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Summary

The main objective of the studies described in the present P1i.D. thesis was to investigate the

phospbate (P) metabolism of arbuscular mycorrhizal (AM) fungi by in viv0 31P nuclear magnetic

resonance (NMR) spectroscopy.

P is an essential nutrient for all organisms. It is required in relatively large amounts and is often

limiting to plant growth. The availability of P is limited by the slow rate of diffusion of inorganic

orthopliospliate (Pi) through the soil. As plants remove Pi from the soil solution close to the root an

area suii-ounding the root drained for soluble Pi may be formed (the P-depletion zone). AM fungi

colonize the roots of most land plants and tbe symbiosis between AM fungi and plants is characterized

by bi-directioiial nutrient transport; the AM fungus receiving an indispensable supply of fixed carbon

(C) in return for improved inorganic nutrient (mainly P) uptake by the host plant.

The extraradical mycelium of an AM fungus forms an extensive hyphal network and allows the plant

to access Pi in tlie soil solution beyond the P-depletion zone. Once the association is established, the

fungus takes up Pi from the soil through the extraradical mycelium in an active process like plants.

However, Pi is accumulated also as polyphosphate (polyp). Polyp is translocated to the intraradical

mycelium in vacuoles in a tubular streaming system. At the symbiotic interface inside the root, polyp

is hydrolyzed and Pi is subsequently transferred to the plant root cells. Accordingly, polyp is

considered to have an important role in tbe Pi trauslocation process. However, the amount, size and

other roles of polyp present in .the extraradical and intraradical mycelium is a matter of debate.

invasive methods have commonly been used to identify polyp and therefore artifacts of specirnen

preparation could possibly have interfered with tbe polyp chain length. More detailed information of P

pools and polyp accumulation would benefit from non-invasive and non-destructive measureinents of

the dynamic incorporation of Pi into various P pools witliin extraradical mycelium and mycorrhizal

roots. In viv0 31P NMR spectroscopy provides an analytical method for identifying and quantifying

particular metabolites in liviiig tissue. Moreover, it allows for measuring iiitracellular pH, for probing

the subcellular compartmentation of certain ions and for following the flux through metabolic

pathways. Thus, in viv031 P NMR spectroscopy is a unique analytical method for the investigation of P

pools and their dynamics in AM fungi.

The plant chosen for the work was cucumber, in the majority of the work grown in symbiosis with the

AM fungus Glomus intruradices in a compartmented growth system. Other species of AM fungi used

included Scutellospora caloJpora, G. mosseae and Gigaspora rosea. The cucumber plants were grown

in a central mesh-bag, which prevents root penetration but allow free passage of AM fungal hyphae.

Tbe extraradical mycelium grew into sand surrounding the mesh-bag and could be collected from the

sand, while root matenal could be collected from the mesh-bag. A circulation system was constructed

for oxygenating the excised hyphae or roots while in the NMR tube. Both the efficiency of P, uptake

and the turn-over of P metabolites by excised hyphae were investigated in order to clarify the



metabolic status of excised fungus. Furthermore, an attempt was made to measure phospliatase activity

in the extraradical mycelium and mycorrhizal roots using the enzyme-iabeled-fluorescence (ELF)

method in order to localize aspects of P metabolism. Alkaline phosphatase activity was observed in all

species af AM fungi used, which indicated metabolically active fungi.

in this study, polyp of a shori chain length was seen in actively metabolizing extraradical AM fungal

hyphae for the first time by the use of in viv0 "P NMR spectroscopy. Furthermore, a time-course "P

NMR investigation of the formation af P pools in differently P-treated AM hyphae and mycorrhizal

roots was peiformed. It was demonstrated tbat P, taken up by extraradical mycelium accumulated

firstly into polyp and suhsequently into vacuolar P, within the extraradical mycelium. Furthermore, a

time lag was observed befare auy P metabolites appeared in mycoii-hizal roots. The amount af polyp

in extraradical mycelium was considerably higher tlian vacuolar P, and synthesis af polyp was

therefore suggested to be important for effective P, uptake in AM fungi. The polyp was located in

vacuoles and the measured average chain length was short, supporting a role for polyp iii translocation

of P, from soil to host root by AM fungi. Cytoplasmic P, in tlie extraradical mycelium could not be

detected by in viv0 "P NMR possibly because af a small cytoplasmic volume ar low concentratiou of

cytoplasmic P,.

The average polyp chain length was further cliaracterized by the use af extraction procedures and

colorimetric measurements. Combiniiig the results obtained from these methods and NMR revealed

small ainounts af lang-chain and graiiular polyp in the extraradical mycelium when supplied with high

P amounts. Moreover, possible interfungal variation in P pools, polyp content and poiyP average chain

length was investigated for the purpose af understanding the diversity in the ability of different species

af AM fungi to supply P to the host plant. The results af this preliminary investigation suggested that

there are differences between species of AM fungi in P pools sizes within extraradical mycelium and

also in effectiveness of translocating the P to the root.



Dansk resume

Formålet med studieine beskrevet i denne ph.d afhandling var at unders~ge fosfatstofskiftet hos
311arbuskulære mykorrhizasvampe (AM) ved anvendelse af in viv031 P NMR spektroskopi.

Fosfat er et livsvigtigt næringsstof for alle planter. Det er n~dvendigt i relativt store mængder og

derfor ofte begrænsende for planters vækst. Tilgængeligheden af fosfat er begrænset af den

langsomme diffusion af uorganisk orthofosfat gennem jorden. Når planter optager fosfat fra

jordvandet tæt på roden dannes hurtigt et område omkring roden som er udtomt for opløselig fosfat (P-

udtØmningszonen). AM svampe koloniserer roddel-ne af de fleste landplanter, og symbiosen mellem

AM svampe og planter er karakteriseret ved en transport af næringsstoffer i begge retninger; AM

svampen optager nodvendige kulstofforbindelser fra planten, som til gengæld modtager uorganiske

næringsstoffer (især fosfat) fra svampen.

AM svampenes eksterne mycelium danner et udstrakt netværk af svampehyfer og tillader fosfatoptag

fra jordvandet længere væk end plantens P-udtomningszone. Ifølge den aktuelle model er processen

følgende: Fosfatoptagelsen i det eksterne mycelium sker ved aktivt optag fra jorden som hos planter,

men fosfat inkorporeres også som polyfosfat (polyP). Polyp translokeres til det interne mycelium i et

system af sammenhængende vakuoler. Ved den symbiotiske grænseflade nedbrydes polyp og fosfat

overføres til planterodens celler. Som det fremgår har polyp en vigtig rolle i translokeringen af fosfat.

Der er imidlertid diskussion om mængden, længden og andre roller af polyp tilstede både i det

eksterne og interne mycelium. Polyp er tidligere mest blevet identificeret og studeret ved invasive

metoder, hvor behandlingen kan påvirke polyp kædelængden. Det vil derfor være nyttigt med non-

invasive og non-destruktive målinger af den dynamiske indbygning af fosfat til forskellige fosfatpuljer

i det eksterne mycelium samt i koloniserede rødder for at opnå en mere detaljeret viden om

fosfatpuljer og polyp-akkumulering. In viv0 "P NMR spektroskopi er en analytisk metode til at

identificere og kvantificere bestemte forbindelser i levende materiale. Derudover kan intracellulæit

pH, subcellular fordeling af bestemte ioner og strommen gennem biosynteseveje kortlægges. Det er

derfor oplagt at undersoge fosfatpuljer og deres dynamik i AM svampe ved hjælp af in viv0 31P NMR

spektroskopi.

Agurk blev valgt som værtsplante, og i de fleste eksperimenter blev agurk dyrket i symbiose med AM

svampen Glomus intraradices i et todelt pottesystem. Desuden blev AM svampene Scutellospora

calospora, G. mosseae og Gigaspora rosea anvendt. Agurkeplanterne voksede i en central netpose

hvor udelukkende svampehyfer kunne vokse ud igennem. Det eksterne mycelium voksede ud i sand,

der omringede netposen, og blev opsamlet herfra, mens rodmateriale blev opsamlet fra netposen.

Under NMR målingerne forsynede et ckkulationssystem de afskårne svampehyfer og rodder med ilt.

Den fysiologiske tilstand af de afskårne svampehyfer blev vurderet ved at undersøge de afskåine

svampehyfers optag og omsætning af tilsat fosfat. Hos alle underseigte AM svampe blev basisk

fosfataseaktivitet i det eksterne mycelium og koloniserede rcldder bestemt ved enzyin-mærknings-



fluorescens (ELF), for at undersøge aspekter af fosfatstofskiftet. Basisk fosfataseaktivitet indikerer

fysiologisk aktivitet.

For første gang blev kortkædet polyp identificeret med in viv0 31P NMR spektroskopi i fysiologisk

aktive eksterne AM svampehyfer. Fosfatpuljerne i AM svampehyfer og koloniserede rødder med

forskellige fosfatbehandlinger blev undersøgt i et "P NMR tidsstudie. Herved blev det demonstreret at

fosfatoptaget i det eksterne mycelium først akkumulerede som polyp og først derefter som orthofosfat

i vakuolerne. I koloniserede rødder kunne fosfatforbindelserne først observeres senere. Den

identificerede polyp i det eksterne mycelium var placeret i vakuoleme og den bestemte middel-

kædelængde var kort. Desuden var mængden af polyp betydeligt større end mimgden af orthofosfat i

vakuolerne, hvilket antyder at syntesen af polyp er vigtig for et effektivt optag af fosfat hos AM

svampe. Tilsammen understøtter disse observationer at polyp har en rolle i translokeringen af fosfat

fra jord til vzrtsplante via AM svampe. Orthofosfat kunne ikke detekteres i cytoplasma i det eksteine

mycelium ved in viv0 NMR, hvilket kan skyldes et lille cytoplasmisk volumen eller en lav

koncentration af orthofosfat i cytoplasma.

Middelkzdelængden af polyp blev yderligere karakteriseret ved anvendelse af ekstraktionsprocedurer

og kolorimetriske bestemmelser, Ved kombination af resultaterne fra disse metoder og NMR kunne

det fastslås, at små mængder af langkædet og granulær polyp også var tilstede i det eksterne

mycelium, når det var forsynet med store mængder fosfat. Variation i fosfatpuljer, polyp-mængde og

polyp-kædelængde mellem forskellige AM svampearter blev undersøgt for at bidrage til forståelsen af

AM svampeartemes varierende evne til at forsyne værtsplanten med fosfat. Resultatet af denne

undersøgelse viste, at der er forskelle inellem AM svampearter i størrelsen af fosfatpuljer i det

eksterne mycelium og i effektiviteten af translokering af fosfat til roden.
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Chapter 1 - General introduction

1.1 Scope and structure of the thesis
The geiieral introductory chapter of this thesis is an attempt to frst briefly introduce the organism af

interest, the arbuscular mycorrhizal (AM) fungus, and secondly to elncidate the AM fungal role in

nutrition. Our curreiit knowledge about the mechanisms by which AM fungi contribute to plant

nutrition will be introduced concerning mainly the recently published work an mechanisms for the

uptake, trauslocation and release of phosphate (P). The methods used for the work presented in this

thesis are described in Chapter 2 and my contrihution to the understanding of these poorly understood

mechanisms follows in Chapter 2 and the subsequent chapters. My work will be conceined with P

metabolism exclusively and further introductory comments to the experimental work presented here

are given in the beginning of Chapter 2. Chapter 3 is a reprint of a paper reproduced by kind

permission from the copyright holder and Chapter 4 is prepared as a paper manuscript which will

shortly be submitted for publication in a shortened form. Chapters 3 and 4 can be read separately from

the rest. This has the consequence that introductory comments, notation etc. are described several

times. Attempts have been made in order to customize notation; still, there may be slight differences

that should cause no coiifusion. A general discussion concerning all the results presented here,

conclusions and future perspectives are given in Chapter 5. The list of references has been collected

into ane list placed at the end of the thesis, however the references in the paper included as Chapter 3

are also given within the chapter.

1.2 Arbuscular mycorrhizal fungi
AM fungi form symbiotic associations with the roots of a wide range of land plants. AM fungi are of

very ancient origin (fossil fungal hyphae suggest more than 500 million years b.p., Redecker et al.,

2000); they are the most common and widespread type of mycorrhizal fungi and belong to the order

Glomales (Smith and Read, 1997). AM fungi are obligate biotrophic symbionts and the plants forming

AM include herbs, grasses and many woody plants. Tlie symbiosis between AM fungi and plants is

characterized by bi-directional iiutrient transport between the symbionts (Smith and Read, 1997). The

symbiosis is normally mutualistic with the AM fungus receiving an indispensable supply of fixed

carbon (C), in retum for improved inorganic nutrient (mainly P) uptake by the host plant.

Plants show only minor defense reactions in response to colonization by AM fungi (Gianinazzi-

Pearson et al., 1996; Kapulnik et al., 1996; Harrison, 1999), and the colonization is normally believed

to be rather non-specific. In general, it is believed that an AM fungus isolated from one species of host

plant will colonize any other species that has been shown to be capable of forming AM. However,

much variation in mycoirhizal effect, i.e. plant growth and nutrient uptake, on host plants has been

demonstrated; an AM fungus having no effect an a host plant under given nutrient conditions may be

beneficial under other nutrient conditions. Or under fixed nutrient conditions one AM fungus may



have no effect on one host plant but large effect on another (Johnson et al., 1997; Smith et al., 2000).

Indeed, even parasitic relationships have been demonstrated (Johnson et al., 1997; Burleigh et al.,

2002). Furthermore, there are even differences in the extent to which species of plants become

colonized by AM fungi under given soil and nutrient conditions, and also in the extent of different

fungal species or even between isolates of the same species being able to colonize the roots of the

same plant species (Smith et al., 2000; Burleigh et al., 2002). Indeed, colonization by one AM fungus

can strongly affect colonization by another AM fimgus in the same community. This has to be kept in

mind, when generalized conclusions on physiological mechanisms are made.

1.2.1 Establishment of colonization

The lifecycle of AM fungi and by this the colonization of roots, is initiated from hyphae growing from

resting spores, infected root fragments or hyphae (Smith and Read, 1997). The spores are the best

defined initiators and they appear to be survival structures of the fungi. The large resting spores are

unusual in that they are multinucleate and, depending on the species, may contain thousands of nuclei

per spore (Becard and Pfeffer, 1993).

Recent genetic analyses suggest that

the fungi are asexual and reproduce

clonally (Rosendahl and Taylor,

1997). The spores germinate in

response to increases in soil

temperature or moisture content, and

hyphae will begin to grow from the

spores; asymbiotic growth is

maintained for 1 or 2 weeks (Fig. 1A)

(Bago et al., 2000). However, the

spore contains only limited amounts

of lipid and carbohydrate and further

development of the mycelium

depends on a successful colonization

of a root system; so far, AM fimgi

have not been cultured in the absence

of a plant host. Once a root is

reached, an appressoria is formed on

the epidermal cell wall; next, the

hyphae penetrate the cell wall of the

Fig. 1. Lifecycle of AM fungai colonization. A, Spores. B, r o o t epidermal cell and form inter-
Germinating spores reaching a root. C, Arbuscuies D, E and F, a n d intracellular mycelium inside the
Extraradicai mycelium with different characteristics stnictures:
branched absorptive structures (BAS) (D) and spores (E and F) (From root (Fig. 1B).
Bag0 et al., 2000).



1.2.2 Morphology of the mycelium

The mycelium has intraradical and extraradical phases, in relation to the host root, with the appressoria

or "entry-point" hyphae as the link between them. The intraradical part consists of hyphae and lipid-

filled vesicles (Although, 20% of the AM species do not form vesicles, i.e. from the genera Gigaspora

and Scutellospora) in the apoplastic Space between the plant cells (interceilular), as well as

intracellular vesicles and coils in the exodermal cells as it passes through them (Fig. 1). The

intraradical mycelium finally tenninates in intracellular highly branched stnictures named arbuscules

within the cortical cells (Fig. 1C) (Smith and Read, 1997; Hanison, 1999; Bag0 et al., 2000).

However, the plant influences the intraradical development of the fungus and a single species of a

fungus may show different growth pattems depending on the plant host (Gallaud, 1905; Smith and

Smith, 1997). Recently, Cavagnaro et al. (2001) showed that these growth patterns could also be

determined by fungal identity. The two main types are referred to as Paris and Arum types. The main

characteristics of the two types are as follows:

Paris: Absence of intercellular hyphal growth in the root cortex and presence of many intracellular

coils, directly linked to each other from cell to cell. Furthermore, few or absent arbuscules.

This type occurs frequently in the plant kingdom, but the type is not well studied.

Arum: Extensive intercellular hyphal growth and development of intracellular arbuscules. Indeed,

much experimental work focuses on this type because of their presence in many crop species.

Due to this, all the work referred to in the following thesis focuses on Arum type.

v

Arbuscule
branches

The intracellular mycelium does

not disrupt the plasmalemma of

the host cell, but penetrate the

cell walls so that fungal and

plant host are in close contact,

separated only by their mem-

branes and a narrow plant-

derived apoplast (Fig. 2). For the

arbuscules this results in a huge

increase in the plant-to-fungal

contact surface area and, owing

to this, the arbuscules have been

assumed to be responsible for the

C flow from the plant to the

fungus together with the Rlease

of nutrients such as p and

nitrogen from the fungus to the

plant (Harley and Smith, 1983; Blee and Anderson, 1998). This has been supported by indirect

Intercellular

hyphae

Fig. 2. Metabolically active arbuscule inside a plant rmt cell. The
arbuscule was double-stained with mtroblue tetrazolium and acid fuchsin
(Modified from Dickson and Smith, 2001).



evidence for the transfer of P (Rosewarne et al., 1999; Gianinazzi-Pearson et al., 2000; see 1.3.5),

however, the site of transfer of C has been questioned since evidence for C transfer at the arbuscules is

not available (Gianinazzi-Pearson et al., 1991; Bago et al., 2000). The C transfer site could as well be

intercellular hyphae or hyphal coils (Dickson and Kolesik, 1999; see 1.2.3). During the formation of

an arbuscule the cell undergoes a number of dramatic changes in organization of organelles; the

vacuole is fragmented, the nucleus migrates to a central position within the cell and the numher of

organelles are increased (Carling and Brown, 1982; Balestrini et al., 1992; Bonfante and Perotto,

1995). Despite the intensive effort expended by both symbionts to develop the arbuscule and the

transfer site, tlie life span of an arbuscule is only a few days, after which it collapses and decays

leaving the cell undamaged and capable of hosting another arbuscule (Harrison, 1999).

When the fungus is well established in the root cortex, the extraradical mycelium of the AM fungus

extends out into the surrounding soil. Indeed, an extensive hyphal network grows from AM roots

(Jakobsen et al., 1992a). The extraradical mycelium forms mainly runner hyphae of several orders

(Friese and Allen, 1991) but also characteristic fine hyphae have been described (Nicolson, 1959;

Friese and Allen, 1991; Bago, 2000). These fine liyphae have recently been renamed branclied

absorptive structures (BAS), described for Glomus intruradices grown on agar plates (Bago et al.,

1998; Bago, 2000) and for G. rnosseae grown in soil using an inserted membrane technique (Bal& and

Vositka, 2001) (Fig. 1D). Finally, spores are formed completing the fungal lifecycle (Fig. 1E and F).

The extraradical mycelium is responsible for the uptake of mineral nutrients and their translocation to

the plant. The mycelium also contributes to soil stability by the aggregation of soil particles (Tisdall,

1991; Tisdall et al., 1997), probably mediated in part by glycoproteins produced by the hyphae

(Wright and Upadhyaya, 1996). The active extraradical mycelium and intercellular hyphae are

coenocytic, but localized loss of activity is associated with retraction of the cytoplasm and formation

of cross walls (Bago et al., 1998).

1.2.3 Nutrient exchange between symbionts

An understanding of AM physiology requires that the metabolism of the trausferred C and mineral

nutrients is understood. The C metabolism of AM fungi has been covered in a number of reviews, the

latest by Bago et al. (2000), and an overview of the latest results is given here. The mineral nutrients

supplied by the fungus, in tbis thesis only concerning P, will be further described in the following

section 1.3.

An important unanswered question about AM fungi is wby they do not complete their life cycle in the

absence of symbiosis with a host root. In contrast to ectomycorrhizal fungi that can develop and

complete their lifecycle without a host plant enabling studies and comparisons of their metabolism

both under symbiotic and asymbiotic conditions, AM fungi are fully dependent of the host plant for C

supply. AM fungi stop growing unless they establish a functional symbiosis with a host root, the

fungus canuot take up C from any other structure or source than from the root interior (Shachar-Hil1 et

al., 1995; Bago et al., 1999; Pfeffer et al., 1999; Smith et al., 2001). This has been a serious hindrance

to studying AM metabolism, and as a result, much less is known about the inetabolism of AM than



Inirai-iuHcal Extraradical

about ectomycorrhizas. However, despite the failure so far to culture AM fungi axenically, they can be

grown in sterile culture with transformed roots (monoxenic culture) (Becard and Fortin, 1988), and the

development of this in vitro culture system to the split-dish system (St-Amaud et al., 1996) has

facilitated further exarninations. Intensive studies using AM roots produced in pots or the divided in

vitro system, together with "C-labelling and nuclear magnetic resonance (NMR; see 1.3.6) (Shachar-

Hili et al., 1995; Pfeffer et al., 1999) have revealed that the intraradical fungal structures absorb sugars

as hexoses (glucose and fructose) effectively from the root in the symbiotic state. The sugars are then

metabolized to smal1 amounts of carbohydrates (trehalose and glycogen) which serve to buffer the

intracellular concentration of glucose for use in the oxidative pentose phosphate pathway (PPP) for

production of pentose for nucleic acid synthesis. However, the studies mentioned do not exclude that

the flux through the trehalose and glycogen pools is high, with a high activity in the common

metabolic pathway as a result. The finding of trehalose and glycogen is consistent with the hown

presence of the enzyme glucose phosphate dehydrogenase, which initiates the PPP from glucose-6-

phosphate, in intraradical hyphae of Gi. inargarita (Saito, 1995). This study also revealed hexokinase

activity in intraradical hyphae, an enzyme that catalyzes phosphorylation of glucose to glucose-6-

phosphate, which is the first step of glycolysis. Furthermore, large amounts of neutral storage lipids

(triacylglycerides) a e synthesized by the fungus withiu the root and lipids x e then proposed to be

stored or translocated to tbe extraradical mycelium for storage and metabolism (Pfeffer et al., 1999)

(Fig. 3). These studies suggest

that there is little or no lipid

synthesis in the extraradical

mycelium, and therefore the

metabolism of C is highly

specialized and very different in

the extraradical and intraradical

mycelia. Indeed, a recent study

using in viv0 two-photon laser-

scanning microscopy showed

movement of lipid bodies,

supposed to be responsible for

trans locat ion of storage lipids,

within the extraradical myce-

lium of G. intruradices and Gi.

margaritu (Bago et al., 2002).

However, the export of lipids

from intraradical to extraradical

mycelium does not exclude the

export Of both lipids and small

amounts of carbohydrate, as

discussed by Rago et al. (2000).

Fig. 3. Proposed model for major iluxes of carhon in the fungus in the
svmbiotic state of AM mvcorrhizae (From Pfeffer et al... 19991. ~IOPPP
oxidaiive pentose phosphate pathway. This model illustrates what is hown
aboui the main fluxes of C in symbiotic AM fungi, however, it also
illustrates what is omitted. As described, only few enzymes involved in the
different meiabolic pathways have heen identified, and molecular
characterization of the plant and fungal C transporters are limited (Bago et
al., 2000).
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Evidence from a study of hexokinase activity involved in glucose phospliorylation suggests the

occurrence of glycolysis and PPP in the extraradical hyphae (Ezawa et al., 2001a; see 1.3.4).

Unfortunately, the mechanism by which the C effluxes from the host root and is triggered and

regulated is still unclear. No plant or fungal sugar transporters involved in such efflux have yet been

identified (Harrison, 1999; Bago et al., 2000). However, at the level of gene expression, Harrison

(1996) demonstrated induced expression of a plant hexose transporter in mycorrhizal Medicago

truncatula ioots that is probably involved in C uptake in cortical cells near intraradical hyphae

(Harrison, 1999). Hence, the plant seeins to retain ability to absorb glucose from the interfacial

apoplast and compete with the colonizing fungus (Smith et al., 2001). Although the arbuscules

represent a large area of interface between the symbionts and traditionally has been assumed to be the

site of C transfer from host to fungus (Blee and Anderson, 1998), the observation that the arbuscular

membrane lacks ATPase activity has led to the suggestion that C uptake might occur via the

intercellular hyphae, whose membranes have been observed to have a high ATPase activity and thus

are energized for active transport processes (Gianiuazzi-Pearson et al., 1991). However, it is known

that fungi can have both active and passive sugar transport systems, and consequently it is unclear

whether uptake af C by the AM fungus requires an active transport mechanism similar to those of

plant transporters, or whether concentrations of C at the interfaces could be sufficient to permit uptake

by facilitated diffusion. So, whether arbuscules are the site af C transfer is a matter of debate

(Gianinazzi-Pearson et al., 1991; Smith and Read, 1997; Dickson and Kolesik, 1999; Bago, 2000;

Bago etnl., 2000; Smith et al., 2001).

During AM fungal sporulation and completion of the fungal lifecycle a large number af spores are

formed, with as many as 14000 to 38000 per root estimated in monoxenic cultures (Bago et al., 2000).

Because 45% to 95% of the AM spore C pool is neutral lipid, the spores constitute a major sink for the

C provided by the host plant (Bago et al., 2000). The studies just discussed do not consider the C

metabolism in asymbiotic stages af the fungal lifecycle, the germinating spores. Yet, this part of the C

metabolism has also been investigated intensely recently (Saito, 1995; Bag0 et al., 1999). This stage af

fungal development exhibits characteristics af both intraradical and extraradical symbiotic hyphae.

Labeling with "C and NMR experiments have shown that germinating spores can take up smal1

amounts of hexose to be metabolized to for instance trehalose; however the synthesis of storage lipids

in the asymbiotic phase is greatly reduced (Bago et al., 1999). iustead, most C is transported to AM

fuiigal spores as triacylglycerides (storage lipids) from the extraradical mycelium and sugars are

presumably mostly derived from stored lipids. These triacylglycerides are used in the common

pathways, with significant C-fluxes through gluconeogenesis, the glyoxylate cycle, the tricarboxylic

acid cycle, glycolysis, the PPP and most or all of the urea cycle (Saito, 1995; Bag0 et al., 1999; Bago

et al., 2000), to sustain growth.

To sum up, the studies just described have demonstrated what is known about C metabolism in AM

fungi, i.e. most about main fluxes of C, and this section also points out that more experimental work is

needed to fully understand this part af the symbiosis. However, it has been beyond the scope of my
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work to investigate C metabolism in AM fungi, and from here the focus of this thesis will purely be on

P inetabolism and transport in AM fungi.

1.3 Phosphate metabolism and transport in AM fungi

1.3.1 Phosphate in soil

P is an essential nutrieiit for all organisms, being present in nncleic acids, phospholipids and metabolic

compounds like adenosine triphosphate (ATP), and it is required in relatively large ainounts. Plaiits

absorb inorganic oifhophosphate (PI, H2P0; ions) from the soil solution, which is present at very low

concenti-ations, and P, is therefore often the nutrient that is most limiting to plant growth (Richardson,

2001). Much of the normally rather large total amount of P in soil is present in poorly solnble fol-ms as

inorganic ininerals (especially Ca, Fe and AI saks) or organic P-derivatives (from dead plant-parts,

microorganisms and animals) tliat the plant can not immediately access. in addition, much Pj is

adsorbed onto soil surfaces (Fig. 4).

Root

Orgariic acid aiiions
and H* ions

Rool hairs '

Microorganism

Iiiorgaiiic niinerals . baund P

Pi in soil
solution

Adsorbed P onto soil
surfaecs

Exlraccllular
phospliatases ^

\ /
organic r

Microorganism

Fig. 4. Diagram of the various P pools and the balance heiween them in soil.

Tbe total P content of soils averages approximately 0.05% by weight, but that of the soil solution is

inuch lower, around 1% (< 10 pM) of the total soil P is dissolved (Barber, 1984; Smith and Read,

1997). In natural mineral soil P is predominantly found as inorganic compounds, though inaccessible

to plants due to precipitation with other ions or binding to soil surfaces. On the other hand, in most



agricultural soils, most of the soil P is found in organic form, and here the P mobilization faces a

completely different challenge, as described below.

The availability af Pi to the plant is limited by the slow rate of diffusion af Pi through the soil; the high

affinity of Pi to different soil particles makes Pi virtually immobile in soil. The rate af diffusion af Pi

ions vary with the Pi content af soil, the buffering capacity and the tortuosity af the diffusion pathway

(Smith and Read, 1997). Plants continuously remove Pi from the soil solution close to the root, and

since the diffusion af Pi is slow, a steep concentration gradient af Pi towards the root is developed, and

an area surrounding the root may be completely drained af soluble Pi. This area without accessible Pi

is usually referied to as the P-depletion zone (Nye and Tinker, 1977) (see Fig.8). The size af this zone

depends an the rate of diffusion of the Pi, however in non-mycorrhizal plants this depletion zone

extends to a distance af approximately 10 mm from the root surface (Li et al., 1997). The formation af

a depletion zone limits the Pi uptake af the plant. Plants have developed a range af mechanisms that

influence the availability of soil Pi, in order to supply Pi at a rate that is adequate for optimal plant

growth (Barber, 1984). These iuclude the rate af root growth, total root length, abundance and

distribution af root Iiairs and the kiuetics of Pi uptake at the root surface (Liu et al., 1998a,b; Chiou et

al., 2001; Richardson, 2001). in addition, biochemical processes af either plant ar microbial origin that

occur at the root surface further influence the availability of soil Pi to plants (Marschner, 1998; see

below). However, the absorptive surface af the root system can also be greatly enldrged by

colonization with AM fungi (Li et al., 1991; Jakobsen et al., 1992a,b).

AM fungi can increase the absorptive surface af the root system via the extensive growth af tlie

extraiadical mycelium beyond the P-depletion zone and explore the soil outside the depletion zone for

nutrients (Li et al., 1991; Jakobsen et al., 1992d,b). This, together with a much faster hyphal

translocation to the plant compared to the slow diffusion of P, in soil and further a possible access to

smal1 soil pores inaccessible to roots, makes mycorihizal roots much more P, uptake effective than

non-mycorrhizal roots. Furthermore, AM fungi are believed to be a part af improved drought

resistance (Meddich et al., 2000) and increased salt tolerance (Al-karaki, 2000) showu by AM

colonized plants. However, it has aften been speculated, whether these are secondary effects of

improved plant P status made by the AM fungus colonization (Smith and Read, 1997).

Mobilization of phosphate by AM fuizgz

The ability of microorganisms to bring insoluble iuorganic and organic P into solution is of great

importance for the P cycling in the natural enviranment. Traditionally, AM fungi have been

considered to play a mainly indirect role in the release of P, from soil mineral complexes and organic

coinpounds (Joner et al., 2000a). However, there is recent evidence that the AM fungi might

mineralize organic P and then make organic P available to the host plant (Joner et al., 2000b; Koide

and Kdbir, 2000).

inaccessible inorganic P-minerals may become available to plants due to changes in pH (P bound by

ionic bands), metal ion concentration, chelating af the metal ion by organic acid anions, water
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potential and the nature of the soil colloids. P, is most readily available at around pH 6.5. At lower pH,

the decieasing solubility af Fe-P and ALP controls the solution concentration, whereas at higher pH

decreasing solubility af Ca-P becomes important (Barber, 1984; Smith and Read, 1997). Plants and

fungi are principally ahle to change pH af the rhizosphere locally, due to efflux of protons by Ht-

ATPases accompanying uptake of nitrogen as ammonium, and thus acidifying the soil (Marscbner,

1998). Also, plants and same fungi may excrete organic acid anions, which chelate Fe and AI and

heiice make P, more available. Some AM fungi seem to have the ability to change pH (Bago and

Azc6n-Aguilar, 1997; Yao et al., 2001), but reliable proof af the efficiency and importance of AM

fungi in pH changes of the soil remains unproven. Ectomycorrhizal fungi has been shown to excrete

organic acid anions into the rhizosphere (Cumming et al., 2001), however whether AM fungi do is not

known as far as I am aware.

In most agricultural soils, organic P comprises 2045% af tlie total P, af which the largest fraction

appears to be phytin and its derivatives (Jennings, 1995). Organic P-compounds inay be utilized by

plants after mineralization and subsequent release af Pi. The covalent nature af the organic bound P

means that release af Pi must be via a more specific meclianism than for instance pH changes. Thus,

eiizymes with phosphatase activity are involved in the extracellular reactions releasing P from soil

organic P. Acid and alkaline phosphatases (esterases, ACPase and ALPase, i-espectively), which

catalyze hydrolytic cleavage af the covalent C-O-P ester bond of organic P present in soil and release

P as plant-available Pi, may origiuate from plant and soil microorganisms (Yadav and Tarafdar, 2001).

However, the question about any function of extracellular phosphatases of AM fungi has been

controversial because experimeiits have not been performed in the absence af other soil

microorganisms (Joner and Johansen, 2000). The development af tbe split-dish in vitro system (St-

Arnaud et al., 1996) overcomes this problem, and results from studies of G. intrurutlices indicate that

this fungus can hydrolyze organic P, and further, that the resultant Pi can be taken up and transported

to host roots (Joner et al., 2000b; Koide and Kabir, 2000). The issue is well reviewed by Joner ef al.

(2000a), where the rather conflicting results af changes in phosphatase activity as affected by presence

af AM fungi are discussed. In short, existence of extracellular AM phosphatases does not seem to be

of a great quantitative importance for the P nutrition, since AM fungal biomass in soil is very low. The

role af AM fungal phosphatases in mineralization of organic P in soil is still rather unclear (Joner et

al., 2000a).

1.3.2 Mycorrhizal diversity and P nutrition

As a result af colonization with AM fungi, mycorrhizal roots in general achieve higher inflows of P,

than non-mycorrhizal roots, and are capahle of maintaining a relatively high rate of uptake over much

longer periods (Smith et al., 2001). In same AM symbiosis the fungal contribution to P, uptake may be

significantly higher than that of the plant itself (Li et al., 1991; Pearson and Jakobsen, 1993;

Marschner and Dell, 1994). Furthermore, it is found that plants down-regulate their higli-affinity ioot

P transporter in an AM symbiosis, indicating that colonized plants rely heavily an P transport via the

fungus during an AM symbiosis (Liu et al., 1998a,b). Indeed, many AM-dependent plants show a poor

soil P, uptake when not colonized by an AM fungus. However, reports have demonstrated negative
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effects of high soil P, levels on AM formation (Mosse, 1973; Abbott et al., 1984). The improved P,

uptake generally results in increased plant growth. But it is well documented that AM fungi differ in

their effectiveness to supply P, to their host and hence in their ability to enhance plant growth

(Jakobsen et al., 1992a,b; Pearson and Jakobsen, 1993; Smith et al., 1994; Dickson et al., 1999; Smith

et al., 2000). The growth benefit of plauts in response to colonization by different AM fungi can be

quite variable, ranging from dramatic increases in growth to neutral and even pathogenic reactions

(Johnson et al., 1997; Burleigh et al., 2002). In addition, AM fungi can influence plant community

composition by differeutly affecting the growth of different plant species (Jolinson et al., 1997) and

mycorrhizal colonization may influence plant community diversity (Grime et al., 1987; Van der

Heijden et al., 1998; Hartuett and Wilson, 1999; O'Connor et al., 2002).

Indeed, inany plant species are highly colonized by AM fungi and many plants ai-e dependent on a

successful symbiotic relationship for sufficient P, supply, especially when soil P, is low. It is also clear

that AM fungi can translocate P, from soil to plant root. However, our current knowledge about the

inechanisms by which P, is taken up, translocated and released towards the host plant by the AM fungi

is still incomplete, as shown in the following sections conceming the recently published work on these

inechanisms.

1.3.3 Uptake of Pi by extraradical AM hyphae

The extraradical mycelium of AM fungi is extremely efficient at acquiring P, from soil. However, the

fungi must absorb P, in an active, energy dependent process across membranes since the P, uptake

occurs against a steep concentration gradient. The average concentration of dissolved P, in the soil

solution is usually in tlie range of 0.5 to 10 pM (Barber, 1984), compared to a likely concentration in

the cytoplasm of AM fungal hyphae of 5 to 10 mM (Smith et al., 2001). Studies conceming the

molecular mechanisms of AM fungal P, uptake have lagged somewhat behind, due to the obligate

symbiotic nature of the AM fungi and problems in separating the two organisms in the symbiosis; it

has been difficult to separate uptake and translocation. However, the development of the split-dish in

vitro system ( S t - h a u d et al., 1996) has again proven to be very useful for further investigations,

molecular studies of AM fungi have exploded during the last years.

The fint kinetic investigations of P, uptake in AM fungi were performed on hyphae from germinating

spores of Gi. nzargarita (Thoinson et al., 1990). These studies suggested presence of active, high- (K,

1.8 to 3.1 pM) and passive, low-affinity (K, 10.2 to 11.3 mM) P transport systems similar to those

described previously in Neurospora crassa (Bums and Beever, 1979). Later, a high-affinity P '

transporter, that shares structural and sequence similarity with the high-affinity proton coupled P

transporters from yeast (Pho84) and N crassa (Pho5) was cloned from G. vrrsifornie (GvPT), with

expression limited to extraradical mycelium (Harrison and van Buuren, 1995). Due to the high

sequence homology to the geiies encoding P transporters in yeast and N. crassa, the protein encoded

by GuPT was predicted to be an integral membrane protein. The function of the protein encoded by

GvPT as a functional P transporter was confirmed by complementation of a yeast P transport mutant,

and P transport activity showed a Km of 18 pM, This value is actually to0 high to cope with rapid
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uptake from soil P, concentrations af less than 10 pM, however GvPT was named a high-affinity P

transporter due to its homology to Pho84 and Pho5 (Harrison and van Buuren, 1995). The high K,

value might be an ai-tifact af the kinetic measurements being made in a yeast system (see below).

Recently, the expression and regulation af a homologue transporter gene from the extraradical

mycelium of the AM fungus G. intraradices (GiPT) cultured in the split-dish in vitro system was

analyzed (St-Arnaud et al., 1996; Maldonado-Mendoza et al., 2001). P, concentrations typical af those

found in the soil solution resulted in expression of GiPT, and the study iudicated that the P status of

the mycorrhizal root influenced P, uptake by extraradical hyphae and GiPT expression; a high P status

af the mycorrhizal root resulted only in a slight induction af CifT. It was suggested that the lower

expression of GiPT was due to a source-sink effect such that P, efflux at the arbuscule feedback

regulates P, uptake in tlie extraradical hyphae, a reasonable thought based an the current knowledge.

The two P transporter homologues mentioned are the only type af P transporters found so far, but

considering the very high effciency of AM fungi for P, uptake in a variety af conditions, it is likely

that more than one uptake system exists, as suggested by Thomson et al. (1990). As will be

demonstrated in the following, many investigations af the P metabolism in the fungi indicate that the

various AM fungi species have different P metabolism, therefore the uptake inechanisms should not be

generalized at tlus stage.

The uptake af P, across the fungal plasma membrane via a P transporter requires energy. Recent work

suggest that uptake of P, occurs by electroneutral proton co-transport via the high-affinity P transporter

and a plasma membrane-bound P-type H+-ATPase (found in G. mosseae (GmHA5, Femol et al., 2000

and an unpublished homologue from G. intraradices (GiHAS), Nielsen, 2001) as is the case for plants.

The &-ATPase establishes the proton gradient across the fungal plasmalemma needed for tlie proton

symport system. Expression analyses show co-regulation with the described P transporter (GiPT)

suggesting a mechanism af P, uptake as described (Nielsen, 2001).

In a recent physiological study by Schweiger and Jakobsen (1999), the kinetic parameters for P, uptake

af extiaradical hyphae of G. invermaium were estimated. Results were based on shoot P content and

root length af mycoirhizal and non-mycorrhizal Trfolium subterraneum plants grown at 10 levels of

P, including a number of assumptians. In this study a K,, value af 0.17 pM was estimated, a value 100

times smaller than obtained for the P transporters (18 pM; see above) but oiily 10 times smaller than

the K, of the high-affinity P uptake system described by Thomson et al. (1990) (1.8-3.1 pM; see

above). However, the calculations were based an data from plants grown in soil with a high P-fixing

capacity (less P, available), which could explain the higher affinity for uptake sites for P, than

previously found. The P, inflow into hyphae estimated from inflow to colonized parts af the roots due

to hyphal uptake of P, and total hyphal length per meter colonized root has been found to be between

0.6 and 19.2 X 10 . ' ' mol m'V1 depending an AM fungal species and time af growth (Jakobsen et al.,

19921; Schweiger and Jakobsen, 1999). Combined with the reported mean diameter of extemal AM

hyphae af 2.6 pm, these values conesponded to P, flux into hyphae af between 0.2 and 2.4 x 10"9 mol

m'V1 (Jakobsen et al., 1992a), an influx much higher than influx into non-mycoiihizal roots (8.97 x

10"L1 mol m.'s-'; Schweiger and Jakobsen, 1999). An earlier reported value af inflow af P, to hyphae



from soil was 2.25 x I0"13 mol ni's - ' (Sanders and Tinker, 1973), two orders of magnitude higher than

the values estimated by Jakobsen et al. (1992a). However, the differences can be explained by

differences in experimental growth system. Accordingly, hyphae are very effective in absorbing P,

from the soil, especially at low soil P, concentrations.

1.3.4 Metabolism and translocation of P in extraradical AM hyphae

Oiice P, has been taken up by the extraradical mycelium, it is accumulated and translocated. AM fungi

release significant amounts of P, to their plant host besides the use of P, in their own metabolism and

translocation distances up to 7 cm have been observed (Jakobsen ef al., 1992b). P, entering the

cytoplasm of the AM fungus niay be incoigorated into phosphorylated primary metabolites, structural

molecules and nucleic acids. Furthermore, transport of excess of P, into the vacuole for storage and

formation of polyphosphate (polyp) may be a major part of the mechanism by which the fungus

controls the cytoplasmic P, concentration (prohably 5-10 mM as in most organisms, Smith et al., 2001)

and maintain P, homeostasis in the long term (Jennings, 1995; Mimura, 1999) together with a possible

localization for the P supposedly transported to the host plant.

It is widely accepted that P, excess taken up into the AM extraradical hyphae is subsequently

translocated to the vacuoles and to some extent condensed into polyp and translocated to the

intraradical hyphae (Callow et al., 1978; Cox et al., 1980; Cooper and Tinker, 1981; Smith and Read,

1997). The presence of large amounts of Pin the AM fungal vacnoles suggests that a transport system

for P across the tonoplast exists in AM fungi. However, no vacuolar P transporters or accompanying

vacuolar ATPases have been detected yet and the precise location of the polyp found in AM has not

yet been elucidated. Furthermore, the function of polyp in controlling cytoplasmic P, concentration has

recently been questioned (Smith et al., 2001).

Knowledge about P transport across the tonoplast in plants and fungi in general is limited and attempts

to measure the mechanism of P transport across tlie tonoplast in plants have not succeeded. It is known

from plants that the concentration of Pi in the vacuoles can vary considerably, in contrast to the

cytoplasmic concentration, and the sharp regulation of P, concentration in the plant cytoplasm suggests

that a P tonoplast transporter exists at least in plants (Mimura, 1999).

The use of the vacuole as a reservoir for cytoplasmic P, also applies in yeast (Ogawa et al., 2000). It is

known that yeast cells accumulate large amounts of Pi as polyp that is stored in the vacuole.

Cytoplasmic P, homeostasis in yeast and other polyp-accumulating fungi and algae seems dependent

on the synthesis and the degradation of polyp and may therefore be a more complicated process than

in higher plant cells (Mimura, 1999; see below). Therefore, mother possible mechanism of regulating

the cytoplasmjc P, concentration in the AM fungus could be that the P, uptake is directly coupled to

synthesis of polyp as in the case of yeast (Ogawa ef al., 2000; see below).
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Syizthesis ofpolyp

inorganic polyPs are linear polymers af from three to greater than 1000 P, residues liiiked by high-

energy phosphoanhydride bonds (Fig. 5). Polyp is prominent in many organisms, especially so in the

vacuoles af yeast, where it may represent 10-20% of the cellular dry weight (Kornberg et al., 1999).

As much as 37% of the total P in yeast (Saccharomyces cerevisiae) can be stored as polyp (Ogawa et

al., 2000). However, the polyp content is dependent an the P, supply, and it is known that yeast

accumulates a large amount of polyp in vacuoles under conditions of high P, preceded by a period of

P, starvation, referred to as the "polyP oveiplus" phenomenon (Harold, 1966; Ogawa et al., 2000).

Whether this is also the case for AM fungi will be investigated in the experimental part af this thesis.
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Fig. 5. Molecular structure of a linear polyp (From Kornberg et al., 1999).

The extent to which polyP is synthesized depends on the other processes that are occurring inside the

fungus. In prokaryotes, polyp synthesis requires the expenditure af energy and the involvement af

ATP mediated by polyphosphatekinase (PPK) (polyphosphatase), which also catalyses the reverse

reaction (Jennings, 1995):

ATP + (polyP)n «H> ADP + (polyP),1+1

However, to my knowledge, ATP has not been detected in significant amounts in vacuoles nor has

PPK-like activity. Therefore another mechanism for synthesis af polyp in eukaryotes should be

expected

Regulatory iizeclzanisnzs for polyp synthesis

Not much is known about the regulatory mechanisms for synthesis af polyp in fungi in general.

However, regulation af P, accumulation and polyp metabolism has to same extent been studied in

yeast. Recently, several genes and proteins involved in the polyp synthesis in yeast have been

characterized by DNA microarray tecbnology (Ogawa et al., 2000). At least five genes code for

proteins involved in the accumulation af polyp, and there is evidence for the formation of a complex

for polyP synthesis on the vacuolar membrane by four af these proteins (Phml-Pbm4). In addition, the

last protein PhmS is suggested to be associated with ar be a polyphosphatase (polyp-synthetase) (Fig.

6). Furthermore, the results by Ogawa et al. (2000) suggested that vacuolar ATPase activity is not

sti-ictly essential for polyp synthesis, as previous work had showii, but an analogous activity producing

the proton motive force across the vacuolar membrane (tonoplast) is needed. in comparison, an active

transport of P, into the vacuoles of an AM fungus and subsequent 01 simultaneously synthesis af polyp

would maintain a concentration gradient af P, between cytoplasm and vacuole as maintained for the

uptake from soil to the AM fungal cytoplasm, for as lang as the transport across the tonoplast was

18



energized. The work of yeast also revealed the paradox of the increasing ahility of the cell to convert

P, into polyp in response to P, starvation, and it is suggested that this may represent a strategy for

accumulating and holding precious P, (Ogawa et al., 2000). Consequently, polyp accumulation is

required, presumahly as a sink, to sustain a high rate of long-term uptake of P, in yeast. indeed, an in

viv0 31P NMR investigation of P metabolism and polyp dynamics in yeast in response to stress

(Castrol et ah, 1999) revealed that P, uptake and polyp synthesis appeared to be regulated in concert.

Consequently, if this theory is true also for AM fungi, it could explain why no convincing results of

polyp synthesis have appeared from work with PPK of this enzyme heing present in AM fungi for

synthesis of polyp.

Nucleus

Fig. 6. Proposed Pi uptake and storage system in yeast (S. rerevisiae). When yeast encounters conditions of Pi starvation, the
low Pi signal initiates Pli081 activity, whicli supprcsses Pho80-Pho85 kinase activity. This inhibition results in an active Pho4
protein, wliich is localized to the nucleus where it acts as a specific transcriptional activator of PHO-regulated genes. The Pi

siarvation signal triggers increased production of at least four types of pliosphatases, which can contrihute to increased leveis
of Pi; the nonspccific ACPases PhoS, Pholl, Phoi2, which are localized inperiplasmic Space; the nonspecific ALPase Pho8,
which is locaiized to ihe vacuole; the glyccrol phosphatase Hor2 and the putative polyphosphatase Phm5 which is localized
in the vacuole. In addition, Pi starvation induces the expression of genes encoding P transporters, Pho84 (homologue to GvPT
and GiPT; Hanison and van Buuren, 1995; Maidonado-Mendoza et al., 2001) and Pho89. Finally, the polyp accumulation
proceeds as explained. CDK inhibitor; cyclin-cyclin dependent protein kinase inhibitor. (Modified from Ogawa ef al., 2000).



Possible functions ofpolyp in AM fungi

As a proposed reservoir for Pi as one af the possible functions for polyp, the polymer enjoys a clear

osmotic advantage over Pi (Mimura, 1999). A stable level af Pi essential for metaholism and growth

can he ensured by a reservoir in which polyp can be converted to Pi by associated

exopolyphosphatases (PPX; see below). in addition, polyp can be a high-energy Pi alternative to ATP

as a pliosphagen, since the bond between residues has a high free energy af hydrolysis equivalent to

that for the terminal Pi group of ATP (Kulaev and Vagabov, 1983; Kornberg et al., 1999). indeed,

some bacteria can utilize polyp as an ATP substitute via polyphosphateglucokinase (PPGK), a polyp-

phospliotransferase which transfers the terminal Pi residue of polyp to glucose, producing glucose-6-

phosphate. Glucose phospliorylation is the first step of glucose metaholism through glycolysis and tlie

PPP, both of wliich occur in the fungi (see 1.2.3). Capaccio and Callow (1982) detected PPGK activity

in the AM fungus G. mosseae. However, the stationary-phase levels of polyp are not thought to be a

physiologically significant energy source. A recent study by Ezawa et al. (2001a) investigated the role

of polyp as a pliosphagen in spores, extra- and intraradical hyphae af G. etuizicatunz and G.

coroizatu~n. Hexokinase, which utilizes ATP as a phosphagen, was active in all components of both

fungi, suggesting tliat glucose can be metabolized generally through glycolysis and PPP. Activity of

PPGK was detected in the spores and intraradicdi hyphae af both fungi but was negligihle compared

with that of hexokinase. Thus, they concluded that it is unlikely that polyp is a major phosphagen in

glucose metabolism af the fungi, indeed, the presence of a polyp-phosphotransferase would be

expected if polyp is a phosphagen. However, keeping the detection of PPGK activity in G. mosseae in

mind, again it should be stressed that general conclusions af mechanisms in AM fungi should be

proposed rather carefully, since various fuugi may behave differently. So whether ar not polyp is a

phosphagen in AM fungi can not be determined.

Recent literature and investigations presented in this thesis suggest that supply af P, to the mycelium

increases the amount of polyp that can be detected by toluidine blue staining of G. etunicatwz and G.

coronatum (Ezawa et al., 2001b) and by in viv0 "P NMR spectroscopy of G. intruradices (see

following chapters). The amount of polyp in the intraradical and extraradical hyphde of Gi. nzargarita

has been estimated from successive extractions with trichloroacetic acid (TCA) (acid soluble, short-

chain polyP), ethylene diamine tetraacetic acid (EDTA) (lang-chain polyp) and phenol-chloroforrn

(PC) (granular polyp) (Solaiman et al., 1999; Solaimdn and Saito, 2001). These studies suggested that

in the intraradical hyphae, most of the polyp was present as shoit-chain and long-chain forms,

wliereas, in the extraradical hyphae, most of the polyp was present as long-chain or granular forms.

They explain these results as the possible outcome af hydrolysis of lang-chain polyp into shorter

chains by eiidopolyphosphatase (see below) in intraradical hyphae, though this has not been verified.

The same work sliowed that polyp only contributed to between 5.4 and 17.3% of the total P, and that

polyp therefore may be quantitatively less important than previously thought (Solaiman et al., 1999;

Smith ei al., 2001). As a result, the content of polyp does not seem large enough to provide a

meclianism of controlling cytoplasmic P, concentrations and reducing osmotic stress (see above). In

addition, a study of the polyp contents in G. manihotis and Gi. rosea using 4',6-diamidino-2-

phenylindole (DAPI) for staining af polyp failed to detect any polyp in the extraradical mycelium af
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G. nmnihotrs, whexeas Gi. rosea accumulated considerable amounts (Boddington and Dodd, 1999).

However, the DAPI method has been shown to be very non-specific, and it is doubtful whether the

DAPI staining reveals polyp (personal comnunication T. Cavagnaro 2002). The presence of insoluble

polyp granules has often been speculated (Cox et al., 1975; Cox and Tinker, 1976; Solaiman et al.,

1999), however, whether or not polyP granules are present in all AM fungi is a matter of debate.

Orlovich and Ashford (1993) used freeze-substitution to illustrate that polyp was present in soluble

form stabilized by K ’ ions in the ectomycorrhizal fungus Pisolithus tinctorius and that granules were

probably an artefact of specimen preparation. Nevertheless, Bucking and Heyser (1999) recently

showed that not all polyp granules were artifacts caused by the preparation procedure. Different

species of fungi might have different P metabolism, possible due to differences in life-cycle strategies,

as proposed by Boddington and Dodd (1999). The differences found in the various fungi mentioiied

higlilight the importance of studying the development and function of a number of different species of

AM fungi.

However, the presence of polyp in many AM fungi is undoubted, and it seems reasonable that a main

function for tbe synthesis of polyp is to store large amounts of Pi to be further translocated and

transferred to the host plant. Being a major transport molecule is in my point of view a very important

functioii of polyp and it will be fuither discussed in the following sections conceruing the possible

mechanisms of translocation of Pi or polyp in AM fungi and the possible ways of breakdown of polyP.

Mecharzisins of translocutioiz ofP in AM fungi

Whether or not the major form of P is as Pi or polyp, tbere is no doubt that large amounts of P are

delivered to the interfaces between fungus and plant. The rates of P flux along extraradical hyphae

have been ineasured in several studies to be between 1.3 x 10" mol m-2 s-’ in monoxenic cultured

hyphae grown in Phytagel (Nielsen et al., 2002), 3.8 x 10"4 mol m.* s-’ in hyphae grown in soil

(Sanders and Tinker, 1973) and 2-20 x 10"6 mol m . ’ s-’ in hyphae grown in soil-agar (Cooper and

Tinker, 1978). All values were calculated per unit cross sectional area of hyphae. Indeed, the amount

of P translocated in AM hyphae is to0 large for passive diffusion to be responsible over the distances

measured (Pearson and Tinker, 1975; Harley and Smith, 1983). Pressure-driven bulk flow is anotber

possible translocation mechanism. If intracellular bulk flow occurs then it will ovemde any

translocation for which the driving force is a concentration gradient, and all nutrients will move in the

same direction down a pressure gradient, regardless of concentration (Harley and Smitli, 1983). Bi-

directional translocation in the same hyphae is not then theoretically possible, and it is hard to

envisage different nutrients being moved in different directions in different hyphae of the same

mycelium (Harley and Smith, 1983). Furthermore, as stated in Nielsen (ZOOI), such a mechanism must

involve a flow of cytoplasm. And as revealed in the following chapters, together with previous results

from AM fungi (Callow et al., 1978; Cox et al., 1980) and ectomycorrhizas (Ashford, 1998; Ashford

et al., 19991, there is evidence for the majority of P being present in vacuoles as Pi and polyp. As a

result, pressure-driven bulk flow cannot be responsible for the main translocation of P in AM fungal

mycelium. Harley aiid Smith (1983) discussed the evidence for another translocation mechanism that

involved the directional movement of P as polyp in discrete compartmeuts (e.g. vacuoles), powered by
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cytoplasinic streaming. Bi-directional cytoplasmic streaming has been observed in extraradical AM

mycelium (Cox et al., 1980; Cooper and Tinker, 1981; Giovannetti et al., 2000; Nielsen et al., 2002)

and may be involved in P translocation. However, in ectomycorrhizas, directional movement of P-rich

(including polyp) pleioinoiphic motile tubular vacuoles has been proposed as the transport system

(reviewed by Ashford, 1998). Several studies have revealed that vacuoles have a high degree of

piasticity and are rarely single compartments, but are pari of a microtubule-connected, highly mobile

system (Ashford et. ul., 1994; Cole et al., 1998; Hyde et al., 1999). Indeed, there is recent evidence for

tubular vacuoles in AM fungi (Uetake et al., 2002). This work demonstrated the uptake and

concentration of a putative vacnolar specific dye into the tubular system, examined by confocal

microscopy of germ tubes and extraradical hyphae of Gi. margarita, suggesting existence of vacuoles

in a tubular system. Furthermore, observed velocities of various organelles presuinably including

vacuoles measured from extraradical hyphae in monoxenic cultures are comparable with the

mentioned P flux-rates (Giovannetti et al., 2000; Nielsen ef al., 2002), suggesting translocation of P by

AM fungi in vacuoles in a motile tubular vacuole system similar to ectoinycorrhizas. Indeed, even

though neither Giovannetti et al. (2000) nor Nielsen et al. (2002) was able to demonstrate the nature of

the translocated organelles conclusively to be vacuoles, the work by Uetake et al. (2002) indicates the

structures to be mainly tubular vacuoles. In addition, the existence and localization of microtubules in

AM fungi have been verified and examined by Timonen et al. (2001). They found microtubules

distributed iongitudinally within the mycelium, linking extra- and intraradical mycelium together. In

conclusion, net directional translocation of P in polyp form could occur via transport in a system of

motile tubular vacuoles, however the characterization of polyp (proportion of total P and size) needs

further investigation.

Breakdown ofpolyP and delivery of P, to tlze symbiotic interface

Once a vacuole containing P, or polyp has been translocated to the intraradical mycelium, the P, must

exit the fungal vacuole to reach the plant. Consequently, any polyp must be broken down in the

vacuoles or transported across the tonoplast to the cytoplasm and a mechanism must exist for tbe exit

of P from vacuoles. For a possible explanation of the differences in vacuole loading (extraradical) and

vacuole unloading (intraradical), the two parts of the AM fungi must have somewhat different P

metabolism, and as described, polyp is believed to play a central role here. There is no reason to

assume other than that polyp is in some kind of equilibrium with vacuolar P, and that synthesis and

breakdown of polyp therefore indirectiy regulate the equilibrium of vacuolar P, and cytopiasmic P,.

Polyp can be utilized as a substrate for transferases Iike PPK and PPGK (see above) and by

hydrolases. There are two types of polyp-hydrolyzing enzymes (anhydrases): endopolyphosphatase

cleaves the intemal linkages of polyp, shortening chain length; whereas PPX hydrolyses teiminal

residues and releases P,, Several PPX-type activities have been observed in vacuoles, cytoplasm and

cell envelope in yeast (Kornberg et al., 1999). As expected, the extraradical and intraradical mycelia

of AM fungi appear to have somewhat different polyp metabolism. Capaccio and Callow (1982)

detected PPX-type activity with maximum activity at pH 5 in intraradical hyphae of the AM fungus G.

mosseae, where polyp hydrolysis is therefore likely to occur. The study by Ezawa et al. (2001b)
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showed clear differentiation of the polyp metabolism between the intra- and extraradical hyphae of

two AM fungi, G. etunicatum and G. coronatum. Both fungal species have at least two different PPX-

type enzymes, which differed in activity between intra- and extraradical hyphae. The two enzymes

have different pH optima; high activity of one PPX-type enzyme was observed at pH 5.0 in the

intraradical hyphae, whereas the activity of the other PPX-type enzyme was much higher at 7.5 in the

extraradical hyphae, though the extraradical hyphae of G. etunicaturn showed very low activity. Thus,

extraradical hyphae not only synthesize polyp, but have also polyp-hydrolyzing activity. If this

hydrolyzing activity is extracellular, it would be interesting in relation to hydrolysis of the possible

polyp-pool in the soil, arising from the decomposition of microorganisms, as suggested in the thesis

by Nielsen (2001). The results on substrate specificity by Ezawa et al. (2001b) showed higher

substrate specificity with long-chain polyp at pH 7.5, whereas activity at pH 5.0 showed higher

substrate specificity with short-chain polyp, in agreement with the results of Solaiman et al. (1999)

suggesting longer polyp chains in extraradical hyphae compared to intraradical hyphae. Ezawa et al.

(200Ib) suggested dominance of acidic hydrolyzing activity in intraradical hyphae, and they proposed

that the acidic PPX-type activity was an ACPase. The work indicated that the acidic PPX-type activity

played an important role in the hydrolysis of polyp in vacuoles of intraradical hyphae prior to Pi

release to the interface between the fungus and the plant. However, due to the use of crude extracts,

the precise identity of the enzyme activities is obscure, apart from contributing to polyp breakdown.

Without subcellular fractioning, the supposed PPX-type activities have not been proved to be

vacuolar.

Nevertheless, based upon these findings, Ezawa et al. (2001b) suggested that in intraradical

intercellular hyphae polyp concentration is maintained by the dynamic and regulated balance between

synthesis and hydrolysis, with vacuolar H+-ATPase energizing polyp synthesis and constitutively

expressed PPX-type activity (possible an ACPase) responsible for hydrolysis. Whereas, in arbuscules,

net hydrolysis of polyp may be increased due to inactivation of vacuolar r-ATPase, and this may

trigger release of Pi into the apoplast (Fig. 7). However, besides being sure of presence of polyp and

some kind of polyp-hydrolyzing activity, this model remains very speculative. Further characterization

of the involved enzymes is required.

Fig. 7. Hypotheticai model of polyp metabolism in the intraradicai hyphae of AM fimgi. ACPase, acid phosphatase; PPX,
exopolyphosphatase. Red arrow: polyp synthesis, dark blue mow: polyp hydrolysis (From Ezawa et al., 2001b).
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If the source of Pi for transfer to the apoplast is provided by net hydrolyses of polyp within the

arbuscule, as suggested by Ezawa et al. (2001b), this may cause a potential pH problem. Hydrolysis of

polyp generates K' ions and lowers pH, and tliis could create a problem for local pH regulation in both

the vacuoles and the cytoplasm of the fungus. However, results af Guttenberger (2000) could be

interpreted as acidification of the arbuscule itself, with the arbuscule sealed off from the tmnk hyphae

by a cross wall (Smith et al., 2001), then supporting the idea af H' release during hydrolysis af polyp.

Indeed, a recent study by Dickson and Smith (2001) demonstrated the presence of cross walls in

arbuscular tru& hyphae after loss af metabolic activity. In this study it was suggested that Pi could be

trapped in the arbuscule, with the development af the cross wall preventing back flow of Pi to the

intercellular hyphae. Still, this hypothesis also remains very speculative and the precise location of the

acidic compartment has to be confirmed befare the location of polyp hydrolysis can be determined.

Other iiztrucellular plzosphatases in AM fuizgi

Intracellular ALPase activity has been shown in both extraradical (Zhao et al., 1997; Vosatka and

Dodd, 1998; Boddington and Dodd, 1999; Kjøller and Rosendahl, 2000; van Aarle et al., 2001) and

intraradical AM fungal mycelium (Gianinazzi-Pearson and Gianinazzi, 1978; Tisserant et al., 1993;

Ezawa et al., 1995; Saito, 1995; Boddington and Dodd, 1999) af various species of AM fuiigi. ACPase

activity lias also been demonstrated in both extraradical (van Aarle et al., 2001) and intraradical AM

mycelium (Gianinazzi et al., 1979; Ezawa et al., 1995; Saito, 1995; Ezawa et al., 2001b). In the

intraradical mycelium both ALPase and ACPase activity lias been localized in the vacuoles af

intercellular hyphae and arbuscules (Gianinazzi-Pearson and Gianinazzi, 1978; Tisserant et al., 1993;

Ezawa et al., 1995; Saito, 1995). Accordingly, ACPases (Ezawa etal., 2001b; see above) and ALPases

(Gianinazzi-Pearson and Gianinazzi, 1978; Tisserant et al., 1993; Ezawa er al., 1995) have been

thought to be involved in polyp breakdown. The ALPase activity in intraradical hyphae has been

found to be related to the stimulation af the growth of plants when infected by AM fuiigi (Tisserant et

al., 1993; Kojima et al., 1998) and Tisserant et al. (1993) proposed that the fungal ALPase could

provide a useful marker for analyzing the symbiotic efficiency of AM fungi. in addition, studies have

shown that there are differences between species of fungi in the localization of intraradical ALPase

activity, and this difference might reflect different sites for Pi transfer, as discussed for C (Ezawa et

al., 1995; see 1.2.3). However, Larsen et al. (1996) found no correlation between intraradical ALPase

activity and fungal P transport, suggesting ALPase activity not related to P metabolism. Finally,

Ezawa et al. (1999) found an ALPase in arbuscules of G. etimicatirm with apparent substrate

specificity for glucose-6-phosphate and none for pyrophosphate compounds such as ATP and polyp,

indicating that the ALPase may be involved in the metabolism of C-compounds, and thereby release Pi

into the apoplast. The study by Solaiman and Saito (2001) of Pi efflux from intraradical hyphae of Gi.

margarita supported this hypothesis. They found that addition of glucose enhanced Pi efflux from

iniraradical hyphae, and proposed tliat glucose increased polyp hydrolysis and further glucose was

being phosphorylated to glucose-6-phosphate. This glucose-6-pbosphate was then hydrolyzed with

ALPase with increased Pi efflux as a result. However, how glucose stimulates polyp hydrolysis was

not discussed, and the breakdown of polyp is therefore still the critical point in the release af Pi from

the vacuoles in the intraradical hyphae whicli is needed for direct transfer of Pi to the apoplast or via
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an intermediate C-compound. In conclusion, tlie role of ALPase has not heen satisfactory determined

with respect to P metabolism and polyp breakdown. The strong indications found by Ezawa et al.

(2001b) that a non-specific intraradical ACPase was involved in hydrolysis of polyp suggests that

ACPase activity is more likely involved in P, transfer from intraradical mycelium to host. However,

the function of phosphatases in the P metabolism in AM fungi is not clear and more detailed studies of

ALPases and ACPases in different species of AM fungi are needed.

ALPase activity in the estraradical mycelium might be an effective marker for metabolic activity in

studies of AM fungi (e.g. Zhao et al., 1997; Vosatka and Dodd, 1998; Kjøller and Rosendahi, 2000).

Severai colorimetric stainiiig techniques have been developed, as it will be further demonstrated in the

following chapters with emphasis on the enzyine-labeled-fluorescence (ELF) (van Aarle et al., 2001).

The ELF method has been shown to be much more sensitive for staining of phosphatases than for

exainple the Fast blue salt (FB) staining method (van Aarle et al., 2001). ELF precipitated in AM

fungi with both acid and alkaline buffers, suggesting both ALPase and ACPase activity, respectively

(van Aarle et al., 2001). Young spores showed higher precipitation than older spores, however, this

could be a penetration effect or the fact that old spores are ful1 of lipid. Specific staining of AM fungal

structures in roots was observed when alkdine buffer was used, not with acid buffer, and by this, the

ELF substrate could be med as an indicator of metabolically active fungal tissue. The work by van

Aarle ef al. (2001) revealed a patchy distribution of the ELF precipitates in the estraradical mycelium,

probably due to a high precipitation in the vacuoles, as espected when vacuoles are believed to be the

main P storage and transfer organelle. However, care should be taken in relating ALPase to P

metabolism (see above). FB staining showed no effect of increasing P addition on the ALPase activity

in ihe estraradical mycelium of Gi. rosea and G. manihotis (Boddington and Dodd, 1999). Instead,

low levels of ALPase activity were observed in the estraradical mycelium and auxiliary cells of Gi.

rosea duriiig early development of this fungi. This coincided with accumulation of polyp in the

auxiliary cells. The ALPase activity increased in the auxiliary cells only after a decline in polyp

accumulatioii, indicating a negative feedback mechanism at this state of development of the fiingi.

1.3.5 Transfer of Pi from AM fungus to plant

Once Pi has been translocated to the symhiotic interface, it has to be transfeired to the plant root cells

in order for the symbiosis to be functional. Pi transfer between fungus and host plant is assumed to

occur across the arbuscule-plant cell interface. Plant P transporters which are induced by P starvation

have been shown to he down-regulated in mycorrhizal M. truncatula roots, indicating that these

transporters are not involved in symbiotic Pi transfer but in Pi uptake from the soil (Liu et al, 1998b;

Chiou et al., 2001). Monovalent cations stimulated the passive efflux of Pi from hyphae of the

ectomycorrliizal fungus Pisolithus tinctorius (Cairuey and Smith, 1993), and a similai. mechanism

might be present in AM fungi. Indeed, the fact that the host plant esperiences a high siiik strength

combined with a high source of Pi in the fungus, could be responsible for the transfer of Pi in a passive

efflux towards the plant (Smith et al., 2001). Furthermore, the fungal P transporter GvPT seemed not

to be espressed in the intraradical fungal structnres (Harrison and van Buuren, 1995), this would

reduce the reabsoiption of Pi by the fungus from the arbuscular apoplast and promote net Pi transfer
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towards the plant (Rosewarne et al., 1999). However, it is predicted that AM fungi contain an efflux

mechanism (or mechanisms) to release P, from the arbuscule and that plants posses a plant uptake

system to transport P, into the cortical cell (Smith and Smith, 1990). P, flux across the symbiotic

interfaces has been estimated to be between 3 and 15 x 10"9 mol m-’ s.’, assuming that the arbuscules

provide the main interface for transfer (Cox and Tinker, 1970; Dickson et al., 1999), and based on

these findings, the AM fungi likely have some type of specialized efflux mechanism operating in the

arbuscular membrane to permit sufficient P, efflux to the arbuscular interface. Nevertheless, the

mechanism by which the fungus is induced to release P, at the arbuscular interface remains

circumstantial.

Indeed, there is some indirect evidence that P, transfer from tbe fungus to the plant may occur at the

arbuscular interface; a high-afiinity plant P transporter gene (LePTI), which is responsible for P,

uptake driven by a pH gradient across plasma membrane, was expressed in arbuscule-containing cells

of tomato (Rosewarne et al., 1999). And a possibie plasma membrane H+-ATPase which generates a

pH gradient across the plant plasma membrane has been found an the periarbuscular membrane in root

cells of transgenic tobacco in symbiosis with G. fascic~lat~m (Gianinazzi-Pearson et al., 1991;

Gianindzzi-Pearson et al., 2000). Recently, a P transporter gene (StPT3) in potato has been identified

(Rausch et ah, 2001) and the molecular work indicated expression of the gene in root sectors when

mycorrhizal structures are formed. The work gave rise to the hypothesis that the protein encoded by

StPT3 functions as an AM symbiosis specific P transporter active in the periarbuscular membrane. The

protein exhibits high homology to GvPT responsihle for the P, transport across the plasmalemma in

the extraradical mycelium of an AM fungus, and it is proposed that the StPT3 protein inediates P,

acquisition in the root-fungal interface similar to GvPT in the extraradical hyphae.

To summarize the just described work on P metabolism by the AM fuiigi, a hypothetical model is

pIesented liere (Fig. 8).
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P i accumulated in vacuole
polyl' synthesis by? and P
translocation as polyp in
motile tubular vacuoles
polyP Iiydrolysis by

Extra radical hyphae
uptake by AM hyphae

GvPT/H'-ATPase
GiPT/H+-ATPase

P, uptake by root and root hairs
LePTl/Il'-ATPase
MtPTl

root growth

Fig. 8. Hypothetical model ofP metabolism by AM fungi (Modified from Smith er al., 2001)

1.3.6 In viv0 31P NMR for the study of P metabolism

As it can be seen from the above sections some of tlie most iinportant questions about AM fungi

concern tlie metabolism of the nutrients transferred between the symbionts. More detailed information

on metabolism and transport is required. Approaches applied to understand the P metabolism include

investigations of enzymes involved in P and polyp metabolism (Gianinazzi-Pearson and Gianinazzi,

1978; Tisserant et al., 1993; Ezawa et al., 1995; Saito, 1995; Ezawa et al., 2001a,b), detection of

polyp using extraction procedures and polyacrylamide gel electrophoresis (Callow et al., 1978;

Solaiman et al., 1999), studies of P transport by hyphae using radiotracer techniques (Cooper and

Tinker, 1978; Jakobsen et al., 1992a,b; Schweiger et al., 1999) or phosphoimaging (Nielsen et al.,

2002) and characterization both of fungal and plant P transporters (Harrison and van Buuren, 1995;

Liu et al, 1998a,b; Rosewame et al., 1999; Chiou et al., 2001; Maldonado-Mendoza et al., 2001;
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Rausch et al., 2001). However, in several of the investigations mentioned, the P metabolism has only

been examiiied with invasive methods, i.e. with possible interfering of the metabolic processes or

enzyme activities involved. For creating a link between results of fungal metabolism obtained using

destructive methods and real-life biological processes, there is a need for studies using non-invasive

and non -destructive techniques. For this purpose, non-destructive and non-invasive in viv0 "P NMR

spectroscopy is a unique analytical method for the study of P metaboiism in fungai and plant tissue

(Ratcliffe, 1996).

NMR has contributed significantly to the understanding of the patbways and regulation of C

metaboiism (see 1.2.3) and P metaboiism in mycoi-rhiza (reviewed by Pfeffer ef al., 2001). Because

NMR can identify metabolites and fuither gives information on the amounts, forms and locations of

various metabolites it has been a useful method in studying metabolism and transport in both

ectomycorrhizal and AM fungi. Although the physiological questions asked in botb ectomycorrhizal

and AM fungi are frequently the same, these two symbioses are very different. Ectomycorrhizal fungi

can grow in a free-living state so it is possible to foiiow and compare their metabolism both under

symbiotic and asymbiotic conditions. In contrast, the obligate nature of the AM fungus has been a

serious hindratice to study this particular system. However, in viv0 "P NMR spectroscopy is very

suitabie for studying the dyuamic behavior of P uptake and to investigate any polyp metabolisin in

rnycoi-rhizal tissue. 31P NMR spectroscopy has been used for in viv0 studies of P metabolism of

ectomycorrhizal fungi cultured under axenic conditions. When P, was added to ectomycorrhizal fungi,

polyp signals were found in the "P NMR spectra (Martin et al., 1983; Martin et al., 1985; Ashford et

al, 1994; Gerlitz and Werk, 1994; Martin et al., 1994; Gerlitz and Gerlitz, 1997; Martins et al., 1999).

NMR studies of mycoi-rhizal roots also have been carried out with emphasis on ectomycorrhizas, as in

the studies of intact mycorrhizal red pine roots (MdCFall et al., 1992), living mycorrhizal beech root

tips (Loughman and Ratcliffe, 1984) and mycorrhizal beech and pine roots (Gerlitz and Werk, 1994;

Gerlitz and Gerlitz, 1997). In contrast, there have been very few in viv03i P NMR investigations of

AM fungi, with just one study of AM roots of leek and germinating spores (Shachar-Hil1 et al., 1995),

and no published NMR work on P metabolism in the extraradical mycelium of AM fungi besides the

work presented in this thesis. The principles of NMR and the applications of 31P NMR spectroscopy to

plant systems are fui-ther described in the foilowing chapters.

1.4 Summary and objectives of the thesis
Experimental evidence of how P is utilized and translocated in tlie AM fungi and transferred to plants

is still limited. The uptake, translocation and transfer of P by the extraradical mycelium of the AM

fungi have been studied extensively, and a model of the overall mechanisms lias been widely accepted.

It is believed that P, in the soil solution is absorbed by the extraradical mycelium via an AM fungal P

transporter energized by a P-type H+-ATPase (Harrison and van Buuren, 1995; Ferrol et al., 2000;

Maldonado-Mendoza et al., 2001). The P, entering the cytoplasm of the AM fungus may be

incorporated into phosphorylated primary metabolites, structural molecules and nucleic acids. It is

assumed tbat P, excess taken up into the AM extraradical hyphae is subsequently transferred to the

vacuoles and partly condensed into polyP. The P-containing substances such as polyp are then
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believed to be translocated to the intraradical hyphae in vacuoles in a motile tubular system similar to

that of ectomyconhizas (Smith and Read, 1997). Recent studies of the vacuolar system in AM fungi

have confirmed tlie presence of tubular vacuoles and microtubules (Timonen et al., 2001; Uetake et

al., 2002). Once translocated to tlie symbiotic interface inside the root, the polyp has to be hydrolyzed

and the released P, subsequently transferied to the plant root cells to achieve a mutualistic syinbiosis.

This transfer is believed to occur at the arbuscular interface, which is in agreement with the recent

discovery that plant P transporters are expressed in root cells containing arbuscules (Rosewaine et al.,

1999; Rausch et al., 2001). Iii addition, incubation of extracted intraradical mycelium of Gi. niargarita

in glucose increased the efflux of P, and polyp content in the hyphae decreased simultaneously,

indicating a role for polyp in the exchange of C and P, between symbionts (Solaiman and Saito, 2001).

Accordingly, polyp is considered to have an important role in the P translocation process. In addition,

polyp as a storage form enjoys a clear osmotic advantage over P, and synthesis of polyp inay be a

major part of the mechaiiism by which the fungus controls the cytoplasmic P, concentration (Mimura,

1999). Polyp bas been detected in AM fungi by cytochemical methods (Cox et al., 1975; Cox et al.,

1980; Boddington and Dodd, 1999; Ezawa et al., 2001b), by extraction methods followed by

polyacrylamide gel electrophoresis (Callow et al., 1978; Solaiman et al., 1999) and by NMR (Shachar-

Hil1 et al., 1995). However, the amount, size and major role of polyp present in the extraradical and

intraradical hyphae is a matter of debate. Several investigations suggest the preseuce of rather long-

chain polyp or granules especially located in the extraradical mycelium (Callow et al., 1978; Solaiman

et al., 1999), supporting the idea that polyp metabolism in extraradical and intraradical hyphae may be

different. Fuither, the extraradical mycelium of the AM fungus G. manihotis seems not to accumulate

polyp in comparison with high amounts of polyp in tlie extraradical mycelium o€ Gi. rosea

(Boddington and Dodd, 1999), suggesting differences in polyp metabolism between species.

In conclusion, the presence of polyp in many species of AM fungi is well documented, but the

charactei-ization of the polyp aiid the mechauisms involved in its metabolism are not clear. Staining

methods with variable specificity or invasive methods have commonly been used to identify polyp in

previous investigations, such that artifacts of speciinen preparation could possibly have interfered with

the polyp chain length, as discussed by Orlovich and Ashford (1993). Non-invasive and non-

destructive techniques are required in order to obtain more detailed information of P pools and polyp

conteut in AM fungi. For this purpose, in viv0 "P NMR spectroscopy is a unique analytical method.

The main objective of the present work was to use " P NMR spectroscopy, in viv0 and on extracts,

for iiivestigating P metabolisin in niycorrhizal aiid non-mycorrhizal roots and in extraradical

mycelium of various species of AM fungi, and by that way contribute to the understanding of the P

and polyp metabolism and translocation in AM fungi. Tlie potential use of in viv0 31P NMR

spectroscopy for the study of P pools and their dynaniics in AM fungi and roots was evaluated. I

wanted to investigate the dynamics of polyp synthesis in AM fungi, and determine how fast polyp

was syiitliesized, which chain lengths could he detected and in which compartinent the polyp was

located. Chain lengths of polyp where further investigated by the use of extraction procedures

followed by colorimetric measurements and "P NMR. Several AM fungal species were included in
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the study to investigate aspects of fungal diversity in the overall polyp content and P transport capacity

of the fungi. Finally, the active state of P metabolism in the mycorrhiza was confiimed by means of

ELF staining for KPase activity.
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Chapter 2 - Methods and preliminary experimental work

2.1 Outline of experimental work carried out
This chapter is an introduction to the development and evaluation of methods used in the present

work, whicli aimed to use "P NMR as a non-invasive approach for the investigation of the P

metabolism and dynamics in AM fungi. The project looked very straightforward at the early start: The

chosen compartmented growth system for production of extraradical mycorrhizal hyphae had already

been used with success and tlie expertise with in viv0 NMR equipment was already irnplemented to

some extent for other purposes (see Scharff, 2001). However, several technical problems during tlie

initial phase had to be solved first. The optimization of the growth system for production of sufficient

and biologically active plant and fungal material is described in section 2.2 and in Chapter 3. The

development of an experimental in viv0 NMR setup that was capable of maintaining the biological

material in a physiolagically vital state during the NMR experiments is described in sections 2.3, 2.4

and Chapter 3. Chapter 2 also includes an introduction to the fundamental principles of NMR

spectroscopy, a more specific introductjon to in viv0 "P NMR applications and a description of other

methods used for further investigation of the P metabolism in AM fungi.

Experiments were then carried out as described in the following.

A time-course "P NMR investigation of the formation of P pools in differently P-treated AM hyphae

and mycorrhizal roots was carried out in order to characterize the incorporation of P, into various P

species within the extraradical mycelium and the mycorrhizal roots. The results of this are pi-esented in

Chapter 4.

The results obtained were rather different from published work in the field (e.g. Solaiman et al., 1999;

Ezawa et al., 2001b), and attempts were made to further characterize the polyp detected. In particular

tlie rather conflicting results of polyp chain length were pursued and investigated by the use of

extraction procedures and colorimetric measurements, which is described in section 2.5 and Cliapter 4.

Furthermore, ALPase-type activity in the extraradical hyphae and mycorrhizal roots was characterized

by the ELF method (van Aarle ef al., 2001), in order to localize aspects of P metabolism. Results from

this are included in sections 2.5, 2.6 and Chapter 4.

A "P NMR investigation of four P-treated AM fungi was carried out in order to further investigate the

possible variation among AM fungal species in their overall P transport capacity and by this contribute

to the understanding of diversity of AM fungi. The fungi included were G. intraradices, G. mosseae,

S. calospora and Gi. rosea, and results from this study are pi-esented in section 2.6.
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2.2 Plant material and growth systems
The plant chosen for the work described in this thesis was cucumber (Cucuniis sativus L. cv. Aminex,

F1 hybrid), in majority of tbe work grown in symbiosis with the AM fungus Glomus iiztrarudices

Schenck & Smith (BEG 87 or DAOM 197198). Clover (Trifoliuni subterraizeum L.) was also tested

for maximal production of extraradical mycorrhizal hyphae. However, symbioses between cucumber

and G. intiarudices produced the highest amount of extraradical mycelium and the growtli of both

plant and fungus was overall largely reproducible. Other species of AM fuiigi used included

Scutellospora calospora (Nicol. & Gerd.) Walker and Sanders isolate WUM 12 (BEG 43), Glonius

niosseae (Nicol. & Gerd.) Gerdemann & Trappe isolate V296 (isolated by M. Vestberg) and

Gigaspora rosea Nicolson & Schenck (BEG 9), as presented in the section 2.6.

An expei-imental compartmented growth system suitable for production of puie extraradical mycelium

was developed and described by Johansen et al. (1996). This growth system was used with a few

adjustments and optimizations for possible harvest of a high amount of young biologically active

hyphae without large numbers of spores. A detailed description of the growth system, overall

experimental design and harvest procedure is given in Chapters 3 and 4; however, the principles and

optimization procedures will be presented here. The cucumber plants were grown in an irradiated (10

kGy, 10 mV electron beam) 1:1 soil and sand mixture (liere called 'soil') in a mesh-bag which prevent

root penetration but allow free passage of AM fungal hypliae. Basal nutrients minus P were added to

the soil (see Chapters 3 and 4) and the final soil had an extractable P content of I l pg P g-' as obtained

with 0.5 M NaHC03 (Olsen et al., 1954). Tlie mesh-bag was filled with 700 g (Table 1; Chapter 3) or

725 g (section 2.6; Chapter 4) soil into which was incorporated 100 g (Table 1; Chapter 3) or 75 g

(section 2.6; Chapter 4) inoculum from a T. subterraneum L. pot culture. The mesh-bag was filled

witli 800 g of soil when experiments included non-mycorrhizal controls. The extraradical hyphae grow

into 2200 g washed, autoclaved quartz sand surrounding the mesh-bag and could easily be collected

from the sand by aqueous suspension and subsequent decanting onto a sieve. Root material could be

collected from the mesh-bag after washing away the soil and sand. The pots were watered daily to

60% water holding capacity throughout experiments, except for one or two days before final P

treatmeut at the end of experiments. Soil nitrogen was supplemented periodically as an aqueous

solution of 0.36 M m N 0 3 .

AM fungal mycelium was required in rather large quantities because of the relatively low sensitivity

of the in viv0 NMR measurements (see 2.3). in order to meet this demand for mycelium, plants had to

be grown for 10 wk, but at this time a high spore abundance was also observed. This was undesirable

because the metabolism of AM fungi differ between spores and hyphae in the symbiotic stage (Pfeffer

et al., 2001; Bago et al., 1999; see 1.2.3). The experimental procedure therefore had to be modified in

order to obtain spore free mycelium. This was achieved by replacing the sand outside the mesh-bag

with fresh sand after some weeks of growth. Mycelium subsequently developed in the new sand

during the following growth period. Various growth periods before and after the sand was changed

were tested for their influence an hyphae production. The results are given in Table 1, which show that

a 4 wk pre-establishment phase followed by 2-3 wk allowing for hyphal growth into the new sand was
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sufficieiit for the production of the required amounts of spore free mycelium. These conditions were

applied for subsequent experiments.

Table 1. Experimental conditions for maximal production of extraradical AM hyphae (C. Nitrarudices) grown in

symbiosis with cucumber in compartmented pots. The overall experimental design was as described above and

in Chapter 3. An aqueous solution of 0.36 M NH4N03 was supplied to pots weekly after two wk af growth, 50

mg edch wk. No Pi was added to the pots.

No.'

L

2

3

4

5

Plant age
(no sand change)

(wk)

10

Plant age hefore sand
change
(wk)

(i

5

4

4

Period after sand change
(hyphae age)

(wk)

3

3

3

2

Mean amount uf hypliae
per put

(g fw)' (S.D.)'

0.45 (0.02)

0.46 (0.30)

0.64 (0.20)

1.08 (0.03)

0.55 (0.06)

'The results were obtained in different experiments. No. 1 contained duplicate pots within the same experiment.

No. 2, 3 and 4 were dupiicdte pots within ane experiment. No. 5 contained three replicate pots within ane

experiment

fw; fresh weight including same adhering sand

'S.D.; standard deviation

In the case of P-treatment, KH2P04 in aqueous solution could be supplied either directly to the root

compartment at any time during growth or exclusively to the extraradical hypliae by supplying the P,-

solution to the sand along the edge of the pot in the hyphal compartment some time after the sand had

been changed. P, ions would move approximately 1.3 cm d-' in pure water, but this will be lower in

sand because of a reduced cross-sectional area for diffusion due to sand particles and because of a

tortuous diffusion pathway in sand. I tested the diffusion of P, supplied at the edge of the pot in the

hyphal compartment from pots hosting non-mycorrhizal cucumber, and no P signals could be detected

in the corresponding "P NMR spectra of non-mycorrbizal roots when P, was added just before, and

only traces of P signals could be detected when P, was added 24 or 48 h before harvest (results not

shown). This indicated that P, added to the hyphal compartment did not diffuse significantly to the root

compartment in two days.

Various growth media for tlie hyphae were also tested for their suitability to allow for rapid and gentle

harvest of hyphae. Fine river sand (particles smaller than 1 mm) and sand with a larger particle size

(particles 1-3 mm) were compared, and river sand was preferred due to difficulties in cleaning the

hyphae from the larger particle size sand, resulting in much more adhering of sand to the hyphae.

In some of the subsequent experiments the amount of mycelium, which could be harvested from the

pots, showed au undesirable variation between pots. Preliminary tests of a monoxenic in vitro

cultivation system were performed in order to investigate an alternative experimental setup for
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produciiig hyphae for the NMR measurements. The monoxenic system is a system from which all

other organisms except fuugus and plant are excluded and they can he established either in standard

petri dishes (Bkard and Fortin, 1988) or in compartmented petri dishes (St-Arnaud et al., 1996). The

9 cm petri dishes used for my experiment were divided in two by a plastic barrier, 7 mm high, where

the extraradical mycelium was allowed to cross, allowing for a compartment with hyphae but no roots.

The monoxenic cultures consisted of G. intruradices (DAOM 197198) and Ri T-RNA trausformed

carrot (Daucus carota L.) root. The cultures were established as descrihed by Nielsen et al. (2002). P,

was supplied to the hyphal compartment the day before harvest as 2 mi 7 mM KH2P04 (0.56 mM

KH2P04 in hyphal compartment). Fungal structures were extracted from the medium using slow

stirring in 10 mM citrate buffer and hyphae were collected on a SO pm stainless sieve and

subsequently transferred to an NMR tube containing M medium (Becard and Fortin, 1988) at pH 5.5

including 10% DzO. The "P in viv0 NMR measurements were performed on 15 mg fw mycelium

collected from thi-ee petri dishes. The resulting Spectrum is presented in section 2.6.

The main advantage in using the mouoxenic system instead of the coinpartmented pot setup is the easy

handling of the system during growth, the ability to continuously monitor each experiinental unit for

hyphal growth and since not space consuming, the possibility of growing more cultures than

eventually needed while the mycelium is generated. This offers the possibility of obtaining more

similar cultures; i.e. same amounts of hyphae to be selected for further subjection to P-treatment and

time-course studies. in addition, the hyphal compartment can contain a gel-free nutrient solution

allowing for much easier harvest of the mycelium (Maldonado-Mendoza et al., 2001). However,

further development of the setup and elaborate analysis of mycelium from monoxeriic cultures has

beeu beyond the scope of iny work and will instead be suggested as a future perspective.

2.3 In viv0 NMR spectroscopy

2.3.1 Fundamental theory of NMR

To provide a suitable background for the later presentation and discussion of in viv0 NMR

experiments, an introduction to the important principles will be presented in the following section. The

method has been widely used, and its application to plant systems in general as well as to plant-

microhe symbioses has already been mentioned briefly in Chapter 1 and is discussed in the review part

of Chapter 3. A detailed introduction to the theory and applications of NMR can be found in various

textbooks and recent reviews (Macomber, 1988; Martin, 1991; Sanders and Hunter, 1993; Pfeffer and

Shachar-Hill, 1996; Bligny and Douce, 2001; Kockenberger, 2001; Pfeffer et al., 2001; Ratcliffe and

Shachar-Hill, 2001) on which the following sections are also based.

General principles

NMR spectroscopy is the manifestation of atomic nuclear spin angular momentum, and many

isotopes, among these the biologically relevant IH, "C, 15N, " 0 , 23Na and "P, have nuclear magnetic

moments, reflecting the existence of a nuclear spin that is characterized by the spin yuantum number I.
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For simplicity, only nucleus with I = Yz are described in the following (i.e. not "O and "Na). The

magnetic dipole axes af the nuclei are usually randomly ordered. However, when exposed to a

stationary extemal magnetic field (Bo), this field will interact with the magnetic moments af the nuclei.

The nuclear spin I = Yz will, in the applied magnetic field, generate two energy levels ar spin states

(Fig. 9) and align the magnetic dipole axes parallel ar anti-parallel with the extemal field, Le. tbe

magnetic dipole axes lose their degeneracy in the presence af a magnetic field.

(a) (b)

r

Fig. 9. Energy level and population diagram for spin I = '/z (a) outside and @) inside a magneiic field BI,

The energy levels af the two spin states are separated by an amount AE, which is field dependent (Eq

1):

AE = h y Bo 1 2% Eq.1

where h is Planck's constant and y is the magnetogyric ratio of the nucleus (Table 2). The

magnetogyric ratio is a proportionality constant that describes the spin state energies of a given

nucleus in aii extemal magnetic field.

Table 2. Nuclear properties of selected biologically relevant nuclei (modified from Macomber, 1988).

Isotope t Relative natural abundance Magnetogyric ratio y I10

(rad T.' s . ')

IH

15,

Hi

112

112

112

512

312

112

99.985

1.108

0.37

0.037

100

100

267.512

67.264

-27.107

36.27

70.761

108.29



A new thermal equilibrium is achieved in which the population of nuclei with the magnetic dipole

axes aligned parallel with Bo (lower energy, a state) is slightly higger than the population of the nuclei

with axes aligned anti-parallel (higher energy, p state) (Fig. 9). The relative distribution of the

population of nuclei in the two energy states is given by the Boltzmann distribution (Eq. 2):

Eq.2

where P is the fraction of the population of nucleus in each state, T is the absolute temperature and k is

the Boltzmann constant. As a result of this uneven distribution of the nuclear spin, a weak net

magnetization (Mo) of the sample aligned parallel to Bo arises. The net magnetization will move

around the main field with a characteristic angular resonance precession frequency, called the Larmor

frequency u , which is a function of y and Bo (Eq. 3; see Fig. 10):

Eq.3

(a) Bo
z

(b) Bo

Mo
•> y

X

Fig. 10. The behavior ol the net magnetization Mo (a) at equilibrium, and (b) after perturbation by a pulse.

The angular Larmor frequency can he transformed into linear frequency (v) by division by 271. Indeed,

the resonance frequency for a paiticular nucleus in a given applied magnetic field is unique and it

depends on its local chemical environment. Since the main magnetic field is shielded by surrounding

electron clouds, the effective magnetic field acting on a nucleus depends on the chemical nature of the

group and the chemical environment in which it is hound. Therefore, the identification of the chemical

nature of a compound by its resonance lines is hased on this principle

If the net magnetization is perturbed by a radio-frequency (r.f.) pulse (see Fig. lo), it moves in the

transverse plane with the Larmor frequency and it can he measured through the induction of an

oscillating cun'ent in a coil surrounding the sample. After suitahle amplification and analysis, this

current would he the NMR signal. However, aiter perturbation, the system will hehave like any other

system and return to equilibrium. Consequently, the magnetization created by the pulse and the

associated voltage decay to zero and the time-dependence of the signal is recorded by the spectrometer
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in the form af a digitized free induction decay (FID). The FiD is converted into a frequency dornain

Spectrum by Fourier transformation, produciag a plot of intensity (signal) against frequency, referred

to as the Spectrum. However, there are a number of sources for experimental noise that affect the

sensitivity of the spectrum. The signal-to-noise (S/N) ratio is proportional to B ? and to tbe number of

nuclei within the sample. All NMR signals can be characterized by the S/N ratio, intensity, frequency,

line-shape and relaxation times of the signal, and these quantities a e all affected by the physical and

chemical environment of the magnetic nucleus. To understand how these quantities lead to

information about biological systems, it is necessary to have some understanding of them, and of

factors that affect them, and so some of the key points are summarized in the following section.

The NMR signal

In many cases the signal-to-noise ratio in the Spectrum from a single FiD is iuadequate to define a

signal, i-eflecting the insensitivity of the NMR technique. In short, with regard to the S/N ratio, tbe

following factors have to be considered:

*t* the natural abundance of the nucleus under study and its relative sensitivity (Table 2)

•I* the magnetic field strength of the spectrometer

• the isotopic enrichment when possible ( "C , I5N, ...)

• the intracellular concentration of investigated metabolites

•> the sample volume (as large as possible)

• the width af signals and possible broadening due to paramagnetic ions and field inhomogeneity

•!• the relaxation times

+> the possibility of repeating experiments and the total accumulation time (see below)

The natural abundance of an isotope (see Table 2) is one of the factors that determine whether the

number of nuclei within a biological sample is large enough to be detected. Tbe "P isotope is 100%

naturally abundant and therefore in this sense favorable to observe. The sensitivity also depends on tbe

field strength of the magnet, the higher the field strength, the greater the sensitivity. However, by

repeating the experiment n times and Fourier transforming the sum of n FIDs it is possible to improve

the S/N ratio by a factor of dn. Each FID is usually referred to as a scan or transient and this time-

averaging process is essential for many in viv0 NMR studies. By operating at a high-field strengtli for

in viv0 studies, and by time averaging the data, the sensitivity of the experiment can be increased to a

level that permits the detection of millimolar metabolite concentrations.

Signal intensities are important because they can be related to the tissue content of the metabolites

that produce the signals. However, it is important to realize that the observed intensity has a direct

relation to the tissue content only under ceaain conditions, making quantitative analyses possible (see

below).

The return of the net magnetization to equilibrium is characterized by tlie two first order relaxation

processes with time constants Ti and Tz for an identical ensample of nuclei. TI is known as the spin-
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lattice (or longitudinal) and Tz is known as the spin-spin (or transverse) relaxation time. The spin-

lattice relaxatioii process is responsible for the re-establishment of thermal eyuilibrium and restoration

of the initial population distribution between two spin states by an exchange of energy between the

excited nuclei and their environment. Spin-spin processes, on the other hand, involve a mutual

excliange of spin energy, and the net effect of this energy transfer is to cause a loss of phase coherence

in the transverse plane. The recovery of the z component of the net magnetization, characterized by TI,

is usually slower than the decay of the transverse component of the net magnetization in the xy plane,

characterized by Tz, and in neither case is the recovery instantaneous. Pulse sequences are available

that allow these yuantities to be measured. In these expenments, the pulse sequence is designed to

produce a magnetization for detection that reflects the operation of either TI or Tz relaxation pathways.

The transverse and longitudinal relaxation processes also have important influence on the detection of

the NMR signal. Transverse relaxation reduces the magnitude of the magnetization that can be

detected in the xy plane and is responsible, along with inhomogeneities in the magnetic field, for the

characteristic decay of the time domain signal (the FID). For practical purposes one often uses an

experimental time constant T ; , which includes the effects of both the intrinsic spin-spin relaxation and

also the magnetic field inhomogeueities; i.e. T ; takes into account the line broadening caused by the

inhomogeneity of the magnetic field. Longitudinal relaxation can also affect observed intensities, since

it is this process that re-establishes the net magnetization along the Bo, and TIS of the system need to

be considered whenever time-averaging is used to improve the quality of the Spectrum (see below).

Adding up FIDs to improve the overall S/N ratio works efficiently only if the magnetization has

recovered sufficiently between tlie pulses that excite the signal. If the recycle time is too short and the

pulses are applied to0 frequently, then the magnetization becomes saturated and the contribution of the

coiiesponding signals to the Spectrum is reduced. As a result of this effect, establishing the optimum

data acquisition conditions is an important practical consideration in obtaining in viv0 NMR spectra.

Coiisequently, the optimal pulse angle also has to be considered when discussing fundamentals about

NMR; i.e. what is the appropriate amount of excitation to be provided by the r.f. pulse? A safe strategy

is to use 90" pulses, each followed by a delay of five times the greatest Ti of all the NMR signals in

the Spectrum. This ensures that there is no saturation and that none of the NMR signals can be missed.

However, this procedure is very time-consuming, and therefore the possibility of using a higher pulse

repetition rate together with a smaller pulse angle, thus reducing the time needed for the measurement,

has been investigated. The optimal pulse angle G~, for obtaining maximum signal, which has become

hown as the Ernst angle, is defined in term of its cosine by the Ernst equation (Eq. 4):

cos Oopi = exp (-t, i TI) Eq. 4

where tr is the pulse repetition time (recycle delay). For routine purposes it is reasonable to use a 45"

pulse and a TI / tr ratio of about 2. However, it is difficult to combine several TI values for an optimal

signal for all iiuclei in a Spectrum. Indeed, to be able to use the optimal pulse angle and repetition time

requires that the different T,s are hown in the biological system. Typical TI values for Pi in vacuoles
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and polyp in fungi are very short, see Table 3. Based on this information I have chosen to use a

recycle delay of 0.5 s and 45" pulse angle in the in viv0 spectra, which according to the Ernst equation

is the most effcient combination for nuclei with a Ti of 1.4 s. This value should make sure that the P

metabolites in ihe fungi are fully relaxed between scans and that the spectra can be used quantitatively.

However, the relative levels of P, in roots should be used with some caution due to possible

underestimation, since the Ti values for P, in roots are somewhat larger than values from pure fungi.

Typical values of TIS for "P metabolites in plants and fungi are given in Table 3, with most Tis

around 0.01-5 s, however with a lot of variation

Table 3. Literuture values of in iiii~o and in vitro

Biological system

Maizc root tips

Maize root tips

Soybean nodules

aerobic (O2)

anaerobic (N2)

Soybean root tissue

HeDelonia arenosu red pine roots

(ectomycorrhizal roots)

M. crusruliniforme culture

fectomvcorrhizal funaus)

Cenococcum graniforme culture

:ectomycorrhizal fungus)

Yrowth medium'

laccaria bicolor culture

ectomycorrhizal fungus)

T,s for "P metaholites

P,(cyt)

2.78(0.31)

1.8

0.95 (0.19)

0.95 (0.20)

PL (vac)5

3.58 (OS)

5.1

0.77 (0.08)

3.98 (0.69)

6.30 (0.93)

0.4

0.15(0.04)

0.14 (0.03)

0.65

T,(s)

(S.D.)

ATP*

Ct

p
Y

0.39 (0.05)

0.21 (0.02)

0.35 (0.06)

PdyPj1

0.06

0.03 (0.003)

0.004 (0,002)

0.79 (0.09)

0.07

Ref.

1

2

3

3

4

5

5

5

6

References: 1) Pfeffer etal., 1986; 2) Lee et al., 1990; 3) Pfeffer et al., 1992; 4) Macfall et al., 1992; 5) Martin et

al., 1985; 6) Martin etal., 1994

'Inorganic orthophosphate in (cyt); cytoplasm or (vac); vacuoles

'ATP; a-, p- and y-phosphate of adenosine triphosphate

#PolyP,,.; central (cen) Pi residues in a polyp chain; i.e. except terminal (ter) and penultimate (pen) Pi residues

*/« vitro value measured in modified Pachlewski's medium including KZHP04 or standard polyp of average

chain length 17, see reference 5
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The energy of an NMR transition is determined by the strength of the magnetic field and by the

magnetogyric ratio of the nucleus (see above). The resonance frequency is linearly dependent of the

field strength, and the precise frequency of an NMR signal depends on the exact field strength

experienced by the nucleus. An immediate consequence of this is that inhomogeneities in the field

increase the width of the NMR signal, since nuclei that are otherwise identical experience slightly

different field strengths in a non-uniform field and thus have slightly different resonance frequencies.

The local field experienced by a magnetic nucleus is modified by the interaction of the applied field

with the local electron density, and therefore the resonance frequency of a nucleus depends on its

chemical environment. Thus, each chemical environment gives rise to a different resonance frequency,

the so called chemical shift, and this effect, which is central to the NMR technique, allows separate

signals to be observed for different metabolites in in viv0 spectra. The chemical shift (6) of each

resonance is defined by Eq. 5:

6=lo 6 (Vi -v , ) /v , Eq.5

where v, is the frequency of the resonance of interest and v, is the resoiiance frequency of the signal

corresponding to a standard compound. Tliis definition allows the resonance frequency of a signal to

he expressed in a form independent of field strength of the magnet used to record the Spectrum, and

the chemical shift is expressed in parts per million (ppm).

Magnetization in the transverse plane relaxes exponentially and Fonrier transformation of an

exponentially decaying time-domain signal produces a resonance with a Lorentzian line-shape. There

is a direct relation between the width of this line at half-height and the transverse relaxation time (Eq.

6), sucli that the faster the decay in the time domain (shorter T ; ), the broader the line in the frequency

doinain.

AV],+ = (X T2"f Eq. 6

This has important practical implications because the broader the line, the harder it is to detect, and the

greater the chance of overlap between adjacent lines to give a poorly resolved Spectrum.

As already mentioned, one source of line broadening is the lack of uniformity in tlie magnetic field.

This situation is worse for in viv0 measurements than for simple solution NMR experiments because

of variations in the magnetic susceptibility across a biological sample. Air, both inside and around a

tissue sample, is a particiilar problem because the difference in magnetic susceptibility hetween air and

aqueous tissue material is large enough to cause significant field gradients at tissue-air inteifaces.

Vacuum infiltration of an aqneous medium eliminates the air spaces and solves the problem, but this it

not always desirable physiologically, since physiological perturbations should be minimized (see

2.3.2).
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As stated, another muse af broad lines is the existence af efficient transverse relaxation mechanisms.

Tz rates increase as the mobility of the spin system decreases and so NMR signals becoine broader as

molecular mobility is restricted. Increasing molecular weight, molecular mobility decreases and as a

result it is usually only tlie freely mobile, low molecular weight metabolites that are detected by in

viv0 NMR. Paramagnetic ions, for example Mn2+, and pure oxygen 02, can also cause efficient

traiisverse relaxation and broadening lines. Indeed, identifying the cause af the line broadening leads

to information about intracellular environment af the compound that gives rise to the NMR signal. In

soine cases line broadening can cause a signal being undetectable (nuclei present in the sample but not

detected in the NMR experiment are said to be NMR-invisible) and this tao may be informative

(Bental et al., 1990). This aften occurs for large molecules such as lang-chain polyPs and

phospholipids.

One final point about NMR line-sliapes conceins the problem af making accurate intensity

measurements. A significant fraction af the total intensity is included in the "wings" af the signal.

However, integration across the total spectral width of a signal is impossible and, in practice, the liinits

for the integration are determined by the S/N ratio af the signal and by the extent to whicli it overlaps

other peaks in the Spectrum.

2.3.2 The airlift system

The physiological significance of an in viv0 NMR experiment depends an the state af the tissue during

NMR measurements. The aim must be to minimize the physiological perturbatioiis arising from the

experimental procedure and to maintain the tissue in a physiologically reasonable and controllable

state throughout the experimeut. Consequently, in order to be able to study P metabolism of living

hyphae and roots by ”P NMR spectroscopy, a system for maintaining the biological tissue in a

physiologically bealthy state while in the NMR tube had to be constructed, and this will be described

in the following section.

In general, maintaining the biological tissue in a physiologically healthy state implies a continuous

supply af oxygen and nutrients as well as removal af waste products. This can be done in a so-called

perfusion system, where an oxygenated buffer solution is circulated down in the NMR tube through

the tissue (Roby et al., 1987). Such a system had already been implemented in our laboratoiy by A. M.

Scharff (Scharff, 2001), and I started out by using this. However, while functioning well with roots

and Nz fixing root nodules, this system could not be used for hyphae. The excised hyphae tendedto

pack arouiid the exit tube and block the flow ar even escape into the tubes circulating the buffer.

Attempts were made to immobilize the hyphae. This included rolling the hyphae loosely in a mesh,

like a cake roll, or embedding the hyphae into agarose threads, as successfully done for various cell

types (Rasmussen el al., 1993; Lundberg et al., 1994). However, it turned out to be extremely difficult

to use these methods. The ro11 tended to limit the S/N ratio in the Spectrum and it was difficult to have

enough hyphae in the detection voluine to maiiitain signals. Furthermore, the size af the hyphae made

it impossible to embed tliem into agarose without cutting them into smal1 pieces and hence making the

validity af 'in vivo' measurements doubtful.
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Instead, another circulation system called the airlift system (Fox et al., 1989) was considered for

oxygenating an NMR sample. This system combines direct air bubbling into the suspension buffer and

further slow circulation of the buffer within the NMR tube. In order to obtain information of this

system, I visited the in vivo NMR plant group of R. G. Ratcliffe in Oxford. During this visit, it became

ciear that the airlift system was the right way of handling in viv0 NMR for AM fungi. Such a very

simple system was constructed, and was used for all in vivo experiments described in this thesis. In the

airlift system a flow of gas emerges in the suspending buffer within the confines of a narrow airlift

tube and, as it escapes from the tube, it sets up a circulation of tbe medium (Fig. 1i).

200 mm

Oxygen flow ( - ^ e )

Buffer level

Oxygen emerges and

sets up a medium flow (-1

Central airliit tube

Detection

volume

Teflon spacer

Reference caoillarv
Tissue sample

10 mm

Fig. 11. Schematic drawing af lhe airlift system used ior studyiiig P pools and metabolism in AM fungi and roots by "P
NMR speclroscopy.

This arrangement works well with excised tissues, which can be oxygenated with an airlift system as

effectively as with a perfusion system, and it is particularly convenient for oxygenating cell

suspensions (Fox et al., 1989; Fox and Ratcliffe, 1990). There is no possibility of the gas flow causing

line broadening because the gas emerges above the region that generates the NMR signal. The

versatility of the airlift system can be furtlier increased by incorporating a system of tubes for

changing the suspending buffer in the NMR tube. By modifying the composition of the suspending
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buffer (e.g. introducing P,, removing oxygen or C source) it is possible to perturb the metabolism of

the living system and to monitor the spectral changes caused by these changes simultaneomly; thereby

obtaiuing several successive spectra from the same sample (Bligny and Douce, 2001). However, since

extraradical AM fungal hyphae are not able to take up C in any form (see Chapter 1) and since the P

uptake and metabolism of AM fungi was dramatically effected after excision of mycelium from its C

source (see 2.4.5), circnlation of a C source seemed meaningless and was not included in my simple

airlift system.

Approximately 0.1 - 0.2 g fw hyphae could be contained within the NMR tube, more compressed

hyphae resulted in very poor shimming (see 2.4.1) of the sample and therefore not satisfying S/N ratio.

2.3.3 Information available from in viv0 31P NMR spectroscopy

NMR spectroscopy permits a non-invasive detection of a wide range of ions and metabolites in

functioning tissue, and so metabolic mechanisms can be followed in real time as they take place within

a living tissue (Ratcliffe, 1996). It is the low molecular weight components of the cell that are usually

observed, and to be detectable these ions and metabolites must be freely mobile and present in a

sufficient quantity to exceed the detection threshold for the magnetic isotope of interest. Indeed, the

NMR technique can detect only those metabolites that are present at concentrations of about 0.1 mM

or above. For this reason, NMR is believed to be rather insensitive, and should be regarded as a

method that is complementary to, rather than competing with, other methods that are available for

studying metabolism. In general terms, in viv0 NMR spectroscopy provides an analytical method for

identifying and quantifying particular ions and metabolites. It provides methods for measuring

intracellular pH, for probing the subcellular compartmentation of certain ions, and for following the

flux through metabolic pathways (Ratcliffe, 1996).

Ultimately what can and cannot be achieved by the technique depends on the magnetic properties of

the nucleus that is the source of the NMR signal, and since the properties of the biologically

interesting magnetic nuclei differ greatly (see Table 2) there is corresponding variation in the

applications of the different nnclei in vivo. The magnetic properties of "P favour tbe detection in viv0

of a smal1 subset of the phosphorylated metabolites tliat occur in cells. 31P NMR spectroscopy has

been used extensively to investigate metabolic processes in plants (e.g. Roberts et al., 1980; Martin et

al., 1983; Rolin et al., 1989; Lee et al., 1990; Aubert et al., 1998). The "P isotope has a 100% natural

abundance and although the sensitivity of the ' 'P nucleus is less than the 'H nucleus, it is usually

possible to obtaiu informative in vwo "P NMR spectra in a few minutes. A typical 3LP NMR Spectrum

has signals from a number of important phosphorylated metabolites, including sugar esters, P,,

nucleoside triphosphates (NTP) and, in the case of many algae and fungi, polyPs. However, the

infoimation that can be derived from a "P NMR Spectrum extends beyond the simple measurement of

these metabolites under different physiological conditions. Firstly, the pH difference between the

cytoplasm and vacuole, together with the slow exchange of P, across the tonoplast, leads to separate

signals for the cytoplasmic and vacuolar P, pools in the 31P NMR spectra of most plant tissues

(Ratcliffe, 1987). Since the pH dependence of the P, chemical shift can be calibrated, the detection of
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the two P, signals leads to information on the cytoplasmic and vacuolar pH values (Roberts et al.,

1980). Secondly, signals arising from the a, b and yphosphates of NTP and a and b of nucleoside

diphosphates (NDP) provide information about the metabolic activity. Therefore, it is possible to

monitor the metabolic state of the organism while the experiment is running, and in this way ensure

that enougb oxygen and nutrients are supplied (Roberts, 1987). Thirdly, the method is a powerful

technique for investigating time dependent phenomena and it is therefore possible to visualize the

kinetic behavior of P uptake and storage and to investigate any Polyp metabolism in the tissue.

2.4 The study of P pools in AM fungi by 31P NMR spectroscopy
The adaptation of a general "P NMR method for the study of P pools in AM fungi in viv0 tumed out

to be a challenge. The real advantage of 31P NMR spectroscopy is the ability to study metabolic

processes as they occur inside the living tissue. Much effort was used to optimize the physiological

status of the excised extraradical mycelium inside the NMR tube. But the fact that extraradical

mycelium cannot utilize an exogenous C supply was a serious experimental limitation which markedly

impaired the P, uptake of excised hyphae. Any P treatment therefore had to be performed while the

symbiosis was still functioning and in viv0 31P NMR was used to examine the P pools reinaining after

severance of the hyphae from the roots and their dynamics in AM fungi and roots.

All the 31P NMR spectra presented were recorded on a Vanan Unity Inova 600 MHz spectrometer

using a 10-mm-diameter broadband probehead unless otherwise stated. Growth conditions, buffer

composition and NMR acquisition parameters are given in figure captions.

2.4.1 Acquisition of in viv0 31P NMR spectra

As already described in the section concerning NMR principles, it is extremely important to maximize

the S/N ratio by optimization of NMR acquisition parameters. The main factors that affected the signal

intensities in the various spectra presented in this thesis were i) sample volume, ii) intracellular

concentration of metabolites and iii) line broadening due to paramagnetic ions or field inhomogeneity.

Because of the inherent insensitivity of NMR, it is desirable to use as large amounts of material as

possible, such that the S/N ratio in the Spectrum is maximized. This may mean dense packing, and

consequently a negative effect on sample oxygenation. Smal1 amounts of sand particles adhering to the

harvested and washed hyphae could not be avoided and this could cause field inhomogeueity or even

contamination due to paramagnetic ions and subsequent line broadening.

The possible contamination due to a high amount of paramagnetic ions was examined by obtaining "P

NMR spectra of the washing water from the hyphal collection and cleaning procedure. As it can be

seen from Fig. 12, little line broadening of the signal from P, was seen, suggesting paramagnetic

contamination to be very low. The broad lines seen in the various spectra must be due to other

disturbances of the magnetic field. Indeed, experiments comparing different ainounts of hyphae inside

the NMR tube suggested that the tissue should not be packed too tight in order to maximize the quality
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of the spectra at the same time as achieve maximal oxygenation of the hyphae (results not shown).

Approximdteiy 0.15 g fw hyphae and roots could be contained within the NMR tube, however due to

the placement of the Teflon-spacer in the hottom of the MR tube (see Fig. II) alrnost all tissue was

within the volume of the NMR detection coil. Therefore tissue amount within the NMR tube

corresponded approximately to the amount of tissue actually measured.

IS 10 -5 -10 - 1 5 -20 -25 ppm

Fig. 12. " P NMR Spectrum of the washing water from sand, containing hyphae which has been treated before harvest with
i00 mg Pi applied via watering with a 0.32 M KH2POI solution. The water used for the speclrum was collecied during the
hyphal collection and cleaning procedure. The signals were assigned to (i) MDP (methylene diphosphonic acid) present as an
aqueous solution of 100 mM at pH 7.5 in a capillary inside the NMR tube and used as the chemical shift reference at 16.38
ppm. The chemical shifis a e quoted on the scaie that puls the signal from 85% orthophosphonc acid at O ppm. (2) Pi present
in the washing water at pH 6.40. The NMR acquisition parmeters were 90" pulse angle (53 p ) , 0.59 s acquisition time, 2.5 s
recycle delay, proton decoupling by Wdtz-16 composite pulse sequence, 15000 Hz sweep width, 1200 transients and 20 Hz
line broadening. Total acquisition time was 61 min. The line-width of the Pi signal was 14 Hz before applied line broadening.

The locking and shimming of the magnetic field also needs to be considered when obtaiuing in viv0

NMR spectra. During data accumulation it is essential to prevent the magnetic field and the r.f.

transmitter frequency from changing independeiitly of each other. They mut therefore be locked

together to ensure that the field-frequency ratio is kept constant. Normally NMR spectrometers are

equipped as standard with deuterium ('H) lock, in which the 'H NMR signal is used as the lock signal.
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However, deuterium oxide (DzO) was not added to the buffer solution used in the in viv0 spectra

obtained in Oxford (Fig. 13; Chapter 3). Therefore, locking the spectrometer frequency to the DzO

signal was not possible. In order to optimize the magnetic field homogeneity in the sample inside the

magnet (Le. shim the magnet) it was necessary to maximize the integral of the proton signal from

water in the sample and the shape and size of the water FID. In contrast, in the in viv0 spectra obtained

with the Varian 600 MHz spectrometer, 10% of DzO was added to the buffer solution in order to lock

the magnetic field and r.f. transmitter frequency to each other. Carefully shimming of tlie magnetic

field homogeneity in the sample improved the S/N ratio. The line width at half height of the proton

signal from water was used to measure the field homogeneity. This value should be as little as

possible, values of 50 and 30 Hz could usually be obtained for hyphae and roots, respectively.

2.4.2 Assignment of 31P NMR signals

After the first "P NMR spectra were obtained, the focus of my work was to assign the observed NMR

signals and thereby identify the various metabolites in hyphae and roots. Valid assignments af signals

in a Spectrum are an essential fwst step in any in viv0 NMR study. The strategy I used for the

assignment af peaks was as follows: The signals were assigned to the corresponding chemical shift

values and further identified to P metabolites by comparison with "P spectra of living plants, algae

and fungi, which were obtained from the literature (Table 4). Also spectra of P standards and of tissue-

extracts (Le. in vitro measurements) can be helpful for the assignments. Spectra of extracts normally

contain sharp lines in contrast to in vivo spectra and hence overlapping of signals from different

metabolites is considerably reduced (Bligny and Douce, 2001). I used all three approaches in order to

identify the various in viv0 P signals (Figs. 13 and 14; Table 5).

As can be seen from Table 4, reported chemical shift values sometime vary according to different

literature sources and they depend on the exact pH, concentration af metabolites, ionic strength,

concentration of multivalent cations, chelating agents such as EDTA and temperature. The most

commonly NMR-observed in viv0 31P NMR metabolites are P, and various P-esters, including NTP,

and in addition, polyp residues in fungi and algae.
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Table 4. Values of in vivo 3lP chemical shifts in ppm of P metabolites in plants, algae and fungi obtained from

the literature

Biological system

(reference)

Pinus serotina (pood pine)

roots

(AylmgandTopa, 1998)

Ulva laciuca green

matioalgae

(Lundberge/«/., 1989)

Suillus bovinus (pine seedling)

cctomycorrhizal roots

(Gerlilz and Werk, 1994)

Various ectomjeorrhiial

funef

(Martinet a/., 1983)

Paxillus involutes

ectomycorrliizal fungus

(Grelher^u/., 19S9)

SuiUus bovinus

ectomycorrliizal fungus

(Cerlitz, 1996)

Plsolithus, tinctorius

ccloinycorrliizal fungus

(Ashforde/a(., 1994)

laccaria bicolor

eclomycorrluzal fungus

(Martin ctal., I994>

G. elunicalum (leek)

AM roots

(Shachar-Hille)c/., 1995)

G. eluiiicaliim germinated AM

spores

(Sliachar-Hill era/,, 1995)

Solatium tuberomm (potato)

Iransgeaic leaves cpPPK-48

(van Voorthuysec el a!., 2000)

Atperst7?i(.v irigcr (saprophylic

fungi)

(Hesse etat., 2000)

P-mono-

esters"

3-5

5

~4

4-5

4.9

Pi

(cyi)

2 65

2.6

2.6

1.3

1.03

-2

-2.4

3.0

Pi

(vac)

0.89

1.3

1

2

I

0.7

-0.8

~2

-0.7

NTP'

a

p

Y

-to
-18

-5

-9.9

-18

-5

-10
-18
-5

-10

-38

-5

-10

-19

-5

-10

-19

-5

-9.9

-18X5

-4.9

UDPG£

a

P

-11
-12

-10.5

-12

-10.5

-12

-10.6

-12.3

PolyP

(ter)"

and

pyroP

-6

-9

•6

-6.2

-6.5

•5.8

PolyP

(pen)'

•19

-21.8

-20

-19

-19.7

PolyP

(cen)*

-21

-22

-21

-21

-22

-23.0

-22.3

-22

-22

-23

-22.5

All chemical shifts are quoted on a scale that puts the signal of 85% orthophosphoric acid at 0 ppm
nP-monoesters include gIucose-6-phosphate, mannose-6-phsophate, glycerol-3-phosphate, phosphoethanol-

amine, 3-phosphoglycerate and fructose-6-phsophate

*NTP; a-, (3- and y-phosphate of nucleoside triphosphate

^UDPG; a- and f5-phosphate of uridine-diphosphoglucose

*ter; terminal polyP residues, pen; penultimate polyP residues, cen; central polyP residues, pyroP; pyrophosphate

Results obtained from Cenococcum graniforme, Hebeloma crustuliniforme and H. cylindrosporum and

determined from shown spectra
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For the continuity, the spectra included in Chapter 3 are also shown below (Fig. 13). All tbe expected

P metabolites, which are normally observed in plant tissue, were present in both AM and non-

mycorrhizal roots (Fig. 13a and b; Table 5; Chapters 3 and 4). However, only Pi and polyp could be

detected in the spectra of pure AM hyphae (Fig. 13c; Table 5; Chapters 3 and 4). Pi and polyp

resonances were also the only significant resonances in most spectra of ectomycorrhizal mycelium

(Table 4; Loughman and Ratcliffe, 1984; Martin et al., 1985). The assignments were further confirined

by comparison with recorded 3'P NMR spectra of extracts of hyphae (Fig. 13d aiid e; Table 5; Chapter

3; see also 2.5.1) and syntbetic polyp with a given average chain length (Fig. 14; Table 5).

Comparisoiis of the two extraction procedures are discussed in Chapter 3. The main difference in the

spectra recorded from the two extraction procedures was the separation of the relevant P signals and

the sigiial size. The perchloric acid (PCA) extraction procedure (Fig. 13d) seeined to hydrolyze some

polyp in comparison with extraction by the phenol-detergent (PD) method (Fig. 13e). Comparison of

the chemical shift d u e s of P pools in AM hyphae obtained by extracts or in viv0 showed almost

identical chemical shift values. For the purpose of determining the average chain length of tlie polyp

found (see 2.4.4), the integrated areas for the terminal, penultimate and central polyp resonances were

measured. The 31P NMR spectra of synthetic polyP with a given average chain length (Fig. 14) were

also obtained in order to investigate the upper limit of NMR-detectable polyp, i.e. the maximum

average chain length that can be observed in an NMR spectrum. The largest commercial available

polyp with an average chain length of 75 Pi residues can easily be seen in the spectrum (Fig. 14e).
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Fig. 13. The data presenied in ths figure were also included in Chapter 3. "P NMR spectra af (a) seven-wk-old G.
inirardces mycorrhizal cucumber roots measured in vivo, (b) seven-wk-old non-myconhizal cucumber 1001s measured in
vivo, (c) excised three-wk-old G. iritrnradices hyphae measured in vivo, (d) a neutralized PCA extract of three-wk-old G.
imraradices hypliae and (e) a neutralized PD cxtract of three-wk-old G. iriiraradices hyphae. The chemical shifts of "P were
measured relative to the signal of MDP at 16.38 ppm (pH 7.5). and the chemical shifts are quoted on the scale [hat puls the
signal from 85% orthophosphoric acid at O ppm. The MDP (100 mM at pH 7.5) in the in viv0 spectra was kepi in a capiliaiy
centred in the NMR tube. Numbers refer to assignments given in Table 5; x is unidentilied P. Overall expenmental setup, P-
treaimeut, harvest, extraction procedure?,, NMR acquisition parameters and in viv0 buffer composition were as described in
Chapter 3. The in viv0 specira were recorded dunng my stay in Oxford on a Bruker CXP300 spectrometer using a double-
tuned " C / " P 1 0-mmdiameter probe head.
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Fig. 14. "PNMR spectra of synthetic polyp (a) type 5; a standard solution of polyp wilh chain length 5 pH 4.8, @) type 15;
chain length 15 pH 4.5, (c) type 25; chain length 25 pH 4.5, (d) type 35; chain length 35 pH 4.4 and (e) type 751; chain
length 75+ pH 4.5. The polyp standards were synthetic polyp glasses with average chain length as stated obtaincd from
Sigma Chemical Co. In each solution, approximately 5 mg of the polyp standard (the amount of type 75+ was higher, but not
precisely delermined) was dissolved in 2.7 ml H20 and 0.3 ml D,O with 0.1 M Na2EDTA added. Chemicd shifts of "P were
ineasured relative lo the signal at 16.38 ppm from MDP (100 mM at pH 7.5) contained in a capillary included in the NMR
tube and are quoted relative to the resonance of 85% phosphoric acid at O ppm. The resonance of MDP is outside the shown
spectral window Numbcrs refer to assignments given in Table 5. In specfia a, c, d, e signals were cut of in order for the
spcctra to be present in one figure, but the tmc signal areas were determined in order to estimate average chain length (sec
Table 6). The NMR acquisition parameters were 90" pulse angle (53 ps), 0.59 s acquisition time, 2.5 s recycle delay, proton
decoupling hg Waltz-16 composite pulse sequence, 15000 Hz sweep width, 1200 lransients and 20 Hz line broadening. Total
acquisition time was 61 min.
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Table 5. Iii viv0 and in vitru31 P chemical shifts in ppmaf P metabolites in AM hwhae and mvcorrhizal roats.

Nor
I

1

2

3
4

5
6

7

S

9

10
11

12

13

14

P metabolite

Phosph om on oesters'

Pi in virro

in vivo (cyt)

in vivo (vac)

NTP a

P
Y

NDP 6

PyroP

PolyP terminal

penultimate

central

UDPG a

0

AM

hyphae

in viv0

(3.0)f'

1.0' / 0.4-

-

-5.9'1-6.4'

-205//-20.1*

-22.4'1-23"

AM

hyphae

PCA
extract

pH7.5"

2.6

-5.7

-5.5

-20.8

-21.8

Chemicai shift*

(mm)

AM
hyphae

PD
extract

pH 7.5'

2.6

-5.7

-5.2

-20.5

-21.6

Non-

mycorrhizal

roots

in vid

4.5

2.9
0.8

-10.4

-19
-5.3

-11

-12.5

Mycorrhzd

roots

in viv0

4.4*"

2.7' I 2.3^

0.8' 1 0.3^

-10.4s*

-19@^

.5.35^

-5.9?$ 5

-5.4'//-6.4^

-2O5"

-22.7'1-22.9^

-lt«"
-12.55^

PolyP

standarc

15Y

UH4.5

0.2

-10.3

-10.2

-21.4

'Numbers refer to annotations in 31P NMR spectra in Figs. 13 and 14

*All assignments are based an comparisons with literature values. Chemical shift values are quoted relative to

the resonance af 85% phosphoric acid at O ppm. NMR acquisition pararneters are given in either Chapter 3,

Chapter 4 ar the legend af Fig. 14

'The neutralized PCA extract was prepared as described by Rohy et al., 1987

liThe neufralized PD extract was prepared as described by Callow et al., 1978 and modified by Ashford et al.,

1994

'Chemical shift values determined from spectra recorded during my stay in Oxford an a Bruker CXP300

spectrometer wing a double-tuned '3C/ 3
1P 10-mm-diameter probe head (Chapter 3)

Chemical shift values determined from spectra recorded an the Varian spectrometer (Chapter 4)
TThe polyp standard 15 was a synthetic polyp glass with average chain length 15 obtained from Sigma Chemical

co.

*Phosphomonoesters include glucose-6-phosphate, mannose-6-phsophate, glycerol-3-phosphate, phospho-

ethanolamine, 3-phosphoglycerate and fructose-6-phosphate

fThe signal for cytoplasmic Pi could not always he detected in excised hyphae

'Large overlap of this signal with signals for yNTP and terminal polyp; most af the signal are due to these two

metabolites

The polyp observed in various fungi can be identified on tbe basis of three signals, as seen from

Tables 4 and 5. However, care should be taken especially in the assignment of the terminal polyp

residues, since the chemical sbift of this signal is highly pH dependent, i.e. the chemical shift may be

infiuenced by the nature of the intracellular enviroment (see 2.4.3). Another problem anses from the
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overlap of the signal from the terminal polyp residue with the signal from pyrophosphate, largely seen

in the spectra of synthetic polyp (Fig. 14).

Finally, it should be emphasized that as pot grown G. intruradices hyphae or mycorrhizalhon-

mycorrhizal cucumher roots were not treated with additional P, at any time during growth, no or very

smal1 P signals could be detected in the in viv0 31P NMR spectra of the excised tissue (Fig. 15). The

concentrations of the P metabolites that were present in the tissue were therefoie below the detection

tiueshold. This was probahly caused by the age of the plants and the limited amount of soil P,

available at the time of harvest (as compared to an initial content of extractahle soil P, of 11 kg P g-';

see 2.2). The P, was at the time of harvest prohahly severely deficient in the soil and instead diluted in

the plant.

c

$w~)^Atr

P, I vac]

\w#W***iJ*ii^v«^iWt*lwl^

*Si*wyv.wWt»(^vyv**Wiy>/^^

-5 -10 . -15 -20

Fig. 15. In viv0 "P NMR spectra of not additionally P-treated (a) three-wk-old non-mycorrhizal cucuinber roots, (b) three-
wk-old mycorrhizal cucumher roots and (c) three-wk-old excised G. infraradices hyphae. The roots were harvested from pots
where the extraradical mycelium and roots were not separated. These pots contained 400 g 1:1 soil and sand mixture (w/w)
into which was incorporated 100 g G. infraradices inoculum (see Chapter 3) in the mycorrhizal pot. Basal nutrients minus P
were mixed in the soil and growth wa maintained as descihed in Chapter 3. n i e total addition ol N was 100 mg; pots were
harvested after three wk of growlh. The excised hyphae were harvested from compartmented pots as described in Chaprer 3
(hyphae three wk old, plants seven wk old). The chemical shifts of " P were measured relative to the signal at 16.38 ppm
froin MDP (i00 inM at pH 7.5) kept in a capillary centred in the NMR tube, and the chemical shifls are quored on tlie scaie
that puts the signal from 85% orthophosphonc acid at O ppm. Harvest, NMR acquisition parameters and in viv0 buffer
composition were as described in Chapter 4, except thai 14400 transients were used given a total acquisition time of 2 h 4
min and applied line hroadening was. only 20 Hz.

2.4.3 pH dependency of P chemical shifts

The measurement of cytoplasmic and vacuolar pH has heen one of the most important applications of

in viv0 "P NMR and the method has been used extensively in studies of cytoplasmic pH regulation of

algae and plants (e.g. Fox and Ratcliffe, 1990; Kusel et al., 1990; Fox ef al., 1995). Several other

methods are available to measure the intracellular pH in living cells (micro-pH electrodes, fluorescent
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dyes, the distribution of weak acids or bases) (Kurkdjian and Guern, 1989; Guern et aL, 1991).

However, NMR is the only non-invasive method for determining the intracellular pH.

NMR signals from protonated metabolites are often pH dependent when the pH of the surrounding

medium is close to the pKj of the ionisable group. To be useful, an in vivo NMR pH probe has to have

a pKa that is within approximately 1 pH unit of the intracellular pH. Pj, a ubiquitous ion with a pKa of

6.8 for the species H2PCV (placed at 0.58 ppm), is an excellent probe for the cytoplasmic pH (typically

around 7.4 in a well-oxygenated tissue) and it can also be used to put an upper limit on the vacuolar

pH (often in the range 4.5 to 5.5). Still, in order to measure intracellular pH using 31P NMR, the in vivo
31P chemical shifts are compared with a titration curve of Pj, Such a calibration curve is not simple to

make, all the methods available for measuring intracellular pH are affected by uncertainties in the

construction of appropriate calibration curves. Roberts et at. (1981) explored this problem in some

detail and showed that uncertainties about the solute composition of cytoplasm and vacuole (especially

total ion strength and free Mg2+ concentration) made changes in pH more accurately measured than

absolute pH values.

Calibration curves of measured chemical shifts for Pi in two different solutions, whose ionic

compositions were intended to be as close as possible to the cytosol and vacuole, respectively, were

constructed as suggested by Spickett et at.

(1993), in order to apply the NMR technique

for measuring pH in AM fungi and roots

(Fig. 16). All pH values estimated in this

thesis were obtained using these calibration

curves or similar curves used in R. G.

Ratcliffe's laboratory (used for the pH

values estimated in Chapter 3).

The pH values in the cytoplasm and vacuole

of mycorrhizal cucumber roots were

estimated to be 7,4 and around 5, respec-

tively, from the Pj chemical shifts at 2.3 ppm

and 0.3 ppm in the representative 31P

spectrum of mycorrhizal cucumber roots

presented in Chapter 4. The vacuolar pH

value is at the lower end of the calibration

curve where the pH dependence of the Pj

signal is weak and is therefore difficult to

measure precisely. Similar estimates were

obtained for the corresponding pH values of

the two cellular compartments in non-

mycorrhizal cucumber roots (see Chapter 3).

n.
a

£

E

3 0 -•

2.5

2,0

1.5

1.0

0.6

-•-CytoEol

**>— Vacuote
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/

J

7

PH
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Fig. 16. Calibration curves of Pj chemical shifts as a function
of pH in different solutions. The cytosoJic calibration
solution consisted of 100 mM KC1, 5 mM MgSO4, 2 mM
NaH2PO4 and 3 inM Na2HPO4. The vacuolar calibration
solution contained 20 mM KC1, 50 mM MgCl2, 10 mM citric
acid, 5 niM malic acid and 5 mM NaHzPO4. pH was
regulated with KOH and HC1. Chemical shifts of P, were
measured relative to the signal from MDP (100 mM at pH
7.5) contained in a capillary included in the NMR tube and
are quoted relative to the resonance of 85% phosphoric acid
at 0 ppm. The calibration curves were constructed in
collaboration with A. M. Scharff.



The pH value in the cytoplasm of excised G. intrarudices hyphae was estimated to be 7.4 from the

Spectrum obtained in Oxford, but as already mentioned, the signal for the P, in the cytoplasm could not

always be detected. The value agreed with the previously reported cytoplasmic pH of around 7.5 in

intercellular hyphae (Ayling et al., 1997). The vacuolar pH value in excised G. intraradices hyphae

was estimated to be around 5.5, from the chemical shift at 0.4 ppm found in the various ” P spectra of

excised hyphae presented in Chapter 4. This value was consistent with acidic vacuoles, in agreement

with the results obtained by Ezawa et al. (2001b).

Another important pH probe present in the biological system used in this work is the polyp, and

information on the subcellular distribution of the polyp can sometimes be deduced from the 3’P NMR

Spectrum. The chemical shift of the 31P signal from the terminal P, residues is pH dependent and

tlierefore comparison of the cliemical shift value with a calibration curve similar to the anes for P,

using polyp standards instead of P, can indicate the location af the polyp. In a study of the marine

macroalgae Ulva lactuca (Lundberg et al., 1989) and of the ectomycoirhizal fungus Laccariu bicolor

(Martin et al., 1994) the chemical shift value from the terminal P, residues indicated that the polyp was

located in the vacuoles. In order to predict the compartment containing the polyp, a calibration curve

of measured chemical shifts for the terminal polyp residues in a solution similar to the one used for the

vacuolar P, calibration curve was con-

structed (Fig. 17, 50 mM MgC12). However,

the chemical shift of signal from the

terminal P, residues and the pK, value is

also very sensitive to the binding of MgZt

(MacDonald and Mazurek, 1987; Lundberg

et al., 1989). Therefore a calibration curve

of measured chemical shifts for the terminal

polyp residues in a solution with less M g ”

was constructed (Fig. 17, 2 mM MgClZ), as

suggested by Martin et al. (1994). A con-

centration of 50 mM MgC12 was too high a

concentration of M g ” for the calibration

curve to be useful in the area of a chemical

_ . . , „ . . . i i n i shift value of-6.4 ppm for the terminal P,
Fig. 17. Calibratioii curves of terminal polyp residues s h

chemical shift as a function of pH in disferent solutions. The residue obtained in in viv0 N M R spectra of
50 mM Mg calibration solution conesponded to the vacuolar . , , T ,• _ , . , . TT

calibration solution used in Fig. 16, except that 5 inM polyp e x c i s e d h y p h a e ( s e e T a b l e 5 ) . However, at a
standard with average chain length 15 obtained from Sigma
Chemical Co. was included instead of NaH2P0,. The 2 inM
Mg caiibrdtion solution contained 5 mM Polyp with average
chain length 25 obtained from Sigma Chemical Co., 2 mM
MgCI2 and 100 mM KC1, as suggested by Martin er al.
(1994). pH was regulated with KOH and I1CI. Chemical
shifts of terminal Polyp were measured relative to the signal
from MDP (100 mM at pH 7.5) contained in a capillaiy
included in the NMR tube and are quoted relative to the
resonance of 8.5% pliosphoric acid at O ppm.

concentration af 2 mM MgC12 the chemical

shift of terminal P, residues predict a pH of

6.0. This acidic pH value supported a

vacuolar compartmentation of the NMR-

observable polyp. The results obtained here

indicate a lower concentration of M g ” in

the fungal vacuoles than contained in the
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vacuolar calibration solution suggested by Spickett et al. (1993), however this needs further

investigation.

Like teiminal Pi residues in the polyp chain, pyroP is also highiy sensitive to the concentration of

Mg ” . The dependency of the chemical shift

values for pyroP of both pH and Mg ’ ’

concentration are seen in Fig. 18. Only iow

amounts of pyroP can be observed in the in

viv0 spectra presented bere, however the

polyp standards comnercialiy available

contains large amounts of pyroP. Since data

for the pyroP calibration curves were

included in the spectra obtained to

construct tbe caiibration curves of terminal

polyp, the calibration curves of pyroP are

included as Fig. 18.

Fig. 18. Caiibration curves of pyroP chemicai shift as a
function of pH I in different solutions. The calibration
solutions, pH regulation and NMR parameiers were similar to
the ones used in Fig. 17.

2.4.4 Monitoring the dynarnic behavior of P by 31P NMR

In priticiple, in viv031 P NMR spectroscopy should be very suitable for studying the kinetic behaviot. of

P uptake and physiology of the fungus and for investigation of polyp metabolism in the mycorrhizal

tissue (see above). PolyPs, which occur in many microorganisms, give rise to a characteristic set of 31P

NMR signals that have been detected in viv0 in many living systems (see Table 4), including yeast

(Castrol et al., 1999), Aspergillus iziger (Hesse et al., 2000), axenically cultured ectomycorrhizal fungi

(e.g. Martin et al., 1983, 1985, 1994; Ashford et al., 1994; Gerlitz and Werk, 1994; Gerlitz and

Gerlitz, 1997; Martins et al., 1999) and mycorrhizal root tissues (Louglunan and Ratcliffe, 1984;

MacFall et al., 1992). In contrast, there have been very few in viv0 31P NMR investigations of AM

fungi, with just one study of AM roots of leek and germinating spores (Shachar-Hil1 et al., 1995)

besides the work presented in tlus thesis.

indeed, in the mentioned studies, the presence of polyp was demonstrated by the detection of an NMR

signal around -22 ppm in the 31P NMR Spectrum arising from the central P, residues in the poiyP

chain. Signals from Pi residues located at different places in the polyp chain can be detected and the
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ratio of the areas of the terminal (poiyPter), penultimate (poiyPpe.) and central (poiyPce.) P, residues can

he determined. These measurements allow the average chain length of the detectahle polyp to be

calculated using the formula

2(polyPler + polyP™ + polyPten) / polyP[er (Eq. 7)

It is normally relatively easy to estimate the polyp average chain lengths of extracts and standards

containing polyP. Based on the integrated areas of the terminal, penultimate (when detectahle) and

central Pi residues in the spectra presented in Fig. 14, the average polyp chain length of synthetic

polyp standards were estimated. Results of this are presented in Tahle 6.

Table 6. Estimated average polyp chain length of synthetic polyp glasses obtained from Sigma Chemical Co.

TypepolyP

5 '

15+

25'

35'

75 + '

Average chain length

estimated from "P NMR soectra'

6

14

22

34

nd

*NMR acquisition parameters are given in the legend of Fig. 14
sMuch pyroP present in the spectrum, however terminal and penultimate Pj residues could be assigned and

integrated, given a ratio between polyP l e r: poIyPpen: polyPeeil = 2 : 2 : 2

'Some pyroP present in the spectra, and heights of the various peaks were used to verify calculation, given ratio

between po lyP^ : polyPpe i l: polyPa* = 2 : 2 : 10 for type 15, polyP^ : polyP^,,: p o l y P ^ = 2 : 2 : 18 for type 25

and p o l y p e : polyP^,,: polyP™, = 2 : 2 : 30 for type 35

^ e signal of centra] P ; residues is too large in comparison with the signal for terminal P ; residues to determine

true areas

nd: Not detected

The calculated average polyp chain lengths of the synthetic polyp glasses were close to the expected

values. However, the synthetic polyp glasses with chain length below 35 P, residues all contain large

amounts of pyroP, which makes it difficult to estimate accurately the areas of signals for terminal P,

residues. This shows that overlapping signals can influence results obtained from areas of signals.

Furthermore, the results also show that the estimation of average polyp chain length of long-chain

polyp wing "P NMR is impossible, since the signals for terminal and penultimate P, residues are to0

smal1 to be separated from the noise.

The appearance of the polyP signals in in viv0 "P NMR spectra is very variable, reflecting the

expected heterogeneity in the endogenous polyp pools within the tissue, and this can complicate the

interpretation of the spectra. In some cases, the signals are narrow, indicating that they are derived

from freely mobile compounds of low molecular weight, and in these cases it is usually possible to
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estimate the average chain length of the polyP. in other cases the signals can be broad, even to the

point of being undetectable from the base line of the spectrum, and several factors may be responsible

for this, inciuding iinmobilization by precipitation or binding to membranes, a high degree of

polymerization and interaction with paramagnetic ions (Bental et al., 1990). For this reason, "P NMR

should be suitable for investigating polyp dynamics within the tissue. It would thus be possible to

study whether the AM fungus with access to high amounts of P, will first synthesize mobile short-

chain polyp (NMR-visible) for translocation of P and subsequently immobile long-chain or granule

polyp for storage of P (NMR-invisible), as has been demonstrated for the ectomycorrhizal fungus

Suillus bovinus (Gerlitz and Werk, 1994). Furthermore, it can be hypothesized that synthesized polyp

will be transforined to P, under P deficiency. And it can be studied how P and polyp metabolism

responds to stress like changes in extraradical pH (Gerlitz and Gerlitz, 1997), concentration of toxic

ions (Gerlitz, 1996; Castrol et al., 1999) and osmotic chock (Bental et al., 1990).

Values of average chain length of polyP in extraradical mycoirhizal hyphae estimated from 3'P NMR

spectra of various fungi and quoted in the literature are given in Table 7. The average chain lengtlis

reported are normally relatively short.

Table 7. Literature values of average polyP chain length for polyP in mycorrhizal fungi

Fungi

ectomycorrhizal fungi'

Pisolithus tirictorius

ectomycorrhizal funcus

Laccuriu bicolor

ectomycorrhizal fungus

Genninated AM C. etunicurio

spores

Average chain length

estimated from"P

NMR spectra

11

15

25-30

5

Reference

(Martin etal., 1985)

(Ashford et al., 1994)

(Martin etal., 1994)

(Shachar-Hil1 etal., 1995)

'C. grunifortne and H. crustulbzifonne

Values for average chain length of polyp in extraradical hyphae of various AM fungi estimated from

"P NMR spectra obtained in vitro (extracts) and in viv0 and from mycorrhizal cucumber roots

estimated from in vivo 31P NMR spectra obtained in this study are presented in section 2.6 and in

Chapters 3 and 4. The obtained average chain lengths were primarily short (< 20 P, residues).

2.4.5 Monitoring of the physiological status by 31P NMR

A 31P NMR spectrum of a sample can usually provide an important practical indicator of hypoxic

metabolism in biological systems (Roberts and Xia, 1996). An inadequate oxygen supply will usually

result in weak NTP signals, a strong cytoplasmic P, signal and a cytoplasmic pH below the range of

7.4-7.6 (Le. acidification of the cytoplasm), which is typical of well-oxygenated higher plant tissue

(Fox and Ratcliffe, 1990). The supply of oxygen to a tissue can normally be optimized by monitoring

these parameters and it was easy to demonstrate that the roots used for NMR measui-ements in the
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present work were in an well-oxygenated state, since all the NMR signals needed were present in the

spectra (Fig. 13; Chapters 3 and 4). As discussed in Chapter 3, small variations in the chemical shift of

cytoplasmic Pi and corresponding pH values of the cytoplasm in cucumber roots could be explained by

oxygen deprivation of the tissue during experiments. However, as the lowest measured cytoplasmic

pH value in roots was 7.2, both mycorrhizal and non-mycorrhizal cucumber roots could easily be kept

metabolically active and well-oxygenated in the airlift system while experiments were performed.

However, as can be seen from the in viv0 31P NMR spectra of excised hyphae (Fig. 13; Chapters 3 and

4), no or only very small signals for NTP or P, in the cytoplasm were detected in extraradical

mycelium. This can be explained by a very low concentration af the metabolites in the cytoplasm, i.e.

below the detection threshold, or a very low amount of cytoplasm in the hyphae (see Chapters 3 and

4). But from a more practical point of view, the missing signals meant that it was difficult to measure

the metabolic activity and to judge the possibility of performing P, uptake and storage investigations

on excised hyphae. Instead, I used other approaches to assess the metabolic status of the excised fungi.

First, the efficiency of Pi uptake by excised G. intruradices hyphae which had received no P, before

their excision from the roots was investigated by incubating the excised hyphae in oxygenated buffer

(buffer composition as described in Chapter 4) including 1 mM KHzP04 for 15 or 120 min. In viv0 31P

NMR spectra were obtained of the excised hyphae immediately after incubation had finished (Fig. 19a

and b). Secondly, the tum-over of P pools in the mycelium was studied in a P-adequate sample. In viv0
31P NMR spectra af the excised hyphae were obtained just after harvest of the P-pretreated hyphae and

subsequently after 12 h in oxygenated P-free buffer (Fig. 19c and d).

The two spectra af AM fungi which had received no P before their excision from the roots and

subsequently were incubated in P buffer (Fig. 19a and 6) indicated polyp (as central polyp at -22.6

ppm) as well as vacuolar P, (at 0.4 ppm) in similar amounts within one treatment (as obtained from

integrated areas). The two spectra were very similar, although the areas of the two signals were both

slightly larger after 120 min incubation. The experiment indicated that the excised hyphae take up P,

and accumulates polyp to same extent. But the ratio between amounts af polyp and vacuolar Pi was

much smaller compared to a P-adequate sample (Fig. 19c) and to differently P-treated Ah4 hyphae (P-

treated before harvest; see Chapter 4). It was indicated that the nutrient uptdke and transport was not

functiouing optimally in excised hyphal tissue, and the termination of hyphal organic C uptake could

be partly responsible for this.

The examination of the turn-over of P pools in excised AM hyphae by in viv0 31P NMR (Fig. 19c and

d) showed the expected signals for vacuolar P, and polyp, but the amount of polyp was much smaller

after 12 h in oxygenated buffer than immediately after excision. in contrast, the vacuolar P, signal

increased during the 12 h. That is, polyp is to soine extent degraded to P, during the 12 h. Published

work on polyp in ectomycoirhizal fungi (Martin et al., 1985) showed that polyp serves as a P reserve

and that polyp is degraded to P, during P starvation. The work by Martin ef al. (1985) also showed that

the degradation rate of the polyp varied among species of ectomycorrbizal fungi. A similar effect
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could be the explanation for the tum-over of polyp seen in G. inztrurudices. But the increased area of

vacuolar Pi cannot fully explaiii the degradation of polyp; some P was lost and had become NMR-

invisible during the 12 h P starvation. For this reason, this experiment should be repeated.

P.tvac)
(2,7)

Pi (vac)
12.4)

Polyp,,

10 - , o - 2 0 -30

Fig. 19. In viv0 "P NMR spectra of excised G. intraradices hyphae allowed to grow for two wk afler sand change and P-
treated differently during growth. a) No P was supplied before harvest; excised hyphae were incubated for 15 min in
oxygenated buffer including 1 mM KHzPO,. b) No P was supplied before harvest; excised hyphae were incubated for 120
min in oxygenated buffer including 1 mM KHzP04. c) An aqueous solulion ol 0.32 M KH J 'O, was applied to the hyphal
compaitment of the pot daily dunng the last week before harvesting; the pot received 100 mg P in total and the spectmm was
obtained immediately after harvest. d) Same hyphal sample as Spectrum c, but obtained after 12 h in the airlift system. The
chemical shifts of " P were measured relative to the signal at 16.38 ppm from MDP (100 mM at pH 7.5) kept in a capillaiy,
and the chemical shifts are quoted on the scale that puts the signal from 85% orthophosphonc acid at O ppm. Signals were
assigned to P,(vac); vacuolar Pi and PolyP,,,, Polyp,,,, PolyP,.; terminal, penultimaie and central Pi residues in polyp,
respectively. Integrated areas of signals relative lo the MDP signal are included in the figure in brackets. The resonance of
MDP is outside the speciral window. The approximate amount of MDP within the detection volume was estimated to be 2
mg (intemal diameter of capillary estimated to 1 mm, deiection volume 150 mm high). Overall expenmenGil setup and
harvest, buffer composition and NMR acquisition parameters were as given in Chapter 4 excepi ihat 14400 transients were
used given a total acquisition time of 2 h 4 min and applied line broadening was only 20 Hz.

From these experiinents, it became clear that the P uptake and metabolism of AM fungi was

dramatically affected after excision of the mycelium from its organic C source. Therefore, subsequent

experiments were performed with hyphae and roots, which had received different P treatments while

the symbiosis was still functionally optimal, j.e. before harvest of the pots. Consequently, subsequent

results presented in this thesis (i.e. following sections and chapters) concems steady state in viv0 "P



NMR measurements an pIant and fungal tissue which had been previously exposed to various P

treatments.

2.5 Other methods used

2.5.1 Extraction procedures

Extraction procedures have been used to confirm in viv0 31P NMR assignments and to further

characterize the detected polyp in combination with other analytical methods thaii NMR. In general, it

has been customary to consider polyPs in fungi in terms of their solubility in acid (Jennings, 1995).

The acid-soluble polyPs are those with average chain length of up to 20 P, residues; acid-insoluble

polyPs have higlier chain lengths. However, it is possihle to characterize the acid-insoluble polyPs

fuither by their successive solubility in other solvents (Clark et al., 1986), as will be demonstrated.

The three extraction procedures used here were: (I) the PCA extraction (Roby et al., 1987) which is

the commonly used method for extraction of various P metabolites in tissue. By this procedure,

phosphomonoesters, P,, phytate, ATP, adenosine diphosphate (ADP) and UDPG together with acid-

soluble polyp can be extracted. However, since this method omits ar possibly hydrolyzes larger size

polyp, a second method was used (2) the PD extraction procedure described by Callow et al. (1978)

and modified by Ashford ef al. (1994). This method preferentially extracts polyp and hydrolysis of

any polyp is avoided. Comparison of the two extraction procedures by the corresponding 31P NMR

spectra are presented in Chapter 3.

During my experimental phase, the focus was dkected towards fiuther characterization of the polyp in

the extraradical hyphae. A major obstacle in understanding the function for the polyp has been the

lack of methods for isolating and determining the sizes of polyPs (Clark et al., 1986). However, a

successive polyp extraction procedure (3) was developed and tested for isolation of intact polyp chains

from Propionibacterium shermanii cells by Clark et al. (1986), and modified slightly for the use an

AM fungi by Solaiman et al. (1999). This method allows isolation af three fractions, each containing

polyp of a certain length. The first fraction contains short-chain polyp (less than 20 Pi residues linked

together), which is soluble in trichloroacetic acid (TCA), the second fraction contains long-chain

polyp, which is soluble at neutral pH in 2 mM EDTA, and the third fraction contains long-chain polyp

present as granules extracted by phenol-chloroform (PC). The procedure does not hydrolyze polyp by

including [32PlpolyP and a 100% recovery was obtained (Clark et al., 1986).

The exact protocols for the extraction procedures can be found in the original literature, and only a

flow diagram for each method will be presented here (Fig. 20).
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Exiraradjcaj mycelium

(1) PCA exiraction
(Roby ct ol., 1987)

(2) P D extractlon
(Callaw el al., 1978)

Freeze and powder
sample (N1(1))

(3) Suceessivc extraction
(Clarkel al., 1986)

V
Powder sampie

atO°

v
Powder sample in
ice-cold 2% TCA

Cold £Nj (1)} PCA
extraction

Phenol and detergent
(SDS) extraction

Centrifuge at 4 '

PCA soluble
fraction of P
compounds
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Fig. 20. Overview of the extraction methods used in the present work. 'P anaiysis of fractions from the succesuive extractioii
procedure included use of both " P NMR spectros copy and rnetachromaiic reaction of toluidine blue at 530 and 630 NU (see
below; Chapter 4).

The successive extraction procedure was carried out on extraradical hyphae that had heen used in the

time-course study presented in Chapter 4. The extracts were further exarnined by the use of 31P NMR

and colorimetric methods and detailed results of the extraction procedure are presented in Chapter 4.

The results of the successive extraction procedure applied to P-treated extraradical mycelium indicated

some limitations in extraction of short-chain polyp (TCA soluble). The "P NMR spectra of the TCA

fractions coutained no signals for short-chain polyp or no marked increase in the P, signal, which

would have resulted from hydrolysis of polyp. These results were in sharp contrast to the in viv0 "P

NMR spectra of the same material, where short-chain polyp (approximately 13 P, residues) was

present in much larger amount than vacuolar P, (see Chapter 4). This could have at least two

explanations: The concentration of the TCA used in the extraction process was less than 2% or the

TCA was unable to extract short-chain polyP. To investigate this, a TCA extraction of synthetic polyp

type 5 in two concentrations was performed. The resulting 3LP NMR spectra of TCA-extracted

synthetic short-chain polyp are presented in Fig. 21.
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Fig. 21. " P NMR spectra of TCA extracted synthetic polyp type 5. (a) 10.4 mgpolyp type 5 extracted in ice-cold 2% TCA
according lo Clark et al. (1986) and diluted to 3 ml incl. 10% D,O for thc NMR measurements (pH 6.3). @) 1.06 mg polyp
type 5 extracted in ice-cold 2% TCA according to Clark er al. (1986) and diluted to 3 ml incl. 10% D20 for the NMR
measurements (pH 5.2). Thc polyp type 5 was synthetic polyp glass with an average chain length of 5 obtained from Sigma
Chemical Co. Chemical shifts of 3 'P were measured relative to the signal at 16.38 ppm from MDP (I00 mM at pH 7.5)
contained iii a capillay included in the NMR tube and are quoted relative to the resonance of 85% phosphonc acid at O ppm.
Tlie NMR acquisition parameters were 90" pulse angle (53 ~s), 0.59 s acquisition time, 6 s recycle delay, proton decoupling
by Waltz-16 composite pulse sequence, 15000 Hz sweep width, 1200 transients and 20 Hz line broadening. Total acquisition
time was 2 h and 11 min. Assignments and integrated areas of signals relative to the MDP signal are included in the figure.
The difference in SIN-ratio in the two spectra was due to the different scaling in order to show the ful1 signals in the spectra.

Short-chain polyp was extracted by TCA (Fig. 21), but the results indicate that there is a limitation

when extracting low amounts of short-chain polyp. Although the difference in concentration of polyp

in the two solutions was a factor 10, there was a poor correspondence to the integrated areas of the

signals for central P, residues in the polyp chain as compared to the reference signal (MDP). The ratio

between the areas for the MDP and polyP,,. signal was 1 : 2.36 when 10.4 mg polyp was extracted

(Fig. 21a) but only 1 : 0.07 when 1.06 mg polyP was extracted (Fig. 21b), i.e. the polyp extracted was

only one third of the expected at the low polyp concentration. This low concentration was similar to
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that detected in excised hyphae by in viv0 "P NMR (see Fig. 13c; Chapters 3 and 4). The extracted P

in the TCA extracts of synthetic polyp type 5 was bydrolyzed in a 4:l (v/v) solution of nitric and

perchioric acid and total P content was determined by the molybdate blue method (Murphy and Riley,

1962) on aTechnicon Autoanalyser II (Technicon Autoanalyzers, Analytical Instrument Recycle, Inc.,

Golden CO, USA). The total P content in the two extracts corresponded to 9.9 mg polyp type 5 (when

10.4 mg polyp was extracted) and 0.4 mg polyp type 5 (when 1.06 mg poIyP was extracted),

respectively. This coiresponded to a 95% and 38% recovery, respectively, confirming the NMR

results. The results of the tests of TCA as a solvent for extraction of sliort-chain polyp indicated that

the missing short-chain polyp in the extracts of extraradical mycelium could be explained by

limitations in the extraction procedure. However, the extraction procedure needs to be redone on fresh

material to rule out other possible errors due to the chemicals used. This needs further investigation.

2.5.2 Identification of polyphosphate

Besides the characterization of the polyp by "P NMR spectroscopy, the polyp content in tlie

successive extracts (Clark et al., 1986; Fig. 20(3)) was also estimated by a colorimetric metliod

(Solaiman et al., 1999). The polyp content in the extracts was estimated by measuring the absorbance

changes due to the metachromatic reaction of polyp with toluidine blue at 530 nm and 630 nm (Griffin

ef ah, 1965; Solaiman et al., 1999). Ten p1 of the polyp extract was added to tubes containing 0.75 mi

0.2 M acetic acid and 0.75 mi 30 mg 1.' toluidine blue. The amount of polyp was estimated by

comparison of the absorption spectra with standard curves produced by using 1 and 5 kg of each of

tluee synthetic polyPs, Le. type 5 and type 25 polyp for the short-chain and type 75+ polyp for the

long-chain polyp. The standard absorption spectra are presented in Fig. 22, together with absorption

spectra of extracts of P-treated hyphae (part of figure included in Chapter 4; see Chapter 4 for details

in P-treatment).
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Fig. 22. Absorption spectra of (a) toluidine blue in the absence and presence of synthetic polyp of vaious chain lcngth and in
various amounts as indicated in the figure. The polyp standards were synihetic polyp glasses with average chain length 5, 25
and 75+ obtained from Sigma Chemical Co. @) toluidine blue in the absence and presence of successively extracted polyp in
fractions as indicatcd in tlie figure. TCA; polyp extracted by TCA, EDTA, polyp successively extracted by EDTA and PC;
polyp lastly extracted by PC. The two-wk-old extraradical mycelium used in tlie extractiou procedure was treated for two wk
with 0.7 mM Pi in nutrient solution and additionally 100 mg aqueous Pi prior to harvests (10 to 96 h before harvest, see
Chapter 4 for details in P treatment). A similar figure is contained in Chapter 4, bowever for continuity is it included here as
well.

The absorption Spectrum of tohidine blue had two maximum values and the absorbance decreased due

to formation of the metachromatic complex in the presence of large amounts of long-chain polyp

standards (Fig. 22a). No significant metachromatic reaction could be detected in the presence of short-

chain polyp or smal1 amounts of long-chain polyp (Fig. 22a). The absorption spectra of the

metachromatic reaction of toluidine blue and polyp in tlie extracts of P-treated hyphae indicated some

long-chain and granular polyp in the EDTA and PC fractions, respectively (Fig. 22b). Short-chain

polyp in the TCA fraction could not be identified by the coloriinetric measurement. Furthermore, no

long-chain or granular polyp could be measured by the metachromatic reaction in extraradical

mycelium P-treated for shorter periods (see Chapter 4). It is veiy difficult to convert the metachromasy

of polyPs to quantitative measurements, since the intensity of the absorption change varies not only

with polyp concentration but also with the average chain length of the polyp. Short-chain polyp

cannot be identified using this method and only rough estimates of long-chain polyp concentrations

can be obtained as discussed by Lorentz et al. (1997). This means that short-chain polyp present in the

tissue can be highly underestimated by using this method alone and the method is only valid in
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combination with another method Iike "P NMR or gel electrophoresis (see Chapter 5 for further

discussion).

2.5.3 Phosphatase detection

The ELF substrate method was applied in order to locate the activity of phosphatases in mycorrhizal

mycelium. The method has proven to be a suitable and sensitive method for measuring both ACPase-

and ALPase-type activity associated with the extraradical mycelium as well as for identification of

metabolically active AM fungal structures in roots (van Aarle ef al., 2001, van Aarle, 2002; see

Chapter 1). Only ALPase-type activity was investigated in this thesis. ALPase-type activity occurs in

roots inainly after mycorrhizal colonization and has been proposed as a marker for symbiotic

efficiency of mycorrhizal colonization (Tisserant et al., 1993). It was suggested that ALPase is an

important enzyme in metabolic processes leading to P, transfer to the host plant, but the fnnction is not

clear (see 1.3.4). The ELF method is based on a phosphatase substrate that fluoresces upon

precipitation after enzymatic hydrolysis. The ELF-97 Endogenous Phosphatase Detection kit ohtaiued

from Molecular Probes using the included alkaline detection buffer (pH 8) and an incubation time of

30 min was used in the time-course study described in Chapter 4, where the effect of different P

treatments on ALPase-type activity was investigated in G. intraradices. ALPase-type activity was also

investigated in other species of AM fungi; G. mosseae and Gi. rosea (see 2.6). All samples were

observed using a Zeiss Axiovert 35M fluorescence microscope with DAPI filter setting. Micrographs

were recorded with a Cool Snap digital microscope camera, using either W light done ar in

combination with visible light.

2.6 Non-published results and their discussion

This section contains results not included in Chapters 3 and 4. These results contrihute to meeting the

objectives outlined in the Chapter 1 and they inspire to future investigations.

Investigatioizs of other species of AM fungi.

A preliininary study af possible interfungai variations in P pools and ALPase-type activity included

P NMR and ELF investigations of the AM fungi S. calospora, Gi. rosea, G. intraradices and G.

mosseae. The 31P NMR Spectrum of S. calospora was recorded without airlift on a Bruker dpx250 250

MHz spectrometer located at Ris@ using a 10-m-diameter broadband probehead and ALPase-type

activity was not investigated in this fungus. The aim of the investigation was to detect possible

interfungal differences in polyp content, polyp average chain length and ALPase localization, as

suggested by previous studies (Ezawa et al., 1995; Boddington and Dodd, 1999; Solaiman et al.,

1999). The differences might contribute to the understanding of the observed diversity in the function

of different species of AM fungi in their ability to supply P to the hosts (Pearson and Jakobsen, 1993;

Sinith et al., 1994; Dickson et al., 1999; Smith et al., 2000). Plant and fungus fresh weights and the

percent colonized root lengths are summarized in Table 8. Estimates of significance were based on

statistics using STATISTICA (StatSoft, Inc. (2001) data analysis software system, version 6,

www.statsoft.com) for data analysis. All variahles were normally distrihuted according to

Kolmogorov-Smimov and Lilliefors test for normality. One-way ANOVA with subsequent Bonferroni
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Post Hoc tests were used for determining species effects on the measured variables. All replicate pots

were used in correlation analysis.

Table 8. Mean values (LSMEAN) and statistics of fresh weight per pot of six-wk-old cucnmber plants and two-

wk-old extraradical mycelium, and percent colonized root length. The overall experimental design and harvest

was as described in Chapter 4 and inoculum were propagated in mycorrhizal T. subterraneum L, pot cultures.

The experiment contained three replicate pots of each fungus. Pots were watered with nutrient solution including

0.7 mM KH2P04 for the last two wk before harvest, i.e. after the sand had been changed. Iii viv0 3iP NMR

specha were obtained of sub-samples of roots and excised extraradical hyphae; in some cases the amounts of

extraradical mycelium were to0 smal1 for NMR studies. No non-mycorrhizal plants were included in the

experiment. Values with same letter are not significantly different (p < 0.05 ANOVA post hoc Bonferroni tests).

Fungus

G. introradices

S. calospora

Gi. rosea

G. inosseae

Shoot fw

(s)

33.11a

13.72 b

14.95 b

31.93 a

Rootfw

(g)

25.65 a

8.46 b

8.93 b

19.61 a

Hyphae fw

(g)

0.69 ab

-

0.012 a

1.27'b

Percent colonized

root length

(%If
86 a

31b

50 b

72 a

The total amount of P added was approximately 20 mg (C. iritraradices), 6 mg (S. calospora), 7 mg (Gi. rosea)
and 16 mg (C. inosseae).
-No extraradical mycelium could he extracted from the hyphal compartment

'Nnmber includes a considerable amount of sand, very sticky hyphae
fFresh root subsamples were cleared in strong base and stained with trypan blue and the fractions of root lengths
colonized by the AM fungus were measured (see Chapter 4).

Cucumber plants colonized by the two Glomus species were of similar size at the time of harvest and

much larger than the two other species used in the experiment. This was clearly expressed in shoot and

root fresli weights (Table 8). The fresh weights of extraradical mycelium that could be harvested from

the hyplial compartment differed among AM fungal species. The higher values recorded for G.

mosseae were partly cdused by adhering sand, which was more difficult to remove from this fungus

than from tbe others. No extraradical mycelium of S. calospora could be extracted in this experiment,

although, a successful extraction of S. calospora mycelium had been carried out in a previous

experiment at ar1 early stage of my study. The amount of extraradical mycelium of Gi. roseu that could

be harvested was also low. The percent of root length colonized was highest with G. intruradices and

lowest with S. calosporu, and seemed to relate to the amount of extraradical hyphae to some extent

(Table 8). The data suggested differences iii efficiency of the fungi. The two Glomus species were

mole efficient in colonizing the root, resulting in higher shoot and root fw. However part of the

diffei-ences may relate to differences in inoculum quality, in particular for S. calospora.

In viv0" P NMR spectra of excised extraradical G. intraradices, G. mosseae and Gi. rosea hyphae and

comesponding mycorrhizal roots together with a "P NMR spectrum of excised extraradical S.

calospora hyphde obtained without airlift are presented in Fig. 23.



If,

Fig. 23. /« vivo "P NMR spectra of two-wk-old excised exiraradical hyphae of one replicate of (a) G. intruradices (0.09 g),
(b) G. niosseae (0.13 g) and (c) Gi. roseo (0.0013 g) and of the corresponding six-wk-old mycorrhizal roots (0.23 g, 0.21 g
and 0.15 g, rcspectively) (d, e, 0. (g) A 3 'PNMR spectrum of excised ten-wk-old extraradical hyphae of S. calospora (0.54
g) ohtained without airhft. The experimentai setup and harvest of iissue used to obtain spectra a-f were as given in Table 8.
The S. calospora hyphae were harvested from 10 wk old pots, without change of sand in ihe hyphal compartment. 100 mg Pi
in aqueous solution was supplied to S. calospora hyphae 30 min before harvest. Chemical shifts of " P were measured
relative to tbe signal at 16.38 ppm from MDP (100 mM at pH 7.5) contained in a capillaiy included in the NMR tube and are
quoted relativc to ihe resonance of 85% phospboric acid at O ppm. The resonance of MDP is outside the shown spectrd
window. Buffer composition and Ui viv0 NMR acquisition paraneters for spectra a-f were as given in Chapter 4. Rie excised
S. calospora hyphae were placed in water incl. 10% DzO and the 31P NMR spectrum (9) was recorded on a Bmker dpx250
spectromeler located at Ris0, with the following NMR acquisition paraneters: 30" pulse angle (7.5 IS), 0.28 s acquisition
time, no recycle delay, proton decoupling by Wdtz-I6 composite pulse sequence, 7000 Hz sweep width, 50000 transients
and i0 Hz line broadening. Total acquisition Lime was 3 h 54 min. Numbers refer to assignments given in Table 5.

61



The two Glomus species had rather similar spectra of excised extraradical hyphae (Fig. 23a and b),

with a signal for vacuolar Pi and the three signals for polyP. The areas of the signals for vacuolar Pi

and central polyp residues were used to estimate the amounts of the two compounds, and the ainounts

of both vacuolar Pi and polyp were found to be similar in the two Glomus species. The average chain

length was found to be 11 in both Glomus species (cf. equation 7). The Spectrum of excised Gi. rosea

(Fig. 23c) contained signals for vacuolar Pi and for central Pi residues in the polyp chain, but in much

lower amounts than in the Glomus species. This was probably due to the small sample size of the

extraradical hyphae, aiid the average chain length could not be estimated. The Spectrum of excised S.

calospora (Fig. 23g) contained signals for vacuolar Pi and for central Pi i-esidues in the polyp cbain,

and m relatively high amounts. No signals fox terminal or penultimate Pi residues in the polyp chain

could be detected, this indicates a relatively long polyp chain (> 35 Pi residues; see Fig. 14; Table 6).

However, tbe average chain length has only been determined from this single Spectrum, and needs to

be confirmed from spectra obtained with optimized acquisition parameters. Furthermore, the sample of

S. calosporu mycelium also contained many spores due to the age of the mycelium, and the presence

of spores may have influenced the spectrum. "P NMR spectroscopy carried out on gerininating spores

of the AM fungus G. etunicatum revealed polyp with an average chain length of 5 and a high level of

Pi (Shachar-Hil1 et al., 1995). It was later suggested that tlie pi-esence of smdll, mobile polyp units and

high Pi levels may reflect the active synthesis of various P metabolites in the gemination stage of tlie

AM fungal life cycle (Pfeffer et al., 2001). The large polyp units indicated in S. calospora could

reflect presence af resting spores, where large amounts of P were stored as long-chain polyp, however

this needs further investigation.

The "P NMR spectra of cucumber roots colonized by the two Glomus species (Fig. 23d and e)

contained the expected signals for tbe various P metabolites in mycorrhizal roots. The amounts of the

various P metabolites were higher when the roots were colonized with G. intruradices than with G.

niosseae. As the percent colonization was not significantly different between the two Glomus species

(Table 8) and as the size of the various P pools was similar in the extraradical hyphae of the two fungi

(Fig. 23a and b), the root spectra suggested that G. mosseae translocated P at a much lower efficiency

than G. intraradices. No P signals could be detected in the 31P NMR spectra of cucumber roots

colonized by Gi. rosea (Fig. 239, and this probably reflects the relatively small signal for vacuolar P,

and polyp in the extraradical mycelium (Fig. 23c).

The localization of ALPase in the extraradical mycelium of G. mosseae and Gi. rosea and the

coi-responding mycoi-rhizai cucumber roots was iiivestigated by the ELF method (see 2.5.3; see

Chapter 4 for similar results of G. intraradices). For comparison, samples were also investigated in

visible light. ALPase-type activity could be observed inside the extraradical hyphae of both G.

inosseue and Gi. rosea (Fig. 24a and e). ALPase-type activity could also he seen in mycorrhizal roots

and specific staining of metaholically active fungal tissue was observed (Fig. 24c and g). The

investigation indicated that the two species colonize roots differently, since a different distribution of

ELF was seen. The pictures of G. mosseae roots (Fig. 24g and h) indicate a high degree of

colonization at the inner cortex of the root, whereas Gi. rosea (Fig. 24c and d) mostly colonized the
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outer cortex. However, this could be explained by the way the particular segments of root were

colonized, and transverse sections are needed to confm the different localization of colonization.

Such an investigation was not included here.

Fig. 24. ALPase-type. activity in extraradical hyphae and mycorrhizal roots as visualized by ELF precipitation and epi-
fluorescence. (a) Two-wk-old extraradical mycelium of Gi. rosea and (b) same tissue sample in visible light. (c) Six-wk-old
Gi. rosa mycorrhizal cucumber roots and (d) same tissue sample in visible light. (e) Two-wk-old extraradical mycelium of
G. mosseae and (f) same tissue sample in visible light. (8) Six-wk-old G. mosseae mycorrhizal cucumber roots and (h) same
tissue sample in visible light. Samples obtained from same pots as used for the 31P NMR spectra presented in Fig. 23.

ALPase-type activity was clearly demonstrated in extraradical mycelium of two species of AM fungi

and specific staining of metabolically active fungal tissue could be seen in the corresponding

mycorrhizal roots, similar to results obtained previously (Ezawa et al., 1995; Boddington and Dodd,

1999; van Aarle et al., 2001). However, the function of ALPase is not known (see 1.3.4), and any role

in polyp breakdown has not been satisfactory determined. All that could be concluded was that the

AM fungi were metabolically active.
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The results presented in this section suggest that there are differences between species of AM fungi in

P pool sizes within the extraradical mycelium and also in effectiveness of translocating the P to the

root. The results were somewhat influenced by the low amount of extraradical mycelium of Gi. rosea

and S. calospora which could be harvested and therefore the interfungal differences need further

investigation. However, polyp was detected in all species studied, in contrast to the work by

Boddington and Dodd (1999). Primarily short-chain length polyp was observed in extraradical

mycelium, and this observation is in contrast to the long-chain or granular polyPs detected in other

AM fungi by other methods (Cox et al., 1975; Callow et al., 1978; Solairnaii et al., 1999). Tlie

differences to earlier work could reflect the usefulness of "P NMR for the study of P pools and polyp

dynamics in comparison to extraction procedures, DAF'I or toluidine blue staining. The influence of

the method for the results is further discussed in Chapter 5. In summary, the important role of polyp in

the translocation of P fi-om soil to plant by the AM fungus was demonstrated. It is clear that future

investigations of the kind described in this thesis should include several fungi, since interfungal

differences in especially polyp metabolism could be measured relatively easily.

In viv0 31P NMR spectra ofnzonoxenic cultured AM hyphae and roots

The compartmented growth system is not always ideal for obtaining a uniform hyphal production (see

2.2; 2.6; Chapter 4). Therefore a preliminary investigation was carried out to study whether

monoxenic cultures were useful for studies similar to those presented in this thesis. The P metabolites

iii 15 mg hyphae collected from three monoxenic cultures of G. intruradices were studied by in viv0

"P NMR. Surprisingly only polyp signals were seen (Fig. 25). No P signals were seen in "P NMR

spectra of the corresponding mycorrliizal roots (transformed carrots) (results not shown). An

explanation of this could be that any Pi in these roots was metabolized fast into immobile and therefore

NMR-invisible P metabolites (nucleic acids, phospholipids etc.).

MDP

PolyP0

20 15 10 - 1 0

i-pr

-15 -20 -25 ppm

Fig. 25. hi viv0 " P NMR spectra of excised extraradical monoxenic cultured G. intruradices hyphae. The chemical shifts of
31P were measured relative lo the signal at 16.38 ppm [rom MDP (100 mM at pH 7.5) kept in a capillary, and the chemicdi
shifts ase quoted on the scale that puls lhe signal from 85% orlhophosphonc acid at O ppm. Buffer composition: M medium
(see Becard and Fortin, 1988) including 10% D20. In viv0 NMR acquisition parameters as given in Chapter 4, except for
number of transients which were 14400, giving a total acquisition time of 2 h.
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The results would also depend on the overall P status of the monoxenic culture, and the suitability of

monoxenic cultures for NMR studies of P metabolisin in AM fungi should be further investigated.

Hyphae can he harvested very easily if the gel medium in the hyphal compartment is replaced by

liquid media (Maldonado-Mendoza et al., 2001).

2.7 Summary and conclusions

The work described in this chapter has demonstrated that in viv0 "P NMR spectroscopy can be used

for the study of P pools and their dynamics in AM fungi. Accordingly, polyp metabolism can be

studied easily. However, it tumed out to be more challenging to study tbe P metabolism and

translocation in AM fungi in viv0 than expected at the beginning. The faet that extraradical AM

mycelium cannot take up C from any other structure or source than from the root interior was a sei-ious

expei-imenlal hindrance which markedly reduced the P, uptake of excised hyphae. As a result, any P-

treatment has to be performed while the symbiosis is still functioning and Chapters 3 and 4 concems

in viv0 "P NMR measurements on plant and fungal tissue which has been exposed to various P

treaiments before harvest. Also other methods have been introduced in this chapter and will be further

used in the following chapters.

71



Chapter 3 - 31P NMR for the study of P metabolism and

translocation in arbuscular mycorrhizal fungi

Abstract
31P nuclear magnetic resonance (NMR) spectroscopy was used to study phosphate (P) metabolism in

mycorrhizal and nonmycorrhizal roots of cucumber (Cucumis sativus L) and in extemal mycelium of

the arbuscular mycorrhizal (AM) fungus Glonius intraradices Schenck & Smith. The in viv0 NMR

method allows biological systems to be studied non-invasively and non-destructively. 31P NMR

experiments provide information about cytoplasmic and vacuolar pH, based on the pH-dependent

chemical shifts of the signals arising from the inorganic P (P,) located in the two compartments.

Similarly, the resonances arising from a, j9 and yphosphates of nucleoside triphosphates (NTP) and

nucleoside dipliosphates (NDP) supply knowledge about the metabolic activity and the energetic status

of the tissue. In addition, the kinetic behavior of P uptake and siorage can be detennined with this

method. Tlie 31P NMR spectra of excised AM fungi and mycorrhizal roots contained signals from

polyphospliate (Polyp), which were absent in the spectra of nonmycorrhizal roots. This demonstrated

that the P, taken up by the fungus was transformed into Polyp with a short chain length. The spectra of

excised AM fungi revealed only a smal1 signal from the cytoplasmic P,, suggesting a low cytoplasmic

volume in this AM fungus.
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Abstract
31P nuclear inagnetic resonance (NMR) spectroscopy was used to study phosphate (F) inetabolism in mycorrhizal
aiid nonmycorrliizal roots of cucumber (Cuciiiizis sarivruL) and in extemal mycelium of the arbuscular mycorrhizal
(AM) fungus Glonlus infraradices Schenck & Smitb. Tlie in viv0 NMR metliod allows biological systems to be
stiidied noii-invasively and non-destructively. 31P NMR experiments provide information about cytoplasmic and
vacuolar pH, based on the pH-dependent chemical shifts of the signals arisiiig from tlie inorganic P p i ) located in
tlie two compartments. Similarly, tlie resonances arising from a, p and y phospliates of nucleoside tripliosphates
(NTP) and nucleoside diphosphates (NDP) supply howledge about the metabolic activity and the energetic status
of tlie tissue. In addition, the kinetic behaviour of P uptake and storage caii be determined witli this method. The31P
NMR spectra of excised AM fungi and mycorrhizal roots coutained signals from polyphosphate (Polyp), which
were abseiit in the spectra of noninycorrhizal roots. This demonstrated that the Pi taken up by the fungus was
transformed into Polyp with a sliort chaui length. The spectra af excised AM fungi revealed only a smal1 signal
from the cytoplasmic Pi, suggesting a low cytoplasmic volume in this AM fungus.

Abbreviations: AM - Arbuscular Mycorrhizal; MES - 2-(N-morpholino)-ethane sulphonic acid; MDP - Metliyl-
ene dipliosphonic acid: NMR - Nuclear magnetic resonance; NDP - Nucieoside diphosphates; NTP - Nucleoside
triphosphates: P - Phosphate: Pi - Inorganic phospliate; PCA - Percliloric acid; Polyp - Polyphospliate.

Introduction

Arbuscular mycorrhizal (AM) fungi are obligate, mu-
tualistic symbionts, that colonise the roots of most
land plants (Smith and Read, 1997). The symbiosis
improves tlie nutrient uptake by the host plant and
tlie AM fungus receives fixed carbon in retum. The
external mycelium of the AM fungus functions as
an extension of the root system, allowing nutrients,
such as phosphate (PI, to be collected further away
in the soil. The P is absorbed by the dense network

* FAX No: ~4546774109. "EL No: t4546774159.
E - - 1 nanna.rasmussen@"soe.dk

of extemal fungal hyphae, then transported to the
intemal hyphae aiid transferred to the host (Smitb
and Read, 1997). Our current knowledge about the
mechanisms by which P is taken up and translo-
cated towards the host plant by the AM fungi is lim-
ited. Approaches applied to understand tliese mecb-
anisms include detection of polyphosphate (Polyp)
using phenol-detergent extraction and polyacrylam-
ide gel electropboresis (Callow et al., 1978), studies
of phosphorus transport by hyphae using radiotracer
tecliniques (Cooper and Tinker, 1978; Jakobsen et
al., 1992a, b; Schweigeret al., 1999). investigatious
of phosphatase localisation using histo/cytocliemical
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staining techniques (Ezawa et al., 1995; Gianinazzi-
Pearson and Gianinazzi, 1978; Kojima et al., 1998;
Saito, 1995; Tisserant et al., 1993) and cliaracter-
isation of a fungal P transporter (Harrison and van
Buuren, 1995).

3 iP nuclear magnetic resonance (NMR) has heen
used for in viv0 studies of P metaholism of ecto-
mycorrhizal fungi cultured under axenic conditions.
Polyp may play an important role in the mansportation
and storage of pliosphorus in the fungus, and when
P was added to ectomyconhizal fungi, Polyp signals
were found iii the 31P NMR spectra (Ashford et al.,
1994; Gerlitz and Gerlitz, 1997; Gerlitz and Werk,
1994; Martin et al., 1983, 1985, 1994; Martins et al.,
1999). NMR studies of mycorrhizal roots also have
heeii carried out witli empliasis on ectomyconhizas,
as in tlie studies of intact mycorrhizal red pine roots
(MacFall et al., 1992), living mycorrhizal beech root
tips (Loughman and Ratcliffe, 1984) and mycorrhizal
heech and pine roots (Gerlitz and Gerlitz, 1997; Geri-
itz and Werk, 1994). In contrast, there have heen very
few in viv0 31PNMR investigations of AM fuiigi, with
just one study of AM roots of leek and gerininating
spores (Shachar-HiII et al., 1995). and no published
NMR work on P metaholism in the extemal mycelium
of AM fungi. This can be ascrihed to the difficulty in
ohtaiiiing sufficient extemal mycelium for the NMR
analysis.

Our objectives are twofold. Fustly, we review
"P NMR spectroscopy as a method for studyiiig P
metaholism, with tlie emphasis on applicatious to
mycorrliizal fungi and Polyp metabolism. Secondly,
we demonstrate the use of 31P NMR spectroscopy,
in vivo and 011 extracts, for investigating P meta-
bolism in mycorrhizal and nonmycorrhizal roots of
cucumher (Cucurnis safivus L.) and in extemal my-
celium of the AM fuiigus Cloinus intrnradices. A
companmeiited gmwth system was used to produce
extemal AM hypliae in sufficient quantities for the
NMR measurements.

31 ~ NMR spectroscopy

NMR spectroscopy is based on the magnetic proper-
ties of the atomic nucleus and many elements have
isotopes with such properties. Several biologically irii-
portant isotopes are readily detectable and the method
can he applied to living systems. This is a well de-
veloped application of NMR spectroscopy and it is
referred to as in viv0 NMR spectmscopy. In vivo NMR
is a unique analytical method for the study of plant

tissue since it is non-invasive and, therefore, offers the
possihility to follow metabolic processes in a tissue
in real time (Martin, 1985). 3 iP NMR spectroscopy
has been used extensively to investigate metabolic pro-
cesses in plants (Lee et al., 1990; Martin et al., 1983;
Roberts et al., 1980; Rolin et al., 1989). The 31P iso-
tope has a 100% natural abundance, and although the
sensitivity of the 3 iP nuclens is less than the IH nuc-
leus, it is usually possible to obtain informative in vivo
31P NMR spectra. Different P metabolites in the plant
tissue give different signals in the NMR specirum.

31P NMR experiments provide information about
cytoplasmic and vacuolar pH from the pH-dependent
chemical sliifts of the NMR signals arising froin the
inorganic pliosphate (Pi) located in tlie two compart-
ments (Roberts et al., 1980). It is, therefore, possihle
to study the intracellular pH under different pliysiolo-
gical conditions. in vivo " P NMR has been used
extensively in studies of cytoplasmicpH regulation of
algae and plants (Fox and Ratcliffe, 1990; Fox et al.,
1995; Kusel et al., 1990). In addition, signals arising
from the 01, § and y phospliates of nucleoside triphos-
pliates (NTF') and n and B of nucleoside dipliospliates
(NDP) provide informatioii about the metaholic activ-
ity. Therefore, it is possihle to monitor the metaholic
staie of tlie organisni while tlie experiment is run-
ning, and in this way ensure tliat enough oxygen and
nntrients are supplied (Roberts, 1987).

Phosphate is one of the main nutrients provided to
the host plant by tlie mycorrliizal fungus and, in prin-
ciple, iii vivo 31P NMR spectroscopy sliould be very
suitable for stndying the P physiology of the fnngus.
Tlie method is a powerful technique for investigating
time dependent plienomena and il is, therefore, pos-
sible to visualise the kiiietic behaviour of P uptake
and storage, and to investigate any Polyp metaholism
in tlie mycorrhizal tissue. 31P NMR spectroscopy has
already been extensively used for the study of ecto-
mycorrliizal fungi cultured under axenic conditions,
as mentioned in the introduction. In these studies, the
presence of Polyp was demonstrated by tlie detection
of an NMR signal around -22 ppm in ihe 31P NMR
Spectrum arising from the central P residues iii the
Polyp chain. Signals from P residues located at differ-
ent places in the Polyp chain can be detected and the
ratio of the intensities of tlie terminal, penultimate and
intemal P residues can be determined. These measure-
ments allow the average chain leiigth of tlie detectable
Polyp to be calculated. Eleven P residues have been
measured in the Polyp chain in the ectomyconhizal
fungus H. crustuliiiifornie (Martin et al., 1985) and
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15 P residues iii the ectomycorrhizal fungus Pisolithus
tincrorius (Ashfordet al., 1994). In comparison, Polyp
in spores froin the AM fungus Glomus etuiiicatiim was
measured to coiitaiii just five P residues (Shachar-Hil1
et al., 1995). Note that the NMR method only allows
tlie detection of freely mobile Polyp, and that Polyp
iminobilised by precipitation or binding to membranes
does not contribute to the NMR Spectrum.

Materials and methods

Eiological materials, soil and overall experimenral
design

The AM fungus, Glomus iiltraradices Schenck &
Smith (BEG 87), was used in all experiments and
was grown in symbiosis with Cucumis sativus L.
(Aminex, F1 hybrid). External mycorrhizal hypliae
were produced in a compartmented growth system,
where the hypliae could be easily extracted from
quartz sand. The growth system consisted of a 75
mm diameter 25 pm nylon mesh bag filled witli
700 g of an irradiated (10 kGy, 10 MeV elec-
tron beam) 1:l soil and quartz sand mixture (w/w)
iiito wliich was incorporated 100 g of Glomus in-
rraradices inoculum from a Trifolium subterraneum
L. pot culture. Basal nutrients were mixed into the
soil in the following amounts (mg kg - ' dry soil):
KzSO4, 75.0; CaC12.5Hz0, 75.0; CuS04.5Hz0, 2.1;
ZnS04.7Hz0, 5.4; MIiS04.H20, 10.5; CoS04.7H20,
0.39; NaMo04.2Hz0, 0.18; MgS04.7Hz0, 45.0. The
nylon mesh bag was placed in tlie centre of a pot
filled with 2200 g of washed, autoclaved quartz sand
(Johansen et al., 1996) (Figure 1). Inoculum was
incubated for 1 week in moist (60% of water hold-
ing capacity) soil and four pre-geminated seeds were
sown in the nylon mesh bag. After the seedlings
emerged, the plaiits were thinned to two per pot and
the pots were placed in a growtli chamber witli a 16/8 h
light/dark cycle at 20/16 "C and Osram daylight Iamps
(IIQI T250 WID 500 pinole in-2 C * ) . An aqueous
solution of 0.36 M W N O 3 was supplied to tlie pots
weekly and the total addition of N was 200 mg per
pot. The sand in the outer compartment was replaced
witli fresh sand 4 weeks after sowing and the hyphae
were harvested from this sand after another 3 weeks.
An aqueous solution of 0.32 M KHzPO4 was applied
to the sand coinpartment of the pots daily during the
last week before harvesting; each pot received 100 nig
P in total.

F@re I. Companmented grawlh system, composed of a 25 pm
nylon mesh bag (rool compmmenl, RC) and an outer hyphal
cornpanment (HC).

Sample preparation and extracrion teclmiques

External hypliae were collected from the sand by
aqueous suspension and subsequent decanting onto a
38 p m sieve. This was repeated four times. The hyphal
sample from each pot was placed in water and kept
cold. Material used in extraction procednres were not
rinsed further, whereas hyphae for in viv0 31P NMR
experiments were carefully shaken in a buffer contain-
ing 10 mM 2-(N-morpholino)-etlianesulphonic acid
(MES) and 0.1 mM CaS04 at pH 6.0 to remove most
of the sand trapped in the hyphal sample. Tlie har-
vest procedure took amund 15 min per pot and the
rinsing procedure anotlier 20-30 min. The phenol-
detergent extraction method described by Callow et al.
(1978) and modified by Ashford et al. (1994) was used
to prepare extracts of external AM fungi for NMR
experiments. Perchloric acid (PCA) was used as an
alternative extraction agent. The pH was adjusted to
7.5 in both extracts. Root matenal was carefully col-
lected from tlie mesli bag after washing away the soil.
Only the first 3 cm of the roots were nsed for the
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? lP NMR measurements and the excised root pieces
were placed in a buffer similar to tlie one used for the
Iiyphae, hul with 50 mM glucose added. The excised
roots were vacuum infiltrated for 3 min and the Iiyp-
oxic roots were then oxygenated by bubhling oxygen
through for 10 min. The saniples of hyphae or roots
were packed loosely in an NMR tube, using similar
masses af material and similar packing in the different
experiments.

NMR expei-imerits

The ' I P spectra from tlie extracts were recorded at
242.812 MHz on a Varian Uiiity Inova 600 spectro-
meter using a hroad band 5-m-diameter prohe head.
Tlie spectra were accumulated with a 90" pulse angle,
a recycle time of 3.6 s and a total acquisition time of
4.1 h. Tlie spectra ohtained Ni viv0 were recorded at
121.49 MHz on a Bruker CXP300 spectrometer using
a douhle-tuned i3C/3 'P 10-mm-diameter probe head.
Tlie spectra were accumulated with a 45" pulse angle,
a recycle time of 0.5 s and a total acquisition of 4
x 30 min in the hypliae Spectrum, 9 x 10 min in
the mycorrhizal roots spectrum and i2 x 30 min in
the nonmycorrliizal root Spectrum. All in viv0 spectra
were recorded using an airlift system operating witli
an oxygen flow rate of c. 90 ml min - ' (Fox et al.,
1989). witli the hypliae or roots placed in the same
buffer as used during tlie wasliing procedure. The
chemical shifts of the signals in the ? LP NMR spectra
were measured relative to the signal from methylene
diphosplioiiic acid (MDP), and the chemical shifts are
quoted on the scale tliat puls tlie signal from 85% or-
tliopliosplioric acid at O ppm. The MDP in the in viv0
spectra was kept in a capillary centred in tlie NMR
tube. Estimates of tlie cytoplasmic and vacuolar pH
were ohtained from tlie chemical shift of the cyto-
plasmic or vacuolar Pi signal using calihration curves
based on the work by Spickett et al. (1993).

Results and discussion

Polyp of a short chain length was seen in actively
metabolising extemal AM fungi for tlie fust time by
the use af in viv0 ? l p NMR spectroscopy. The growth
system chosen for external AM fungus Iiyphae produc-
tion (lohansen et al., 1996) was appropriate for pro-
ducing sufficient hyphae for the NMR measurements.
Tlie wet weiglit of hyphae extracted from one pot was
0.5 g in average, induding a smal1 but non-quantified

amount of sand. Approximately 0.2 g af hyphae were
used in the in viv0 " P NMR measurements.

We compared perchloric acid and phenolic-
detergent as extraction agents. The occurrence of
Polyp in the extracts of extemal AM fungi was eas-
ily seen in the 3 'P hWR spectra (Figure 2). Spectra
of botli extracts showed a signal from the reference
MDP at 16.38 ppm, The spectra showed a signal at
2.6 ppm identified as Pi and a signal at —5.2 ppm in
the Spectrum af the pheiiol-detergent extract (Figure
2A) and at -5.5 ppm in the Spectrum of the PCA ex-
tract (Figure 20) identified as tlie terminal P residues
in the Polyp chain. Also a small signal arising from
pyrophosphate was seen at —5.7 ppm in hoth spec-
tra. A small unideiitified signal at —6.5 ppm was seen
in the Spectrum of tlie PCA extract. The rest of tlie
visualised signals were all placed around -21 ppm,
consistent with the positions previously identified for
the penultimate and central P residues af Polyp chains
(Ashford etal., 1994; Gerlitz and Werk, 1994; Grellier
et al., 1989; Martin et al., 1983,1985; Shachar-Hil1 et
al., 1995). The signals at -20.5 ppni in the Spectrum
of the phenol-detergent extract and at -20.8 ppm in
the Spectrum of the PCA extract were identified as
the penultimate P residues and the signals at -21.6
ppm in the Spectrum af the phenol-detergent extract
and at —21.8 ppm in tlie Spectrum of the PCA extract
as the central P residues in the Polyp chain. It was
likely that tlie signal almost inseparable from that of
the central P residues at -21.3 ppm in the spectrum
of phenol-detergent extract and at -21.5 ppm in the
spectrum of PCA extract was the third P residues in the
Polyp chain. Again, sinall unidentified signals were
seen at —21.2 ppm. at —22.2 ppm and at -22.6 ppm
in tlie spectruin of the PCA extract indicating sev-
eral PolyPs with different cliain lengtli and therefore
possible hydrolysed Polyp in the PCA extract.

The main difference in the spectra recorded from
the two extraction methods was the separation of tlie
relevant P signals and the signal size. The separation
was clearly more effective wlien phenolic-detergent
was iised as extraction agent and much more Polyp
was present in this extract compared to the PCA ex-
tract. The ratio among tlie areas of the signals in tlie
spectrum of the plienolic-detergent extract of the ex-
temal AM fungi for the terminal, the penultimate and
the central P (including tlie third last) residues was
2:2:11, yielding an average Polyp chain length of 15
P residues. This value agrees witli the average chain
length found in ectomycorrhizas (Ashford et al., 1994;
Martin et al., 1985). Calculation of tlie average cliain
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(ppra)
3 ' P NMR specira of exuilc1s of Glo»u<s intrnmdices mycelium shawing 'rcsonmces from Pi and mobile Polyp. (A) B~lmct from

Glomus iiitraradices made by phenol-delergen1 emaction and (B) exuact from Glomus im'ardireu made by perchlocc acid exmelion. Peuk
assigmmls axe as fallows: (a), MDP; (b), Pi: (c), temiinal Polyp residues; (d), pyrophosphate; (e), penullirnale Polyp residues; (0, lhe UUrd
last Polyp residues; (g), cenwal Polyp residues; (x), unidentihed P.
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length in tlie perchloric extract gave a smaller value,
with a ratio of 2 2 5 yielding an average chain length
of 9. Tliis again showed that the perchloric extractiou
procedure probahly hydrolysed some Polyp.

The iii vivo 31P NMR spectra of excised roots
sliowed the P-containing metabolites in the living
roots of mycorrhizal aiid nonmycorrhizal Cucuinis
safivus plants (Figure 3). Tlie difference in tlie signal-
to-iioise ratio in the two spectra was due to differences
iii accuinulation af spectra. The signal at —22.7 ppm
in tlie mycorrhizal root Spectrum corresponded to tlie
central P residues in the Polyp chain (Figure 3B).
Tliis signal was not present in the Spectrum of non-
inycorrhizal roots (Figure 3A). Tlie signals around 4.5
pprii comesponded to several phospliomonoesters. The
signal at 2.7 ppm in the mycorrhizal root Spectrum
(Figure 3B) and at 2.9 ppm iii the nonmycorrhizal
root Spectrum (Figure 3A) arose from cytoplasmic Pi

corresponding to a pH of 7.2 and 1.4 for tlie cyto-
plasin in the mycorrhizal roots and nonmycorrhizal
roots, respectively. The lower cytoplasmic pH in the
mycorrliizal roots (Figure 3B) togetlier witli the poor
linesliape of tlie sigiial suggests that the tissue was
not as well oxygenated as the nonmycorrhizal roots
(Figure 3A). Oxygen deprivation of the tissue could
typically be reflected in a shift of the cytoplasmic Pi
signal towards a lower ppm value and thus acidifica-
tion of tlie cytoplasm. At the same time, ihe usually
unobservahle NDP signal could be detected (Fox et
al., 1995). The very sinall signal at around -5.9 ppm
in the mycorrliizal roots Spectrum (Figure 3B) could
be assigned to the ,Bpliospliate of NDP, supportiiig the
observation tliat the mycorrhizal tissue was not uni-
forinly oxygenated. A small contribution to tliis signal
from terminal P residues of Polyp could not be ex-
cluded, since this signal would he around this position
as well. Tlie assignment of the rest of the signals in
tlie two spectra were as follows pigure 3): The signal
at around 0.8 ppm arose from vacuolar Pi indicating
an acidic vacuole with a pH of around 5. The sig-
nals at around —5.3 ppm, —10.4 ppm and —19.0 ppm
arose from y, a and flpliospliates af NTP and the sig-
nals at around — 11 ppm and —12.5 ppm from uridine
diphosphoglucose (Figure 3). These results correspon-
ded to tlie study af leek mycorrhizas (Shachar-Hili et
al., 1995), except for the amount of cytoplasmic Pi in
hotli the mycorrhizal and nonmycorrhizal root spec-
trum. In the present work, only a smal1 cytoplasmic Pi
signal was seen, iiidicating a low cytoplasmic volume
in this part of tlie root.

Analysis of excised but living external AM hyphae
(Figure 4) indicated a significant amount of Polyp as
well as Pi in tlie vacuoles. Tlie signals hi the extemal
AM fuiigus spectrum were much broader tlian the sig-
nals in the root spectra (Figure 3) and it seeined likely
tliat tliis was caused by the difficulty of removiiig all
the sand grains from tlie hyphae. The resolution and
signal-to-noise ratio were acceptable after 2 h of spec-
tra accumulation. Tlie signal at 1.0 ppm was identified
as tlie vacuolar Pi corresponding to a pH of 5.6 in
the vacnoles (Figure 4). The smal1 signal at 3.0 ppm
should be the resonance from the cytoplasmic Pi. This
position in the spectra corresponded to a cytoplas-
mic pH af 7.6, characterising well oxygenated tissue
(Loughman & Ratcliffe, 1984), but the faet tliat this
signal was sinall suggests tliat the fungus contained
only small amounts of cytoplasm. As in the extracts
of extemal AM fungi, the Spectrum sliowed signals at
—5.9 ppm and —22.4 ppm, identified as the terminal
and central P residues in tlie Polyp cliain. Also the
penultimate P residues could be seeii, but it was dif-
ficult to distinguish tliis from the central P residues.
An approximate average Polyp chain leiigtli of 17 was
found from the ratio 2213 , but it was difficult to
measure the correct areas of the signals. However, tliis
chain length seems reasonable in comparison to pre-
vious reports from ectomycorrliizal fungi (Ashford et
al., 1994; Martin etal., 1965).

Physiologically reliable results from the in vivo
measurements can be ohtained only if the oxygen and
substrate supply is sufficient to avoid anaerobic con-
ditions and shortage of nutrients in tlie NMR tube.
Several problems arose for the in vivo NMR spectro-
scopy of the extemal mycelium of the AM fungus.
It was very difficult to keep the AM fungus hypliae
Iiomogeneously dispersed in the NMR tube due to tlie
circulation system with liquid flow (known as a per-
fusion system). Tlie Iiyphae tended to clot together
and stop the flow or escape out in the system of cir-
culation. In contrast, the airlift system in whicli the
liquid medium inside the NMR tube was oxygenated
and circulated by au bubbling in the upper part of tlie
NMR tube proved to be very useful (Fox et al., 1989).

The absence of signals arising from NTP in the
in viv0 31P NMR spectra of tlie extemal hyphae of
the AM fungus also must be considered (Figure 4).
Normally, the metabolic status of the tissue inside the
NMR tube is measured by the position of the cyto-
plasmic Pi signal and the signals arising from W .
The cytoplasmic Pi signal was very weak (Figure
41, perhaps because of a very low tissue cytoplas-
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Figure 3. In vivo 31P NMR spectra of excised cucumber roots. (A) Nonmycorrhizai and (B) mycojrluzal with Gioimts intraradices. Peak
assignments: (a), MDP; (b), several phosphomcmoeslers; (c), cytoplasmic P;; (d), vacuolarPj; (e), y-NTP; (f), j9-NDP/lenninal PolyP residues;
(g), <r-NTP; (hi, uridine diphosphoglucose; (i), /J-NTP; (j), ceniral PolyP residues.

mic content, and the NTP signals were too small to
be detected. Therefore it was difficult to measure the
metabolic status. However, the signals arising from
NTP were also missing in the spectra of extracts (Fig-
ure 2), and it is, therefore, possible that NTP levels are
very low in 3-week-old external mycelium of Glomus
intraradices. It is also possible that the cytoplasmic
content varies with the age of the AM hyphae similar

to the age dependency observed for hyphal activity
(Sylvia, 1988).

The identification of soluble PolyP in the excised
external AM hyphae of Glomus intraradices by in
vivo 3 iP NMR provides evidence that this AM fungus
stores PolyP of a short chain length, SliJl, a titra-
tion study of the pH dependent chemical shift of the
terminal P residues in the PolyP chain is required hc-
fore a final determination of the compartment for the
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Figum 4. In viv0 3 1P NMR speclnim of excised Glomur iiiirarudices hyphae showing resmances from Pi and mobile Polyp. Peak assignmenls:
(a), MDP (b), cytoplasmic Pi; (c), vacuolar Pi: (d), terminal Polyp residues: (e), penultimate Polyp residues; (0, central Polyp residues.

Polyp can be predicted (Martin et al., 1994). The
identification of Polyp of a short chain length is in
contrast to earlier work proposing that Polyp in the
AM fungus Glomus niosseae existed as large gran-
ules wbich were moved by cytoplasmic streaming and
stabilised by Ca2+ ions (Callow et al., 1978). The
granules were identified after extraction by the plienol-
detergent technique including an ethanol treatment
and subsequent staining with toluidine blue and were
probably artefacts of specimen preparation (Orlovich
aiid Ashford, 1993). Studies using freeze-substitution
illiistrated that tlie Polyp was present in soluble form
stabilised by K+ ions in the ectomycorrhizal fungus
Pisolirhus firrcrorius (Orlovich and Ashford, 1993).
Furtber characterisation using gel electrophoresis and
31P NMR showd that tfie Polyp consisted of abont
15 pliospliate subunits (Ashford et al. 1994). How-
ever, tlie NMR metliod cannot exclude the presence of
granules, since Polyp present as large granules would
not have been detected by NMR spectroscopy. The
present study demonstrates tliat tlie NMR approach
overcomes the uncertainties in identifying Polyp after
cliemical fixation. Polyp af a short chain lengtli may
serve as a reservoir pool of Pi inside the Iiyphae and
this is similar to what is seen iii several ectomycor-
rhizal fungi (Ashford et al., 1994; Gerlitz and Werk,
1994; Martin et al., 1983,1985,1994). In conclusion,
tliese preliminary studies suggest that tbe process af P
translocation in the extemal hyphae of arbuscular my-

corrliizas may be similar to that af ectomycorrhizas in
whicli the P appears to be transported mainly as Polyp
in a motile vacuole system (Ashford et al., 1994, Smith
and Read, 1997).
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Chapter 4 - Phosphate pools and their dynamics in

the arbuscular mycorrhizal fungus, Glomus intraradices,

studied by in viv0 31P NMR spectroscopy

Abstract
In viv0 31P NMR spectroscopy was used for the investigation of phosphate pools in the arbuscular

mycorrhizal fungus Glomus intraradices and mycorrhizal cuciimher roots. A time-course study af

differently phosphate-treated extraradical hyphae revealed the appearance of polyphosphate before the

appearance af vacuolar inorganic phosphate and further a time lag was observed before the

coiresponding phosphate metabolites appeared in mycorrhizal roots. The amount of polyphosphate

was considerably higher than vacuolar inorganic phosphate and synthesis of polyphosphate might be

important for effective phosphate uptake in arbuscular mycorrhizal fungi. The polyphosphate was

located in the vacuoles and the measured average chain length of the polyphosphate was short,

supporting a role for polyphosphate in the transport of phosphate from soil to host root by arbuscular

mycorrhizal fungi. In viv0 NMR could not detect cytoplasmic inorganic phosphate in the extraradical

mycelium possibly because of a smal1 cytoplasmic volume ar low concentration of cytoplasmic

phosphate.

Publication details
A shorter version af this paper (with fewer details in the iutroduction and without the alkaline

phosphatase measurements) will he submitted for publication in Plant Physiology shortly. Figures and

tahles within this chapter are numhered independently from the rest af the thesis.
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Introduction
As phosphate (P) is an essential nutrient for all organisms, it is required in relatively large amounts

and is often limiting to plant growth. It is therefore important for plants to have mechanisms for

efficient uptake of this nutrient. Arbuscular mycorrhizal (AM) fungi colonize tbe roots of most land

plants and the symbiosis between AM fungi and plants is characterized by bi-directional iiutrient

transport between the symhionts (Smith and Read, 1997). The AM fungus receives an indispensable

supply of fixed carbon, in return for improved nutrient uptake by the host plant. The extraradical

mycelium of AM fungi allows the plant to access inorganic orthophosphate (P,) in the soil solution

beyond the depletion zone formed by the plant around the actively absorhing roots.

The uptake, translocation and transfer of P by the extraradical mycelium of the AM fungi have been

studied extensively, and a model of the overall mechanisms has been widely accepted. It is believed

that P, in the soil solution is absorbed by the extraradical mycelium via an AM fungal P transporter

eiiergized by a P-type H?-ATPase (Harrison and van Buuren, 1995; Fenol et al., 2000; Maldonado-

Mendoza et al., 2001). The P, entering the cytoplasm of the AM fungus may be incorporated into

phosphorylated piimary metabolites, structural molecules and nucleic acids It is assumed that P,

excess taken up into the AM extraradical hyphae is subsequently transferred to the vacuoles and to

some extent condensed into polyphosphate (polyp). The P-containing substances such as polyP are

then believed to be translocated to the intraradical hyphae in vacuoles in a motile tubular vacuolar

system similar to that of ectomycorrhizas (Smith and Read, 1997). Recent studies of tlie vacuolar

system in AM fungi have confirmed the presence of tubular vacuoles and microtubules (Timonen et

al., 2001; Uetake et al., 2002). Once translocated to the symbiotic interface inside the root, the polyp

has to be hydrolyzed and the released P, subsequently transferred to the plant root cells to achieve a

mutualistic symbiosis. This transfer is helieved to occur at the arbuscular interface, which is in

agreement with the recent discovery that plant P transporters are expressed in root cells containing

arbuscules (Rosewarne et al., 1999; Rausch et al., 2001). In addition, incubatiou of extracted

intraradical mycelium of Gi. margarita in glucose increased the efflux of P, and polyp content in tlie

hyphae decreased simultaneously, indicating a role for polyp in the exchange of carbon and P, between

symbionts (Solaiman and Saito, 2001).

Accordingly, polyp is considered to have an important role in the P translocation process. in addition,

polyp as a storage form enjoys a clear osmotic advantage over PI and synthesis of polyp may be a

major part of the mechanism by which the fungus controls the cytoplasmic P, concentration (Mimura,

1999). Polyp has been detected in AM fungi by cytochemical methods (Cox et al., 1975; Cox et al.,

1980; Boddington and Dodd, 1999; Ezawa et al., 2001b), by extraction methods followed by

polyacrylamide gel electrophoresis (Callow et al., 1978; Solaiman et al., 1999) and by nuclear

magnetic resonance (NMR) (Shachar-Hil1 et al., 1995; Rasmussen et al., 2000).

A more detailed understanding of the underlying mecbanisms for P uptake, translocation and transfer

from soil via the fungus to the plant in viv0 is required. In particular, the metabolism of polyp is still
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unclear. PolyPs are linear polymers of three to more than 1000 P, residues linked by high-energy

phosphoanhydride bonds and have been found in many organisms (Kornberg et al., 1999). The polyp

metabolic pathways in prokaryotes have been well described. An enzyme of polyp synthesis, Le.

polyphosphatekinase (PPK) which synthesizes polyp from ATP, has been identified and characterized

together with several enzymes of polyp utilization. Identified enzymes of polyp utilization include

PPK as a phosphotransferase and polyphosphateglucokinase (PPGK), which utilizes polyP as an ATP

substitute, i.e. transfers the terminal P, of polyP to glucose, producing glucose-6-phosphate. Identified

enzymes of polyp utilization in prokaryotes also include hydrolases; exopolyphosphatase (PPX),

which hydrolyses and releases terminal P, of polyp and endopolyphosphatase, which cleaves polyp

internally to generate shorter chains (Kornberg et al., 1999). In coiparison, tlie polyP metabolisin in

eukdryotes is poorly understood, no well documented synthesizing enzyme activity has been found so

far (i.e. no PPK-like activity has been identified) and only few enzymes of polyp utilization have been

identified. The polyP-hydrolyzing enzyme characterized is PPX-type enzymes, identified in vacuoles,

cytoplasm and cell envelope in yeast (Saccharomyces cerevisiae) (Komberg et al., 1999). Capaccio

and Callow (1982) detected PPGK-type activity in the AM fungus Glornus mosseae and deinonstrated

a possible role of polyP of being a phosphagen. In the same study, PPX-type activity was found in

intraradical hyphae, where polyp hydrolysis is therefore likely to occur. Ezawa et al. (ZOOIa, b) have

detected both PPX-type and PPGK-type activity in the AM fungi G. coronatum and G. etunicaturn.

Two different PPX-type enzymes were found, which differed in activity between extraradical and

intraradical hyphae (Ezawa et al., 2001b). This demonstrated that polyp metabolism differed between

extraradical and intraadical hyphae and that polyp accumulation might be a dynamic balance hetween

synthesis and hydrolysis. Only negligible PPGK-type activity compared with that of hexokinase,

which utilizes ATP as a phosphagen, was detectable in the spores and intraradical hyphae (Ezawa et

al., 200121). From this result, it was concluded that polyp was not the main phosphagen for glucose

phosphorylation.

The amount, size and major role of polyp present in the extraradical and intraradical Iiyphae is a

matter of debate. Several investigations suggest the presence of rather long-chain polyp or granules

especially located in the extraradicdi mycelium (Callow et al., 1978; Solaiman et al., 1999),

supporting the idea that polyp metdboiism in extraradical and intraradical Iiyphae may he different.

Further, the extraradical mycelium of the AM fungus G. manihotis seems not to accumulate polyp in

comparison with high amounts of polyp in the extraradical mycelium of Gigaspora rosea (Boddington

and Dodd, 1999), suggesting differences in polyp metabolism between species.

Alkaline phosphatases (ALPase) may also be involved in polyp breakdown since cytochemical studies

revealed ALPase activity localized in the vacuoles of mature arbuscules (Gianinazzi-Pearson and

Gianinazzi, 1978; Tisserant et al., 1993; Ezawa et al., 1995; Saito, 1995). in addition, studies have

shown that AM fungi differ in thek localization of ALPase activity, and this difference might reflect

different sites for Pi transfer (Ezawa et al., 1995). ALPase in the extraradical mycelium might be an

effective marker for metabolic activity in studies of AM fungi. However, Ezawa et al. (2001b) found a

non-specific intraradical acid phosphatase (ACPase) which seemed to be involved in hydrolysis of



polyp, suggesting ACPase more likely to be involved in Pi transfer from intraradical mycelium to host.

Enzyme-labeled-fluorescence (ELF) staining has been used for visualization of ALPase and ACPase

activity in AM fungal hyphae and AM mycorrhizal roots (van Aarle et al., 2001). ELF substrate is

normally slightly fluorescent, but after removal of the Pi group, a bright green fluorescent precipitate is

formed, which makes it an appropriate marker for phospbatase activity.

In conclusioii, the presence of polyp in many species of AM fungi is well documented, but the

charactenzation of the polyp and the mechanisms involved in its metabolism are not clear. Staining

methods with variable specificity or invasive methods have commonly been used to identify polyp in

previous investigations, such that artifacts of specimen preparation could possibly have interfered with

the polyp chain length, as discussed by Orlovich and Ashford (1993). Non-invasive and non-

destructive techniques are required in order to obtain more detailed information of P pools and polyp

content in AM fungi. For this purpose, in viv0 "P NMR spectroscopy is a unique analytical method

(Rasmussen et al., 2000).

The objective of the present study was to characterize the dynamic incorporation of P, into various P

pools within extraradical mycelium and mycorrhizal roots. in addition, we waiited to investigate the

dynamics of polyp synthesis, and determine how fast polyp was synthesized, which chain lengtlis

could be detected and in wbich compartment the polyp was located. For this purpose, a time-course

study was carried out to use in viv0 "P NMR for investigating tbe formation of P compounds in

differently P-treated hyphae of the AM fungus G. intruradices and mycorrhizal cucumber roots.

Secondly, chain lengths of polyp where further investigated by the use of extraction procednres

followed by colorimetric measurements and "P NMR. Finally, the active state of P metabolism in the

mycorrhiza was confirmed by means of ELF staining for ALPase activity. •

Materials and methods

Biological materials, soil and overall experimental design

The AM fuiigus Glomus intruradices Schenck & Smith (DAOM 197198, Biosystematics research

centre, Ottawa) was used in all experiments and was grown in symbiosis with Cucumis sativus L.

(Aminex, F1 hybrid). Extemal mycorrhizal hyphae were produced in a compartmented growth system,

where tlie hyphae could be rapidly extracted from quattz sand. The growth system consisted of a 75

turn diameter 25 pm nylon mesh bag filled with 725 g of an irradiated (10 kGy, 10 MeV electron

beam) 1:l soil and quartz sand mixture (w/w, here called 'soil') into whicb was incorporated 75 g of

G. intruradices inoculuin from a Trifolium subterraneum L. pot culture. Basal nutrients minus P were

mixed into the soil in tbe following amounts (mg kg" dry soil): KzS04, 75.0; CaC125Hz0, 75.0;

CuSOcSH20, 2.1; ZnS0,.7H~0, 5.4; MnSOcHZ0, 10.5; CoS04.7Hz0, 0.39; NaMo04,2Hz0, 0.18;

MgSOc7Hz0, 45.0. This final soil had an extractable P content of 11 pg P g" as obtained with 0.5 M

NaHCO3 (Olsen et al., 1954). The nylon mesh bag was placed in the centre of a pot filled with 2200 g

of wasbed, autoclaved quartz sand (Johansen et al., 1996). Inoculum was incubated for one week in
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moist (60% of water holding capacity) soil and three pre-germinated seeds were sown in the nylon

mesh bag. After seedling emergence, plants were thinned to two per pot and the pots were placed in a

growth chamber with a 16/8 hour light/dark cycle at 20/16"C and Osram daylight lamps (HQI T250

WiD 500 pmole m.' s.'). The pots were watered daily and an aqueous solution of 0.36 M NHdNO, was

supplied to the pots weekly to provide a total addition of 200 mg N per pot. The sand in the outer

compartment was replaced with fresh washed and autoclaved sand four weeks after sowing and the

hyphae were harvested from this sand after another two weeks plus the time after additional P

treatment. The experiment included 24 pots in total.

P treatments and harvest

The experiment included three series of P treatments (Table i). A total of 100 mg P was supplied as an

aqueous solution of 0.32 M KH2P04 at the outer edge of the hyphal compartment in 20 of the pots at

ten different times before harvesting. One set of ten pots had received no P before the supply of 100

mg P at time = O h (Table 1, treatment 1) while another set of ten pots had previously received various

amounts of P as 0.7 mM P in nutrient solution (pH 6.0, 1 mM Ca(N03)2.4Hz0; 1 mM NKNO,; 1 mM

KzS04; 0.8 mM MnS0~7H20; 0.7 mM Narn0 ~ 2H z O; 25 pM Fe(II1) NaEDTA; 25 pM H3B03; 5

pM MiiSO,.HzO; 2 pM ZnSO4,7H,O; 0.5 pM CuSOC5H,0; 0.1 pM Na2Mo04
.2HZO; 4 nM

CoClr6HzO) over two weeks (Table 1, treatment 2). Three further pots previously supplied with P

received no additional P at time = O h (Table 1, treatment 3). One pot received no P at all and served as

control. The pots were not watered for two days before final P treatment to ensure a good distribution

of the P in the hyphal compartment.



Table 1. P treatment and fresh weights of extraradical mycelium of G. intraradices and mycorrhizdi cucumher

plants. Treatment 1: NoP before supply of 100 mgP at time = O h. Treatment 2: Hyphae received P during two

wk hefore supply of 100 mg P at time = O h. Treatment 3: Hyphae received P during previous two wk, but

received no P at time = O h.

Harvest

(hours after additional P supply)

5 10 i6 24 34 48 72 96

Treatment 1

Total P supply (mg)

Shoot (g fw)

Root (g fw)

Root Nh4R tube (g fw)

Hyphae (g fw)

Hyphae NMR tube (g fw)

Treatment 2

Total P supply (mg)

Shoot (g fw)

Root (g fw)

Root NMR tube (g fw)

Hyphae (g fw)

Hyphae NMR tube (g fw)

Trealment 3

Total P supply (mg)

Shoot (g fw)

Root (g fw)

Root NMR tube (g fw)

Hyphae (g fw)

Hyphae NMR tube (g fw)

20

39.4

28.9

0.16

0.38

0.09

24

33.3

17.9

0.14

0.03

0.03

Average

value

100 100 100 100 100 100 100 100 100 100

30.0 18.6 23.8 25.2 21.3 25.7 25.5 26.1 29.4 33.3 26

19.2 11.4 13.6 11.4 12.0 28.5 17.6 17.7 18.5 14.0 16

0.14 0.09 0.13 0.12 0.16 0.17 0.26 0.17 0.25 0.17

0.08 0.03 0:12 0.03 0.12 0.26 0.73 0.13 0.70 0.07 0.23

0.08 0.03 0.12 0.03 0.12 0.11 0.12 0.07 0.14 0.07

125 122 124 124 120 119 120 127 132 130

40.9 36.0 41.2 39.9 33.8 30.5 39.0 42.0 53.2 41.3 40

32.0 22.6 27.5 30.0 23.2 20.7 18.1 27.3 33.4 22.4 26

0.31 0.12 0.16 0.20 0.10 0.21 0.32 0.25 0.40 0.11

0.52 0.18 0.39 0.44 0.46 0.26 0.35 0.38 0.51 0.12 0.36

0.07 0.08 0.09 0.08 0.06 0.08 0.07 0.07 0.08 0.06

32

49.6

24.3

0.15

0.08

0.08

41

24

0.1

Control pot (No P added, harvested at t = 9G h): Shoot fresh weight 26.3 g, root fresh weight 20.1 g and hyphae

fresh weight 0.10 g

fw; fresh weight

Extemal hyphae were harvested from the sand by aqueous suspension and subsequent decanting onto a

38 pm sieve. This was repeated three times for each pot. The hyphal sample from each pot was gently

rinsed, fust in water and then in a buffer containing 10% DzO, SO mM glucose, 10 mM 2-(N-

morpholim-ethane sulphonic acid (MES) and 0.1 mM CaS04 at pH 6.0 to remove most of the sand

trapped in the hyphal sample. The harvest and rinsing procedure of hyphae from one pot lasted about



15 min. Root material was carefully collected from the mesh bag after washing away the soil and the

excised root pieces were placed in a buffer similar to the one used for the hyphae. Sub-samples of

hyphae or roots were packed loosely in an NMR tube, using similar masses of matenal (hetween 0.03-

0.14 g fresh weight hyphae and 0.09-0.40 g fresh weight roots, respectively) and similar packing

density in the different experiments.

Plant analysis

The total shoot fresh weigbts were determined. The total fresh weights of both hyphae and roots were

determined after NMR analysis after removing excess moisture by pressing the tissue on filter paper.

Fresh root sub-samples were cleared in. 10% KOH and stained with 0.05% trypan blue by a

modification of the method of Murphy and Riley (1962) and the percentage of root lengths colonized

by G. intruradices were measured in accordance with Giovannetti and Mosse (1980).

Ira viv0 NMR experiments

The in viv0 31P spectra were recorded at 242.812 MHz on a Varian Unity Inova 600 spectrometer

using a broad band 10-mm-diameter prohe head. The spectra were accumulated with a 45" pulse angle

(26.5 ps), an acquisition time of 0.064 s, a recycle time of 0.45 s, proton decoupling by Waltz-I6

composite pulse sequence, a sweep width of 15.0 kHz, 12000 scans, a total acquisition time of Ih 45

and processed with 30 Hz line broadening. All in viv0 spectra were recorded using an airlift system

operating with an oxygen flow rate of c. 90 ml min? (Fox et al., 1989), with the hyphae or roots

placed in tbe same buffer as used during the washing procedure. The chemical shifts of tbe signals in

the "P NMR spectra were measured relative to the signal from methylene diphosphonic acid (100 mM

MDP, at pH 7.5) contained in a capillary included in the NMR tube, and the chemical shiits were

quoted on the scale that puts the signal from 85% orthophosphonc acid at O ppm. Assignment of the

various P signals in the spectra was done by comparison with 3'P NMR spectra of ectomycorrhizal

fungi (Martin et al., 1983, 1994; Grellier et al., 1989; Gerlitz, 1996), roots mycorrhizal with

ectomycorrhizas (Loughman and Ratcliffe, 1984; MacFall et al., 1992; Gerlitz and Werk, 1994;

Martins et al., 1999), AM fungi and roots mycorrhizal with AM (Shachar-Hili et al., 1995; Rasmusseii

ef al., 2000). Estimates of the cytoplasmic and vacuolar pH were obtained from the cbemical shift of

the cytoplasmic or vacuolar P, signal wing calibration curves made as suggested by Spickett et al.

(1993). Similarly, a calibration curve of pH versus 3LP chemical shift of terminal polyp (synthetic

polyp glass of type 25 obtained from Sigma Chemical Co.) was made in order to measure the pH of

the compartment in which the polyp was located in as suggested by Martin et al., 1994.

Extraction procedures, colometri and NMR of extracts and standards
31P NMR spectra of synthetic polyp glasses of types 5, 15, 25, 35 and 75+ obtained from Sigma

Chemical Co. were recorded in order to investigate the upper limit of NMR-visible polyp, Le. the

maximum average chain length that can be observed in an NMR spectrum. Approximately 5 mg of the

synthetic polyp was dissolved in 2.7 ml HzO and 0.3 ml Dz0 with 0.1 M Na2EDTA added. The EDTA

was present to give sharper signals in the NMR spectra (MacDonald and Mazurek, 1987). 3'P NMR

spectroscopy of the polyp-containing solutions was performed at 242.812 MHz on a Varian Unity
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Inova 600 spectrometer equipped with a broad band 10-mm-diameter probe head. The spectra were

accumulated with a 90" pulse angle (53 ps), an acquisition time of 0.59 s, a recycle time of 2.5 s,

proton decoupling by Waltz-16 composite pulse sequence, a sweep width of 15.0 Hz, 1200 scans, a

total acquisition time of 61 min and processed with 20 Hz line broadening. The chemical sliifts of the

signals in the 31P NMR spectra were measured relative to the signal from MDP (100 mM MDP, at pH

7.5) contained in a capillary included in the NMR tube, and the chemical shifts were quoted on the

scale that puts the signal from 85% orthophosphoric acid at O ppm.

Different polyp fractions in the hyphae used for in viv0 31P NMR investigations were successively

extracted with trichloroacetic acid (TCA) (acid-soluble, short-chain polyP), EDTA (neutral-soluble

long-chaiu polyP) and phenol-chloroform (PC) (long-chain granular polyp), based on the method of

Clark et al. (1986). Extracts were made from extraradical hyphae condensed into five pools (Table 5):

1) Hyphae froin treatment 1 with additional P for 1 to 5 h, 2) hyphae from treatment 1 with additional

P for 10 to 96 h, 3) hyphae from treatment 2 with additional P for 1 to 5 h, 4) hyphae from treatment 2

with additional P for 10 to 96 h and 5) hyphae from treatment 3. Three replicate samples of each

successive extraction were made when enough extraradical hyphae could be harvested. The extracted

polyp in aqueous solution was precipitated by adding Tris-HC1 (1 M, pH 7.6) to a final concentration

of 0.2 M and 2 volumes of acetone. The mixture was frozen at -80°C for more thaii 15 min, melted

and centrifuged for 10 min. The residue was air dried over night, dissolved in water and kept at -20°C

until analysis.

The polyp content in the extracts was identified by measuring the nietachromatic reaction of toluidine

blue at 530 nm and 630 nm, according to Griffin et al. (1965) and Solaiman et al. (1999). The assay

was performed by adding 10 ~1 of the polyp extract to tubes containing 0.75 ml each of 0.2 M acetic

acid and 30 mg 1.' toluidine blue. The content of polyp was estiinated by comparisou of the absorption

spectra with standard curves produced by using 1 and 5 Fg of each of three synthetic polyp glasses;

the polyp chosen were type 5 and type 25 polyp for the short-chain and type 75+ polyp for the long-

chain polyp. Synthetic polyp glasses of types 5, 25 and 75+ were obtained from Sigma Chemical Co.

Polyp was classified as being present or not in the different fractions (Table 5).

31P NMR spectroscopy of the polyp-containing extracts was performed using the same parameters as

used with synthetic polyp, except that the recycle time was 6 s, given a total acquisition time of 2 h 12

min and the spectra were processed with 10 Hz line broadening. Each extract was diluted to 3.1 ml

with water containing 10% DzO.

A TCA extraction of syuthetic polyp type 5 was performed at two concentrations (10.4 mg and 1.06

mg polyp type 5), and the resulting extracts were investigated by 3'P NMR. Each extract was diluted

to 3.1 ml with water containing 10% DzO and the spectra were obtained using the same parameters as

used for extracts of hyphae. The extracted P was hydrolyzed in a 4:l (v/v) solution of nitric and

perchloric acid and total P content was determined by the molybdate blue method (Murphy and Riley,
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1962) on a Technicon Autoanalyser II (Technicon Autoanalyzers, Analytical Instrument Recycle, Inc.,

Golden CO, USA).

Phosphatase activity detection

Extraradical hyphae and mycorrhizal roots stored at -80°C for nine months were assayed for ALPase

by tlie ELF-97 kit (see van Aarle et al., 2001). Only alkaline detection buffer (pH 8, ELF-97

Endogenous Phosphatase Detection Kit, Molecular Probes) was used and an incubation time of 30 min

was used in all experiments. The samples were observed using a Zeiss Axioveri 35M fluorescence

microscope with DAPI filter setting. Micrographs were recorded with a Cool Snap digital microscope

camera, using either W light alone or in combination with visible light.

Hyphae studied with the ELF-97 assay included (Table 2) no P-treated (Control pot), hyphae from

treatment 1 with additional P for 34 h, hyphae from treatment 2 with additional P for 48 h and hyphae

from treatment 3. Mycorrhizal roots studied by the ELF kit included (Table 2) no P-treated (Control

pot), roots from treatment 1 with additiondl P for 2 h and roots from treatment 2 with additional P for

72 h.

Table 2. Extraradical mycelium and mycorrhizal roots studied with the ELP97 assay
P treatments as described in Table 1.

Hyphae

conuol pot

1,Pfor34h

2, P for 48 h

3

P treatment

Roots

Control pot

1,Pfor2h

2, P for 12 h

n.d.

n.d., not determined

Results

Plant growth and mycorrhiza formation

The growth of the plants and the extraradical mycelium was heterogeneous in the investigation and

only low quantities of extrarddicai mycelium could be harvested in some pots (Table 1). The plants

received different amounts of P and therefore statistics were not applicable. However, average values

were included in Table 1 to give a general indication for growth differences between treatments.

Cucumber pldnts grown in symbiosis with G. infraradices that had received no P before supply of 100

mg P (Table 1, treatment 1) were smaller tban plants that had received P during previous two wk

(TabIe 1, treatments 2 and 3) at the time of harvest. The difference was expressed in the shoot fresh

weight. However also the root fresh weight and the mass of the extraradical hyphae showed the same

trends. Further, addition of P at ten different times before hxvest (Table 1, treatments 1 and 2) had



only little effect on the shoot, root and extraradical hyphae fresh weight. The proportion of root length

colonized by mycorrhizal fungi was 85% ? 7%, independent of P treatment.

Phosphate pools in extraradical mycelium

In viv0 3 'P NMR spectra were obtained for extraradical G. intruradices hyphae harvested at different

times from 20 individual pots which were each supplied with 100 mg P at time = O h. Previous P

supplies to the hyphal compartment were either none (treatment 1, Fig. 1) or 0.7 mM P in nutrient

solution for two wk (treatment 2, Fig. 2). Three pots with a previous P supply received no additional P

at time = O h (treatment 3. Fig. 3). Spectra obtained of hyphae from pots where a marked higher or

lower quantity of total hyphae could be harvested within the treatment were labeled in Figs.

Sfi

amount of hyphae

Kigh amount of hyphae

10 h low amount of hyphae

5 h

3 b

1 h

low amount of hyphae

Figure 1. hi uiva 3 'P NMR specira of excised G. irilruradices hyphae from pots, which had previously received 110 P,
harvested individually ten times atter a supply of 100 mg P pot-'. Sample size varied betwcen 0.03 and 0.14 g fw; not all
harvested tissue was used in the NMR tube. Spectra were caiibrated againsi reference signal, the reference signal was outside
the spectral window. Peak assignments were as follows: (a), vacuolar Pi: (b), terminal polyp residues; (c), penultimate polyp
residues; (d), central polyp residues.



low amount of hyphae

High amount of hyphae

? h

1 h

LOW amouiit of hyphae

High amounf of hyphee

Figure 2. In viv0 31P NMR spectra of excised G. infraradices hyphae from pots, wlich had previously received 0.7 mM P in
nutrient solution over two wk, harvested individually ten times after additional supply of 100 mg P pot-'. Sample size varied
hetween 0.06 and 0.09 g fw; not all harvested tissue was used in the NMR tube. Spectra were calibrated against reference
signal, the reference signal was outside the spectral window. Peak assignments as in Fig. 1.

16 h low amount of hyphae

1 h

Figure 3. In viv0 "P NMR spectra of excised G. infraradices hyphae from pots, which had previously received 0.7 inM P in
nutrient solution over two wk hnt received no additional P at time = O h, harvested individually at three times. Sample size
varied hetween 0.03 and 0.09 g fw; not all harvested tissue was used in the NMR tube. Spectra were calibrated against
reference signal, Ilie reference signal was outside the spectral window. Peak assignments as in Fig. 1.
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The signal at -23.0 ppm corresponded to the central P, residues in a NMR-visihle polyp chain. This

signal was present in all spectra obtained of hyphae from treatments 2 and 3 (Figs. 2 and 3, peak d) but

did not appear in hyphae from treatment 1 until 5 h after the P supply at O h (Fig. 1, peak d). The three

remaining signals visible in the spectra were assigned to vacuolar P, (peak a, 0.4 ppm), terminal P,

residues in the polyp chain (peak b, -6.4 ppm) and penultimate P, residues in the polyp chain (peak c, -

20.1 ppm). The vacuolar P, signal was not detectable until 10 h after P was supplied and the terminal

and penultimate P, residue signals could not be detected until 16 h after P supply within treatment 1

(Fig. 1). No signals were visible in the spectrum of hyphae from the Control pot (no Padded, spectrum

not shown). A vacuolar pH of approximately 5.5 was estimated from the chemical shift value of

vacuolar P,. Harvest times or P treatment did not influence this pH. The chemical shifts of terminal P,

residues in the polyp chain predict a pH of approximately 6.0, as estimated from the pH titration curve

for terminal P, residues (data not shown). This acidic pH value supported a vacuolar compartment for

the NMR-visible polyP.

The amounts of vacuolar Pi and polyp were estimated from the areas under the signals for vacuolar Pi

and central polyp residues, calibrated against the reference signal. The amounts of vacuolar Pi were

considerably lower than amounts of polyp within the same hyphal sample, independent of P treatment

(approximately ten times as much polyp as vacuolar Pi) (Figs. 1, 2 and 3). Also, the amounts of

vacuolar Pi tended to increase to a constant level in treatments 1, 2 and 3. The amounts of polyp

tended to increase after additional P was supplied in both treatments 1 and 2 (Figs. 1 and 2), althougli

a considerable variation was observed in the areas of the signals for central polyp residues. The areas

of the signals also varied for central polyp residues in the spectra of hyphae from treatment 3 (Fig. 3).

The variation in signal areas corresponded to some degree to the variation in quantity of total hyphae

(see also Table 1).

Phosphate pools in mycorrhizal cucumber roots

A time-course of in viva "P NMR spectra was also obtained for the mycorrhizal roots from the three P

treatments. The in viv0 31P NMR spectrum of roots from treatment 2, additional P for 24 h was

enlarged to facilitate the assignment of the various P signals (Fig. 4). This spectrum contained

dominating signals at -22.9 ppm and 0.3 ppm from polyp (peak j) and vacuolar P, (peak c),

respectively, as well as signals from several other P-containing metabolites. The signals around 4.4

ppm corresponded to several phosphomonoesters (peak a) and the smaller signal at 2.3 ppm was

attributed to cytoplasmic P, (peak h). Vanous signals for nucleic acid triphosphates (NTP, peak d, f

and h) at -5.3 ppm, -10.4 ppm and -19.0 ppm were also easily distinguished, together with signals

from uridine diphosphoglucose (peak g) at around -11.0 ppm and -12.5 ppm, Signals from terminal

(peak e) and penultimate (peak i) P, residues of polyp could also be detected at -6.4 ppm and -20.1

ppm, however, the signals overlapped the signals from phosphates of NTP.
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-5 -15 -25 ppm

Figure 4. In viv0" P NMR spectrum of mycorrliizal cucumbcr roots that had previously received 0.7 mM P in nutrient
soluiion over two wk and harvested 24 h after additionai P supply of 100 mg P. The spectrum were enlarged in order to show
details in the peak assignment. Peak assignments were as follows: (a), several phosphomonoesters; (b), cytoplasmic Pi; (c),
vacuolm Pi; (d), y-NTP; (e), PNDPlterminal polyp residues; (0, a-NTP; (g), uridine diphosphoglucose; (h), PNTP; (i),
penultimate polyp residues; (i), central polyp residues.

Spectra obtained of roots from pots where a marked higher or lower quantity of total hyphae could be

harvested within the treatment were labeled in Figs. 5-7. Signals from the various P-containing

metabolites were detectable from the first harvest time (1 h) in the spectra of mycorrhizal roots from

treatments 2 and 3 (Figs. 6 and 7). In contrast, no P signals could be detected in the spectra of roots

from treatment 1 until 10 h after P supply, when the signal for the central Pi residues in a polyp chain

and vacuolar Pi could be identified (Fig. 5). Spectra taken 6 h later (Fig. 5, 16 h) contained all the

signals which could be detected in roots that had previously received P. No signals were visible in the

spectium of roots from the Control pot (no P added, spectrum not shown).

The positions of tbe signals for vacuolar and cytoplasmic Pi did not change between harvest times or P

treatment; pH was estimated to be 7.4 and approximately 5.3 in the cytoplasmic and vacuolu

compartinent, respectively. The high cytoplasmic pH values indicate that the tissue was adequately

supplied with oxygen (Fox and RatcIiffe, 1990).
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High amaunL of hypha*

High moun t of

24 h

Iuw aiiiount of

5 h

?. h low amount o£ hyphae

1 h

0 -5 -10 -35 -20 -2s

Figure 5. In viv0 31P NMR spectra of mycoirhizai cucumber roots from pots, which had previously received no P, harvested
individually ten times after a supply of 100 mg P pot-'. Sample size varied between 0.09 and 0.26 g fw; not all harvested
tissue was used in the NMR tube. Spectra were calibrated against reference signal, the reference signal was outside the
spectral window. Peak assignments as in Fig. 4.
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96 h amount of

High amount of hyphae

2 h Lou HJnuunt of hyphae

High amount of hyphae

Figure 6. In viv0 "P NMR spectra of mycorrhizal cucumber roots from pots, wbich had previously received 0.7 mM P in
nutnent solution over two wk, harvested individually ten times after additional supply of 100 mg P pot'. Sample size varkd
between 0.12 and 0.40 g fw; not all harvested tissue was used in the NMR tube. Spectra were caiibrated against reference
signal, the reierence signal was outside the spectral window. Peak assignments as in Fig. 4.

16 h LOW arnauni af hwhae

' > j I I I I I 1 ' "

-10 -H

• • | >

-20

' ' I '

-IS

Figure 7. 1~ viv0 3 'P NMR spectra uf mycorrhizal cucumber roots from pots, wbich had previously reccived 0.7 mM P in
nutrieni solution over two wk but received nu additional P at time = O h, harvested individually at three times. Sample size
vxied between 0.14 and 0.16 g fw; not all harvested tissue was used in the NMR tube. Spectra were calibrated against
reference signal, the reference signal was outside the spectral window. Peak assignments as in Fig. 4.
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The quantities of the P pools in the roots were estimated in a similar way as done for the hyphae. The

amounts af polyp and vacuolar Pi were more similar in the mycorrhizal roots than in extraradical

hyphae, and corresponded to the level of vacuolar Pi in the extraradical hyphae. Despite the variation

seen in Figs. 5, 6 and 7, some trends could be observed. The amounts of polyp in the mycorrhizal

roots tended to increase to a constant level after additional P supply in both treatments 1 and 2 (Figs. S

and 6). Mycorrhizal roots from treatment 3 contained polyp at this level from the first harvest (Fig. 7).

Amounts af vacuolar Pi increased with additional P supply in both treatments 1 and 2, but the variation

was high (Figs. S and 6). The mycorrhizal roots from treatment 3 contained very low amounts of

vacuolar Pi (Fig. 7). Some af the variation in signal aeas corresponded to the variation in quantity of

total hypiiae (see also Table i), especially corresponded high amounts of hyphae to large signals in tlie

spectra.

Average chain length in extraradical hyphae and mycorrhizal roots

The ratio between the areas of the signals in the in viv0 "P NMR spectra for terminal, penultimate and

central Pi residues in the polyp chain can be used to estimate the average chain length of the polyp

chain. The average polyp chain length was calculated in both in extraradical hyphae and mycorrhizal

roots using tlie formula 2(Pt, i Ppen + PCcJ / P^, where Pter, PPen and P,,, represent the areas af the

signals for tlie terminal, penultimate and central Pi residues in the polyp chain. Some overlapping of

the signals for terminal and penultimate Pi residues in the polyp chain with the signals from

phosphates af NTP were seen in the spectra of mycorrhizal roots. However, the areas needed for the

estimation af the average polyp chain lengtli were obtained by calibrating the overlapping signals with

the detached signal of a-NTP. The mean average chain length was 13 Pi residues in the extraradical

hyphae and nine Pi residues in the mycorrhizal roots (Table 3).



Table 3. Average polyp chain lengtb in extraradical G. intruradices mycelium and mycorrhizal cucumber roots.

P treatment as described in Table 1.

Treatment 1

Polyp chain length hyphae

Polyp chain length roots

Treatment 2

PolyP chain length hyphae

Polyp chain length roots

Treatment 3

Polyp chain length hyphae

Polyp chajn length roots

f

n.d.

n.d.

12

9

9

JO

2

n.d.

n.d.

n.d.

n.d.

5

n.d.

n.d.

14

9

Harvest

(hours after additionai

10

n.d.

n.d.

i4

7

16

10

n.d.

11

8

n.d.

n.d.

24

9

to1

15

9

1' supply)

34

20

9

12

6

48

9

6

15

6

72

24

14

21

7

96

10

14

11'

8

11

9

Average

value

14

11

14

8

10

10

n.d., Not determined since no signals for terminal and penultimate P residues in the polyp chain could be
detected or the respective areas were to smal1 to be precisely detected
\ Very smal1 signals for terminal and penultimate P present in spectrum, however, areas could be estimated

Further characterization of the polyp

A11 five synthetic polyp glasses gave rise to NMR spectra containing the expected signals for polyp

(spectra not shown). The chain length could be estimated from the ratio between the areas of the

signals in the " P NMR spectra for terminal, penultimate and central Pi residues (Table 4), except for

type 75+ polyp. The spectrum of type 75+ polyp contained only one signal for central residues of

polyp, indicating a rather long chain, and it was not possible to estimate the precise chain length.

Table 4. Estimated average polyp chain length of synthetic
polyp glasses obtained from Sigma Chemical Co.

Type polyp

Type5

Type 15

Type 25

Type 35

Type 75+

Chain length estimated from "P

NMR spectnim

6

14

22

34

n.d.

n.d., not determined since no signals for terminal and penultimate P residues in the polyp chain could be detected
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A combination of extraction procedures, colometric measurements and NMR was performed in order

to further investigate the amount and chain length of polyp present in the fungus. PolyP was

successively extracted into TCA, EDTA and PC soluble fractions. The absorption spectra af the

metachromatic reaction indicated some long-chain and granular polyp in the EDTA and PC fractions,

respectively, in extracts of hyphae from treatments 1 and 2 with additional P for 10 to 96 h (Fig. 8, B

and C, Tdhie 5). In contrast, the EDTA and PC fractions of the extracts of hyphae from treatments 1

and 2 contained no long-chain or granular polyp in the 1-5 h interval (Table 5, absorption spectra not

shown). Short-chain polyp in the various TCA fractions could not be identified by the colorimetric

ineasurenients.

Figure 8. Absorption spectra ol (A), toluidine blue in the absence and presence of synthetic polyP of vdrious chain lengths
and in various amounts as indicated in the figure. The polyp standards were synthetic polyp glasses with average chain length
5, 25 and 75+ obtained from Sigma Cliemicd Co. (B), Toluidine blue in lhe absence and presence of successively extracted
polyp in fractions as indicated in the figure. The extraradicd mycelium used in the extraction procedure had previously
received no P but received 100 mg aqueous P 10 to % h prior to harvests. (C), Toluidine blue in the absence and presence ol
successively extracted polyp in fractions as indicated in the figure. The extraradical mycelium used in the exiraction
procedure had previously received 0.7 mh4 P in nutrient solution over two wk and additionally 100 mg aqueous P 10 to 96 h
prior to harvests.
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Table 5. Successive extracts of extraradical G. infraradices mycelium and polyp content in extract fractions

measured by the met achromatic reaction of polyp and toluidine blue. P treatments as described in Table 1.

+ and - indicate presence of polyp or not, respectiveiy.

Treatment

l ,Pfor l to5h

1,PforlOto%h

2, Pfor1 to5h

2, P for 10 to 96 h

3

TCA

(short-chain)

-

-

-

-

-

Polyp content

EDTA

(long-chain)

-

-

+

-

PC

(granular)

-

• +

-

+

-

TCA, Trichioroacetic acid fraction of successive extraction
EDTA, EDTA fraction of successive extraction
PC, Phenoi-chloroform fraction of successive extraction

"P NMR spectra of the various extract fractions confrmed the presence of polyp in the EDTA and PC

fractions of the extracts of hyphae from treatments 1 and 2 in the 10-96 h interval (Fig. 9A and B,

spectra of successive extract fractions of hyphae from treatment 2, additional P for 10-96 h shown).

The average chain lengths of the polyp present in the EDTA and PC fractions were tao long to be

medsured by NMR, and no signals for terminal or penultimate P, residues could be identified.

Furthermore, the "P NMR spectra of the TCA fractions contained no signals for short-chain polyp

(Fig. 9C), while some P, could he identified.

B

10
'\1

- 5 -10 -15 -20
1

-25 ppm

Figure 9. " P NMR spectra of TCA, EDTA and PC fractions of successively extracted G. infraradices hyphae. 'ike hyphae
had prcviously received 0.7 mM P in nuinent solution over two wk and additionally 100 mg aqueous P 10 to 96 h prior to
harvests. (A), PC fraction. (BI, EDTA fraction. (C), TCA fraction. Peak assignnients were as follows: (a), Pi; (b), central
polyp residues.
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Since no polyp could be found in the TCA fractions of the extracts of hyphae, the TCA part of the

successive extraction procedure was tested for recovery of shortchain polyp (results not shown). Both
31P NMR and total P content confirmed that only one thiid of the expected polyp could be extracted at

low polyp concentration.

Alkaline phosphatase activity of the extraradical mycelium and mycorrhizal cucumber

roots

Extraradical AM fungal hyphae of G. intruradices absorbed the ELF-97 substrate and ALPase activity

of the hyphae could be visualized, since a patchy distribution of fluorescent precipitates of the ELF

reaction product could be observed inside the hyphae (Fig. 10). The precipitation seemed independent

of P treatment and intact spores showed a high precipitation (Fig. IOB).

Figure 10. Extraradical G. intruradices hyphae growing with cucumber. Location of ALPase activity visuaiized by ELF
precipitation and epi-fluorescence. (A), Activity of hyphae with no P added (Control pot). (B), Activity in hyphae and spores
from treatment 1, additionai P for 34 h (C), Activity in hyphae from treatment 3 (D), Activity in hyphae from treatment 2,
additionai Pfor48h.

Fluorescent ELF reaction products could also be seen in mycorrhizal roots (Fig. 1i). Specific staining

of AM fungal structures inside the root was observed, Le. fungal hyphae and vesicles, and the amount

of precipitation was independent of P treatment.
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Figure 1 1. Mycorrhizai cucumber roots incubated in ELF substrate diluted in aikaiine buffer. Epi-fluorescence was used to
visuaiize both ALPase activity and fungai structures inside the root. (A), Activity and fungai structures in mycorrhizal roots
with no P added (Control pot). (B), Activity and fungai structures in mycorrhizai roots from treatment 1, additional P for 2 h.
(C), Activity and fungai structures in mycorrhizal roots from treatment 2, additionai P for 72 h.

Discussion

In viv0 31P NMR spectra of G. intruradices and mycorrhizal cucumber roots

We have successfully used in viv0 31P NMR spectroscopy for the identification of P pools in G.

intruradices hyphae and mycorrhizal cucumber roots with different P treatments. The variation in

hyphal amount and distribution in the sand could well have influenced the Pi uptake of the hyphae and

roots and this may explain the variation in the data. However, this time-course study revealed a lot of

new and important information of the P pools and their dynamics in G. intraradices.

When NMR spectroscopy is applied to living tissues, it is generally the mobile, lower molecular

weight metabolites that contribute to the spectrum (Pfeffer and Shachar-Hill, 1996). These molecules

are visible only if their concentration exceeds the detection threshold and if the resonance intensity is

not broadened as a result of immobilization. For G. intruradices, the 31P NMR spectra of P-treated,

excised extraradical mycelium (Figs. 1 - 3) were characterized by the presence of signals for vacuolar

Pi and polyp only. However, this was consistent with 31P NMR spectra acquired from a range of

ectomycorrhizal fungi (Martin et al., 1983, 1985; Grellier et al., 1989; Ashford et uZ., 1994) and AM

fungal spores (Shachar-Hil1 et al., 1995). Absence of NMRdetectable cytoplasmic Pi or NTP in the

fungus suggests a smal1 cytoplasmic volume or low concentration of cytoplasmic Pi and NTP, below

the detection threshold. Vacuoles are known to store Pi at much higher concentrations than the 5-10
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mM which is the common range for the cytoplasm (Klionsky et al., 1990; Smith et al., 2001).

Furthermore, the vacuole can occupy a large volume, and multiple vacuoles are common in fungi

(Jennings, 1995). A large vacuolar volume in the fungus could actually reduce the viability of

cytoplasmic metabolites. Cytoplasmic P, and NTP signals have successfully heen identified in in viv0
31P NMR spectra of other fungi, e.g. Aspergillus niger (Hesse et al., ZOOO), yeasts (Nicolay et al.,

1982; Castrol et al., 1999), Neurospora crussa (Yang et al., 1993) and also in the ectomycorrhizal

fungus Suillus bovinus (Gerlitz and Werk, 1994), indicating larger proportional cytoplasmic volumes

or higher amounts of cytoplasmic P-containing metabolites in these fungi.

All the expected signals for P metabolites, which are normally ohserved in 3 'P NMR spectra of

mycorrhizal roots, were present in the spectra of P-treated mycorrhizal cucumber roots (Figs. 4 - 7).

Tlie chemical shift of the signal for vacuolar P, in extraradical mycelium was almost identical witli the

chemical shift of the signal for vacuolar P, in mycorrhizal root tissue, so it was not possible to

distinguish between fungal and root vacuolar P,. However, the absence of polyp in spectra of non-

inycorrhihizdi roots (Rasmussen et al., 2000) confirmed its fungal ongin.

P pools and dynamics in G. intruradices and mycorrhizal cucumber roots

This time-course study demonstrated that polyp signals had appeared in P-starved extraradical hyphae

already 5 h after P supply. This was before the detection of any signal for vacuolar Pi and the

corresponding P species did not appear in the spectra of mycorrhizal roots until hours later (Figs. 1 and

5). Tliese results reflect a much faster uptake of Pi by G. intruradices in pot cultures than in

monoxenic cultures where 32Pi uptake could be detected at 14 but not at 7 h after "Pi supply (Nielsen

et ah, 2002). In addition, Nielsen et al. (2002) saw no time lag between appearance of P in extraradical

hyphae and roots. Tlie ohserved differences may reflect differences in Pi uptake and Pi flux between

monoxenic cultured hyphae and hyphae grown in pot systems.

The appearance of polyp before vacuolar Pi is consistent with earlier findings in yeast (S. cerevisiae),

where Pi uptake and polyp synthesis appeared to be regulated in concert (Castrol et al., 1999). In viv0

"P NMR spectroscopy showed that P-starved yeast supplied with P-containing buffer immediately

incorporated Pi into large amounts of polyP. This is a previously described phenomenon referred to as

the 'polyp overplus' phenomenon (Harold, 1966). Indeed, a genomic expression analysis of yeast

(Ogawa et al., 2000) indicated simultaneous synthesis of vacuolar polyp by a vacuolar membrane

protein complex and a polyp-synthetase following Pi uptake, and it was suggested that polyp

accumulation was required to promote a high rate of Pi uptake over the long term. A similar

importance of synthesis of polyp for effective Pi uptake in AM fungi was indicated in the present

work. Indeed, changes in polyp content will have a low effect on the osmotic potential of the cell and

therefore fast accumulation of polyp will reduce osmotic stress at high internal Pi concentration

(Mimura, 1999). The importance of polyp synthesis for maintaining the internal Pi concentration in the

mycelium at constant low levels has been investigated for ectomycorrhizal fungi grown in culture

(Martin et al., 1994). When the mycelium was cultivated under high P conditions, polyp was

synthesized, but when transferred to low P conditions, the stored polyp was hydrolyzed and Pi was
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released to maintain the P, concentration within the fungal cell. Our work indicates a rather constant

concentration of vacuolar P, in extraradical hyphae, supporting synthesis of polyp as a sink for

removal of P,. Preliminary investigations of polyp synthesis and hydrolysis in excised G. intraradices

extraradical hyphae indicated hydrolysis of polyp after transfer of the mycelium to P free medium

(unpubl. data).

The appearance of polyp before vacuolar P, is in contrast to previous results observed for

ectomycorrhizas grown in pure culture (Martin ef al., 1983, 198.5; Grellier et al., 1989). In the latter,

intracellular P, was the most prominent form of P, accumulated, followed by polyp. However, the

relative amounts of polyp varied according to growth conditions (especially P concentration), growth

phdse and fungal species. Old cultures (36 days) accumulated polyp in higher amounts than young

cultures (15 days) (Grellier ef al., 1989). In addition, germinating spores of an AM fungus were found

to contain high levels of vacuolar P, relative to polyp (Shachar-Hil1 ef al., 1995), which may reflect

differences in P metabolism between growth phases of AM fungi.

Also, the amount of polyp in extraradical G. intraradices hyphae seemed to be at least as high or

considerably higher than vacuolar P,, indicating that polyp has an important role in fungal P, uptake,

accumulation and storage. Martin et al. (1985, 1994) found that the NMR-observable polyp

corresponded to a minimum of 80% of the acid-extractable polyp in actively growing ectomycorrhizal

mycelia. In contrast, earlier studies showed that polyp contained only a fractiou (between 3% and

17%) of the total P in the mycelium, a fraction comparable to the fraction of P, (between 14% and 17%

of total P). The rest of the total P were present as DNA, phospholipids and other immobile forms of P

that do not contribute to the in viv0 NMR spectra (Martin ef al., 1983). Studies of polyp content in AM

fungi suggest similar amounts of polyp as detected in ectomycorrhizas. G. mosseae contained 16% of

the total P as polyp (Capaccio and Callow, 1982) and up to 17% of the total P in extraradical

mycelium of Gi. nzargarita may be polyp (Solaiman et al., 1999). However, yeast has been shown to

accumulate even larger amounts of polyp, comprising 37% of the total cellular P (Ogawa et al., 2000).

Our results established that the polyp pool in extraradical G. intruradices hyphae was larger than the

pool of P,, and is therefore the main pool of soluble P metabolites in the mycelium.

A substantial proportion of the NMR-visible P in mycorrhizal roots was of fungal origin, as estimated

from the relative areas of the polyp and vacuolar Pi signals, respectively. Assuming that the fungus

occupies one-tenth of the host root, similar levels of polyp were present in the intraradical mycelium

as observed in the extraradical mycelium.

The characterization of accumulated polyp and consequences for P translocation

The presence of polyp at low P supply and its location in vacuoles supports a role for polyp in the

transport of P, from soil to host root. Almost all polyp is present in vacuoles in eukaryotes such as

yeast (Ogawa et aL, 2000), ectomycorrhizal fungi (Ashford et al., 1994, 1999; Martin et al., 1994) and

other filamentous fungi (Yang et al., 1993). Polyp translocation could occur via transport in a motile,

pleiomorphic system of interlinked P-rich tubular vacuoles, as observed in ectomycorrhizas (reviewed

104



by Ashford, 1998; Allaway and Ashford, 2001). A similar system has receiitly been denionstrated in

AM fungi (Timonen et al., 2001; Uetake et al., 2002), supporting the idea af peristaltic movement af

polyP-containing vacuoles in the extraradical mycelium.

It is interesting that tbe longest polyp chains (> 20 P, residues) are found in extraradical hyphae from

pots with marked higher amounts of hyphae (Table 1 and 3, Figs. 1 and 2). However, the observation

of primarily short-chain length polyp in the extraradical hyphae (< 20 P, residues), independent of P

treatment, agrees with previous reports of polyp average chain length in mycorrhizas (Martin et al.,

1985; Ashford et al., 1994, Rasmussen et al., 2000) and is consistent with polyp translocation in a

tubular vacuole system. However, the presence of insoluble polyp granules and especially their

influence for long distance transport in a vacuolar system has aften been speculated (Cox and Tinker,

1976; Ashford, 1998). Polyp granules have been reported in preparations of mycorrliizas (Cox et al.,

1975; Ashford et al., 1985; Solaiman et ah, 1999), but their occurrence in viv0 has been questioned

(Orlovich and Ashford, 1993). Nevertheless, Blicking and Heyser (1999) recently sbowed that not all

polyp granules were artifacts caused by the preparation procedure.

The successive extraction procedure used here indicated smal1 amounts of long-chain and granular

polyp in tlie extraradical hyphae supplied with high P for more tban 10 h (Table 5), as judged from the

absorption spectra (Fig. 8) and "P NMR spectra (Fig. 9) of the extraction fractions. However, the

presence of a large amount of long-chain or granular polyp in the mycelium should have influenced

the in viv0 "P NMR spectra and hence the measured average polyp chain lengtlis since a signal for

synthetic polyp with an average chain length of 75 Pi residues could easily be seen in the 31P NMR

Spectrum of the compound (spectrum not shown). And such 'grande signals' were not observed.

The average chain length for the polyp contained in the mycorrhizal roots seemed slightly smaller than

the coiresponding values for the extraradical hyphae. It is possible that longer chain polyp located in

extrai-adical hyphae were more efficient in transporting P towards the root, and that shorter chain

polyp in the mycorrhizal root (Le. intraradical) was the result of hydrolysis, as suggested by Solaiman

et al. (1999). Variation in polyp chain length between extraradical and intraradical hyphae has been

demonstrated in Gi. margarita by successive extraction of polyp (Solaiman et al., 1999; Solaiman and

Saito, 2001). Most polyp in extraradical mycelium was present as long-chain or granular polyp (66%

and 25% of total polyp, respectively), whereas most polyp in intraradical mycelium was present as

short-chain or long-chain polyp (40% and 52% of the total polyp, respectively). The results of

Solaiman et al. (1999) agree with studies of enzymes iuvolved in polyp metabolism. Capaccio and

Callow (1982) and Ezawa et al. (2001b) both found PPX-type activity with maximum activity at pH

5.0 in intraradical hyphae and Ezawa et al. (2001b) found higher substrate specificity with short-chain

polyp than with long-chain polyP. Ezawa et al. (2001b) suggested dominance of acidic hydrolyzing

activity in intraradical hyphae, and they proposed that the acidic PPX-type activity is an ACPase.

indeed, vacuoles have been demonstrated to be acidic in the present study and in previous repoits

(Rasmussen et al., 2000; Ezawa et al., 2001b). However, Ezawa et al. (2001b) also detected PPX-type

activity with maximum activity at neutral pH in extraradical hyphae with higher substrate specificity
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with long-chain polyp than with short-chain polyp, in agreement with Solaiman et al. (1999). A

dynamic balance between synthesis and hydrolysis of polyp in extraradical hyphae was suggested,

with hydrolysis of polyp by alkalization as observed in yeast (Castrol et al., 1999). Hydrolysis of

polyp has also been detected in extraradical mycelium (Martin et al., 1994).

The use of ELF substrate was in this study shown to be a sensitive method for microscopic detection

of ALPase activity associated with fungal hyphae and inycorrhizal roots, in agreement with van Aarle

et al. (2001). Indeed, the ELF substrate could be used as an indicator of metabolically active fungal

tissue. The proportion of ALPase activity in extraradical mycelium seemed rather independent of P

status of the byphae or mycorrhizal root as observed by Boddington and Dodd (1999), indicating a

constitutively active enzyme. However, the role of ALPase has not been satisfactory determined for

conclusions about its role in P metabolism and polyp tnmover.

Our detection of predominance of short-chain polyp in extraradical mycelium of G. intrarudices, by

means of in viv0 31P NMR spectra, could not be confirmed by the alternative approach based on

successive extractions. The application of this extraction procedure to P-treated extraradical mycelium

indicated some limitations in extraction of short-chain polyp (TCA soluble). Neither the absorption

spectra (Fig. 8B and C) nor the 31P NMR spectra (Fig. 9C) of the TCA fractions indicated short-chain

polyp. Moreover, we observed no marked increase in the P, signal in the NMR spectra, which would

have resulted from acid hydrolysis of polyP. Therefore the TCA part of the successive extraction

procedure was tested for recovery of short-chain polyP. The recovery test confirmed that short-chain

polyp was extracted by TCA, but the test indicated that there was a lower limit for extraction of short-

chain polyp, and this limit may be lower than the polyp amounts in extraradicdi hyphae. Only one

third of the expected polyp could be extracted at low polyp concentration. This could partly explain

why no short-chain polyp could be extracted in the present work, but further investigation is required.

Lack of metachromatic reaction of polyp with toluidine blue does not necessarily mean that there is no

polyP. The metachromatic reaction is observed only witb longer chain polyp, while short-chain polyp

is less sensitive to or cannot be detected by the method (Lorentz et al., 1997). Therefore short-chain

polyp present in the tissue extracted by TCA and estimated by the metachromatic reaction can be

highly underestimated. However, the differences in polyp chain length between Gi. murgurifa

(Solaiman et al., 1999) and G. intraradices may reflect differences in polyp metabolism between

different fungi.

Concluding remarks

The present work demonstrates that in viv0 "P NMR indeed can be applied for the study of P pools

and dynamics in AM fungi and associated roots. It was possible to observe the incorporation of P,

directly into a substantial pool of polyp followed by vacuolar P, in extraradical mycelium of G.

infrararlices. The amount of polyp was considerably higher than vacuolar P, and it is suggested that

synthesis of polyp may be important for effective P uptake and storage in AM fungi. The polyp was

located in vacuoles and tbe measured average chaiu length was short, supporting a role for polyp in
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the translocation of P through AM hyphae. Indeed, polyP was also present in mycorrhizal roots, i.e. in

intraradical hyphae. In viv0 NMR could not detect cytoplasmic P, in the extraradical mycelium

possibly because of a smal1 cytoplasmic volume or a low concentration of cytoplasmic P,. A time lag

was observed before P metabolites appeared in mycorrhizal roots and a substantial pool of NMR-

visible P in mycorrhizal roots was of fungal origin.
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Chapter 5 - Conclusions and perspectives

Developnzent of inethods

The work in the present thesis was focused on the potential use of in viv0 31P NMR spectroscopy for

the study of P pools and their dynamics in AM fungi. It was demonstrated that the method could be

applied for this purpose and .the airlift system implemented for oxygenating the tissue while in the

NMR tube proved to he the right way of handling in viv0 NMR of AM fungi. However, it tumed out to

be more challenging to study the P metabolism and translocation in AM fungi in viv0 than expected at

the beginning. The fact that extraradical AM mycelium cannot take up C from any other structure or

source than from the root interior was a serious experimental hindrance which markedly reduced the Pi

uptake of excised hyphae. Excised, P-starved hyphae can take up Pi and accumulate polyp to some

extent, but the amount of polyp in proportion to Pi was much smaller compared with the proportion in

hyphae P-treated before harvest, as estimated from in. viv0 "P NMR spectra. Consequently, any P

treatment had to be performed while the symbiosis was still functioning and iiz viv0 31P NMR was used

to exainine the P pools remaining after severance of the hyphae from the roots and P pools dynamics

in AM fungi and associated roots. The discussion helow should he read in conjunction with the

discussion section of Chapters 3 and 4.

Importance ofpolyp

in the present work, polyp was seen for the first time in actively metabolizing extraradical AM fungi

by the use of in viv0 31P NMR spectroscopy. The in viv0 31P NMR spectra of P-adequate excised G.

intraradices hyphae and mycorrhizal roots contained signals from polyp, which were ahsent in non-

mycorrhizal roots. This demonstrated that the Pi taken up by the fungus was accumulated into polyp

and that polyp within the root was of fungal origin. In addition, the amount of polyp in extraradical

hyphae was found to be higher than vacuolar Pi and polyp was found to be located in the vacuoles,

indicating that polyp has an important role in fungal Pi uptake, accnmnlation and translocation. The

average chain length was estimated to be short (< 20 Pi residues), in agreement with previous reports

of polyp chain length in ectomycorrhizas estimated by NMR (Martin et al., 1985; Ashford et al.,

1994). This short-chain polyp may serve as a reservoir pool of Pi inside the hyphae, reducing osmotic

stress caused by high intemal Pi concentration and introducing a source for rapid release of Pi, similar

to what is seen in yeast (Castrol et al., 1999; Ogawa et al., 2000) and ectomycorrhizal fungi (Martin et

al., 1994). The "P NMR spectra of P-adequate excised extraradical AM mycelium were characterized

by the presence of vacuolar Pi and polyp, and only weak or absent signals for cytoplasmic Pi. This

observation suggested a smal1 cytoplasmic volume or a low concentration of cytoplasmic Pi helow the

detection threshold. Therefore it was difficult to measnre the metabolic status of the excised hyphae by

in viv0" P NMR spectroscopy. However, ALPase-type activity was observed in excised extraradical

hyphae, indicating metabolically active fungal tissue.

It was also observed that polyp accumnlated hefore vacuolar Pi when P-starved G. intraradices hyphae

were supplied with Pi, revealed in the time-course in viv0 "P NMR study presented here. This was
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similar to previous findings in yeast (Castrol et al., 1999; Ogawa et al., 2000) and reflected that the

"polyP overplus" phenomenon described for yeast (Harold, 1966) also occurs in AM fungi. Therefore

it was suggested that polyp synthesis is reqnired to promote a high rate of P, uptake in AM fnngi. A

time lag was observed before P metabolites appeared in roots and a substantial pool of NMR-visible P

in mycorrhizal roots was of fungal ongin. Furthermore, the presence of polyp in the extraradicai

hyphae even at low P supply and its location in vacuoles supported a role for polyp in the translocation

of P by AM fungi, and suggested that sbort-chain polyp could indeed be translocated in the recently

demonstrated motile tubular vacuolar system (Timonen et al., 2001; Uetake et al., 2002). The average

chain-length for the polyp contained in the mycorrhizal roots investigated in the time-course study

seemed slightly smaller than the corresponding values for the extraradical hyphae, and this could be

the result of hydrolysis releasing P, in the intraradical hyphae before P, transfer to tlie host plant.

Primarily short-chain length polyp was observed in extraradical G. intraradices hyphae by in viv0 ” P

NMR, independent of P treatment. This observation is in contrast to the long-chain or granular poiyPs

detected in other AM fungi by invasive methods (Cox et al., 1975; Callow et al., 1978; Solaiman et

al., 1999). This difference could also reflect differences between species of AM fungi, but the

preparation procedure has been shown to influence the size of polyp (Oriovich and Ashford, 1993). In

addition, the work presented here indicated that there was a lower concentration limit for extraction of

shoit-chdin polyp by TCA; a method that has been used previously in studies of polyp (Clark et al.,

1986; Solaiman et al. 1999). In the present work, short-chain polyP was also found in extraradical

hyphae of G. inosseae as well as G. intraradices. Polyp was also detected in extraradicai hyphae of Gi.

rosea, however it was not possible to determine polyp chain-length due to very low amounts of

extraradical mycelium in pots containing this fungus. in S. calospora (extraradical hyphae and spores)

longer chain polyp (> 35 P, residues) was indicated in an early experiment. However this polyp chain

lengtli needs to be confimed. Accordingly, it would be worth studying P pools and dynamics in a

range of AM fungi by in viv0 31P, since preparation effects are avoided and average chain lengths

easily can be measured. Long-chain polyp (< 75 P, residues) can be observed by NMR, but due to

increasing immobility of longer chain polyP, there is an upper limit for detection of polyp by NMR.

Therefore it must be emphasized that short-cbain polyP should primarily be charactenzed by NMR,

while longer chain or granular polyPs should be characterized by extraction procedures in combination

with colorimetric measurements (metachromatic reaction of toluidine blue and polyp; see below) or

gel-electrophoresis. Therefore the methods should be used in combination in future studies of polyp

chain size.

Polyp has previously been visualized in extrarddicai AM mycelium by toluidine biue staining (Ezawa

et al., 2001b) and by DAPI staining (Boddington and Dodd, 1999). The metachromatic reaction of

toluidine blue is less sensitive to shoiter chain than longer chain polyp (Lorentz et al., 1997) and

DAPI staining has been shown to be very non-specific. It was not possible to see polyp by DAPI in

any fungi studied even though toluidine blue staining showed it was present (personal communication

T. Cavagnaro, 2002). Therefore, short-chain polyp can be present without being detected by toluidine

blue as stated by Ezawa et al. (2001b), and the failure in detecting polyp in G. manihotis by
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Boddington and Dodd (1999) remains unexplained and requires investigation in a time-course using a

combination of methods. In comparison, "P NMR spectroscopy has in the present work been shown to

a valuable method for identifying and semi-quantifying various P metabolites including polyP. No

large differences were seen in the size of the P pools in tbe 3'P NMR spectra of extraradical hyphae of

G. intraradices and G. mosseae. However, since percent colonization was not significantly different,

but the amounts of the various P pools in roots were higher when the roots were colonized with C.

intruradices as judged from the "P NMR spectra, it was suggested that G. inosseae translocated P at

much lower efficiency than G. intraradices. In summary, further studies of polyp metabolism in AM

fungi are needed, and the studies need a combination of methods and time-course studies with

different P feeding.

ALPase-type activity was demonstrated in the extraradical mycelium of three AM fungi and specific

staining of metabolically active fungal tissue could be seen in the coiresponding mycorrhizdi roots,

similar to results obtained previously (e.g. Ezawa et al., 1995; Boddington and Dodd, 1999; van Aarle

et al., 2001). ALPase-type activity in G. intruradices was independent of P status of the hyphae or

mycoirhizal root. However, any function of ALPases in the P metabolism in AM fungi has not yet

been elucidated, and the only conclusion from the occurrence of ALPase-type activity in the AM fungi

concerned in this study was that the fungal tissue was metabolically active. in addition, studies have

demonstrated that extraradical and intraradical fungal vacuoles (Ezawa et al., 2001b) and arbuscules

(Guttenberger, 2000) are acidic, supporting the idea that ACPase-type activity is more likely involved

in polyp inetabolism as suggested by Ezawa et al. (2001b). The pH of the extraradical fungal vacuole

was in the present work found to be 5.5, supporting acid vacuoles.

Suggestions of further work

Tbe amount of mycelium that could be harvested showed a high degree of variation between pots. The

P, uptake of the hyphae could well have been influenced by the distribution of the extraradical

mycelium in the sand and the variation in hyphal amount may explain a great deal of the variation in

the results presented in this thesis. Therefore the compartmented growth system would need further

development in order to be used in hyphal P uptake experiments, to produce approximately similar

amounts of hyphae among pots within an experiment.

In comparison, preliminary results obtained from 31P NMR investigations of extraradical hyphae and

mycorrluzal roots harvested from monoxenic cultures (Becard and Fortin, 1988; St-Amaud et al.,

1996) indicated monoxenic cultures to be useful for studies similar to what is presented here. Hyphae

can be harvested very easily from a liquid filled hyphal compartment (Maldonado-Mendoza et al.,

2001) and recently Nielsen et al. (2002) described the advantages of the methodology compared with

classical pot culture systems for P transport investigations. Finally, many species of AM fungi have

now been established in monoxenic cultures, allowing easier investigations of interfungal variations of

P pools and dynamics in AM fungi. However, the present work demonstrated differences in hyphal P,

uptake and flux between monoxenic cultured hypbae (Nielsen et al., 2002) and hyphae grown in pot

systems. In the monoxenic cultures there is no plant wing the P, which could explain the differences,

indeed the P pool size in extraradical hyphae and roots will depend on the P demands of the host. For
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this reason monoxenic syslems could he used for "P NMR investigations of P pools and dynamics in

AM fungi, but results obtained from monoxenic cultures should he compared to results obtained from

pot systems.

In conclusion, the present work demonstrates that in viv0 31P NMR can indeed be applied for the study

of P pools and dynamics in AM fungi and polyp has been demonstrated to have an important role for

an efiective P accumulation and translocation by the AM fungus.
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Bilag 2. Metode for dialogen med ressourceomraderne

Erhvervsministeriet (1997:9): Dialog med ressourceomraderne - status februar 1997.

Boks 1. Metode for dialogen med ressourceomraderne1

1) Identification af relevante erhvervsomrader pa baggrund af analyser og dialog
Forskellige dele af erhvervslivet, som hver isser har specifikke behov for rammebetingelser,
inddrages i dialogen. Det er fx:

• erhverv, hvor organisationer og virksomheder 0nsker at ga aktivt ind i en dialog om deres
rammebetingelser

• erhvervsomrader med et betydeligt indre samspil, som dxkker en vaesentiig del af
erhvervslivets beskacftigelse og vxrdiskabelse

• erhverv, der stir overfor store udfordringer, dvs. trusler og muligheder pga. aindring i
teknologi, marked eller regulering

2) Referencegruppen udpeger udfordringer og kritiske rammebetingelser og nedsaetter
arbejdsgrupper
Erhvervsministeriet nedsstter en referencegruppe med virksomheder, organisationer og
n0gleministerier inden for det pagsldende erhvervsomride. Referencegruppen danner sig et
overblik over erhvervets udfordringer pa baggrund af dialog og analyser af dets udvikiingsvilkir.
Referencegruppen identificerer kritiske rammebetingelser og nedsaetter arbejdsgrupper.

3) Arbejdsgruppen stiller forslag til erhvevspolitiske initiativer, der forbedrer de kritiske
rammebetingelser
I arbejdsgrupperne samler Erhvervsministeriet reprxsentanter for virksomheder, organisationer,
ministerier og andre akt0rer med viden om eller muligheder for at pavirke de kritiske rammebe-
tingelser.

Arbejdsgrupperne tager udgangspunkt i de kritiske rammebetingelser og frernscetter pa baggrund
af grundige dr0ftelser, analyser og evt. sammenlignende analyser med konkurrentlande forslag til
konkrete erhvervspolitiske initiativer, der kan forbedre de kritiske rammebetingelser.

4) Erhvervsministeriet falger implementeringen af forslagene og infonnerer de relevante
akterer og offentligheden
Der er ikke defineret en fast besiutningsgang for de forslag, som er resultat af dialogen. Som
hovedregel bares et forslag videre af de akt0rer, som bedst kan fremme det. Det kan vxre en
lang proces at gennemfpre initiativer.

Nogle forslag vil deltageme umiddelbart kunne realisere uden nye offentlige beviUinger eller
aendringer af offentlige regelsxt. Andre forslag kraver politisk stillingtagen. Disse forslag vil
Erhvervsministeriet som hovedregel bare ind i den politiske proces, men andre ministerier vil
oftest bringe de forslag videre, der vedrerer netop deres ressort.

For at skabe abenhed i dialogen S0rger Erhvervsministeriet for, at erhvervet og offentligheden
kan f0lge arbejdet og resultateme. Formidlingen sker fx gennem forsiagsrapporter fra dialogen
med ressourceomradenie, hvor reference- og arbejdsgrupperne afrapporterer deres arbejde.

I Ministeriet for f0devarer, landbrug og fiskeri samt i Boligministeriet har dialogen
laft en noget anden struktur.

9.
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