the plant cytoplasm.
Dansk resume

Ifølge den aktuelle model for kvælstofoverførsel fra bakteroiden til planten diffunderer nitrogenase-dannet ammoniak over bakteroidmembraonen og assimileres i aminosyrer udenfor bakteroiden. Der har imidlertid været nogen debat om transportmekanismen for symbiotisk fikseret kvælstof over membranerne der omgiver bakteroiden, og i hvilken molekyler form det foregår. Det ville derfor være nyttigt med non-invasive og non-destructive målinger, der gør det muligt at følge den fikserede kvælstofs assimilering og translokation i rodknolde. Formålet med dette ph.d. projekt blev således at undersøge kvælstoffiksering og -assimilering i 15N-fikserende rodknolde ved hjælp af *in vivo* 15N NMR spektroskopi.

Ærterodknolde blev valgt som modessystem og har været anvendt i størstedelen af eksperimenterne, men soja og *Lotus* rodknolde er blevet brugt i enkelte eksperimenter. Det var nødvendigt at udvikle og optimere specialiseret udstyr og procedurer for at kunne holde rodknolnedene i en fysiologisk levende og 15N2-fikserende tilstand i NMR røret, og for at kunne optage informative *in vivo* 15N NMR spektre. Specielt ildforsyningen til rodknolnedene var en kritisk faktor for at kunne opretholde det høje oxidative fosforyleringsniveau, som er nødvendigt for at kvælstoffikseringen kan finde sted. *In vivo* 31P NMR spektroskopi blev brugt til at overvåge rodknolnedes fysiologiske tilstand.

Som den første kan jeg rapportere et tidsforløb af *in vivo* 15N NMR spektre af 15N2-fikserende ærterodknolde. Jeg har demonstreret, at det er muligt at anvende *in vivo* 15N NMR spektroskopi i studiet af kvælstoffiksering og -assimilering i rodknolde. Ved hjælp af NMR var det således muligt direkte at observere indkorporeringen af 15N i levende rodknolde, men på grund af metodens relativt lave følsomhed er detektonen begrænset til ammonium og nogle af de mere hyppigt forekommende aminosyrer.
Med henblik på at støtte fortolkningen af 15N NMR spektrene blev der udviklet en ny massespektrometrisk teknik, som indbefattede separation af aminosyrene ved ionpar omvendt fase væskekromatografi (IP-RPLC). Denne metode muliggjorde en analyse af 15N-positionen i enkeltmækget glutamin og asparagin ved hjælp af henholdsvis MS/MS og MS/MS/MS. Analysen kunne udføres i et enkelt eksperiment uden nogle forudgående derivatiseringsprocedurer, hvilket er en stor forenkling og forbedring sammenlignet med de GC-MS procedurer, der normalt anvendes til analyse af positionsmærkning.

Ved at kombinere resultaterne fra in vivo NMR og IP-RPLC MS kunne det ses, at asparagin var 15N-mærket i både amid- og aminogruppen, men in vivo NOE faktoren for asparagins aminogruppe havde formentlig en ufavorabel størrelse som bevirkede, at signalet blev elimineret i 15N spektre optaget med fuld proton dekobling. IP-RPLC MS analyser viste, at γ-aminosmørsyre (GABA) var højt 15N-mærket, men 13N GABA var NMR-usynligt i levende ærterodknolde. Dette foreslås at kunne skyldes immobilisering af GABA i rodknolde.

Den vigtigste nye information, som blev frembragt ved hjælp af in vivo 15N NMR, er tilstedeværelsen af en betragtelig pool af frit ammonium i den metabolsk aktive, intakte symbiose, og at glutamin ikke bliver 15N-mærket i amidgruppen i særlig høj grad. Det intracellulære miljø medførte et meget usædvanligt in vivo 15N ammonium kemisk skift, hvorimod der ikke kunne observeres nogle ændringer i aminosyrernes forventede kemiske skift in vivo. Jeg foreslår derfor, at ammonium ionerne og aminosyrene er lokalisert i forskellige kompartments. Dette kunne tyde på, at ammonium ionerne er i bakteroiderne, hvorimod den 15N-mærkede glutamin/glutamat og asparagin er lokalisert i plantecytoplasma.
Abbreviations:

Aap Amino acid permease
AAT Aspartate aminotransferase
ADH Alanine dehydrogenase
Ala Alanine
Amt Ammonium transporter
ARA AcetYLENE REDUCTION assay
AS Asparagine synthetase
Asp Aspartate
Asn Asparagine
BC Bacteroid cytosol
BM Bacteroid membrane
Bra Branched-chain amino acid transporter
DW Dry weight
FW Fresh weight
GABA γ-Aminobutyric acid
GAD Glutamate α-decarboxylase
GC-MS Gas chromatography mass spectrometry
GDH Glutamate dehydrogenase
Gln Glutamine
Glu Glutamate
GOGAT Glutamate synthase
GS Glutamine synthetase
HMQC Heteronuclear multiple quantum coherence
IP-RPLC Ion-pair reverse-phase liquid chromatography
Lb Leghemoglobin
LCO Lipo-chitin oligomer
MDH Malate dehydrogenase
MDP Methylene diphosphonic acid
ME Malic enzyme
MES 2-(Morpholino)ethanesulfonic acid
MS Mass spectrometry
NMR Nuclear magnetic resonance
NOE Nuclear Overhauser effect
OAA Oxaloacetate
PBS Peribacteroid space
PCCG Phosphocholine-substituted β-1,3;1,6 cyclic glucan
PEP Phosphoenolpyruvate
PEPC Phosphoenolpyruvate carboxylase
ppm parts per million
S/N ratio Signal-to-noise ratio
SM Symbiosome membrane
SS Sucrose synthase
TCA Tricarboxylic acid
PART 1. INTRODUCTION

1 Legume-Rhizobium root nodules

Symbiosis occurs between members of the plant family Leguminosae and soil bacteria of the genera *Rhizobium*, *Sinorhizobium*, *Bradyrhizobium*, *Mesorhizobium*, and *Azorhizobium* (collectively called rhizobia) (Taiz and Zeiger 1998) (Table 1). The prokaryotic partner of the symbiosis is able to convert atmospheric dinitrogen into ammonium and provide the host plant with fixed nitrogen in exchange for other nutrients and carbohydrates. The symbiosis occurs in specialised nodules that form on the roots of the plant and contain the nitrogen-fixing rhizobia.

Table 1: Examples of root nodule symbiotic associations between legumes and rhizobia (modified from Hadria et al. 1998)

<table>
<thead>
<tr>
<th>Legume host plant</th>
<th>Rhizobium</th>
<th>Species</th>
<th>Biovariety</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pisum (pea)</td>
<td>Rhizobium</td>
<td>leguminosarum</td>
<td>viceae</td>
</tr>
<tr>
<td>Vicia (vetch)</td>
<td>Rhizobium</td>
<td>leguminosarum</td>
<td>viceae</td>
</tr>
<tr>
<td>Trifolium (clover)</td>
<td>Rhizobium</td>
<td>leguminosarum</td>
<td>trifolii</td>
</tr>
<tr>
<td>Phaseolus (French bean, common bean)</td>
<td>Rhizobium</td>
<td>leguminosarum</td>
<td>phaseoli</td>
</tr>
<tr>
<td>Medicago (alfalfa)</td>
<td>Sinorhizobium</td>
<td>meliloti</td>
<td></td>
</tr>
<tr>
<td>Glycine (soybean)</td>
<td>Bradyrhizobium</td>
<td>japonicum</td>
<td></td>
</tr>
<tr>
<td>Lotus (birdsfoot trefoil)</td>
<td>Mesorhizobium</td>
<td>lott</td>
<td></td>
</tr>
<tr>
<td>Lupinus (lupine)</td>
<td>Mesorhizobium</td>
<td>lott</td>
<td></td>
</tr>
</tbody>
</table>

1.1 Establishment of the symbiosis

The formation of root nodules is initiated by a signalling cross talk involving both the host plant and the rhizobia (reviewed by Schulize and Kondorosi 1998) (Fig. 1). Rhizobia respond by positive chemotaxis to plant root exudates and move towards localised sites on the legume roots (reviewed by Rhijn and Vanderleyden 1995). The plant roots excrete host specific flavonoid signals, which activate the bacterial regulatory protein NodD. NodD is a transcription factor and induces expression of bacterial nod genes, which code for proteins involved in nodulation and nitrogen fixation.

![Fig. 1: Signal exchange in the Rhizobium-plant symbiosis. Flavonoids induce the rhizobial nod genes. This leads to the production of nodule-inducing (Nod) factors, lipochitooligosaccharides (LCOs) that are differently modified depending on the Rhizobium species (Modified from Schulize and Kondorosi 1998)](image-url)
in the biosynthesis and excretion of Nod factors (reviewed by Denarie and Cullimore 1993; Cohn et al. 1998). The Nod factors are substituted lipo-chitin oligomers (LCO) and each rhizobial species produces a characteristic spectrum of Nod factors with specific substitutions that are important in determining host specificity (Schultze and Kondorosi 1998). The degree of host specificity varies tremendously among the rhizobia with some strains having a very narrow host range and others a very broad one (Rhijn and Vanderleyden 1995).

The Nod factors induce plant root hair curling, whereby rhizobia become enclosed in the small compartment formed by the curling. The next step is the formation of an infection thread through which the bacteria reach the root cortical tissue. Concurrent with infection, root cortical cells differentiate and start dividing, forming a distinct area within the cortex, called a nodule primordium, from which the nodule will develop.

The bacteria are internalised into the plant cells by an endocytotic process (Fig. 2), whereby the bacterium becomes surrounded by a plant derived membrane termed the symbiosome membrane (SM). After endocytosis the bacteria continue to divide and differentiate into the nitrogen-fixing bacteroid form (B). Differentiation involves the induction of genes necessary for the symbiotic state, the so-called nif and fix genes (see chapter 1.2). The SM enclosed bacteroids, called symbiosomes (see Figs. 2 and 3) (Roth et al. 1988), consist of bacteroid cytosol (BC) enclosed by a bacteroid double membrane (BM). The interface between the BM and the SM is called the peribacteroid space (PBS). Symbiosomes may be considered a tissue specific organelle in analogy with mitochondria and plastids in plant cells (Roth et al. 1988).
The SM contains host-encoded ATP-dependent proton pumps, the orientation of which results in transfer of protons from the host cytoplasm to the PBS (Szafran and Haaker 1995). Consequently, an electrical as well as a pH gradient over the SM is generated (Fig. 3) (Udvardi et al. 1991; Ou Yang and Day 1992). In addition, the bacteroid respiratory electron transport chain, which is localised on the bacteroid inner membrane and very active under nitrogen fixation, also results in protons being pumped into the PBS (O'Brian and Maier 1989). Electrical and pH gradients are concomitantly formed across the bacteroid inner membrane as well. The end result is acidification of the PBS. pH in the PBS has been estimated to be 1-2 pH units lower than pH in the plant cytosol (which is normally in the range 7.0-7.5) in an investigation of isolated symbiosomes, but the pH gradients in vivo will depend on the actual ATP-ase activity and bacterial respiration (Udvardi et al. 1991). The electrical and proton gradients across both the BM and SM provide a driving force for the transport of important metabolites, which will be described in chapter 2.1, 2.3 and 2.6.

1.2 Organisation and regulation of symbiosis specific genes

The complete genome of \textit{S. meliloti}, the symbiont of alfalfa, has recently been sequenced and annotated and was reported to consist of three parts: a large 3.65 Mb chromosome and two megaplasmids, pSymA and pSymB, of 1.35 and 1.68 Mb, respectively (Galibert et al. 2001). In general, it has been found that a large part of the total DNA in rhizobia is present in the form of plasmids of variable number and size (reviewed by Hynes and Finan 1998). Many rhizobia contain one or more large plasmids, termed pSym, which carry most of the information needed for symbiosis, including the \textit{nod} genes responsible for host specificity (cf. chapter 1.1) and the \textit{nif} and \textit{fix} genes involved in nitrogen fixation (reviewed by Kaminski et al. 1998; Galibert et al. 2001). The \textit{nif} genes encode products, which are involved in the biosynthesis and assembly of the nitrogenase enzyme complex including the FeMo cofactor (see chapter 2.2). The precise functions of the \textit{fix} gene products are largely unknown, apart from the fact that they are important for nitrogen fixation in symbiosis (Werner 1992).

The \textit{nifA} gene product is a DNA binding regulatory protein required for the transcription of \textit{nif} genes and some \textit{fix} genes. The NifA protein is inactivated at high levels of oxygen and is furthermore thermolabile, and nitrogen fixation is thus regulated by O\textsubscript{2} (cf. chapter 1.4) and...
temperature (Werner 1992). It has been shown that the low oxygen concentration of the nodule (see chapter 1.4) is the primary signal that elicits nif and fix gene expression (reviewed by Kaminski et al. 1998). On the other hand, nitrogenase synthesis in rhizobia is, with few exceptions, uncoupled from the nitrogen status of the bacteria. In this way, rhizobia can fix nitrogen in amounts well above those covering their own needs (reviewed by Kaminski et al. 1998).

Regulation of nitrogen assimilation in rhizobia (and other bacteria) is achieved at the genetic level by a central nitrogen regulatory (Ntr) system. The proteins NtrB and NtrC constitute a two-component regulatory system that responds to the nitrogen status of the cell (Reitzer and Magasanik 1986). Under conditions of low nitrogen availability this system and a third protein NtrA mediate an activation of gene transcription of several genes involved in nitrogen assimilation in rhizobia including nitrate reductase, a high-affinity ammonium transporter (Amt, see chapter 2.3), and GS II (see chapter 2.4) (reviewed by Udvardi and Day 1997).

However, the Ntr system is generally not required for transcription of nif genes in rhizobia. Nitrogen fixation is, as described above, primarily regulated by oxygen concentration, whereas nitrogen assimilation is under nitrogen control, and this implies that the two processes can be uncoupled. This is what occurs in bacteroids where nitrogen fixation is assumed to occur without significant ammonium assimilation (cf. chapter 2.4). Biochemical and genetic evidence indicate that bacteroids are not nitrogen starved in nodules, and the ammonium assimilation pathway is thus not induced. This is consistent with the fact that mutations in the ntr genes that are required for induction of ammonium assimilating enzymes have little or no effect on the symbiotic performance of rhizobia (reviewed by Udvardi and Day 1997).

1.3 Nodule morphology

Legume nodule morphology can be divided into two main classes: indeterminate and determinate nodules (reviewed by Hadri et al. 1998; Bergersen 1982; Werner 1992; Hansen 1994) (Figs. 4 and 5). The tissue organisation is, however, similar in some respects. The nodules are composed of a central tissue where bacteroids are hosted, surrounded by several peripheral tissues (reviewed by Brewin 1991). The peripheral tissues include the nodule cortex, the endodermis and the nodule parenchyma, that harbours the nodule vascular bundles. The nodule parenchyma is also known as the inner cortex (Wycoff et al. 1998). The vascular system joins at the base of the nodule and enters the vascular system of the roots, thus facilitating the exchange of fixed nitrogen produced by the bacteroids for nutrients contributed by the plant.

Indeterminate nodules (Fig. 4) have persistent meristems, which lead to cylindrical-shaped structures that contain zones of cells with successive stages of development: meristem, infection, early symbiotic, late symbiotic and senescence (Vasse et al. 1990). Transcription of nif and fix genes (see chapter 1.2) starts in the early symbiotic zone (interzone II-III in Fig. 4), although the cells do not fix N₂ yet. Expression of leghemoglobin (see chapter 1.4) also starts in this zone.
PART 1. INTRODUCTION

Nitrogen fixation takes place exclusively in the late symbiotic zone (zone III in Fig. 4), where bacteroids are fully mature and differentiated. Temperate legumes such as pea, clover, alfalfa, lupine, *Lotus* and vetch form the indeterminate type of nodules. The bacteroids are grossly enlarged compared to free-living bacteria, and each symbiosome contains only a single bacteroid (Whitehead and Day 1997). Mature pea bacteroids become rod- or Y-shaped (cf. Fig. 2) and typical dimensions are $1 \times 3 \mu$m (Dixon and Wheeler 1986). The vascular system is open at the meristem and nitrogen is exported from the nodule to the plant in the form of amides, principally the amino acids asparagine and glutamine.

Determinate nodules, on the contrary, lack a persistent meristem and therefore remain spherical-shaped. The central tissue is characterized by containing only a single stage of plant and bacterial differentiation at any particular moment. Legumes of tropical origin such as soybean, common bean and French bean form determinate nodules. Bacteroids are only slightly larger than bacteria of the same strain grown in culture, and several bacteroids are contained within a single SM (Fig. 5) (Whitehead and Day 1997). Soybean symbiosomes are 2.5μm in diameter and enclose 2-10 bacteroids.
PART 1. INTRODUCTION

(Day et al. 1989). The vascular system encircles the central tissue, and nitrogen is exported from the nodule as ureides: allantoin and allantoic acid.

The central tissue in determinate as well as indeterminate nodules contains both infected and uninfected cells and these have different metabolic roles (see chapter 2.1 and 2.5). The infected cell type is fully packed with bacteroids and has either a very small central vacuole (pea) or none at all (soybean) (Werner 1992). The plant cells also contain amyloplasts, which are sometimes termed proplastids or simply plastids because they do not always contain starch despite being highly differentiated (reviewed by Bergersen 1997). These double-membrane enclosed organelles are the sites of some of the ammonium assimilating reactions, which will be further described in chapter 2.5 and Fig. 11 (Atkins 1991; Robinson et al. 1994).

The volume of the central bacteroid-containing tissue and its duration in an intact state are the major determinants of the extent of N\textsubscript{2} fixation. With age and/or stress this tissue breaks down, from the base in indeterminate nodules and centrally in determinate nodules.

1.4 The oxygen dilemma

Oxygen has a prominent role in symbiosis as a signalling molecule in the early establishment of the symbiosis (cf. chapter 1.2), as a respiratory substrate and as an inhibitor of nitrogenase synthesis as well as activity. The nitrogenase complex (see chapter 2.2) inside the bacteroids is extremely sensitive to oxygen due to irreversible inactivation by O\textsubscript{2}. On the other hand, O\textsubscript{2} is required to support the highly active respiratory processes that take place aerobically in the plant and bacteroid compartments. In order to deal with this dilemma, nodules have developed structures and mechanisms that enables efficient delivery and dispersion of O\textsubscript{2} in the infected zone, while maintaining the free O\textsubscript{2} in this region at a concentration that ranges between 3 and 30 nM (Bergersen 1982; Witty et al. 1987) (Fig. 6). This concentration is about 4 or 5 orders of magnitude lower than the O\textsubscript{2} concentration in water or cell sap in equilibrium with air (ca. 250 μM O\textsubscript{2}).

The diffusion of O\textsubscript{2} into the central zone of nodules is, according to the dominant hypothesis, regulated by a physical barrier which is probably located in the inner cortical region (reviewed by Witty and Minchin 1990; Layzell 1998; Bergersen 1997). This barrier consists of layers of parenchyma cells, some of which (i.e., the boundary layer or gas diffusion barrier), have radially aligned cell walls and very few, small gas-filled intercellular spaces (Parsons and Day 1990). Water and/or glycoprotein may be deposited reversibly into intercellular spaces in this region or the cells may enlarge, thereby displacing the gas from the region to increase the length of the aqueous path for diffusion to the central zone. Because gas diffusion through water is 104 times slower than through air, the nodule permeability to O\textsubscript{2} as well as to other gasses would drop.

Legume nodules will vary their permeability to O\textsubscript{2} diffusion in response to a large number of treatments that alter the metabolic activity of the nodule (reviewed by Layzell 1998). When
nodules are exposed to an Ar/O_2 or C_2H_2 atmosphere, nitrogenase activity is inhibited within 10-40 minutes. This inhibition is associated with a decrease in the O_2 concentration of infected cells, and all of the initial nitrogenase activity can be recovered by increasing external pO_2. This demonstrates that nitrogenase inhibition is due solely to a decrease in nodule O_2 permeability. Other treatments in which nitrogenase inhibition is only partially due to a decrease in nodule O_2 permeability include detopping, nodule excision, stem girdling, nitrate fertilisation and salt stress. In these cases increases in external pO_2 will only recover a portion of the initial nitrogenase activity. The remaining inhibition may be attributed to a reduction in the metabolic capacity of the nodule, possibly through a reduction in carbohydrate availability or glycolytic enzyme activity.

Once O_2 has crossed the cortical tissue it diffuses rapidly to the infected cells through a network of interconnected gas-filled intercellular spaces (Witty et al. 1987). When O_2 diffuses into the infected cell, it is rapidly and reversibly bound to leghemoglobin (Lb), which is a plant-derived, monomeric heme-protein produced only in the nodule. Lb has a key role in maintaining a high flux of oxygen to support bacterial respiration, whilst at the same time maintaining the concentration of free O_2 at a low level. K_m for O_2 in the reaction Lb + O_2 ⇌ LbO_2 is about 37 nM (Bergersen 1982), and Lb occurs in high concentrations in the plant cytosol of infected cells (reviewed by Appleby 1984 and 1992). In soybean the Lb concentration in the cytosol has been estimated to be ca. 3 mM (Bergersen 1982). Lb thus acts as an O_2 buffer in the nodules, ensuring the even partitioning of O_2 between the plant and bacteroid fractions of the nodules, and facilitates the diffusion of O_2 through the infected cells so that a high flux of O_2 occurs at a strictly controlled concentration to the rapidly respiring bacteroids.

Another feature of the regulation of the free O_2 concentration inside the nodule is ascribed to the fact that the infected cells of nodule central tissue constitute a compact, intense sink for O_2. Infected cells contain hundreds or even thousands of bacteroids and increased numbers of mitochondria compared with other plant tissues (Bergersen 1997). Furthermore, the mitochondria in the infected cells are distributed mainly around the periphery in close proximity to the cell wall.
PART 1. INTRODUCTION

...and intercellular air spaces (Bergersen 1982). Consequently O\textsubscript{2} will be consumed at a high rate in this region, which has been predicted to create an intracellular O\textsubscript{2} concentration gradient as outlined in Fig. 6 (Thumfort et al. 1999). The availability of O\textsubscript{2} may be a key-limiting factor of metabolism in the infected zone of nodules by restricting aerobic respiration and thereby ATP synthesis. Due to the mitochondrial clustering near the intercellular spaces, it has been suggested that the bacteroids rather than the mitochondria, would be the site of O\textsubscript{2} limited metabolism (Layzell 2000). Evidence to support this view was provided by recent results showing that a decrease in external pO\textsubscript{2} from 0.2 to 0.1 atm. was followed by a decrease in ATP levels in the bacteroid compartment but not in the plant compartment of intact, attached soybean nodules (Kuzma et al. 1999).

2 Carbon and nitrogen metabolism in root nodules

2.1 Carbon metabolism

Symbiotic nitrogen fixation has a high demand for carbon sources. Photosynthates are required to support nodule and bacteroid growth and maintenance. In nitrogen-fixing bacteroids, large amounts of carbon compounds are essential for the generation of ATP and reducing power needed for nitrogenase activity. Furthermore, carbon skeletons are required for assimilation of the fixed N\textsubscript{2} into amino acids. Carbon metabolism is thus intimately linked to the process of nitrogen fixation, and the outlines of carbon metabolism will be summarised in this chapter before presenting a more elaborate introduction to nitrogen metabolism, which is central to my own experimental work.

The primary photosynthate translocated via the phloem from the shoot to the root nodules is sucrose as demonstrated by labelling studies (Reibach and Streeter 1983; Gordon et al. 1985). Sucrose is not taken up directly by the bacteroids, but is metabolised (Fig. 7) primarily via the action of sucrose synthase (SS) in the plant cytoplasm of uninfected cells in the infected zone of the nodule (reviewed by Gordon 1995; Day and Copeland 1991). SS is present at high levels in nodules and its activity correlate with nitrogenase activity (reviewed by Streeter 1991). The UDP-glucose, formed by SS activity, undergoes glycolysis, and phosphoenolpyruvate (PEP) is produced. PEP is carboxylated to form oxaloacetate by non-photosynthetic CO\textsubscript{2} fixation via the action of phosphoenolpyruvate carboxylase (PEPC) (reviewed by Kahn et al. 1998).

Oxaloacetate may either serve as carbon skeleton for the initial NH\textsubscript{4}+-assimilatory reactions (see chapter 2.5) or it may enter the tricarboxylic acid (TCA) cycle (see below) or it may be further converted to malate by the action of malate dehydrogenase (MDH). MDH is present in extremely high levels of activity in nodule cytosol and is correlated with nitrogenase activity (Appels and Haaker 1988). The activity of PEPC is also very high in the plant cytosol of root nodules, and 13CO\textsubscript{2} labelling studies with intact nodules have demonstrated rapid and significant labelling of organic acids, particularly malate (Vance et al. 1983; Snapp and Vance 1986; Rosendahl et al. 1990; Salminen and Streeter 1992). Malate can be further reduced to form fumarate and succinate,
PART 1. INTRODUCTION

...and these three organic acids accumulate to μmol quantities per gram nodule fresh weight, while amounts of other TCA cycle acids are much less (reviewed by Vance and Heichel 1991).

The TCA cycle in the plant mitochondria does not appear to play a significant role in the synthesis of organic acids, as the activity of many of the TCA cycle enzymes is low (Kahn et al., 1998; Gordon 1992). However, Streeter (1991) suggested that the principal function of nodule

Fig. 7: A general scheme for the carbon metabolism taking place in the plant and bacteroid cytoplasm of root nodules (Modified from Kahn et al. 1998; Kania et al. 1998). Abbreviated metabolites are: PEP, phosphoenolpyruvate; OAA, oxaloacetate; 2-OX, 2-oxoglutarate; MAL, malate; FUM, fumarate; SUC, succinate; PYR, pyruvate; AcCoA, acetyl-coenzyme A; CIT, citrate; ISO, isocitrate; SUC-CoA, succinate-coenzyme A. Enzymes involved are within boxes: SS, sucrose synthase; PEPC, phosphoenolpyruvate carboxylase; MDH, malate dehydrogenase; DctA, dicarboxylic acid transporter A; ME, malic enzyme; ODH, 2-oxoglutarate dehydrogenase. SM and BM are the symbiosome and bacteroid membranes, respectively.
mitochondria may be the production of 2-oxoglutarate, which is required as carbon skeleton in the initial steps of ammonium assimilation (see chapter 2.5). This can be achieved if only a part of the TCA cycle is operating leading to the net reaction acetyl-CoA + oxaloacetate \(\rightarrow \) 2-oxoglutarate + CO₂.

C₄ dicarboxylic acids, especially malate and succinate, have been shown to be the favoured substrates *in vitro* for the support of nitrogen fixation by isolated bacteroids (reviewed by Streeter 1991). It is generally agreed that also in the intact symbiosis, C₄ dicarboxylic acids are the most probable substrates supplied to bacteroids (Day and Copeland 1991; Kaminski *et al.* 1998). This is supported by a large body of evidence including the fact that rhizobia mutants deficient for C₄ dicarboxylic acid transport (*dcf*, see below) are uniformly unable to fix nitrogen when associated with their plant hosts (reviewed by Mitsch *et al.* 2000). Furthermore, label derived from \(^{14}\)CO₂ fixation in intact pea and soybean root nodules is rapidly incorporated into bacteroids in the form of malate and succinate (Rosendahl *et al.* 1990; Salminen and Streeter 1992).

Import of C₄ dicarboxylic acids into bacteroids has been demonstrated to involve two different active transporters: One is of plant origin and is located on the SM (Day *et al.* 1989; Udvardi *et al.* 1988a). It functions as an uniporter for monovalent dicarboxylic acids with high affinity for malate and succinate and a smaller affinity for oxaloacetate, fumarate and 2-oxoglutarate and allows movement of the anions down their electrical and concentration gradient across the SM into the PBS (Udvardi *et al.* 1988a; Ou Yang *et al.* 1990). The second transporter, the *dctA* gene product of rhizobia, is a single protein carrier embedded in the inner membrane of the bacteroid (reviewed by Jording *et al.* 1994) and appears to be a proton/dicarboxylic acid symporter that is driven by the proton gradient across the bacteroid inner membrane (Udvardi and Day 1997). The gene products of *dctB* and *dctD* are involved in the regulation of the expression of *dctA* (Jording *et al.* 1994). The Dct system has a high affinity for the substrates malate, succinate and fumarate (reviewed by Udvardi and Day 1997).

The SM as well as the BM are, on the other hand, relatively impermeable to sugars such as glucose, which further supports the view that C₄ dicarboxylic acids and not sugars are the dominant carbon source made available to the bacteroid (Udvardi and Day 1997).

The TCA cycle is the dominant metabolic pathway by which C₄ dicarboxylic acids are oxidised in bacteroids (Kahn *et al.* 1998). To maintain the TCA cycle with C₄ dicarboxylic acids as the sole carbon source, a pathway to generate acetyl-CoA is essential. Several such enzymatic pathways exist, but it is believed that oxidative decarboxylation of malate to pyruvate catalysed by malic enzyme (ME), and concomitant reduction of a nicotinamide cofactor is the dominant means by which the TCA cycle is maintained (Mitsch *et al.* 2000). Oxaloacetate and 2-oxoglutarate are TCA intermediates and are thus present in the bacteroid cytosol to provide carbon skeletons for the initial NH₄⁺-assimilatory reactions (see chapter 2.4).
PART 1. INTRODUCTION

There has been speculation that amino acids may also play a role in carbon and/or energy supply to the bacteroids (reviewed by Udvardi and Day 1997) and this will be described further in chapter 2.7.

2.2 N₂ is fixed by the nitrogenase enzyme complex

Reduction of atmospheric N₂ into NH₃ is catalysed by the bacteroid enzyme nitrogenase, which is a 2:1 complex of two components: the Fe and the MoFe protein, respectively (Fig. 8) (reviewed by Howard and Rees 2000; Kaminski et al. 1998; Smith 2000; Orme-Johnson 1992). The Fe protein (also called dinitrogenase reductase) is a homodimer of about 60 kDa that contains a single Fe₄S₄ cluster. The MoFe protein (also known as dinitrogenase) is an αβ₂ heterotetramer of about 220 kDa containing 4 Fe₄S₄ clusters (the so-called P-clusters), and a cofactor with Fe and Mo, which is the catalytic site for N₂ reduction.

The reaction sequence (reviewed by Howard and Rees 2000; Orme-Johnson 1992; Werner 1992) (Fig. 8) starts by reduction of the Fe protein by the low-potential electron donor ferredoxin. Electrons are transferred, one at a time, from the Fe protein to the MoFe protein in a process that involves MgATP hydrolysis. The cycle repeats until enough electrons have been provided for the complete reduction of the N₂ substrate. The overall reaction catalysed by nitrogenase is:

\[
N_2 + 16 \text{MgATP} + 8e^- + 8H^+ \rightarrow 2\text{NH}_3 + 16\text{MgADP} + 16\text{P}_i + H_2
\]

(Eq. 1)

This chemical equation reflects one of the main features of biological nitrogen fixation: its high energetic cost due to the high stability of the N₂ triple bond. Two ATP molecules are hydrolysed at
PART 1. INTRODUCTION

every electron transferred from the Fe protein to the MoFe protein. In addition, N₂ reduction is always accompanied by the concomitant reduction of at least two protons to evolve H₂, thus adding to the energetic cost of the process (cf. chapter 8). In the absence of other reducible substrates, the total electron flux through nitrogenase is funnelled into hydrogen production (Hadfield and Bulen 1969). Metabolism of dicarboxylic acids inside bacteroids through the TCA cycle (see chapter 2.1) and subsequent oxidative phosphorylation leads to the production of H⁺, electrons, and ATP required for the nitrogen fixation process (reviewed by Streeter 1991).

A second, major feature of nitrogenase is its oxygen-lability, mainly contributed by the Fe protein component, which is irreversibly inactivated by O₂ with typical half decay times of 30 to 45 seconds (Dixon and Wheeler 1986).

The product of nitrogenase exists as an equilibrium distribution of two forms, the acid ammonium (NH₄⁺) and the base ammonia (NH₃), which are readily inconvertible. An acid-base equilibrium distribution is determined by pH, and as the pKₐ of ammonium is 9.23 at 20 °C (Bates and Pinching 1950), ammonium will be the dominating species at all physiologically relevant pH values. According to the Henderson-Hasselbach equation, the ammonia concentration is for example only 1% and 0.01% of the ammonium concentration at an intracellular pH of 7.23 and pH 5.23, respectively. In the following, the term ammonium or NH₄⁺ will mean an equilibrium distribution of ammonium and ammonia as determined by the actual pH, unless otherwise stressed.

The free ammonium concentration in the bacteroid cytoplasm is not known due to experimental obstacles, but an estimate has been published for bacteroids in soybean nodules (Streeter 1989). The ammonium content in isolated bacteroids was estimated to be 1.20 +/- 0.08 and 2.00 +/- 0.08 μmol g⁻¹ FW nodules in two different experiments. It was assumed that 1 g FW nodules contained 0.15 g bacteroids, and that bacteroids consisted of 90% water. Based on these assumptions and a mean bacteroid ammonium content of 1.6 μmol g⁻¹ FW nodule, the bacteroid ammonium concentration was roughly approximated to be 12 mM.

2.3 Transport of ammonium/ammonia across bacteroid and symbiosome membranes

Free-living N₂-fixing rhizobia transport ammonium in two ways (reviewed by Day et al. 2001). A high-affinity ammonium transporter (Amt) allows rapid uptake from low concentrations of ammonium in the surrounding medium (Glenn and Dilworth 1984; Howitt et al. 1986) and thus ensures recycling of ammonium lost from the cell and scavenging of exogenous ammonium. The second mechanism involves NH₃ leaving and entering the cell by simple diffusion across the membranes. At high external concentrations of ammonium, the Amt system is repressed (see chapter 1.2), and diffusion of NH₃ provides the cell with sufficient nitrogen for growth (Howitt et al. 1986).
Bacteroids isolated from N₂-fixing nodules, on the other hand, do not express the Amt system, and ammonium transport is thought to occur solely by simple diffusion of NH₃ down a concentration gradient out of the cell and into the PBS (Fig. 9) (Glenn and Dilworth 1984; Howitt et al. 1986). As pH in the PBS is presumed to be lower than in the bacteroid compartment (cf. chapter 1.3), the acid-base equilibrium will be displaced even more in the direction of ammonium, and this enhances the NH₃ concentration gradient across the BM – the so-called acid trap (Udvardi and Day 1997). Ammonium will not be re-uptaken by the bacteroid because the Amt system is suppressed.

Movement of ammonium ions from the PBS into the plant cytoplasm requires a transport mechanism across the SM, and an ammonium channel has recently been characterised in soybean (Tyerman et al. 1995) and in pea (Mouritsen and Rosendahl 1997) (Fig. 9). The soybean ammonium transporter was identified by patch-clamp studies of isolated symbiosomes and was shown to be a voltage-gated monovalent cation channel. This channel opens to allow ammonium efflux from the symbiosome when a membrane potential (negative on the plant side) is generated across the SM, which is likely to occur in vivo (see chapter 1.3). It is capable of transporting NH₄⁺ across the SM at rates that are adequate to account for estimates of N₂ fixation rates in symbiosomes in vivo, and at low and physiologically relevant concentrations (10-20 mM) it shows a preference for NH₄⁺ (Tyerman et al. 1995). A presumably similar voltage-driven channel capable of carrying out ammonium transport from the bacteroid side across the SM was identified in pea root nodules (Mouritsen and Rosendahl 1997). Uptake of the ammonium analogue ¹⁴C-methylamine into energised bacteroid-side-out SM vesicles when a membrane potential was generated across the membrane was demonstrated in this study. The uptake mechanism appeared to have a high capacity for transport, and saturation was not observed in the studied concentration range of 25 μM to 150 mM methylamine.

An attempt has been made to isolate a cDNA from soybean encoding the SM ammonium channel using functional complementation of yeast (Kaiser et al. 1998). A single cDNA termed GmSAT1 (Glycine max symbiotic ammonium transport) yielded transcripts that were able to complement an ammonium transport defect in a yeast mutant (Kaiser et al. 1998). However, further analysis has indicated that the GmSAT1 protein is not itself a channel, but that it merely interacts with
endogenous Mep ammonium transporters in yeast, in a way, which seems to enable ammonium uptake (Marini et al. 2000).

Besides the ammonium transport across the SM described above, it has also been suggested that diffusion of \(\text{NH}_3 \) across the SM, either via simple diffusion or facilitated via a channel, might play a role in the translocation of nitrogen (reviewed by Day et al. 2001). Passive diffusion of \(\text{NH}_3 \) across the SM could be adequate to support measured rates of ammonium assimilation, provided that a steep concentration gradient was maintained by rapid removal of ammonium in the host cell by the enzyme glutamine synthase (see chapter 2.5) (Udvardi and Day 1990). However, these ideas remain to be investigated in more detail.

2.4 Nitrogen assimilation in bacteroids

Until recently it has been generally agreed that \textit{Rhizobium} bacteroids do not assimilate ammonium to any great extent during symbiosis. The paradigm has been that fixed nitrogen is secreted exclusively as ammonium, which is then assimilated into amino acids in the plant cytosol (reviewed by Udvardi and Day 1997; Kaminski et al. 1998; Kahn et al. 1985; Streeter 1991). However, more recent results challenge this view and suggest a possible involvement of amino acids as the form of fixed nitrogen delivered from the bacteroid to the plant (reviewed by Poole and Allaway 2000; Day et al. 2001). At present, consensus has not been reached as to whether substantial nitrogen assimilation takes place in the nodule bacteroid compartment, and in the following, many of the apparently contradictory results will be presented and discussed.

Early studies with anaerobically prepared nodule bacteroids showed that fixation of \(^{15}\text{N}_2 \) occurred in the bacteroids and that \(^{15}\text{NH}_4^+ \) was the main product excreted into the medium (Bergersen and Turner 1967). Ammonium accounted for 94-95% of the total fixed \(^{15}\text{N} \), which led to the conclusion that no significant nitrogen assimilation took place in the bacteroids. In accordance with this, many laboratories have subsequently found that the appropriate ammonium assimilatory enzymes were repressed in symbiotic bacteroids (Brown and Dilworth 1975; Kurtz et al. 1975; Werner et al. 1980).

In whole nodules, the primary assimilatory products were shown to be glutamate and glutamine (Kennedy 1966), and subsequent studies examined the localisation of assimilatory enzyme activity in nodules. The concerted action of two enzymes, glutamine synthetase (GS) and glutamate synthase (GOGAT), catalyse the incorporation of \(\text{NH}_4^+ \) into glutamine and glutamate by the combined reactions shown in Fig. 12. This pathway is known to be the main route of ammonium assimilation in free-living rhizobia, when the external ammonium concentration is low (Nagatani et al. 1971; Brown and Dilworth 1975; Kondorosi et al. 1977). Glutamate dehydrogenase (GDH) catalyses the incorporation of \(\text{NH}_4^+ \) into glutamate (Fig. 12) at high ammonium concentrations (Nagatani et al. 1971; Brown and Dilworth 1975).
PART 1. INTRODUCTION

It is unclear whether GDH plays a significant role in bacteroid nitrogen assimilation. Substantial bacteroid GDH activity was reported by Brown and Dilworth (1975) to be present in bacteroids from many different host plants, whereas Miller et al. (1991) demonstrated high GDH activity levels only in R. meliloti bacteroids compared to other species. Kurz et al. (1975) found low GDH activity levels in R. leguminosarum bacteroids throughout the entire 13-weeks growth period of the plant.

GOGAT activities in isolated bacteroids were demonstrated to be very low and insufficient to account for the level of nitrogen fixation and assimilation observed for the intact nodule (Kurz et al. 1975; Brown and Dilworth 1975). Some GS activity was present in the bacteroids, but its activity was not correlated to nitrogenase activity during plant development, and the low level of GOGAT precluded the operation of the GS-GOGAT cycle (Kurtz et al. 1975). Additional evidence in support of the view that the bacteroid GS-GOGAT pathway is not important in the assimilation of fixed nitrogen in the nodule is provided by Kondorosi et al. (1977). In this study it was showed that a Rhizobium GOGAT mutant, which was unable to assimilate ammonium and grow in the free-living state without supply of glutamate, was still fully effective in symbiosis.

The role of bacteroid GS during symbiosis is not well understood, but it seems that a low level of GS activity could be required for symbiosis. This is suggested by several observations that rhizobia mutants lacking GS are severely impaired in nodule infection and/or nitrogen fixation (Donald and Ludwig 1984; Moreno et al. 1991). Rhizobia and bradyrhizobia possess at least two different GSs, GS I and II, which are encoded by non-homologous genes (reviewed by Kaminski et al. 1998). The regulation of the gene encoding GS I is unknown apart from the fact that it is only slightly affected by nitrogen. The expression of GS II is under ntr control and thus turned off during bacteroid differentiation (see chapter 1.2) (Kaminski et al. 1998).

Data from several in vitro studies with bacteroids and symbiosomes have suggested that some amino acid synthesis does occur in the bacteroid cytoplasm under microaerobic conditions. Pea and soybean bacteroids supplied in vitro with dicarboxylic acids were found to excrete alanine and aspartate (Appels and Haaker 1991; Kouchi et al. 1991), and symbiosomes and bacteroids fed with 14C-malate or -succinate synthesised, and in some cases excreted, 14C labelled amino acids, primarily alanine, aspartate and glutamate (Salminen and Streeter 1987; Kouchi et al. 1991; Miller et al. 1991; Rosendahl et al. 1992).

It has been confirmed that bacteroids also synthesise amino acids in the intact symbiosis. Substantial amounts of 14C-glutamate, 14C-aspartate and 14C-alanine were found in bacteroids after exposure of whole pea and soybean nodules to 14CO2 (Rosendahl et al. 1990; Salminen and Streeter 1992).

Salminen and Streeter (1987 and 1990) found substantial and rapid synthesis of 14C-glutamate in soybean bacteroids after supply with 14C-dicarboxylic acids and this was attributed to channelling of 2-oxoglutarate to glutamate because of inhibition of 2-oxoglutarate dehydrogenase of the TCA
cycle (cf. Fig. 7) due to an increased NADH/NAD⁺ ratio under microaerobic conditions. The labelling of the large glutamate pool turned over slowly, suggesting a low rate of catabolism (Salminen and Streeter 1990). Assays of the enzyme glutamate α-decarboxylase (GAD) that catalyses the conversion of glutamate to γ-aminobutyric acid (GABA) (cf. Fig. 12) indicated that the enzyme was absent from the six tested strains of B. japonicum, and consistent with this no 14C labelling could be detected in the GABA pool (Salminen and Streeter 1990).

GAD activity has, however, later been demonstrated to be present in isolated R. meliloti bacteroids, and so has all other enzymes of the so-called GABA shunt (see chapter 2.5 and Fig. 13) (Fitzmaurice and O’Gara 1991; Miller et al. 1991). R. meliloti mutants defective in GAD have been reported to possess low nitrogenase activity, and alfalfa plants inoculated with the mutant were reduced in shoot dry weight (Fitzmaurice and O’Gara 1988). Whether GABA plays a role in bacteroid nitrogen metabolism is, however, still a matter of debate, and it may turn out to be strain specific. Miller et al. (1991) examined isolated bacteroids from different host plants and found very low levels of GABA in bacteroids from pea, bean, soybean and lupine nodules, whereas R. meliloti bacteroids from alfalfa contained substantial amounts of GABA. The GABA accumulation was primarily observed when bacteroids were isolated anaerobically, and when bacteria were incubated in the presence of 4% oxygen GABA concentrations declined, but remained much higher than in all other analysed microsymbionts. GABA was not exported from isolated bacteroids under any incubation conditions.

Recently there has been some evidence that substantial alanine synthesis takes place inside the bacteroids and that alanine may even be the form of fixed nitrogen exported by the bacteroid to the plant cell (Waters et al. 1998; Allaway et al. 2000) (see Fig. 10). As mentioned above, it has previously been observed that soybean and pea bacteroids and symbiosomes excreted alanine (Salminen and Streeter 1987; Appels and Haaker 1991; Rösendahl et al. 1992), but in the study by Waters et al. (1998) alanine was found to be the only excreted com-

Fig. 10: A general scheme for the possible assimilation processes taking place in the bacteroid and transfer of symbiotically fixed nitrogen through the bacteroid membrane (BM), peribacteroid space (PBS) and symbiosome membrane (SM). Enzymes involved are within boxes: MDH, malate dehydrogenase; ME, malic enzyme; N₂ase, nitrogenase; ADH, alanine dehydrogenase; GDH glutamate dehydrogenase; AAT, aspartate dehydrogenase. Circles represent identified membrane transport mechanisms, whereas dotted lines indicate transport by passive diffusion (Modified from Day et al. 2001).
PART 1. INTRODUCTION

pound that increased reproducibly and linearly with time from purified soybean bacteroids incubated under nitrogen-fixing conditions. \(^{15}\)N\(_2\) labelling experiments demonstrated that the recently formed ammonium from nitrogenase was incorporated into alanine, which was then transported out of the bacteroid. When incubated with \(^{15}\)N\(_2\) the excreted alanine was 98 atom% excess \(^{15}\)N. A further unusual feature of this work was that no significant ammonium excretion could be observed and \(^{15}\)N-ammonium labelling was typically less than 0.06 atom% excess.

The excreted alanine was found to be formed via the reaction of ammonium with pyruvate, catalysed by NADH-dependent alanine dehydrogenase (ADH) (Waters et al. 1998; Emerich et al. 2000; Allaway et al. 2000) (cf. Fig. 10). *B. japonicum* ADH has previously been found to be an extremely powerful ammonium assimilatory enzyme unlike most ADHs, which have catabolic roles (reviewed by Emerich et al. 2000). Waters et al. (1998) proposed that \(\text{N}_2\) reduction by nitrogenase and ammonium assimilation by ADH were so tightly coupled that the newly formed ammonium was never released into the cell ammonium pool. In agreement with the catalytic mechanism, the amount of \(^{15}\)N in ammonium within the bacteroid under conditions in which alanine excretion occurred was at the limit of detection suggesting that little free ammonium existed within the microsymbiont. When exogenous ammonium was added to bacteroids under \(\text{N}_2\)-fixing conditions, alanine excretion increased implying that the formation of ammonium from nitrogenase was limiting rather than the synthesis of alanine.

Waters et al. (1998) suggested that the reason for the lack of consistency with earlier investigations, where bacteroids have been found to excrete predominantly ammonium, is that most bacteroid preparations have been contaminated with plant enzymes capable of liberating ammonium by degrading excreted alanine and other excreted compounds. Furthermore, the choice of oxygen tension during bacteroid incubation in different studies was suggested as another reason why alanine excretion has not been observed previously, as the oxygen tension was shown to strongly influence the amount of excretion of alanine (Waters et al. 1998).

An impressive, joint biochemical and genetic study by Allaway et al. (2000) pursued the controversial results regarding bacteroid alanine synthesis. It was confirmed that alanine was also synthesised at high rates in pea bacteroids, but only when bacteroids were incubated at high densities under conditions that allowed accumulation of ammonium in the external medium. When bacteroids were incubated under low to moderate densities, only ammonium could be detected as a secretion product. The fact that the precise partitioning of ammonium to alanine could be altered so dramatically by the in vitro assay conditions, may explain many of the contradictions in the earlier literature. The whole cell \(K_m\) for alanine synthesis was 3.2 mM NH\(_4^+\), which was similar to the \(K_m\) of ADH (5.1 mM) (Allaway et al. 2000).

The importance of alanine synthesis *in planta* was examined by identifying and mutating the rhizobial gene for alanine dehydrogenase (*aldA*) and subsequently inoculating plants with the mutant. The mutant bacteroids fixed nitrogen and secreted ammonium at normal rates but did not synthesise alanine, and host plants were 20% reduced in biomass compared with those inoculated...
with the wild type (Allaway et al. 2000). Overall these data suggest that in planta alanine synthesis by AldA has a significant effect on the efficiency of nitrogen export, but cannot be the sole nitrogen secretion product from bacteroids.

2.5 Nitrogen assimilation in the plant

The assimilation of ammonium in the plant cytoplasm is, as opposed to assimilation processes taking place in the bacteroid, considered to be fairly well understood. The activity of nitrogen assimilatory enzymes is strongly enhanced in nodule tissues as compared to roots, and induction of nodule-specific genes encoding isoforms of nitrogen assimilating enzymes occurs (reviewed by Atkins 1991; Cullimore and Bennett 1992; Vance 2000). Several time course studies have shown that the rise in nodule nitrogenase activity and leghemoglobin concentration at the onset of nitrogen fixation is paralleled by a dramatic increase in the specific activities of nitrogen assimilatory enzymes in the plant cytoplasm fraction. Especially the activities of GS and GOGAT have been demonstrated to increase, but also aspartate aminotransferase (AAT) and asparagine synthetase (AS) (see Fig. 12), (reviewed by Boland et al. 1980; Streeter 1991).

The first step in the assimilation of ammonium into organic compounds occurs via the so-called GS-GOGAT cycle (Figs. 11 and 12) (reviewed by Robertson and Farnden 1980). Ammonium is incorporated into the amide group of glutamine in an ATP-dependent reaction catalysed by GS. The enzyme GOGAT subsequently catalyses the formation of two molecules of glutamate from a molecule of glutamine and a molecule of 2-oxoglutarate in an NADH-dependent process. Glutamate serves as the central nitrogen metabolite in the plant nodule cells for the synthesis of the other amino acids, nucleic acids and other nitrogen-containing compounds.

![Figure 11: A general scheme for the assimilation of symbiotically fixed nitrogen into amino acids in the plant cytoplasm of indeterminate legume root nodules. The enzymes involved are within boxes: GS, glutamine synthetase; GOGAT, glutamate synthase; AAT, aspartate aminotransferase; AS, asparagine synthetase. (Modified from Vance 2000.)](image-url)
Glutamine synthetase (GS):
\[\text{glutamate} + \text{NH}_4^+ + \text{ATP} \rightarrow \text{glutamine} + \text{ADP} + P_i \]

Glutamate synthase (previously glutamine: 2-oxoglutarate aminotransferase) (GOGAT):
\[2\text{-oxoglutarate} + \text{glutamine} + \text{NADH} \rightarrow 2\text{glutamate} + \text{NAD}^+ \]

Net GS-GOGAT cycle:
\[2\text{-oxoglutarate} + \text{NH}_4^+ + \text{ATP} + \text{NADH} \rightarrow \text{glutamate} + \text{ADP} + P_i + \text{NAD}^+ \]

Glutamate dehydrogenase (GDH):
\[2\text{-oxoglutarate} + \text{NH}_4^+ + \text{NAD(P)H} + \text{H}^+ \leftrightarrow \text{glutamate} + \text{NAD(P)}^+ + \text{H}_2\text{O} \]

Aspartate amino transferase (AAT):
\[\text{oxaloacetate} + \text{glutamate} \leftrightarrow \text{aspartate} + 2\text{-oxoglutarate} \]

Asparagine synthetase (AS):
\[\text{aspartate} + \text{glutamine} + \text{ATP} \rightarrow \text{asparagine} + \text{glutamate} + \text{AMP} + P_i \]

Glutamate α-decarboxylase (GAD):
\[\text{glutamate} + \text{H}^+ \rightarrow \gamma\text{-aminobutyric acid} (\text{GABA}) + \text{CO}_2 \]

GS is located predominantly in the cytoplasm of infected cells, whereas GOGAT occurs in the plastids and possibly also to some extent in the cytoplasm (Shelp and Atkins 1984; Vance 2000) (cf. Fig. 11). It has been shown that a nodule-specific form of GS is expressed only in infected cells (Forde et al. 1989). GS occurs as numerous isoforms (reviewed by Vance 2000) and is present in very large amounts in the host cytoplasm of nodules. It has been estimated that, in soybean nodules, the enzyme comprises 2% of the soluble protein in the cytosol (McParland et al. 1976). The apparent \(K_m \) values for ammonium of host GSs are in the order of 0.2 mM (McCormack et al. 1982; Cullimore et al. 1983), and the cytosol thus constitutes a massive sink for free ammonium coming from bacteroids. Streeter (1989) estimated that the ammonium concentration in the soybean nodule cytosol was essentially nil, which seems reasonable in view of the presence of large amounts of GS with a low \(K_m \) for ammonium.

Prior to 1970 it was generally assumed that ammonium was assimilated in the plant cytoplasm by the direct amination of 2-oxoglutarate to produce glutamate in a single reaction catalysed by GDH (cf. Fig. 12). However, the plant enzyme's high \(K_m \) for ammonium (> 1 mM) suggested that GDH did not have a major role in nitrogen assimilation, and this was confirmed by a large body of evidence pointing at the GS-GOGAT cycle as the primary nitrogen assimilating pathway (reviewed by Atkins 1991; Temple et al. 1998).
After the primary assimilation of ammonium into glutamine and glutamate, nitrogen is subsequently rapidly incorporated into aspartate and asparagine. Aspartate is formed directly by the amination of oxaloacetate with glutamate as the amino group donor in a reversible reaction catalysed by AAT (Figs. 11 and 12). Nodules contain two AAT isoenzymes of which AAT-I is expressed also in other parts of the plant, whereas AAT-2 is highly expressed in root nodules with low expression in other tissues (reviewed by Cullimore and Bennett 1992; Vance 2000). In situ hybridisation and immunogold localisation studies have demonstrated that AAT-2 is fairly limited to plastids of infected cells in nodules, while AAT-1 transcripts were expressed in uninfected cells, nodule vascular bundles and nodule parenchyma (Vance et al. 1994; Yoshioka et al. 1999). This indicates that only AAT-2 plays a principal role in assimilation of recently fixed nitrogen.

Asparagine is formed through amidation of aspartate with mainly glutamine as the amide group donor (Figs. 11 and 12) (Ta et al. 1986; Snapp and Vance 1986). This reaction is ATP-consuming and catalysed by AS, which is localised in the nodule plant cytosol (Cullimore and Bennett 1992; Vance 2000). Synthesis of asparagine also occurs by direct incorporation of free ammonium into aspartate, and this reaction has been estimated to account for 35% of the asparagine biosynthesis in alfalfa nodules (Ta et al. 1986). In E. coli both the glutamine and the ammonium dependent AS have been characterised, but in plants the production of the AS that catalyses synthesis of asparagine from ammonium and aspartate has not been established (reviewed by Vance 2000).

Asparagine, in particular, and to some extent also glutamine are the most important nitrogen transport forms in indeterminate nodules (cf. chapter 1.3) and are thus the end products of nitrogen assimilation in this type of nodules. In determinate nodules, on the other hand, purines are synthesised in the infected cells from glutamine and glycine and exported to neighbouring uninfected cells, where ureides are synthesised in a process that involves oxidative degradation of purines (reviewed by Werner 1992). The ureides, allantoin and allantoic acid, are the prevalent form in which nitrogen is exported to the xylem in determinate nodules (cf. chapter 1.3).

Root nodule nitrogen metabolism also includes the synthesis (see Figs. 12 and 13) and accumulation of γ-aminobutyric acid (GABA), which is present in relatively high concentrations in nodules of all legumes tested (Larher et al. 1983; Ta et al. 1986; reviewed by Vance and Heichel 1991). The concentration of GABA in the plant cytosolic fraction of alfalfa nodules was found to be 50-times higher than in the bacteroids (Ta et al. 1986). GABA is not usually incorporated into proteins and the role of GABA in plants is still unclear.

A number of functions for GABA in nodules has been suggested; among these a function in cytoplasmic pH regulation during microaerobic and aerobic conditions (Reid et al. 1985). The enzyme GAD that catalyses the H⁺-consuming α-decarboxylation of glutamate leading to GABA synthesis (cf. Fig. 12) has a sharp pH optimum around 5.8, and its activity will thus be stimulated if pH declines from the normal physiological level (reviewed by Bown and Shelp 1997). This has been confirmed by in vivo NMR studies of carrot cells, where it was demonstrated that an increase
in cytosolic pH preceded GABA accumulation (Carroll et al. 1994). GAD activity increased with reduced pH and declined as pH recovered.

It has also been suggested that synthesis of GABA in nodules provides an alternative route for succinate biosynthesis if/when 2-oxoglutarate dehydrogenase of the TCA cycle is inhibited under the oxygen-limiting conditions inside the nodule (Kahn et al. 1985; McDermott et al. 1989). This so-called GABA shunt is illustrated in Fig. 13. An accompanying feature of the GABA shunt is the concomitant production of alanine through transamination of pyruvate by the action of GABA transaminase.

![Diagram of the GABA shunt](https://via.placeholder.com/150)

Fig. 13: The GABA shunt constitutes an alternative route for succinate biosynthesis from 2-oxoglutarate. Krebs cycle = TCA cycle. Enzymes are indicated in italics: GDH, glutamate dehydrogenase; GAD, glutamate α-decarboxylase; GABA-T, GABA transaminase; SSADH, succinic semialdehyde dehydrogenase (Modified from Bown and Shelp 1997).

A third suggestion for a role for GABA in plants is the hypothesis that GABA is a temporary N store (reviewed by Shelp et al. 1999). It has been shown that elevated glutamate levels, caused by for instance inhibition of glutamine synthesis or reduced protein synthesis, stimulate GABA synthesis. Some experimental evidence indicates that the locations of GABA production and accumulation are not identical, and that accumulated GABA is sequestered within organelles (reviewed by Shelp et al. 1999).

Recent results suggest that alanine may be the form in which at least a part of the nitrogen is delivered to the plant (cf. chapter 2.4) (Waters et al. 1998; Allaway et al. 2000), but the metabolic fate of alanine after it leaves the bacteroid is not known. The current understanding of nitrogen assimilation in the plant cytoplasm, as it has been described in this chapter, does not yet provide any explanation how alanine can be a starting point in the plant assimilation process. A model by Waters and Emerich (2000) that attempts to integrate alanine in the well-known nitrogen assimilating pathways will be described in chapter 2.7.
2.6 Amino acid transport across bacteroid and symbiosome membranes

Several transport studies with isolated bacteroids from many different host plants confirm that bacteroids are capable of accumulating certain amino acids from the external medium quite rapidly (Glenn and Dilworth 1981; Udvardi et al. 1988b; Herrada et al. 1989; Salminen and Streeter 1987, 1990; Jin et al. 1990; Whitehead et al. 1998). An indication that amino acids may be transported across the BM in planta comes from the observation that some rhizobial amino acid auxotrophs are able to establish nitrogen-fixing symbioses, which suggests that the necessary amino acids are supplied to bacteroids by their host plants (reviewed by Udvardi and Day 1997).

A general amino acid permease (Aap) that transports a wide range of L-amino acids including glutamate, aspartate, proline, histidine and aliphatic amino acids with very high affinity (K_m for glutamate 81 nM) has been described in free-living *R. leguminosarum* (Poole et al. 1985; Walshaw et al. 1997a and b). This permease system has been cloned and was shown to consist of four proteins forming an ATP-binding cassette (ABC) transporter (Walshaw and Poole 1996). It has been suggested that Aap is either bidirectional or regulates another efflux channel, because amino acids can be taken up as well as excreted by free-living *R. leguminosarum* bacteria (Walshaw and Poole 1996).

A second ABC transport system, the so-called branched-chain amino acid transporter (Bra) has also been cloned in *R. leguminosarum*, and double mutants in *aap* and *bra* are devoid of almost all detectable high-affinity amino acid uptake (reviewed by Day et al. 2001). In addition to these dedicated amino acid transporters, it has been demonstrated that aspartate can be transported by the Dct system (see chapter 2.1), albeit with low affinity (Reid et al. 1996; Watson et al. 1993). However, under most growth conditions the Aap and Bra appear to dominate high-affinity amino acid uptake in free-living bacteria and both are capable of exchanging amino acids.

The precise mechanisms by which amino acids are transported across BM in symbiosis is not known, but exchange of intracellular amino acids from bacteroids is likely to occur via the general amino acid transport systems, Aap and Bra (Day et al. 2001). The results by Waters et al. (1998) (see chapter 2.4) demonstrate that alanine is exported from the bacteroid and thus that some carrier mediated transport mechanism exists, and it is possible that specific export systems for amino acids such as alanine may be induced in symbiosis (Day et al. 2001).

The SM is, as opposed to the BM, considered to be rather impermeable to amino acids. Transport studies with isolated symbiosomes from a number of different legumes have, in the majority of cases, failed to identify amino acid transporters on the SM (Udvardi et al. 1988b; Herrada et al. 1989; Udvardi et al. 1990; Ou Yang and Day 1992; Whitehead et al. 1998). However, a notable exception is provided by Rudbeck et al. (1999), who demonstrated that aspartate could be transported from the bacteroid to the plant side of the SM (cf. Fig. 10) by the operation of a proton-aspartate symporter on energised pea SM membrane vesicles. Furthermore, it has been suggested that substantial amino acid concentration gradients may exist in vivo, and that amino acids may
PART 1. INTRODUCTION

diffuse down the gradients across the SM, perhaps via the well-known aquaporin, Nodulin 26 (Udvardi and Day 1997; Day et al. 2001; Rivers et al. 1997).

Despite the general view that the SM is highly impermeable to amino acids, there has been several observations of isolated symbiosomes secreting amino acids like alanine and aspartate at substantial rates (cf. chapter 2.4) (Udvardi et al. 1990; Rosendahl et al. 1992). However, further work is needed before firm conclusions can be drawn about in vivo amino acid transport out of symbiosomes and transport mechanisms remain to be identified.

Given the apparent lack of transporters on the SM for amino acids, the presence of high-affinity amino acid transporters on the BM is surprising and needs an explanation. In free-living B. japonicum glutamate transport is induced when external substrate concentrations are very low and repressed when glutamate is abundant (Whitehead et al. 1995). The persistence of amino acid transporters in bacteroids may, therefore, simply reflect the restricted availability of substrates from the plant. In this situation transporters may assist bacteroids in taking up amino acids from a very low concentration pool in the PBS. Slow movement of amino acids across the SM followed by rapid uptake into the bacteroid via high-affinity transporters, may allow plant amino acids to supplement fixed nitrogen in the bacteroid for biosynthetic purposes.

2.7 Nutrient exchange cycles

Several models that integrate carbon and nitrogen exchange via shuttles and cycles involving uptake and efflux of amino acids across the SM and BM have been proposed (Kahn et al. 1985; Kouchi et al. 1991; Waters and Emerich 2000; Rosendahl et al. 2001). All of the models are hypothetical and based on a mixture of solid experimental data and more or less speculative assumptions, and the suggestions may thus inspire further investigation. I have chosen to present a selection of the models in order to illustrate the many possible extensions and alternatives to the more mainstream metabolic pathways described in the previous chapters 2.4, 2.5 and 2.6.

Kahn et al. (1985) were the first to propose a simple nutrient exchange model in which nitrogenase-generated ammonium was assimilated into a carbon skeleton in the plant cytoplasm and subsequently carried across the BM to serve as a reduced carbon source (see Fig. 14). In that way, supply of reduced carbon for bacteroid metabolism would require bacteroid nitrogen fixation, and thus urge the bacteroid to fix nitrogen continuously. Glutamate and aspartate were suggested
as candidates to participate in membrane transversing shuttles.

A more elaborate version of the model was also presented by Kahn et al. (1985) (see Fig. 15) inspired by the malate-aspartate shuttle that operates in mitochondria (Meijer and VanDam 1974). It is a simple mechanism requiring only two enzymes (AAT and MDH) and involving the exchange of glutamate for aspartate and malate for 2-oxoglutarate across the membrane barrier. The net effect of the malate/aspartate shuttle would be the transport of reducing equivalents (NADH) across SM and BM without transport of nitrogen and carbon. A number of laboratories have provided evidence in favour of a malate/aspartate shuttle, but it is still not clear whether it operates in the legume-Rhizobium symbiotic interface (Udvardi and Kahn 1992).

Work in both *R. leguminosarum* (Appels and Haaker 1991; Rosendahl et al. 1992) and *B. japonicum* (Streeter and Salminen 1990) suggests that bacteroids would be willing players in such a scheme since aspartate and 2-oxoglutarate was released when isolated bacteroids were incubated in the presence of malate and glutamate. AAT has been proposed to catalyse the formation of oxaloacetate from aspartate in the suggested malate/aspartate shuttle, and this role of AAT has been supported by results showing that exogenously supplied 14C-aspartate to alfalfa nodules was rapidly metabolised to malate, succinate and fumarate (Snapp and Vance 1986). Rastogi and Watson (1991) found that an *S. meliloti* aatA mutant, which seems to be unable to generate a high level of AAT activity, forms ineffective nodules (fix) with its host plant alfalfa, and this has also been interpreted as an indication that an exchange of organic acids and amino acids might play a role in symbiotic metabolism (Kahn et al. 1998).

The major argument against the operation of a malate/aspartate shuttle is the impermeability of the SM to glutamate (cf. chapter 2.6) (Udvardi et al. 1988b). A lack of formal shuttle mechanisms is also indicated by the fact that a mutation of the aap genes encoding the amino acid permease
PART 1. INTRODUCTION

described in chapter 2.6, prevented growth on glutamate as a carbon source in free-living *R. leguminosarum*, but did not have any major effect on symbiotic nitrogen fixation (Walshaw *et al.* 1997a).

Kouchi *et al.* (1991) also suggested involvement of glutamate as a possible carbon source for bacteroids in nodules and carried out studies of glutamate uptake and metabolism in isolated *B. japonicum* bacteroids and symbiosomes. The results suggested that the major pathway of glutamate utilisation in bacteroids was transamination to form aspartate, but it was additionally suggested that the GAD catalysed GABA pathway (cf. Fig. 13) was partly responsible for the catabolism of glutamate. The utilisation of glutamate as a carbon source was severely inhibited in isolated symbiosomes as compared to isolated bacteroids, but at rather high, though still physiologically relevant, glutamate concentrations, considerable glutamate utilisation was observed, indicating that the SM may not work as a barrier *in vivo* (Kouchi *et al.* 1991).

Waters and Emerich (2000) have proposed an alanine-pyruvate nutrient exchange cycle (see Fig. 16) that takes into account the recent findings of alanine as the primary nitrogen transport compound from bacteroids (cf. chapter 2.4). The overall net metabolite transfer of the cycle is the movement of one molecule of ammonium from the bacteroid to the plant in exchange for one molecule of CO₂ from the plant to the bacteroid.

In this model malate is transported into the bacteroid (cf. chapter 2.1), decarboxylated into pyruvate and synthesised into alanine. Alanine is assumed to be transported out of the symbiosome, into the cytosol of infected plant cells, where ammonium is transferred to another carrier such as 2-oxoglutarate to form glutamate, which can then be used to synthesise other nitrogen containing compounds. The pyruvate, which is generated from alanine transamination, presents a problem to the model, because pyruvate is not readily oxidised by plant mitochondria. However, if pyruvate could be converted into phosphoenol pyruvate (PEP), it could subsequently be recycled back to malate via the enzymes PEP carboxylase and MDH (cf. chapter 2.1) in the infected plant cells. The enzymes for conversion of pyruvate to PEP or to oxaloacetate (OAA) are known in plants but remain to be identified in root nodules, and the solidity of the model is therefore not known at the moment. The transport of alanine across the SM is also a weak point of the model, but it is
suggested that alanine alternatively could be deaminated within the PBS to liberate ammonium, which could be transported out of the symbiosome by ammonium transporters on the SM (see chapter 2.3).

Rosendahl et al. (2001) proposed the operation of transamination cycles including processes taking place in the symbiotic interface between the bacteroid and the plant as well as in the bacteroid cytoplasm (see Fig. 17). It was hypothesised that these processes may constitute a component of the transfer of nitrogen between the symbionts and possibly also a mechanism whereby the bacteroid TCA cycle may be regulated during symbiotic nitrogen fixation. This model encompasses previous findings that aspartate under certain circumstances is the amino group donor for synthesis of glutamate from 2-oxoglutarate via AAT activity in bacteroids (Reid et al. 1996) and that glutamate may enter the PBS via a transporter present on the BM (Walshaw et al. 1997). In addition the model includes the recently identified aspartate transporter on the SM (see chapter 2.6) (Rudbeck et al. 1999), observations of high AAT activity in the PBS (Rosendahl et al. 2001) and preliminary results indicating the presence of AAT in the PBS (Simonsen 1998).

3 \textit{In vivo} NMR spectroscopy

3.1 Fundamental principles of nuclear magnetic resonance (NMR)

A few important principles of NMR will be summarised in the following to provide a suitable background for the later presentation and discussion of \textit{in vivo} NMR experiments on root nodules. A detailed introduction to NMR as well as its application to plant-microbe symbioses and plant systems in general can be found in various textbooks and recent reviews on which the present chapter is also based (Sanders and Hunter 1993; Pfeffer and Shachar-Hill 1996; Bligny and Douce 2001; Kückenberg 2001; Pfeffer et al. 2001; Ratcliffe and Shachar-Hill 2001).
PART 1. INTRODUCTION

A number of nuclei, among these the biologically relevant ^1H, ^{13}C, ^{15}N, ^{17}O, ^{19}F and ^{31}P, possess a magnetic moment and angular momentum (nuclear spin). The magnetic dipole axes of the nuclei are usually randomly ordered. However, when exposed to a magnetic field (B_0), this field interacts with the magnetic moments of the nuclei (see Fig. 18). A new thermal equilibrium is achieved in which the population of nuclei with the magnetic dipole axes aligned parallel with the external field is slightly bigger than the population of the nuclei with anti-parallel aligned axes. These two spin states have different energies and are separated by an amount, ΔE, which is field dependent:

$$\Delta E = \hbar \gamma B_0 / 2\pi$$ \hfill (Eq. 2)

where γ is the magnetogyric ratio of the nucleus (see Table 2).

The ratio of the populations of the lower and the higher energy state (N_a and N_b, respectively) is given by the Boltzmann distribution:

$$N_a / N_b = \exp (-\Delta E / kT)$$ \hfill (Eq. 3)

A weak net magnetisation of the sample, which can be represented by a vector M_0, results from this unequal population distribution. The sample magnetisation can be measured through the induction of a voltage signal in a coil surrounding the sample after its manipulation by an appropriate radio-frequency (r.f.) pulse.

Fig. 18: Schematic representation of the nuclear resonance phenomenon. The sample magnetisation M_0 arises from the uneven distribution of the nuclear spin ensemble between two different states with their axes either aligned parallel or anti-parallel to the axis of the main magnetic field B_0. The magnetic dipoles precess (here indicated as vectors) around the main field axis with the Larmor frequency ω. After the application of a r/2 radio frequency pulse, the original distribution is shifted away from the thermodynamic equilibrium, and a phase coherence is established between the precessing dipoles. The result is a sample magnetisation M_L, precessing in the transverse plane with a frequency ω, and the detection of this precession forms the basis of an NMR signal. The spin ensemble returns to the original distribution between the two states through T_1 relaxation. The loss of phase coherence is described by T_2 relaxation. Both processes occur simultaneously but are depicted separately in the diagram for clarity (From Kockenberger 2001).
PART 1. INTRODUCTION

One of the most fundamental principles underlying NMR is the proportionality between the resonance frequency (the Larmor frequency, \(\omega \)) and the magnetic field that acts on the nuclei:

\[
\omega = \gamma B_0 \quad \text{(Eq. 4)}
\]

The identification of the chemical nature of a compound by its resonance lines is based on this principle. Each nucleus within a molecule experiences a slightly different magnetic field because the main magnetic field is shielded by surrounding electron clouds. Thus, the effective magnetic field acting on a given nucleus depends on the chemical nature of the group and the chemical environment in which it is bound. Because of differences in shielding each nucleus will absorb energy at a slightly different frequency. For instance, the nitrogen nuclei in the amide and amino groups, respectively, of glutamine molecules can be identified by their different resonance frequencies due to differences in the local shielding of the magnetic field. The separation of the resonance frequencies from an arbitrarily chosen reference is called the chemical shift (\(\delta \)), which is calculated on the basis on the relationship:

\[
\delta = 10^6 \frac{(\nu_i - \nu_r)}{\nu_r} \quad \text{(Eq. 5)}
\]

where \(\nu_i \) and \(\nu_r \) are the resonance frequencies of the compound of interest and the reference compound, respectively. \(\delta \), which is independent of the field strength of the magnet, is a unitless number that is expressed in parts per million (ppm). The result of an NMR analysis is a spectrum, that is, a plot of intensity against energy in which each signal occurs at a characteristic chemical shift.

<table>
<thead>
<tr>
<th>Nucleus</th>
<th>Magnetogyric ratio, (\gamma) ((\times 10^7 \text{ rad T}^{-1} \text{ s}^{-1}))</th>
<th>Natural abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^1\text{H})</td>
<td>26.752</td>
<td>99.98</td>
</tr>
<tr>
<td>(^13\text{C})</td>
<td>6.728</td>
<td>1.11</td>
</tr>
<tr>
<td>(^15\text{N})</td>
<td>-2.712</td>
<td>0.365</td>
</tr>
<tr>
<td>(^19\text{F})</td>
<td>25.181</td>
<td>100</td>
</tr>
<tr>
<td>(^31\text{P})</td>
<td>10.839</td>
<td>100</td>
</tr>
</tbody>
</table>

3.2 \(T_1 \) and \(T_2 \) relaxation

After the thermal equilibrium is perturbed by the initial r.f. pulse, the nuclei start to return to the initial state by relaxation (cf. Fig. 18). The initial population distribution between the different states can be restored only by an exchange of energy between the exited nuclei and their environment. This is a first order process with a time constant \(T_1 \) for an identical ensemble of nuclei. In the classical mechanical treatment, \(T_1 \) relaxation (also known as longitudinal or spin-
lattice relaxation) represents the recovery of the bulk magnetisation vector in the direction of the main magnetic field.

There are continuous fluctuations of the local magnetic fields due to rotational and translational molecular motion, which causes a decay of the average sample magnetisation vector in the transverse plane by a first order process with a time constant T_2. T_2 relaxation is also known as transverse or spin-spin relaxation.

The mechanistic explanations of both longitudinal and transverse relaxation rates include a variety of physical processes, such as inter- and intramolecular dipole-dipole interactions between two nuclei.

The experimental or apparent T_2 time constant is called T_2^* and may be shorter (but never longer) than the true T_2 because of local magnetic field inhomogeneity. The inhomogeneity of the magnetic field in plants stems mainly from the presence of small air-filled intercellular spaces (reviewed by Köckenberger 2001). Air and water have different magnetic susceptibility when exposed to a magnetic field, which can result in strong internal magnetic field gradients at the interface between water and air. This will shorten the experimental transverse relaxation time constant T_2^* and this effect becomes more pronounced with increased magnetic field strength. Shortening of T_2^* can also be caused by such diverse factors as interactions with paramagnetic ions and molecules, reduced molecular motility and exchange effects.

A shortened T_2^* will lead to line broadening of signals in an NMR spectrum. The resonance line width, $\Delta v_{1/2}$ (the full width at half the height of the peak), and T_2^* are related by:

$$\Delta v_{1/2} = \left(\frac{\pi T_2^*}{2} \right)^{-1} \quad \text{(Eq. 6)}$$

In general the broader the signal, the more difficult it is to define its shape and extent and the greater the chance of overlap with neighbouring signals. However, identifying the cause of the line broadening leads to information about the intracellular environment of the ion or the molecule that gives the NMR signal. In extreme cases line broadening can render a signal undetectable and this too may be informative. Nuclei that are present in a sample without being detected in a simple NMR experiment, are said to be NMR-invisible. This often occurs for large molecules e.g. high molecular weight polyphosphate or for small molecules that bind to large molecules such as ADP binding to proteins. Interaction with paramagnetic compounds can also greatly reduce T_2^* and lead to NMR-invisibility. Different compartments in a cell may have different relaxation properties.

3.3 Signal-to-noise ratio

The signal in an NMR experiment is a small electromotive force that is induced in the detection coil by the precession of the sample magnetisation in the transverse plane. The signal is modulated
PART 1. INTRODUCTION

down in frequency, digitised and sent to a computer where it is converted into a spectrum by a mathematical procedure called a Fourier transformation. However, from the coil to digitisation there are a number of sources for experimental noise that impair the detection sensitivity (Hoult and Richards 1976). The signal-to-noise (S/N) ratio is approximately proportional to the square of the applied magnetic field (B_0) and to the number of nuclei within the sample.

The natural abundance of a magnetic isotope of interest (cf. Table 2) is one of the crucial factors to determine whether the number of nuclei within a biological sample is large enough to exceed the detection threshold. ^{31}P is 100% naturally abundant so therefore it is favourable to observe ^{31}P metabolites by NMR. ^{15}N is, however, only present at 0.365% of a natural population and furthermore has a low magnetogyric ratio (cf. Table 2) which leads to rather low sensitivity of ^{15}N NMR. ^{15}N metabolites are thus not easily detected in an unenriched sample. However, this can be exploited to advantage because the distribution of label from a given ^{15}N labelled substrate, which is administered to the biological system under study, can be followed through a metabolic pathway by in vivo ^{15}N NMR.

A common way to increase the S/N ratio is signal averaging by the addition of many single scans or transients. In a spectrum resulting from the summation of n transients, the signals will be n times bigger than they are in a single spectrum. The noise will, however, increase by only \sqrt{n} and so the ratio of S/N amplitude will increase by \sqrt{n}. Increasing the S/N ratio by signal averaging therefore rapidly leads to very long experimental times.

Application of the nuclear Overhauser effect (NOE) is a means to enhance signal intensities. NOE is a change in the intensity of a spectroscopic signal caused by the continuous saturation of a transition of another nearby nucleus during the NMR experiment. The nuclei interact through space and need not be covalently bound. The saturation of the transition of one of the nuclei will cause a new population distribution to develop as relaxation occurs. Dipole-dipole relaxation will lead to depopulation of the upper level and thereby an increased population difference, which will cause intensity enhancement of the signal from the observed nucleus. It is particularly interesting for the insensitive ^{15}N nucleus, where the proton induced NOE may yield a large increase of the signal intensities. The NOE factor (η) is a fractional increase determined by the magnetogyric ratios of the saturated and the observed nucleus, γ_A and γ_X, respectively:

$$\eta = \gamma_A / 2 \gamma_X$$ \hspace{1cm} (Eq. 7)

In practice the effective NOE factor, η_{obs}, may be smaller than the theoretical value as a result of molecular or experimental factors. The NOE factor, η, gives the maximal fractional increase in a signal due to the NOE, and the resulting total intensity of the enhanced X-signal is given by:

$$I = (1 + \eta) I_0$$ \hspace{1cm} (Eq. 8)
where \(I_0 \) is the original intensity. The maximum proton-induced \(\eta \) for \(^{15}\text{N}\) is according to Eq. 7 about -4.9 as the \(\gamma \)-values of \(^1\text{H}\) and \(^{15}\text{N}\) differ by a factor of nearly 10 (see Table 2). As the \(^{15}\text{N}\) magnetogyric ratio is negative the NOE factor will also be negative. This will give improved signal-to-noise only if \(\eta_{\text{obs}} \) is so large and negative that the net signal is inverted but more intense than in the absence of NOE. However, in the case where the dipole-dipole contribution is less than 100\%, it is possible for \(\eta_{\text{obs}} \) to be close to -1, leading to a complete loss of signal (cf. Eq. 8).

4 Concluding remarks and objectives

Carbon and nitrogen metabolism in legume-Rhizobium root nodules has been studied with intermittent intensity since the 1960s. However, the complex interwoven metabolic network is still not fully understood, as described in chapter 2 and illustrated by the many different metabolic schemes presented in chapter 2.7.

The form of fixed nitrogen exported by the bacteroid to the plant cell is still a matter of debate, and the recent controversial and remarkable results by Waters et al. (1998) and Allaway et al. (2000) (cf. chapter 2.4) mandate new investigations of nodule nitrogen metabolism. The degree of partitioning to alanine and ammonium by different rhizobia species is unknown, as are the effects of different environmental conditions and AldA expression levels on alanine synthesis. Alanine may be a major secretion product of bacteroids, but its metabolic fate after it leaves the bacteroid is still unknown. Likewise, transport systems for alanine as well as other amino acids on the SM remain to be identified.

The size of the free ammonium pool in the bacteroid cytoplasm during symbiosis is an open question. Waters et al. (1998) suggest that ammonium synthesis and subsequent assimilation by alanine dehydrogenase are so tightly coupled in the bacteroid cytoplasm that very little free ammonium is released. Allaway et al. (2000), on the other hand, observe a plastic partitioning of ammonium and alanine excretion from the bacteroids and suggest that the ammonium concentration inside the bacteroids is one of the key variables governing the rate of alanine synthesis. To my knowledge, the only published attempt to estimate the free ammonium concentration in bacteroids was made by Streeter (1989) (cf. chapter 2.2). This estimate was based on an extrapolation of time dependent experimental data to time zero as well as on quite a lot of assumptions, so there is a need for a more direct determination of the concentration of free ammonium inside the bacteroid.

The mechanism by which ammonium reaches the plant cytosol remains controversial (Udvardi and Day 1997). It is clear that in soybean and pea the SM contains channels, which have properties that one would expect of a transporter delivering ammonium to the plant (cf. chapter 2.3), but its operation during nitrogen fixation remains to be demonstrated. The gene encoding the putative SM ammonium transporter has not yet been identified, and therefore it has not been possible to prove
its function by for instance blocking the expression of the gene using antisense RNA techniques.

A general problem in the study of nodule metabolism is the extrapolation from in vitro to in vivo. Information on the microenvironment of the different compartments in the nodule is lacking, and the in vivo significance of in vitro findings is therefore difficult to appreciate. Biochemical reactions in intact living cells can be studied by NMR spectroscopy ideally without interfering with metabolic processes or destroying enzyme complexes. While determinations of enzyme activities in crude extracts may give a first clue as to which ammonium assimilation pathways are active, they cannot be used to predict the in vivo flux distribution over competing enzyme systems such as GDH and GS/GOGAT. In vivo NMR spectroscopy, especially when used in combination with stable isotope labelling such as 15N, does allow the characterisation of metabolic activities in the living cell. Other methods for studying metabolic pathways rely on extractions of the tissue and subsequent purification and analysis. These procedures are time consuming and this is a significant disadvantage in time course experiments, where the aim is to follow the label through a pathway.

In vivo 15N NMR spectroscopy has previously been used successfully in the study of plant, fungal and bacterial nitrogen metabolism. Much of the work has contributed to the understanding of the roles of GDH and the GS/GOGAT cycle in ammonium assimilation in different systems including cell suspensions (Robinson et al. 1991; Fox et al. 1995; Amancio et al. 1997), embryogenic cultures (Joy et al. 1996 and 1997), root tissues (Amancio and Santos 1992), Sphagnum fallax (Kahl et al. 1997), ectomycorrhizal mycelium (Martin 1985) and Corynebacterium glutamicum (Tesch et al. 1999). The elucidation of the nitrogen assimilating pathways has usually been achieved by supplying 15N-ammonium or 15N-nitrate to the living biological system and subsequently 15N NMR analysing the incorporation of the 15N label into amino acids in the presence and absence of enzyme inhibitors.

Metabolic studies by in vivo NMR spectroscopy has the advantage of avoiding artefacts caused by the breakdown of labile compounds during extraction and it also eliminates errors due to incomplete recovery of solutes from the tissue. A crucial factor in studies of bacteroid metabolism and functioning in vitro is the degree to which bacteroid preparations are free from contaminating plant enzymes and metabolites. Waters et al. (1998) suggested that the presence of plant enzymes in earlier in vitro studies of bacteroids had caused significant artefacts in the results concerning metabolic products released from bacteroids (cf. chapter 2.4), but this was subsequently rejected by Li et al. (2000). Likewise, major errors might occur in the determination of metabolite levels because of reallocation or degradation of metabolites during extraction, processing of extracts or separation of compartments (Streeter 1987, 1989; Miller et al. 1991).

An unfavourable feature of 15N NMR spectroscopy is that it is a relatively insensitive spectroscopic method. This might have discouraged previous attempts to study nitrogen fixation, because to my knowledge, no reports on 15N NMR spectroscopy used for studying living nitrogen fixing organisms are available. The only reported 15N NMR investigation of 15N$_2$ fixation is by Belay et al. (1988) who incubated methanogenic bacteria with 15N$_2$ and subsequently analysed harvested,
dead cells by 15N NMR. However, the literature contains a few in vivo 31P NMR spectroscopic studies of symbiotic legume root nodules such as soybean (Mitsumuri et al. 1985; Rolin et al. 1989a & b) and alfalfa (Nikolaev et al. 1994). Results from these investigations demonstrate that it is possible to keep nodules metabolically active, while recording NMR spectra.

In conclusion, accurate estimation of the assimilation and translocation of fixed nitrogen in nodules would benefit from non-invasive and non-destructive measurements of the fate of the fixed nitrogen. The objective of the present study was thus to investigate nitrogen fixation and assimilation in 15N$_2$ fixing root nodules root by in vivo 15N NMR spectroscopy.
5 Introduction

The aim of my experimental work has, throughout the project period, been to obtain informative in vivo 15N NMR spectra of 15N$_2$ fixing root nodules. However, a lot of equipment and procedures had to be developed and a lot of problems had to be solved first. The process of developing an experimental set-up that maintained the nodules in a physiologically viable state while in the NMR tube will be described in chapter 7. The in vivo NMR technique requires in general that the biological system under study is immersed in aqueous medium in order to maximise magnetic field homogeneity to achieve the narrowest signal line widths. The search for the optimal conditions for maximal nitrogen fixation rates of immersed, detached nodules in the NMR tube is described in chapter 8.

When the first in vivo 15N NMR spectra were obtained, the next task was the interpretation of results and the identification of metabolites giving rise to the observed signals. This was by no means straightforward and included several approaches involving both NMR (described in chapter 10) as well as mass spectrometry (described in chapter 11). NMR in general and 15N NMR especially is a relatively insensitive spectroscopic method (cf. chapter 3). This is not a serious limitation, when large amounts of material are available as in studies of purified organic compounds, but it is one of the main limitations in vivo. In order to detect physiological levels of nitrogen metabolites, it was necessary to put an effort into optimising experimental variables influencing the 15N S/N ratio as described in chapter 10.2 and 10.5.

One of the special and useful features of in vivo NMR is that unexpected information, which would escape detection by other analytical methods, might be revealed (reviewed by Ratcliffe 1996). This includes the discovery of novel compounds like the unusual root nodule 31P metabolites described in chapter 7.2 as well as information on intracellular environment as illustrated by the unusual ammonium chemical shift observed in vivo (described in chapter 10.3). These most unusual and unexpected results have been pursued and investigated to some extent as described in the respective chapters, but remain to be fully elucidated.

All presented 31P and 15N NMR spectra have been recorded on a Varian Unity Inova 600 spectrometer using a broadband 10-mm-diameter probehead unless otherwise stated.

6 Biological material

Pea (Pisum sativum L.) was the model plant of choice from the beginning and the majority of my work has been done with the pea variety “Solara”. The variety “Bodil” was used for some experiments mentioned in chapter 8.1. Seeds were inoculated with suspension cultures of Rhizobium leguminosarum bv. viceae as described in the article manuscript and different
Rhizobium strains were tested as mentioned in chapter 8.1. However, the strain Risø 18a, which was used from the beginning, remained the preferred strain and was used for all presented experiments unless otherwise stressed.

Nodules from soybean (Glycine max L. cv. Evans) and Lotus japonicum inoculated with Bradyrhizobium japonicum strain 110 (Hahn and Hennecke 1984) and Mesorhizobium loti strain R7A (Sullivan et al. 1995), respectively, were also used for a few experiments described in chapters 7.2 and 10.3. As mentioned in chapter 1.3, Lotus nodules are of the indeterminate type like pea nodules, whereas soybean nodules are determinate.

In our laboratory, plants have traditionally been grown in vermiculite-filled pots in an experimental set-up described by Rosendahl and Jakobsen (1987), and I started out by using this growth system. However, I changed to a different, so-called aeroponic growth system in the optimisation process leading to root nodules that retained the highest possible nitrogenase activity under in vivo NMR conditions (cf. chapter 8.1). Experiments presented in Figs. 21-22, Fig. 23 B and C, Fig. 25 (partly), Figs. 26-27, Fig. 36 (Exp. 1-6), Figs. 37-39 and Fig. 42 have been performed with nodules grown in vermiculite, and all other results are based on nodules grown in the aeroponic system.

The construction of the aeroponic system was initiated by L. Rosendahl and P. Mouritsen in our laboratory with inspiration from M. J. Harrison, Noble Foundation, Oklahoma, USA where it is used for small Medicago truncatula plants. I found it necessary to introduce some minor adaptations for cultivating large amounts of pea plants, and these optimisations will be presented in the following. A detailed description of the aeroponic system construction and handling is given in the article manuscript.

I experienced that exudates from roots caused substantial acidification of the nutrient solution in the aeroponic system, and I therefore included monitoring, buffering and adjusting of pH in the culturing procedures. I tested whether the pH buffer MES had any adverse effects on plant growth and found that 8 mM MES in the nutrient solution provided a reasonable pH buffering without affecting plant growth. Additional pH adjusting by base titration was sometimes necessary depending on the amount and age of plants.

Plants were extremely vulnerable to salt deposits on the stems caused by evaporation of nutrient solution though the holes in the lid of the aeroponic system, and several generations of plants died off in the beginning. I tried different ways of tightening of the lid and managed to minimise salt depositing. It was crucial to immobilise plants in an upright position to avoid tearing of the plastic film covering the lid, and I achieved this by constructing special plant supporting racks.

The aeroponic system ended up being a very efficient and convenient system for producing large amounts of nodule material, and nodules were easily harvested with minimal mechanical disturbance.
PART 2. EXPERIMENTS & RESULTS

7 The perfusion system

In order to be able to study nitrogen fixation and assimilation in living pea root nodules by \(^{15}\)N NMR spectroscopy, specialised equipment had to be constructed and developed, and this will be described in the following chapters. First of all there was a need for an experimental set-up that maintained the root nodules in a physiologically viable and controllable state while in the NMR tube. Secondly it was crucial to construct and handle the system in a way that ensured a high \(^{15}\)N enrichment throughout incubation experiments.

Maintaining a biological tissue in a functional state within the limited volume of the NMR tube does, in general, imply a continuous supply of oxygen and other nutrients as well as the removal of waste products. A so-called perfusion system where a buffer solution is circulated through the sample volume can meet these demands. Several perfusion system set-ups have been presented in the literature (Lee and Ratcliffe 1983b; Roby et al. 1987), and as no expertise was present in our laboratory in the beginning of my project, I started out by visiting the experienced in vivo plant NMR group of C. Roby in Grenoble. Very sophisticated perfusion systems were used in this laboratory for many different purposes, and I acquired plenty of useful practical and technical information.

The first generation perfusion system, which I constructed with inspiration from Grenoble, contained devices for monitoring and adjusting pH as well as O\(_2\) during incubations and in vivo NMR experiments. However, it turned out to be extremely difficult to maintain the \(^{15}\)N enrichment at a reasonably high level in such a complex system, and many different changes were subsequently tested in order to improve the gas tightness of the perfusion system (see Fig. 20). In brief, this caused the perfu-

![Fig. 19: \(^{15}\)N enrichment (expressed as % of total N\(_2\)) in the gas phase of the perfusion system. Different perfusion system designs were tested of which some are given in the table below. Gas samples were taken in the beginning and at the end of incubation experiments, where perfused root nodules were analysed by \(^{15}\)N NMR spectroscopy. Gas samples were taken from the reservoir with a syringe and transferred to evacuated 3 mL glass containers. The gas composition (H\(_2\), ^{14}\text{N}_2, ^{15}\text{N}_2, \text{O}_2, \text{Ar} and \text{CO}_2) was subsequently analysed by mass spectrometry.](image-url)
sion system for the present study to undergo an evolution in my hands from a very complex system to a rather simple one.

The final perfusion system, which was used for all in vivo experiments described in the article manuscript, was a closed system consisting of a reservoir that contained both a gas and a liquid phase, and a system of tubing that allowed the perfusion buffer to be circulated (see Fig. 20). In order to minimise leaks, all trafficking of liquids and gases in and out of the system was carried out by needle injections through the rubber stopper in the serum bottle that made up the reservoir. The liquid was circulated by the operation of a peristaltic pump, and the gas pressure was regulated by manual expansion/reduction of the closed system volume by syringes. Approximately 1.5 g FW (= 0.17 g DW) root nodules could be contained within the NMR tube, and about 1 g FW was within the volume of the NMR detection coil. More details of the perfusion system construction and handling are described in the article manuscript.

7.1 Monitoring of nodule physiological status by 31P NMR spectroscopy

It is not trivial to maintain a biological tissue well oxygenated in the NMR tube, and monitoring of the physiological state is therefore required. A common indicator of hypoxic metabolism in biological systems is the relative size of the adenylate pools (reviewed by Roberts and Xia 1996). In hypoxic cells the concentration of ATP is typically lower whereas ADP and AMP pools are higher than those found in aerobic cells. 31P NMR spectroscopy offers a convenient non-invasive...
method for monitoring of adenylate pool sizes and in addition permits determinations of changes in intracellular pH (see chapter 7.3). The ^3P nucleus is 100% naturally abundant and has a relatively high intrinsic sensitivity i.e. magnetogyric ratio (cf. Table 2, chapter 3), and changes in phosphorus metabolite concentrations can often be measured in a few minutes.

Fig. 21 shows *in vivo* ^3P NMR spectra of pea root nodules, which were exposed to various concentrations of O_2 and N_2 dissolved in the perfusion buffer in a time course study. ^3P NMR signals from adenylates are present in the spectra and clearly change with changing O_2 concentrations. The resonances from α- and γ-ATP are not well resolved from the resonances from α- and β-ADP, respectively, but β-ATP gives rise to a unique, well-resolved signal at -19.0 ppm. A solid quantitative analysis of ATP/ADP levels can be done based on ^3P NMR spectra, but qualitative results were sufficient for my purpose of ensuring that the root nodules were in a well oxygenated physiological state.

In my work I have used the mere presence of the β-ATP signal as an indicator of normoxia, which is the physiological state under which ATP synthesis occurs at a high rate through oxidative phosphorylation (respiration). As seen from the spectra in Fig. 21 the β-ATP signal is present when nodules are perfused with a buffer in equilibrium with 50% O_2, disappears when no oxygen is dissolved in the perfusion buffer and reappears when nodules are perfused with an oxygen saturated buffer.

I recorded ^3P spectra routinely before and after time course ^{15}N NMR studies of $^{15}\text{N}_2$ fixing root nodules. In general, root nodules could be kept metabolically active in the perfusion system for more than 10 hours, as judged from the presence of β-ATP signals in ^3P spectra, when sufficient oxygen was provided (see chapter 10.2).
PART 2. EXPERIMENTS & RESULTS

The 31P ATP signals from root nodules represent ATP, which is present in both the plant and the bacteroid cytoplasm. I have not been able to find any reported estimates of the relative volumes taken up by the plant and the bacteroid cytoplasm in pea nodules, and it is therefore difficult to ascertain whether the information given by the ATP signals apply to both compartments. Oxygen gradients are present inside the root nodules (cf. chapter 1.4), which may lead to substantially lower oxygen concentrations in infected cells (cf. Fig. 6). There is therefore a risk that the bacteroid respiration might be oxygen limited (Kuzma et al. 1999) and that this would not be revealed by a lacking β-ATP signal, if there was still a major contribution to the ATP signal from the plant adenylate pool.

7.2 Usual and unusual phosphorus metabolites in pea, Lotus and soybean nodules

An elaborate analysis of the observed in vivo 31P NMR resonances from pea root nodules has been beyond the scope of my work. However, tentative assignments of 31P resonances have been made (see Table 3) based on comparisons with literature values and acquisition of 31P spectra of perchloric acid extracts (see Fig. 22), performed during my stay in the laboratory of C. Roby.
PART 2. EXPERIMENTS & RESULTS

Grenoble. All the expected phosphorus metabolites, which are normally observed in plant tissue (e.g. Roby et al. 1987, Rolin et al. 1989a; Saint-Ges et al. 1991), were found to be present in pea root nodules.

Table 3: In vivo and in vitro 31P chemical shifts and concentrations of phosphorus metabolites in pea root nodules.

<table>
<thead>
<tr>
<th>No</th>
<th>Phosphorus metabolite</th>
<th>Chemical shift* (ppm)</th>
<th>Concentration* (µmol/g FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pea nodules</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>In vivo</td>
<td>Extract pH 7</td>
</tr>
<tr>
<td>1</td>
<td>Glucose-6-phosphate</td>
<td>4.3</td>
<td>4.62, 4.44, 4.33</td>
</tr>
<tr>
<td></td>
<td>Mannose-6-phosphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Glycerol-3-phosphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Phosphoethanolamine</td>
<td>3.8</td>
<td>4.03, 3.91</td>
</tr>
<tr>
<td></td>
<td>3-Phosphoglycerate</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fructose-6-phosphate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Phosphatidylycholine</td>
<td>3.4</td>
<td>3.39</td>
</tr>
<tr>
<td>4</td>
<td>Phosphate</td>
<td>2.1 (cyl)</td>
<td>2.37</td>
</tr>
<tr>
<td></td>
<td>0.3 (vac.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Phytate*</td>
<td>1.6, 1.0</td>
<td>1.79, 1.39</td>
</tr>
<tr>
<td>7</td>
<td>Glycerocephosphocholine</td>
<td></td>
<td>0.04</td>
</tr>
<tr>
<td>8</td>
<td>Phosphoenolpyruvate</td>
<td>-0.7</td>
<td>-0.61</td>
</tr>
<tr>
<td>x</td>
<td>Unknown compound "X"</td>
<td>-1.9</td>
<td>-1.87</td>
</tr>
<tr>
<td>11</td>
<td>ATP $^\alpha$</td>
<td>-10.5</td>
<td>-10.88</td>
</tr>
<tr>
<td>14</td>
<td>ATP $^\beta$</td>
<td>-19.0</td>
<td>-21.29</td>
</tr>
<tr>
<td>9</td>
<td>ATP $^\gamma$</td>
<td>-5.4</td>
<td>-6.01</td>
</tr>
<tr>
<td>11</td>
<td>ADP $^\alpha$</td>
<td>-6.2</td>
<td>-6.32</td>
</tr>
<tr>
<td>10</td>
<td>ADP $^\beta$</td>
<td>-11.5</td>
<td>-11.11</td>
</tr>
<tr>
<td>12</td>
<td>UDPGa</td>
<td>-12.6</td>
<td>-12.46</td>
</tr>
</tbody>
</table>

* Numbers refer to annotations in 31P NMR spectra in Figs. 21, 22 and 23

* All assignments are based solely on comparisons with literature values. Chemical shifts are quoted relative to the resonance of 85% phosphoric acid at 0 ppm. NMR acquisition conditions are given in the article manuscript and in the legend of Fig. 22

* The neutralised perchloric acid extract was prepared as described by Roby et al. 1987

* Concentrations were calculated from the fully relaxed, proton-decoupled 31P NMR spectrum of a perchloric acid extract shown in Fig. 22 by comparing peak intensities of phosphorus metabolites with the intensity of the internal standard methyl phosphoramidate (MPA), which was added to 5.8 g FW root nodules before extraction.

a Meso-inositol hexaphosphate

b Uridin-diphospho-glucose
An additional, very unusual 31P resonance, not previously reported in plant material, was observed in pea nodule spectra at around -1.9 ppm (denoted “X” in Table 3 and Figs. 21-23). This signal was observed in several in vivo experiments to be more narrow and persistent during prolonged perfusion than all other 31P signals. The same chemical shift was observed in vivo and in vitro in 31P NMR spectra of perchloric acid extracts at pH 7.5 and showed no coupling to other 31P nuclei (data not shown). The signal appeared as a 1:2:1 triplet with $J = 8.9$ Hz in proton coupled 31P NMR spectra of a root nodule perchloric acid extract (data not shown), which indicates that it is a phosphate group located next to a methylene group. The concentration in the root nodule tissue was estimated to be 0.1 umol g$^{-1}$ FW (cf. Table 3). The yet unidentified peak X was not observed in 31P NMR spectra of either pea root tips, a dense suspension of free-living Rhizobium leguminosarum bv. viciae, or intact root nodules from Lotus or soybean plants (cf. Fig. 23).

Lotus and soybean nodules were used in the search for experimental conditions that would result in highly informative 15N NMR spectra (see chapter 10.2). However, another very surprising and unusual 31P resonance was observed in two separate experiments with Lotus nodules at 16.3 ppm (cf. Fig. 23 B). This resonance frequency is very close to the frequency of methylene diphosphonic acid (MDP), which is a frequently used reference compound that was not applied in these experiments. The Lotus resonance at 16.3 ppm was never observed in 31P NMR

Fig. 23: In vivo 31P spectra of (A) pea nodules, (B) Lotus nodules, (C) soybean nodules, (D) 3 mm long pea root tips, (E) Rhizobium leguminosarum bv. viciae suspension. Nodules and root tips were perfused with buffer (10% D$_2$O, pH 6) as described in the article manuscript. The buffer was in equilibrium with a gas phase containing 50, 40, 50 and 100% O$_2$ for experiment A, B, C and D, respectively. For experiment E the dense Rhizobium suspension was produced from 2 L of a three-day-old yeast broth culture, which was centrifuged at 4000 rpm and washed with perfusion buffer twice. The bacteria were finally suspended in perfusion buffer (10% D$_2$O, pH 6), but not perfused during the acquisition. Acquisition parameters for all spectra are as described in the article manuscript, but with different numbers of transients leading to total acquisition times of 30, 30, 60 and 120 min for spectrum A, B, C, D and E, respectively. Numbers refer to assignments given in Table 3. Additional assignments are: PCCG, phospholine-substituted β-1,3,1,6 cyclic glucan; Ext. P, external inorganic phosphate. A capillary containing an aqueous solution of MDP (methylene diphosphonic acid) was present only in experiment E.
spectra of either pea or soybean nodules, and it was not observed in spectra recorded from the buffer after perfusion of *Lotus* nodules. The identity of this unusual compound was not further pursued and remains a mystery.

Soybean nodules have previously been studied by 31P NMR and were observed to give rise to an unusual 31P resonance at around 0.4 ppm (Rolin *et al.* 1989a and b), which I also observed (cf. Fig. 23 C). This 31P metabolite was later identified as a phosphocholine substituted macrocyclic glucan (PCCG) synthesised by the bacterium in both the free-living and the symbiotic state (Rolin *et al.* 1992) and suggested to play a role in osmoregulation (Pfeffer *et al.* 1994).

It is interesting that the three nodule types studied give rise to three different very unusual 31P resonances. The identity and function of the unusual 31P metabolites in pea and alfalfa nodules have not yet been investigated, but the discovery of these novel compounds illustrate the strong potential of in vivo NMR spectroscopy to reveal unexpected information that would escape detection by other analytical methods.

7.3 pH effects on phosphate chemical shifts

Monitoring of the nodule physiological status by 31P NMR spectroscopy also includes the detection of possible changes in intracellular pH, because cytoplasmic acidosis is associated with intolerance of low O_2 (reviewed by Xia *et al.* 1995). NMR signals from ionisable metabolites often have pH dependent properties, when the pH of the surrounding medium is close to the pK_a of the ionisable group. Chemical shifts are pH dependent, if there is a shift difference between the acid and the base form, and the proton exchange rate is rapid.

Inorganic phosphate, a ubiquitous ion with a pK_a for the species $H_2PO_4^-$ of 6.8, is an excellent probe for the cytoplasmic pH, and although it is less sensitive to pH in the acidic range, it can also be used to put an upper limit on the vacuolar pH. To measure intracellular pH using 31P NMR, in vivo 31P chemical shifts are compared with a titration curve of inorganic phosphate (Moon and Richards 1975).

All the techniques available for measuring intracellular pH are affected by uncertainties in the construction of appropriate calibration curves, and NMR is no exception. Uncertainties about the solute composition of cytoplasm and vacuole, especially total ionic strength and free Mg^{2+} concentration, lead to uncertainties in absolute pH values (Roberts *et al.* 1981). The titration curve of P_i in undiluted maize root tip homogenates resembles that of P_i in 100 mM KCl and 2 mM MgCl$_2$ (Roberts *et al.* 1981), but to apply the NMR method rigorously to root nodules, one would have to examine the solute composition of this tissue and to know how Mg^{2+} and ionic strength are distributed between the cytoplasm and vacuole. It has been beyond the scope of my work to go deeply into using 31P NMR for pH measurements, so I have based my pH estimates on calibration curves of measured chemical shifts for phosphate in two different solutions, whose compositions...
were intended to mimic the cytoplasm and vacuole, respectively, as suggested by Spickett et al. (1993) (see Fig. 24).

The pH values in the cytoplasm and vacuole of pea root nodules were estimated to be 7.2 and 5.2, respectively, from the P chemical shifts at 2.1 ppm and 0.3 ppm, respectively, in the representative 31P spectrum presented in Fig. 23A. The cytoplasmic compartment at pH 7.2 might include both the plant and the bacteroid cytoplasm. The resonance at 1.6 ppm could represent P_i in a different subcellular compartment with a pH of approximately 6.8 or it could be a signal from one of the phosphate groups of phytate. Another possible signal from phytate was observed at 1.0 ppm, but the exact position of the phytate multiplet is highly sensitive to pH and to the chemical environment, making its correct identification difficult (Saint-Ges et al. 1991). However, it seems likely that the two small peaks represent phytate, as 31P spectra of perchloric acid extracts from root nodules also contained phytate resonances of approximately the same intensity (cf. Fig. 22). I observed that pH in the root nodule cytoplasm as well as in the vacuole remained stable during more than 10 hours in the perfusion system when the oxygen supply was adequate (data not shown).

8 Nitrogen fixation rate

At the beginning of the project it was not known whether detached nodules would be able to take up and fix 15N$_2$ at a reasonable rate from the water phase under the given conditions of an NMR tube, so this had to be investigated before in vivo 15N NMR experiments could be started out. In the following chapters, the experimental parameters that were tested and varied in order to find the optimal conditions for maximal nitrogen fixation will be described.

Several techniques have previously been developed for measuring nitrogen fixation rates in nodules and the most applied methods are the acetylene reduction assay (ARA), the measurement of H_2...
evolution and of 15N$_2$-incorporation. Each of these methods has inherent shortcomings and disadvantages, and estimates of nitrogenase activity may be affected by the used assay (reviewed by Hunt and Layzell 1993). In the presence of 10% acetylene virtually all electron flux through nitrogenase is diverted to acetylene reduction, and measurement of the ethylene production rate provides the basis for the ARA (Hardy et al. 1968). I started out by using ARA for quantifying nodule nitrogenase activity, but for convenience I changed to using H$_2$ evolution, which has been used for obtaining most of the results presented in this chapter.

H$_2$ production is an obligate part of the N$_2$ fixation reaction (cf. Eq. 1, chapter 2.2) and thus reflects nitrogenase activity. It is, however, not straightforward to convert measured H$_2$ evolution to nitrogenase activity, because the relative allocation of electrons by nitrogenase to H* and N$_2$ reduction is subject to variation (Skøt 1983). The theoretical ratio of H$_2$ to N$_2$ given by the nitrogenase equation is 1, but larger ratios are often observed (reviewed by Skøt 1983). Certain legume symbioses possess an uptake hydrogenase enzyme (Hup) that recycles some or all of the H$_2$ produced by nitrogenase (Truelsen and Wyndaele 1984) and H$_2$ analysis cannot be used to estimate nitrogenase activity in these Hup+ symbioses. The pea symbiont R. leguminosarum strain Riso 18a, which I have used for all experiments except when otherwise stressed, is Hup+ (Truelsen and Wyndaele 1984), and the measurement of H$_2$ evolution has been an adequate method for my purpose of comparing how nitrogenase activity was influenced by different treatments and experimental conditions.

8.1 Maximising the nitrogenase activity

The amount of bacteroid-containing nodule tissue in the late symbiotic developmental stage (cf. chapter 1.3) varies with the age of the nodules, and this is one of the major determinants of the extent of N$_2$ fixation. It is well known that the maximum rate of nodule nitrogenase activity in legumes occurs at flowering or just before the pod-filling stage of seed development (Robertsen and Farnden 1980; Sprent 1982). It is generally assumed that the reason for this change in nitrogenase activity is a change in the source-sink relationships of the plant resulting in a decreased supply to nodules of photosynthates, which support nitrogenase activity (Minchin et al. 1981). For the pea variety and the growth conditions that I have mainly employed (see article manuscript) the early pod-filling stage occurs six to seven weeks after sowing and all experiments have been performed with nodules from plants of this age.

Physical disturbance of root nodules, which necessarily occurs at harvesting and nodule excision, causes an inhibition of nitrogenase activity (see Fig. 25) as a result of a decrease in the O$_2$ permeability (cf. chapter 1.4). The decrease in nitrogenase activity at nodule excision is furthermore attributed to a cessation in the import of phloem-supplied carbohydrate as well as a cessation in the export of the products of N$_2$ fixation in the xylem. I tried different procedures for gentle washing and excision of root nodules but always ended up with detached nodules, whose nitrogenase activity was at least an order of magnitude smaller than for nodules in an undisturbed
PART 2. EXPERIMENTS & RESULTS

root system (Fig. 25). Introduction of a different plant growth system, the aeroponic system described in chapter 6 and in the article manuscript, made it possible to harvest nodules with minimal physical disturbance, and the nodules retained a higher nitrogenase activity (Fig. 25).

In the search for pea root nodules with the highest possible nitrogenase activity I also tested different biological materials. One different pea variety, “Bodil”, and two different *R. leguminosarum* strains, Risø 1A and 128 C53 (Truelsen and Wyndaele 1984), were assayed but did not give rise to root nodules with larger nitrogen fixation rates (data not shown) than the pea variety “Solara” in combination with *R. leguminosarum* Risø 18A, which was used for all other experiments.

Immersion in water has previously been reported to inhibit nitrogenase activity in soybean nodules and was attributed to a reduction in oxygen supply to the nodules (Sprent 1969). It was reported that increasing the O₂ content to 0.8 atm or more in the gas phase above the immersed nodules and shaking of the incubation vessel, would make the nitrogenase activity return to the rate of dry nodules in a pO₂ of 0.2 atm. Bergersen (1982) reported that detached root nodules with water bathing the nodule surface fixed less N₂ and stated that such results were almost always due to the effects of free water interfering with gas phase diffusion into the porous nodule surface.

I examined the nitrogen fixation capacity of pea nodules immersed in buffer and found substantial inhibition when the gas phase above the solution was atmospheric air (Fig. 25). Nodules grown in the aeroponic system seemed to maintain a higher nitrogenase activity, which may be attributed to the fact that nodules are covered with a water film in the aeroponic system and thus adapted to

Fig. 25: Effect of the treatment of pea root nodules on nitrogenase activity, which was measured as hydrogen evolution rate in atmospheric air. The undisturbed root system was assayed in a closed gas tight root chamber, whereas the washed, detopped root system and the detached nodules were assayed in closed serum bottles. The immersed nodules were covered by perfusion buffer, pH 6 (see article manuscript) and gently shaken throughout the incubation. Nodules harvested from two different plant growth systems (cf. chapter 6) were tested: vermiculite as well as the aeroponic system. Numbers below columns indicate number of replicates. Gas samples were taken at intervals for each replicate, and analysed for H₂ using a gas chromatograph (Hewlett Packard 6890) equipped with a stainless steel column (2 m x 1/8" diam.) containing molecular sieve 5A (80-100 mesh) at 60°C and a thermal conductivity detector. Argon was used as a carrier gas with a flow of 50 mL min⁻¹.
taking up oxygen and nitrogen under these circumstances. I found that the degree of shaking of nodules in buffer was crucial for maximising the measured nitrogen fixation rate i.e. the diffusion of gasses through the liquid seems to be rate limiting (data not shown).

The pH of the buffer used for immersion of nodules was tested in the range of pH 5 to pH 7.5 and I found that the nitrogenase activity was inhibited at pH values above 7 (data not shown). Consequently, all further incubations of nodules in the perfusion system were performed with a buffer of pH 6.

The reason for inhibition of nitrogenase at immersion of nodules was assumed to be due to limitation by sub-optimal O\textsubscript{2} concentrations in the infected cells as described above, and I tested whether increasing the O\textsubscript{2} content would lead to increased nitrogen fixation rates. As seen from Fig. 26 it was indeed possible to stimulate the nitrogenase activity by raising pO\textsubscript{2}, and a more detailed examination of the optimal oxygen level was undertaken for nodules incubated in the perfusion system.

8.2 Nitrogenase activity in the perfusion system

The actual nitrogenase activity for nodules incubated in the perfusion system (cf. chapter 7), was measured at different O\textsubscript{2} concentrations in the gas phase. It has previously been shown that respiration and nitrogenase activity are O\textsubscript{2} limited in the range of O\textsubscript{2} concentrations measured in infected cells of nodules (Kuzma et al. 1993). It was reported that when pO\textsubscript{2} was increased to slightly above the point, where there ceased to be stimulation, nitrogenase activity declined and respiration stabilised or declined. I therefore expected that it would be possible to define an optimal pO\textsubscript{2} for maximal nitrogenase activity.

Results from two different experiments are presented in Fig. 27. Oxygen levels were varied between 30% and 80% and a total gas pressure of 1.5 atm was employed in order to increase the concentrations of gasses dissolved in the perfusion buffer. The first experiment indicated that the nitrogen fixation rate was maximal at around 50% O\textsubscript{2}. Nitrogenase was apparently totally inhibited at 80% O\textsubscript{2} since no hydrogen evolution could be detected. The inhibition seemed to be irreversible as a switch back to 50% O\textsubscript{2} did not result in hydrogen evolution even after 30 min. These results
could, however, not be reproduced in a second experiment, where no variation of the nitrogenase activity was observed with a change in pO₂.

The experimental reason for these apparently inconsistent results was not pursued, and it was decided to continue incubations in the perfusion system with an O₂/N₂ ratio of 1 and a total gas pressure of 1.5 atm. Further efforts to optimise the experimental conditions for maximal nitrogenase activity in the perfusion system were undertaken for incubations with ¹⁵N₂-fixing nodules as described in chapter 10.2.

In the beginning of the project I purged the perfusion system with pure O₂, while circulating the buffer through the NMR tube containing the nodules, in order to drive off all ¹⁴N₂ before introducing ¹⁵N₂. I tested the nitrogenase activity of nodules after this treatment and found that nitrogenase was completely inhibited (data not shown). This was surprising because the concentration of oxygen dissolved in the buffer, which is experienced by the nodules, is much smaller than the concentration of oxygen in ambient air. Anyway, I subsequently changed the purging procedure to consist of a period with Ar purge followed by a very short period of O₂ purge, while shunting the NMR tube.

9 Total amino acid pools

Information on the total pool sizes of soluble amino acids in root nodules was needed in order to be able to interpret the data on ¹⁵N labelling that are presented in chapters 10 and 11. However, the equipment for amino acid analysis was not available in our institution, and all amino acid analyses have been performed at the Department of Clinical Genetics, Copenhagen University Hospital by the procedure described in the article manuscript.
The preparation of root nodule extracts for amino acid analysis was performed by me and some optimisation of extraction procedures from the literature was needed to obtain reliable results. I experienced that particularly glutamine (but also asparagine to some extent) was extremely susceptible to deamidation and that it was crucial to keep nodules as well as extracts cold during the entire process of extraction and purification. It was also important to perform the extraction and purification as fast as possible, because deamidation of glutamine would occur even at low temperatures. When extracts were kept at -80 °C glutamine was stable. I tested the improved extraction and purification procedures with standard samples of relevant amino acids and found the same recovery of glutamine and asparagine as of all other tested amino acids (data not shown).

Results from analyses of different root nodule samples are shown in Fig. 28, and it is evident that asparagine was the dominating free amino acid in freshly harvested nodules (172 μmol g⁻¹ DW) as well as in nodules that had been perfused for many hours during an NMR experiment (74-150 μmol g⁻¹ DW). Asparagine is the end product of nitrogen assimilation in indeterminate nodule and the form in which nitrogen is exported from the nodules to the plant (cf. chapter 1.3 and 2.5). The other major α-amino acids glutamine, alanine, aspartate and glutamate were present in much smaller amounts in the range of 5-27 μmol g⁻¹ DW for freshly harvested nodules and 2-14 μmol g⁻¹ DW for perfused nodules. These results indicate that, in general, concentrations of free α-amino acids were slightly lower in perfused nodules. γ-Aminobutyric acid (GABA), on the other hand, is not an α-amino acid and is not used for protein synthesis, but it constituted a substantial part of the soluble pool of nitrogen-containing metabolites in freshly harvested nodules (12 μmol g⁻¹ DW) and the pool size apparently increased substantially during perfusion (32-51 μmol g⁻¹ DW).

The incubation and perfusion of nodules in an NMR tube seemed to have a minor impact on the pool sizes of the free α-amino acids, whereas accumulation of GABA occurred. GABA is synthesised through a decarboxylation of glutamate, and the enzyme glutamate α-decarboxylase
(GAD) is well known in plant tissue and has also been reported to be present in symbiotic rhizobia bacteroids (cf. chapter 2.4 and 2.5). As previously mentioned, the role of GABA is unclear, so at present it is not possible to draw any further conclusions from the observation that GABA accumulated in the root nodules during perfusion in the NMR tube. However, this observation makes it clear that nodule metabolism is affected to some extent by the applied procedures although in vivo NMR spectroscopy is usually regarded as a non-invasive method. Whether nodule GABA accumulation also occurs during other forms of incubation in previous investigations of root nodule metabolism is not known, because the GABA level is usually not measured before and after incubation.

My analyses of total concentrations of amino acids do not allow for a discrimination of amino acids localised in the bacteroid or in the plant cytosol. Literature reports of amino acid levels in root nodules are scarce, but Fig. 29 shows results from a previous study on pea root nodules where bacteroids and plant cytosol were fractionated and analysed separately (Rosendahl et al. 1990), and it is obvious that the plant fraction of amino acids was by far the largest.

![Fig. 29: Concentrations of soluble amino acids in the plant cytosol and the bacteroid, respectively, as reported in a study of pea root nodules by Rosendahl et al. 1990. Values for each of the fractions are expressed per g FW of the entire nodule. All nodules were from five-week-old plants. Error bars denote standard errors (n=3).](image)

10 Nitrogen assimilation studied by 15N NMR spectroscopy

The development of in vivo 15N NMR spectroscopy for the study of nitrogen fixation and assimilation in pea root nodules turned out to present two major experimental challenges. First of all, a considerable effort was devoted to further optimisation of the experimental conditions for nodules in the perfusion system. The aim was to maximise the 15N$_2$ fixation rate in order to make the level of 15N labelling of metabolites exceed the 15N NMR detection limit (see chapter 10.2). Secondly, the identification of metabolites giving rise to the observed in vivo 15N signals turned out to be by no means straightforward and led to application of various approaches.

The assignment of 15N NMR resonances is of course a crucial point and can be approached in several ways. 15N spectra of living plants, bacteria and fungi, which have been 15N enriched in some way, can be obtained from the literature (Table 4), and reported chemical shifts may be used...
for first tentative assignments. Amino acids and ammonium are the most common NMR-observable 15N enriched metabolites, but the reported resonance frequencies vary substantially as seen from Table 4. The 15N chemical shift may be influenced by the nature of the intracellular environment i.e. factors such as ionic composition, pH, paramagnetic compounds, association with other molecules as well as experimental conditions such as temperature and composition of incubation medium. Thus, care should be taken to base assignments purely on literature values from different biological systems. I have therefore used multiple approaches in order to be able to identify in vivo resonances unequivocally.

Table 4: Literature values of in vivo 15N chemical shifts of amino acids and ammonium in plants, bacteria and fungi

<table>
<thead>
<tr>
<th>Biological system (Reference)</th>
<th>Gin amide</th>
<th>Asn amide</th>
<th>Ala</th>
<th>Gin amino</th>
<th>Glu</th>
<th>Asn amino</th>
<th>Asp</th>
<th>GABA</th>
<th>NH_4^+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevibacterium lacofermentum* (Haranera*, 1983)</td>
<td>90.8</td>
<td>88.1</td>
<td>21.6</td>
<td>19.5</td>
<td>16.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrot cells* (Fox et al. 1992)</td>
<td>91.2</td>
<td></td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium glutamicum* (Tesch et al. 1999)</td>
<td>91</td>
<td></td>
<td>20</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duckweed (Lemnaceae)* (Monselise & Kost 1993)</td>
<td>90.8</td>
<td>90.5</td>
<td>22.0</td>
<td>19.9</td>
<td>19.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ectomycorrhizal mycelium* (Martin et al. 1994)</td>
<td>90.4</td>
<td></td>
<td>21.9</td>
<td>19.7</td>
<td>19.6</td>
<td>11.6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green algae (Chlorella fusca) (Kressel et al. 1989)</td>
<td>92.5</td>
<td></td>
<td>23.3</td>
<td>21.2</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize roots* (Araus & Santos 1992)</td>
<td>91.7</td>
<td>89.0*</td>
<td>22.3</td>
<td>20.0</td>
<td>19.8</td>
<td>18.6</td>
<td>12.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Neurospora crassa mycelium* (Kanamori et al. 1982a)</td>
<td>90.6</td>
<td></td>
<td>22.6</td>
<td>20.35</td>
<td>20.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurospora crassa mycelium* (Legerton et al. 1981)</td>
<td>92.2</td>
<td></td>
<td>22.3</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Norway spruce seedlings roots and stems* (Aarnes et al. 1995)</td>
<td>91.1</td>
<td></td>
<td>22.0</td>
<td>19.8</td>
<td></td>
<td>10.6</td>
<td></td>
<td>-0.1</td>
<td></td>
</tr>
</tbody>
</table>

All spectra were collected either without D_2O or with D_2O contained in a capillary

*Chemical shifts were originally reported relative to NO_2^- at 0 ppm, but have been converted to a scale that puts urea at 55.8 ppm (and NO_2^- at 354.6 ppm).

*This value was reported by the authors, but the published in vivo 15N NMR spectra showed a signal from the asparagine amide group at approximately 91.4 ppm.

It was investigated how 15N chemical shifts are influenced by the following variables: pH, temperature, phosphate and D_2O concentrations by using authentic 15N amino acid samples (see chapter 10.1). Furthermore, I used different 15N incubation procedures for obtaining root nodules.
with high 15N enrichment of the amino acid pool, which made it possible to observe a number of resonances during the subsequent recording of 15N NMR spectra (see chapter 10.3) and to optimise the NMR acquisition parameters for in vivo experiments (see chapter 10.5). These nodules were dead and thus not metabolically active when subjected to 15N NMR spectroscopy, but it was assumed that 15N amino acids would be in an intracellular environment mimicking the living root nodules. However, it turned out later that the influence of the intracellular environment on some of the NMR properties of 15N metabolites was substantially different in dead nodules compared to living nodules. 15N spectra of extracts from 13N enriched nodules were likewise recorded, and spiking of these extracts with authentic 15N amino acid standards permitted a very reliable identification of metabolites that were 15N labelled by assimilation of fixed 15N$_2$. Finally, nodule extracts were analysed by different mass spectrometric methods (see chapter 11) in order to provide complementary results on 15N labelling of amino acids to support the assignment of 15N NMR resonances.

10.1 Medium effects on 15N NMR properties of amino acids and ammonium

pH

In aqueous solutions, the protons attached to ammonium and amino group nitrogens undergo base-catalysed exchange with water protons. The rate of exchange, $1/\tau_e$ (where τ_e is the average lifetime between proton transfer), thus increases with pH and furthermore depends on the pK$_a$ of the given amino group. At very low pH the proton exchange rate of ammonium and α-amino groups with a pK$_a$ of 9-10 is slow on the NMR time scale ($1/\tau_e<<1$), whereas at neutral pH, exchange is rapid ($1/\tau_e>>1$) (reviewed by Legerton et al. 1983). Slow exchange will lead to a multiplet in proton-coupled 15N (or 14N) spectra, whereas fast exchange will result in a singlet. This singlet broadens as the pH is reduced, and the line width of proton-coupled 15N resonances is pH dependent when the proton exchange rate is intermediate. The line widths of α-amino groups of amino acids and ammonium have been used as in vivo probes of intracellular and subcellular pH (Legerton et al. 1983; Aarnes et al. 1995), and the strong pH dependence in the line width of the ammonium signal provided the basis for an in vivo investigation of the subcellular distribution of ammonium (Lee and Ratcliffe 1993).

In the biological pH range the protons attached to amide groups are in slow exchange and the exchange rate is not influenced by pH.

In the present study, I have generally used full proton decoupling when recording 14N spectra in order to take full advantage of the NOE (cf. chapter 3.3), and line broadening caused by exchange effects is thus not observed. However, the exchange rate of protons attached to nitrogen has an impact on many of the 15N NMR observable properties, which will be described in the following chapters.
pH and chemical shift

The pH of the medium may, in addition to the proton exchange rate, also influence the 15N chemical shifts of ionisable groups, as described in chapter 7.3. pH dependent chemical shifts may be observed for amino groups and ammonium because the proton exchange rate is rapid in the relevant pH range. Deprotonation of the amines with increasing pH shifts the resonance significantly upfield (Berger et al. 1997), but under normal physiological conditions the NMR signals will not be affected because the pK$_a$ values of the amino acids that are relevant to my work are too remote from the cytoplasmic and vacuolar pH. Literature values of amino group pK$_a$s are as follows: asparagine 8.84, glutamine 9.00, glutamate 9.69, aspartate 9.72, and GABA 10.56 (Strandgaard Andersen et al. 1993).

I measured 15N chemical shifts of amino acids at different pHs (see Fig. 30 and Table 5) and, as expected, the observed effects clearly reflected the differences in amino group pK$_a$ values. The chemical shifts of asparagine and glutamine α-amino groups changed slightly in the upfield direction with pH in the range from 7 to 8 and dramatically from around pH 8 and upwards when increasing deprotonation caused increased shielding of the 15N nucleus. The chemical shifts of glutamate, aspartate and GABA amino groups only showed minor upfield shifting for pH values above 8.

The amide group shielding of asparagine, but not glutamine, was slightly influenced by the deprotonation of the α-amino group. With increasing pH and increasing deprotonation of the amino group, the asparagine amide group becomes deshielded and the resonance is thus shifted downfield. The difference between glutamine and asparagine can be ascribed to the difference in length of the carbon backbone connecting the amino and amide groups. The extra carbon atom in glutamine apparently attenuates the effects on the amide group of the change in electron density with deprotonation of the amino group.

In the physiologically relevant pH range from 7 to 7.5 a variation of maximum 0.1 to 0.2 ppm in the chemical shift of individual amino acids was observed.
Histidine (imidazolium pKₐ = 6.00) has previously been used as an in vivo intracellular pH probe by \(^{15}\)N NMR spectroscopy of intact Neurospora crassa mycelium (Legerton et al. 1983), but in my work this has not been possible because root nodules contain only minor amounts of histidine, which is furthermore not \(^{15}\)N labelled to any great extent (data not shown).

The \(^{15}\)N chemical shift of ammonium/ammonia depends strongly on pH, because there is a large chemical shift difference between ammonium and ammonia of about 30 ppm. I measured this effect in more detail in the search for an explanation of the very unusual in vivo ammonium chemical shifts that were observed in root nodules (see chapter 10.3). The pKₐ value of ammonium at 20 °C is 9.23 (Bates and Pinching 1950), and as seen from Fig. 31, major changes in the chemical shift were observed already between pH 7 and 8. Ammonium was originally dissolved in a solution, whose composition was intended to mimic the cell cytosol (Spickett et al. 1993), but it was only possible to obtain \(^{15}\)N measurements at pH values lower than 8 because precipitation of MgOH occurred at higher pH. Titration and recording of \(^{15}\)N spectra from ammonium dissolved in either 0.1 M HCl or pure water demonstrated the expected strong upfield shifting of the ammonium resonance with increasing pH.

pH and NOE

The NOE factors, \(\eta\) (cf. Eq. 7 and 8, chapter 3.3), for standard samples of \(^{15}\)N labelled ammonium and amino acids were determined as the ratio between signal intensities in \(^{15}\)N NMR spectra acquired with full decoupling and NOE and spectra with inverse gated decoupling (see Fig. 32). The possible impact of NOE factors on the appearance of in vivo \(^{15}\)N NMR spectra will be discussed in chapter 10.3 and 10.5.

I observed a dramatic change of \(\alpha\)-amino group \(\eta\) with pH (Fig. 32 A). At low pH (below 6) NOE factors were near or even below the theoretical minimum value of -5, but with increasing pH the \(\eta\) increased and even passed through -1, which implied a complete loss of the signal at the given pH in spectra with full decoupling. The amino group of asparagine had a \(\eta\) of -1 already at around pH...
7.1, whereas the η for amino groups of glutamine, aspartate and glutamate went through -1 at much higher pH values: 8.1, 8.6 and above 9, respectively. The differences between amino acids in the observed pH dependence reflected the amino group pK_a values mentioned above.

Fig. 32: Amino acid and ammonium NOE factors (\(\eta\)) as a function of pH. (A) \(\alpha\)-Amino groups and (B) amide groups, ammonium and GABA. 99\% 15N enriched ammonium and amino acids were dissolved in 0.1 M HCl to a concentration of about 30 mM and titrated to different pH values with KOH and HCl. NOE factors were determined as the ratio between signal intensities in spectra with full decoupling and spectra with inverse gated decoupling. NMR acquisition parameters are given in the article manuscript.

An anomalous pH dependence of the NOE factor of 15N glycine has previously been reported. A reduction in the NOE factor with increasing pH was observed and attributed to scalar and spin-rotation relaxation (Cooper et al. 1973; Leipert and Noggle 1975). This explanation was later questioned by Irving and Lapidot (1975), who claimed that the pH dependent phenomenon arose purely from contamination by paramagnetic impurities. It was stated that an increasing coordination of amino groups to mainly Cu$^{2+}$ would occur with increasing pH and cause the observed decrease in η. In order to find the explanation for the change of α-amino group η with pH that I observe, further experiments would be needed. In any case it is very difficult to predict what will be happening \textit{in vivo}, because the presence of paramagnetic impurities cannot be controlled.

The η values for ammonium and GABA were, surprisingly, observed to be much smaller than the theoretical minimum of -5 in part of (ammonium) or all of (GABA) the tested pH range (Fig. 32 B). Ammonium NOE factors displayed systematic pH dependence with η values increasing in the range of -10 to -2 for pH values of 6-9. GABA NOE factors were found to vary in a peculiar and unsystematic way between -6 and -10 throughout the tested pH range. I did not pursue these intriguing results further. Amide group η did not change systematically with pH, but were observed to be mainly between -4 and the theoretical minimum of -5 in the tested pH range in accordance with expectations (Fig. 32 B).
Phosphate

From the three titration curves in Fig. 31 it is obvious that the ionic composition of the medium influences the ammonium chemical shift. Phosphate is an ubiquitous anion in the plant cytoplasm with estimated concentrations in the range of 5 to 18 mM (Schachtman et al. 1998; Lee and Ratcliffe 1983a). The phosphate concentration in bacteroids of root nodules has been demonstrated to be even higher by Sa and Israel (1991), who found that phosphorus concentrations in soybean nodules were 4.5 mg g$^{-1}$ DW plant cell and 10-12 mg g$^{-1}$ DW bacteroid. I investigated the counter ion effect of phosphate on the 15N ammonium chemical shift and observed that increasing the phosphate concentrations to much higher levels than encountered in physiological systems only shifted the ammonium resonance slightly towards higher resonance frequencies (see Fig. 33).

D$_2$O

It is necessary to include some deuterated species in the NMR tube for field-frequency locking and when working with biological systems D$_2$O is an obvious choice. However, deuteration increases the nitrogen shielding by about 0.5-0.7 ppm per hydrogen replaced in aminos or amides (reviewed by Mason 1996). The effects are reported to be smaller in NH$_2$*, about 0.3 ppm per hydrogen. Amide 15N signals are split by deuteration because of the slow proton exchange rate, and three separate signals are observed from CO15NH$_2$, CO15NHD and CO15ND$_2$, respectively. The fast exchange rate of amino and ammonium protons will result in 15N signals with chemical shift values representing a weighted mean of the deuterated and non-deuterated 15N nucleus. The 15N chemical shift thus depends

Fig. 33: Ammonium chemical shift as a function of the phosphate concentration. 99% 15N enriched ammonium chloride was dissolved to a final concentration of 0.11 M in 1) water, 2) 0.5 M phosphate buffer pH 7.2 and 3) 1 M phosphate buffer pH 7.2. No reference compound was present during recording of the spectra, and the chemical shift scale is therefore arbitrary.

Fig. 34: Amino acid chemical shifts as a function of the D$_2$O concentration. 99% 15N enriched amino acids were dissolved in 0.1 M HCl to a concentration of about 10 mM. The D$_2$O concentration was regulated to the desired level, and pH was regulated to 5.8. NMR acquisition parameters were as described in the article manuscript. Chemical shifts are referenced to urea at 55.8 ppm, which was present as an aqueous solution in a capillary.
on the D₂O concentration in a predictable way, and the upfield shifting of for instance ammonium in 10% D₂O may be estimated as: 10% * 0.3 ppm /proton * 4 protons = 0.12 ppm.

In order to be able to compare literature values and own ¹⁵N spectra of nodules and extracts with different D₂O concentrations, the D₂O effects on the actual amino acid chemical shifts were quantified (see Fig. 34 and Table 5). As expected, the amide chemical shifts were largely unchanged, whereas the ammonium and amino group resonances were observed to be shifted approximately 0.15 and 0.1 ppm, respectively, upfield with a change in D₂O concentration of 10%. The change in the ammonium chemical shift was close to the expected value, but the amino group resonances were shifted a bit less than predicted from the literature values mentioned above.

Temperature

The amide and amino resonances of amino acids were observed to be shifted in opposite directions with a change in temperature (see Fig. 35 and Table 5). An increase of 10 °C shifted the glutamine amide resonance approximately 0.2 ppm downfield, whereas the ammonium and the amino resonances of glutamine and aspartate were shifted approximately 0.1 ppm upfield.

Table 5: ¹⁵N chemical shifts* of amino acid authentic samples in 0.1 M HCl adjusted to different pH values, D₂O concentrations and temperatures (Figs. 30, 31, 34 and 35)

<table>
<thead>
<tr>
<th>pH</th>
<th>T (°C)</th>
<th>% D₂O</th>
<th>Gln amide</th>
<th>Asn amide</th>
<th>Gln amino</th>
<th>Gln amide</th>
<th>Asn amide</th>
<th>Asp</th>
<th>GABA</th>
<th>NH₄⁺</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.9</td>
<td>7.0</td>
<td>25</td>
<td>90.86</td>
<td>90.31</td>
<td>19.85</td>
<td>19.65</td>
<td>18.90</td>
<td>18.34</td>
<td>11.75</td>
<td>-0.26</td>
</tr>
<tr>
<td>8.0</td>
<td>8.1</td>
<td>50</td>
<td>90.35</td>
<td>90.48</td>
<td>19.78</td>
<td>19.48</td>
<td>17.88</td>
<td>11.70</td>
<td>-0.85</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>25</td>
<td>15</td>
<td>90.89</td>
<td>90.48</td>
<td>19.75</td>
<td>19.91</td>
<td>18.40</td>
<td>13.40</td>
<td>-0.14</td>
<td></td>
</tr>
<tr>
<td>5.8</td>
<td>25</td>
<td>20</td>
<td>90.99</td>
<td>90.55</td>
<td>19.41</td>
<td>19.77</td>
<td>18.14</td>
<td>18.37</td>
<td>-0.42</td>
<td></td>
</tr>
</tbody>
</table>

All chemical shifts are reported relative to urea at 55.8 ppm. Urea was present as an aqueous solution in a capillary.
PART 2. EXPERIMENTS & RESULTS

10.2 Optimisation of \textit{in vivo} 15N signal-to-noise ratio by maximising the 15N incorporation

15N NMR spectroscopy is not a very sensitive method due to the inherent magnetic properties of the 15N nucleus, i.e. the low magnetogyric ratio (cf. chapter 3). In order to make the \textit{in vivo} S/N ratio of 15N labelled metabolites exceed the 15N detection threshold, it has therefore been crucial to optimise factors influencing the 15N incorporation.

The 15N enrichment of the root nodules depends initially on the level of nitrogenase activity, which again depends on inherent properties of the biological material and can mainly be manipulated by changing the oxygen supply (cf. chapters 1.4 and 2.2). I have tested a range of experimental parameters in the search for the ultimate conditions that would result in highly informative 15N NMR spectra. The first part of the optimisation process was performed by directly measuring nitrogenase activity (cf. chapter 8). Additional experimental variables, which will be described in the present chapter, were tested with metabolically active 15N$_2$ fixing root nodules in the perfusion system while recording 15N NMR spectra. An overview of tested experimental conditions is given in Table 6. The obtained \textit{in vivo} 15N NMR spectra are presented in Fig. 36 and the assignments of resonances are summarised later in Table 8 (chapter 10.3).

Table 6: Experimental conditions for \textit{in vivo} 15N NMR spectroscopy of 15N$_2$ fixing root nodules

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>Plant age (weeks, days)</th>
<th>Incubation time with 15N$_2$ (h)</th>
<th>O_2 conc. (%) start (\rightarrow) end</th>
<th>Special experimental features</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.3</td>
<td>19</td>
<td>30 (\rightarrow) 9</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5.4</td>
<td>7</td>
<td>60 (\rightarrow) 47</td>
<td>Young nodules</td>
</tr>
<tr>
<td>3</td>
<td>4.5</td>
<td>6</td>
<td>62 (\rightarrow) 64</td>
<td>Very young nodules</td>
</tr>
<tr>
<td>4</td>
<td>5.4</td>
<td>7</td>
<td>63 (\rightarrow) 60</td>
<td>Reduced buffer flow rate</td>
</tr>
<tr>
<td>5</td>
<td>5.5</td>
<td>6</td>
<td>68 (\rightarrow) 58</td>
<td>Gentle harvesting procedure</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Higher oxygen concentration</td>
</tr>
<tr>
<td>6</td>
<td>6.2</td>
<td>4</td>
<td>49 (\rightarrow) 44</td>
<td>Different pea variety (Bodil)</td>
</tr>
<tr>
<td>7</td>
<td>6.3</td>
<td>5</td>
<td>49 (\rightarrow) 41</td>
<td>Aeroponic growth system from here onwards</td>
</tr>
<tr>
<td>8</td>
<td>6.2</td>
<td>10</td>
<td>48 (\rightarrow) 24</td>
<td>More efficient pump from here onwards</td>
</tr>
<tr>
<td>9</td>
<td>6.4</td>
<td>8</td>
<td>48 (\rightarrow) 39</td>
<td>Mainly large nodules</td>
</tr>
<tr>
<td>10</td>
<td>6.5</td>
<td>9</td>
<td>39 (\rightarrow) 30</td>
<td>OBS: \textit{Lotus} nodules</td>
</tr>
<tr>
<td>11</td>
<td>6.6</td>
<td>7</td>
<td>23 (\rightarrow) 11</td>
<td>Mainly small nodules</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low oxygen concentration</td>
</tr>
<tr>
<td>12</td>
<td>6.6</td>
<td>9</td>
<td>45 (\rightarrow) 37</td>
<td>Reduced buffer flow rate</td>
</tr>
</tbody>
</table>
The first varied parameter was the age of the nodules, but no major differences could be observed in the 15N NMR spectra of nodules from plants aged between four and seven weeks (see Exp. 1-3 in Table 6 and Fig. 36). I thus continued to use nodules from six- to seven-week-old plants.

The root system of a given pea plant contains nodules of different size and developmental stage (cf. chapter 1.3). The NMR tube puts a limit on the volume of nodules that can be included in an experiment, and as smaller nodules may be packed more densely in the tube they might give rise to a higher total 15N$_2$ fixing rate per volume unit, although more mature nodules are known to contain a larger zone of N$_2$ fixing tissue (cf. chapter 1.3). I tested whether small, young nodules from the lower part of the root system or large, older nodules from the top of the tap root gave better 15N NMR spectra and found that large nodules were best (see Exp. 9 and 11 in Table 6 and Fig. 36). In all previous experiments I had been using a mixture of different nodule sizes, but for subsequent experiments I mainly used large nodules.

The nitrogenase activity is known to vary among pea varieties. Nodules from the pea variety "Solara" were used for the majority of experiments (cf. chapter 6) and the nitrogenase activity measured as hydrogen evolution rate in air was higher for "Solara" nodules than for nodules from the variety "Bodil" (cf. chapter 8.1). It was decided to test "Bodil" nodules also under 15N$_2$ fixing...
PART 2. EXPERIMENTS & RESULTS

conditions in the perfusion system, but these nodules did, however, not give rise to more informative 15N NMR spectra than "Solara" nodules (see Exp. 6 in Table 6 and Fig. 36).

Detachment of nodules from the plant root inhibits the nitrogenase activity (cf. chapter 1.4 and 8.1), but using nodules attached to a small root piece can diminish this inhibition. I tested nodules that had been carefully harvested by cutting the root near the nodule, but this implied that much less nodule material could be packed in the NMR tube. For each single NMR spectrum the S/N ratio is proportional to the number of nuclei within the detection coil, but the S/N ratio increases only with the square root of the number of transients (cf. chapter 3.3), and 31P spectra showed that the smaller amount of nodules caused an extremely deteriorated S/N ratio (data not shown). I therefore decided not to continue with addition of 15N$_2$ because the presumably higher nitrogen fixation rate was estimated to be more than outweighed by the greatly diminished S/N ratio.

Nodules from soybean and Lotus plants (cf. chapter 6) were tested, but soybean nodules were considered less suitable for perfusion as no ATP signals were present in 31P spectra (cf. Fig. 23 C), and I decided not to continue with addition of 15N$_2$ to the perfusion system. Lotus nodules, on the other hand, seemed well oxygenated as judged from the presence of β-ATP signals in 31P spectra (cf. Fig. 23 B) and 15N$_2$ was introduced. The obtained in vivo 15N NMR spectra from Lotus nodules displayed less intense signals than spectra from pea nodules (see Exp. 10 in Table 6 and Fig. 36), and Lotus nodules were therefore rejected for further experiments. However, the Lotus 15N spectra provided valuable information that aided the assignment of 15N resonances as described in chapter 10.3.

10.3 Assignment of 15N resonances in root nodules

Dead nodules

Root nodules were 15N enriched by different 15N$_2$ incubation procedures as described in legends of Figs. 37 and 38 and subjected to 15N NMR spectroscopy after harvesting and quenching of metabolic activity by freezing in liquid nitrogen. Several 15N signals from labelled amino acids were observed in the NMR spectra (Figs. 37 and 38). These resonances were tentatively assigned as being GABA, alanine and the amide and amino group of asparagine (Table 7) by comparison with literature values (Table 4) and own measurements of authentic standards (Table 5). Subsequent extraction of the nodules and recording of 15N spectra from the extract (Fig. 38 and Table 7) showed almost identical chemical shift values compared to dead nodules for metabolites that were 15N labelled by assimilation of fixed 15N$_2$. The assignments were confirmed by spiking the extract with authentic 15N amino acid standards followed by NMR analysis (Fig. 38 and Table 7). A small signal at -0.14 ppm, presumably from 15N labelled ammonium, was observed in one of the extracts, but in none of the spectra from dead nodules.

NMR analysis of an extract from nodules that were not investigated by NMR before extraction (extract C in Fig. 39 and Table 7) showed an additional 15N resonance at 19.84 ppm, which was
PART 2. EXPERIMENTS & RESULTS

Fig. 37: 15N NMR spectrum from dead pea root nodules. Root nodules were harvested from six-week-old plants and transferred to a 60 mL syringe. The syringe was flushed with Ar, and subsequently O_2 and 15N$_2$ was added to a final gas composition of: 6% Ar, 44% O_2 and 50% 15N$_2$. After four hours incubation in the 15N enriched atmosphere root nodules were frozen in liquid nitrogen and kept at -80°C until NMR analysis. The dead nodules were immersed in 10 mM MES buffer, pH 6, during NMR analysis. The spectrum was recorded at the University of Oxford on a Bruker CXP300 spectrometer equipped with a 20 mm broadband probe tuned at 30.42 MHz. Acquisition parameters were: 90° pulse angle, 0.25 s acquisition time, recycle delay of 1.75 s, proton decoupling at high power during the acquisition and at low power during the delay, 5.5 kHz sweep width and 28800 transients resulting in a total acquisition time of 16 hours. 8 Hz line broadening was applied. See assignments in Table 7 and GC-MS analyses in Fig. 42 A.

Fig. 38: 15N NMR spectrum from (A) dead pea root nodules, (B) extract and (C) spiked extract. Pea plants were grown with the entire root system in a gas tight chamber (Rosendahl and Jakobsen 1988). The root chamber of six-week-old plants was flushed with an Ar-O_2 mixture (70%:30%), and 15N$_2$ was subsequently added to a final gas composition of: 59% Ar, 24% O_2, 10% 15N$_2$ and 7% 14N$_2$. After four hours incubation in the 15N enriched atmosphere root nodules were quickly harvested on ice, immediately frozen in liquid nitrogen and kept at -80°C until NMR analysis. The dead nodules were immersed in perfusion buffer, pH 6, during NMR analysis. After recording of NMR spectra, nodules and the buffer bathing the nodules during NMR analysis were extracted with MeOH/CHCl$_3$/H$_2$O (12:5:3, v/v/v). The extract was subsequently purified as described in the article manuscript, redissolved in 0.1 M HCl and pH adjusted to 5.8 before NMR analysis. The extract was spiked with authentic 15N labelled amino acids. NMR acquisition parameters were as described in the article manuscript apart from the total acquisition periods, which were one hour (A), 16 hours (B) and 20 hours (C). See assignments in Table 7 and GC-MS analyses in Fig. 42 B.
assigned as being the amino group of glutamine based on literature values (Table 4) and own measurements of authentic standards (Table 5).

![Fig. 39: 15N NMR spectrum from a root nodule extract. Root nodules were harvested from six-week-old plants and transferred to a 60 mL syringe that contained 10 mL of the perfusion buffer described in the article manuscript. The syringe was flushed with Ar, and O2 and 15N2 was subsequently added to a final gas composition of: 15% Ar, 45% O2 and 40% N2. Root nodules were immersed in the buffer and incubated for four hours under continuous gentle shaking of the syringe to ensure equilibrium of the liquid with the 15N enriched atmosphere. By the end of the incubation, nodules were immediately frozen in liquid nitrogen and extracted with MeOH/CHCl3/H2O (12:5:3, v/v/v). The extract was dried, redissolved in 0.1 M HCl and pH adjusted to 5.8 before NMR analysis. NMR acquisition parameters were as described in the article manuscript but with a total acquisition period of 16 hours. See assignments in Table 7.

Table 7: Assignments of amino acid 15N chemical shifts* in metabolically inactive nodules and extracts thereof

<table>
<thead>
<tr>
<th></th>
<th>% D2O</th>
<th>Gln amide</th>
<th>Asn amide</th>
<th>Ala</th>
<th>Gln amino</th>
<th>Glu</th>
<th>Asn amino</th>
<th>Asp</th>
<th>GABA</th>
<th>NH4*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dead nodules A</td>
<td>0</td>
<td>90.4</td>
<td>22.0</td>
<td></td>
<td>19.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11.8</td>
</tr>
<tr>
<td>Dead nodules B</td>
<td>20</td>
<td>90.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.8</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>Extract B1</td>
<td>4</td>
<td>90.48</td>
<td>22.05</td>
<td></td>
<td>19.07</td>
<td></td>
<td></td>
<td>11.79</td>
<td></td>
<td>-0.14</td>
</tr>
<tr>
<td>Extract B2</td>
<td>10</td>
<td>90.49</td>
<td>22.04</td>
<td></td>
<td>18.99</td>
<td></td>
<td></td>
<td>11.69</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spikes to B2</td>
<td>10</td>
<td>90.92</td>
<td>90.49</td>
<td></td>
<td>19.88</td>
<td>18.87</td>
<td>18.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extract C</td>
<td>14</td>
<td>90.70</td>
<td>19.84</td>
<td></td>
<td>19.15</td>
<td></td>
<td></td>
<td>11.91</td>
<td>ref: 0</td>
<td></td>
</tr>
</tbody>
</table>

* Chemical shifts for nodules A and B and extracts B are reported relative to urea at 55.8 ppm. Urea was present as an aqueous solution in a capillary in experiments with nodules, whereas urea was added directly to extract B. Ammonium was added to extract C and used as a chemical shift reference at 0 ppm.

** Treatments of nodules, NMR acquisition conditions and spectra are given in Fig. 37 (dead nodules A), Fig. 38 (dead nodules B + extract B + spikes) and Fig. 39 (extract C).

Ammonium in metabolically active nodules

Incubation of metabolically active root nodules with 15N2 in the perfusion system while recording 15N NMR spectra resulted in the observation of 15N ammonium in several experiments (see Fig. 36, Table 8 and Fig. 40) and the resonance frequency showed some variability in the range from -4.2 to -3.9. This is an unusually low ammonium frequency compared to in vitro measurements (cf.
PART 2. EXPERIMENTS & RESULTS

chapter 10.1) and previous *in vivo* 15N NMR studies which all have demonstrated ammonium resonances at around 0 ppm in procaryotic as well as in eucaryotic organisms (cf. Table 4).

The signal at around -4 ppm was assigned to ammonium based on several indications. First, no other well known 15N metabolite resonates anywhere near -4 ppm. Second, the signal at -4 ppm represents the first detectable 15N metabolite in 15N$_2$ fixing nodules (cf. Fig. 40), which is in accordance with the well-established fact that the product of nitrogenase activity is ammonium (cf. chapter 2.2). Third, the NOE factor is between -1 and 0, which is characteristic for ammonium *in vivo* (Martin 1985; Robinson et al. 1991; Fox et al. 1992; Joy et al. 1997) and gives rise to spectra with oppositely phased signals for amino acids and ammonium, respectively (cf. Figs. 36 and 40). Finally, the signal at -4 ppm is intense in spite of being attenuated by NOE under the applied acquisition parameters, and it must thus originate from a metabolite that is present in large amount, which is what should be expected from ammonium in the bacteroid compartment (cf. chapter 2.2).

The signal from ammonium was not observed in the earliest 15N NMR spectra (cf. Fig. 36), but only became detectable when perfusion was more efficient because of a new peristaltic pump (cf. Table 6). A possible explanation for this observation could be that the nitrogenase generated ammonium ions were assimilated immediately, when the nitrogen fixation rate was low, and the free ammonium pool therefore remained small and below the detection limit.

The observed enhanced shielding of ammonium could be due to many different factors such as hydrogen bonding to anions or pH effects, and may thus provide valuable information on the intracellular environment of pea root nodules. Some of these possibilities were investigated *in vitro* (cf. chapter 10.1), but I observed no significant effect of phosphate concentrations up to 1 M on the ammonium chemical shift. Base titration of ammonium *in vitro* demonstrated, as expected, large pH effects on the chemical shifts, and an ammonium chemical shift of -4 ppm was observed at pH 8.9. From the present investigation it is not possible to localise the ammonium pool to the bacteroid or plant cytoplasm, but in either case it seems most unlikely that the pH could be so alkaline in a tissue that is still metabolically active.

The unusual ammonium chemical shift could also be a result of different forms of ammonium being present. Fast exchange between free ammonium at one chemical shift and bound ammonium at another, would lead to a weighted chemical shift for the observed signal, but further investigations would be needed to examine this hypothesis.

It is evident that substantial, although not quantifiable under the acquisition mode of the present study, 15N labelling of ammonium takes place in the metabolically active pea root nodules and that ammonium is the first detectable 15N labelled compound in the intact symbiosis. This provides new information, since previous estimates of the free ammonium concentration in symbiotic root nodules have been based on extractions and several assumptions (Streeter 1989). The information that is provided by the unusual *in vivo* 15N ammonium chemical shift remains to be interpreted.
PART 2. EXPERIMENTS & RESULTS

Amino acids in metabolically active nodules

In vivo 15N NMR spectra from 15N$_2$ fixing root nodules showed two amino acid 15N resonances at 90.7 and 19.6 ppm, which correspond to an amide and an ω-amino group, respectively (see Fig. 36, Table 8 and Fig. 40). This was observed in very many experiments. The amide resonance at 90.7 ppm could, by comparison with all previously mentioned analyses, unequivocally be assigned to asparagine.

The assignment of the ω-amino resonance at 19.6 ppm posed some problems. The chemical shift value corresponded to all previously observed values for glutamine and glutamate (cf. Table 4 and Table 5), but the analyses of dead nodules and extracts (cf. Table 7) demonstrated that the dominating 15N labelled ω-amino group was the one of asparagine and that it resonated at the expected 18.8-19.1 ppm when inside dead nodules. Analyses of the 15N labelling by IP-RPLC MS also showed that the asparagine amide and amino groups were the most abundant 15N labelled species in nodules that were incubated with 15N$_2$ in the perfusion system (see Table 10 and Fig. 52). This apparent inconsistency was an intriguing enigma that needed an explanation!

In the search for factors that might cause unexpected changes of 15N chemical shifts, I came across the pH dependence of NOE factors (cf. chapter 10.1). As described, the amino group of asparagine was observed to have a η of -1 at around pH 7.1 _in vitro_, whereas NOE factors of the glutamine and glutamate amino groups were between -1.5 and -3.5 in the physiologically relevant pH range of 7-7.5. If the NOE factors exhibit the same pH dependency _in vivo_ as was demonstrated _in vitro_, it would be expected that the signal from the ω-amino group of asparagine would be lost, whereas the signals from the amino group of glutamine and glutamate would be enhanced. The signal at 19.6 ppm that was observed in all _in vivo_ 15N NMR spectra of pea root nodules was therefore assigned to the amino groups of glutamine and glutamate.

Table 8: Assignments of _in vivo_ 15N chemical shifts in 15N$_2$ fixing root nodules* (Fig. 36)

<table>
<thead>
<tr>
<th>Experiment no.</th>
<th>Gln amide</th>
<th>Asn amide</th>
<th>Ala</th>
<th>Gln amino</th>
<th>Gln</th>
<th>Asn amino</th>
<th>Asp</th>
<th>GABA</th>
<th>NH$_4^+$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-7</td>
<td>90.7</td>
<td></td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.9</td>
</tr>
<tr>
<td>8</td>
<td>90.7</td>
<td></td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-4.2</td>
</tr>
<tr>
<td>9</td>
<td>90.7</td>
<td></td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-4.1</td>
</tr>
<tr>
<td>10</td>
<td>90.7</td>
<td></td>
<td>19.6</td>
<td></td>
<td>18.4</td>
<td></td>
<td>11.3</td>
<td></td>
<td>-4.0</td>
</tr>
<tr>
<td>11</td>
<td>90.7</td>
<td></td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-3.9</td>
</tr>
</tbody>
</table>

* All chemical shifts are reported relative to urea at 55.8 ppm, which was present as an aqueous solution in a capillary.
Observations from an experiment with Lotus nodules provided further support for the assignment of the resonance at 19.6 ppm to glutamine/glutamate. Two α-amino resonances were observed at 19.6 and 18.4 ppm, respectively, in an in vivo 15N NMR spectrum from Lotus nodules (Exp. 10 in Fig. 36 and Table 8). The chemical shift difference between asparagine and aspartate had been demonstrated to be around 0.6 ppm (cf. Table 5), and it was therefore unlikely that the resonances at 19.6 and 18.4 ppm originated from asparagine and aspartate. Whether the resonance at 18.4 ppm should be assigned to asparagine or aspartate could not be decided purely based on the chemical shift value, but it seemed likely that it was asparagine, because this amino acid is so abundant in indeterminate nodules (Tu et al. 1986). Consequently, the signal at 19.6 ppm in Lotus nodules seemed to be the α-amino group of either glutamine or glutamate. This suggests that the resonance at 19.6 ppm in pea root nodules also originated from glutamine/glutamate, since all other observed 15N resonances in Lotus nodules occurred at exactly the same frequencies as in pea nodules.

GABA was observed at the expected 11.6, 11.8 and 11.3 ppm in 15N NMR spectra from dead pea root nodules, an extract from nodules and metabolically active, 15N$_2$-fixing Lotus nodules, respectively (cf. Table 7 and Exp. 10 in Table 8). The GABA 15N resonances in spectra from nodules seemed to be broader than resonances from other amino acids. However, GABA was never observed in in vivo 15N NMR spectra from 15N$_2$ fixing pea nodules (cf. Figs. 36 and 40), although IP-RPLC MS analyses demonstrated very high 15N labelling of GABA in these nodules (see Table 10 and Fig. 52). Possible reasons for this apparent inconsistency will be discussed in chapter 12.

The chemical shift of 14N$_2$ in aqueous solution has been reported to be 290 ppm (converted to a scale that puts urea at 55.8 ppm) (Joy et al. 1997). 14N and 15N measurements are interchangeable since primary isotope effects are negligible (Mason 1996), so 15N$_2$ would be expected to resonate at the same frequency in 15N spectra. However, I normally recorded in vivo NMR spectra with a spectral window that excluded the observation of signals from 15N$_2$, because no relevant information would be provided by a possible signal from 15N$_2$. I tested an expanded spectral window in a single experiment and observed no additional signals, so the amount of dissolved 15N$_2$ within the volume of the NMR tube was probably too small to exceed the detection limit.

10.4 Time course of 15N assimilation in 15N$_2$ fixing root nodules

Fig. 40 shows a representative series of consecutive in vivo 15N NMR spectra that were started immediately after addition of 15N$_2$ at time zero. An ammonium signal at -4.2 ppm was evident during the first hour of incubation and increased in intensity throughout the first five hours, after which steady state seemed to occur. Two more 15N signals emerged in the spectrum representing the period from one to three hours and likewise increased in intensity in the next spectrum from three to five hours. The intensities of these two signals were unchanged in the last spectrum from five to seven hours indicating steady state. The signal at 90.7 ppm was assigned to the amide group of asparagine (cf. chapter 10.3). The amino groups of glutamate and glutamine resonate in a 0.2 ppm interval around 19.7 ppm and are difficult to resolve in vivo, so the resonance at 19.6 ppm is
likely to contain contributions from the amino group of glutamine as well as glutamate (cf. chapters 10.1 and 10.3).

date
definitions

10.5 Acquisition of in vivo 15N NMR spectra

Optimisation of NMR acquisition conditions was crucial in order to obtain the maximal in vivo S/N ratio in the shortest possible time in spectra of 15N labelled metabolites. Signal intensities in 15N NMR are affected by a multiplicity of factors, of which field homogeneity, T$_1$ relaxation times and NOE factors are the most important ones under the experimental conditions of the present study.

Carefully shimming of the magnetic field homogeneity improved the S/N ratio of spectra from perfused root nodules dramatically. The effect of time consuming shimming should of course be weighed against the gradual degradation of the living biological material that occurs with time, but I experienced that time spent on shimming was well invested. I used the line width at half height ($\nu_{1/2}$, cf. chapter 3.2) of the 1H signal from H$_2$O routinely as a measure of the field homogeneity to be able to assess whether additional shimming efforts should be invested, and I usually obtained $\nu_{1/2}$(H$_2$O) of 20-30 Hz for perfused pea root nodules.
The optimal sensitivity per unit time depends on the combination of the recycle delay (T_r) between transients and the pulse rotation angle (θ). The rate at which equilibrium magnetisation of a given nucleus recovers after a perturbation is characterised by the time constant T_1 (cf. chapter 3.2), and the maximum signal is obtained for a rotation angle θ_E, known as the Ernst angle (Cavanagh et al. 1996), which is given by:

$$\cos \theta_E = \exp \left(-\frac{T_r}{T_1}\right) \quad \text{(Eq. 9)}$$

The choice of the appropriate Ernst angle requires that T_1 is known or can be determined, which is not often the case for in vivo experiments. In vivo T_1s for 15N amino acids in different biological systems have been reported (see Table 9), and most T_1s are around 2-5 s albeit with a lot of variation. Based on this information I have chosen to use a recycle delay of 2 s and a 60° rotation angle, which according to Eq. 9 is the most efficient combination for nuclei with a T_1 of 2 s. I tested different combinations of θ and T_r for obtaining spectra of 15N enriched dead nodules, and confirmed that the chosen acquisition parameters were the most efficient. Different nuclei have different T_1s and especially ammonium has been shown to exhibit an extremely long T_1 in vivo (cf. Table 9). This implies that the choice of a particular set of time optimised acquisition parameters will result in biased spectra, where for instance the intensity of the ammonium signal will be suppressed relative to the other signals.

The proton decoupling efficiency is another important consideration in obtaining optimal sensitivity in in vivo 15N spectra, and I tested different decoupling regimes on 15N enriched dead nodules (data not shown). I observed that the most intense 15N signals from amino acids in dead nodules were obtained with full broadband decoupling under both the acquisition period and the delay. When 15N NMR spectra are acquired with full proton decoupling the individual NOE factors of 15N containing molecules will strongly influence the size of the observed signals (cf. chapter 3.3). The use of full proton decoupling in my in vivo experiments was intended to produce maximal signal enhancement by NOE, but I realised very late that NOE factors for some of the 15N groups was maybe of an unfavourable size under in vivo conditions causing signal intensities to diminish dramatically (cf. chapter 10.1 and 10.3).

15N NOE factors are special because they may be negative and amount to a value as numerically large as -4.9 resulting in a signal inversion and net enhancement factor of 3.9. However, the NOE factor observed depends on the proportion of the relaxation that takes place by 15N/1H dipolar interaction. If this proportion is small the signal intensity is diminished and the signal may even vanish entirely. Several mechanisms have been identified by which 15N signal can be lost on proton decoupling (reviewed by Mason 1996). The dipolar process diminishes when more efficient modes of relaxation are possible, as in the presence of paramagnetic compounds or averaging by fast chemical exchange. Paramagnetic ions are known to bind much more easily to the α-amino (and the carboxylate) than to an amide group, and thus cause a reduction of the NOE factor for the former in vivo (Tesch et al. 1999) (see Table 9). The peak area per 14N concentration in bacterial
cells was found to be equal for the α-amino nitrogens of glutamine and glutamate, but was 1.5 times larger for the amide nitrogen of glutamine due to different NOEs (Tesch et al. 1999). Likewise, it was observed that NOEs were very different for the different N nuclei in arginine, which is known to be sequestered in vacuoles in Neurospora crassa mycelium (see Table 9). Large or highly associated molecules have increased correlation times and this also leads to a decrease in dipole-dipole relaxation and a shrinking NOE factor. This effect is more pronounced at higher fields.

Table 9: Literature values of in vivo T$_1$s and NOE factors for amino acids

<table>
<thead>
<tr>
<th>Biological system</th>
<th>Glu-</th>
<th>Ε-Arg</th>
<th>ω-Arg</th>
<th>α-Arg</th>
<th>Pro</th>
<th>Ala</th>
<th>α-amino groups*</th>
<th>GABA*</th>
<th>NH$_4^*$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>White spruce buds</td>
<td>3.10 (0.11)</td>
<td>5.95</td>
<td>2.74</td>
<td>7.76</td>
<td>6.75</td>
<td>4.24</td>
<td>2.62</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>White spruce tissue culture</td>
<td>3.19 (0.98)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Neurospora crassa mycelium</td>
<td>4.05</td>
<td>1.2</td>
<td>1.1</td>
<td>1.3</td>
<td>5.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Corynebacterium glutamicum</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOE factor</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>White spruce buds</td>
<td>-4.31</td>
<td>-4.00</td>
<td>-4.07</td>
<td>0</td>
<td>-3.85</td>
<td>-3.90</td>
<td>-5.13</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Neurospora crassa mycelium</td>
<td>-4.9</td>
<td>-2.5</td>
<td>-4.6</td>
<td>-2.7</td>
<td>-4.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

*Mainly α-amino groups of glutamine and glutamate
*Possibly with contributions from other aliphatic amines: ornithine and lysine

I considered whether indirect detection of 15N labelled metabolites would be potentially advantageous for increasing the sensitivity. The idea was, however, discarded because indirect detection demands that the protons attached to the 15N nucleus are in slow exchange, which would mean that only amide groups and not amino groups and ammonium would be observed in in vivo experiments (cf. chapter 10.1). 15N detection by the HMQC technique has previously been used with tissue extracts, where indirect detection of amino-N groups is possible over a limited range of acidic pH values (reviewed by Ratcliffe and Shachar-Hill 2001).

In principle, 15N metabolites may be quantified by integration of NMR spectra, but there are some important considerations in obtaining reasonably reliable integrals (reviewed by Sanders and Hunter 1993):

- All the signals to be integrated must have the same intrinsic intensity. In 15N spectroscopy this means controlling or suppressing all NOEs very carefully.
- It is absolutely essential that the data be collected under conditions, which allow uniform recovery of all signals that are to be integrated. This usually means, if π/2 pulses are being used
to read the state of the system, a relaxation delay of at least five times the longest T_1 must be allowed between successive pulses.

- It is particularly dangerous to integrate resolution-enhanced (for instance by exponential multiplication) spectra because their resolution enhancement is derived from the fact that broader lines are suppressed.

As described, I have put an effort into obtaining the maximal 15N signal intensity in the shortest possible time and this means that none of the above mentioned criteria for possible quantification of 15N metabolites are met. Relative levels of 15N metabolites may be estimated tentatively based on the obtained in vivo 13N NMR spectra but should be used with caution.

11 Nitrogen assimilation studied by mass spectrometry

Mass spectrometry is one of the principal methods for analysing stable isotope labelling, and has the advantage of increased sensitivity compared to NMR. The original intention for using mass spectrometric methods in the present project, was to provide complementary information on the 15N labelling of amino acids in root nodules in order to be able to assign in vivo 15N NMR resonances unequivocally. However, it turned out to be complicated to obtain information on the positional distribution of the 15N label in glutamine and asparagine, and new techniques had to be developed (cf. chapter 11.2). Fortunately, advanced spectrometric equipment and expertise was present in our laboratory, which made it possible to design and explore new approaches. The successful application of these new techniques finally provided information that would have been overseen if using 13N NMR on its own.

11.1 GC-MS analyses of labelling

The separation of amino acids by GC is a standard procedure, and analysis of stable isotopes can be done by mass spectrometry in the form of GC-MS. In general, detection involves post-column derivatisation. I started out by setting up a GC-MS procedure for analysis of 15N in amino acids (see protocol in appendix), which was a combination of procedures that had previously been described in the literature (Johansen et al. 1996; Fortier et al. 1986). This procedure was used for all results presented in this chapter, but had several disadvantages:

The derivatisation was based on silylation, which caused a pronounced increase in intensity of the natural abundance [M+1] and [M+2] ions due to 13C and 29Si and made the determination of low levels of 15N labelling troublesome. Furthermore, the silylation of glutamine was extremely difficult, and the very low yield of glutamine derivates hindered the quantification of the 15N labelling in many cases. Finally, there is a need for two derivatisation steps to distinguish amide
and amino labelling in glutamine and asparagine, and this was left undone because of the problems with incomplete derivatisation of glutamine.

A chromatogram of a root nodule extract is shown in Fig. 41, and it is evident that the extract contained a multitude of compounds, identified as well as unidentified ones. An important result of the GC-MS analyses was that significant ^{15}N labelling was only found in a few amino acids: asparagine, aspartate, glutamine, glutamate, alanine and GABA (data not shown). This was reproduced in very many analyses, and made it reasonable and convenient to focus on these six amino acids throughout the analytical work with all other applied methods. From the knowledge of nitrogen assimilation pathways in root nodules (cf. chapter 2.4 and 2.5) it would likewise be expected that these were the relevant amino acids, but experimental evidence ensured that it was safe to exclude other amino acids from the analyses presented in chapter 11.2.

![Fig. 41: GC-MS chromatogram of a root nodule extract. Amino acids were identified from retention times and mass spectra by comparison with authentic standards. Extraction and derivatisation procedures as well as GC-MS parameters are given in the protocol in appendix.](image)

Nodules that had been incubated with $^{15}N_2$, and studied by ^{15}N NMR spectroscopy after harvesting and quenching of metabolic activity by freezing in liquid nitrogen. (Figs. 37 and 38) were also analysed by GC-MS (see Fig. 42). The amount of labelling varied a lot among amino acids and between experiments. At the time when these experiments were performed, the analysis of total amino acid pool sizes was not yet possible. A comparison between the NMR spectra and the ^{15}N atom% enrichments is thus difficult, because the pool sizes will determine the total amount of ^{15}N label to be found in each amino acid. However, the results encouraged further work because they demonstrated that a significant proportion of the amino acid pools were accessible for ^{15}N labelling and could be detected by NMR.
11.2 Ion-pair reverse-phase liquid chromatography mass spectrometry (IP-RPLC MS)

Only the more hydrophobic amino acids can be separated using classic reverse-phase chromatography. However, ion-pair reverse-phase liquid chromatography (IP-RPLC) has been reported to constitute a promising method for analysis of the most polar amino acids, like aspartate, asparagine, glutamate and glutamine. Perfluorinated carboxylic acids have been reported to be excellent ion-pairing reagents for this purpose (Petritis et al. 1999; Kwon and Moini 2001). In addition, electro-spray ionisation mass spectrometry can be used for studying the individual amino acids using those systems (Petritis et al. 2000).

We started up the IP-RPLC separation technique of amino acids in our laboratory and extended this method to include an on-line determination of the amount of 15N labelling based on the MS ion pattern of the individual amino acid. Analysis of small amounts of labelling could be done with enhanced sensitivity and accuracy compared to the analyses described in chapter 11.1, because the natural abundance background constitutes a smaller proportion of mass intensities in spectra of underivatised 15N enriched amino acids.

Furthermore, we have developed a new technique, whereby also the position of the 15N labelling of glutamine (Gln) and asparagine (Asn) in either the amide or the amino group could be analysed in the same experiment based on MS/MS and MS/MS/MS, respectively. The fragmentation paths were elucidated by studies of standard samples of 15N mono labelled Gln and Asn with a specific
Position of 15N label in glutamine

The position of the 15N labelling of Gln in either the amide or the amino group was determined by MS/MS experiments. The mass of the parent molecular Gln ion (M^+) is 147, and with one 15N in the amino or amide group the mass becomes 148. This mono labelled precursor ion is trapped and subjected to collision activation whereby NH$_3$ is lost (Fig. 43) in agreement with previous studies of the fragmentation of protonated Gln (Dookeran et al. 1996). The lost NH$_3$ may or may not contain the 15N label (i.e. mass 18 or 17 is lost), and the resulting MS/MS spectrum (Fig. 44) will therefore contain the daughter ions 130 and 131 in a proportion that reflects the position of the 15N label.

![Fig. 43: Sketch of the fragmentation pattern of mono 15N labelled glutamine when subjected to collision activation.](image)

![Fig. 44: Reference MS/MS spectra of 100% mono 15N labelled glutamine isotopomers.](image)
NH₃ is lost from the amide as well as from the amino group but in unequal amounts. Inherent chemical properties of the molecule determine the tendency to loose either of the groups, irrespectively of the position of the ¹⁵N label, because isotope effects of heavy nuclei like ¹⁵N are negligible (Levsen 1978). By inspection of the MS/MS spectra from samples of 100% ¹⁵N enriched Gln isotopomers (Fig. 44), it can be calculated that 84% of the NH₃ loss comes from the amide group and the remaining 16% of course from the amino group. This is in excellent agreement with recent theoretical calculations on the fragmentation mechanisms of protonated α-amino acids, which predict the elimination of NH₃ to be an energetically strongly favoured reaction of protonated Gln (Rogalewics et al. 2000). The estimated activation energies for NH₃ loss from the amino and amide groups were 164 and 144 kJ/mol, respectively.

The ratio of the intensities of the ions m/z 130 and 131 in MS/MS spectra for samples containing different amounts of ¹⁵N label in the amino or amide group, respectively, is given by the following equation:

\[
\frac{130}{131}_{\text{meas.}} = \frac{(148)_{n.a.} \cdot F(130)_{n.a.} + (148)_{15N} \left(x \cdot F(130)_{\text{amino}} + (1-x) \cdot F(130)_{\text{amide}} \right)}{(148)_{n.a.} \cdot F(131)_{n.a.} + (148)_{15N} \left(x \cdot F(131)_{\text{amino}} + (1-x) \cdot F(131)_{\text{amide}} \right)} \quad \text{(Eq. 10)}
\]

where experimentally determined constants are:

- \((148)_{n.a.}\) = intensity of m/z 148 natural abundance (normalised against m/z 147) = 7.44
- \(F(130)_{n.a.} / F(131)_{n.a.}\) = fractions of intensities of m/z 130 and 131, respectively, in unlabelled sample = 0.06 / 0.94
- \(F(130)_{15N \text{ amino}} / F(131)_{15N \text{ amino}}\) = fractions of intensities of m/z 130 and 131, respectively, in 100% ¹⁵N amino labelled sample = 0.16 / 0.84
- \(F(130)_{15N \text{ amide}} / F(131)_{15N \text{ amide}}\) = fractions of intensities of m/z 130 and 131, respectively, in 100% ¹⁵N amide labelled sample = 0.84 / 0.16

and variables are:

- \((130/131)_{\text{meas.}}\) = measured ratio of intensities of m/z 130 and 131
- \((148)_{15N}\) = measured intensity of m/z 148 (normalised against m/z 147) minus \((148)_{n.a.}\)
- \(x = \text{molar ratio of } ^{15}\text{N amino labelled Gln molecules}\)
- \(1-x = \text{molar ratio of } ^{15}\text{N amide labelled Gln molecules}\)
Simulated standard curves based on Eq. 10 are shown in Fig. 45. Dilution series of isotopomeric 15N Gln standards were subjected to the analysis in order to test the procedure, and the experimental data are plotted in Fig. 45. It is obvious that the ratio of intensities 130/131 is not very sensitive to changes in the amount of amino 15N label, because only a minor part of the NH$_3$ lost from the 148 ion comes from the amino group. The 15NH$_3$ loss from the amide group, in molecules with 15N-amino labelling, can be considered as a sort of a large background value for the 131 ion, upon which the 14NH$_3$ from the amino group is superimposed. On the other hand, changes in the amount of 15N labelling in the amide group will result in large changes in the 130/131 ratio.

Position of 15N label in asparagine

The position of the 15N labelling of Asn in either the amide or the amino group could be determined by MS/MS/MS experiments. The mass of the parent molecular Asn ion (MH$^+$) is 133 and with one 15N in the amino or amide group the mass becomes 134. When this mono labelled precursor ion is trapped and subjected to collision activation it does not loose NH$_3$ like Gln, but instead the carboxylic acid group (CO + H$_2$O, M=46) is eliminated (Fig. 46). Thus, the fragmentation of protonated Asn resembles that of simple aliphatic amino acids, whereas the fragmentation of
protonated Gin seems to be driven by the formation of protonated pyroglutamic acid by loss of NH$_3$. In addition, the shorter carbon backbone of Asn opens up for stabilisation of the amide group by hydrogen bonding between the amide oxygen and the protonated amino group. This difference between the two amino acids Gin and Asn, which seem very alike when judged from the chemical structure, was very surprising!

The daughter ion resulting from the carboxylic acid loss has a mass of 88 and when trapped and subjected to another round of collision activation, HNCO is lost from the amide group. If the amide group contains 15N, the loss will be 44, and the remaining "grand-daughter" ion will weigh 44. If the 12N label is in the amino group, only mass 43 is lost with the amide group, and a "grand-daughter" ion of mass 45 is created. Thus, the ratio between the ions 44 and 45 in the MS/MS/MS spectrum (Fig. 47) contains information on the position of the 15N label.

![Fig. 47: Reference MS/MS/MS spectra of 100% mono 15N labelled asparagine isotopomers.](image)

The ratio of the intensities of the ions m/z 44 and 45 in MS/MS/MS spectra for samples containing different amounts of 15N label in the amino or amide group, respectively, is given by the following equation:

$$\left(\frac{44}{45} \right)_{\text{meas.}} = \frac{(134)_{\text{n.a.}} \cdot F(44)_{\text{n.a.}} + (134)_{\text{N}} \cdot \left(x \cdot F(44)_{\text{amino}} + (1-x) \cdot F(44)_{\text{amide}} \right)}{(134)_{\text{n.a.}} \cdot F(45)_{\text{n.a.}} + (134)_{\text{N}} \cdot \left(x \cdot F(45)_{\text{amino}} + (1-x) \cdot F(45)_{\text{amide}} \right)}$$

(Eq. 11)

where experimentally determined constants are:

$(134)_{n.a.} = $ intensity of m/z 134 natural abundance (normalised against m/z 133) $= 5.25$

$F(44)_{\text{n.a.}} / F(45)_{\text{n.a.}} = $ fractions of intensities of m/z 44 and 45, respectively, in unlabelled sample $= 0.28 / 0.72$
PART 2. EXPERIMENTS & RESULTS

\[F(44)_{\text{amino}} / F(45)_{\text{amino}} = \text{fractions of intensities of m/z 44 and 45, respectively, in 100\% } ^{15}\text{N amino labelled sample} = 0.20 / 0.80 \]

\[F(44)_{\text{amide}} / F(45)_{\text{amide}} = \text{fractions of intensities of m/z 44 and 45, respectively, in 100\% } ^{15}\text{N amide labelled sample} = 0.84 / 0.16 \]

and variables are:

\((45/44)_{\text{meas.}} = \text{measured ratio of intensities of m/z 44 and 45}\)

\((134)_{\text{m}} = \text{measured intensity of m/z 134 (normalised against m/z 133)} \text{ minus } (134)_{\text{h}}\)

\(\chi = \text{molar ratio of } ^{15}\text{N amino labelled Asn molecules}\)

\(1 - \chi = \text{molar ratio of } ^{15}\text{N amide labelled Asn molecules}\)

Simulated standard curves based on Eq. 11 are shown in Fig. 48. Mono labelled isotopomeric \(^{15}\text{N}\) Asn standard samples were analysed and the obtained data are shown in Fig. 48. The measured 44/45-ratios for \(^{15}\text{N}\) amino labelled Asn standards agreed well with the simulated curve, whereas the experimental data for \(^{15}\text{N}\) amide labelled standards displayed more variation.

Analysis of root nodule extracts

The developed IP-RPLC MS technique was used successfully for determining the amount and position of \(^{15}\text{N}\) labelling of root nodule amino acids. The technique has been used for several analyses, but all the results presented in the following chapter are obtained from a single representative sample of root nodules. These nodules were incubated for eight hours with \(^{15}\text{N}_2\) in...
the perfusion system while the *in vivo* 15N NMR spectra shown in Fig. 40 were recorded. Nodules were subsequently extracted and the extract could be analysed directly after a minor purification process (see article manuscript). The 15N enrichment (= atom% excess) was calculated by Eq. 12 from the intensities of the molecular ions M_{H}^+ and M_{H}^++1 in MS spectra for each of the relevant amino acids (see Table 10). Parallel analyses of the 15N enrichment by GC-MS and IP-RPLC MS showed good agreement as seen from Fig. 49.

$$\text{Atom} \% \text{ excess } ^{15}N, \text{APE} = \frac{R_{s} - R_{n}}{1 + R_{s} - R_{n}} \times 100\% \quad (\text{Eq. 12})$$

where R_s and R_n are ratios of intensities of the ions $[MH^+] / [MH^+]$ in the sample under study and an unlabelled sample, respectively.

![Graph showing 15N enrichment (atom% excess) of amino acids in pea root nodules determined by GC-MS and IP-RPLC MS. Nodules were extracted (see article manuscript) after eight hours incubation with 15N$_2$ in the perfusion system and acquisition of the *in vivo* 15N NMR spectra shown in Fig. 40. Subsamples of extract were analysed by GC-MS (see protocol in appendix) and IP-RPLC MS (see article manuscript). GC-MS results are given as the mean of two replicates, whereas the number of replicates varied a lot for IP-RPLC MS results. From left to right $n = 11, 12, 2, 5, 4, 7, 10, 5$. Error bars denote standard errors.](image)

The intensities of the Gln ions m/z 130 and 131 and the Asn ions m/z 44 and 45 in MS/MS and MS/MS/MS spectra, respectively, were measured in single ion scan mode in order to obtain the highest possible sensitivity (see Fig. 50). The measured ion ratios are plotted as a function of the amount of mono 15N labelling in Fig. 51. By comparison with the simulated standard curves it is seen that the mono 15N labelling in Gln seems to be located almost exclusively in the amino position, whereas the 15N in mono labelled Asn is found in both positions, although mainly in the amino position. The exact values of the distribution between amino and amide mono 15N labelled molecules were calculated by Eq. 10 (Gln) and 11 (Asn) and are presented in Table 10.
PART 2. EXPERIMENTS & RESULTS

Fig. 50: Chromatograms showing single ion mass scans of (A) m/z 131 and 130 after collision activation of mono 15N labelled glutamine (m/z 148) and (B) m/z 45 and 44 after two rounds of collision activation of mono 15N labelled asparagine (m/z 134) and the daughter ion (m/z 88), respectively. The analyses were performed on a sample of pea root nodule extract as described in the article manuscript.

Fig. 51: Determination of the position of 15N labelling in (A) glutamine and (B) asparagine in pea root nodule extracts from ratios of ions m/z 130 and 131 in MS/MS spectra and ions m/z 44 and 45 in MS/MS/MS spectra, respectively. The 15N enrichment of the mono 15N labelled amino acids (atom% excess) was calculated by Eq. 12. RP-RPLC MS procedures and parameters are given in the article manuscript. Error bars denote standard error (numbers of replicates are given in

When the position of the 15N mono label had been determined, all the data were available for calculating the much-coveted total amount of 15N in each of the amino acid groups (see Table 10 and Fig. 52).
GABA, glutamate and alanine were the most highly 15N enriched compounds after the eight-hour incubation period with 15N excess of 33.4, 27.9 and 25.0 atom%, respectively, but all examined amino acids were found to be significantly 15N labelled. When the pool sizes were taken into account, asparagine and GABA were found to contain most of the 15N label of soluble amino acids in the nodule tissue, namely 2.03 and 1.91 μmol 15N g$^{-1}$ FW, respectively. Alanine and glutamate contained a minor part of the total 15N label (0.31 and 0.10 μmol 15N g$^{-1}$ FW, respectively) despite the high atom% excess, because of their smaller pool sizes. Asparagine was 15N labelled in both the amino group (1.33 μmol 15N g$^{-1}$ FW) and the amide group (0.70 μmol 15N g$^{-1}$ FW). Glutamine was also more labelled in the amino group (0.34 μmol 15N g$^{-1}$ FW) than in the amide group (0.11 μmol 15N g$^{-1}$ FW).

Table 10: 15N labelling of soluble amino acids in pea root nodules

<table>
<thead>
<tr>
<th></th>
<th>Total amino acid conc. (μmol/g FW)</th>
<th>Atom % excess 15N (APE)</th>
<th>Position of mono 15N label (%)</th>
<th>Total 15N concentration* (μmol/g FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± S.E.</td>
<td>Mean ± S.E.</td>
<td>Mean ± S.E.</td>
<td>Mean ± S.E.</td>
</tr>
<tr>
<td>Asn</td>
<td>16.91 ± 1.65</td>
<td>mono 15N 8.17 ± 0.27</td>
<td>amino 73 ± 6 ± 6</td>
<td>amino 1.33 ± 0.27</td>
</tr>
<tr>
<td></td>
<td></td>
<td>double 15N 1.91 ± 0.12</td>
<td>amide 27 ± 6 ± 6</td>
<td>amide 0.70 ± 0.12</td>
</tr>
<tr>
<td>Gaba</td>
<td>5.72 ± 0.37</td>
<td>33.39 ± 2.6</td>
<td>98 ± 2 ± 3</td>
<td>0.34 ± 0.01</td>
</tr>
<tr>
<td>Gln</td>
<td>1.55 ± 0.20</td>
<td>mono 15N 15.74 ± 2.08</td>
<td>amino 2 ± 2 ± 2</td>
<td>0.11 ± 0.01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>double 15N 6.59 ± 1.10</td>
<td>amide 2 ± 2 ± 2</td>
<td></td>
</tr>
<tr>
<td>Ala</td>
<td>1.24 ± 0.12</td>
<td>25.02 ± 0.80</td>
<td>0.31 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>0.76 ± 0.05</td>
<td>14.22 ± 1.27</td>
<td>0.11 ± 0.01</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>0.35 ± 0.04</td>
<td>27.86 ± 0.98</td>
<td>0.10 ± 0.01</td>
<td></td>
</tr>
</tbody>
</table>

* The values given for amino and amide group total 15N concentration include both mono and double labelled molecules.

Fig. 52: Concentrations of unlabelled, 13N-amino-labelled and 15N-amide-labelled soluble amino acids in pea root nodules after an eight-hour incubation period with 15N2 in the perfusion system and acquisition of the in vivo 15N NMR spectra shown in Fig. 40.
12 Discussions and conclusions

Development of new methodologies

A considerable part of my project time has been devoted to developing and optimising new methodologies. It turned out to be more challenging and complicated to investigate nitrogen fixation and assimilation in 15N$_2$ fixing root nodules by \textit{in vivo} 15N NMR spectroscopy, than anticipated from the beginning. However, at the end of the project period a whole range of custom-made equipment and analytical techniques, which supplemented each other well, were available.

The developed perfusion system (cf. chapter 7) fulfilled its purpose well of maintaining root nodules in a physiologically functional and nitrogen fixing state for long incubation periods of up to 10 hours. \textit{In vivo} 31P NMR spectroscopy provided a convenient and excellent means for monitoring the physiological state. Furthermore, the perfusion system made it possible to supply nodules with highly 15N enriched N$_2$ gas dissolved in the circulating buffer during the incubation period.

The experimental set-up was optimised to ensure that the oxygen supply experienced by the root nodules was not inhibiting the oxygen labile nitrogenase enzyme complex but still adequate for maintaining the high oxidative phosphorylation level needed to support nitrogen fixation (cf. chapters 8 and 10.2). 50\% oxygen was found to be optimal. The maximal nitrogen fixation rate of nodules in the perfusion system was substantially reduced as compared to nodules on the intact plant root system, but still adequate for sufficient incorporation of 15N$_2$ to allow detection of 15N labelling by 15N NMR.

A time course of \textit{in vivo} 15N NMR spectra of 15N$_2$ fixing pea root nodules has been recorded for the first time. The interpretation of information provided by the 15N spectra proved difficult, and will be discussed further below, and revealed some of the limitations in the use of \textit{in vivo} 15N NMR spectroscopy. Nevertheless, it was demonstrated that it was indeed possible to apply \textit{in vivo} 15N NMR spectroscopy to the study of nitrogen fixation and assimilation in root nodules, which has never been reported before.

We developed new mass spectrometric techniques (cf. chapter 11) involving separation of amino acids by IP-RPLC, whereby it was possible to analyse the position of 15N in mono labelled glutamine and asparagine by using MS/MS and MS/MS/MS, respectively. The analysis could be done in a single experiment without any previous derivatisation procedures, which is a major simplification and improvement compared to GC-MS procedures, which are usually used for analysis of positional labelling.

\textit{In vivo} 15N-ammonium NMR signal in root nodules

The 15N NMR ammonium signal in living pea and \textit{Lotus} root nodules was in several experiments observed at around -4 ppm, which is an unusually low ammonium frequency. Previous \textit{in vivo} 15N
NMR studies have all demonstrated ammonium resonances at around 0 ppm in biological systems as diverse as maize root tips (Amancio and Santos 1992), carrot cells (Fox et al. 1992), Corynebacterium glutamicum (Tesch et al. 1999) and ectomycorrhizal mycelium (Martin et al. 1994). The observed enhanced shielding of ammonium can be due to many different factors such as hydrogen bonding to anions or pH effects, and may thus provide valuable information on the intracellular environment of root nodules.

I investigated some of these possibilities in vitro, but observed no significant effect of phosphate concentrations up to 1 M on the ammonium chemical shift. Base titration of ammonium in vitro demonstrated, as expected, large pH effects on the chemical shifts, and an ammonium chemical shift of -4 ppm was observed at pH 8.9. From the present investigation it was not possible to localise the ammonium pool to the bacteroid or plant cytoplasm, but in either case it seems most unlikely that the pH could be that alkaline in a tissue that is metabolically active. Streeter (1989) estimated that free ammonium in soybean nodules was primarily confined to bacteroids, and it has been anticipated that the bacteroid cytoplasm is slightly alkaline (Day et al. 2001), because of the proton pumping activity of the electron transport chain in the bacteroid inner membrane as well as the proton consuming nitrogenase activity. It is thus possible that a minor contribution to the shielding of the observed 15N NMR ammonium signal was due to a higher pH in the bacteroids. However, the major cause for the shielding remains unidentified.

The free ammonium concentration in symbiotic root nodules has never been solidly quantified. Based on extractions and several assumptions Streeter (1989) estimated that soybean bacteroids contained 1.6 μmol ammonium g$^{-1}$ FW nodule, whereas the concentration of ammonium in the plant cytosol was essentially nil. The 15N NMR acquisition mode of the present study only allowed for a rough estimate of the minimum nodule ammonium concentration. The intensity of the 15N ammonium NMR signal was of a comparable size to the signal from the asparagine amide group after an 8-hour incubation with 15N$_2$ (Fig. 40). NMR signal intensities are influenced by both T$_1$ and NOE, which have not been quantified under in vivo conditions in the present study, but from other studies it can be ascertained that both processes would cause the ammonium signal to diminish relative to the asparagine amide signal. In vivo NOE factors for amino acid amide groups have previously been shown to be of the order of -4.5 (cf. Table 9), whereas the ammonium NOE factor is between 0 and -1 in the present study. Amino acid amide groups T$_1$s of 3-4 s in plant tissue have been reported (cf. Table 9), whereas very long ammonium T$_1$s of up to 50 s are commonly observed in vivo (Tesch et al. 1999). Thus, the concentration of 15N ammonium must be at least as large as that of 15N labelled asparagine amide, which was estimated to constitute 0.7 μmol g$^{-1}$ FW nodule based on IP-RPLC MS measurements.

In summary, it is evident that substantial, although not quantifiable, 15N labelling of ammonium took place in the metabolically active pea root nodules in the present study and that ammonium was the first detectable 15N labelled compound in the intact symbiosis. This is in contrast to recent results by Waters et al. (1998), where no 15N labelling of ammonium could be detected in 15N$_2$-fixing soybean bacteroids, whereas alanine was demonstrated to contain 98 atom% excess 15N, and
to be the primary product excreted by isolated bacteroids, when these were incubated at high bacteroid densities under microaerobic conditions.

Nitrogen assimilation in pea nodules studied by \textit{in vivo} 15N NMR and IP-RPLC MS

The IP-RPLC MS analyses were originally intended to provide additional information for the assignment of \textit{in vivo} 15N NMR resonances, but the obtained results by the two analytical methods turned out to be apparently contradictory regarding some of the 15N labelled metabolites. It is not easy to ascertain, which of the methods is providing the most complete and correct picture of the 15N labelling pattern, because both methods have inherent shortcomings and disadvantages. \textit{In vivo} 15N NMR spectra have the advantage of representing non-invasive measurements, but the levels of 15N metabolites relate to the signal intensities in an unpredictable way under the acquisition mode that has been applied in the present study. IP-RPLC MS analyses give accurate and quantitative results on the level of 15N labelling, but the analyses are performed on extracts and thus comprise all the possibilities of artefacts and errors mentioned in chapter 4.

The most conspicuous discrepancy between results from the two methods was that the most abundant amino acid, asparagine, was found to contain about twice as much 15N labelling in the amino group than in the amide group when analysed by IP-RPLC MS (cf. Table 10). A large asparagine amide resonance was observed in \textit{in vivo} 15N NMR spectra from pea root nodules in many experiments, but an 15N amino group NMR signal was never observed \textit{in vivo} (cf. Fig. 36 and 40). However, the asparagine 15N amino as well as the amide resonance was seen in NMR spectra of nodule extracts.

These apparent inconsistencies were indeed disturbing, until I came across the pH dependence of NOE factors (cf. chapter 10.1). If the NOE factors exhibit the same pH dependency \textit{in vivo} as was demonstrated \textit{in vitro}, it would be expected that the signal from the amino group of asparagine would be lost in \textit{in vivo} 15N NMR spectra, whereas the signal from the asparagine amide group would be enhanced. This mechanism may thus provide the explanation to make ends meet, and conclude that asparagine is 15N labelled in both the amino and the amide groups, although the amino resonance is invisible in 15N NMR spectra with full decoupling.

If it is correct that the \textit{in vivo} NOE factor of the asparagine amido group is of an unfavourable size, which actually causes elimination of the signal in spectra recorded with full decoupling, it is surprising that this has not been reported previously, since the majority of \textit{in vivo} 15N NMR studies applies full decoupling. On the other hand, very few \textit{in vivo} 15N NMR studies have actually observed a signal from the asparagine amino group (cf. Table 4). To my knowledge, only a single 15N NMR study, namely the investigation of 15N ammonium metabolism in duckweeds by Monselise and Kost (1993), demonstrated the presence of 15N labelling in the amino group of asparagine. Amancio and Santos (1992) assigned an 15N signal at 18.6 ppm to the amino groups of both asparagine and aspartate, but in my opinion only aspartate would resonate at this low frequency. The absence of reported asparagine 15N amino signals in the \textit{in vivo} NMR literature may of course reflect that no labelling occurs or that the asparagine pool of the studied organisms was
below the detection limit, but it may also be caused by NOE signal elimination. Very few investigations have included parallel analyses by \textit{in vivo} 15N NMR and other analytical methods that would reveal a possible NMR invisible asparagine amino signal.

In root nodules the amide group for the biosynthesis of asparagine from aspartate may either come from direct incorporation of ammonium or from the glutamine amide group, and previous results have indicated that both pathways occur in alfalfa nodules (Snapp and Vance 1986; Ta \textit{et al.} 1986). My data indicate that some asparagine synthesis from highly 15N enriched ammonium is taking place in pea root nodules, since the low level of 15N amide labelling of glutamine was not sufficient to account for the observed asparagine amide enrichment. The high total 15N labelling of asparagine is consistent with its generally accepted role as the end product of the primary nitrogen assimilation processes taking place in indeterminate root nodules.

Another obvious difference between results obtained by the different analytical methods was that GABA contained a very large amount of the total 15N labelling, when analysed by IP-RPLC MS (cf. Table 10), but did not appear in pea nodule \textit{in vivo} 15N NMR spectra at all (cf. Fig. 36 and 40).

I investigated the \textit{in vitro} pH dependence of the GABA NOE factor, and found no indications that NOE could cause elimination of the 15N NMR signal from GABA. 15N GABA has previously been observed by \textit{in vivo} 15N NMR spectroscopy (cf. Table 4), although some investigators have noted that the signal possibly also contained contributions from 15N labelled ornithine and lysine. \textit{In vivo} T$_1$s of GABA have been reported shorter than of other amino acids, and \textit{in vivo} NOE factors for GABA were found to be numerically larger than for other amino acids (cf. Table 9). These two variables affect signal intensities, but under the experimental conditions of the present study, both of the reported values would imply an enhancement and not an attenuation of the 15N GABA signals relative to signals of other amino acids.

GABA is synthesised from glutamate in a reaction catalysed by the enzyme glutamate \textalpha-decarboxylase, which is well known in plant tissue (reviewed by Bown and Shelp 1997) and has also been reported to be present in symbiotic rhizobia bacteroids (Miller \textit{et al.} 1991; Fitzmaurice and O'Gara 1991). The 15N-labelling of GABA found by IP-RPLC MS could reflect a decarboxylation of glutamate occurring after termination of the \textit{in vivo} 15N NMR acquisition. However this seems unlikely when considering the high 15N-enrichment of GABA together with the short time period between acquisition of the last NMR spectrum and the quenching of metabolic activity by transfer of root nodules to liquid nitrogen.

A substantial amount of GABA (labelled as well as unlabelled) was shown to accumulate in root nodules during incubation in the NMR tube (cf. Fig. 28). This may reflect an increase in synthesis and/or a decrease in catabolism. The results concerning the size of the GABA pool in the nodule tissue do not allow for a discrimination of GABA localised in the bacteroid or in the plant cytoplasm. It is, however, evident from the high GABA 15N labelling that the GABA is formed from a newly synthesised pool of glutamate. The GABA shunt pathway (cf. Fig. 13) has previously
been suggested to play a prominent role in *R. meliloti* bacteroids (Fitzmaurice and O’Gara 1988; Miller *et al.* 1991), although the function of GABA remains unclear.

Some experimental evidence indicates that the locations of GABA production and accumulation are not identical, and that accumulated GABA is sequestered within organelles, possibly in the vacuoles (reviewed by Shelp *et al.* 1999). It has also been demonstrated that nodules of many legume species accumulate bound forms of GABA amounting to as much as 20% of the total N content of the nodule (Larher *et al.* 1983). The apparent NMR invisibility of 15N-labelled GABA in pea root nodules in *in vivo* experiments may result from GABA being immobilised in some way *in vivo*. Immobilised GABA may be released from the tissue by the applied extraction procedures and/or enzymatic reactions and therefore detected by IP-RPLC MS. A support for such a suggestion is the observation of broad resonances of GABA in dead nodules indicating that GABA is less tightly bound under such conditions but still not free in e.g. the cytoplasm.

Results from both NMR and IP-RPLC MS analyses agreed that glutamine was predominantly 15N labelled in the amino group and not in the amide group. I never observed any resonances from glutamine 15N amide in 15N NMR spectra despite the fact that amide groups seem to possess favourable NOE factors for the detection *in vivo*. Glutamine 15N amide groups did not give rise to any signals in NMR spectra of extracts, not even when signals from glutamine 15N amino groups were present. IP-RPLC MS results demonstrated 15N in mono labelled glutamine was almost exclusively positioned in the amino group, and when the amount of double labelled glutamine molecules was taken into account, the distribution between amino and amide 15N labelling was 3:1.

The concurrent findings of glutamine being predominantly 15N labelled in the amino position are very controversial as the prevailing scheme for the assimilation of fixed nitrogen states that ammonium is first incorporated into the amide group of glutamine, catalysed by glutamine synthetase.

Glutamate and alanine were shown by IP-RPLC MS to be among the most highly 15N enriched metabolites, but the total pool sizes of glutamate and alanine were rather small compared to the other studied amino acids, which justifies that they were not observed by *in vivo* 15N NMR. The high 15N enrichment of these two amino acids and of GABA might indicate that these metabolites were synthesised directly from highly 15N enriched ammonium via glutamate dehydrogenase (GDH) and the GABA shunt pathway: $\text{NH}_4^+ \rightarrow \text{glutamate} \rightarrow \text{GABA} \rightarrow \text{alanine}$.

The direct incorporation of ammonium into glutamate catalysed by GDH is normally not considered an important reaction in the plant cytoplasm of root nodules (cf. chapter 2.5). Substantial bacteroid GDH activity has been reported in many different host plants (cf. chapter 2.4; Brown and Dilworth, 1975; Miller *et al.*, 1991), but the *in planta* significance of GDH activity remains uncertain. My results indicate that substantial GDH catalysed glutamate synthesis may occur under the given experimental conditions, although it is not possible to localise the reaction to a specific compartment.
If synthesis of glutamate and alanine via the GDH and GABA shunt pathway was taking place in the bacteroid compartment, the excretion product from bacteroid to plant cytoplasm could be a highly 15N-labelled amino acid. All of the necessary enzymes have been reported to be present in bacteroids (cf. chapter 2.4; Brown and Dilworth, 1975; Miller et al., 1991; Fitzmaurice and O’Gara, 1991). If amino acids rather than ammonium were the excretion products under certain conditions, as has been suggested previously (Waters et al., 1998; Allaway et al., 2000), the ammonium pool of the plant cytoplasm is expected to contain very little 15N-label. In that way glutamine would be synthesised in the plant cytoplasm from highly labelled glutamate and poorly labelled ammonium resulting in glutamine molecules being higher labelled in the amino group (originating from glutamate) than in the amide group (originating from ammonium). It has previously been estimated that the plant cytoplasm contains only a minor free ammonium pool (Streeter, 1989), so the suggested way of synthesis of glutamine would depend on ammonium being provided from other sources. This speculative hypothesis would of course need further investigation, but at present it could serve as a possible explanation of my controversial observation of glutamine being predominantly 15N-labelled in the amino position.

Discovery of a novel phosphorus compound in pea nodule 31P NMR spectra

I observed a new very narrow and well resolved 31P signal at -1.91 ppm from an unknown compound in pea root nodules, which was absent in root nodules from both Lotus and soybean. It has not been reported in previous 31P NMR studies of soybean nodules (Rolin et al. 1989a and b) or alfalfa nodules (Nikolaev et al. 1994). I have only performed preliminary analyses to elucidate the structure and origin of this compound. However, it seemed that the phosphate group neighboured a methylene group and that it was a symbiosis specific compound since it was neither found in uninfected plant root tissue nor in free-living Rhizobium bacteria.

The chemical shift of the unknown compound was identical when observed in living root nodules and in a perchloric acid extract at pH 7.5, which makes it unlikely that the compound is localised in the vacuole since the acidic conditions in this compartment would be expected to change the chemical shift. The signal was less line broadened than other 31P metabolites in in vivo spectra, and this may be because the compound was confined to a specific compartment in the nodule tissue, possibly the bacteroid, and thus experienced less field inhomogeneity because of the limited volume. The fact that the unidentified 31P signal persisted during prolonged perfusion of root nodules, when other 31P signals became weaker, suggested that the compound was not metabolised and not washed out, which may indicate that it is bound in some way, though still highly mobile.

Concluding remarks

The present work presents the first report of in vivo 15N NMR spectra of 15N$_2$ fixing pea root nodules. The results demonstrate that it is indeed possible to apply in vivo 15N NMR spectroscopy to the study of nitrogen fixation and assimilation in root nodules. By using NMR it was possible to observe directly the incorporation of 15N into living nodules, but the detection was limited to ammonium and some of the more abundant amino acids.
The fully decoupled in vivo 15N NMR spectra did not include a signal from the amino group of asparagine, which may reflect that the in vivo NOE factor of the asparagine amino group is of an unfavourable size, since LC-MS results revealed that asparagine was indeed 15N-labelled at the amide as well as the amino nitrogen. LC-MS analyses showed that GABA was 15N-labelled in considerable amounts, but 15N GABA was NMR invisible in living pea root nodules. This may be due to immobilisation of GABA in root nodules.

A substantial pool of free ammonium was observed in the metabolically active, intact symbiosis by in vivo 15N NMR. The in vivo 15N NMR spectra further envisaged that glutamine was more highly 15N-labelled at the amino nitrogen than at the amide nitrogen. Both of these findings represent information that has not been made available by other techniques used to study nitrogen assimilation in legume nodules. The intracellular environment led to very unusual in vivo 15N ammonium chemical shifts, whereas no changes in the expected in vivo chemical shifts of amino acids were observed. This may suggest that ammonium and amino acids reside in different compartments: ammonium residing in the bacteroids, and 15N-labelled glutamine/glutamate and asparagine located in the plant cytoplasm.
References

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

REFERENCES

Reitzer, L.J. and Magasanik, B. (1986) Transcription of GlnA in E.coli is stimulated by activator bound to sites far from the promotor. Cell 45, 785-792.

REFERENCES

REFERENCES

REFERENCES

Exploring Symbiotic Nitrogen Fixation and Assimilation in Pea Root Nodules

by \textit{in vivo} 15N NMR Spectroscopy and LC-Mass Spectrometry

Anne Marie Scharff, Helge Egsgaard, Poul Erik Hansen and Lis Rosendahl

* Risoe National Laboratory, Plant Research Department
* Roskilde University Centre, Department of Life Sciences and Chemistry
Roskilde, Denmark
Running head:

N Assimilation in Pea Nodules Studied by *in vivo* 15N NMR

Corresponding author:

Anne Marie Scharff
Plant Research Department
Risoe National Laboratory
PRD-301, P.O. Box 49
DK-4000 Roskilde
Denmark
Tel: +45 4677 4159
E-mail: anne.marie.scharff@risoe.dk
Fax: +45 4677 4122

Financial Source:

The Danish Research Agency and the Danish Research Foundation financially supported this work.

Abbreviations:

GABA, γ-aminobutyric acid
GDH, glutamate dehydrogenase
GOGAT, glutamate synthase
GS, glutamine synthetase
IP-RPLC, ion-pair reverse-phase liquid chromatography
NMR, nuclear magnetic resonance
NOE, nuclear Overhauser effect
LC-MS, liquid chromatography mass spectrometry
Abstract

Nitrogen fixation and assimilation in pea (*Pisum sativum* L.) root nodules was studied by exposing detached nodules to $^{15}\text{N}_2$ via a perfusion medium, while recording a time course of *in vivo* ^{15}N NMR spectra. *In vivo* ^{31}P NMR spectroscopy was used to monitor the physiological state of the metabolically active nodules. Root nodules were extracted after NMR studies and analysed for total soluble amino acid pools and ^{15}N-labelling of individual amino acids by LC-MS.

Asparagine was observed to be ^{15}N-labelled at the amide as well as the amino nitrogen by LC-MS. The *in vivo* ^{15}N NMR signal from the asparagine amino group was lacking in fully decoupled spectra, which is probably caused by an unfavourable size of the NOE factor. Likewise, γ-aminobutyric acid (GABA) was observed by LC-MS to be highly ^{13}N-labelled, but ^{15}N-GABA was NMR invisible in living pea nodules. This may be due to immobilisation of GABA in nodules. Glutamine was more ^{15}N-labelled in the amino than the amide nitrogen as evident from LC-MS as well as *in vivo* NMR.

A substantial pool of free ammonium was recorded in the metabolically active, intact symbiosis by *in vivo* ^{15}N NMR. The intracellular environment resulted in unusual *in vivo* ^{15}N ammonium chemical shifts, whereas no changes in *in vivo* chemical shifts of amino acids were observed. This may suggest that ammonium and amino acids reside in different compartments.

Introduction

Symbiotic nitrogen fixation, the process whereby nitrogen fixing bacteria enter into associations with plants, provides the major source of nitrogen for the biosphere. Nitrogenase, a bacterial enzyme, catalyses the reduction of atmospheric dinitrogen to ammonium. In *rhizobia-leguminous* plant symbioses, a widely accepted and simple model of nitrogen transfer from the symbiotic form of the bacterium, called a bacteroid, to the plant implies that nitrogenase-generated ammonia diffuses across the bacteroid membrane and is assimilated into amino acids in the plant compartment of the nodule tissue. However, the transport of symbiotically fixed nitrogen across the membranes surrounding the bacteroid and the form in which this occurs has been a matter of controversy.

The size of the free ammonium pool in the bacteroid and plant cytoplasm during symbiosis is an open question. It has been suggested that ammonium synthesis and subsequent assimilation by alanine dehydrogenase are so tightly coupled in the bacteroid cytoplasm that very little free ammonium is released (Waters et al., 1998). On the other hand, Allaway et al. (2000), observed a plastic partitioning of ammonium and alanine excretion from isolated bacteroids and suggested that the ammonium concentration inside the bacteroids was one of the key variables governing the rate of alanine synthesis. The free ammonium concentration in bacteroids was estimated by Streeter (1989). This estimate was based on an extrapolation of time dependent experimental data to time
PART 4. ARTICLE MANUSCRIPT

Until recently it has been generally accepted that *Rhizobium* bacteroids do not assimilate ammonium to a great extent during symbiosis. However, more recent results challenge this view and suggest a possible involvement of amino acids as the form of fixed nitrogen delivered from the bacteroid to the plant (reviewed by Poole and Allaway, 2000; Day et al., 2001). At present, consensus has not been reached as to whether substantial nitrogen assimilation takes place in the nodule bacteroid compartment, and new investigations of nodule nitrogen metabolism are required.

An overall problem in the study of nodule metabolism is the extrapolation from *in vitro* to *in vivo*. Information on the microenvironment of the different compartments in the nodule is lacking, and the *in vivo* significance of *in vitro* findings is therefore difficult to predict. Biochemical reactions in intact living cells can be studied by NMR spectroscopy ideally without interfering with metabolic processes or destroying enzyme complexes. While determinations of enzyme activities in crude extracts may give a first clue as to which ammonium assimilation pathways are active, they cannot be used to predict the *in vivo* flux distribution over competing enzyme systems such as GDH and GS/GOGAT. *In vivo* NMR spectroscopy, especially when used in combination with stable isotope labelling such as 15N, does allow the characterisation of metabolic activities in the living cell. Other methods for studying metabolic pathways rely on extractions of the tissue and subsequent purification and analysis. These procedures are time consuming and this is a significant disadvantage in time course experiments, where the aim is to follow the label through a pathway.

In vivo 15N NMR spectroscopy has previously been used successfully in the study of plant, fungal and bacterial nitrogen metabolism. Much of the work has contributed to the understanding of the roles of GDH and the GS/GOGAT cycle in ammonium assimilation in different systems including cell suspensions (Robinson et al., 1991; Fox et al., 1995; Amancio et al., 1997), embryogenic cultures (Joy et al., 1996 and 1997), root tissues (Amancio and Santos, 1992), *Sphagnum fallax* (Kahl et al., 1997), ectomycorrhizal mycelium (Martin, 1985) and *Corynebacterium glutamicum* (Tesch et al., 1999). The elucidation of the nitrogen assimilating pathways has generally been achieved by supplying 15N-ammonium or 15N-nitrate to the living biological system and subsequently 15N NMR analysing the incorporation of the 15N-label into amino acids in the presence and absence of enzyme inhibitors.

Metabolic studies by *in vivo* NMR spectroscopy has the advantage of avoiding artefacts caused by the breakdown of labile compounds during extraction and it also eliminates errors due to incomplete recovery of solutes from the tissue. A crucial factor in studies of bacteroid metabolism and functioning *in vitro* is the degree to which bacteroid preparations are free from contaminating plant organelles, enzymes and metabolites. Waters et al. (1998) suggested that the presence of plant enzymes in earlier *in vitro* studies of bacteroids had caused significant artefacts in the results concerning metabolic products released from bacteroids, but this was subsequently contradicted by Li et al. (2000). Likewise, major errors might occur in the determination of metabolite levels...
because of reallocation or degradation of metabolites during extraction, processing of extracts or separation of compartments (Streeter, 1987, 1989; Miller et al., 1991).

An unfavourable feature of 15N NMR spectroscopy is that it is a relatively insensitive spectroscopic method. This might have discouraged previous attempts to study nitrogen fixation by this method, because to our knowledge, no reports on 15N NMR spectroscopy used for studying living, nitrogen fixing organisms are available. The only reported 15N NMR investigation of 15N$_2$ fixation is by Belay et al. (1988), who incubated methanogenic bacteria with 15N$_2$ and subsequently analysed harvested, dead cells by 15N NMR. However, the literature contains a few in vivo 31P NMR spectroscopic studies of symbiotic soybean (Mitsumuri et al., 1985; Rolin et al., 1989a & b) and alfalfa root nodules (Nikolaev et al., 1994). Results from these investigations demonstrate that it is possible to maintain nodules in a metabolically active state, while recording NMR spectra.

In conclusion, accurate estimation of the assimilation and translocation of fixed nitrogen in nodules would benefit from non-invasive and non-destructive measurements of the fate of the fixed nitrogen. The objective of the present study was thus to investigate nitrogen fixation and assimilation in 15N$_2$ fixing root nodules root by in vivo 15N NMR spectroscopy. This included optimisation of experimental conditions for maximal 15N incorporation. The investigation presents in vivo 15N NMR spectra of 15N$_2$ fixing root nodules, which in combination with LC-MS results demonstrate the intracellular build-up of 15N-ammonium and 13N-amino acids.

Materials and methods

Plant material

Surface sterilised seeds of pea (Pisum sativum L. cv. Solara) were germinated in humid vermiculite inoculated with a three-day-old yeast broth suspension culture of Rhizobium leguminosarum bv. viciae strain Risø 18a. After six days the seedlings were transferred to an aeroponic system consisting of a large plastic caisson tank equipped with a mist generator circulating 12 L of nutrient solution from the bottom of the tank. The nutrient solution was prepared as described previously (Rosendahl and Jakobsen, 1987) with the addition of 8 mM MES to provide some pH buffering. pH was kept at 6-6.5 by adjusting with 5 M KOH when necessary. The nutrient solution was inoculated once a week with 50 mL of the Rhizobium suspension culture. The roots of seedlings were pushed through holes in the lid of the tank and thus exposed to the mist. The lid was carefully tightened around the stems of the plants in order to avoid salt deposition on the stems, which may result in plant death. Pea nodules were harvested from this system with minimal physical disturbance and were observed to retain a higher nitrogenase activity than pea nodules harvested from the below mentioned vermiculite growth system (data not shown). Nodules grown in the aeroponic system maintained a higher nitrogenase activity when immersed in water than vermiculite grown nodules (data not shown). This may be attributed to the fact that nodules are covered with a water film in the aeroponic system and thus adapted to taking up oxygen and nitrogen under these circumstances.
Nodules from *Lotus japonicum* inoculated with *Mesorhizobium loti* strain R7A (Sullivan et al., 1995) were used for a few experiments. Plants were grown in vermiculite-filled pots in an experimental set-up described by Rosendahl and Jakobsen (1987).

All plants were cultured in a growth chamber under a 16/8 h light/dark cycle at 20/16°C and a photosynthetically active photon flux density of 600 µmol m⁻² s⁻¹. Nodules were excised from the roots immediately before NMR experiments when plants were six to seven weeks old (early pod-filling stage) and nitrogenase activity is maximal.

Experimental design of in vivo studies

In vivo NMR spectra were recorded from detached root nodules that were incubated with ¹⁵N₂ in a perfusion system (Fig. 1). After perfusion the nodules were quickly removed from the NMR tube, gently rinsed with water, and immediately frozen in liquid nitrogen. The nodules were kept at -80°C until further analysis. Subsamples were later taken for determination of FW/DW ratios, total ¹⁵N incorporation, soluble amino acid pools, and ¹⁵N-labelling of individual amino acids. Spectra and matching analyses from a single experiment are presented in this paper, but similar results were obtained in several experiments.

Perfusion and ¹⁵N₂ incubation of nodules for in vivo NMR

Approximately 1.5 g FW root nodules were placed in a 10 mm NMR tube, which was connected to a perfusion system (Fig. 1). Nodules were maintained in a physiologically viable and controllable state by perfusion with an oxygenated nutrient buffer consisting of 25 mM glucose, 25 mM malate, 0.1 mM CaSO₄, 10 mM MES (pH 6.0), 10% D₂O at a temperature of 21-22°C. A teflon inlet tube delivered the buffer to the bottom of the NMR tube below the nodules and the buffer left through two output tubes above the nodules. The tubes and nodules were kept in place by a plastic rod insert fixed to the screw cap top of the threaded NMR tube. All tubing outside the NMR tube was made of Tygon (R-3603, 1.6 mm wall. Cole-Parmer, USA), which is only slightly permeable to N₂ and O₂. A peristaltic pump attached to the two output tubes circulated the 700 mL nutrient buffer at 45 mL min⁻¹ through the nodule-filled volume, and recycled it via a closed gas-tight reservoir. The reservoir consisted of a 500 mL rubber stopped serum bottle that contained a liquid phase and an 80 mL gas phase. Equilibrium between the phases was ensured by continuous stirring of the liquid phase and by spraying the perfusate returning from the NMR tube through the gas phase. To achieve a high enrichment of ¹⁵N₂ in the perfusion system, the reservoir was first flushed for 30 min with an O₂/Ar mixture (1:1) while circulating the nutrient buffer in order to drive off all ¹⁴N₂. Then the reservoir was filled with O₂, and ¹⁵N₂ (99.95 atom% ¹⁵N. Isotec Inc., Ohio, USA) was introduced in the system by injecting it into the reservoir. The composition and ¹⁵N-enrichment of the final gas mixture in the perfusion system was 49% N₂ (92 atom% ¹⁵N), 48% O₂ and 3% Ar as determined by mass spectrometry of a subsample. The gas mixture in the perfusion system was compressed to a total pressure of 1.6 atm during the entire experiment in order to dissolve more gas in the circulating liquid phase and to reduce intrusion of atmospheric air. At the end of the experiment after eight hours of perfusion of the nodules the composition of the gas phase was 56% N₂ (73 atom% ¹⁵N), 39% O₂, 4% Ar and 0.4% CO₂. The pH value of the perfusate was measured...
after the experiment to ensure that pH was unchanged. The perfusate was also examined by \(^{15}\text{N}\) NMR spectroscopy to ensure that all observed \(^{15}\text{N}\) resonances originated from intracellular \(^{15}\text{N}\) metabolites.

Total \(^{15}\text{N}\) incorporation

Nodules were dried and homogenised, and the \(^{15}\text{N}\)-enrichment was determined on an isotope ratio mass spectrometer (Finnigan MAT Delta E) coupled in continuous flow mode to an EA 1110 elemental analyser as described previously (Egsgaard et al., 1989).

Preparation of \(^{15}\text{N}\)-enriched biological material and solutions

In order to aid the initial assignments of \(^{15}\text{N}\) metabolites, highly \(^{15}\text{N}\)-enriched pea nodules were prepared in a separate experiment and studied by \(^{15}\text{N}\) NMR spectroscopy after quenching of all metabolic activity. These pea plants were grown with the entire root system in a gas tight chamber (Rosendahl and Jakobsen, 1988). The root chamber of six-week-old plants was flushed with an Ar-\(\text{O}_2\) mixture (70%:30%), and \(^{15}\text{N}_2\) was subsequently added to a final gas composition of: 59\% Ar, 24\% \(\text{O}_2\), 10\% \(^{15}\text{N}_2\) and 7\% \(^{14}\text{N}_2\). After four hours incubation in the \(^{15}\text{N}\)-enriched atmosphere root nodules were quickly harvested on ice, immediately frozen in liquid nitrogen and kept at -80\°C until NMR analysis. After recording of NMR spectra, nodules and the medium bathing the nodules during NMR analysis were extracted with MeOH/\(\text{CHCl}_3/\text{H}_2\text{O}\) (12:5:3, v/v/v). The extract was subsequently purified as described below, redissolved in 0.1 M HCl and pH adjusted to 5.8 before NMR analysis. Identification of \(^{15}\text{N}\)-labelled metabolites was obtained by spiking the extract with authentic \(^{15}\text{N}\)-labelled amino acids.

Standard solutions of \(^{15}\text{N}\)-enriched ammonium and amino acids were prepared by dissolving authentic 99\% \(^{15}\text{N}\)-enriched compounds, purchased from Icon Services Inc., Summit, USA, in 0.1 M HCl to a concentration of about 30 mM. The solutions were titrated to different pH values with KOH and HCl for the study of pH dependence of NOE factors.

Extraction of amino acids from nodules

Frozen nodules (approx. 0.4 g FW) were homogenised in a mortar on liquid nitrogen, and \(\alpha\)-aminobutyric acid was added as an internal standard. The homogenate was transferred to a tube and kept on ice, and amino acids were extracted as described by Johansen et al. (1996) by three subsequent additions of 4 mL MeOH/\(\text{CHCl}_3/\text{H}_2\text{O}\) (12:5:3, v/v/v), vortex mixing for 1 min and centrifugation (2000 g, 5 min, 5\°C). All subsequent purification of extracts was performed on ice. The supernatants were pooled and \(\text{CHCl}_3\) (14 mL) and water (3 mL) was added. The tube was vortexed and centrifuged (2000 g, 2 min, 5\°C) to facilitate phase separation. The methanol-water phase containing the amino acids was evaporated in a Speed-Vac concentrator, and the amino acids were finally taken up in 1 mL of 0.1 M HCl. An amino acid standard solution was subjected to the extraction procedure and analysed in parallel with nodule extracts to ensure that in particular glutamine and asparagine were not degraded during the applied procedures.
Determination of soluble amino acid pools

Nodule extracts were deproteinised by addition of sulphosalicylic acid to a final concentration of 0.1 M, and norleucine was added as an internal standard. The samples were left for 15 min at room temperature before they were centrifuged (4000 rpm, 30 min, 5°C), and the supernatant was applied to a Waters HPLC system modified as an amino acid analyser with cooled autosampler and fluorometer. The instrument used cation exchange chromatography for separation of the amino acids and post column reaction with ortho-phthaldialdehyde for quantification. Millenium software from Waters was used for control of the instrument and for integration of the amino acid peaks.

Analysis of 15N-labelling of amino acids by LC-MS

Underivatised amino acids were analysed using the ion-pair reverse-phase chromatographic strategy as pioneered by Petritis et al. (2000). Asp, Asn, Gln, Glu and Ala were baseline separated using a Purospher RP-18e (125 x 4 mm, 5μm) column with 0.5 mM pentadecafluoroctanoic acid as mobile phase (0.5 mL/min). The rather difficult separation of GABA and α-aminobutyric acid was achieved using 10 mM nonafluorpentanoic acid as mobile phase. In all cases a sample size of 50 μL was used. The isotope analyses were carried out on-line using a LCQ (Classic) MSe system bundled with an ESI (electrospray ionisation) source and a complete TSP HPLC system. Specific scan events were designed to meet the analysis of the individual amino acids. The 15N content was determined using the single ion traces of the MH$^+$ and [M+1]H$^+$ ions. The 15N content was calculated directly from the measured ratios and corrected for natural abundances.

The positional labelling of Gln was quantified by monitoring the daughter ions formed by the loss NH$_3$ from the [M+1]H$^+$ ions using MS/MS experiments. Thus, the daughter ions ([M+1] - NH$_3$[H$^+$ and ([M+1] - 15NH$_3$)[H$^+$] were monitored using two different MS/MS experiments. The positional labelling of Asn was quantified using the granddaughter ions arising from the consecutive loss of [CO + H$_2$O] and HNCO from the [M+1]H$^+$ ions by MS/MS/MS experiments. Thus, the granddaughter ions ([M+1] - [CO + H$_2$O] - HNCO)H$^+$ and ([M+1] - [CO + H$_2$O] - 15HNCO)H$^+$) were quantified using two different MS experiments. The isolation widths in the MSe experiments were carefully optimised with respect to sensitivity and accuracy. The positional labelling was calculated on the principles of isotope dilution.

NMR spectroscopy

31P and 15N spectra were recorded at 242.8 and 60.79 MHz, respectively, on a Varian Unity Inova 600 spectrometer using a broadband 10-mm-diameter probehead.

In vivo 31P spectra were acquired with a 30° pulse angle (12 μs), 0.125 s acquisition time, proton decoupling by WALTZ-16 composite pulse sequence, 11.2 kHz sweep width, 13824 transients and 20 Hz line broadening. 31P chemical shifts were measured relative to the signal from methylene diphosphonic acid (pH 8.9 in TRIS buffer) contained in a capillary included in the NMR tube and are quoted relative to the resonance of 85% phosphoric acid at 0 ppm. Assignments of 31P signals were based on literature reports (Saint-Ges et al., 1991) and own 31P NMR analyses (data not shown) of neutralised perchloric acid extracts performed as described by Roby et al. (1987).
Estimates of intracellular pH were based on cytoplasmic and vacuolar calibration curves, respectively, that were made as suggested by Spickett et al. (1993).

15N spectra of metabolically active, 15N$_2$ fixing nodules as well as of dead 15N-enriched nodules were acquired with a 60° pulse angle, 0.25 s acquisition time, recycle delay of 1.75 s, proton decoupling at high power during the acquisition and at low power during the delay by WALTZ-16 composite pulse sequence, 9.3 kHz sweep width, 1792 or 3584 transients leading to total acquisition times of one or two hours, respectively. 8 Hz line broadening was applied.

15N spectra of nodule extracts were acquired with a 90° pulse angle, 2 s acquisition time, 3 s delay 1, 5 s delay 2, proton decoupling at high power during the acquisition and at low power during delay 2 by WALTZ-16 composite pulse sequence, 18 kHz sweep width and 5800 transients leading to a total acquisition time of 16 hours. 5 Hz line broadening was applied.

15N NMR spectra of standard solutions of 15N-enriched ammonium and amino acids were acquired with a 90° pulse angle, 2 s acquisition time, 10 s delay 1, 10 s delay 2 and 9.3 kHz sweep width. No line broadening was applied. NOE factors were determined as the ratio between signal intensities in 1) spectra where NOE was applied by WALTZ-16 modulated proton decoupling during delay 2 as well as during the acquisition and 2) spectra with inverse gated decoupling. Line widths were similar in the two types of spectra.

15N chemical shifts were measured relative to the signal at 55.8 ppm from 0.25 M aqueous 13N-urea. For 15N NMR analyses of nodules, urea was contained in a capillary included in the NMR tube, whereas urea was added directly to extracts and 15N standard solutions.

Results

Optimisation of experimental conditions for maximal 15N incorporation

15N NMR spectroscopy is not a very sensitive method due to the inherent magnetic properties of the 15N nucleus, i.e. the low magnetogyric ratio. In order to make the in vivo S/N ratio of 15N-labelled metabolites exceed the 15N detection threshold, it was therefore crucial to optimise factors influencing the 15N incorporation.

The 15N-enrichment of the root nodules depends initially on the level of nitrogenase activity, which again depends on inherent properties of the biological material. The proportion of nitrogen fixing nodule tissue varies with age, and nodules from plants of different ages were tested. However, no major differences could be observed in in vivo 15N NMR spectra of nodules from plants aged between four and seven weeks, and six- to seven-week-old plants were used throughout the study. The root system of a given plant contains nodules of different sizes and developmental stages. The size of the NMR tube limits the amount of nodules that can be included in an experiment, and as smaller nodules may be packed more densely in the tube they might give rise to a higher total 15N$_2$
fixing rate per volume unit, although more mature nodules are known to contain a larger zone of N_2 fixing tissue. We tested whether small, young nodules from the lower part of the root system or large, older nodules from the top of the tap root gave better ^{15}N NMR spectra and it was found that large nodules were best. Different pea varieties in combination with different bacterial strains were likewise tested and the most efficient combination (cf. materials and methods) was used for all described experiments.

It was tested whether nodules from *Lotus* plants would give rise to more informative in vivo ^{15}N NMR spectra, but the obtained spectra (Fig. 3 C) displayed less intense signals than spectra from pea nodules, and *Lotus* nodules were therefore rejected for further experiments. However, the *Lotus* ^{15}N spectra provided valuable information that aided the assignment of ^{15}N resonances as described later.

Root nodules in the perfusion system were immersed in liquid, and this is well known to cause a decrease in nitrogenase activity, which, however, may be partially recovered by increasing the oxygen supply to the nodules (Spirent, 1969). The O_2 level experienced by the nodules in the NMR tube depends on a number of factors such as the composition and pressure of the gas phase, the equilibrium between the perfusion buffer and the gas phase, the perfusion buffer flow rate and the packing of nodules in the NMR tube. An adequate flow rate must be maintained to prevent significant gradients of oxygen tension across the sample, due to both depletion of oxygen by cells nearest the medium inlet, and non-uniform flow over individual pieces of tissue. The most intense in vivo ^{15}N signals occurred when nodules were perfused at a flow rate of 40-50 mL min$^{-1}$ with a buffer in equilibrium with a gas phase containing about 50% O_2 and a total gas pressure of 1.6 atm. When the O_2 concentration was raised to about 70%, less intense ^{15}N NMR signals were observed, which indicated an inhibition of nitrogenase activity.

The total amount of ^{15}N incorporated by pea nodules during an eight-hour incubation period in the perfusion system was determined by mass spectrometry to be 1.97 μmol ^{15}N g$^{-1}$ FW. The mean nitrogenase activity could thus be estimated to be 0.12 μmol $^{15}N_2$ g$^{-1}$ FW h$^{-1}$. The nitrogenase activity was presumably higher in the beginning of the incubation and decreased throughout the incubation period.

Monitoring of physiological state of root nodules

During NMR experiments the energy status of root nodules and possible changes in intracellular pH, which might have indicated hypoxic conditions, were monitored by acquiring ^{31}P NMR spectra. Fig. 2 shows representative in vivo ^{31}P spectra obtained at the beginning (0 h) and at the end (8 h) of the ^{15}N experiment shown in Fig. 5. ATP concentrations did not change significantly throughout the experiment as seen from the unchanged intensity of the well resolved signals from the β- and γ-phosphate groups of ATP at -19.0 and -5.5 ppm, respectively. The intracellular pH can be estimated from the chemical shift of the P_i signal based on calibration curves (see materials and methods), and we observed that pH in the cytoplasm as well as in the vacuole remained stable during the course of the experiment. The pH values in the cytoplasm and vacuole were estimated to
be 7.2 and 5.2, respectively, from the P chemical shifts at 2.1 ppm and 0.3 ppm, respectively. The cytoplasmic compartment at pH 7.2 might include both the plant and the bacteroid cytoplasm. The resonance at 1.6 ppm could represent P in a different subcellular compartment with a pH of approximately 6.8 or it could be a signal from one of the phosphate groups of phytate. Another possible signal from phytate was observed at 1.0 ppm, but the exact position of the phytate multiplet is highly sensitive to pH and to the chemical environment, making its correct identification difficult (Saint-Ges et al., 1991). However, it seems likely that the two small peaks represent phytate as 31P spectra of perchloric acid extracts from root nodules also contained phytate resonances of approximately the same intensity (data not shown).

The 31P spectra from pea root nodules showed a large, unexpected signal (X) at -1.9 ppm (Fig. 2), which was observed in several experiments to be more narrow and persistent during prolonged perfusion than all other 31P signals. The same chemical shift was observed in 31P NMR spectra of root nodule perchloric acid extracts at pH 7.5 and showed no coupling to other 31P nuclei (data not shown). The signal appeared as a 1:2:1 triplet with $J = 8.9$ Hz in proton coupled 31P NMR spectra of perchloric acid extracts (data not shown), which indicated that it was a phosphate group located next to a methylene group. The concentration in the root nodule tissue was estimated to be 0.1 µmol g$^{-1}$ FW from a 31P NMR spectrum of an extract. The yet unidentified peak X was not observed in 31P NMR spectra of either pea root tips, a dense suspension of free-living *Rhizobium leguminosarum* bv. *viciae*, or intact root nodules from *Lotus* or soybean (data not shown). On the other hand, in vivo 31P NMR spectra of *Lotus* nodules showed a very distinct, intense and unusual resonance at 16.3 ppm (data not shown), which was not observed in pea or soybean nodules.

Assignment of 15N resonances

Rather different 15N NMR chemical shifts of amino acids have previously been published (see Table 1) and make it problematic to base assignments purely on literature values. The variability could mean that chemical shifts are strongly influenced by the matrix, and amino acids may be erroneously assigned, as the chemical shifts of the amino resonances of glutamate and glutamine on one side and asparagine and aspartate on the other side are very close. One reason for the variation in the reported chemical shifts could be pH differences between the biological systems. However, we performed pH titration studies of the relevant amino acids and observed rather modest changes in the chemical shifts at pH values below 8. Another cause of uncertainty in the literature reports is the use of different reference compounds. 15N urea was used in the present study either as an internal standard or in a capillary and resonated at the same frequency under both circumstances. Some studies use intracellular ammonium as a reference compound, but as the ammonium chemical shift may be strongly influenced by the nature of the intracellular environment it seems a rather unsuitable reference. We studied whether temperature effects on chemical shifts could explain some of the differences in the literature reports. This seems not to be the case as an increase of 10°C shifted the glutamine amide resonance only approximately 0.2 ppm downfield, whereas the ammonium and the amino resonances of glutamine and aspartate were shifted approximately 0.1 ppm upfield.
Assignment of 15N resonances in dead nodules

Several 15N signals from amino acids that were labelled by assimilation of fixed 15N$_2$ were observed in an NMR spectrum from dead root nodules (Fig. 3 A). These resonances were tentatively assigned as being GABA, alanine and the amide and amino group of asparagine (Table 2) by comparison with literature values and own measurements of authentic standards. Subsequent extraction of the nodules and recording of an 15N spectrum from the extract (Fig. 3 B) showed almost identical chemical shift values compared to dead nodules. The assignments were confirmed by spiking extracts with authentic 15N amino acid standards followed by NMR analysis. The observed resonance at 20.2 ppm could not be assigned as spiking with 15N-labelled glutamate and glutamine demonstrated that both amino resonances were downfield of 20.2 ppm. A small signal at -0.14 ppm, presumably from 15N-labelled ammonium, was observed in the extract, but not in the spectrum from dead nodules.

Assignment of ammonium in metabolically active nodules

Incubation of metabolically active root nodules with 15N$_2$ in the perfusion system while recording 15N NMR spectra resulted in the observation of intracellular 15N ammonium in experiments with both pea and Lotus (see Fig. 3 C and Fig. 5). The resonance frequency showed some variability in the range from -4.2 to -3.9 ppm. This is an unusually low ammonium frequency compared to own in vitro measurements and previous in vivo 15N NMR studies, which all have demonstrated ammonium resonances at around 0 ppm in procaryotic as well as in eucaryotic organisms (cf. Table 1).

The signal at around -4 ppm was assigned to ammonium based on several indications. First, no other well known 15N metabolite resonates anywhere near -4 ppm. Second, the signal at -4 ppm represents the first detectable 15N metabolite in 15N$_2$ fixing nodules (cf. Fig. 5), which is in accordance with the well-established fact that the product of nitrogenase activity is ammonium. Third, the NOE factor is between -1 and 0, which is characteristic for ammonium in vivo (Martin, 1985; Robinson et al., 1991; Fox et al., 1992; Joy et al., 1997) and gives rise to spectra with oppositely phased signals for amino acids and ammonium, respectively. Finally, the signal at -4 ppm is intense in spite of being attenuated by NOE under the applied acquisition parameters, and it must thus originate from a metabolite that is present in large amount, which is what should be expected from ammonium in the bacteroid compartment.

Acquisition of 15N NMR spectra from the perfusion buffer after the incubation was ended demonstrated that no extracellular 15N-labelled ammonium was present (data not shown).

Assignment of amino acids in metabolically active nodules

Considering the very unusual chemical shift of the ammonium ions in root nodules, the assignments of the resonances of amino acid 15N amino groups required some attention. The amino acid amide resonances are much less likely to be severely perturbed. In vivo 15N NMR spectra from 15N$_2$ fixing pea root nodules showed two amino acid 15N resonances at 90.7 and 19.6 ppm (Fig. 5), which correspond to an amide and an α-amino group, respectively. This was observed in several
experiments. The amide resonance at 90.7 ppm could, by comparison with own in vitro measurements and previously observed values (Table 1), unequivocally be assigned to the amide resonance of asparagine.

The assignment of the α-amino resonance at 19.6 ppm posed some problems. The chemical shift value corresponded to glutamine and glutamate according to own in vitro measurements as well as previously observed values (Table 1), but the analyses of dead nodules and extracts (cf. Fig. 3 A and B) demonstrated that the dominating 15N-labelled α-amino group was the one of asparagine and that it resonated at the expected 18.8-19.1 ppm when inside dead nodules. Analyses of the 15N-labelling by LC-MS also showed that the asparagine amide and amino groups were the most abundant 15N-labelled species in nodules that were incubated with 15N2 in the perfusion system (Table 3 and Fig. 7). This apparent inconsistency needed an explanation, and further investigations indicated that the explanation seemed to relate to NOE factors (see later).

Observations from an experiment with Lotus nodules indicated that the resonance at 19.6 ppm could be assigned to glutamine/glutamate. Two α-amino resonances were observed at 19.6 and 18.4 ppm, respectively, in an in vivo 15N NMR spectrum from Lotus nodules (Fig. 3 C). The chemical shift difference between asparagine and aspartate was demonstrated in vitro to be around 0.6 ppm (cf. Table 2), and it was therefore unlikely that the resonances at 19.6 and 18.4 ppm originated from asparagine and aspartate. Whether the resonance at 18.4 ppm should be assigned to asparagine or aspartate could not be decided purely based on the chemical shift value, but it seemed likely that it was asparagine, because this amino acid is so abundant in indeterminate nodules (Ta et al., 1986). Consequently, the signal at 19.6 ppm in Lotus nodules seemed to be the α-amino group of either glutamine or glutamate. This suggests that the resonance at 19.6 ppm in pea root nodules also originated from glutamine/glutamate, since all other observed 15N resonances in Lotus nodules occurred at exactly the same frequencies as in pea nodules.

GABA was observed at the expected 11.6, 11.8 and 11.3 ppm in 15N NMR spectra from dead pea root nodules, an extract from nodules and metabolically active, 15N2 fixing Lotus nodules, respectively (cf. Fig. 3). However, GABA was never observed in in vivo 15N NMR spectra from 15N2 fixing pea nodules (Fig. 5), although LC-MS analyses demonstrated very high 15N-labelling of GABA in these nodules (see Table 3 and Fig. 7). Possible reasons for this apparent inconsistency will be discussed later. The GABA 15N resonances in spectra from nodules were in several experiments observed to be broader than resonances from other amino acids.

NOE effects
In order to observe quantitative results, in vivo 15N spectra should ideally be recorded without NOE effects. This turned out not to be feasible in the present study. However, the NOE effects lead to variation in intensities for the various amino acids resonances. This was investigated as a function of pH in standard solutions as shown in Fig. 4. The effects are clearly related to the pKa values of the compounds, except for GABA and ammonium where NOE factors smaller than the theoretical minimum of -4.9 were observed. The amino group of asparagine was observed to have a NOE
factor of -1 at around pH 7.1 in vitro, whereas NOE factors of the glutamine and glutamate amino groups were between -1.5 and -3.5 in the physiologically relevant pH range of 7-7.5. If the NOE factors exhibit the same pH dependency in vivo as was demonstrated in vitro, it would be expected that the signal from the α-amino group of asparagine would be lost, whereas the signals from the amino groups of glutamine and glutamate would be enhanced.

In vivo 15N NMR time course of 15N fixation and assimilation

Fig. 5 shows a representative series of consecutive in vivo 15N NMR spectra that were started immediately after addition of 15N2 at time zero. An ammonium signal at -4.2 ppm was evident during the first hour of incubation and increased in intensity throughout the first five hours, after which steady state seemed to occur. Two more 15N signals emerged in the spectrum representing the period from one to three hours and likewise increased in intensity in the next spectrum from three to five hours. The intensities of these two signals were unchanged in the last spectrum from five to seven hours indicating steady state. The signal at 90.7 ppm was assigned to the amide group of asparagine. The amino groups of glutamate and glutamine resonate in a 0.2 ppm interval around 19.7 ppm and are difficult to resolve in vivo, so the resonance at 19.6 ppm is likely to contain contributions from the amino group of glutamine as well as glutamate.

Total amino acid pools and 15N-labeling

Pea root nodules contained asparagine as the dominating free amino acid, and its concentration amounted to as much as 19.9 μmol g⁻¹ FW in freshly harvested nodules and 16.9 μmol g⁻¹ FW in nodules that had been perfused for eight hours during the NMR experiment (Fig. 6). This was more than an order of magnitude more than each of the other major amino acids glutamine, alanine, aspartate and glutamate. In general, the concentrations of free α-amino acids were slightly lower in perfused nodules than in freshly harvested nodules. γ-aminobutyric acid (GABA) is not an α-amino acid and is not used for protein synthesis, but it constituted a substantial part of the soluble pool of nitrogen-containing metabolites in freshly harvested nodules (1.4 μmol g⁻¹ FW) and the pool size apparently increased substantially during perfusion (5.7 μmol g⁻¹ FW).

A new mass spectrometric technique involving separation of amino acids by IP-RPLC, made it possible to analyse the position of 15N in mono labelled glutamine and asparagine by using MS/MS and MS/MS/MS, respectively. The analysis could be done in a single experiment without any previous derivatisation procedures, which is a major simplification and improvement compared to GC-MS procedures, which are usually used for analysis of positional labelling. GABA, glutamate and alanine were the most highly 15N-enriched compounds after the eight-hour incubation period with 15N excess of 33.4, 27.9 and 25.0 atom%, respectively, but all examined compounds were found to be significantly 15N-labelled (Table 3). When the pool sizes were taken into account, asparagine and GABA were found to contain most of the 15N-label in soluble amino acids in the nodule tissue, namely 2.03 and 1.91 μmol 15N g⁻¹ FW, respectively (Table 3 and Fig. 7). Alanine and glutamate contained a minor part of the total 15N-label (0.31 and 0.10 μmol 15N g⁻¹ FW, respectively), because of their smaller pool sizes. Asparagine contained more 15N-label in the amino group (1.33 μmol 15N g⁻¹ FW) than in the amide group (0.70 μmol 15N g⁻¹ FW). Glutamine
PART 4. ARTICLE MANUSCRIPT

was also more labelled in the amino group (0.34 μmol 15N g$^{-1}$ FW) than in the amide group (0.11 μmol 15N g$^{-1}$ FW).

Discussion

In vivo 15N-ammonium NMR signal in root nodules

The 15N NMR ammonium signal in living pea and *Lotus* root nodules was in several experiments observed at around -4 ppm, which is an unusually low ammonium frequency. Previous *in vivo* 15N NMR studies have all demonstrated ammonium resonances at around 0 ppm in biological systems as diverse as maize root tips (Amancio and Santos, 1992), carrot cells (Fox et al., 1992), *Corynebacterium glutamicum* (Tesch et al., 1999) and ectomycorrhizal mycelium (Martin et al., 1994). The observed enhanced shielding of ammonium can be due to many different factors such as pH effects, bonding to anions, macromolecules or paramagnetic ions and may thus provide valuable information on the intracellular environment.

Counter ions in large excess are known to perturb the 15N ammonium chemical shift (Stefaniak et al. 1986). We investigated, whether the observed unusual chemical shift could be explained by the presence of one of the more common anions, phosphate, and found no significant effects of physiologically relevant phosphate concentrations on the ammonium chemical shift (data not shown). Base titration of ammonium *in vitro* demonstrated, as expected, large pH effects on the chemical shifts, and an ammonium chemical shift of -4 ppm was observed at pH 8.9. From the present investigation it was not possible to localise the ammonium pool to the bacteroid or plant cytoplasm, but in either case it seems most unlikely that the pH could be that alkaline in a tissue that is metabolically active. Streeter (1989) estimated that free ammonium in soybean nodules was *primarily confined* to bacteroids, and it has been anticipated that the bacteroid cytoplasm is slightly alkaline (Day et al., 2001), because of the proton pumping activity of the electron transport chain in the bacteroid inner membrane as well as the proton consuming nitrogenase activity. It is thus possible that a minor contribution to the shielding of the observed 15N NMR ammonium signal was due to a higher pH in the bacteroids. However, it should be noted that as pH is raised, more and more of the ammonium will be converted to ammonia. This would cause a change in the 15N chemical shift but would also imply that the ammonium-ammonia couple, due to the latter, would complex metal ions much better. This in turn may lead to a shift in the chemical shift. If the large chemical shift is caused by pH and binding to paramagnetic sites, this would be likely to have an impact on both ammonium ions and the amino acids. However, no changes in the expected *in vivo* chemical shifts of amino acids were observed, and it may therefore be suggested that the ammonium ions and the amino acids are in different compartments. This could point to the ammonium ions being in the bacteroid, whereas the labelled glutamine/glutamate and asparagine were located in the plant cytoplasm.

The free ammonium concentration in symbiotic root nodules has never been solidly quantified. Based on extractions and several assumptions Streeter (1989) estimated that soybean bacteroids
PART 4. ARTICLE MANUSCRIPT

contained 1.6 μmol ammonium g⁻¹ FW nodule, whereas the concentration of ammonium in the plant cytoplasm was essentially nil. The ¹⁵N NMR acquisition mode of the present study only allowed for a rough estimate of the minimum nodule ammonium concentration. The intensity of the ¹⁵N ammonium NMR signal was of a comparable size to the signal from the asparagine amide group after an eight-hour incubation with ¹⁵N₂ (cf. Fig. 5). NMR signal intensities are influenced by both T₁ and NOE, which were not quantified under in vivo conditions in the present study, but from other studies it can be ascertained that both processes would cause the ammonium signal to diminish relative to the asparagine amide signal. In vivo NOE factors for amino acid amide groups have previously been shown to be of the order of -4.5 (Kanamori et al., 1982b; Thorpe et al., 1989; Joy et al., 1997), whereas the ammonium NOE factor is between 0 and -1 in the present study. Amino acid amide groups T₁s of 3-4 s in plant tissue have been reported (Kanamori et al., 1982b; Thorpe et al., 1989; Joy et al., 1997), whereas very long ammonium T₁s of up to 50 s are commonly observed in vivo (Tesch et al., 1999). Thus, the concentration of ¹⁵N ammonium must be at least as large as that of ¹⁵N-labelled asparagine amide, which was estimated to constitute 0.7 μmol g⁻¹ FW nodule based on LC-MS measurements.

In summary, it is evident that substantial, although not quantifiable, ¹⁵N-labelling of ammonium took place in the metabolically active pea root nodules in the present study and that ammonium was the first detectable ¹⁵N-labelled compound in the intact symbiosis. This is in accordance with many previous reports (reviewed by Day et al. 2001) but in contrast to recent results by Waters et al. (1998), where no ¹⁵N-labelling of ammonium could be detected in isolated ¹³N₂ fixing soybean bacteroids, when these were incubated at high densities under microaerobic conditions. In the experimental set-up used by Waters et al. (1998) alanine was demonstrated to contain 98 atom% excess ¹⁵N, and to be the primary product excreted by the bacteroids.

An inversion of the ammonium resonance during decoupling (the NOE factor being between -1 and 0) has previously been observed for ammonium ions in solutions with added cell debris, whereas no effect was seen for glutamate (Fox et al., 1992). A similar finding concerning ammonium ions was made by Altenburger et al. (1991), who explained the effect as being due to the ammonium ions being bound to ion-exchange sites in the cell wall. It is interesting to notice that neither a change in the chemical shifts nor any apparent line broadening occurred.

Nitrogen assimilation in pea nodules studied by in vivo ¹⁵N NMR and LC-MS

Some of the results from in vivo ¹⁵N NMR and LC-MS seemed at first to be contradictory. The most abundant amino acid, asparagine, was found to contain about twice as much ¹⁵N-labelling in the amino group than in the amide group when analysed by LC-MS (cf. Table 3). A large asparagine amide resonance was observed in in vivo ¹⁵N NMR spectra from pea root nodules in many experiments, but an ¹⁵N amino group NMR signal was never observed in vivo (cf. Fig. 5). However, the asparagine ¹⁵N amine as well as the amide resonance was seen in NMR spectra of nodule extracts. These apparent inconsistencies could, however, be explained if the NOE factors exhibit the same pH dependency in vivo as was demonstrated in vitro. It would then be expected that the signal from the amino group of asparagine would be lost in in vivo ¹⁵N NMR spectra,
whereas the signal from the asparagine amide group would be enhanced. This mechanism may thus provide the explanation to make ends meet and conclude that asparagine is 15N-labelled in both the amino and the amide groups, although the amino resonance is invisible in 15N NMR spectra with full decoupling.

The variation in the NOE effect with pH has been debated intensely over the years (Cooper et al., 1973; Leipert and Noggle, 1975; Irving and Lapidot, 1975). Exchange modulated scalar relaxation, although suggested by Cooper et al. (1973), has been ruled out (Leipert and Noggle, 1975; Irving and Lapidot, 1975). The latter advocated relaxation due to paramagnetic impurities, but this was contradicted by Leipert and Noggle (1975), as they claimed to prevent this by addition of EDTA. No agreement has so far been reached. From our in vitro experiments (cf. Fig. 4) it seems obvious that the NOE effect is related to the pK$_a$ values. Our results were to a large extent similar to those published by Leipert and Noggle (1975).

If it is correct that the in vivo NOE factor of the asparagine amino group is of an unfavourable size, which causes elimination of the signal in spectra recorded with full decoupling, it is surprising that this has not been reported previously, since the majority of in vivo 15N NMR studies applies full decoupling. On the other hand, very few in vivo 15N NMR studies have observed a signal from the asparagine amino group (cf. Table 1). To our knowledge, only a single 15N NMR study, namely the investigation of 15N ammonium metabolism in duckweeds by Monselise and Kost (1993), demonstrated the presence of 15N-labelling in the amino group of asparagine. Amancio and Santos (1992) assigned an 15N signal at 18.6 ppm to the amino groups of both asparagine and aspartate, but in our opinion only aspartate would resonate at this low frequency. The absence of reported asparagine 15N amino signals in the in vivo NMR literature may reflect that no labelling occurs or that the asparagine pool of the studied organisms was below the detection limit, but it may also be caused by NOE signal elimination. Very few investigations have included parallel analyses by in vivo 15N NMR and other analytical methods that would reveal a possible NMR invisible asparagine amino signal.

In root nodules the amide group for the biosynthesis of asparagine from aspartate may either come from direct incorporation of ammonium or from the glutamine amide group, and previous results have indicated that both pathways occur in alfalfa nodules (Snapp and Vance, 1986; Ta et al., 1986). Our data indicate that some asparagine synthesis from highly 15N-enriched ammonium is taking place in pea root nodules, since the low level of 15N amide-labelling of glutamine makes it unlikely to account for all of the observed asparagine amide enrichment. The high total 15N-labelling of asparagine is consistent with its generally accepted role as the end product of the primary nitrogen assimilation processes taking place in indeterminate root nodules.

Another obvious difference between results obtained by the different analytical methods was that GABA contained a large amount of the total 14N-labelling, when analysed by LC-MS (cf. Table 3), but did not appear in pea nodule in vivo 15N NMR spectra at all (cf. Fig. 5). The in vitro pH dependence of the GABA NOE factor gave no indications that NOE could cause elimination of the
15N NMR signal from GABA. 15N GABA has previously been observed by in vivo 15N NMR spectroscopy (cf. Table 1), although some investigators have noted that the signal possibly also contained contributions from 15N-labelled ornithine and lysine. In vivo T$_1$s of GABA have been reported shorter than of other amino acids, and in vivo NOE factors for GABA were found to be numerically larger than for other amino acids (Thorpe et al., 1989; Joy et al., 1997). These two variables affect signal intensities, but under the experimental conditions of the present study, both of the reported values would imply an enhancement and not an attenuation of the 15N GABA signals relative to signals of other amino acids.

GABA is synthesised from glutamate in a reaction catalysed by the enzyme glutamate α-decarboxylase, which is well known in plant tissue (reviewed by Bown and Shelp, 1997) and has also been reported to be present in symbiotic rhizobia bacteroids (Miller et al., 1991; Fitzmaurice and O'Gara, 1991). The 15N-labelling of GABA found by LC-MS could reflect a decarboxylation of glutamate occurring after termination of the in vivo 15N NMR acquisition. However this seems unlikely when considering the high 15N-enrichment of GABA together with the short time period between acquisition of the last NMR spectrum and the quenching of metabolic activity by transfer of root nodules to liquid nitrogen.

A substantial amount of GABA (labelled as well as unlabelled) was shown to accumulate in root nodules during incubation in the NMR tube (cf. Fig. 6). This may reflect an increase in synthesis and/or a decrease in catabolism. The results concerning the size of the GABA pool in the nodule tissue do not allow for a discrimination of GABA localised in the bacteroid or in the plant cytoplasm. It is, however, evident from the high GABA 15N-labelling that the GABA is formed from a newly synthesised pool of glutamate. The GABA shunt pathway has previously been suggested to play a prominent role in R. meliloti bacteroids (Fitzmaurice and O'Gara, 1988; Miller et al., 1991), although the function of GABA remains unclear.

Some experimental evidence indicates that the locations of GABA production and accumulation are not identical, and that accumulated GABA is sequestered within organelles, possibly in the vacuoles (reviewed by Shelp et al., 1999). It has also been demonstrated that nodules from many legume species accumulate bound forms of GABA amounting to as much as 20% of the total N content of the nodule (Larcher et al., 1983). The apparent NMR invisibility of 15N-labelled GABA in pea root nodules in in vivo experiments may result from GABA being immobilised in some way in vivo. Immobilised GABA may be released from the tissue by the applied extraction procedures and/or enzymatic reactions and therefore detected by LC-MS. A support for such a suggestion is the observation of broad resonances of GABA in dead nodules indicating that GABA is less tightly bound under such conditions but still not free in e.g. the cytoplasm.

Results from both NMR and LC-MS analyses agreed that glutamine was predominantly 15N-labelled in the amino group and not in the amide group. No resonances from glutamine 15N amide were observed in 15N NMR spectra despite the fact that amide groups seemed to possess favourable NOE factors for the detection in vivo. Glutamine 15N amide groups did not give rise to any signals.
in NMR spectra of extracts, not even when signals from glutamine \(^{15}N \) amino groups were present. LC-MS results demonstrated that \(^{15}N \) in mono labelled glutamine was almost exclusively positioned in the amino group, and when the amount of double labelled glutamine molecules was taken into account, the distribution between amino and amide \(^{15}N \)-labelling was 3:1. The concurrent findings of glutamine being predominantly \(^{15}N \)-labelled in the amino position are very controversial as the prevailing scheme for the assimilation of fixed nitrogen states that ammonium is first incorporated into the amide group of glutamine, catalysed by glutamine synthetase.

Glutamate and alanine were shown by LC-MS to be among the most highly \(^{15}N \)-enriched metabolites, but the total pool sizes of glutamate and alanine were rather small compared to the other studied amino acids, which justifies that they were not observed by \textit{in vivo} \(^{15}N \) NMR. The high \(^{15}N \)-enrichment of these two amino acids and of GABA might indicate that these metabolites were synthesised directly from highly \(^{15}N \)-enriched ammonium via glutamate dehydrogenase (GDH) and the GABA shunt pathway: \(\text{NH}_4^+ \rightarrow \text{glutamate} \rightarrow \text{GABA} \rightarrow \text{alanine} \).

The direct incorporation of ammonium into glutamate catalysed by GDH is normally not considered an important reaction in the plant cytoplasm of root nodules. Substantial bacteroid GDH activity has been reported in many different host plants (Brown and Dilworth, 1975; Miller et al., 1991), but the \textit{in planta} significance of GDH activity remains uncertain. Our results indicate that substantial GDH catalysed glutamate synthesis may occur under the given experimental conditions, although it is not possible to localise the reaction to a specific compartment.

If synthesis of glutamate and alanine via the GDH and GABA shunt pathway was taking place in the bacteroid compartment, the excretion product from bacteroid to plant cytoplasm could be a highly \(^{15}N \)-labelled amino acid. All of the necessary enzymes have been reported to be present in bacteroids (Brown and Dilworth, 1975; Miller et al., 1991; Fitzmaurice and O'Gara, 1991). If amino acids rather than ammonium were the excretion products under certain conditions, as has been suggested previously (Waters et al., 1998; Allaway et al., 2000), the ammonium pool of the plant cytoplasm is expected to contain very little \(^{15}N \)-label. In that way glutamine would be synthesised in the plant cytoplasm from highly labelled glutamate and poorly labelled ammonium resulting in glutamine molecules being higher labelled in the amino group (originating from glutamate) that in the amide group (originating from ammonium). It has previously been estimated that the plant cytoplasm contains only a minor free ammonium pool (Streeter, 1989), so the suggested way of synthesis of glutamine would depend on ammonium being provided from other sources. This speculative hypothesis would of course need further investigation, but at present it could serve as a possible explanation of the controversial observation of glutamine being predominantly \(^{15}N \)-labelled in the amino position.

Discovery of a novel phosphorus compound in pea nodule \(^{31}P \) NMR spectra

A new, very narrow and well resolved \(^{31}P \) signal at -1.9 ppm from an unknown compound in pea root nodules was observed. This resonance was absent in spectra from both \textit{Lotus} and soybean root nodules. It has not been reported in previous \(^{31}P \) NMR studies of soybean nodules (Rolin et al.,
PART 4. ARTICLE MANUSCRIPT

1989a) or alfalfa nodules (Nikolaev et al., 1994). Based on the observed coupling constants and the chemical shifts the phosphate group must be neighbouring a CH$_2$ group. It seemed to be a symbiosis specific compound since it was neither found in uninfected plant root tissue nor in free-living *Rhizobium* bacteria.

The chemical shift of the unknown compound was identical when observed in living root nodules and in a perchloric acid extract at pH 7.5, which makes it unlikely that the compound is localised in the vacuole since the acidic conditions in this compartment would be expected to change the chemical shift. The signal was less line broadened than other 31P metabolites in *in vivo* spectra, and this may be because the compound was confined to a specific compartment in the nodule tissue, which might be the bacteroid, and thus experienced less field inhomogeneity because of the limited volume. The fact that the unidentified 31P signal persisted during prolonged perfusion of root nodules, when other 31P signals became weaker, suggested that the compound was not metabolised and not washed out, which may indicate that it is bound in some way, though still highly mobile.

Concluding remarks

The present work presents the first report of *in vivo* 15N NMR spectra of 15N$_2$ fixing pea root nodules. The results demonstrate that it is indeed possible to apply *in vivo* ISNMR spectroscopy to the study of nitrogen fixation and assimilation in root nodules. By using NMR it was possible to observe directly the incorporation of 15N into living nodules, but the detection was limited to ammonium and some of the more abundant amino acids.

The fully decoupled *in vivo* 15N NMR spectra did not include a signal from the amino group of asparagine, which may reflect that the *in vivo* NOE factor of the asparagine amino group is of an unfavourable size, since LC-MS results revealed that asparagine was indeed 15N-labelled at the amide as well as the amino nitrogen. LC-MS analyses showed that GABA was 15N-labelled in considerable amounts, but 15N GABA was NMR invisible in living pea root nodules. This may be due to immobilisation of GABA in root nodules.

A substantial pool of free ammonium was observed in the metabolically active, intact symbiosis by *in vivo* 15N NMR. The *in vivo* 15N NMR spectra further envisaged that glutamine was more highly 15N-labelled at the amino nitrogen than at the amide nitrogen. Both of these findings represent information that has not been made available by other techniques used to study nitrogen assimilation in legume nodules. The intracellular environment led to very unusual *in vivo* 15N ammonium chemical shifts, whereas no changes in the expected *in vivo* chemical shifts of amino acids were observed. This may suggest that ammonium and amino acids reside in different compartments: ammonium residing in the bacteroids, and 15N-labelled glutamine/glutamate and asparagine located in the plant cytoplasm.
Acknowledgements

Ina B. Hansen is thanked for skilled technical assistance and Per Ambus and Merete Brink Jensen are thanked for the mass spectrometric determinations of total \(^{15}\)N incorporation in nodules. We are grateful to Christian Schou for assistance with developing and performing the LC-MS analyses. Finally, Dr. Ernst Christensen, Copenhagen University Hospital, is acknowledged for the analyses of soluble amino acid pools.

Literature cited

Cooper RA, Lichter RL, Roberts JD (1973) pH-dependent nuclear magnetic resonance spectra of \(^{15}\)N-enriched glycine. Line shape and relaxation studies. J.Am.Chem.Soc. 95:3724-3729

Fox GG, Ratcliffe RG, Robinson SA, Stewart GR (1995) Evidence for deamination by glutamate
dehydrogenase in higher plants: Commentary. Can.J.Bot. 73:1112-1115

Haran N, Kahana ZE, Lapidot A (1983) In vivo 15N NMR studies of regulation of nitrogen assimilation and
amino acid production by Brevibacterium lactoferrmentum. J.Biol.Chem. 258:12929-12933

effect of amino and amide nitrogens. J.Am.Chem.Soc. 97:5945-5946

mycorrhizal fungus Glomus intraradices. New Phytol. 133:705-712

Joy RW, McIntyre DD, Vogel HJ, Thorpe TA (1996) Stage-specific nitrogen metabolism in developing
carrot somatic embryos. Physiol.Plant. 97:149-159

Joy RW, Vogel HJ, Thorpe TA (1997) Inorganic nitrogen metabolism in embryogenic white spruce cultures:

glutamine synthetase from Sphagnum fallax. Physiol.Plant. 101:86-92

Kanamori K, Legerton TL, Weiss RL, Roberts JD (1982a) Effect of the nitrogen source on glutamine and
alanine biosynthesis in Neurospora crassa. An in vivo 15N nuclear magnetic resonance study.
J.Biol.Chem. 257:14168-14172

carbons in Neurospora crassa as a probe of intracellular environment. Biochem. 21:4916-4920

NMR spectroscopic investigation of nitrogen deprived cell suspensions of the green alga Chlorella fusca.
Arch.Microbiol. 151:434-438

Larher F, Goas G, le Rudulier D, Gerard J, Hamelin J (1983) Bound 4-aminobutyric acid in root nodules of
Medicago sativa and other nitrogen fixing plants. Plant Science Lett. 29:315-326

272

Martin F (1985) 15N-NMR studies of nitrogen assimilation and amino acid biosynthesis in the

Martin F, Cote R, Canet D (1994) NH$_4^+$ assimilation in the ectomycorrhizal basidiomycete Laccaria bicolor
(Maire) Orton, a 15N-NMR study. New Phytol. 128:479-485

Mitsumori F, Yoneyama T, Ito O (1985) Phosphorus-31 nuclear magnetic resonance studies on higher plant
tissue. Plant Sci. 38:87-92

Monselise EB-I, Kost D (1993) Different ammonium-ion uptake, metabolism and detoxification efficiencies
in two Lemnaeae. A 15N-nuclear magnetic resonance study. Planta 189:167-173

Legends

Fig. 1. Schematic drawing of the perfusion system used for studying nitrogen fixation and assimilation in living pea root nodules by 15N NMR spectroscopy. Approximately 1.5 g FW root nodules could be contained within the NMR tube, and about 1 g FW was within the volume of the NMR detection coil. The symbol \odot indicates a three-way stop-cock.

Fig. 2. *In vivo* 31P NMR spectra of pea root nodules showing the unchanged metabolic status during an eight-hour incubation period. The 30 min spectra were recorded (A) before the addition of 15N$_2$ and (B) at the end of the treatment period after acquisition of the *in vivo* 15N spectra shown in Fig. 5. The numbered peaks may be assigned to: 1, several phosphomonoesters including glucose 6-phosphate (1a) and phosphocholine (1c); 2, cytoplasmic P; 3, vacuolar P; 4, unidentified compound; 5, 6 and 9, the γ, α- and β- phosphates of nucleoside triphosphate; 7, UDP-glucose and NAD(P)(H); and 8) UDP-glucose. Chemical shifts are quoted relative to 85% H$_3$PO$_4$ at 0 ppm.

Fig. 3. 15N NMR spectra from (A) dead 15N-enriched pea root nodules immersed in buffer (pH 6), (B) extract thereof (pH 5.8) and (C) metabolically active, 15N$_2$ fixing *Lunus* nodules. The numbered peaks may be assigned to: 1, asparagine amide-N; 2, alanine; 3, glutamine/glutamate amino-N; 4, asparagine amino-N; 5, aspartate; 6, GABA; 7, ammonium. The signal at 55.8 ppm is from the reference compound 15N-urea.

Fig. 4. Amino acid and ammonium NOE factors at different pH values. (A) α-Amino groups and (B) amide groups, ammonium and GABA. NOE factors were determined as the ratio between signal intensities in spectra with full decoupling and spectra with inverse gated decoupling.

Fig. 5. *In vivo* 15N NMR spectra showing a time course of nitrogen assimilation in 15N$_2$ fixing pea root nodules. The numbered peaks may be assigned to: 1, asparagine amide-N; 3, glutamine/glutamate amino-N; 7, ammonium. The signal at 55.8 ppm is from the reference compound 15N-urea.

Fig. 6. Concentrations of soluble amino acids in freshly harvested pea root nodules and nodules that have been subjected to perfusion for eight hours. Error bars denote standard errors (n=3).

Fig. 7. Concentrations of unlabelled, 15N-amino-labelled and 15N-amide-labelled soluble amino acids in pea root nodules after an eight-hour incubation period with 15N$_2$ in the perfusion system and acquisition of the *in vivo* 15N NMR spectra shown in Fig. 5.
Fig. 1

Expansion syringes

\[{^{15}\text{N}_2} \]

\[\text{O}_2 \]

Gas phase

Liquid phase

\[{^{15}\text{N}_2} \]

\[\text{O}_2 \]

Manometer

Peristaltic pump

NMR tube with root nodules
Fig. 3
Fig. 4

A

![Graph A](image)

- Ammonium
- Asn amide
- Gln amide
- GABA

B

![Graph B](image)

- Asn amino
- Gln amino
- Asp
- Glu
Fig. 5

0-1 h

1-3 h

3-5 h

5-7 h

ppm
Fig. 6

Freshly harvested nodules
Nodules after 8 h perfusion

Concentration (μmol g⁻¹ FW)

Asn Gaba Gln Ala Asp Glu
Fig. 7

![Bar chart showing concentration of different amino acids](image)

- **15N amide**
- **15N amino**
- **Unlabelled**

Concentration (μmol g⁻¹ FW)

- Asn
- Gaba
- Gln
- Ala
- Asp
- Glu

134
Table 1: Literature values of \textit{in vivo} 15N chemical shifts of amino acids and ammonium in plants, fungi and bacteria

<table>
<thead>
<tr>
<th>Biological system (Reference)</th>
<th>Gln amide</th>
<th>Asn amide</th>
<th>Ala</th>
<th>Gln amino</th>
<th>Glu</th>
<th>Asn amino</th>
<th>Asp</th>
<th>GABA</th>
<th>NH$_3^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brevibacterium lactofermentum* (Haran et al., 1983)</td>
<td>90.8</td>
<td>88.1</td>
<td>21.6</td>
<td>19.5</td>
<td>19.5</td>
<td>16.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carrot cells* (Fox et al., 1992)</td>
<td>91.2</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corynebacterium glutamicum* (Tesch et al., 1999)</td>
<td>91</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duckweed (Lemnaceae)* (Monselise & Kosi, 1993)</td>
<td>90.8</td>
<td>90.5</td>
<td>22.0</td>
<td>19.9</td>
<td>19.3</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Ectomycorrhizal mycelium* (Martin et al., 1994)</td>
<td>90.4</td>
<td>21.9</td>
<td>19.7</td>
<td>19.6</td>
<td></td>
<td></td>
<td>11.6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Green algae (Chlorella fusca)* (Kuesel et al., 1989)</td>
<td>92.5</td>
<td>23.3</td>
<td>21.2</td>
<td>20.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maize roots* (Amanzio & Santos, 1992)</td>
<td>91.7</td>
<td>99.0*</td>
<td>22.3</td>
<td>20.0</td>
<td>19.8</td>
<td>18.6</td>
<td>12.0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Neurospora crassa mycelium* (Kanamori et al., 1982a)</td>
<td>90.6</td>
<td>22.6</td>
<td>20.35</td>
<td>20.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neurospora crassa mycelium* (Legerton et al., 1981)</td>
<td>92.2</td>
<td>22.3</td>
<td>20.3</td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norway spruce seedlings roots and stems* (Aarnes et al., 1995)</td>
<td>91.1</td>
<td>22.0</td>
<td>19.8</td>
<td></td>
<td></td>
<td></td>
<td>10.6</td>
<td>-0.1</td>
<td></td>
</tr>
</tbody>
</table>

All spectra were collected either without D$_2$O or with D$_2$O contained in a capillary.

* Chemical shifts were originally reported relative to NO$_3$ at 0 ppm, but have been converted to a scale that puts urea at 55.8 ppm (and NO$_3$ at 354.6 ppm).

* Chemical shifts were reported relative to intracellular ammonium at 0 ppm.

* This value was reported by the authors, but the published \textit{in vivo} 15N NMR spectra showed a signal from the asparagine amide group at approximately 91.4 ppm.

135
Table 2. Assignments of amino acid and ammonium 15N chemical shifts

<table>
<thead>
<tr>
<th></th>
<th>$%$ D$_2$O</th>
<th>Gln amide</th>
<th>Asn amide</th>
<th>Ala amino</th>
<th>Glu amino</th>
<th>Asp amino</th>
<th>Asp Glu</th>
<th>GABA</th>
<th>NH$_3^*$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentic 15N standards (pH 7)</td>
<td>10</td>
<td>90.86</td>
<td>90.51</td>
<td>19.85</td>
<td>19.65</td>
<td>18.90</td>
<td>18.34</td>
<td>11.75</td>
<td>-0.26</td>
</tr>
<tr>
<td>Dead 15N-enriched pea nodules immersed in buffer (pH 6)</td>
<td>20</td>
<td>90.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>18.8</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>Extract from dead nodules (pH 5.8)</td>
<td>4</td>
<td>90.48</td>
<td>22.06</td>
<td></td>
<td></td>
<td></td>
<td>19.07</td>
<td>11.79</td>
<td>-0.14</td>
</tr>
<tr>
<td>Metabolically active, 15N$_2$ fixing pea nodules</td>
<td>10</td>
<td>90.7</td>
<td></td>
<td>19.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-4.2</td>
</tr>
<tr>
<td>Metabolically active, 15N$_2$ fixing Lotus nodules</td>
<td>10</td>
<td>90.7</td>
<td></td>
<td>19.6</td>
<td>18.4</td>
<td></td>
<td>11.3</td>
<td></td>
<td>-4.1</td>
</tr>
</tbody>
</table>
Table 3. \(^{15}\)N-labelling of soluble amino acids in pea root nodules after eight hours incubation with \(^{15}\)N\(_2\) in the perfusion system

<table>
<thead>
<tr>
<th></th>
<th>Total amino acid conc. ((\mu)mol/g FW)</th>
<th>Atom% excess (^{15})N (APE)</th>
<th>Position of mono (^{15})N-label (%)</th>
<th>Total (^{15})N concentration ((\mu)mol/g FW)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ± S.E.</td>
<td>Mean ± S.E. n</td>
<td>Mean ± S.E. n</td>
<td>Mean ± S.E. n</td>
</tr>
<tr>
<td>Asn</td>
<td>16.91 ± 1.65</td>
<td>mono (^{15})N 8.17 ± 0.27</td>
<td>amino 73 ± 6</td>
<td>amino 1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>double (^{15})N 1.91 ± 0.12</td>
<td>amide 27 ± 6</td>
<td>amide 0.70</td>
</tr>
<tr>
<td>Gaba</td>
<td>5.72 ± 0.67</td>
<td>33.39 ± 2</td>
<td>1.91</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>1.55 ± 0.20</td>
<td>mono (^{15})N 15.74 ± 2.04</td>
<td>amino 98 ± 3</td>
<td>amino 0.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>double (^{15})N 6.59 ± 1.10</td>
<td>amide 2 ± 2</td>
<td>amide 0.11</td>
</tr>
<tr>
<td>Ala</td>
<td>1.24 ± 0.12</td>
<td>25.02 ± 0.40</td>
<td>0.31</td>
<td></td>
</tr>
<tr>
<td>Asp</td>
<td>0.76 ± 0.58</td>
<td>14.22 ± 1.27</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Glu</td>
<td>0.35 ± 0.08</td>
<td>27.86 ± 0.34</td>
<td>0.10</td>
<td></td>
</tr>
</tbody>
</table>

* n = 3

* The values given for amino and amide group total \(^{15}\)N concentration include both mono and double labelled molecules.
Extraction and GC-MS analysis of amino acids from root nodules

All procedures were performed as cold as possible - i.e. on liquid nitrogen or ice.

Extraction (modified after Johansen et al. 1996)

- Frozen nodules (approx. 0.4 g FW) were homogenised in a mortar on liquid nitrogen, and 40 μL 10 mM sarcosin were added as an internal standard.
- The homogenate was transferred to a tube and kept on ice, and amino acids were extracted by three subsequent additions of 4 mL MeOH/CHCl₃/H₂O (12:5:3, v/v/v), vortex mixing for 1 min and centrifugation (2000 g, 5 min, 5 °C).

Purification (modified after Johansen et al. 1996)

- The supernatants from the three extractions were pooled and CHCl₃ (14 mL) and water (3 mL) was added. The tube was vortexed and centrifuged (2000 g, 2 min, 5 °C) to facilitate phase separation.
- The chloroform phase was discarded.
- The methanol-water phase containing the amino acids was evaporated in a Speed-Vac concentrator, and the amino acids were finally taken up in 1 mL of 0.1 M HCl and kept at -80 °C until further analysis.

Derivatisation for GC-MS (modified after Fortier et al. 1986)

- 100 μl of the purified extract was transferred to a microvial with conical shaped bottom and evaporated again in a SpeedVac.
- Immediately afterwards derivatisation was performed by addition of 15 μl MTBSTFA (N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide), 15 μl pyridine and 1 μl triethylamin, and incubating the vials for 30 min at 75 °C.

GC-MS analysis

- The GC-MS analysis were performed on a Varian Saturn2 gas chromatograph ion trap mass spectrometer equipped with a capillary column (DB-5, length 25 m, inner diameter 0.32 mm, 0.25 μm film). Helium was used as the carrier gas (50 mL min⁻¹).
- 1 μl of sample was injected and split in a ratio of 1:50. The injector, transfer line and manifold temperatures were 250, 280 and 200 °C, respectively. The oven temperature was initially held at 60 °C for 5 min and then linearly increased at 10 °C min⁻¹ to 290 °C, where it remained for 5 min.
- Separated amino acid derivatives were ionised by electron impact. Mass spectra were recorded in the interval 50-550 m/z. Amino acids were identified from retention times and mass spectra by comparison with authentic standards.
- ¹⁵N-enrichment was calculated from the distribution of the M-57 and M-57+1 ion with a correction for the natural abundance of these ions:

\[
¹⁵N \text{atom\% excess} = 100\% \times \frac{\text{Obs}_{M-57} - \text{NA}_{M-57+1}}{\text{NA}_{M-57} + \text{Obs}_{M-57+1} - \text{NA}_{M-57+1}}
\]

where Obs denotes the observed intensity of the given ion in the mass spectrum and NA denotes the natural abundance.

* In the beginning of the project I included a purification of the extracts on a cation exchange column according to Bengtson and Oatham (1979), but this was later left out, because I experienced that too much material was lost during this step.