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Abstract

The thesisis an investigationof non-equilibriumphenonema.The methodim-
ployedis Molecular Dynamicswhich in its simpleform is a numericalsolution
of theclassicakequationsf motion. Two systemsarestudiedby this simulational
method.

Thefirst systemis anoscillatingchemicalreactioncompetingwith a phasesepa-
ration process.The oscillatingchemicalreactionis keptfar from equilibrium by

driving it enepetically. It is shavn thatthe MolecularDynamicsmethodis able

to reproducethe macroscopigghenomenaMoreover, it is shovn thatthe phase
separatiomprocescanmodify the underlyingchemicalkineticsof thereaction.

The secondsystemis a dissipatve gascoupledto a numberof thermostatingle-
vices. The dissipatve gasis a modelof a granularmedium,andwork presented
in thethesiscastlight on the patternformationin dissipatve gases.






Resung

Afhandlingererenundersggelsafikke-ligevaegtsfeenomenddenbrugtemetode
er MolecularDynamicssomi densimplesteformuleringer en numerisklgsning
af deklassisle bevaegelsesligningeifo systemeer blevetundersggvedhjeelpaf

dennesimuleringsmetode.

Det fgrstesystemer en oscillerendereaktioni konkurrencemed en faseadskil-
lelsesproces.Den oscillerendereaktioner holdt langt fra ligeveegtved at drive

denenegetisk. Det visesat MolecularDynamicser i standtil atreproducerale

makroslopiske feenomenerEndviderevisesdet, at faseadskillelsesprocessiem

g&endraeaktionensinderliggenddinetik.

Det andetsystemer endissipaty gaskoblettil enraekle termostaterendanord-
ninget Den dissipatve gaser en model af et granuleertmedium, og arbejdet
preesenteratafhandlingerkasterlys pa mgnsterdannelsesprocesselissipatve
gasser






Preface

This thesisis the resultof my graduatework carriedout at Departmenbf Life

ScienceandChemistry RoskildeUniversity duringthe period Decemberl994—
Novemberl997.Thethesisis submittedasa partialfulfilment of aDanishPh.D.-
degree.

The topic of the thesisis computationaktudiesof non-equilibriumstatesusing
MolecularDynamics.More preciselyl have beenengagedn two projects:

e Theinfluenceof phaseseparatioron anoscillatingchemicalreaction.

e Temperature-contraif granulamedia- in thisthesismodelledasparticles
undegoinginelasticcollisions

The two projectsare very differentin naturebut the numericaltechniqueis the
same.

The intendedreaderis in principle mei.e., | have written a thesisthat would
have foundvaluablethreeyearsagowhenl beganmy Ph.D.studies. A numberof
paperss enclosedasappendicesAn outlineof the chaptersn thethesisis:

Chapter 1 is meantasa justification of the useof computersimulationsin the
physicalsciences.

Chapter 2 introducesothclassicalndstatisticalmechanics.
Chapter 3 discussephasdransitionsandthe emphasiss on phaseseparation.

Chapter 4 is aboutchemicalkinetics. The chapterintroducesthe topicswhich
areappliedto the simulationalresultspresentedn chapter7.
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Vi

Chapter 5 dealswith the granularstateof matterwhich is typically modelled
as particlesundegoing inelasticcollisions. The basicphenomenologyf
granulamediais introduced.

Chapter 6 discusseshe numericaltechniquesvhich have beenappliedin order
to obtaintheresultspresentedn chapter7 andchapter8.

Chapter 7 presentgheresultsfrom simulationsof a simpleoscillatingchemical
reaction.

Chapter 8 discussesiow to control the temperatureof mary-particle systems
andthe phenomenologwssociatedvith particlesundegoinginelasticcol-
lisionscoupledto variousthermostats.

Appendix A is apaperabouttherole of computerin modernchemistry[24].

Appendix B is acontribtution to the 9th annualworkshopof simulationalphysics
atUniversityof Geogia[27].

Appendix C is apaperon phaseseparatiorandchemicalreactiong26].

Appendix D is apaperonthethermostatingf dissipatve gaseg25].
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CHAPTER 1

Computationabcience

The presentthesisis aboutcomputersimulationsof statistical-mechanicaty-
stems. In this chapterwe will take a closerlook at the branchof sciencecalled
computationalscience The chapteris not restrictedto chemistry andwe have
tried to write it in generatermsbut mostof the exampleswill comefrom chemi-
stry sincethe authoris mostfamiliar with chemistry

1.1 The newbranch

Science- hereunderstoodasthe physicalsciencesncluding physicsandchemi-
stry - hastraditionally beendividedinto two branche®r legs: theoryandexperi-
ment. The experimentis nowadaysseenasthe notionthatmakese.g., chemistry
scientific. The experimentwasintroducedn scienceduringthe scientificrevolu-
tion 3—4 centuriesago[84]. Beforethen,sciencevasmainly theoretical.

Theintroductionof the computelinto sciencehasstarteda new revolution: anewv
branchof scienceis emeging, namelycomputationakcience.No precisedefi-
nition of computationakcienceexists, andthe questioncaneasilytrigger a pas-
sionatedebateamongcomputationaécientists recentlyHocquetasled whether
computationathemistrywasrestrictedto molecularmodelling,andhis question
starteda long and interestingdebate. Accordingto our personaltaste,we will
adoptthedefinitionby Golubetal. [33]:

The debate was running on the Internet through the “Computational Chemi-
stry List” (a mailing list), and an archve of the contributions can be found at
http://ccl.osc. edu/ccl/archived nmessages. ht n

1



2 Computational Science

Computationalscienceis the set of tools, techniquesand theories
usedto solve problemsin scienceandengineeringyy a computer

Oneof thefirst clearexamplesof computationainvestigationof physicalproper
tiesis the studyby Metropoliset al. [56]. In 1953 Metropoliset al. publisheda
paperwhich introducedthe Monte Carlo (MC) method. Shortly thereafterAlder
et al. [1] introducedthe Molecular Dynamics(MD) method. Adler et al. and
Metropoliset al. wereinterestedn the equationof stateand phasetransitionsof
simpleliquids.

1.2 Theoretical or experimental?

Sciencehastraditionally beendivided into two branchestheoreticaland expe-
rimental. One can put forward the question,whethercomputationalscienceis
experimentalor theoretical.

We caneasilyanswetthequestion:Computationasciencas neitherexperimental
nor theoretical,but it doeshave notion in commonwith both. Computational
sciencerequiressoftware which is producedby programming. Programmings

the processwhereideasareformalisedandwritten asa computerprogram. The

notationusedin programmings not formulceasin the theoreticalapproachbut

a programminganguage Still, the notationis unambiguoussthe mathematical
notation,andthis aspeciof computationakcienceis closeto theoreticalscience.
However, the computercanberegardedasaninstrumentandthencomputational
sciencesuddenlyhasan experimentalorientation[60]. Rapapor{71] haspro-

argumentdor the term“numericalexperiment”. Moreover, Rapaportargues,the

distinctionbetweercomputationamethodsandtheoreticabpproachess thecost;

theorycanbedonewith a pieceof paperandapencil,while computationsequire
aninvestmenin hardware.

Traditionally, sciencehastried to constructtheoriesthat explain experimentsto

someextendor to conductexperimentghatcanverify a giventheory Figurel.l

shavstherole of computationakcience.Theoriesareusedto obtainapproxima-
tionsandgenerakxplanationf theexperimentablata. Thecomputessimulations
areinsteadusedo investigatehemodelof theexperimentin amorenavefashion
thanit is analyticallypossible.

Let us - throughan example- explain the ideasformulatedabove. Considera
simpleliquid; it could be methaneCH,. We can,by experimentaimeansmea-
surea given physicalquantity; for instancethe pressureat a given temperature
anddensity Methaneis a simpleliquid, andwe will expectthatit behaesasa
classical-mechanicaystemi.e., we will expectthatthe Hamiltonianequations
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Figure 1.1: The relationshipbetweenexperiment,computersimulationand theoryin modern
physicalscience From[24] andinspiredby [2].

of motion are applicable,andthe interactionpotentialis the Lennard-Jonepo-

tential, seee.g., Hansenet al. [38]. It is possiblefrom the interactionpotential
to evaluatethe next few virial coeficients,andusetheseto obtainapproximatve

valuesof the pressureasfunction of temperatur@anddensity Thisis thetheore-
tical or analyticalapproach.The brute-forcemethod(or the naive method)is to

numericallysolve the equationsof motion and calculatethe pressureat a given
densityandtemperature.This approachs exactin the sensethat the only two

approximationsisedarethe applicationof classicaimechanicandthe numerical
scheme/theomputemprogram.All threeapproacheprovide uswith asetof data,
which cannow be comparedandthe modelandthe approximationin the theo-
retical derivation canbe verified or falsifiedby comparingwith the experimental
data.

1.3 Validation

In sciencein generalthe conceptof validationcoversthe procesof comparing
thereal-world factsandthe predictionsof the model,andthenconcludewhether
themodelis reliableor not. Theuseof computerso make the predictionsmakes
thevalidationprocessa bit morecomplicated.



4 Computational Science

The complicationof the validationprocesscomesfrom the natureof the solution
stratgy: the predictionsby the model are obtainedby the use of a computer
program.Typically, thecomputemprogramis written by the scientisthimself. The
first stepin makingreliable predictionsis to justify that the computerprogram
workscorrectly

The verificationof computemprogramsis not a trivial matter andscientific pro-

gramsmight be even harderto verify. A typical verificationof a computerpro-

gramis to testthe program. The test procedureis basedon the ideathat the

programmapsan input spaceon an outputspace.For example,a userworking

with a databasat the library, the querieshe types(the nameof the author etc)

is theinput spaceandtherecordshatthe databas@rogramprintsarethe output.
Most computerprogramsare deterministici.e., the mappingbetweenthe input

andthe outputis a deterministicnapping(the mappingis mathematicallyspeak-
ing surjectve andnotinvertible). Thetestingprocedurausedis thefollowing: the
programmeiconstructdoy handthe outputassociatedvith a giveninput (this is

calleda testexample). If the programreturnsthe sameoutputasthe program-
mer deducedthe programis lesslikely to containerrors. The art of testingis

thento constructestexampleswhich areasorthogonakspossible sothetesting
periodwill be asshortaspossible.This testprocedures discussedt lengthby

Myers[61].

Now the constructionof testexamplesis not assimple asoutlinedabove. The
reasonwhy we write computemprogramdor scientificpurposess thatwe cannot
solve the problemby handi.e., maptheinput spaceontothe outputspace.Three
proceduregsanthenbe persuited:

e Thereproductiorof dataobtainedfrom othersourcesln somefields,a set
of testexamplesmight exist.

e Oftenin somelimiting casesthe solutioncanbe found analytically This
canbe usedto constructtestexamples. For example,we caneasily solve
2 linear equationswith 2 unknowvn variables andthis canbe usedto testa
generalinearequationsolver.

e One can monitor somequantity which value is known from someexact
analysisof the problem.

Thelast point is usefulwhenit comesto statistical-mechanicaimulations. As
an exampleconsidera systemof N particlesin a microcanonicaensemble We
know thatthetotal enepgy Fiot, is aconseredquantityi.e., Etot mustbeconstant.
Onecanprint Eiot asfunction of time, andif it is constantwithin the precision
of thecomputer)we have increasedhe degreeof reliability of the program.



1.4 Simulational or computational scientists 5

1.4 Simulational or computational scientists

Sofarwe have discussed@¢omputationascienceput oneseesadivision of thesci-
entific communityin the way, its memberausecomputingequipment.Scientists
doingsimulationsor calculationsanbedividedinto two types.This classification
is discussedby Mouritsen[60]. Thetypesare:

e The type that happily spendhours(or even weeksor months)on writing
computemprograms Designingandimplementingthe computermprogramis
moresatishctoryfor themthanthe actualscientific problem. We will call
themcomputationabkcientists

e Thesecondypeis thescientistwho is a userof a simulationprogram.He
hasnever written a simulation programbut the computingsystem(hard-
wareandsoftware)is his majorscientificequipmentThistypeis calledthe
simulationalscientist

The classificationabove is of courseextreme,andmostscientistswho usecom-
puters,are somavherein between. The two typeshave advantagesand disad-
vantages.The computationakcientistknows everythingaboutthe computational
method- its strongandweak points. But he works slowly, in the sensethat he
doesnot solve mary problemsbut developsnen computationaimethods. The
simulationalscientist,onthe otherhand,solvesmary scientificproblemsput has
to rely on computemprogramswritten by others.He tendsto regardthe computer
(hardwareandsoftware)asa blackbox. Neitherof two typesarethe best,but it
seemdo us that the populationof simulationalscientistsis growing fasterthan
the populationof computationabkcientists.The desktopcomputershave become
fastenoughto solve large problems,andmary problemscanbe solved by using
commerciakoftwarepackage®.g., quantumchemicalproblems.

Even though commercialsoftware packagescan solve mary of the (standard)
problemsn sciencewe stronglybelieve thatthe bestscientificprogramsarewrit-
ten by computationabkcientists.A persontrainedin sciencewill, in general,be
betterto solve computationaproblemsrelatedto sciencethanthe averagepro-
grammer

1.5 Concluding remarks

The applicationof computergo scientificproblemscreateshew problems.But it
alsointroducesew solutionmethods.Problemswhich wereregardedasimpos-
sibleto solve, cannow be examinednumerically We regardthis developmentas
very exciting.
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Moreover, computersimulationsmay also save us from mary problems,andbe
able to createshort-cuts. In the pharmaceuticaindustry computersimulation
techniquescan be usedto “test” compoundsit is often referredto asrational
drug design Theexcellentbook by Grantet al. [35] shovs mary of the modern
applicationof computerin chemistry andwe stronglybelieve thatcomputerawill
helpbothlife sciencesandphysicalsciencesn solvingcomple problemsin the
future.



CHAPTER 2

Mechanics

In this chaptemwe will outlineclassicaimechanicsilt is notatutorialandthe pur-
poseis to enablethereaderto understandater chaptersClassicaimechanicgan
without problemsbe appliedto mary systems.In this thesisclassicaimechanics
is usedto describemicroscopicdetailsof simpleliquids. This approximationis
valid at high temperaturesHigh temperaturearenot high in the everydaymea-
ning of the word e.g., classicalmechanicss suitableto describemethangCH,)
at90K.

Moreover, we will discussstatisticalmechanicsvhich is the underlyingbasisof
the thesis. Briefly stated,statisticalmechanicdinks the microscopicworld (a
mary-body problem)with the macroscopiavorld (thermodynamics).

2.1 Classicalmechanics

Classicalmechanicss oneof the major physicaltheories.The mostwell-known
textbook is probablythe textbook by Goldstein[32], andwe will only cite this
textbook.

The mostimportantphysicallaw in mechanicss Newton’s secondaw. It relates
theacceleratiorof abodyto theforce actingonthebody. More preciselyit is

F =ma (2.1)
whereF is theforce,a theaccelerationandm is themassof thebody. Sincethe

7



8 Mechanics

accelerations the secondderivative of the positionr, we caneasilywrite down
theequationf motion. For an N-body systemthe equationf motionare

dI‘i

— v, 2.2
" v (2.23)
dv; F;

t = L 2.2b

wherev; is thevelocity of theith body.

Theequationof motioncanbewrittenin mary differentways. The Hamiltonian
formulationis very useful,andwhich is equialentto theformulationabove. We
begin by writing down a function called the Hamiltonian,H. The equationsof
motionis thengivenby

dri _ 87—[
il p: (2.3a)
@ - o (2.3b)

wherep; is themomentunof theith body The partialdifferentiationon theright
handside shouldbe interpretedas a compactnotationof partial differentiation
with respecto thecomponentn eachdirection.

2.1.1 Basicproperties

The HamiltonianH, is composeddf two termswhich dependenbn either the
positionsor themomenta.e.,

Thefirstterm K, canbeshowvn to bethekineticenegy Eij, i.€.,

N

1 1
Exn=K = = —|pil? 2.5
n 5 Z i (2.5)
The secondermis the potentialenegy, i.e., V = Epot. The Hamiltonianis, in
otherwords, the total enegy, andLiouville’s theoremstatesthat for anisolated

systemheHamiltonianis constantvhich impliesthatthetotal enegy is constant.
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The equationof motionaretime reversible. This meanghatthereis no arrow of
time; thefutureandthepastareequalin the sensehatachangeof signtransforms
thefutureinto the pastandviceversa

2.1.2 Theforceterm

Theforce, F;, in equation(2.2) representshe interactionbetweerthe NV bodies.
For theith body, we will assumeéhattheforcecanbewrittenas

i#j

wheref;; is theforcebetweerbody: and;. For thesystemsstudiedin the present
thesis, the force term f;; will only dependon the separatiorof the bodiesi.e.,
onr; — r; only. Theforceis antisymmetriovhenindexesareinterchanged.e.,
fi; = -1

Theforcef;;, is relatedto the potentialu, as

fij = =Vu(ri) (2.7)

Thepotentialis themodelof the systemjt coversthedetailson how thebodiesor
particlesinteract.A celebrategotentialis the Lennard-Jonepotentialwhichis

w=se[(0)"- ()] =

wherethe parameter is the characteristidengthscaleande is the enegy scale.
The Lennard-Jonegpotentialis often usedwhensimpleliquids (e.g., agon and
methane)are simulated. The parametersre determinecdby the substanceinder
investigation.

2.2 Statistical mechanics

Statisticalmechanicss aformal (mathematicallyigorous)procedurevhich con-
nectsthe microscopiowvorld (atoms,molecules)ith themacroscopiaevorld. The
proceduraes statisticalin naturei.e., it canbeusedfor computingaveragesnstead
of detaileddynamics.
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For example,a glassof water(0.2 litre) containsl1.1mol or 6.7 - 10?* molecules.
Eachwatermoleculehas18 degreesof freedom,sayinga glassof waterhas2 x
10% degreesof freedom. Juststoringa snapshotall degreesof freedomat one
pointin time) would require3.6 - 10'?GB assumingonly single precision. If a
harddiskis 10~®m thick, andwe use3.6GB disks, the stackof harddiskswould
be 10'“m tall. This shouldbe comparedo the distancebetweenthe earthand
the sunwhichis 1.5 - 10''m. This exampleclearly showvs thatknowledgeof the
detaileddynamicsof thewatermoleculesn a glassis impossible andit senesas
the motivationfor introducingstatisticalmechanicsn orderto obtainknowledge
of mary-bodysystems.

Sincethischapteiis not intendedo beacompletgutorial of statisticaimechanics,
let methereforementiontwo textbooks,| have enjoyedreading:

e Huang[43] givesaneasyintroduction.Thetext is notrigorousandit senes
asagentleintroductionof thekey ideas.The bookmustbe consideredisa
“classical’text in thesensdhatit hasa physicalorigin.

e Andersen[3] is a “modern” text. “Modern” refersto the way the topic
is approached Andersenusesprobability theory and information theory
and deducedirst a generalstatisticalmechanicsvhich he later appliesto
physicalsystems.

2.2.1 Ensembles

An ensemblecandefinedin mary differentways, andwe will usea pragmatic
definition.

We defineanensemblexsa mary-bodysystemwherea numberof thermodynam-
ical variablesarefixed. Two ensemblesireof interestin this thesis;the microca-

nonicalandthe canonicalensemble An ensemblalefinesthe macroscopicstate

of thesystemandthe dynamicss definedby a Hamiltonian.

Themicrocanonicaensembles an NV E ensembila.e., it is a systemwherethe
numberof particlesN, the volumeV andthetotal enegy E areconstant.The
Hamiltonianwhich describeghe microcanonicaensembleas the Hamiltonianin
equation(2.4).

The canonicalkensemblas in mary aspectsnoreinteresting.Thethreevariables
which areconstantarethe numberof particlesthe volume,andthetemperature.
In section2.4we will discusghe Hamiltonianfor this ensemble.
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2.2.2 The partition function

Oneof the key conceptin statisticalmechanicgs the partition function. Let us
assumehat? is theHamiltonianof amary-bodysystem.The canonicapartition
function@y, for an N-particlesystenis thengivenas

1
QN(T,V) = N / exp(—BH)dr" dp” (2.9)
whereT is the temperature)’ the volume, h is a normalisationconstant,and
B is 1/kgT. Theintegrationis over the positionsand momenteof all particles.
We have 6N integralswhich in mostcasess impossibleto solve analytically In
section2.3we will considera systemwhich canbetreatedanalytically

2.2.3 Thermodynamicsand fluctuations

Theaim of statisticaimechanicss to calculatehermodynamigropertiesrom the
knowledgeof the microscopicdetailsof a mary-body system.Onesimplerela-
tion connectghe macroscopiavorld with its microscopiadetails. The connection
relatesthe (Helmholtz)free enegy A, andthe (canonical)partition function @
as

A= —kpTlogQn(T,V) (2.10)

In principleall thermodynamicajuantitiescantrivially bederivedfrom thispoint.
In reality, the partition function is only possibleto computeexactly for a few
examples,andcomputersimulationsarethe only possibleway of examiningthe
problemof interest. In the remainingpart of the sectionwe will look at a few
consequenceds equation(2.10)

Considettheinternalenegy, U. Fromathermodynamicgbointof view it is given
by [5]

(o)
U= (au/T) >V (2-11)

Theinternalenegy is equvalentto the total enegy for the microscopicsystem.
Thetotal enegy, Fiot, fluctuategwe arenow consideringthe systemwith fixed
temperatura.e., a closedsystem,and not anisolatedsystem)aroundthe mean
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value. Theinternalenegy is thereforethe averageof the total enegy, andsowe
have:

U= (H)=— <8log %%(T’ V)) (2.12)
Vv

Theheatcapacity(at constantvolume)is in thermodynamicslefinedas

Co = (%)V (2.13)

Looselyspeakingthe heatcapacityis a measuref the enegy requiredto heata
systemone degree. Using equation(2.10), equation(2.11),and equation(2.12)
we obtainanexpressiorfor the heatcapacity:

1

Cv = kpT?

((H?) — (H)?) (2.14)

We seethat the heatcapacityis a statisticalquantity namelythe mean-square
deviation of thetotal enegy. Theexciting pointaboutequation(2.14)is thatheat
capacitycanbecalculatedrom asystemn equilibrium- wedonothaveto usethe
experimentabrocedura.e., we do nothave to addenegy andseethetemperature
raisein orderto find the heatcapacity Equation(2.14)is a specialcaseof amore
generakheorencalledthe fluctuation-dissipatiotheorem43].

2.3 An example

In thissectionwe will considerasimplesystemWeexamineN identicalparticles
with massm. The Hamiltonianof the systemis:

1 N
=_— H 2.1
H Qm;pz (2.15)

Theequationof motionis easyto derive. They are:

dr; o

i _ P 2.1
dt m (2.163)
b _ (2.16b)

dt
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The equationf motionshav thatthe moleculesn a systemwith a Hamiltonian
given by equation(2.15) do not interact. The moleculesmove in straightlines.
The canonicalpartition function canbe evaluated. The integration over the po-
sitions givesus V¥, while the integration over momentais an integration of a
Gaussiarfunction. The partitionfunctionis:

1 grm
D) = ™ (V557) 217

TheHelmholtzfreeenegy A, links usto thethermodynamicef our systemand
we obtain

A=kgT(NlogV + g(log(%rm) — log(B3)) — log(R*N N) (2.18)

Thefreeenegy is notinterestingon its own. The pressuref the N moleculess
moreinterestingsinceit caneasilybe measuredThe pressureP is

0A
P = —(2=
(8V)T

ON logV
= kT | 2L
& < oV )T

NkgT
1%
which is the equationof stateof anideal gas. Thatis, anideal gasis a system

wheregasmoleculesdo not interact. Moreover, the ideal gasis one of the few
microscopicsystemwhich we cansolve analytically

2.4 Extendeddynamics

The Hamiltionianin equation(2.4) describeghe dynamicsin the microcanoni-
cal ensemble.In 1984 No<t [63] publishedpaperabouta Hamiltonianwhich

candescribethe dynamicsin the canonicalensemble Sincemostof our simula-
tionsreportedn this thesishave beenperformedn the canonicakensemblaising
equationof motionderivedfrom Nost’s Hamiltonian,we will discusshis Hamil-

tonian.

TheHamiltonianX is
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N 2 2
_ Z Pi by

=1

wherethetwo variabless andp, is the extensionof the simpleHamiltonian.The
ideais that the particlesare coupledto a heatbathwhich is modelledby s and
ps. Therelaxationtime of thethermostais (. The parametey is the degreeof
freedom(plusone).

The(microcanonicalpartitionfunctionassociateavith H is

Q= % / / / / §(H — E)drdpdsdp, (2.20)

whered(-) is the Dirac deltafunction. We now introducea new variable,p; as
p;/s, andwe havedp = d(p's) = s9~1dp’. Moreover, let #' be

H = iv: w + V(r)
N — 2m;s

The partitionfunctioncannow berewritten as

1 3 2
— g—1 ! _15 _ !

We canapplythefollowing propertyof the deltafunction:

5(h(s)) = %‘))

wheres, is theroot of thefunction~ and#’ is thederwvative of k. If welet h be
2

h(s) =H + ;—é + gkyT'logs — E

we find s, to be

H' +p?/2Q — E)

So = €Xp (— ngT
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andthederivativeis h'(s) = gkgT/s. Finally thedeltafunctioncanbeevaluated
to be

d(h(s)) =19 (3 — exp (—H +§;€/B21€2 — E)) gkiT (2.22)

Usingthattheintegrationof p, is theintegrationof a Gaussiariunction,we obtain

1 27Q
Q= ; kaT exp(E/kgT)QnN (2.23)

whereQ)y is

1 H' ,
Qn = ﬁ// exp (— kBT) dp'dr (2.24)
The partitionfunction @) v is the partition function of a canonicalensembleand
sincewe have Q x @)y we seethattheensembleeneratedby the Hamiltonianin
equation(2.19)is thecanonicakensemble.
The equationsof motion which generateshe dynamicsof particlescoupledto

a heatbath canbe reducedfurther Hoover [42] hasshownn that onevariableis
sufficientin orderto describethe motionof the particles.

It is importantto stressthat the instantaneousemperaturas not constant. The
instantaneoutempertured is givenas

-1 .
I ko= (2.25)

The instantaneousemperaturdluctuates but the meanvalue (©) is the equili-
briumtemperature.e., (6) =T.

This extensionof the equationf motionis oftenreferredto asthe Nose-Hoover
thermostatandin chapteré we will discussanalgorithmwhich implementshe
Nost-Hooverthermostat.






CHAPTER 3

PhaseSeparation

Simple liquids have beenstudiedby computersimulationsfor more than forty

years.Thefirst pioneeringstudiesby e.g., Metropoliset al. [56] wereconcerned
with the equationof state.But sincethe early 1960sthe focushasbeenon phase
transitions.

In this chaptemwe will review someof the basictheoriesaboutphasetransitions
with emphasion phaseseparation.We will begin the chapterby giving a few

generareferencesBinder[7] hasreviewedthekineticsof phaseseparatiorvery

pedagogicallyThe bestandmostgenerakextbookis thetextbook by Goldenfeld
[30].

3.1 Phasetransitions

Phasdransitionsarea well-known phenomenoin everydaylife e.g., themelting
of anice cube. The propertiesof phasedransitionshave beenstudiedexperimen-
tally andtheoreticallyfor morethana century An early obsenation wasthat at
somephaseransitionsthe heatcapacityis singularat the transitiontemperature.
This obsenation led Erhenfesto a classificationof phasetransitions. The clas-
sification proposedby Erhenfestis nowadayssimplified, andwe have only two
typesof phaseransitions:

e thediscontinuoudransitionwherethe heatcapacityis singular

e andthe continuoudransitionwherethe heatcapacityis a continuousunc-
tion of thetemperature

17



18 PhaseSeparation

A
g
?
g ° L
o
G
Temperature

Figure 3.1: A typical phasediagramfor a puresubstance.The lettersS, L, and G denoteone
phaseregions(solid, liquid, andgas).

The melting of ice is an exampleof a discontinuougphasetransitionwhile the
structuralchangesn alipid is typically a continuoudransition.

Let us considera puresubstance.g., carbondioxide, CO,. Giventhe pressure,
the transitiontemperaturdrom solid to liquid, is uniquely determined.The in-
formationi.e., the setof transitionpressureandtemperatureis calledthe phase
diagram For a pure substancdike carbondioxide a typical phasediagramis
sketchedn figure3.1.

Thelinesin aphasediagramis wherethe phaseransitionoccurs.Thesdinesare
calledthe coexistencdinesbecauséwo phasexisti.e., they arein equilibrium.

A coeistencdine canbe calculatedoy usingthe Clapeg/ron equationi.e.,

dP A m
Dl transg (31)
dT Atranst
whereP is thetransitionpressure]” thetemperatureAtransS.. is the changen
themolarentropy, andAtrand/y, is thechangedn themolarvolume.

The phasediagramsketchedin figure 3.1is for a puresubstancenly. If we turn
to two-componenmmixtures,we needone extra variablein orderto describethe
phaseransitionsuniquely Oftenthe mole fraction of oneof the specieds used,
andthe phasediagramis three-dimensional.

For a puresubstancehereexists onepointin the phasediagramwherethe three
phasegsolid, liquid, gas)coexist. We call this point thetriple point It is located
wherethethreecoexistenceinesmeet.
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Substance o (nm) ¢/kp (K)

He 0.2556 10.2
Ar 3.405 119.8
H, 2.959 36.7
CHy 3.817 148.2

Table 3.1: TheLennard-Joneparameterfor a numberof substancedatatakenfrom Hanseret
al. [38].

3.2 Simpleliquids

One-componerdgimpleliquids have beenstudiedexperimentallycomputationally
andtheoretically We will concentrat®ntheoreticabndcomputationafesultson
onesimpleliquid: the Lennard-Jonebquid.

The Lennard-JonegLJ) liquid canbe regardedasa family of liquidsi.e., mary
simpleliquids canbe approximatedvell usingthe Lennard-Jonepotential. The
LJ potentialis a short-ranggotentialwhich includestwo parameters:

i =1e[(2)"- (2] =

The parametet is the fundamentaknegy unit while the parameter is the fun-
damentalengthunit. Table 3.1 lists valuesfor the parametergor a numberof
simpleliquids.

Hansenret al. [39] have performedcomputersimulationsof a three-dimensional
Lennard-Jonesystemandthey have foundthatthetriple pointis p ~ 0.85¢2 and
T =~ 0.68¢/kp. Kofke [46] and Panagiotopoulo$65] have numericallystudied
theliquid-gastransition,andthis partof the phasediagramis shavn in figure 3.2.

3.3 The scalinghypothesis

In this sectionwe will briefly discussscalingin the context of phaseseparation,
for a more detaileddescriptionseeBray [10]. The physicsbehindthe scaling
hypothesiss thatonly onevariableis relevant[10,30].

If we considerafluid closeto thecritical point, we find thatthe isothermalcom-
pressibilityx; behae as
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Figure 3.2: Thephasadiagramof the purethree-dimensiondlennard-Jonesystem(temperature
versuspressurescaledsoe = 1 ando = 1). The gasphases above the curve while the liquid
phaseexistsbelow thecurve. From[46].

1 /oV
= —— R ~ _ -
r V(ap)T -1, (3.3)

wereT, is thecritical temperatureMoreover, thea similar behaiour is foundfor
theheatcapacity namely

Cy ~ [T =T (3.4)
Thescalingdescribedabove is the socalledstaticscalingsincethereis notempo-
ral dependeng A large numberof systemshasthe samevaluefor the exponents

eventhoughthe systemmight be of very differentnature. This facthasleadthe
physicistso associate@achvaluewith a universalityclass.

3.4 Phaseseparation

The basicphenomenologyf phaseseparations simple [30]. Imaginethatwe
have a mixture of two substances4 and B. At high temperaturghe two sub-
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Temperature

Mole fraction

Figure 3.3: A phasediagramfor amixture of two simpleliquids. Thesolidline is thecoexistence
line while thedashedine is thethe spinodalline.

stanceswill be miscible,andat low temperatureghey will be immiscible. The
transitionfrom miscibleto immiscibleoccursat a well-definedtemperature] .

Considera mixture of two simple liquids; figure 3.3 outlinesthe generalphase
diagram. Outsidethe solid line the two liquids are miscible,andthe line is the

coexistenceline. Betweenthe solid andthe dashedine, the systemwill phase
separatghrougha nucleationprocessand inside the dashedine we will seea

spinodaldecomposition.

3.4.1 Nucleation

As alreadymentionedphaseseparatiorthrougha nucleationoccursbetweerthe
solid lines and the dashedines in figure 3.3. Thermalfluctuationsform small
dropletsin a homogeneoughase. The free enegy changeAF, of forming a
dropletof radiusR is

(3.5)

AF — dmoR* — $meR®  in threedimensions
| 270R — meR2 in two dimensions

wheree is thefreeenepgy of thebulk ande is thesurfacefreeenegy. Thecritical
size,R., of adropletis themaximumin thefreeenegy. Whenthedropletis larger
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thanthe critical droplet,the dropletwill grow. We canfind the critical radiusby
differentiatingthe freeenegy andfind theroot. We find:

o {2{ threedimensions (3.6)

g two dimensions

3.4.2 Spinodal decomposition

Througha spinodaldecompositiorthe systemwill phaseseparatdy forming a
labyrinth structurewhich coarsen. The kinetics of the spinodaldecomposition
wasfirstinvestigatedy Cahnetal. [13], andthetheorynow goesunderthename
Cahn-Hilliard theory.

Let us definean order parameteriy, asy(r,t) = c(r,t) — ¢y wherec(r,t) is
thelocal concentrationandc;, is the equilibrium concentration Moreover, let f
denotegshefreeenegy permolecule.Thefreetotalenegy F' in avolumeV is

= /V Fdv (3.7)

In orderto evaluatethis integral, we canTaylor expandthefreeenepgy atc, (v =
0); the free enegy of a spatially homogeneousystemis f,. Moreover, f does
alsodependon Ve, VZc andhigherorderderivatives. The Taylor expansionto
firstorderin ¢, Ve andVZc is

52 0
f= f0+ZL +Z Ky 83“;2 +1 5§a¢a¢ . (3.8)
]

wherez; andz; representhe spatialvariablesand

of
L; W . (3.9a)
W _ of
Iiij - 8(82¢/8$181‘J) $=0 (39b)
2 _ 0*f
= B(00/05:)(00)01,) ., (.99

Sincewe will assumehatthemixtureis isotropic,we will have
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O % fori=j (3.10b)
" 0 otherwise
_ (')Qf .
e F2 = vy TOMi = (3.10c)
“ 0 otherwise

Thisreduceghe expansionof f to

f=fi+mVy+ Hz(vw)Q (3.11)

By applyingthedivergenceheorento equation(3.7)andinsertingequation(3.8),
we obtainthe Cahn-Hilliardfree enegy functional

Fly(r)] = / L(V) + kol (r)]dr (3.12)
where
oy o f
Y= eaveel,, T @IV,

Thefreeenengy f hasthefollowing propertiesit hasonly oneminimumabovethe
critical temperatureandit is locatedaty) = 0 i.e., above thecritical temperature,
the systemcanonly bein a homogeneoustate. Below the critical temperature,
thefree enegy hastwo minimawhich arenotlocatedat ) = 0. Thefree enegy
fo is oftenassumedo bea Landaufreeenegy nearthecritical temperature.e., a
freeenegy in theform

folv] = fo(T) + a(T)Y?* + b(T)p* + - - -

Eventhoughthe systemphaseseparatethe massis consered,which is thesame
as

Y .
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wherej is theflux definedas

oF
j=—-MV— 3.14
j Vs " (3.14)
Theparamete! is ameasuraf themobility of thespeciegsimilarto diffusion),
andd F'/§v is the functionalderivative of F' with respecto . Puttingequations
(3.12) (3.13)and(3.14)togethemve obtainthe Cahn-Hilliardequationi.e.,

o 6 fo
o= MV? (W - v%) (3.15)

Initial conditionsare the homogeneoustatei.e., a statewhere () = 0. Du-
ring the spinodaldecompositiorpatternsareformed, andthe final patternis the
equilibriumpatterni.e., phasesvhich arepurein oneof thespecies.

The Cahn-Hilliard equationcannotbe solved analytically but only numerically
In section3.5we will discusshow the Cahn-Hilliardequationcanbe extendedn
orderto includechemicalreactions.

3.4.3 Dynamic scaling

Now considerthe phaseseparatiorprocessandlet R(t) denotethe averagedo-
mainsize. As earlyas1961, Lifshitz, Slyozosr andWagnerwereableto predict
thatthegrowth law is algebraid10] i.e.,

R(t) ~ t'/3 (3.16)

This growth law is called the diffusive regime, becausehe underlying physi-
cal modelis diffusion-controlledreactioni.e., two domainsdiffusetogetherand
meigein orderto form onelarge domain. At latertimesin the phaseseparation
procesghe growth law cancrossoverto [10]

R(t) ~ 213 (3.17)

The growth law predictedby Lifshitz etal. (equation(3.16) is notthe only pos-
siblegrowth law. Equation(3.16)is typically denotedhe diffusive regime which
theunderlyingmodelis adiffusion-controlledeaction.Otherregimesincludethe
viscousandtheinertial regime.
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Figure 3.4: Thephaseadiagramof a binary mixture of two- andthree-dimensiondlennard-Jones
liquids. ThedatapointarefoundusingMD simulation.Thedensityis 0.802 and0.8¢2 in thetwo
casesFrom|[79].

3.4.4 The Lennard-Jonesliquid

The mixture of Lennard-Jonebquids is a goodsystenmto studywhenwe wishto
understandhekineticsof phaseseparation.

Thephasaliagramof abinaryLennard-Jonefiuid hasbeernpublishedoy Toxveerd
etal. [79,81]. Thephasediagramis shovn in figure 3.4

FurthermoreToxveerdet al. shav thatthe growth of the domainsat late timesis

algebraic. They find the exponentto be 2/3 whenthe particle fraction of each
componenis 1 while the exponentis 1/3 whenoneof the componentss domi-
nating.

Goingto three-componergystemswe seea majordifference.Laradjietal. [47]

find thatthe growth exponentis 1/3 for a systemwherethe particle fraction of

eachcomponents equal.

3.5 Chemistry

The phaseseparatiordiscussedn the previous sectionwas a physicalprocess.
During the 1990sa numberof papershave beenpublishedon how chemicalreac-
tionsmightinfluencethe phaseseparatiorprocess.

The Cahn-Hilliardequation(3.15) canbe modifiedin orderto include chemical
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reactionsChristensemtal. [15] andGlozteretal. [28] have simplemodifications.
ConsiderthereactionA <= B. The forward andthe reverserate constantsare
denotedk; andk,, respectrely. The modified Cahn-Hilliardequationincluding
thesetwo reactionds

o dfo
=MV -V - 1-— 1
wherey is thelocal molefractionof A. Both Christensertal. andGlozteretal.
setk = ky = k,. Themodificationof the Cahn-Hilliardequationis simple: we
have addedthe velocity field comingfrom the chemicalreactions.

Theaveragedomainsize R scaleswith thetime as

R(t) ~ t® (3.19)

Withoutthecompetingchemicalreactionsthe exponentx is initially 1/3 and2/3
atlatetimes[21,85]. FromadimensionakhnalysisGlotzeretal. [28] find thatthe
averagedomainsizescalesas

1 o
R~ (E) (3.20)

At low reactionrates(k ~ 0) Christenseret al. andGlotzeret al. findsthatthe
exponenta is approximatelyl /3. At larger reactionratesChristenseret al. find
thatthe exponentis 1/4.

Monte Carlo simulationsof an Ising modelwith competingreactions(A <= B)

have beenperformedby Glotzeret al. [29]. They find that the exponenta =

0.22 4+ 0.02 which is consistentith theresultby Christenseret al. . Toxveerd,
onthe otherhand,hasperformedMolecularDynamicssimulationsof a Lennard-
Jonesmixture undegoing phaseseparatiorcompetingwith chemicalreactions.
At low reactionratesthe growth exponentis approximatelyd.33 while it is lower
athigherreactionrate.

Glozteret al. and Toxveerdobsenre thatthe phaseseparatiorprocesss hindered
by fastreactions.Toxveerdarguesthatthereasons thatthe fastreactionslestry

the hydrodynamianodeswhich are essentiain the phaseseparation.A similar
obsenation hasbeendoneby Verdasceet al. [82] and Christenseret al. [15].

They seethatchemicalreactionamight freezethe phaseseparationThis freezing
is only obsenedathighreactionrates.
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Caratiet al. [14] have recentlypublisheda paperon the chemicalfreezing. The
theorypresentedy Caratiet al. is basedon the Cahn-Hilliardtheory They are

ableto establisranumberof criteriafor thefreezinge.g., thatatleastonereaction
mustbe autocatalytic.






CHAPTER 4

ChemicalKinetics

Chemicalkinetics is the study of how fastchemicalreactionsproceed. In this
chaptemwe will review the basictheoryof chemicakinetics. Theonly criteriafor
selectingghe materialis thatit is goingto be appliedto the systemsstudiedin the
presenthesis.

Thetheoriespresentedh this chapterareof macroscopimature.Thesimulations
presentedh chapter7 areof microscopimature.Thetopicof thethesisis partlyto
seeif the macroscopidescriptionof chemicalreactionis valid on a microscopic
level.

Many textbooksdealwith chemicakinetics,andwe will hereonly mentionafew.
Pilling etal. [67] have recentlywritten anexcellentbook. It is moreexperimental
orientedthanusualtextbooks,andit coversmary of thenew techniquesndtheo-
ries. The bookby Cox [18] givesan excellentbut shortoverview of reactionsn
liquid phase.

4.1 Phenomenologicachemicalkinetics

We begin our introductionto chemicalkineticsin the macroscopiovorld. The
phenomenologicapproachriesto elucidatethe mechanisnof a comple reac-
tion by writing down a numberof differentialequationsvhich arethe “equations
of motion” of the concentrations.e., the goal is to find, for eachspeciesX, an
equationof theform

29
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dix] _

& FOXLIY) . ) =vo((X], [Y],-..) (4.1)

whereY ... represenevery otherspeciegpresenin the system,f is a function
relatedto its stoichiometriccoeficient v, andthe velocity v of thereaction. The
stoichiometriccoeficientis positive for productsandnegative for reactants.

A speciaklassof reactiongs theclassof elementaryeactions For anelementary
reaction,the velocity canbe written usingthe law of massaction. Considerthe
reaction

aA+bB+- B X +yy 4. (4.2)

wherek is a proportionalityconstantalledthe rateconstant.The velocity of the
reactionis
v =k[A]*[B]’--- (4.3)

i.e., a productover all reactants.The “equationof motion” of the reactantA is
then

d[4] _ _ a[ I
o = ev= —ak[A]*[B]° - - - (4.4)

while the“equationof motion” of the productX is

d[X] _ _ arp1b
— =@ v =oh[A]"[B] - (4.5)

4.2 Temperature dependency

It is well-known that the rate of a reactiondependson the temperature.Often
Arrheniusis regardedasthediscovererof theso-calledArrheniusexpression.The
expressiorrelatesherateconstant andtheabsoluteaemperaturd” as[67]

k = Ae Fa/RT (4.6)
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whereA is thepre-exponentiafactor, E, is theactivationenegy, andR is thegas
constant.A plot of log k versusl /T is referredto asthe Arrheniusplot for the
givenreaction.By applyingsimplealgebrawe see

E,1
logk =log A — —— 4.7
og 0g BT (4.7)
i.e., an Arrheniusplot shouldbe a straightline with slope—FE, /R andintercept

log A.
A more generalrelationshipbetweenthe rate constantand the temperaturecan

be derivedfrom collision theory seee.g., Pilling etal. [67]. We imaginethatthe
reactionA + B — P (in gasphase)onsistf threereactionsnamely

A+B =2 C (4.8a)
C > P (4.8b)

whereC' is a collision comple. In wordstheideais the following. Thereactants
A andB, collide andform acollisioncomplex C'. If theenegy of impactis larger
thana certainthresholdF,, the complex will breakup andform the productP,
otherwisethe reactantsare reformed. From collision theory we the obtainthe
following expression:

k= A'NTe =t (4.9)

whereA’ is a pre-eponentialfactor

We noticethat the equation(4.9) differs from equation(4.6) by a factorof v/T.
In asmalltemperaturénterval, A’v/T is almostconstantandwe will recoverthe
Arrheniusexpression.

4.3 Diffusion-controlled reactions

Diffusionmayplay animportantrole for reactiondn a condenseghase.The ba-
sicideais thattwo speciessay A and B, have to diffusetogetherbeforereacting.
Diffusionin two dimensionss very differentfrom threedimensionsandwe will
briefly review the resultsin this section. The problemhasbeenstudiedby mary
chemistse.g., Naqvi[62]. We will hereusetheresultsobtainedoy Clegg[17].

Considerthefollowing reactionan acondenseghase:
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k
A+B=C (4.10)
kr

wherek; is therateconstanbf theforwardreactionandk, is therateconstanof
thereversereaction.

The solvent doesnot enterthe reactionsexplicitly, and A and B must diffuse
togetherin orderto react.Let D4 and Dy denotethe diffusion coeficientsof A

and B, respectrely. Moreover, the sumof the diffusion coeficientsis denoted
Dagi.e, Dyg = D4+ Dg. Thereactionbetweend and B occurswhenthe
separations lessthan Rreaci.e., when|r4 — rp|| < Rreac

In threedimensionsClegg [17] finds the following expressiondor the rate con-
stants:

47TNAVDABRreac
— 4.11
kr 1000 (4.11a)
D
ky = 32‘43 (4.11b)
Rreac

However, in two dimensionsthe situationis more complicated. According to
Clegg[17], therateconstantaregivenas:

2rD N
kp = ST ABIVAY (4.12a)

R1(t
log (Rre(aic)
2D
k, = ABR t (4.12Db)
Rfeaclog ( ere(azc)

whereR; (t) andRy(t) aretwo functionsof time.

In both casestherateconstantglependinearly on the sumof the diffusion coef-
ficients. This leadsus to the following conclusion: if a reactionis diffusion-
controlled,theratio £/ D mustbe constanik is therateconstanbf thereaction,
andD is thediffusioncoeficientsof thereactants).

4.4 QOscillating reactions

One of the main topics of this thesisis the simulationof oscillating chemical
reactions.In this section,we will briefly discussoscillatingchemicalreactions.
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Recently Scott[72] haswrittenanexcellent(andshort)introductionto oscillating
reactions.Oscillationsareoneof the exotic behaiourswe canobsenre in chem-
ical systems.Quasiperiodic oscillationsand chaoshave beenobsered, andin

distributed systemgqreaction-difusion systems)}arget patternsand spiral waves
have beenobsenred.

As alreadymentionedin section4.1, to a setof chemicalreactionsthereis an
associateset of differential equations. In its mostcondensedorm, the set of
differentialequationsanbe written as

dc

wherec is avectorconsistingof theconcentrationsf thespeciesf is thevelocity
field, andy is a setof parametersOn the mathematicapropertiesof differential
equationsthe monographoy Hirschet al. [41] givesa goodandnot too mathe-

maticalintroductionwhile Perlo [66] treatsthe subjectmorerigorously

4.4.1 Conditions for oscillations

If the solution of equation(4.13) is periodicin time i.e., c(t + 7)) = c(¢) for
all timest, thenwe have an oscillatingreaction. A numberof conditionsmust
be fulfilled in orderto obtaina periodic solution. Probablythe mostimportant
conditionis that the systemmustbe open(or at leastdriven). If the systemis
closed,the systemwill seekanequilibrium statei.e., the concentrationsvill be-
come constant. The equilibrium conditionis a consequencef the secondlaw
of thermodynamicslt turnsout thata crucial conditionis that at leastonereac-
tion mustbe autocatalyticseee.g., Clarke [16]. An autocatalytiareactionis the
chemicaltermof feedback A simpleexampleof anautocatalytiaeactionis

A+B% 24 (4.14)

4.4.2 Stability

If we look at equation(4.13) we canwonderwhich mathematicapropertieshe

solutionmight have. We have alreadydiscussedhe oscillatory behaiour from

a chemicalpoint of view. In this section,we will be more mathematicathan
chemical.

Themostsimplesolutionof equation4.13)is astationarysolution. Thestationary
solutionis the sameasa constansolutioni.e., c(t) = c,; Wherec,, is a constant
vector This stationarystateis theroot of the functionf i.e., the solutionof
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fcss;p) =0 (4.15)

Now, a stationarystatecaneitherbe structurallystable,stableor unstable.The
stability of the stationarystatecanbeevaluatedn thefollowing manner Consider
a small perturbationof the stationarystate,c,. The trajectoryis the solution of
equation(4.13)with c, astheinitial state. The questionof stability is answered
asfollows.

Structurally stable The stationarystateis structurallystableif d(t) = ||c(t) —
css|| = 0 ast — oo where|| - || is ameasuref thedistancen theconcen-
trationspace.

Unstable If thefunctiond(t) divergesast — oo, we saythatthe stationarystate
is unstable.

Stable If d(t) is boundedbut doesnot go to zeroast — oo we saythat the
stationarystatelis stable.If thechemicalreactionis oscillatory its trajectory
in the concentratiorspaces boundedout doesnot approachthe stationary
statei.e., anoscillatingchemicalreactionhasa stablestationarystate.

Thestability caneasilybecomputedLet dc bedefinedasdc(t) = c(t) —c,s. The
function d(t) is relatedto dc asd(t) = ||oc||. If we Taylor expandthe velocity
field to first order we obtain

doc
dt
wherelJ is the Jacobiarmatrix which elementsaregivenas

= J(cgs) - Oc (4.16)

_0fi
T = o, (4.17)

Equation(4.16) is a linear ordinary differential equation,and the solutionis a
textbookexample.Thesolutionis

fe=> ejeit (4.18)
J

wheree; is the jth eigervectorof the Jacobiamrmatrix andw; is the associated
eigervalue. Thestability of the stationarypoint cannow be summarised:
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Structurally stable If thereal partof the ary eigervalueis negative, the statio-
narypointis structurallystable.

Stable Thestationarypointis stable,if the eigervalueshaszerorealparts.

Unstable If oneeigermvaluehasapositiverealpart,thestationarystateis unstable.

4.4.3 An example

At this point anexamplewould be appropriate Let us considerthe famousreac-
tion mechanisntalledthe Brusselatof69]. Themechanisms

A B x (4.193a)
2X+Y 8B 3y (4.19D)
B+X B v4c (4.19¢)

X M p (4.19d)

The speciesof interestare X andY’, andthe concentration®f A and B areas-
sumedo beconstantThephenomenologicaquationgor X andY canbewrit-
tendown. If we scalethemappropriatelywe have

dzx

T fla,y)= A= (B+1z+ay (4.20a)
% = g(z,y) = Bz — 2%y (4.20b)

wherex andy arethe scaledconcentration®f X andY, and A and B arethe
constantconcentration®f speciesA and B. The stationarypoint (z;, yss) can
foundby solvingthe setof equations:

f(xssayss) = A-— (B + 1)(1535 + -Tgsyss =0 (421&)
g(xssa yss) = Bzy — xzsyss =0 (421b)

The stationarypointis z,, = A andy,, = % In orderto evaluatethe stability of
the stationarypoint, we first find the Jacobiammatrix. It is:

B-1 & ) (4.22)

J(xssayss) = ( -B _A?



36 Chemical Kinetics

Theeigervaluesarethe solutionsof a quadraticequationi.e.,

w4+ (A -B+1w+A*=0 (4.23)

We seethat the stationarypoint is structurallystableif A2 — B+ 1 > 0 and
(A2 — B +1)* — 4A? < 0. Moreover, we will have a stablestationarypoint if
A’ - B+1=0andA4%? - B+ 1 < 0 (whichimplies B > 1). In the stable
casethesolutioncloseto the stationarypointwill beoscillatoryi.e., undercertain
conditions(B > 1) theBrusselatowill beanoscillatingreaction.



CHAPTER 5

InelasticCollisions

Systemsconsistingof particlesundegoing inelastic collisions do have a phe-
nomenologyof theirown. Inelasticcollisionsareoftenusedin modelsof granular
media,seee.g., Jageret al. [44]. This chaptemwill discusshe physicalproper

ties of granularmediaandhow inelasticcollisionscanbe modelled.In chapter8

simulationalresultsobtainedoy the authorof this thesisandhis collaboratorsan
befound.

5.1 Hard particles

Hard or rigid particlesmove, in the absencef an externalfield, on straightlines
betweertwo collisions. Theinteractionbetweerthe particlesarethroughthecol-
lisionsonly. At thecollision of two particles,; andj, thevelocity of eachparticle
is changednstantaneouslyt et v; andv; denotethevelocity beforecollision,and
v; andv; denotethe velocity after the collision of particle: and j, respectiely.
They arerelatedas:

vi = ev;+ (1 —e)v; (5.1a)

vi = (I—evitev; (5.1b)

wheree is ameasuref inelasticityandis relatedto the coeficient of restitutionr,
ase = 1(1—r). In thecaseof elasticcollisionsthevalueof ¢ is 0, andcompletely
sticky collisionse = 1.

37
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5.2 Softparticles

Therigid particleswhich werediscussedn the previous sectionmove in straight
lines betweentwo collisions. Whenwe turn to soft particles,it is a completely
differentstory. The particlesmove in a potentialfield andcollisionsarenot well-
defined.

Modelsfor granulammediausingsoft particleshave recentlybeenproposednde-
pendentlyby Brilliantov et al. [11] andMorgadoet al. [59]. The purposehere
is not to review the completework by Brilliantov et al. and Morgadoet al. but

merelyto statea simplemodelwhich we will usein chapter8. Our modelis only

usablein onedimension.

First,letusdefinewhatacollisionis for soft particles.Consideitwo particleswith

separationr. Wewill saythatthetwo particlesarecolliding whentheseparatioms

lessthata givenvaluerg) i.e., whenr < r¢q). For soft particles,collisionshave
adurationi.e., the collisionsarenotinstantaneouascollisionsof rigid particles.

Elasticcolliding particlesmove accordingo givenequationof motioni.e., equa-
tionsin theform:

dI‘i

U v 2
& \L (5.2a)
dv, F,
= L 2
dt m; (5.2b)

wherer; is the position of particle, v; the velocity, m; the mass,andF; the
force. We will modify the equationsof motionsothatthey includea dissipatve
termwhich accountdor theinelasticcollisions. Thenew equation®f motionare:

dI'Z'

dv; 1 (colly

i = m (FoE) (5:30)
WhereFZ(CO") is the dissipatve force dueto thecollisions. Theforceis givenby

FZ(coll) _ Z F(coll) (5.4)

ij
JFi

with
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Y otherwise

picol) _ {0 YVij/Teoll — for r < reoll (5.5)

wherer;; = ||r; — r;|| andv;; = ||v; — v;||. Theparametery controlsthe degree
of inelasticityandwhen~ = 0 the collisionsareelastic.

5.3 The cooling problem

Haff [37] andMcNamaraet al. [54] have investigatedhe problemof rigid parti-

clesundepgoinginelasticcollisions. At every collision kinetic enegy dissipates
from the system. The (granular)temperaturas closely relatedto the kinetic

enepgy, namelyas

1 N
NZ =~ Fign (5.6)

The definition of the temperatureas given by the equationabove is not correct
accordingto the statistical-mechanicaklation. The deviation is the factor1/N.

In statisticalmechaniconewould find thatit shouldbe the degreesof freedom
whichfor aone-dimensionadystemin equilibriumis N — 1. Thedefinitionabove
is adoptedof two reasonsFirst, it haspreviously beenusedin the literatureand
secondwe wish to comparethe temperaturesf simulationsof both equilibrium
andnon-equilibriumsystemsn chapter8.

As the enegy dissipateshe temperatures decreasing.Naively one could ima-
ginethatthetemperaturevill decayexponentiallybut thecollisionrate(collisions
per unit time) doesdependon the temperature After one collision the collision
rateis slightly lower andthe time until the next collision is larger. This physical
behaiour leadsto thefollowing coolinglaw [54]:

T
(1 +€pTot)?

wheret is thetime, 7, is thetemperaturattime ¢t = 0, andp is the density At
latetimes,t > 1, thecoolinglaw reduceso

T@) = (5.7)

T =at? (5.8)
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wherea is a parametewhich depend®n e andp.

Thecoolinglaw is atheoreticapredictionby Haff [37] andMcNamaraetal. [54].
McNamaraetal. [54,55] have numericallyinvestigatedigid particlesin oneand
two dimensions,and they find that the cooling law is obeyed. It is important
to stressthat the cooling law discussedereis valid for rigid particlesonly. In
chapter8 we will studysystemsof rigid andsoft particlesnumericallyandtry to
applyamoregenerakoolinglaw, namely7 oc t“.

5.4 Clustering and inelastic collapse

As discussedn section5.3 a systemof inelasticparticleswill algebraicallycool

down. It hasbeenobsenedby e.g., Goldhirschetal. [31] thatin somecase<lus-
tersareformed;they referto this phenomeno@sa clusteringinstability. Thephy-
sical origin of clusteringcanbe explainedasfollows: a spontaneoufluctuation
in thedensityoccurs.Thetemperaturés uniform,andwhenthe densityis locally

slightly largerin oneregion, the collision ratein thatregion will belarger The
largercollision rateleadsto afasterdissipation.e., thetemperaturelecaysaster
in this region thattherestof the system.Now, whenthetemperatures lower, the
pressurewill belower. The pressuregradientwill attractparticlesto the region

i.e., the densitywill increase We seethata fluctuationlarge enoughwill leadto

anincreasingnhomogenityandtheclusteringhasoccured.Goldhirschetal. [31]

have performedMolecularDynamicssimulations(in two dimensionspf 2 x 10°—
4 x 10° rigid particles,andthey shov thatclusteringis dependenon the system
size.

McNamaraet al. [54,55] have obsenedin oneandtwo dimensionsanotherphe-
nomenormightoccur In somecasesnelasticcolliding particlesmightendupin
aninelasticcollapse. The physicsof the inelasticcollapseis that threeor more
particlesarealignedwith no separationn between.The consequences thatthe
numberof collisions goesto infinity. The collapsedependson the numberof
particles. If the numberof particlesexceedsa certaintresholdvalue, Nyin, the
collapsemight occur NcNamareaetal. estimatethevaluein theelasticlimit to be

Nmin = log;Q/e) (5.9)
€
Du et al. [20] discussbreakdevn of hydrodynamicgor mary-particle systems
undegoinginelasticcollisions. Thebreakdevn reportedoy Du etal. is notanin-
elasticcollapsebut closeto the clusteringinstability. It is nottoo obviouswhether
the breakdaevn is exactly the sameasthe clusteringor not becausdhe system



5.5Closingremarks 41

studiedby Du et al. is coupledto a thermostatingdevice. In chapter8 we will
analysethethermostatingf inelasticparticlesmoreclosely andpresenbur own
simulationalresults.

5.5 Closingremarks

Granulamediahave aninterestingandoddphenomenologyandit is notanexag-
gerationto saythatgranulamrmediaarea stateof matterdistinctfrom theordinary
threestates.

Many problemsare still open. Granularmediacanin mary casesbe regarded
asa liquid, but no fluid dynamicshasbeendeveloped. Of coursea numberof

attemptdasbeermade seee.g., Haff [37] andJenkinsetal. [45], butnocomplete
theory exists yet. The mixing andtransportof grainsand powdersare heavily

usedin industrialprocessesandthereforea developmenbf afluid mechanicgor

granulamediais importantfor the design,optimisation,andcontrol of industrial
processes.






CHAPTER 6

NumericalTechniqgues

Theresultspresentedn the presenthesisarebaseduponnumericalsimulations.
The simulationaltechniquesusedare the “experimentalsetup” which hasbeen
used. All simulationprogramswhich have beendesignedcandimplementedare
of theMolecularDynamicgMD) type. ThischapteidescribesheMD techniques.

The core of the chapteris aboutsoft particlesi.e., systemswherethe particles
interactthrougha smoothpotential. The simulationof hardspheresrediscussed
in section6.6.

In thelastdecadeanumberof monograph®ncomputeisimulationshasbeernpub-
lished. Allen et al. [2] have written the mostwell-known and cited monograph.
It is now a bit out-of-date.While the monographoy Allen et al. dealtwith both

MolecularDynamicsand Monte Carlo techniquesthe book by Rapapor{71] is

consideringMD only. Smithetal. [23] have recentlywritten a book aboutmo-

lecularsimulations andit is morefocusedon the physicsbehindthe simulations
while Rapaporis moreconcernedvith thealgorithms.

6.1 Naivealgorithm

In chapter2 classicaimechanicsvasdiscussedThe naive ideabehindMolecular
Dynamicsis to solve the equationsof motionof N particlesi.e., it is anumerical
techniguewhich enableusto solve

43
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dI‘i
E = V; (61&)
dv; F;

- = = 6.1b

wherer; is thepositionof particles, v; thevelocity, F; theforce,andm; themass.
We will assumehattheforceis pairwiseadditivei.e.,

whereF;; is theforcebetweerparticle: andj.
Thenawve algorithmis:

Algorithm 1 A nave MD program
fori =1to M do {M is thenumberof time stepg
Cal cForce(ry,...,ry,Fq,... ,Fy)
Integrate(ry,...,ry,vy,..., vy, Fq,... ,Fy)
endfor

wherethetwo procedure£al cFor ce andl nt egr at e aregivenasalgorithm
2 andalgorithm3, respectiely.

Algorithm 2 A nawe forcecalculationalgorithm,Cal cFor ce

Require: rq,... ,ry,Fq,... ,Fy
fori=1to N do
endfor

fori=1to N do
forj=1to N do
F,« F, + Fij (I‘i, I‘j)
endfor
endfor

In algorithm 3 the equationsof motion are solvedin a very primitive way. We
have approximatedhe derivativesby the well-known approximation

dy _y(e+h) —y(a)
dzx h

(6.3)
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Algorithm 3 A naive integrationalgorithm,l nt egr at e
Require: rq,... ,ry,vy,..., vy, Fq,... | Fy
for i = 1to N do {h is thelengthof thetime step
V; <V, + h x leF.L
r; < r;+hXxv;
endfor

whereh is asmallnumber

The algorithmhasone major problem: its time consumption.We seethat there
aretwo loopsin Cal cFor ce - bothof length V. Thetime compleity is O(N?),
andin alatersectionwe will addresghis problem.

6.2 Integrator

Theintegratorin anMD programis the partwherethe positionsandvelocitiesare
updatedasdoneby theprocedurd nt egr at e in algorithm1.

The equationsof motionin classicalmechanicsaretime reversiblei.e., thereis
no distinction betweenthe pastand the future. Furthermore the equationsof
motion aresymplectici.e., thetotal enepgy is consered, seee.g., Arnold [4] and
Goldstein[32].

Thetwo propertiesnentionedabore mustbeincorporatednto thealgorithmsince
it will make thealgorithmmore(numerically)stable seee.g., Martynaetal. [53],
Miller [57] andToxveerd[77].

6.2.1 NV E simulations

The equationf motionasgivenby equation(6.1) consere thetotal enegy and
is characterisetdy a constannhumberof particlesNV, volumeV” andenegy E.

In orderto derive a suitablealgorithm, we begin by Taylor expandingequation
(6.1a)to first orderi.e.,

= TI; (t) — %hVZ (t)

whereh is asmallnumber(calledthelengthof thetime step).By subtractionve
obtain
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A similar expansionis donefor (6.1b)andwe obtain

Fy(t)

m;

h

Vit +h) = vi(t) +

Theequationsabove leadsusto a suitablealgorithmfor integratingthe equations
of motionwhichis foundin algorithm4.

Algorithm 4 Integrationof the NV E ensemble
Require: r;,v;, F;
fori=1toN do
r; < r; + hv;
V; &V + %h
end for '

6.2.2 NVT simulations

In the previous sectionwe discussedhow to integratethe equationsof motion of
a generalmary-body system.The equationof motion consere the total enegy
i.e., thesumof thepotentialandkinetic enegy. Thisis notwhatwe wantin mary
cases oftenwewishto beableto controlthetemperatureAs discussedh section
2.4theHamiltonianmustbemodifiedin orderto simulatethecanonicaknsemble,
andNost [63] hasproposedsuchanextension.The proposedHamiltonian# is

the No-thermostat

7~ ™~

N p2 2
H=HnvE+ Z :
i=1

s+ ghyTlogs + 21”—52 (6.4)

whereH yv g iIsthe NV E Hamiltonian,g thedegreesof freedom(plusone),s and
ps representhe “thermostat”,() is the relaxationtime, andT is thetemperature.
Hoover [42] has extendedthis further and refinedthe argumentation. Hoover
noticesthatthe Nose-Hoover thermostais uniquei.e., arny extensionexpectthe
Nost-Hoover extensionwill notrelaxto acanonicakquilibrium. Theideabehind
thethermostais thatall particlesarecoupledo aheatreserwir whichis simulated
throughtwo extravariabless andp,.
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A morepracticalformis [76]

dr,  p;

T " om (6.5a)
dp; o

O (6.5b)
dn = p?

LA b T .
i (;:1 s gksT | /Q (6.5¢)

where = gkgT7? andr is the relaxationtime. In orderto derive a discrete
versionof theequationsabove, we Taylor expandequation(6.5a):

my
r;(t) = ri(t+§h)—%hm (6.6b)

my;

Theseexpansiongnaynotbeobviousatfirst glance by subtractiorandrearrange-
mentwe obtain

ri(t+ h) = r;(t) + h

my

Admitted - this might not have enlightenedthe readey but we proceed. Taylor
expansion®f equation(6.5b)to first ordergive

h) = pi(t)+
h) = pi(t) —

h(Fi(t) — n(t)pi(t)) (6.8a)
h(Fi(t) — n(t)pi(t)) (6.8b)

Subtractinghe secondequationfrom thefirst, we obtain

pi(t +
pi(t —

SIS
N N

Pi(t + 3h) — pi(t — 3h) = h(Fi(t) — n(t)pi(t)) (6.9)
We do not know the momentunmp; attime ¢ but we usea simplerelationto com-

puteit, namely

pi(t+ 1h) + pi(t — 1h)
2

pi(t) =
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Insertingthis relationinto equation(6.9) andrearrangingt a bit, we obtain

hFi(t) + (1 — 3hn(t))pi(t — 3h)
1+ 1hn(t)

pi(t + 1h) = (6.10)

We still needto derive a suitableexpressiorfor thethermostat.e., the variablen
andequation(6.5¢) Two Taylor expansiongesultin

N o )
nt+h) = nt+1h)+1h (Z w — ngT> /Q (6.11a)

i=1 ¢

n(t) = n(t+3ih)—ih (Z M - ngT) /Q (6.11b)

i=1 ?

By subtractioranda bit of rearrangemente obtain

i=1 t

n(t+h)=n(t)+h (Z w — ngT> /Q (6.12)

We arenow readyto give analgorithmwhich updateghe positionsandmomenta
of N particlesin the canonicakensembleThealgorithmis shaovn asalgorithm5.

Algorithm 5 Integrationof the NV'T ensembleisingtheNose-Hooverthermostat
Require: r;, p;, Fi, 1
Eyin <0
fori=1to N do
pi « (A xF;i+ (1 —31h xn)p;)/(1+ 3hn)
r; < T, + h X p;/m;
Ekin < Ekin + P}
endfor
n <0+ h X (Exin/mi — gksT)/Q
Ein + Exin/2

6.3 Optimisation of forcecalculation

The computatiorof the force contributionsis the mosttime consumingpartof an
MD program:thisis the partof algorithm1 thatgivesthe squaredependeng of
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thenumberof particles.Of coursethe computationsanbereducedy afactorof
2 by applyingtherule F;; = —F};. Butafactorof two is notchanginghe O(N?)

compleity.

Onevery simpleoptimisationof the force calculationis to truncatethe potential.
In the systeminvestigatedn the presenthesis,the potentialis short-ranged.e.,

the interactionis very weak betweentwo particleswith large separation. The
truncatedpotentiali(r) is

<
i(r) = {u(r), for r < e, (6.13)
0, otherwise

whereu(r) is theoriginal potential. The choiceof thetruncationdistancer, is not
uniqueandis a compromise.On onehandwe wanta valueassmallaspossible
becausehis will leadto fewer calculations.On the otherhandwe wanta larger
value,becausé will leadto asmallertruncationerror Thenumberof particlesin
acircle! of radiusr, is w2 p wherep is thedensityof thesystem Whensimulating
Lennard-Jonebquids atypical valuefor r. is 2.5¢0 andconsequentlyhe number
of neighbourswithin this distances about15.

Thetruncationof the potentialleadsto an (almost)constannhumberof force cal-
culationsper particle,andthetime compleity is apparenthinear. This linearity
is nottrue, sincewe still have to checkthe distancebetweerall pairsof particles
which givesusa squargime compleity.

The optimisationdiscussedbove is not enoughif MolecularDynamicssimula-
tionsaregoingto be a practicaltool for investigatingmary-body systemsMany
technigue$ave beenproposedut herewe will only discussoneof them.

The basicideais shavn in figure 6.1. The simulationcell is partitionedinto a
numberof equallysizedboxes. The edgelengthr;, is larger thanthe truncation
lengthr. discussegbreviously. The particlesis eachbox may interact(the maxi-
mum distancebetweertwo particlesis v/2r;, whichis largerthanr.). In thenear
futurei.e., alow numberof time steps(typically 10), the particleswill remainin

the samesquare.The particlesin the black squaren figure 6.1 may alsointeract
with the particlesin the four shadedsquares.Of coursethe particlesmay also
interactwith particlesin the four otherneighbouringsquaresout this is included
becausd;; = —F};. Thereforewe constructa list of pairsof possiblyinteract-
ing particlesandusethis list in the nearfuture whencomputingtheforce. It has
beenobseredby Moraleset al. [58] thatthis optimisationtrick reduceghetime
compleity to O(N log N) whereN is numberof particles.

Theoptimisationstratgy discusse@bove canbe expressedsalgorithm6.

!Remembethatwe aremainly interestedn systemswith two spatialdimensions.
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Figure 6.1: The simulationis partitionedinto a numberof squares. The particlesin the four
shadedsquaresnayinteractwith theonesin blacksquare.

Algorithm 6 Optimerisedorce calculation
for p = 1to M do {M is thenumberof time stepg
if mod (p, Nypdatd = 1 then
Put | nBOX(I'k, Ty, H, L)
MakelLi st (I‘k, Thy H, L, {7,,]})
end if
Cal cFor ce(ry, Fi, {i,7})
I nt eqgr at e(rk, Vi, Fk)
endfor
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The procedurePut | nBox sortsthe particlesinto boxesaccordingto their posi-
tions. Thealgorithmis givenby algorithm7. Thefunction [z| returnsthelargest
integer, thatfulfills 7 < z, wherezx is arealnumber

Algorithm 7 Put | nBox: Sortparticles
Require: ry, 4, L
for i = 1 to C? do {C is thenumberof cellsin eachdirection}
H; «+ 0 {Headof list for eachcell}
end for
fori =1to N do
j +— 1+ [.’131'/7”()1 x C+ [yi/rb] x C? {I‘z' = (in,yz)}
L; + H; {L is acollectionof linked-listof particleg
end for

The procedurevakelLi st makesalist, {7, j}, with NV, elementsvhichis alist
of potentiallyinteractingpairsof particles.Thealgorithmis givenasalgorithm8.
For simplicity, we have in algorithm8 neglectedthe loop over the neighbouring
boxes.

Algorithm 8 MakelLi st : Make alist of potentiallyinteractingpairs
Require: ry, 7y, H, L, N, {3, j}
N, < 0 {N, is thenumberof pairs}
fork=1toC?do
1+ Hy
while 7 # 0 do
Jj< H;
while j # 0 do
if ||I‘z — I‘j” <7 then
N, < N, + 1 {A new pair}
{isj}n, < (i,5)
endif
j <L
endwhile
endwhile
endfor

Finally, theforcecalculationprocedureCal cFor ce, canberedesignedothatit
takesadvantageof thelist of potentiallyinteractingpairs. Thealgorithmis shovn
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asalgorithm9. ThefunctionFor ce calculategsheforce betweertwo particlesat
agivendistance.

Algorithm 9 Cal cFor ce: thecoreof theforcecalculation
Require: ry, Fy, N, {i,5}
for m = 1to N do {Resefforces
endfor
for m = 1to N, do {Loop overall pairs}
(2,5) < {i,3}m
Ar <r; —r;
if ||Ar|| < r. then
f + For ce(Ar)

endif
endfor

Figure6.2 shawvs the executiontime asfunction of the numberof particlesfor an
MD programwritten by the author We seethatthe executiontime grows almost
linearly but this might comefrom thefactthatthe datacaneasilybe containedn

thesecond-lgel cache.

6.4 Simulating chemicalreactions

One of the main interestsin the work behindthe presentthesisis chemicalre-
actions. Traditionally, chemicalreactionshave not beensimulatedby Molecular
Dynamics,but a numberof papersexist, seee.g., Diebneret al. [19], Heinrichs
et al. [40], and Ortoleva et al. [64]. The emphasisn thesepapershasbeenon
the chemicalreactionsand their properties. The work presentechereis of an-
othernature- we wish to investigatethe interplay betweenphasetransitionsand
oscillatingchemicalreactions.

In Naturetwo differenttypesof reactionsexist: uni- andbimolecularreactions.
Unimolecularreactionsinvolve one moleculeonly. A typical reactionof this
type is the relaxationof an excited moleculewhich might dissociateit. Two
moleculesare involved in the bimolecularreactions- a simple picture may be
thattwo moleculescollide andsomethingthereaction)happens.

We have chosentwo very simple stratgyiesin orderto simulateuni- and bimo-
lecularreactions. The unimolecularreaction(A — P) is a changein the label
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Figure 6.2: Theexecutiontime (in secondsyersusthe numberof particles. Thedensityis 0.802,

andthetemperaturés 2¢/kg. The executiontime is themeanof 5 runs. Thetestwasperformed
onanIBM RS/6000Model 390runningAlX version4.0. The compilationwasperformedusing
thex! f compilet

or colour of the particle. We modify the colourwith a given probability P,. The
algorithmis shown below.

Algorithm 10 PerformsthereactionA — P
fori=1to N do
p < RandUni t {Returnsauniformly distributedrandomnumbe#
if p < P, then {P, is thereactionprobability}
Alter i’slabelfrom A to P
end if
endfor

A bimoleculareactioninvolvestwo molecules.Thegenerakeactionis A + B —

P + Q. The naive ideais to let the reactionoccurwhen A and B collide, but
sincemostof thework presentedhereis from studiesof Lennard-Jonepatrticles,
collisionsarenot a well-definedterm. We definea collision to bethe eventwhere
two particlesi andj areclosei.e., thedistancds lessthana givennumberRyeac

Moreover, we let the reactionhappenwith a given probability P. only. The al-

gorithm showvn belowv usesthe list of potentially interactingpairs coming from

algorithm6 sincewe know thattheseparticleswill alsobethepotentiallyreacting
particles.
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Algorithm 11 PerformsthereactionA + B — P + @
Require: {i,j}x
for k =1to N, do
(2,5) < {2, 5}
Ar ¢ [lr; — x|
if Ar < Rreacthen
p < RandUni t
if p < P, then
Modify thelabelsof particlesi and;
endif
endif
end for

TheparametersRreacandP,, introducedabove definethereactionrate. Therate
of a reactionis, in traditional chemicalkinetics, measuredy the rate constant;
seesection6.7.1for detailsaboutthe measuremenof the rate constants.One
of the most successfutheoriesof reactionrateis the collision theory seee.g.,
Pilling etal. [67]. Theideabehindthecollisiontheoryof reactionratesis thattwo
reactantsX andY’, collideandform anencountepair, C'. Theencountepairwill
eitherform thereactantggainor a product,P. In termsof reactionsthereaction
X+Y — Pistheoverallreactionof thethreesubreaction&X +Y = C' — P. Let
ry andry denotethe centreof massof thetwo reactanimoleculesrespectiely.
A collisionis thentheeventthat||rx — ry|| < Rreaci.€., thedistancebetweerthe
reactantss lessthansomepredefinedralue, Rreac Whenthereactantsarecloser
to eachotherthat Ryeac they form theencountepair C. Theencountepairwill -
asalreadymentioned form eithertheproductsor thereactantsTheprobabilityof
formingtheproductis P,, andthe probability of anon-reactre collision (forming
thereactants)s 1 — P,.

6.5 Parallelisation

Themodernsupercomputeis a parallelcomputerandthe useof thesecomputers
becomesnoreandmorepopular Two differentapproacheso the parallelcom-
puterexist; distributedandsharednmemorycomputersseee.g., Tanenbaun73].
Thecharacteristicare:

Shared memory A numberof processorgcpus)areusingthe samepool of sto-
rage(or memory)andsystemresource®.g., I/0 units. A computerof this
type is PaverChallenger(Silicon Graphicsinc.). If processor needsa
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pieceof data,it canreadit at any time in the storageindependenbf what
processoy is doing.

Distrib uted memory Eachprocessohasa privatestorageandoften privatel/O
units. Whenprocessol needsdatastoredin processoy’s storagea com-
municationlink is established.The communicationis slow comparedo
directaccesdo the storageand communicatiomrmustbe minimised. This
type of parallelcomputercanbe built by a numberof connectedvorksta-
tions. Typical high-endsolutionsare RS/6000SP (InternationalBusiness
Machines)andT3E (CrayResearch).

We have had accesgo an RS/6000SP computersituatedat UnieC? andin the
following we will describeour parallelisatiorstrateyy.

Systemssimulatedby MolecularDynamicsarespatialby their nature. It is “ob-
vious” to let anumberof processorsimulatea region of the simulationcell each.
This is theideabehindthe parallelisatiorstrateyy calleddomaindecomposition,
seee.g., Brown et al. [12]. Figure 6.3 showns a simulationcell which hasbeen
dividedinto four domains. The particleswhich are situatedin a given domain,
aresimulatedby a given processol.e., eachprocessosimulatesa region of the
simulationcell. Whena particle movesout of the domainof one processoand
into the domainof the neighbouringprocessarits positionandvelocity is sentto
thenew processar

In section6.3 we discusse@n optimisationstratey, namelydividing the simula-
tion cell into a numberof boxes. Theboxesaremuchsmallerthanthe simulation
cell, and even with the domaindecompositiormary boxeswill resideon each
processar Of coursewe canstill usethe box idea,and even better we canuse
it for optimisingthe domaindecomposition At eachtime stepin principle each
processomeedsto know the positionsof all particlesin orderto calculatethe
forces. But the ideabehindthe optimisationtrick in section6.3 is that particles
farfrom eachotherwill notinteract.Thereforeonly particleswhich arelocatedin

the subcellscloseto the boundarie®f a processos domainwill interactwith the
particlessituatedon the neighbouringprocessarThen,only the positionsof these
particleshave to becommunicated.

Figure 6.4 shaws the executiontimesfor a Molecular Dynamicsprogramwhich
hasbeenparallelisedoy the domaindecompositionWe do not seea linearspeed-

up but up to 8 processorsve only “pay” 25 percentof the executiontime for
parallelisation.

2The DanishComputingCentrefor Researctand Education.The homepageof the computer
ishttp://ww. sp2. uni -c. dk.
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Figure 6.3: The simulationis divided into a numberof domains- onefor eachprocessar The
subcellstructureis alsoshown.
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Figure 6.4: The speed-umf a parallelMolecular Dynamicsprogram. The numberof Lennard-
Jonegarticlesis 65536, thedensityis 0.802 andthetemperaturés 2.0¢/kp. Thescaleis relative
to one processo(the serialprogram). The line with slopel is the linear speed-upvhich is the
maximumspeed-upvhich canbeachieved.
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6.6 Hard spheres

Systemgonsistingof hardspheresrevery differentfrom simulationof Lennard-
Jonessystems.The interactionpotentialis fundamentallydifferentbecausat is
discontinuous.e.,

(6.14)

{oo forr < 2o
u(r) =

0 otherwise

whereo is theradiusof the particles.

As the potentialindicatesthe hardspheresannotoverlap. The only interactions
betweerthe particlesarethroughcollisions,andbetweencollisionsthe particles
move in straightlines (no externalfield is applied). Theseobsenationsshav
that we cannotapply the samesimulationstratey asthe onefor Lennard-Jones
particles.

Let usin the following discussionassumethat all hard sphereshave the same
radiusc, andmassm. Typically, we will setthe massto unity.

6.6.1 The main loop

Themainloop of ahardspheresimulationprogramis simple. Sincetheonly inter-
actionsarethe collisions,we have to find the next collision, updatethe positions
andvelocitiesandstartall over again.Algorithm 12 shavs themainloop.

Algorithm 12 Themainloop of ahardsphergyrogram

t<0

while ¢ < tgngdo
Find next collision { At is thetime until the next collision}
Updatepositionsandvelocities
Collectdata
t—t+ At

endwhile

6.6.2 Updating positionsand velocities

Sincethereis no externalfield, the hard spheresnove in straightlines between
collisions. The positionsof the particlesareeasilyupdatedthis is doneby apply-

ing
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fori =1,...,N. ThetimedifferenceAt is smaller(or equal)to thetime between
two collisions. In practicewe chooseAt to be the time until the next collision -
seesection6.6.3.

The velocitiesare only changedat collisions,andonly the velocitiesof the two
sphere<olliding arechangedlt is corvenientto introducea measuremertdf the
inelasticity of the collisions,which we denotee. The quantitye is relatedto the
restitutioncoeficientr ase = 1% Whene = 1 acollisionis completelyinelastic,
ande = 0 is thecompletelyelasticcase.Thevelocitiesareupdatedas

vi = ev;+ (1—e)vy (6.16a)
vi = (I—e)vitev; (6.16b)
wherev; andv; arethe velocitiesbeforethe collision, and v; andv; arethe
velocitiesafter

6.6.3 Tracking collisions

The discussiorof simulationof hardspheredasso far beenindependenof the
spatialdimension. The essentiapart of a hard spheresimulationprogramis to

find the next collision. Of coursewe could derive an algorithmfor finding the
next collision independentf the spatialdimension put the one-dimensionatase
can be optimisedso easily thatit is worth doing. In this sectionwe will only

describethe one-dimensiongbroblem.

The one-dimensionataseis differentfrom systemsn higherdimensions.The
reasoris very simple: hardspheresn onedimensioncannotexchangeheir rela-
tive positioni.e., if initially z; > z; wherez; andz; arethe positionsof spherei
andj, thisinequalitywill remaintrue throughthewhole simulation.

Let usdevelopthefollowing picture of our one-dimensionatystem:the spheres
areplacedon a horizontalline, andthe labelingof the spheress donesothati is
placedto theleft of j if i < j. Thenspherei canonly collide with sphere; — 1
and: + 1. Thisobsenationreduceghe searchor the next collision by oneorder
of magnitude Moreover, we noticethatif sphere collide with sphere + 1, then
sphere + 1 will collide with sphere. More precisely;we only have to checkthe
neighboutto theright for collisions.

Now considertwo spheres; and: + 1, attime ¢t. Theequationf motionare
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Thetime until thenext collisionis At. Rememberinghatz; < x;,1 thecondition

of collisionis z;.1 — x; = 20 whereo is theradiusof thespheresThe condition
is rewrittento be

2i(t) = i1 (1) + Dt(0i(t) = via (1) = 20 (6.18)

which caneasilybe solved,andwe obtain

.’Ez(t) — Tjt+1 (t) — 20
Viy1(t) — vi(t)
Obviously we only have physicalsolutionsif v;1(t) — v;(t) # 0 andAt > 0.

Finally, we areableto write down analgorithmwhich findsthenext collision, see
algorithm13.

At =

(6.19)

Algorithm 13 Tracksthenext collisionin aone-dimensionadystem
Require: z;, v;
At < o0
fori=1to N do
OV — Vip1 — V5
if dv # 0 then
0t < (z; — zi41 — 20)/6v
if 6t < At A6t > 0then
At + 6t
k<+1
endif
endif
end for

6.7 Calculating thermodynamic quantities

The presenthesisis concernedvith mary-particle simulationsi.e., we simulate
systemswith a finite numberof particlesanda finite volume. But the thermody-
namicalquantitiesareall givenin thethermodynamicaimit i.e.,asN,V — occ.
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The purposeof the following sectionsis to discusshow to calculatethermody-
namicalquantitiesfrom dataobtainedfrom a numericalsolutionof the classical-
mechanicakquationof motion.

6.7.1 Rateconstants

In section6.4we discussedhow to simulatechemicalreactionsin this sectionwe
discusshow to measurehe rate constantor a reactionsimulatedoy MD. There
is notrivial relationbetweerthereactionparameterspP, and Ryeac introducedn
section6.4 andthe second-orderateconstant.

In this sectionwe will discussthe calculationof the rate constantof a second-
orderreactionfrom MD simulations.We will approachthe problemthroughthe
collisiontheory[67].

Considera bimolecularreaction,A + B — P. The velocity of the reactionis
v = k[A][B] wherek is therateconstantand[A] and[B] arethe concentrations
of A andB. The phenomenologicaquationdescribingthe evolution of [A] is

diA] _
57 = —klAlB] (6.20)

Fromcollisiontheorywe canobtainanexpressiorfor theevolution of thenumber
of A particles,N,. Theexpressions

dlVa = —2x 425 P, (6.21)
dt

wherez 4, andzx g arethe particlefractionsof A and B respectiely, I is thecolli-
sionrateandP, is theprobabilityof areactve collision. Thenumber P, is easily
measurediuringaMD simulation:it is thenumberof reactiongertime unit, and
wedenotet Ni. Theparticlefractionof acomponents givenasz 4 = % where
N4 is thenumberof A particlesand N is the total numberof particles.Dividing
equation(6.21)by N we obtain

CLTA QQIA.Z'BNR
—A_ _ARBTR 6.22

dt N (6-22)
Theconcentratiorof [A] is relatedto its particlefractionas|A] = x4p. Equation
(6.22)cannow berewritten as
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dl4] _  2[A][B]Ng
e (6.23)

We cannow compareequation6.20)and(6.23) andwe seethattherateconstant,
k, is proportionalwith the numberof particlesN. In otherwords,the instanta-
neousrate constantghat we measureduring the MD simulationswill increase
with the numberof particles.In orderto obtainarateconstanwhichis indepen-
dentof thenumberof particleswe have to divide it by thenumberof particles.

6.7.2 Diffusion coefficients

Diffusioncoeficientscanbe calculatedn two differentways; usingthe velocity
autocorrelatioriunctionor meansquaredisplacementseee.g., Hanseretal. [38].

The meansquaredisplacemenimethodis easyto implementin an MD program,
andwe have thereforechoserto useit.

We areawareof thedisputein theliteratureonthe existenceof thediffusioncoef-

ficientin two dimensionsseee.g., vanderHoefetal. [80] andreferencesherein.
Eventhoughwe do mary simulationsin two dimensionswe are not interested
in participatingin this dispute. The diffusion coeficient which we measuras

the coeficient on the time scaleandlengthscaleof our systemsandwe arenot

interestingn the hydrodynamianodesastime goesto infinity.

The Einsteinrelationfor the diffusion coeficient (for a taggedparticle)in d di-
mensionss [38]

D = Jim 5 (lx(t) = xO)[) 624)

wherer(t) is the position at time ¢ andr(0) is the initial position. Using the
equationabove to calculatethe diffusion coeficient requiresa few modifications
of anordinaryMolecularDynamicsprogram.

Most often the MD simulationsare performedusing periodic boundarycondi-
tions. If the periodicboundaryconditionsareapplied,a particlewill never move
longerthanthelengthof a simulationbox. The solutionof this problemis simple.
We countthe numberof boxesthe particle hastraveledi.e., everytimea particle
crosses boundarywe eitherincreaseor decreasa counterdependingon which
directionthe particleis moving. We arethenatary time ableto calculatethe dis-
placemenby modifying ||r(¢) — r(0)|| to ||r(¢) — r(0) + nL|| wheren is avector
containingthe counterand L is the length of the simulationbox. By applying
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simplealgebrato equation(6.24) and usingthe modificationjust mentionedwe
obtain

2dtD = (||r(t) — r(0) + nL|*) (6.25)

Of coursethe statisticsof the equatiorabore becomebetterif we useall particles
insteadof justonetaggedparticle. Theequationthenbecomes

2dtD = Z x5 (£) )+ n;L|? (6.26)

whereN is the numberof particles.The diffusioncoeficient D canbefoundby
fitting the mean(with respecto the numberof particles)squaredisplacement.



CHAPTER 7

The Extended_otka Scheme

Oscillating chemicalreactionshave intrigued chemistsand mary othersin the
last 2—3 decades.The bestknown exampleis the reactionfirst investigatedoy
Belousw [6] and Zhabotinsl [86]. One canonly be fascinatedoy seeingthe
solutionin the reactionvesselchangingcolour every minute from deepblue to
redandbackto blueagain.

In this chaptemwe will look at simulationsperformedon a very simplechemical
mechanismwhichis ableto exhibit oscillationsin the concentrationgsfunction

of time. Themechanisms simulatedoy MolecularDynamics,andit is therefore
asimulationwith afinite numberof particles.It shouldberegardedasa prototype
of anoscillatingchemicalreaction.

The chapteris baseduponthe resultsdescribedn two papersby the authorof

the presentthesis, Eigil L. Preestgaardand SgrenToxvaerd[26,27] which are
enclosecasappendixB andappendixC

7.1 A brief outline of previous studies

The simulationof chemicalreactionsby Molecular Dynamicsis not a nev ap-
proach.As earlyas1975,Portnav [68] simulateda simplechemicalreactionby
MolecularDynamics. Portnav studiedthe fluctuationsin the numberdensityof
thespecies.e., theconcentrationThe simulatedparticleswerehardspheres.

Ortoleva and coworkers [64] were the first to do MD simulationsof chemical
instabilitiesmorethantwo decadesgo. The simulatednechanicsvas:

63
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X+Y — 2X
X —» Y
Yy — X

Thelasttwo reactionsareintroducedn orderto preventthatY is corvertedto X .
Ortoleva et al. imaginedthat the two reactionswere radiationprocesseso that
the systemcanbefar from equilibrium but without a massflux i.e., the systemis
enegetically driven. The individual particleswere hardspheresandOrtoleva et
al. simulatedup to 450 particles.

Boissonadg¢9] studiedalmosttwo decadesgothe fluctuationsin the concentra
tion in two simplemechanismgA + C — X + C,2X — 2N andA + C —
X +C,2X — X + N). Thesystemwastwo-dimensionaandthe particleswere
harddisks. Thesimulationresultsarecomparedvith amasterequationapproach.

In 1983 Heinrichset al. [40] performedsimulationson anotheroscillating reac-
tion. Theschemewas:

A+B — C
C+B —- D+ B
D — 2B

In orderto simulatean opensystem,Heinrichset al. introducedan inflow and
anoutflow of particlesi.e., the speciesA, B, C and D arecreatedandremoved
randomly Furthermorethereis aninert speciesX . If thereareary inertspecies
presenin thesysteman X particleis corvertedto oneof the otherspeciesvhich
mimics anopensystem.If no inert speciesarepresenta new particleis created
atarandomlychoserposition. Thefirst reactioncreatesaninert particle,because
thereactionreallyis A + B — C + X. In the third reactiona new particle (of
type B) is created.If the numberof inert particlesis largerthana certainvalue,
someof themareremoved. All particlesarehardspheresilt is hardto tell exactly
which ensembléHeinrichsetal. weresimulating.

RecentlyDiebneretal. [19] simulatedavery simplemechanismThemechanism
isthesameaswewill presentn section7.2. Theparticlesinteractthroughalong-
rangedpotential;basicallya repulsve Coulombpotential. The mainresultis that
the mechanisnis oscillatory even on the microscopiclevel. In a very different
contet, Fracheboug et al. [22] have studiedthe samemechanisnmasDiebneret
al.! Moreover, Goreckiet al. [34] have studiedthe samemechanisnusinghard

Frachebouy etal. call the mechanisnthe cyclic Lotka-\Volterramechanism.
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sphereMolecularDynamicsandamasterequation.They concludethatthe spatial
correlationfunctionsoscillatein time, andthatthe correlationsarelongerthanfor
astationarysystem.

Mansouret al. [52] have recentlywritten a very detailedpaperaboutthe simu-

lation of chemicalreactionson a microscopiclevel. The primary objectve is to

investigatecomplex mechanismsncluding oscillatingreactions.The simulation
techniqueis not Molecular Dynamicsin the context of this thesis,but is based
uponBird’s algorithm[8] which is a numericalsolutionof the Boltzmannequa-
tion. Theparticlesconsideredby Mansouretal. arehardspheresandall reactions
arebinary,

To thebestof ourknowledge,only Toxveerd 78] hasconsideredeactionsimula-
tedby MolecularDynamicsin competitionwith a phaseransition(in thatcasea
spinodaldecomposition) Thesimulatedsystemwasabinarymixtureof Lennard-
Jonegpatrticles,andthe reactionschemevas A = B. Theresultfrom thesesi-
mulationsis thatchemicalreactionshave a stronginfluenceon the kineticsof the
spinodaldecompositionin thelastyearsannumberof papershasbeenpublished
onwhichinfluencechemicalreactionanayhave on the phaseseparatiorprocess,
seee.g., Glotzeret al. [28,29], Christenseret al. [15], and Verdasceet al. [82].
The paperamainly investigatethe problemby modifying the Cahn-Hilliardequa-
tion to includechemicalreactionsandthensolve it numerically Recently Carati
etal. [14] have contributedto thetheoreticaunderstandindgpy analysinga sucha
Cahn-Hilliardbasedmodel. Thework of Caratietal. is mainly analytically and
theirtheoreticapredictionshave notbeerbeverifiedby e.g., MolecularDynamics
simulations.

7.2 The scheme

Lotka wasoneof the pioneerdn thefield of oscillatingchemicalreactions.His
work datesbackto 1910sand 1920s,and his work was purely theoretical- he
himselfwasnot corvincedthat oscillatingchemicalreactionscould occurin the
realworld. At theendof a paperfrom 1910,Lotkawrote [50]:

No reactionis known to follow the above law [oscillatory], andasa
matterof factthe casehereconsideredvassuggestetby the conside-
rationof matterdying outsidethefield of physicalchemistry

His famousschemdrom 1920is [51]:
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A+ X — 2X (7.1a)
X+Y — 2 (7.1b)
Y - P (7.1c)

The schemeabove givesraiseto oscillationsin concentrationef X andY when
certainconditionsarefulfilled.

Lokta’s schemeakesplacein an opensystem;thereis a constantinflow of the
speciesA so that the concentratiorcan be assumedo be constant. Moreover,
thereis a constanputflow of the productP.

Our schemas very simple; it consistsof threereactionsandthreespeciesonly.
We call it the extendedLotka schemesinceit resembleshe Lotka schemeandit
is:

X+Y 5B oy (7.2a)
Y+2 B oz (7.2b)
Z+X B 9x (7.2c)

wherek;, ko, andks; aretherateconstants We chooseo let the total concentra-
tion [X] + [Y] + [Z] be constanianddenotedk, becausave simulatea system
wherethe total numberof particlesis consered. The schemeabove violatesthe
Wegschleiderconditions[19]. This meanghatthe extendedLotka schemas en-
emgeticallydriven,andthesystemwill thereforealwaysbeenfarfrom equilibrium.

Fromthereactionsabove, we areableto derive phenomenologicaquationghat
describethe evolution of the concentrationsWe obtainthreeequationdrom the
schemeagivenabove:

W b+ kX2 (7.32)
dt
W Xy - ka2 (7.30)
dt
W k2 - kX (7.30)

The differentialequationsabove is aninitial valueproblem,andgiventheinitial
valuesof the concentration®f the threespeciesthe solutionis unique. We have
in principle threedifferentialequationsbut sincethe total concentratioris con-
stant,thesolutionwill bein atwo-dimensionasubspacef thethree-dimensional
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concentratiorspacespannedby [X], [Y] and[Z]. A two-dimensionabrdinarydif-
ferentialequatiorcannothave chaoticsolutionsithis obsenationis aconsequence
of the Poincaé-Bendixsortheorem[41, chapterl1].

7.3 Linear stability

The solutionof the threephenomenologicatquationgyivenin the previous sec-
tion will give usthe evolution of concentration®f thethreespeciesBut it is not
possibleto find ananalyticalsolution.

Insteadof an analyticalsolution,we areableto obtainan approximatesolution.
We will applythetechniqueof linear stability of stationarypoints. Thetechnique
is introducedn section4.4.

To begin, wefind thestationarypointi.e., apointin theconcentratiorspacevhere
thedifferentialis zeroi.e., we wish to solve the setof equations:

W = kXY kxZI = 0 (7.42)
W kI - kiv)iz = 0 (7.40)
W~ kv - kix)izl =0 (7.40)

Let the stationarypoint be denoted(z,s, yss, 255). At the stationarypoint, the
conditionK = z,, + y,, + 2,5 mustbefulfilled. Solvingequation(7.4)we obtain

Kky

ss  — — 7.5a

. key + kg + ks (7.53)
Kks

ss — 75b

Y Fey + kg + ks (7.5b)
Kk,

L o= 7.5¢

? Fey + kg + ks (7.5¢)

Closeto the stationarypoint, we canlinearisethe ordinarydifferentialequations
andsolve thelinearequationsThe approximatve solutioncloseto the stationary

pointis then
[X] Tss
YT | = vas |+ eie (7.6)
[Z] Zss i
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wheree; is the ith eigervector(scaledappropriately)and ); is theith eigervalue
of the Jacobiammatrix. We areonly interestedo seewhetherthe extendedLotka
schemas oscillatory sowe only calculatethe eigervalues. The extendedLotka
schemehasonezeroeigervalueandtwo complex conjugatedvhich are

A==

K\ky + ko + kgl 7.7)
VEkikoks '

We concludethatthe stationarystateis stable andthe motion (closeto the statio-
narystate)is a harmonicoscillation.

7.4 Molecular details

The extendedLotka mechanismasanalysedn the previous sectionscanbe si-
mulatedby MolecularDynamics.In this sectionwe discusgshemoleculardetails.
Thethreespecies X, Y andZ, arechoserto be atoms.Theinteractionpotential
is the Lennard-Jonepotentiali.e.,

o\ 12 o\ 6
wor) = e |(2)" = ()] 78)
wheree is the minimum of the potential(andthe fundamentaknegy unit), ando
is the characteristidength. The minimum of the potentialis easily’ foundto be
V/20.

We have simulatedtwo differentsystemsThey are:

Systeml All theparticlesareidenticali.e., thedifferenceis only the“colour” of
the particles. The “colour” representhe specied.e., in our casethereare
three“colours”. The potentialis u(r) = up3(r).

System2 The particlesof the same“colour” interactthroughthe Lennard-Jones
potentialgiven by equation(7.8). Particlesof different“colours” e.g., the
X-Y interaction,is non-attractre. In orderto simulatethis, we usethe
following potential

() = {uLJ(r) forr < /20 (7.9)

0 otherwise

“Differentiateu_j(r) with respecto r, setit equalto zeroandsolve with respector.
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A systemlike System? is known to phaseseparatéelon a certaincritical tempe-
rature[47,79].

As mentionedin section6.4, the simulationof chemicalreactionsrequirestwo
parametergor a binary reaction. The first parameteis the sum of radii of two
colliding particles,Rreac IN mostcasesve set Rreac = 0.961160 which ensures
that only particleswith a large relative velocity might be countedas colliding
particles.The algorithmspresentedn chapter6 areapplied,andthe temperature
is controlledby the Nose-Hoover thermostat.

7.5 Steadyand oscillatory statesin the microscopic
system

In section7.3we foundthe stationarystatefor the extended.otka schemeA sta-
tionary stateis a statewherethe concentrationgre constant.If the phenomeno-
logical equationg7.3) representhe microscopiadetailsof the systemthe steady
stategivenby equation(7.5) mustbereproducibleby theMD simulations.

Considera systemwherek; = ky = k3. The steadystateis thenz, = y, =
Zs = % We setup a simulationwith 1/3 of the particlesof eachspeciesFigure
7.1 shaws theresult. From the figure it is obvious that a steadystateexists for
thefinite system.The fluctuationsin the concentratioimeasuredy the particle
fraction) decreaseavith the numberof particles.

We also know from section7.3 that the extendedLotka schemeis oscillatory
Figure7.2 shows the particlefraction of X. We seethatthe concentratiorof X
oscillates.Theoscillationsarenotregularbut thisis dueto thefactthatthesystem
consistf 1024 particlesonly..

7.6 Phasetransitions and mechanisms

Mixtures of Lennard-Jonegarticles,which interactas describedn section7.4
(Systen®) areknownto phaseseparateseee.g., Laradjietal. [47] andToxveerdet
al. [79]. Above a certaincritical temperaturd’,, the systemwill behomogeneous
i.e., thedensityof eachcomponents constanthroughthe system.Below thecri-
tical temperaturewe will seedomainsof eachcomponentskor atwo-component
systemthe equilibriumdistribution of componentss thattherearetwo large do-
mainsconsistingof onecomponenbnly. For three-andfour-componensystems,
theformationof domainss morecomplex.

We have simulateda three-componentennard-Jonesystem. It is easyto see
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Figure 7.1: The particlefractionof X versustime. The simulationparameterare: p = 0.802,
T = 2.0¢/kp, PV = P® = P® = 10-2, and Rreac = 0.9691160. Theline with thelarge
fluctuationds for a systemof 1024particleswhile theotherline is for asystemof 65536particles.
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Figure 7.2: Theparticlefractionof X versustime. The simulationparameterarethe sameasin
figure7.1exceptthatthe numberof particlesis 1024andP,§2) =1.1-1073,
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(@)T < Te b)T >Tc

Figure 7.3: (a) showvs the positionsof the particlesattemperaturd” = 1.0¢/kp < T, while the
(b) is takenattemperaturd’ = 2.5¢/kp > T,. Thenumberof particlesis 16386andthe density
is 0.802 in bothcases.

whethera phaseseparatiorhasoccurredat a giventemperatureThis is doneby
looking a the positionsof the particlesby the naked eye. Figure 7.3 shows two
examples,oneabove andonebelow thecritical temperature.

We measurehe (time averagedyate constantdrom the simulations.Figure 7.4

shownvsthe Arrheniusplot for both Systeml and2 with 1024particles,andSystem
2 with 4096 particles. It is clearthatat 7. = 1.7¢/kp thereis a cross-oer for

System2. This is the phaseseparatiorwe see. Below 7, System2 is phase
separatingvhile above T, it behaesessentiallyasSysteml.

As discussedn section4.3 the ratio k/D must be constantif the reactionis
diffusion-controlled(k is the rate constant,and D is the diffusion coeficient).
Figure 7.5 shaws the £/ D ratio versustemperaturdor System2. We seethat
above T, theratiois - within the statisticalerror- constant.This clearlyindicates
thatthereactionsarediffusion-controlledaborethecritical temperaturewhile be-
low T, themechanisnis different.Below the critical temperaturéghe mechanism
changego a surface-drvenreactionbecauséelon 7, domainsareformed. The
domainsarepurei.e., they consistof onespeciesonly. Thereforethe only place
wherethereactionscanoccuris atthe boundarie®f two domains.

7.7 Concluding remarks

In this chapterwe have presentedesultsfrom microscopicsimulationsof the
extendedLotka schemelt is clearlydemonstratethatthe techniqueof MD can
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Figure 7.4: The Arrheniusplot for Systeml (x, N = 1024), System2 (+, N = 1024), and
System2 (x, N = 4096). The densityis 0.802. ThereactionparametersarePT(l) = PT(3) =
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Figure7.5: Theratio k; / D versushetemperatureThe simulationparameterarethe sameasin
figure7.4.
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beusedto simulatechemicalreactions.

The simulationspresentedn the chaptershav that macroscopigphenomenaan
be reproducedby microscopicsimulationse.g., the steadystateof a comple
mechanismWe areableto probespatialphenomendik e patternformationfrom
avery simplepoint of view which requireonly few andsimpleassumptions.

We also seethat simple theoreticalconsiderationgan be appliedwith success.
For examplethetheoryof diffusion-controlledeactionscaneasilybe applied.

The chapterclearly demonstratethata phasetransitionmay alterthe underlying
chemicalmechanism.Lately this subjecthasattractedsomeattention,seee.g.,
Caratietal. [14]. By usingMD we would be ableto investigatetheoreticalpre-
dictionsby Caratietal. . We have performeda few numberof simulationsof a
simpleschemenpamely2A = A + B = 2B. Ourinitial simulationsshow that
thismechanisnis ableto freezethespinodaldecompositioraspredictedoy Carati
etal. .






CHAPTER 8

Controllingthe Temperaturéen One
Dimension

Inelasticcollisionswere discussedn chapter5. In this chapterwe will discuss
our resultsobtainedfrom simulationsof rigid and soft particlesundegoing in-

elasticcollisions. Theresultspresentedherearebasedipona papery theauthor

Paz Padilla, Eigil L. Preestgaardand SgrenToxveerd[25] which is enclosedas
appendixD.

The investigationof the inelasticcollisions began by readinga paperby Du et
al. [20]. Theresultspresentedy Du et al. did seemvery odd, and a desireof
understandingmeged. Du et al. find thatwhenthe collisionsareinelastic,and
even whenthe particlesare coupledto a thermostattinglevice, the particlesget
clamped. One caneasilyimaginethe clampingwhenthereis no thermostatting
device, andit hasbeenrigorously shavn by Haff [37] - seealsochapter5 for a
moredetaileddiscussioroninelasticcollisions.We do not revealtoo muchof the
conclusionsof this chapterby sayingthat we find that the “extraordinary” state
foundby Du etal. is anartifactof the modelthey used.

The simulationcell in one dimensionis a line. We have two walls at —g and
g where L is the length of the system(typically L = 1). One peculiarity of
one-dimensionasystemsds that no scatteringoccursi.e., if two particles,; and
J, initially are situatedso that z; > z; thenthis inequality holds throughthe
completesimulation.

Therigid particlesusedin this chapterareall point particlesi.e., theradii of the
particlesaresetto zero.Moreover, the masss setto 1. The soft particlesinteract

75



76 Controlling the Temperature in One Dimension
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Figure 8.1: A log-log plot of the granulartemperatura@sfunction of time. The numberof rigid,
pointparticlesis 100ande = 0.005. Thelengthof thesystemis 1.0. During the simulation38467
collisionsoccurred.

throughthe WCA potential, seeWeekset al. [83]. The potentialis

u(r) = 4 [(5) = ()] +e forr< V20 (8.1)
0 otherwise

wherer is theinter-particleseparationg ande arethe Lennard-Joneparameters.
The detailson how the inelasticcollisionsare modelledcanbe foundin section
5.2.

8.1 Semi-closedsystem

We will analyseasystenmconsistingof N particlesundegoinginelasticcollisions.
The systemis closedin the sensethat no enepgy flows into the system,while
eneqy is dissipatedhroughthe collisions.

N 2, asfunction of time.

Figure8.1 shows the granulartemperature7 = %Ziﬂ £

We seethatafteratransientperiodthetemperatur@lecaysalgebraicly The slope
caneasilybefound,andwe find thatHaff's predictionof the decayis correct.
Figureslik e figure 8.1 canbe obtainedfrom simulationsof rigid particleswith a
radiuslargerthanzeroandvariousdensities.Thetransientperioddepend®nthe
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densityandthe degreeof inelasticity In the caseof soft particlesthe exponentin
Haff’s cooling law is not —2. The value of the exponentrangesfrom —1.16 to
—1.90.

8.2 Thermostatting devices

Systemsconsistingof particlesundegoing inelasticcollisions dissipatekinetic
enegy. Thisimpliesthatthe velocity of the particlesis decreasin@sfunction of
time. Obviously we have that7 — 0 ast — oo. We thereforehave to introduce
athermostattinglevice in orderto controlthetemperaturen this situation.

Thermostatgas we usually call thermostattinglevices) have beenusedin Mo-
lecular Dynamicssimulationsfor morethantwo decadesFor soft systems.g.,
Lennard-Jonegparticles,the Nose-Hoover thermostat(seesection6.2.2 for de-
tails) is awell-known thermostatin the caseof rigid particlesafew attemptscan
befoundin theliterature.In thefollowing we will introducethosethermostatsve
have implementedandpresentsimulationson rigid andsoft particlescoupledto
thethermostatsin orderto checkthe functionality of the thermostatsve couple
themto systemswvherethe collisionsareelastici.e., no enegy dissipatesA per
fectly working thermostais a device thaton averageensurethatthe temperature
of the systemis thesameasthetemperatur®f thethermostat.

The coupling betweenthe thermostatandthe particlesis constructedn the fol-
lowing way: whena particlecollideswith theleft wall, thevelocity of the particle
is changedhccordingto thethermostat.

8.2.1 The Gaussianwall

The Gaussiarwall returnsthe particleswith a new velocity which is drawvn ran-
domly from a Gaussiardistributioni.e.,

m muv?

o) FoTwall ( 2kBTwaII> 6.2
where T4 is the desiredtemperature. The wall hasbeenusedby Du et al.
[20]. At first thoughtthis kind of thermostattinglevice comesnaturalsincethe
initial velocity distribution of the particlesis Gaussianandby choosingvelocities
from a Gaussiardistribution, one would think that it will presere the velocity
distribution.

The argumentabove is not correctwhich s illustratedby figure 8.2. The desired
temperaturef thethermostaty,, is setto 1.0. Thetemperaturef the system
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Figure 8.2: The granulartemperaturerersusthe time. The systemconsistsof 100 particlesand
thelengthof thesystemis 1. Theleft wall is a Gaussiawall.

dropsquickly to valueslower thanthe thermostatandthe steadystatevalueis
0.15 £+ 0.05. If we turn to the soft particles,we seea similar behaiour. The
steadystatetemperatureés 0.62 + 0.02.

8.2.2 The constantwall

Thethermostatvhich we denotethe constanwvall, is indeedvery simple.Whena
particlehitsthewall, thevelocity is alwayssetto thesamevalue,namely /T yai-
This correspondso the probability distribution

1 f = /T
P(v) = T = Viwal (8.3)
0 otherwise

A thermostattingdevice like the one describedabove is very odd seenfrom a
physicalpoint of view. It hasbeenusedby Du et al. [20] and Rapaport{70].
Figure8.3 shavs the granulartemperaturasit evolvesduring a simulation. We
seethatatfirstthetemperaturelropsbut thenrecovers,andatlatetimesit is 7,y
Sofareverythingseemto work perfectly

A correctsteadystatetemperaturas not enoughto ensurea perfectly working
thermostat the velocity distribution mustbe correctaswell which meanghatit
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Figure 8.3: The granulartemperaturerersusthe time. The systemconsistsof 100 particlesand
thelengthof the systemis 1. Theleft wall is a constantwall.

hasto be a Maxwell-Boltzmanndistribution. The distribution obtainedfrom the
constantwall is not a Maxwell-Boltzmanndistribution - only two velocitiesare
possible(for therigid particles): £/ T4 - It is notdifficult to understandWhen
the collisionsareelasticthe particleswill exchangevelocitiesonly.

For the soft particlesthe steadystatetemperaturés incorrect(0.51 + 0.01), andit
is theneasyto seethatthe constanivall doesnotwork in this caseneither

8.2.3 The frequencydevice

We haveimplemented/etanotheithermostain thefollowing way: atcertaintime
intenvalsthevelocity of theleft-mostparticleis changedThenew velocityis cho-
senrandomlyfrom a Gaussiardistribution. Theleft wall is now areflectingwall.
We have coinedthetermfrequeng thermostator thisimplementationThis ther
mostattingdevice has- to our knowledge- never beensuggestear implemented
before.

Asindicatedby figure8.4thefrequeng thermostatis ableto setthetemperaturéo
thecorrectvalue(1.00 = 0.13). Moreover, thevelocity distributionis alsocorrect.
The frequeng thermostatseemsto work perfectly for rigid particlesindepen-
dently of thefrequeng. Thisis nottruefor soft particles;at high frequencieshe
thermostats not ableto producethe correctequilibriumvalue. The origin of this
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Figure 8.4: The granulartemperaturezersusthe time. The systemconsistsof 100rigid particles
andthelengthof the systemis 1. Thethermostattinglevice is the socalledfrequeng thermostat,
andthefrequeny is 41.15.

problemis thatequipartitiontakestime, andwhenthekinetic enegy of oneparti-
cleis changedoo often, the systemdoesnot have time to relaxto equilibrium.

8.2.4 The stochasticwall

If onedigsinto theliteratureonefindsaveryusefulthermostattinglevice. It isdue
to Lebowitz etal. [48,49] who investigatedhe transporipropertiesof a Knudsen
gasanda Lorentz gastwo decadesago but it hasbeenproposedmuch earlier
LaterTenenbaunetal. [74,75] have usedit in MD simulationsof Lennard-Jones
fluids. Tenenbaurret al. usethe term “stochastichoundaryconditions”andwe
adoptit andusetheterm“stochastiowall”.

Thevelocity of the particlecolliding with thewalls (in our casetheleft wall only)
is changedandthenew velocity is dravn from the distribution

vm mu?
P(v) = —_ 8.4
(U) kBTwaII P ( QkBTwaII) ( )

Thethermostattinglevice describedabore works perfectlyfor rigid andsoft par
ticlesasfigure 8.5 clearlyshawvs. Theequilibriumtemperatures 1.00 4+ 0.14 for
rigid particlesand0.98 + 0.02 for soft particles.
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Figure 8.5: The granulartemperatureversusthe time. The systemconsistsof 100rigid particles
andthelengthof thesystemis 1. Thethermostaappliedis the stochastiavall.

8.2.5 Nos=-Hoover

For morethanadecadeéheNose-Hooverthermostahasbeenusedfrequently;see
section6.2.2for details. The Nose-Hoover approachs an extensionto the equa-
tions of motion. Similar to the thermostattingdevice discussedn the previous
sections,we implementa Nose-Hoover thermostatat the left wall. The imple-
mentationis asfollows: insteadof theleft wall we have a particletetheredo the
pointzo = —Z by the potentialu(z) = 1k(z — z0)* wherez is the position
of the particleand £ is the force constant. This single particleis coupledto a
Nose-Hoover thermostatandthe restof the particlesare not. Figure 8.6 shavs
thetemperatureasfunctionof time.

Asfigure8.6shovsthethermostasetsthetemperatureorrectly Theequilibrium
valueof thetemperaturés 0.99 + 0.01.

8.2.6 Concluding remarks

As theresultsreportedaborve shaw it is importantto usea thermostattinglevice
thatactuallycancontrolthetemperatureorrectly For therigid particleswe see
thatthe stochastiavall asdescribedn section8.2.4is the bestcandidate For the
soft particlesboth the stochastiovall andthe Nose-Hoover inspireddevice can
be used.For systemin higherdimensionghanone, it is easierto implementthe
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Figure 8.6: Thegranulartemperaturerersusthetime. The systemconsistsof 100 soft particles,
thelengthof the systemis 1 andtheforce constanof theleft-mostparticleis setto 100in reduced
units. Thethermostaappliedto theleft particleis a Nost-Hooverthermostat.

stochastiovall for the soft particles. The useof ary otherthermostathanthe
stochastiavall seemgo usto be questionable.

It is not too difficult to understandvhy the stochastiavall works well, andwhy
the Gaussiawall doesnot. Considerathree-dimensionaystem:he probability
of a particlewith velocity v arriving atawall is [36]

Ppai(v) =v-nf(v) (8.5)

wheren is avectornormalto thewall, and f is thevelocity distribution which, in

equilibrium,is a Maxwell-Boltzmanndistribution. In orderto presere the velo-

city distribution, the particlesleaving thewall musthave the velocitiesdistributed
astheincomingparticles,andthe thermostainustreturnthe particlesaccording
to equation(8.5).

8.3 Breakdown of hydrodynamics

As mentionedn the beginning of the chapterthe studyof inelasticcolliding par
ticleswasinspiredheavily by the paperby Du etal. [20]. Themainconclusionof
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Du etal. is thatit is possibleto obsene a breakdevn of hydrodynamicsvhenwe
try to thermostatnelasticparticlesin onedimension.

The situationin the paperby Du etal. [20] is asthis: they simulate/NV rigid point
particlesin one dimension. The collisions are inelastic; typically they sete =
0.005. Moreover, they have a Gaussiarwall attheleft wall while theright wall is
reflecting. Independentf theinitial positionsof the particlesan“extraordinary”
statedevelops.The“extraordinary”stateis thatthe particlesgetclamped.e., the
particlesareto befoundattheright sideof the simulationbox.

Now the clampingis not a completelyunexpectedfor inelasticsystems.McNa-

maraet al. [54,55] have shovn numericallythat systemgwith a thermostatting
device) in oneandtwo dimensionsnight collapseandGoldhirschetal. [31] have

shown thata clusteringinstability is possiblefor dissipatve gasesMoreover, for

one-dimensionasystemavicNamaraet al. have shavn analyticallythatthe col-

lapsewill occurif the numberof particlesexceeda certainthreshold;seesection
5.4 for further details. But for the chosendegreeof inelasticity Du et al. do not

exceedthis threshold. FurthermoreDu et al. reportthat the clampingdoesnot

disappeanse — 0 i.e., in theelasticlimit. Du etal. referto the clampingasthe

breakdevn of hydrodynamics.

We have simulated100rigid point particlesbut insteadof the the Gaussiarwall

we usethe stochastiovall. To measurenvhetherthe particleswill get clamped
we usethe meanposition (which in our caseis the sameasthe centreof mass)
i.e., we compute(z) = + Zi]\il x; during the simulation. Figure 8.7 shows the
meanpositionfor simulationswith threedifferentvaluesof e. Figure8.7ashowns
the caseof elasticcollision, andthe meanpositionfluctuatesaroundzeroaswe
would expect. Thevaluee = 0.005 is the samevalueaschoserby Du etal. [20].

Thefigure indicatesa clampingof the particle,but aswe decrease¢he degreeof

inelasticity the clampingdisappearsseefigure 8.7c.We stronglybelieve thatthe
conclusionby Du etal. is dueto anartifactof theirthermostat.
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Figure 8.7: The meanposition(z) versustime. The systemsconsistof 100rigid point particles,
andtheleft wall is the stochastiavall.



CHAPTER 9

DiscussiomndConclusion

We havein thisthesispresentegimulationakesultsof two very differentsystems:
oscillatingchemicalreactionsanddissipatve gases/ganulanedia.Both systems
have two thingsin common:they arein a non-equilibriumstate,andthey have
beeninvestigatedy MolecularDynamics.

Thesystemsstudiedin thisthesisare“simple”. They aresimplein theunderlying
physicalmodel, but the phenomenologys indeednot simple. Even thoughthe
modelsaresimple,we stronglybelieve thatthesemodelsareableto capturesome
of thephenomenaeenin the Nature.

Molecular Dynamicsis an invaluabletool when mary-particle systemsare stu-
died. Two special-purpos®D programshave beendesignedandimplemented
by the author; onefor Lennard-Jonegparticlesand onefor rigid particles. The
advantageof MD is that a MD programcan be usedin equilibrium and non-
equilibrium situations.We seeMolecularDynamicsasthe link betweenthe ad-
vancedtheoriesand the complicatedexperiments. General-purpos&lolecular
Dynamicsprogramsexist but they have anorientationtowardbiologicalproblems
(proteinsin agueousolution).MD programdor simpleliquids (short-rangegbo-
tentialse.g., the Lennard-Jonepotential)andrigid particlesaretypically written
by the chemist/physicistvho is going to usethem. But no chemistcankeepup
with the paceof developmentof computersespeciallynot the new parallelcom-
puters. An importantprojectwould be to implement- using modernsoftware
engineeringnethods novel algorithmson state-of-the-artomputersMoreover,
it is importantto designandimplementa numberof toolswhich cananalysalata,
andaneasy-to-usgraphicaluserinterface(GUI) is essential.
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The rich phenomenologyf dissipatve gasesand granularmediahassurprised
us. In orderto be ableto modelgranularmedia,we will needmacroscopide-
scriptionsanaloguouso fluid mechanicandthermodynamicsAs far aswe see
it, MolecularDynamicsis atthe momentthe only reliabletool which canmodel
granularmedia. The validationof a fluid mechaniccanthereforeonly be done
with thehelpfrom MD.

Using MolecularDynamicsto studychemicalreactionds nota new idea;in fact
it is morethantwo decadesgosincethe first simulationswere performed. We
have clearly demonstrateth this thesisthatthe macroscopigghenomenaanbe
reproducedn afinite systemusingMD. In otherwords,MD is ableto reproduce
themacroscopiavorld, andevenbetterthanthat: theideabehindMD is sonaive
thatit is mucheasierto understandhe physicalmodel.

Theinterestn theinterplayof (enegeticallydriven)chemicalkeactionsandphase
separatiorhasincreasedn recenttime (measuredy the numberof papersper

year). Almost all studieshave so far beencarried out on a mesoscopidevel

(Hilliard-Cahntheory). MolecularDynamicsis in this context aninvaluabletool

becausehe numberof simplifying assumptionss limited. Simulationsof phase
separatiorandchemicalreactionsarecomputerintensive. In orderto seepattern
formationwe needalarge numberof particles(often5-10°) andfollow thesystem
overlongtime scales.The simulationspresentedn this thesisarenot exhausting
in the sensdhatthey areonly the beginning. We have demonstratethata phase
separations ableto changeheunderlyingmechanisnof chemicalreactions.The
theoreticalpredictionshave not yet beenverified by simulations,and moreover,

thetheoryhasto be extendedto three-andfour-componensystemin orderto be
moreapplicable.
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Computerens rolle i moderne kemi

Kenneth Geisshirt
7 juni 1996

Indledning

Computere er nutildags blevet allemandseje Elektronik - og derved ogsa
computere - er en af de fi varer, der gennem tiden har fiet stgrre ydelse
samtidig med at prisen er faldet Som tommelfingerregel kan man sige, at
computere bliver dobbelt s& hurtige i lgbet af 18-24 maneder uden at prisen
stiger!

Udviklingen af computere tog for alvorlig fart i 1950’erne, hvor de store
amerikanske forskningslaboratorier (f eks Los Alamos) brugte dem Meget
hurtigt kunne fysikere og kemiker drage nytte af disse maskiner

I denne artikel vil jeg forsgge at give et indblik i hvordan jeg opfatter
brugen af computere i kemien Jeg teenker ikke pd almindelig tekstbehand-
ling eller litteratursggning, men péa - til tider tunge - beregninger Langgérd
[13] har her i bladet skrevet om de mange kemiprogrammer, som findes til
pc’ere, og han gjorde iseer noget ud af programmer til molekyleer modelle-
ring Denne artikel handler ikke om specifikke programmer, men mere om de
muligheder, man far med computeren

Metafysiske bemeerkninger

Naturvidenskaben var i sit udspring spekulativ [7] I antikken opfattede man
ikke eksperimenter som noget, der var veerd at give sig i kast med Vi kender
nok alle Zenons paradoks om Achilleus og skildpadden, som betgd at kine-
matikken stod i stampe i mange hundrede &r Naturvidenskaben er fgrst i
1400-tallet blevet rigtig naturvidenskabelig i den forstand, at naturfilosoffer
begyndte at lave eksperimenter for at be- eller afkreefte deres teorier Det
vil sige, at der skete en deling af naturvidenskaben, i stedet for kun en gren
(teori) fik vi to grene (teori og eksperimenter)
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Figur 1 Naturvidenskabens tre-deling Inspireret af figur 12 i [1]

Vi stdr nu i en historisk situation naturvidenskaberne er igen ved at dele
sig Den tredie gren er brugen af computeren [14] Jeg vil vaelge at tale om
beregningsvidenskab som en dansk oversaettelse for det engelske “computa-
tional science”! Beregningsvidenskaben indtager en ganske interessant plads
mellem den teoretiske og den eksperimentelle Den er hverken teoretisk eller
eksperimentel, men ligger et sted midt mellem de to andre grene P4 sin vis
er beregningsvidenskab meget naiv i forhold til teoretisk kemi eller fysik I
stedet for at udvikle en stor flot (men approksimativ) teori for et eller an-
det system, beregner beregningskemikeren diverse egenskaber direkte fra de
simpleste ligninger, han eller hun kender De eneste approksimationer han
foretager er den, som ligger i, at computeren regner med endelig ngjagtighed
og naturligvis den der ligger i modellen eller ligningerne Figur 1 forsgger at
opsummere ovenstaende ideer

Man kan spgrge sig selv om det er Naturen vi genfinder i et computer-
program Det er det efter min opfattelse Som Wolfram skrev i Scientific
American [17]

It is presumably true that any physical process can be described
by an algorithm, and so any physical process can be represented
as a computational process Perhaps most significant, it [the
use of computers] is introducing a new way of thinking in science
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Scientific laws are now being viewed as algorithms A new
paradigm has been born

Kemisk kinetik

At ville skrive om computerens rolle i kemisk kinetik er nok et lidt for ambigst
emne, og jeg vil da ogsd begraense mig til et par eksempler

Pseudo-stationaritet

Beskrivelsen af kemisk kinetik er en beskrivelse af, hvordan koncentrationerne
af diverse kemiske forbindelser udvikler sig i tid Den naturlige form er szed-
vanlige differentialligninger, dvs vi har et begyndelsesveerdiproblem af typen

d¢c >

= ®

hvor ¢ er koncentrationerne samlet i en vektor og f er hastighedsfeltet
Ovenstéende ligning kan lgses i enkelte - og simple - tilfzelde Allerede i 1913
foreslog Chapman og Underhill [9] pseudo-stationaritetsprincippet (PSP),
som siger at koncentrationen af et intermediat efter nogen tid ikke sendrer
sig I matematiske termer betyder det, at

d[X]
dit
hvor X er et intermediat Ved hjelp af PSP kan vi reducere vores differen-
tialligningsproblem For hvert intermediat, hvor vi benytter PSP fir vi en
algebraisk ligning, samtidig med at vi far en differentialligning mindre Det
var pd denne made Bodenstein og Liitkemeyer i 1925 [8] var i stand til at
vise, at deres mekanisme for syntesen af hydrogenbromid stemte overens med
deres eksperimenter
Naturligvis giver brugen af PSP problemer, idet det er en approksimation
Man kan derfor spgrge sig, om man far det samme resultat, som hvis man
Igste differentialligninger uden nogen approksimation Det spurgte Farrow og
Edelson sig om i 1974 [10], og i de systemer de sa pd, kunne de konstatere at
man ikke fik samme resultat! Deres undersggelser var foretaget vha comput-
ere, med hvilke de havde lgst bade de eksakte ligninger og de approksimerede
ligninger?
Det kreever naturligvis mere regnetid at simulere det fulde system end
det PSP approksimerede system Men her ma det bemazerkes, at simuleringen

~ 0
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Figur 2 Proton-overfgrsel i formamidin Molekylet i midten er et “transition-
state” kompleks Tallene nummererer atomerne Reproduceret efter [6]

af kemisk kinetik for selv store systemer ikke er mere tidskravende end at
det kan ggres pa en almindelig pc’er Kinetikerne kan med andre ord bruge
computeren til noget, det drejer sig iseer indenfor emner hvor man ser pa
store mekanismer, som f eks atmosfzerekemi og oscillerende reaktioner

I fzenomenologiske del af den kemiske kinetik er det nok mere de mere
eksperimentelt orienterede kemikere end de teoretiske, som har gleede af den
nye gren af kemien

Proton-overfgrselsreaktioner

Det er sveert at veelge en artikel blandt de mange, der omhandler simuleringer
af kemiske reaktioner Jeg har valgt at beskrive et enkelt arbejde Det drejer
sig om Nagaoka, Okuno og Yamabe [6] der har undersggt reaktionen som er
illustreret 1 figur 2

De har set pa hvordan de enkelte atomer i formamidin og vand bevaeger
sig De har antaget at disse bevaegelser fglger klassisk mekanik I matematiske
termer kan klassiske bevaegelsesligninger skrives som

di;
® "
ds; _ R
a m

hvor 7; er atom ?’s position, ¥; hastigheden, F. den kraft som atomet er
pavirket af og m; dets masse Kraften F. er givet ved potentialerne mellem
de forskellige atomer og disse har Nagaoka et al fundet vha ab initio bereg-
ner Ved at lgse de klassiske bevagelsesligninger var Nagaoka et al i stand
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til at “se” proton-overfgrelsen De observerer at afstanden mellem atom nr
4 (hydrogen) og nr 2 (oxygen) bliver mindre med tiden, hvilket viser at
hydrogen-atomet nu indgér i vandmolekylet og ikke formamidin

Dette arbejde viser hvad computer-simuleringer kan betyde for kinetikken
Det er muligt at undersgge dynamikken af et “transition-state” kompleks helt
ned pa det atomare niveau Naturligvis kan simuleringerne ikke laves pd en
formiddag (denne type simuleringer bruger megen regnetid) men det viser
hvilke muligheder den fysisk-organiske kemi har til radighed

Statistisk termodynamik

Den statistiske termodynamik forsgger at udregne termodynamiske stgrrelser
ud fra mikroskopiske tilstande En termodynamisk stgrrelse kunne f eks veere
temperaturen som viser sig at veere den gennemsnitlige kinetiske energi

Simuleringen af mange-partikel systemer er en made hvorpd vi kan forbinde
det mikroskopiske niveau med det makroskopiske niveau Historisk set var
netop dette omrade et af de forste, som fysikere og kemikere undersggte vha
computere i 1950’erne I termodynamik er det af store interesse at finde et
systems tilstandsligning, som beskriver hvordan forskellige termodynamiske
storrelser er relateret Den mest kendte er idealgasligningen

PV =nRT

hvor P er trykket, V er rumfanget, n stofmaengden, T temperaturen, og R
er gaskonstanten Denne tilstandsligning gelder for en gas, hvor de enkelte
partikler ikke vekselvirker, dvs de hverken frastgder eller tiltrackker hinan-
den

Empirisk ved man, at ikke alle systemer opfgrer sig som ideale systemer
Det har man forsggt at efterrationalisere gennem virialudviklinger, dvs at
tilstandsligningen for gassen er

PV =nRT (1 + i BiP’”) (2)

=2

hvor B; er den i’te virialkoefficient Eksperimentelt finder man s mange
koefficienter, som det er muligt ud fra ens data

Ideale gasser er det simpleste system vi kan forstille os Det naeste system
er harde kugler Harde kugler er ikke andet end sma kugler, der bevager sig
rundt i en beholder - et billardbord er en god to-dimensional analogi Den
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eneste made, partiklerne vekselvirker er gennem kollisioner Nar de stgder
sammen, @ndrer de kurs og hastighed gennem et elastisk stdd Teoretikere
har brugt megen tid pa at udlede tilstandsligningen, dvs finde virialkoeffi-
cienterne

Simulering af systemer af harde kugler er ikke szerlig kompliceret, og det
er muligt at skrive meget hurtige programmer Ved hjzlp af et sddan pro-
gram kan vi finde sammenhgrende veerdier af tryk, temperatur og teethed
(teetheden er 3%), og derefter lave en kurvetilpasning til ligning 2 og finde s&
mange virialkoefficienter som vores beregnede data tillader Tabellen neden-
for viser virialkoefficienterne (b = B;) fundet ved simuleringer og udregnet
vha HNC-teorien [12] HNC-teorien er bygget op omkring integralligingen

hvor B = 1/kgT, g(7) er den radiale fordelingsfunktionog v(7) er potentialet,
som ved hérde kugler er simpelt HNC-teorien giver et lukket udtryk for
virialkoefficienterne

B,/b" 1 =2(2+3n(n—-1))4™"

Som det ses af tabellen, giver HNC-teorien gode verdier for de forste
virialkoefficienter, men de sidste er gale

virial koefficient Simulering HNC

Bo/b 10000 10000
Bs/b? 06250 06250
B4/b® 02861 02092
Bs/b* 01103 0 0493
B/ 00386 00281

Simuleringsteknikkerne udviklet omkring statistisk mekanik ser ud til - for
mig - at koncentrere sig mere om teoretiske studier (idealiserede modeller) end
om koblingen til eksperimenter Det mener jeg ikke, at der er noget galt i, det
viser bare at beregningskemi indtager en vaesentlig plads mellem teoretiske og
eksperimentelle aspekter af kemien Simuleringer af mange-partikel systemer
er interessante, fordi de giver os mulighed for at koble den mikroskopiske
verden med den makroskopiske verden Det er sveert at sige, hvor stort et
typisk system er Verdenrekorden ligger omkring 250 millioner partikler, men
det er nok mere almindeligt at simulere mellem 500 og 100000 partikier



I det sidste arti er der fremkommet en raekke mere eller mindre kom-
mercielle programmer til undersggelse af store biologiske molekyler, f eks
proteiner Med mere eller mindre kommerciel mener jeg programmer som er
gratis at bruge for undervisnings- og forskningsinstitutioner, mens private
virksomheder né betale for dem Jeg teenker pad programmer som Gromacs
[16], DL_POLY [11], etc Programmer benytter de samme numeriske algorit-
mer som benyttes i statistisk termodynamik Det, folk kan vaere interesseret
i, er et proteins struktur i vandig oplgsning Ved hjelp af en simulering af
de enkelte atomers beveaegelser finder man ligeveegtstrukturen Det drejer sig
her ofte om mere eksperimentelle folk som gnsker at treekke ny information
ud af deres eksperimentelle data fra feks Rontgen-diffraktion eller NMR-
spektroskopi

Kvantekemi

Kvantekemi er nok den gren af kemien, som langt de fleste forbinder med
supercomputere og tunge beregninger, dvs det er her, man forventer at finde
beregningskemikere Det er da heller ikke forkert

Den fgrste opgave i en kvantekemisk beregning er at opstille og lgse
Hartree-Fock ligningerne, dvs [15]

(-iv2 - Z?ﬁ) 0i(Z)

2m T

+ / Tﬂ%;w;(z”) [Soj(3—7”)(Pj(f)@j(f)@j(j”)(smsi,msjdf’,"’] = €;04(7)

hvor ¢; er den 7’te atomorbital, ¢; dens energi, Z er ladningen af kernen for
det pigzldende atom og s; er spintilstanden Molekylorbitaler dannes som
en linearkombination af atomorbitaler

Gennem de sidste 3—4 artier er der udviklet mere og mere sofistikerede
numeriske metoder, som lgser Hartree-Fock ligninigerne for et givet molekyle
Gennem lgsningen finder vi molekylets elektroniske tilstande og egenskaber,
og det giver os desuden mulighed for at udregne forskellige termodynamiske
stgrrelser som f eks dannelsesenthalpi

Der findes flere kommercielle programmer, som arbejder indenfor det
kvantekemiske omrade Langgard [13] har her i bladet beskrevet et par af
dem, man kan kgbe til pc’ere (Gaussian, Mopac, HyperChem) Naturligvis
er selv en hurtig pc’er ikke hurtig nok til at undersgge meget store systemer,
nar det drejer sig om ab initio beregninger
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Jeg vil ikke her opremse alle ab initio beregninger der er fortaget i ver-
den (Dansk Kemi kunne sikkert fyldes hver méaned med referencer til de
nyudkomne artikler) Jeg vil kort neevne et enkelt arbejde af Ho et al [4] I
sin korthed omhandler det beregning af dannelsesenthalpier af SiCl,, SiH,, og
SiH,,Cl,, forbindelse Motivationen for Ho et al er at SiH,,Cl,,-forbindelserne
er termisk ustabile hvilket betyder at de eksperimentelle data er noget usikre
Tabellen nedenfor viser de beregnede enthalpier og de eksperimentelle (som
er fra JANAF [3]) ved T = 298K Enheden er kcal mol™

Forbindelse Ho et al JANAF
SiH;Cl1 -322 -330x2
SiH,Cl, —~745 -T766+3
SiHCl; -1170 118641
SiHCl 170
SiH,Cl 78
SiHCl, —-343

Som det ses af tabellen er der god overensstemmelse mellem de beregnede
og de eksperimentelle veerdier for de tre fgrste forbindelse For de sidste tre
forbindelser foreligger der ingen eksperimentelle veerdier Det er her ab initio
beregningerne efter min mening kommer til deres ret Der er ingen idé 1 at
reproducere naturen, men der kan veere til stor hjelp at give eksperimenta-
lister en idé om hvad de manglende data er Det kan havde stor betydning i
tolkningen af eksperimenter

Symbolske programmer

I de sidste 10-15 ar er der fremkommet en meget speciel type programmer,
nemlig programmer, som er i stand til at manipulere med matematiske udtryk
og strukturer pa en eksakt made De metoder, som jeg har beskeftiget mig
med i de foregdende afsnit var alle numeriske, lgsningerne er ikke eksakte,
men givet af en computer som regner med endelig preecision De symbolske
programmer (Mathematica, Maple, Macsyma, Reduce, etc ) ggr det samme,
som vi mennesker ggr, nar vi sidder med et stykke papir og en blyant og
Igser en ligning, finder egenveerdier for en matrix, etc Med andre ord er disse
programmer i stand til at reducere z2 + y? + 2zy til (z + y)?, uden at vide
andet end at z og y er to variable Selvfglgelig kan symbolske programmer
meget mere - de kan finde egenveerdier for vilkarlige matricer, lgse algebraiske
ligninger og meget andet



De symbolske programmer er endnu ikke s& udbredte, men jeg er overbe-
vist om, at nar fgrst mere teoretisk orienterede kemikere opdager mulighe-
derne i at bruge symbolske programmer, vil de fa stor betydning Naturligvis
kan programmer ikke andet end vi mennesker kan - hvis en ligning ikke kan
lpgses eksakt, kan programmerne ikke hjaelpe os Men det er vigtigt at huske,
at hvor vi mennesker hurtigt far sveert ved at overskue komplicerede mate-
matiske udtryk, er det ikke et problem for en computer, bare dens bruger
har talmodighed Og hvem kan lige huske at?

L1
— né 945
eller

1

27
1
exp(z) sin(z) = —=€*" + =
| e S

Mit kendskab til symbolske programmer er begraenset til Mathematica og
Maple Bade Mathematica og Maple er i sig selv programmeringssprog som
er konstrueret med matematiske anvendelser for gje For disse to programmer
ligger styrken ikke i, at det er muligt i udregne ovenstiende to eksempler,
men det at det er muligt at skrive lange programmer i det indbyggede pro-
grammeringssprog

Et godt eksempel, som dog ikke s& vidt jeg ved er blevet realiseret, er
undersggelser af gittermodeller i statistisk mekanik Den simpleste er Ising
modellen, og her er det muligt at finde faseovergange ved handkraft Men det
kunne veere interessant om det ogsd var muligt for andre modeller, f eks en
Potts model* Det er ganske givet umuligt at ggre i hdnden, men et program
til f eks Mathematica ville méske veere i stand til at ggre det

Der er dog i de senere ar fremkommet nogle eksempler pd hvordan sym-
bolske programmer kan bruges i teoretisk fysik og kemi Lad mig her nsevne
et par eksempler med kemisk relevans Det fgrste er et arbejde af Ageev og
Sanctuary [2] De har vha Maple udregnet NMR liniers intensiteterne for
systemer med spin -g— Som de skriver i deres resume

Developments in computer algebra have prompted us to recon-
sider earlier intractable problems

Et andet arbejde er af Cox, Smith og Sutcliffe [5] De har skrevet program-
mer til Maple som kan lgse Schrodinger ligningen for tre-legeme problemer
under bestemte forhold Det skal bemazerkes, at uddata fra det symbolske
program bruges i et program, der regner videre numerisk, altsd en mere tra-
ditionel metode



Afslutning

Jeg har i denne artikel forspgt at beskrive nogle af de omrader i kemien hvor
computere har en vigtig rolle at spille Beregningskemien mé altid sgge in-
spiration hos den eksperimentelle kemi, men samtidig kan beregningskemien
inspirere eksperimentalister i tolkningen af malinger og i design af eksperi-
menter

Noter

1 Det er veerd at bemserke, at der er forskel pd “computational science”
og “computer science” Det sidste er hvad vi pa dansk kalder datalogi

2 Jeg vil ikke forsvare den holdning, at PSP helt skal opgives, idet det
har stor betydning i mere teoretiske overvejelser

3 Verdien af reekken og integralet er fundet vha Maple

4 En Potts model er en generaliseret Ising model
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Oscillating Chemical Reactions Simulated by Molecular Dynamics
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‘We outline how chemical reactions can be simulated by Molecular Dy-
namics, and we apply our technique to an oscillating chemical reaction
scheme; a modified Volterra-Lotka scheme We observe deviations from
the phenomelogical equations in the phase separating temperature region

1 Introduction

The phenomenon of oscillating chemical reactions is fairly new, i e it has been
known for the last three or four decades. The development of the theory for
oscillating chemical reactions is strongly connected to the theory of nonlinear
dynamical systems and nonequilibrium thermodynamics Until now oscillating
chemical reactions have experimentally been investigated macroscopicly and the
theory used for describing the reactions is phenomelogical. Experimentally stu-
died oscillating reactions are either external driven systems or systems allowed
to relax to equilibrium

On the other hand oscillating systems have been investigated numerically as
long as oscillating reactions have been known by means of coupled differential
equations in the consentrations It is however possible by today’s computers
to simulate chemical reactions in continious space and on a molecular level by
Monte-Carlo (MC) and Molecular Dynamics (MD) simulations It implies that
it is possible to investigate realistic systems where also other nonlinear dynamics,
like a phase seperation might influence the chemical reaction It was recently
shown that chemical reactions have a large effect on phase separation; see e g
[4] for a Monte-Carlo study of simple first-order reactions A &2 B and Molecular
Dynamics study of first- and second-order reactions [5]

2 Chemical kinetics and molecular dynamics

Chemical reactions, on a microscopic level, are usually formulated as coupled
elementary reactions We will here only consider coupled bimolecular reactions,
ie a reactions where there are two reactants in each reactions.

The usual chemical viewpoint is the transition state theory The basic idea
is that the two reactants collide and form an activated complex (C*), which
can either break into the reactants again or into the products The quantum
mechanical details in this reversible dynamics are, however, believed to be of no

144 Springer Proceedings in Physics, Volume 82
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importance for the overall kinetics of oscillating reactions The main feature is
that the exchanges of covalent bonds occur with a certain probability when the
reactants are separated at a short molecular distance The reaction rate is typi-
cally given by an Arrhenius expression where the rate depends exponentially on
the activation energy in units of the kinetic energy (the temperature) Experi-
mentally, reactions with small activation energy are difficult to follow because
they are fast In Molecular Dynamics, however, we are in the opposite situa-
tion With today’s computers we are able to simulate of the order 10° (simple)
molecules in of the order 10° time steps, which correspond to reaction times of
only nanoseconds For this reason the transition energy is taken to be of the or-
der T which automatically implies that the reaction takes place on a time scale
equal to the mean collision time Futhermore, a chemical reaction appears in an
open system, i e without a conserved energy and fixed number of reactant On
the other hand a traditional MD system consists of a fixed number of particles
and with a well-defined Hamiltonian, which makes it to a non-trivial task to
reformulate the dynamics in open systems with chemical reactions The actual
implementation and its impact on the dynamics is described in in more details
in Ref [5] In summary the reaction dynamics is implemented into the MD by
spontaneously and with a certain probability, to relabel the colliding particles

Futhermore, in order not to introduce large force gradients into the system by
this reaction dynamics we only consider reactions between particles with almost
the same excluded volumes, i e the chemical individualities of the reactants are
given by their long range forces and not by their short range forces This feature
is certainly unrealistic from a chemical view point; but it is believed to be of
no importance for the qualitative behavior of the chemical reaction dynamics
as will be demonstrated

3 A particular example: MD simulations of the
modified Volterra-Lotka reaction

We have chosen a particular oscillating system as our system It consists of
three species and three reactions The reactions are:

A+X B o2x 1)
X+Y 8 oy @)
Y+A4 B 24 3)

To minimise the number of parameters in our model, we have chosen to set
k3 to the same value as k;

This reaction scheme is a simple modification of the Volterra-Lotka equa-
tion for a homogeneous (in space) oscillating reaction [6] [7] In a traditional
chemical reaction experiment the system is fed by a reactant A which through
a consecutive set of unimolecular reactions is transformed into the product B
In our case and for an open MD system of particles in a volume with periodical
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boundaries it is, however, convenient to equal reactant and product and thus
to recover A through reaction 3 It is the only modification of the traditional
reaction scheme for the oscillating reaction and the flow through the system
is obtained, as usual by only forward elementary reactions without reverse re-
actions This corresponds to that the reactant has a significant higher (free)
energy than the product

From these three reactions, one can easily derive three phenomelogical equa-
tions describing the concentrations of the three species The equations are:

i([;lf:_] = —k[A[X] + K A]Y]
f’%’tﬂ = k[A[X]~ k[X][Y]
dy)

L = RlXIY]- B4

where [ ] means the concentration The phenomelogical equations are only valid
in the complete homogeneous case, which experimentally is realised by stirring
the contents of the chemical reactor

We have three coupled ordinary differential equations which are impossible
to find an analytical solution to In general, we have equations of the type.

di o
= = 1@

We can first find a stationary solution to the problem above, ie find an T
which satisfies f(#) =0 Then we can linearise the differential equation at this
stationary point and obtain

déz
= = J(F0)0F
7 J (zo) T
where J is the Jacobian matrix and 6% is the deviation from the stationary
point, ie 6% = & — #p The linearised system is a linear differential equation.
The solution of the linear differential equation is

5= Gevt
i

where w; is the ith eigenvalue and &; is basically the ith eigenvector which is
normalised appropriately
The modified Volterra-Lotka scheme has a stationary solution, which is

_ _ 2k

Mo = € (1 2k + kz)
_ __Chk _

Xl Y] = TR

where C is the total concentration, ie C = [A]+ [X]+ [Y] which is a constant
‘We can now linearise the system and calculate the eigenvalues of the Jacobian
matrix at the stationary point We get
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Chivk; .

M= Ay =
T Vet ke
which shows us that the system will have sustained oscillations - at least close
to the steady-state solution

4 Simulational details

The chemical equations for the Volterra-Lotka reaction expresses a homogeneous
change in the concentration space of the reactants, which for certain values of the
reaction rates, oscillate In a real experiment it means that large concentrations
of a certain component is built up for a while and then disappears through a
chemical reaction. If the three components are miscible for all concentrations
one would expect that the dynamics might be well described by the traditional
homogeneous differential equations, whereas a new situation appears if one of
the concentrations exceeds the critical value of solubility and a competing phase
separation takes place in the oscillating system For this reason we will expect
a non-trivial difference between a set of homogeneous chemical reactions and a
corresponding MD simulation This is due to the fact that we in an MD system
can create a phase separation by a chemical reaction, simply by ensuring that
the product has an intermolecular potential which favors phase separation This
is ensured in the very same manner as for the chemical reaction by varying the
long range attractions between the molecules For details see e g [8]

The system is - as already mentioned - a three-component system The
interaction of particles of the same type is a Lennard-Jones potential which is
cut at » = 25 The interaction between particles of different types is also a
Lennard-Jones potential, but it is cut at 7 = 1 0 meaning that it is replusive
only The density of the system is 06 At low enough temperature a system
with such interactions will phase separate We use the same reaction parameters
throughout all our simulations The collision diameter is set to 1 0 (in Lennard-
Jones units) The probability of reaction is set to 1 0 1073 for reactions 1 and
3 while for reaction 2 it is set to11 1073

All our simulations are performed in the NV T-ensemble using a Nosé-Hoover
thermostat to control the temperature and a leap-frog algorithm to integrate
the equations of motion [1] The chosen time step is h =5 10™* Furthermore,
all simulations are done in two spatial dimensions

5 Results and open questions

We have performed a number of simulations at different temperatures with
either 1024 or 8192 particles Rate constant for a reaction usually follow Ar-
rthenius’ law, ie &(T) = A e B+/ET where E, is the activation energy, A is a
preexponetial factor, and R is the gas constant.

During our simulations we have stored instantaneous values of the concen-
trations and the number of times the three reactions has occured Figure 1
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Figure 1: The concentration of A versus time The simulation shown consists

of 8192 particles and the temperature is 14 The time is measured in unit of
time steps
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Figure 2: Arrhenius plot for the rate constant for reaction 1 The lower curve
is for 1024 particles and the upper one is for 8192 particles Note that the rate
constants are not normalised according to the number of particles and therefore
the rate constants for the 8192 particle simulations are 8 times larger. The
dotted lines are the best fitted lines to the data in that particular temperature
region

shows the concentration of A versus time for a typical simulation The number
of times a reaction has occured {denoted Ng) is proprotional to the velocity of
that reaction and we therefore have a simple relationship for the rate constant,
namely k = [-J’-ﬁfﬁ, where J and J' denote the two reactants in the reaction.

Figure 2 shows the rate constant for reaction 1 versus the inverse tempera-
ture Similar plots can be made for the two other reactions The estimated error
bars are very small. Our estimates are that they are at 4th or 5th significant
digit [2]

‘We notice there is a crossover at T &~ 3 The crossover seems not just to be
a finite-size effect since we see it at simulations with 1024 and 8192 particles

We believe that this effect comes from the fact that the system goes from
being phase separated to a homogeneous phase when we increase the tempera-
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ture In the homogeneous phase the three reactions can occur at all places in
the simulation box while below the phase separating temperature, the reactions
will mainly occur at the boundaries between clusters of, say, X and Y The
critical temperature for a similar system of a binary mixture is T, ~ 47 [§]
In the critical region the phase separation dynamics is extremely slow; but
well below this region two processes will compete: diffusion (to the interfacial
reaction zone) and reaction The figure shows that the activation energy in the
low temperature region is not the activation energy for the reaction but the
activation energy for combined process of diffusion and reaction
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Molecular dynamics (MD) of stationary chemical kinetics is used to simulate oscillating chemical
reactions in a system of N classical mechanical particles with Lotka—Volterra kinetics The MD
includes oscillations in a (closed) system with conserved energy and time reversible dynamics as
well as oscillating chemical reactions in an open and driven non-equilibrium system, and with and
without a competing phase separation of the different components in the reactions The approach
allows a detailed investigation of the kinetics and demonstrates on a molecular level, the
phenomenon oscillating reactions for various chemical and reaction kinetics details When phase
separation takes place during the oscillations the kinetics is no longer simple diffusion driven
© 1997 American Institute of Physics [S0021-9606(97)50846-4]

1 INTRODUCTION

Oscillating chemical reactions have been known for
many years Lotka was the first to do a theoretical
investigation,! whereas the first systematic experimental
studies were performed by Belousov and Zhabotinsky 2In
the recent years there has been a vast interest in spatial in-
homogeneous systems after Zhabotinsky’s observations of
chemical waves > Prigogine and co-worker’s investigations
of far from equilibrium systems have been of great impor-
tance in the theoretical understanding and especially the
Brusselator has been a source of inspiration for the chemical
community *3 Models for chemical reactions are usually for-
mulated in terms of continuous parameters, like the concen-
trations and free energy density, for the variation in time and
space, and do not include the microscopic molecular details
of the reactions By molecular dynamics (MD), however,
simple chemical kinetic systems can be simulated micro-
scopically by a finite number of particles according to the
(classical) equations of motion® ’ and this approach allows an
investigation of the details in the reaction dynamics and do-
main formation Simulation of chemical instabilities and os-
cillating chemical reaction by molecular dynamics has in fact
been performed for more than two decades 68-10 Recently it
has been shown that chemical reactions (A= B) may alter
the dynamics of a spinodal decomposition 7 The present
work analyzes the interplay between oscillating chemical re-
actions and a spinodal decomposition into coexisting phases
of the different species in the chemical reaction scheme

The outline of this paper is the following: Section II
presents the chemical system we have investigated It is a
modified version of the old Lotka—Volterra equations Dif-
fusion driven reactions in condensed phases are discussed in
Sec III In Sec IV we discuss the molecular details of the
open and (energetically) driven reaction scheme and how the
bimolecular reactions are implemented in the MD system,
and the results obtained from our simulations are discussed
in Sec V

9406 J Chem Phys 107 (22), 8 December 1997
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I THE CHEMICAL SCHEME

The first step in the present investigation of chemical
kinetics is to formulate a chemical reaction scheme which is
suitable for simulation by MD The first problem is to set up
an open MD system for a stationary state of chemical reac-
tions In chemical kinetics we have in general a consecutive
set of chemical reactions in which the reactant(s), A, is trans-
formed into the product(s), D In a stationary flow one en-
sures a constant flow with respect to the way in which A
enters the open reaction cell and correspondingly the way in
which the product D leaves In MD this can be done by
introducing the A molecules at the positions where the prod-
ucts are taken away, in the most simple case by relabeling
the particles This periodic kinetics, however, has the short-
coming that it correlates the position of the reactants directly
with the position of the products and moreover, this station-
ary driven MD system might violate fundamental thermody-
namics principles e g the Wegschleider conditions ¢ But
both shortcomings however are easily circumvented by in-
troducing an activation reaction The complete MD-
stationary chemical kinetics technique (MD-SCK) is best de-
scribed by a specific example (see also Sec III) We shall
use a particularly simple autocatalytic oscillating reaction,
namely the Lotka—Volierra mechanism,! often simulated in
deterministic chemical kinetics ¢! Traditionally this set of
consecutive forward reactions is written as

k
A*+B—2B (1)
ky
B+C-52C @
ks
C—D, €)

where k,, k,, and k; are the rate constants (The MD kinetics
can easily include reverse reactions;’ but in the stationary
driven state far from equilibrium these reactions play no
role ) Experimentally the reactant A* is injected and the

© 1997 American Institute of Physics
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product D removed continuously with a constant flow from
the reaction cell by fast diffusion In the MD-SCK, however,
the stationary kinetics are set up so that the product D is
replaced by “‘precursors’’ A, of the reactant The extended
Lotka scheme is then obtained by introducing an activation
reaction

ko
A—A%, “)

by which the precursors of the active reactant are energeti-
cally activated, e g, experimentally by a photo induced tran-
sition and in MD e g, by thermostating some (randomly)
selected precursors 1o a higher temperature The last equation
is modified, e g, to

k
C+A*324, (5)

whereby the deactivated precursor A is reproduced

In the limit of fast activation (ky>k;) one can derive
phenomenological equations describing the evolution of the
concentrations The phenomenological equations are only
valid for a homogeneous system, ie, a system where the
concentrations are independent of space—at least on a mac-
roscopic scale The three phenomenoclogical equations for the
scheme given by reactions (1), (2), and (5) are:

d[A*]

a7 =~ klA*IIBl+ks[A*](C], (6)
d[B]
3 ~klA*IBI-k[BIC] (7
d[C]
37 =k BI[Cl=k5[A*][C] (8

It is easy to see that we can only have simple solutions;
there are no chaotic solutions The system is two-
dimensional since the total concentration is constant, K
=[A*]+[B]+[C] The Poincaré~Bendixson theorem then
shows that only simple solutions may exist 2 It is not pos-
sible to find an analytical solution, and instead we can find
an approximate solution First we find a steady state, ie, a
point in the concentration and parameter space (the param-
eters are the rate constants and the total concentration) where
the derivatives of the concentrations with respects to time are
zero The steady state is

A* —'———2 (9)
[ ]ss kl kz I k3 ’

[B]ss ‘1”2 ‘3’ (O)
C _————-——l 11)
[ ]ss ‘1 ‘:2 k3 (

The eigenvalues and eigenvectors of the Jacobian matrix
are calculated at the steady state and the approximate
solution—close to the steady state—is then

9407

c(t)—c,s=2 e;exp(w;t), (12)
J

where ¢ is the concentration vector, e; the jth eigenvector
(normalized appropriately) and w; is the jth eigenvalue It
turns out that the chemicdl scheme has one eigenvalue which
is zero and two eigenvalues which are imaginary only The
latter two form a complex conjugated pair, and the value is

- K\kykoks
W= —mm————
T

In other words, the solution close to the steady state is
oscillatory

(13)

1l BIMOLECULAR REACTIONS IN CONDENSED
PHASES

In the case of chemical reactions in condensed phases
we often see that diffusion may play an important role If we
look at the reaction X+Y—Z in a condensed phase, the
reaction may be split up in two reactions'?

kg
X+Y->Z, (14)
k"
Z—-X+Y (15)

The species Z represents the products while X and ¥ are
the two reactants The rate constants k; and &, depend on the
spatial dimension, i € , the functional form in two dimensions
is very different from the three-dimensional case We will
limit ourselves to the two-dimensional case since all our
simulations have been performed in two dimensions It turns
out that the rate constants are time dependent The two ex-
pressions are!®

Ry(1)
_2(Dy+Dy)(Rol1)
RO ‘°g( R) an

reac

where R, and R, are two slowly varying functions, Dy and
Dy are the diffusion coefficients for the two species X and Y,
and R, is the sum of the radii of X and ¥ We will in Sec
IV A define this parameter more precisely

We observe that the two rate constants scale linearly in
the diffusion coefficients When we observe an overall rate
constant k for the reaction X+ Y — Z, the ratio between k and
Dx+Dy must be constant, if the reaction is diffusion-
controlled It is also worth noticing that in our simulations,
the diffusion coefficients of the three species are the same,
e Dy=Dy (The controversy about diffusion in two
dimensions'* concerns diffusion in infinite systems The self-
diffusion in the present, finite system is a well defined quan-
tity which can be obtainede g, from the Einstein relation for
the mean square distance of the particle diffusion )
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IV SIMULATING OSCILLATING REACTION WITH
COMPETING PHASE SEPARATIONS BY MD

A Simulating bimolecular reactions by MD

Since we are interested in the general and qualitative
properties of MD simulation of chemical kinetics we have
chosen simple Lennard-Jones (LJ) intermolecular potentials
between the various species in the reaction scheme and with
identical short-range repulsion (o) by which we avoid intro-
ducing large force gradients in the (open) MD-system caused
by fast kinetics This is also convenient when applying the
MD-SCK technique introduced above In fact the MD for
continuous space model, in contrary to lattice models, in
principle allows the introduction of a (reactant) molecule ev-
erywhere and this fact is used e g, for MD simulations of
open equilibrium systems by (slowly) scaling up particles at
random position With fast reactions, however, this tech-
nique will introduce large force gradients into the system and
bring it in a deep non-equilibrium state But this problem is
overcome by ensuring the same excluded volume of all the
species in the reaction scheme, and the heat of reaction is
introduced smoothly into the particle dynamics by changing
the range of attractions of the pair potentials after a chemical
reaction

The phenomenological equations discussed in Sec II do
not explain how the reactions proceed on a molecular level
We will not try to review the theories of reaction dynamics
here but only discuss how we implement chemical reactions
in a molecular dynamics simulation

The naive idea about a bimolecular reaction like A
+ B— P is that the two reactants A and B collide, forming a
collision complex which breaks up and forms the product P
This is the idea behind the collision theory of reactions '®
Writing this idea in reactions we have: A+B=C—PF We
have assumed that the collision complex C may also form
the reactants and not only the product

Since we are not working with hard spheres but particles
with (qualitatively) realistic intermolecular potentials, we
have to specify what we mean by a collision in the context of
chemical reactions A collision, which might result in a
chemical reaction, simply appears when the distance be-
tween two particles is less than a given distance R, deter-
mined by the activation energy &=u;;(Ry,) In order to
simulate the ‘fate’’ of the collision complex we let the prod-
uct be formed with a certain probability P,, ie, we choose
which of the two reactions (C—A + B or C— P) to occur by
using a random number generator The parameter R, is the
same parameter we used when we discussed diffusion-
controlled reactions In the context of diffusion-controlled
reactions, the parameter is the sum of the radii of the two
reacting species

B Simulating oscillating reaction by MD

A simple molecular dynamics implementation of the
modified Lotka—Volterra reaction is indeed very easy set up
just by randomly labeling (A*, B, C) the N identical par-
ticles in an ordinary (two-dimensional) MD system The os-
cillating kinetics in this closed system is implemented only

Geisshirt Praestgard, and Toxvaerd: Oscillating chemical reactions

by relabeling particles ai (high energy) collisions This
means that e g, an A*-particle can be converted irreversibly
into a B-particle by collision with a B-particle etc by which
the forward reactions in reactions (1), {2), and (5) are per-
formed This corresponds to a spontaneous and constant ac-
tivation of the precursor to the reaction species, i e, kg>k;

The activation energy at a binary collision, &, as well as the
reaction probability, P,, is easily adjusted7 and the underly-
ing dynamics of the N identically, but labeled particles, is
purely classical and time reversible The concentration of
individual labels, however, changes irreversibly and for cer-
tain choices of reaction parameters the concentration of e g,
A* particles oscillates with a frequency given by Eq (13)

A simple example of this purely deterministic MD sys-
tem with oscillating concentrations is given in Ref 6 for MD
at constant energy and with Coulomb pair repulsion The
system most commonly used in MD, however, consists of
Lennard-Jones particles at constant temperature and with a
time reversible classical mechanical dynamics '8 This closed
system oscillates too, even when the system is not spontane-
ously activated by a large kg in reaction (5), and it demon-
strates that the oscillating reactions are insensitive to details
in the intermolecular potentials and the activation process

These systems are, however, in an extreme situation seen
from an experimental point of view A real system with os-
cillating chemical reactions is an open and driven system far
from equilibrium, and it consists of species which differ with
respect to their potential interactions, and the kinetics is as-
sociated with different heats of reaction We have obtained
oscillating reactions for such systems by keeping the acti-
vated species A* at a higher temperature than the product C
(and with net forward reactions), as well as by thermostating
all the particles and by ensuring the irreversible driven sys-
tem by the net forward reactions in reactions (1), (2), and (5)
The results reported below are for this case

The heat of the chemical reactions implies that local
concentration gradients are introduced into the system during
the oscillations which now takes place in a non-uniform sys-
tem This may even result in phase separations and when this
bappens we shall demonstrate that the bulk diffusion-
controlled reaction mechanism switches over to a surface, or
interface controlled mechanism As mentioned all particles
have the same repulsive (LJ) potential (u ,(r) for 7
<2%4) and the heat of reaction is given by the fact that
pairs of species differ with respect to the range of their at-
tractive pair potentials (As a technical consequence of that
fact, the chemical reactions do not spontaneously result in
any release of heat It is only when the pairs separate
smoothly and without any big force gradients after the colli-
sion, that the heat of reaction dissipates into the system for
r>2Y%q)

A mixture will separate into coexisting phases if the gain
in energy exceeds the loss of mixing entropy This ability is
also simply ensured by baving only short-range and repul-
sive Lennard-Jones forces between particles with different
labels Two systems of this kind have recently been consid-
ered First, a two-dimensional non-reactive binary mixture
was shown to separate slowly and algebraically into coexist-
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ing phases for temperatures below T,~1 7e/ky (where € is
the energy parameter in the potential and kp is Boltzmann’s
constant) !” The situation, however, is much more complex
when the spinodal decomposition is performed together with
a competing chemical kinetics A spinodal decomposition in
a (2D) binary mixture and with a simple kinetics between the
two species was recently investigated by MD 7 In general,
the chemical reaction(s) may prevent the coarsening spinodal
decomposition and recently Carati and Lefever'® have de-
rived a series of conditions for the freezing of the Ostwald
ripening stage of phase transition in a binary mixture But
when it comes to a ternary mixture with several competing
chemical reactions the situation is even more complex A
ternary mixture with equal concentrations of the three spe-
cies, and without competing chemical reactions was found to
perform a phase separation with a dynamics and a morphol-
ogy completely different from that of a binary mixture  The
three species formed separated domains, different from the
bicontinious morphology of the (late stage) structure of a
binary mixture, and also the growth laws were different from
the corresponding growth laws for a binary mixture This
behavior, however, is expected as a consequence of the com-
position of the ternary mixture If, on the other hand, one of
the species (e g, A*) dominates one can expect that it, at a
late stage forms a continuous phase and from that time the
phase growth of the A* rich phase is expected to switch over
to the growth of a *‘binary mixture’’ of A* and (B+C) since
there is no difference between the mixing energies between
A* and B+ C, respectively

V RESULTS

As already mentioned we have simulated two different
kinds of systems In system 1 all particles are identical ex-
cept for their label while system 2, the interaction between
odd and similar pairs is different, i e, two particles of differ-
ent species e g, B and C are non-attractive while two par-
ticles of the same species interact according to the ““full * L]
potential In order to have a non-attractive potential for odd
pairs, we truncate the potential at the minimum, i e, at 2"
In this way, the potential will either be repulsive or zero The
bimolecular activation energy #/kg (kg is Boltzmann con-
stant) is given by R,.., which was set equal to 09611 in
most of the simulations and the reaction probability P, was
adjusted in order to obtain several periods of oscillations
within a simulation Since u(R,.)/kg==2 4 this corresponds
to the fact that the chemical reactions only appear at high
energy collisions

Figure 1 shows the positions of the particles for some
representative simulations The first figure, Fig 1(a) is for
the system which undergoes phase separations during the
oscillations and it shows the positions of the A* particles
when [A*] is maximum Also shown on Figs 1(b) and 1(c),
are the positions of the B and C particles at the same point of
state The sum of the phases, shown in Figs 1(a)-1(c), cov-
ers the hole area and represents a condensed liquid mixture at
p*=08 From the three figures one can see (and it was
tested by a cluster-calculation program) that the A* and the
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FIG 1 Snapshots of the positions of the individual particies at T=1 0 and
T=75 respectively The number of particles is 16384 at density p=08
The pictures are taken when the concentration of A* was ai its maximum
The simulation parameters are R,,.=0961160 Pi”=Pf”=10'3 P2
=11x10"3 (a)-(d) ate for system 2 whereas {e)-(f) are for system 1
(a)~(c) and (e) are for T=1 and (d) and (f) are for T=75 (a) and (d)—(f)
show the positions of A* particles and (b) and (c) show the corresponding
positions of the B and C particles

(B+C) particles perform a bicontinious morphology [Fig
1(a)], whereas the B and C particles are separated in clusters
At temperatures above T, the mixture does not separate dur-
ing the chemical oscillations The three figures, Figs 1(d),
I{e) and 1(f), show the positions of the A¥* particles when
[A*] is at its maximum and are taken at a high temperature
[Fig 1(d)] for the same system {system 2) as shown in Figs
1(a)-1(c), and at low and high temperature [Figs 1{e) and
1(N] for the system 1 without particle attractions and phase
separations As it can be seen from the last three figures the
distributions of the A* particles are rather uniform, but with
density fluctuations as expected in a continuous (MD) sys-
tem The distributions of the two other species in the ternary
mixture are qualitatively similar

Figure 2 shows the concentration of A* versus time in a
typical simulation of system 2 The concentrations of the
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FIG 2 The particle fraction of A* versus time [in time units o(m/€) 2 an
MD time step is 0 005] for typical simulations of system 1 (identical par-
ticles) The parameters are p=08 kzT/e=18 N=1024

three components oscillate easily as long as one chooses the
reaction probability to be a small value (less than 1072) The
ratio between the reaction probability of the three reactions
must neither be too large nor too small When a reaction is
too fast, the number of particles of one type drops to zero
and the reactions stop whereas MD gives a “‘window in
time’” in the order of nanoseconds, and if we choose a too
small value of the different reaction probabilities the oscilla-
tion times exceed this window

A good question is whether the steady state found in
Sec II exists in a system with a finite number of particles In
order to examine this, we performed simulations with 1024
and 65536 particles where the initial concentrations of A*, B
and C were chosen exactly at the steady state with all the
particle fractions equal to 1/3 Figure 3 shows the evolution
of the concentration of A* during the two simulations We
see that the steady state is indeed a real phenomenon for the
finite system and that the concentration fluctuates around the
mean value 1/3, but the fluctuations decrease in size with the
system size The linear stability analysis in Sec II gave an
expression for the frequencies near the steady state, cf Eq
(13) In Fig 4 we have plotted the observed frequency versus
the calculated frequency The caiculated frequency is com-
puted by using the rate constant measured from the simula-
tions performed with systems 1 and 2 (It is unnormalized
because the rate constants are nnnormalized ) We see that the
linear stability analysis predicts the frequencies well except
for a normalization factor

‘When chemical reactions appear together with phase
separations one observes deviations in the usual Arrhenius
behavior 2° Our first test shows how the present phase sepa-
ration alters the chemical reactions and is summarized in Fig
5 The figure shows two Arrhenius plots, ie, plots of log &
versus 1/T where k is the rate constant and T the tempera-
ture The number of particles was fixed at 1024 (pluses and
crosses) and 4096 (stars), respectively The first observation
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FIG 3 The particle fraction of A* at the steady state with equal start
particle fractions (1/3) of A* B and C The solid line is for 1024 particles
while the dotted line is for 65536 particles The simulation parameters are:
p=08 R,,;=0961160 PN=pPV=pP=10"3 T=20elk;

is that the system 1 (pluses, identical particles) follows
simple Arrhenius equation with a small correction at high
temperatures The second observation is that the system 2
(crosses odd pairs are non-attractive only) does not follow
the Arrhenius equations—there is a cross-over at kgT./€
~17 It is worth noting that above and below kgT . /e~17
the system behaves according to Arrhenius equation but with
different activation energies and pre-exponential factors
This indicates that the underlying mechanism is changed
The rate constants for the two systems approach each other
and in an asymptotically way for high temperatures as ex-
pected At this state the oscillating reactions occur in homo-
geneous mixtures where the long-range pair interactions act
as a uniform background, which does not affect the self-
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FIG 4 The calculated versus observed frequencies from simulations of
system 1 (pluses) and system 2 (crosses) The parameters were N= 1024
p=08 R, .=0069116 PV=pP=10"3 Pi¥=11x10" The different
frequencies are from simulations at different temperatures (in the range from
1 0€/kg to 8 Oe/kp)
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FIG 5 A plot of log k versus 1/T System 1 (N=1024) is plotted using
pluses (+) while system 2 (N=1024) is plotted using crosses (x) and (N
=4096) stars (*) The simulation parameters are the same as in Fig 4 The
rate constants are normalized by dividing the measured rate constant by the
number of particles

diffusion In order to be sure that the cross-over is not a
finite-size effect, we also performed the simulations with
4096 particles (squares) which, however, exhibited the same
cross-over behavior and at the same temperature The cross-
over temperature agrees with the upper critical temperature
for phase separations in a two-dimensional binary mixture of
the same kind of particles,"” indicating the onset of a phase
separation for temperatures below kzT./e=17 At the tem-
peratures below 7., there are small , but detectable differ-
ences between the 1024 and 4096 particles systems, (due to
that the domain sizes are of the same order as the area of the
system)

1f the reactions in the system behave as simple diffusion-
controlled reactions, the ratio between the rate constant and
the diffusion coefficient must be (almost) constant as previ-
ously pointed out in Sec III In a uniform system the long-
range attractive forces only change the diffusion marginally
They act as a uniform background field We see in Fig 6 that
above the critical temperature the ratio is constant within the
statistical error while below the critical temperature, the ratio
is certainly not constant This is a clear indication that the
mechanism changes from a diffusion-controlled scheme to
something else at the critical temperature We believe that
the mechanism below the critical temperature is surface-
controlled By a surface-controlled reaction we simply mean
that a reaction like A+B— P occurs in the interfaces be-
tween A-clusters and B-clusters It is not difficult to see why
it must be so: All reactions in the chemical scheme are bi-
molecular, i e, have the form X+ Y—P

VI CONCLUSION AND DISCUSSION

The chemical reaction scheme we have simulated is the
same as found in Ref 6, but the potentials used are very
different The potential used in Ref 6 is a long-ranged one
(1/r) while ours are short-ranged Even though they differ in
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FIG 6 A plot of the ratio k, /D versus T for system 2 The parameters are
the same as in Fig 4 The rate constant is for reaction 1 and is unnormal-
ized

molecular details, we see oscillations in both This shows,
not surprisingly, that it is the chemical scheme rather than
the molecular details that determines the osciilating nature
The molecular implementation of oscillating chemical reac-
tions agrees with the comresponding macroscopic (continu-
ous, mean-field) formulation, given in Secs II and Il We
obtain the steady state solution (Fig 3) as well as the same
dependency of the frequencies with respect to reaction rate
(Fig 4) as predicted by the mean field theory In the case of
osciilations without a competing phase separation we obtain,
within the accuracy of the computations, a rate constant, k,,
proportional to the selfdiffusion constant, D, (Fig 6) in ac-
cordance with the continuous, mean-field theory for bulk-
diffusion driven kinetics in 2D

Our results presented in this paper clearly show that a
phase separation alters the underlying mechanism of a
chemical reaction This gives us a new insight, on a particle
level, to the Arrhenius equation and at the same time allows
a determination of the mechanism of chemical reactions in
competition with phase separations As pointed out in Sec
IV the phase growth in a ternary mixture with competing
chemical reactions is expected to be very complicated and
we have not obtained data like structure factors, etc from
which the growth might be determined We believe, how-
ever, that the data shown in the paper represents chemical
oscillations with spinodal decomposition morphology similar
to the morphology of spinodal decomposition in a binary
mixture This is based on three facts First we observe a
‘‘non-Arrhenius’® cross-over behavior of the exponential
temperature dependence of the zate constant, k, (T~ '), below
a temperature T~7, (the upper critical temperature for a
binary mixture) Second, we notice that the system separates
in subphases below T [Figs 1(a)-1(c)] and that a species at
ifS’ maximum concentration, and the sum of the two other
performs a bicontinions morphology [Fig 1(a)], which is
characteristic for (late time) spinodal decomposition in a bi-
nary mixture, and different from the morphology of domains
in a ternary mixture of species with equal concentrations °
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But even so the growth is complicated since every species
(A*, B, C) might cross several growth regimes with differ-
ent scaling properties, during an oscillation 2! Third, we no-
tice that the minimum concentrations of the species during
the oscillations are significantly larger than the spinodal
concentrations!” which exclude nucleation growth as the
mechanism which drives the phase transitions with the
present choice of reaction probabilities Finally we observe
that whereas the chemical oscillations are bulk-diffusion
driven with a proportionality between the rate constant k,
and the self diffusion constant D, above T, the ratio, k, /D
also exhibits a (dramatic) cross-over in the temperature in-
terval T=~T_ (Fig 6) This cross-over behavior, which is due
to a big reduction of the rate constant k; below T, is a
consequence of the fact that the bimolecular reaction kinetics
is no longer bulk diffusion driven; but now only takes place
in the interfaces

It is worth noting that the oscillations persist even for
large systems One could wonder whether the oscillations are
a local or a global phenomenon The frequency and ampli-
tude of the oscillations seem independent of the number of
particles; we have tried with 1024 and 65536 particles and
for systems with and without competing phase separations
This indicates that there exists a cormrelation length scale
much larger than the system size On this length we imagine
that the oscillations locally are somehow synchronized, and a
further investigation seems worth doing

Our results presented in this paper are coming from
simulations of finite microscopic systerns which have a high
level of details (e g, we know the trajectory of every par-
ticle) Despite the microscopic nature of our simulations we
are able to reproduce the phenomena seen in the macroscopic
description of the same chemical system: Stationary point,
frequencies close to the stationary point and the oscillations
The present calculation is performed for two dimensional
systems due to computational resources; but the method in

Geisshirt Praestgard and Toxvaerd: Oscillating chemical reactions

general can be applied to more complex reaction schemes
and with more realistic chemical kinetics with exchange of
covalent bonds; as well as systems in three dimensions and
at catalyzing surfaces The advantage of molecular dynamics
simulations above other methods is that this simulation tech-
nique is for a continuous space and with a dynamics which
includes the hydrodynamics modes
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We have studied systems composed of either elastic or imelastic particles constrained to move in one
dimension and confined on a line by using molecular dynamics (MD) simulation techniques We have tested
several ways of modeling a boundary that exchanges energy with the system. Furthermore, we have studied
one-dimensional granular systems composed of soft particles under cooling and found that the decay in
temperature follows a power law Tt~ similar to the case of rigid particles, but now, the value of « depends
on the density and degree of inelasticity in the system For systems composed of inelastic particles thermo-
stated by one of the boundaries we find that the *‘extraordinary’’ state reported by Y Du, H. Li, and L P
Kadanoff [Phys Rev Lett. 74, 1268 (1995)] is an artifact introduced by method of providing energy to the

system [S1063-651X(98)05202-7]
PACS number(s): 81 05.Rm

L INTRODUCTION

Granular material fiows appear in nature (sand dunes,
planetary rings, powders) and are of great technological im-
portance (handling and transport of, e g, seeds and pharma-
ceuticals) In the dry state, granular materials interact mainly
by repulsive forces and there is energy dissipation during
collisions due to the excitation of internal modes Thus, in
the absence of an energy source the granular medium cools,
and the motion of the grains eventually stops One-
dimensional models of granular media have been studied in
the hope that the origin of phenomena that appear in models
for two or three dimensions can be enlightened by results
from more ‘‘simple’’ one-dimensional models The dynam-
ics of particles in one dimension, nevertheless, has the pecu-
liarity that their motion is confined between two neighbors,
and therefore the transport of physical quantities across the
system is very inefficient.

The present investigation was motivated by the work of
Du etal [1] where they report the appearance of an “‘ex-
traordinary’’ state in thermostated systems composed of
model granular particles in one dimension. In such a state,
the majority of the particles form a clump in the side of the
simulation box opposite to the thermostat, and they move at
a very low speed The rest of the particles move at a much
higher speed between the thermostat and the clump

The first part of this investigation is devoted to analyzing
the thermostating devices used in Ref [1] We have tested
whether these thermostating devices are able to produce true
equilibrium states at a desired température With this pur-
pose, we have studied systems composed of rigid and soft
particles constrained to move in one dimension We found
that the thermostating devices used in Ref [1] either failed in
setting the system at the target temperature (which is the
assumed temperature of the boundary), or produced a wrong
distribution of energies in the systems Therefore, we pro-
pose alternative methods that successfully produce equilib-
rium states at a desired temperature in one-dimensional sys-

1063-651X/98/57(2)/1(10)/$10 00 57

tems, and test another method due to Ciccotti et al [2—-4]

In the second part of the paper, we elucidate whether the
appearance of the ‘“‘extraordinary’” state is a universal behav-
ior for systems composed of inelastic particles (granular par-
ticles) constrained to move in one dimension, or it is an
artifact of the model We found that the appearance of the
“‘extraordinary’” state depends on how the energy is pumped
into the system.

Additionally, we compare the behavior of soft and rigid
inelastic particles under cooling, i e, when there is no ther-
mostating device coupled to the system. It has been estab-
lished [5-7] that the cooling granular medium is not spatially
uniform but it shows clusters and voids In the case of in-
elastic particles in one dimension and in absence of any ther-
mostating device, it is possible to show [5,8] that the tem-
perature of the system will decrease following a power law,
i.e, #72; this is referred to as the cooling problem in granular
materials We verify this result for rigid particles, but find
that for soft particles, although the dependence of tempera-
ture on time is a power law Tt~ %, the value of @ depends
on the density and the degree of inelasticity in the system.
McNamara and Young have numerically verified the cooling
problem in one and two dimensions [5,9]

The outline of the paper is the following: Sec II describes
the system composed of rigid particles, Sec I presents the
system composed of soft particles and describes how inelas-
tic collisions can be introduced The thermostating devices
studied in this paper are described in detail in Sec IV In
Sec V, we present and discuss the results from the simula-
tions A summary and the conclusions of the investigation
are collected in Sec. VL

IL RIGID PARTICLES

We consider a system of N point particles of equal mass
m, which are constrained to move in one dimension and
confined in a box The interaction between particles occurs
through collisions only If the collisions are elastic, in the
particular case of one dimension, a collision simply means

1 © 1998 The American Physical Society
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an exchange of momerta between the colliding particles
Moreover, it should be noticed that the particles are points
make the properties of the system independent of the density
of particles in the box The walls confining the system are
hard walls of infinite mass In some of the simulations the
particles are allowed to exchange epergy with one of the
walls, which, thus, acts as a thermostat. This is described in
detail in Sec IV

Inelasticity is introduced into the system in the same way
as in previous simulations [1,5] Let i and j denote the in-
dexes of two colliding particles The velocities after colli-
sion, v; and v; , are related to the velocities before collision,
v;and v;, as

vi=ev;+(1—év;, §))
vi=(1-eu;+ev;, )

where e=(1-r)/2 and r is the restitution coefficient. The
parameter r is the ratio of the relative velocities right after
and just before a collision and provides a measure of how
inelastic the collisions are The case r=1 the collisions are
elastic, and the case r=0 the collisions are completely in-
elastic This model is identical to the one chosen in Ref [1],
where the simulation results indicate a breakdown of hydro-
dynamics for inelastic particles in one dimension.
The temperature of the system is defined as [10]

1 N
T=52 v 3)

where N is the number of particles The temperature as de-
fined above is used in all simulations

For this model, all the results are reduced with the mass of
the particle, m, the length of the simulation box, L, and the
time between collisions 7oy Thus, for instance, the units for
energy are mL27 3

We have studied systems of N=100 particles The simu-
lation program for the rigid particles is simple, and we will
describe our program in general terms The program tracks
the collisions, advances the position, and changes the veloci-
ties Finding the next collision is easy for 4 one-dimensional
system: a particle { can only collide with two particles,
namely, i—1 and i+1 (and we only have to check with one
of them) The computational effort is, therefore, clearly
O(N) where N is the number of particles

IiI. SOFT PARTICLES

Our soft particle models are disks of equal mass m con-
strained to move in one dimension and confined in a box.
The interaction between particles is purely repulsive and the
shape of the potential is the Weeks-Chandler-Andersen
(WCA) potential [11}:

a\2 [o\6
5 -
u(x;)= %ij i

0 for xij>2u50', (5)

+e for x;<2Y (4)

where x;; is the distance between the centers of the disks
The potential parameters o, € and the mass m of the particles
are the units of length, energy, and mass, respectively All
the quantities obtained for this model are presented in re-
duced units The reduced temperature is defined as kzT/ €
(kg is Boltzmann’s constant) and the reduced time as
a(m/ €)V?

Inelasticity can be brought into the system by introducing
dissipative forces during collision. In the present model, con-
trary to rigid particles, collisions have finite duration. We
have chosen to let the particles experience dissipative forces
whenever the distance between them is less than 20, i€,
during the whole period of time of the collision The shape
of the dissipative force is

dbD
L= 12
Fy=9yD 3’ ()]

where D is a so-called deformation parameter defined as

D=21/60‘_x?‘.]_$21/50., (M

D=F,-j>2“6a (8)

and v is related with the degree of dissipative friction in the
system, Hence, the dissipative forces depend on the degree
of deformation of the grains and the relative velocities be-
tween the colliding particles, v;;:

dD
L= 1 __
Fa=yD"— ©

The force F g, represents the dissipation that arises from
frontal friction between two granular particles This specific
form of the dissipative force was recently proposed indepen-
dently by Morgado e al [12] and Brilliantov ez al [13] To
the best of our knowledge, this is the first time it has been
implemented in a MD simulation.

Actually, the loss of kinetic energy due to tangential col-
lisions should also be taken into account, but because we are
considering the relative motion in one dimension only, tan-
gential collisions will not be considered here

The equations of motion are solved using the leap-frog
algorithm [14] Since dissipative forces depend on the rela-
tive velocity of a pair of particles, for our one-dimensional
system the resolution of the equations of motion involves
solving a set of linear equations, where the velocities at time
t+h/2 (h is the length of the time step) are the unknown
quantities The matrix of this set of equations is presented in
Appendix A This matrix is tridiagonal, and therefore, the
resolution of the system is a fast procedure from a computa-
tional point of view {15]. The use of this model of dissipative
forces in a system of two or three dimensions will be far
more expensive computationally since it will entail an itera-
tive process to compute the forces

The length of the time step was set to 0 002 reduced units
of time and systems of N=100 and 1000 particles were con-
sidered.
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IV. THERMOSTATING

As written previously, without any energy supply, the mo-
tion of inelastic particles will eventually stop In order to
investigate steady states of the flow of granular materials,
one needs to pump energy into the system, i e , we have to
introduce a thermostating device We have chosen to supply
energy into the system from the left boundary (thermal wall),
which should basically act as a wall held at constant tera-
perature T,,n The right boundary is an insulating wall mod-
eled as a hard wall of infinite mass (reflecting wall) Thus, in
our one-dimensional systems, only the left-most particle will
exchange energy with the thermal wall In this section we
describe a number of ways of doing this In Sec V we wiil
reveal how the different implementations work.

Gaussian wall: When a particle hits a wall (the left-most
particle~particle 1), it is sent back with a random velocity
drawn from a Gaussian distribution The distribution is a
Maxwell-Boltzmann (MB) distribution, corresponding to a
Eemperature Twan This type of thermostat was used in Ref

1]

Stochastic wall: The original idea of a stochastic bound-
ary is due to Lebowitz et al [16] and used intensively by
Ciccotti et gl [2—4] In their work, after a particle hits the
stochastic wall it comes off with a distribution corresponding
to Ty.n This is done by sampling the value of the velocity
component in the direction normal to the wall from the prob-
ability density:

2
_ mv, [ my,
d ("")’karm"‘"( 2"3Twau)

where kg is Boltzmann’s constant, T,y the temperature of
the thermal wall, m the mass, and v, the component of the
velocity normal to the wall (we set kp and m to 1 in our
simulations) The rest of the components are sampled from a
MB distribution at the temperature of the thermal wall No-
tice that for a one-dimensional system, the distribution of the
velocities of the particles emitted by the Gaussian wall is
different than in the present case due to the factor v, in Eq
(11). This is discussed in the next section

Constant velocity wall: After the collision with the wall,
the left-most particle is always returned with the same veloc-
ity, VTean It has been used in previous studies [1,17]

Frequency: This type of thermostat does not involve a
collision with a wall Instead, the velocity of the left-most
particle is changed with a certain frequency The velocity is
drawn from a MB distribution with temperature T,y This
way of thermostating the system has, to the best of our
knowledge, never been used before

Wall particle coupled to a Nosé-Hoover (NH) thermostat:
We substitute the left hard wall by a particle tethered to the
point xo=0 by a harmonic potential U = & yan(x—x0)?
The value of k,,y is set to 100 reduced units The dynamics
of this particle is coupled to a Nosé-Hoover thermostat [18]
Moreover, the wall particle interacts with the left-most par-
ticle of the system through a WCA potential with the same
parammeters as for the rest of the particles in the system There
is no dissipation of energy during the collision of the left-
most particle and the wall particle The equations of motion
for the wall particle are

(an

x= i—, (12)

p.x=fx—§px, (13)
. 1( P}

¢ ?(mkar"l)’ 9

where { and 7 are, respectively, the friction parameter and
the relaxation time of the thermostat. The relaxation time of
the thermostat was set to 0 15 reduced units

The system composed of rigid particles was thermostated
with the first four devices The system composed of soft
particles were thermostated with all of them

V RESULTS
A. Elastic particles

‘We have performed simulations of one-dimensional sys-
tems containing rigid and soft particles The results of our
simulations will be discussed in this section To begin with,
we anaiyzed the final states obtained with the thermostating
devices described above Our goal is to obtain equilibrium
states at a temperature Ty

Figure 1 shows the temperature as a function of time for a
system composed of rigid point particles undergoing elastic
collisions when the different thermostats described in the
previous section are coupled to the system The target tem-
perature of the thermostats is T'y,y=1 0 in all the cases The
velocities of the starting configuration were drawn from an
MB distribution with T=10 Apparently, the only thermo-
stat that fails to maintain the temperature of the system is the
Gaussian wall used in Ref [1], which sets the temperature of
the system below the target temperature [see Fig 1(a)]
However, the constant velocity thermostat [Fig 1(b)] for
one-dimensional systems composed of rigid particles pro-
duces configurations where the velocities of the particles
take the values % T, only, and therefore, these configu-
rations are not equilibrium configurations This is due to the
fact that in such a one-dimensional system the collisions be-
tween particles involve exchange of momenta only, Since
there is po scattering This introduces an extra peculiarity in
the system since equilibrium states can never be reached
with the thermostating devices used in this work if the initial
configuration includes particles whose velocity is 0 In sum-
mary, given an initial configuration where all the velocity of
the particles are non-negligible only the stochastic wall [Fig
1(d)] and the frequency thermostat [Fig 1(c)] are able to
generate equilibrium states at Ty

We have also performed simulations with bard disks in-
stead of point particles at low (0 01) and high density (0 83)
and there is no qualitative difference

The same analysis for the one-dimensional system com-
posed of soft particles (undergoing elastic collisions) yields
similar results In Table I, we summarize the temperatures of
the final states obtained for both rigid and soft particles The
results for soft particles are for a density p=0 83; p defined
as N/L (N=100 and L is the length of the box), the target
temperature of the thermostats is 1 0, and the temperature of
the system was averaged over 5X 10° time steps after equili-
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FIG 1 The temperature as a function of time Both quantities are in reduced units System of point rigid particles and elastic collisions
is shown The number of particles is 100, and the length of the system is 1 The target temperature of the thermostats is 10 (a) Gaussian

wall (b) Constant velocity wall (c) Frequency (d) Stochastic wall.

bration for the soft particles As in the case of rigid particles,
the Gaussian wall coupled to the system composed of soft
particles does not perform well as a thermostat. Furthermore,
the constant velocity thermostat and the frequency thermo-
stat at high frequency also fail to set the temperature of the
system to the target temperature All three devices set the

TABLE L Equilibrium temperatures

Thermostat Hard particles Soft particles
Gaussian wall 015+005 062002
Stochastic wall 1.00+0 14 098+002
Constant 1.00+003 0.507+0 005
Frequency 100013 10120012
Frequency 102+£009 049+0.02°
Wall particle+NH 099001

The velocity of particle 1 is taken from an MB distribution every
00th time step (soft particles) or with frequency 1/0.0243 (rigid
rrticles)

The velocity of particle 1 is taken from a MB distribution every
me step (soft particles) or with frequency 1/2 4299 (rigid par-
cles)

temperature of the soft particle system below the target tem-
perature Moreover for the system composed of soft par-
ticles, the final states obtained with these thermostats do not
fulfill equipartition, i e, the kinetic energy is not equally
distributed among the particles in the systems This is illus-
trated in Fig 2, where we show the mean kinetic energy
(temperature) for each particle in the system for a final state
reached with the Gaussian wall The kinetic energy of the
left-most particle is significantly lower than the average tem-
perature of the system (7=062) This indicates that this is
not an equilibrium state but a nonequilibrium steady state
The explanation of why the Gaussian wallggroposed in
Ref {1] and the constant velocity thermostat d%not produce
equilibrium states at the target temperature is as follows The
principle behind a thermal wall js to change the distribution
of velocities of the particles arriving at the wall to the distri-
bution corresponding to the temperature of the wall [16] Let

us assume a three-dimensional system, and denote as n the
unit vector normal to a wall boundary Then the probability
that a particle with velocity v arrives at the wall (or, in
general, crosses a planar surface) is

0 Rf(v;.0y.0,)dvdv,dv,,

(15)
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FIG 2 Mean kinetic energy (in reduced units) for each particle
of the soft particles system at p=083 when the Gaussian wall
thermostat is applied

where f(v,v,,0,) is the MB distribution of velocities at the
temperature of the fluid. At equilibrium, the probability that
a particle with velocity v leaves the wall will have the same
shape For our one-dimensional system this probability is

vof(vx)dvy (16)

This is obviously not the case for the Gaussian wall or the
constant velocity wall Furthermore, the distribution of ve-
locities of the particles arriving at these boundaries will be
different from that of the particles emitted by these bound-
aries, and therefore, equilibrium will pever be reached

The fact that the frequency thermostat works so well for
the system composed of rigid particles is easy to understand
Due to the one-dimensional nature of the system, the distri-
bution of velocities remains unchanged when there is no
thermostating device coupled to it. This is so because, in the
collisions, the particles simply exchange momentum. With
the frequency thermostat, a random number generator will
ensure that particle 1 has the kinetic energy corresponding to
the desired temperature Thus, particle 1 simply provides
velocities to the rest of the system sampled from the correct
distribution function In the case of the frequency thermostat,
the frequency at which particle 1 gets a new velocity from
the MB distribution is totally uncorrelated with the previous
velocity of the particle In the case of a system composed of
soft particles, energy should be distributed among all the
potential and kinetic energy of the particles If the velocity of
particle 1 is not changed too rapidly by the random number
generator, particle 1 will be in equilibrivm with the rest of
the system because energy will have time to be redistributed
among all the degrees of freedom in the system Equiparti-
tion will then be fulfilled, and the system will reach the de-
sired temperature, ie., the temperature of particle 1 When
the velocity of particle 1 is exchanged at too high frequency
the system has not time enough to relax (redistribute the
energy) Indeed, our results show nonequipartition of the en-
ergy in the system when the frequency is high

The system thermostated with the wall particle coupled to
a Nosé-Hoover thermostat works as one should expect, since

InT

Int

FIG 3 InT plotted versus int The temperature T and the time ¢
are in reduced units Results for a system of soft particles undergo-
ing inelastic collisions and no thermostating device coupled to the
system The system is composed of N=1000 particles p=0 83 and
y=0001 ¢ : simulation results; straight line: least square fit.

it is a well-defined system, where the equations of motion
can be derived from an extended Hamiltonian [18]

B Inelastic particles

The main purpose of the present investigation is to study
the behavior of one-dimensional systems where particles un-
dergo inelastic collisions, since these are models for granular
materials

We start looking at the system under cooling (i e , there is
no thermostating device coupled to the systems) In Fig 3,
the typical behavior of the temperature as a function of time
for a system composed of N= 1000 soft particles is shown
After a transient, whose length depends on the density of the
system, the temperature decays following a power law ¢~ %
For rigid particles, we found similar behavior and a value of
the exponent =2 (within the statistical uncertainty) that
agrees with theoretical predictions [5,8] and previous simu-
lations [5] For the system composed of soft particles, the
value of the exponent seems to depend on the density and the
degree of inelasticity in the system The values of the expo-
nent « obtained for different densities and degrees of inelas-
ticity are collected in Table II At sufficiently high density
and weak inelasticity the value of the exponent & agrees with
the theoretical predictions [5,8] for rigid particles This is
interesting in the case of Haff’s theory [8] since it was de-
veloped for very dense granular systems, where the interpar-
ticle distances are significantly smaller than the diameter of

TABLE II Values of the exponent in the cooling law Tez™

Density Inelasticity a

02 Weak 116
02 Strong 139
083 Weak 190
083 Strong 159
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the particles On the other hand, the theory developed by
McNamara et al [5] was based in the fact that in one-
dimensional granular systems composed of point rigid par-
ticles under cooling, a bimodal velocity distribution raises
They predict that the temperature will decay as

Us

T=—————, 17
(1+2eptUp)? a7

where U, is the mean value of the velocity modulus at
t=0, ¢ is the friction parameter introduced in Egs (1) and
(2), and p is the density Nevertheless, we do not find any
trace of a bimodal velocity distribution as the one-
dimensional system composed of soft particles cools down.

Finally, we analyze the behavior of one-dimensional sys-
tems with inelastic collisions and a thermostat coupled to the
system As mentioned, for one-dimensional systems of par-
ticles undergoing inelastic collisions an *‘‘extraordinary”
state was found in Ref [1] In such an “‘extraordinary’’ state,
the majority of the particles get clamped in a small region of
space moving with very low velocities, and few remaining
particles travel between one of the boundaries and the group
of clamped particles at a much higher speed. In the present
investigation, nevertheless, we find that the thermostating de-
vices used in Ref [1] failed to produce equilibrium states for
elastic particles Therefore, we have carried out simulations
where our one-dimensional systems are coupled to thermo-
stats that we have shown perform well in equilibrium,
namely, the stochastic wall and a wall particle coupled to a
NH thermostat.

We have repeated the simulations performed in Ref [1]
for rigid point particles but now coupling the system to a
stochastic wall (the left-side wall) and we have reproduced
their main findings In other words, we observe that the “‘ex-
traordinary’’ state also appears when a correct thermostating
device is used. The appearance of the ‘‘extraordinary”” state
is illustrated in Fig 4(b) for a system composed of N=100
particles This figure shows the position of the center of
mass, {(x)=(UN)Z x;, as function of time The position
of the center of mass of the system moves to the right side of
the box and remains there as steady state is reached. For the
sake of completeness we also show results without a thermo-
stat in Fig 4(a); the value of (x) stays around zero, which
shows that the particles are uniformly distributed. This is
indeed what we would except with only N=100 particles
(for €=0 005 clustering does not occur for a number of par-
ticles less than or equal to Np;=599 [S) In Ref [1]itis
found that the particles in the clump get squeezed into a
smaller space and move with slower speeds, for a fixed num-
ber of particles and decreasing € We, on the contrary, find
that when the initial distribution of velocities is Maxwellian
the formation of the clump disappears This is fllustrated in
Fig 4(c), where one can see that for = 10~7, the position of
the center of mass fluctuates about the center of the simula-
tion box. Furthermore, the density profile shows that, at
steady state, the particles remain homogeneously distributed
in the simulation box in agreement with the predictions of
the hydrodynamic equations Nevertheless, we have also
started the simulations with all the particles uniformly dis-
tributed, and with only the leftmost particle having nonzero
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FIG 4 The center of mass position versus time X and r are in
reduced units Results for a system composed of rigid point par-
ticles undergoing inelastic collisions The length of the system is 1,
and the *‘box*’ is the interval from —05 to 0.5 (a) e=0005,
reflecting walls (b) €=0 005, stochastic wall (c) €=10~7, stochas-
tic wall.

velocity In this case, the position of the center of mass os-
cillates with a greater amplitude and a long period (about 10°
collision times), and the distribution of particles is not uni-
form but the system is more dense on the right side, but we
do not see the formation of a clear clump Furthermore, the
velocities of the particles are smaller than in the previous
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case Thus, for e—0, we observe a dependence of the final
steady state on the initial conditions of the simulations We
assume then that the observations from Ref [1] quoted
above correspond to our second initial conditions However,
even in this case we do not observe that the particles, when
€—0, get squeezed into a smaller space than for greater
values of €

In order to investigate the origin of the ‘‘extraordinary’’
state, we have simulated a similar system composed of soft
particles This allows us to use as a thermal boundary a wall
particle coupled to 2 NH thermostat, which is the most real-
istic way, among those described in Sec IV, of modeling a
wall held at constant temperature Moreover, in this case, the
exchange of energy between the wall and the left-most par-
ticle takes place during a finite time interval, instead of in-
stantaneously

Figure 5 shows the steady state profiles of density and
temperature for the soft particle system at p==0.2 for differ-
ent degrees of inelasticity in the collisions (we have chosen
three values of the friction coefficient y=0 001, 001, and
0 1) The density is normalized as p,,(x)=p(x)/p and the
X coordinated as x/L The results are for a system coupled
either to the wall particle coupled to a NH thermostat or to
the stochastic wall At the lowest inelasticity (y=0 001), the
steady states produced by the two thermostats are equal
Density and temperature can be considered constant across
the system, and the average value of temperature is about 0 9
in both cases [see Figs 5(a) and 5(d)] In the figures, the
guasi straight lines in the middle of the density and tempera-
ture profiles are the arithmetic mean of those, and one can
see that they form a symmetry axis about which the density
and temperature profiles are mirror images

For y=0 01, the steady state density and temperature pro-
files obtained with the two thermostats also show similar
fashion [Figs 5(b) and 5(¢)] Now there is no symmetry as
we observed at y=0001 Moreover, the average tempera-
tures of the two steady states are different, 7=0 427(6)
when the system is coupled to the stochastic wall, and T
=028(1) when it is coupled to the wall particle coupled to
the NH thermostat. The shape of the temperature profiles can
be assumed as exponentials within the left-hand half of the
box, i e, in the side closest to the thermostat. This is illus-
trated in Fig 6 where the InT is plotted versus x/L The
straight lines are the least square fits to the simulation data.
The exponential decay of temperature is what one could ex-
pect from a hydrodynamic approach

Finally, we show the results for y=01 Here, the final
steady states obtained with the two thermostats are clearly
different. The steady state obtained with the wall particle
coupled to the NH thermostat corresponds to a state with an
average temperature of O(10™%), this means that the par-
ticles have practically stopped moving The density profile
indicates that the particles are homogeneously distributed in
the simulation box [see Fig 5(c)] The steady state obtained
with the stochastic wall is very different. The density profile
indicates the appearance of a clump of particles in the right-
side of the box and mean kinetic energy of these particles is
practically zero [see Fig 5(f)] Although the velocities of the
rest of the particles close to the thermal wall are very low,
they are several orders of magnitude higher than the particles

in the clump This steady state is very much like the “‘ex-
traordinary®” state described in Ref [1]

The differences between the steady states created with the
two different thermostating devices [Figs 5(c) and 5(f)]
should emerge from differences in the way that the two ther-
mal boundaries pump energy into the system. The stochastic
wall can be interpreted as a boundary that destroys the arriv-
ing particles and emits new ones with a velocity drawn for an
MB distribution for the target temperature Thus, the value of
the velocity of the outcoming particle is totally independent
of the value of the incoming velocity, and therefore the in-
crease in kinetic energy of a particle hitting a stochastic wall
can be arbitrarily large On the other hand, when the left
boundary is a wall particle coupled to the NH thermostat, the
left-most fluid particle will also increase its kinetic energy by
the interaction with the wall particle Nevertheless, the mag-
nitude of the velocity of the particle after hitting the wall
particle will depend on its incoming velocity and therefore
the amount of kinetic energy that the left-most particle can
load in this way is limited. Furthermore, we have measured
in our simulations for soft particles the amount of energy that
a particle loads, in a time step, from a stochastic boundary
and found that it is several orders of magnitude greater than
from a wall particle coupled to a NH thermostat.

When our one-dimensional inelastic models are coupled
to a thermostat in the left-side boundary of the simulation
box, as the inelasticity of the model increases (the value of €
or v increases), a temperature gradient appears in the system
and the density profiles indicate that the more energetic par-
ticles on the left side of the box press the particles on the
right side of the box to the right-side boundary We believe
that the origin of this ‘‘extraordinary’’ state is due to the
great amount of energy that the stochastic wall pumps into
the system in the limit of (relatively) high inelasticity, where
the temperature of the particles (due to inelastic collisions) is
well below the temperatiire of the boundary Thus, the par-
ticles emitted by the stochastic wall have significantly more
kinetic energy than the rest of the particles in the system and
press them against the other side of the box, where due to
their low kinetic energy remain together and form a clump
In the same limit of (relatively) high inelasticity, but when
the thermal boundary of the system is a wall particle coupled
to a NH thermostat, the thermostat will simply not be able to
maintain the temperature of the system, and the motion of
particles will eventually stop

VL. CONCLUSION

We have tested several models used in the literature for
modeling a thermal boundary in one-dimensional systems
The results of our simulations indicate that only the stochas-
tic wall, the frequency thermostat, and the wall particle
coupled to a NH thermostat are able to generate equilibrium
states at the desired temperature of the boundary

We have studied the cooling of one-dimensional models
for granular systems, modeled as rigid and soft particles For
rigid particles we found that the cooling of the system fol-
lows the power law, T=1~2, which agrees with theoretical
predictions [5,8], and previous simulations [5] For soft par-
ticles we found a similar power law, T¢™ %, but now, the
value of the exponent, e, depends on density and the degree
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of inelasticity in the system. In the limit of high density and
low inelasticity the value of the exponent for soft particles
seems to tend to the value for rigid particles

Finally, we have investigated the appearance of the ‘‘ex-
traordinary’’ state in one-dimensional granular systems ther-
mostated at the boundaries, described in Ref [1] We believe
that the origin of such a state is in the way that the thermal
boundaries chosen in Ref [1] or the stochastic boundary

used by Ciccotti et al [2—4] work The interaction with any
of these boundaries can be interpreted as an exchange of
incoming particles and outgoing particles whose velocity is
set to a value totally independent of the incoming velocity In
other words, the kinetic energy of the particles after leaving
the boundary can be arbitrarily high in comparison with the
mean kinetic energy of the rest of the particles in the fiuid
This is the case when the particles undergo inelastic colli-
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sions if the energy dissipated during the collisions is high
enough Hence in this case, the particles emitted by the
boundary press the majority of the particles in the system
against the opposite boundary forming a clump X, on the
other hand, the interaction with a thermal boundary is such
that the particle hitting the boundary can only load a limited
amount of kinetic energy, in the limit of high inelasticity the
system will simply cool down until all motion stops
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vi=a;+yDpv,

vy=ay—yD 101+ ¥DiFv 2,
(AD

12 12
v3=asz— ‘)’D23 Uz3+ 7D34 Vi34,

where a; are the accelerations coming from the conservative
forces, and the second term in the right-hand side is the
accelerations coming from the dissipative forces due to col-
lisions (v;;=v;~v; and ¥ and D are defined in Sec IM)
These equations conserve the momentum of the center of
mass but kinetic energy is dissipated.

In the leap-frog algorithm scheme, the velocity of the sys-
tem at time ¢+hk/2 (k is the length of the time step) is cal-
culated as

v(t+hi2)=v(t—hi2)+ha(t) (A2)
and the velocity at time ¢ is approximated as
v(2)= L[v(z+h/2)+v(t—h/2)] (A3)

A
| Writing Eq (1) in the leap-frog scheme:
A
v (t+R2)y=v (t—h/2)+h[a;(t)+ 7,()v12(D)],
0o(t+h12) =04t —12) +h{as(t) = ¥ t)v 15(2)

+ va3(t)v (D)),
(A4)

v3(t+h/2)=v5(t—hI2)+hlas(t) — y5(t)vs(?)

+y34(t)v34(0)],

a. Gene Poddoc’rbrcd

APPENDIX: INELASTIC COLLISIONS
FOR SOFT PARTICLES

The equations for the time evolution of velocities for our | expression given in Eq

(one-dimensional) system of soft particles undergoing inelas-
tic collisions are

h h
( 1+37p) - 5 712(?)
h ’
= 5%2(')

h r’
0 0]

|

and the right-hand side term is

h ! h ’ r
1+ '2'712(0"' E‘)‘zs(t) - 5’723(‘)

gra.n'f'

where for the sake of compactness we rename the product
‘yDgz(t) as 'yi'j(t) Substituting the value of v;;(¢) for the
), we obtain a set of linear equa-
tions where the unknowd quantities are v;(¢+5/2) The ma-
trix of this set of equations is

; |

h 14 h ' 4 h ’
1+z )+ 7)) -~ '2'734(‘)

h ’
1~ "2'711— l.n(t)
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