
Roskilde University

Department of Computer Science

Advanced Techniques for

Efficient Data Integrity Checking

Ph.D. Dissertation

Davide Martinenghi

Supervisor:

Prof. Henning Christiansen

October 2005

Abstract

Integrity constraint checking, understood as the verification of data correctness and well-
formedness conditions that must be satisfied in any state of a database, is not fully
supported by current database technology. In a typical scenario, a database is required
to comply with given semantic criteria (the integrity constraints) and to maintain the
compliance each time data are updated.

Since the introduction of the SQL2 standard, the SQL language started supporting
assertions, which allow one to define general data consistency requirements expressing
arbitrarily complex “business rules” that may go beyond predefined constraints such as
primary keys and foreign keys. General integrity constraints are, however, far from being
widely available in commercial systems; in fact, their usage is commonly not encouraged,
since the database management system would not be able to provide their incremental
evaluation. Given the size of today’s data repositories and the frequency at which updates
may occur, any non-incremental approach, even for conditions whose complexity is only
linear in the size of the database, may prove unfeasible in practice.

Typically it is the database designer and the application programmer who take care of
enforcing integrity via hand-coded pieces of programs that run either at the application
level or within the DBMS (e.g., triggers). These solutions are, however, both difficult
to maintain and error prone: small changes in a database schema may require subtle
modifications in such programs.

In this respect, database management systems need to be extended with means to
verify, automatically and incrementally, that no violation of integrity is introduced by
database updates. For this purpose we develop a procedure aimed at producing incre-
mental checks whose satisfaction guarantees data integrity. A so-called simplification
procedure takes in input a set of constraints and a pattern of updates to be executed on
the data and outputs a set of optimized constraints which are as incremental as possible
with respect to the hypothesis that the database is initially consistent. In particular, the
proposed approach allows the compilation of incremental checks at database design time,
thus without burdening database run time performance with expensive optimization op-
erations. Furthermore, integrity verification may take place before the execution of the
update, which means that the database will never reach illegal states and, thus, rollback
as well as repair actions are virtually unneeded.

The simplification process is unavoidably bound to a function that gives an approxi-
mate measure of the cost of evaluating the simplified constraints in actual database states
and it is natural to characterize as optimal a simplification with a minimal cost. It is
shown that, for any sensible cost function, no simplification procedure exists that returns
optimal results in all cases. In spite of this negative result, that holds for the most gen-
eral setting, important contexts can be found in which optimality can indeed always be
guaranteed. Furthermore, non-optimal simplification may imply a slight loss of efficiency,
but still is a great improvement with respect to non-incremental checking.

Finally, we extend the applicability of simplification to a number of different contexts,
such as recursive databases, concurrent database systems, data integration systems and
XML document collections, and provide a performance evaluation of the proposed model.

Acknowledgements

I would like to express my first words of gratitude to my supervisor, Henning Christiansen,
knowing that my thanks cannot compensate the enormous dedication and the long hours
of discussion that he devoted to my work. His patience and sharpness of mind have been
invaluable means for my understanding of the subject and for the improvement of my
drafts.

I am also very grateful to Stefano Ceri, who let me join the database group at Po-
litecnico di Milano for a period of six months for a fruitful and pleasurable collaboration.
Among the people in Milano with whom I had insightful discussions and exchanged ideas,
I would also like to thank Daniele Braga, Alessandro Campi, Marco Colombetti, Carlo
Alberto Furia, Stefano Paraboschi, Alessandro Raffio, Damiano Salvi, and Paola Spole-
tini.

I am also indebted to Hendrik Decker, with whom I spent a week of very intensive and
productive work at the Instituto Tecnológico de Informática in Valencia. The elegance
and precision of his writings have been a model for me during these months.

Roskilde University was also a precious source of information and learning. I partic-
ularly wish to thank Torben Braüner for his lectures on modal and hybrid logics, John
Gallagher for introducing me to partial evaluation, and Jørgen Villadsen for sharing his
interest in paraconsistent logics and higher-order logics.

I would also like to thank the members of the Program Committee of the First
International Workshop on Logical Aspects and Applications of Integrity Constraints
(LAAIC’05), who agreed to provide their expertise for the success of an event that is very
close to my own research: Marcelo Arenas, Andrea Cal̀ı, Stefano Ceri, Henning Chris-
tiansen, Hendrik Decker, Parke Godfrey, Mohand-Said Hacid, Maurizio Lenzerini, Rainer
Manthey, Rosa Meo, and Jack Minker.

Special thanks are due to Amos Scisci, who, even when submerged in his activities
as a man of letters, found the time to provide me with useful comments on some of my
manuscripts. I am very grateful to Anders Winther, who helped me with the Danish
translation of the abstract.

And of course to Céline, who was the first one to believe in my project.

Dansk resumé

Kontrol af en databases integritet, forst̊aet som verifikation af betingelser for korrekthed
og “velformethed” af data, understøttes kun i ringe omfang af den databaseteknologi,
som anvendes i dag. Typisk m̊a en database forventes at overholde givne semantiske
betingelser (integritetsbegrænsningerne) og at opretholde disse, hver gang databasen op-
dateres. Allerede ved fastsættelsen af SQL2-standarden i 1992, som er en anerkendt
standard for definition af og interaktion med relationelle databaser, har sproget SQL in-
deholdt s̊akaldte assertions, som gør det muligt at beskrive vilk̊arligt komplekse “business
rules” som rækker ud over de prædefinerede typer af begrænsninger s̊a som primær- og
fremmednøgler. Generelle integritetsbegrænsninger er desværre ikke særligt anvendelige
i kommercielle databasesystemer. Faktisk er det ikke ualmindeligt at producenterne op-
fordrer til at man ikke benytter dem, da teknologien ikke understøtter en inkrementel
evaluering. Set i forhold til størrelsen af typiske datasamlinger af i dag, og den hyppighed
med hvilken de opdateres, er en ikke-inkrementel tilgang i de fleste tilfælde ikke brugbar i
praksis, selv for begrænsninger som “kun” er lineære i forhold til størrelsen af databasen.

I de fleste tilfælde m̊a databasedesigneren i samarbejde med applikationsprogrammøren
h̊andtere integriteten ved at h̊andkode programstumper som indlejres i applikationspro-
grammet eller databasen (f.eks. som s̊akaldte triggers). Denne praksis er forbundet med
nogle problemer i og med at vedligeholdelse er besværlig og medfører risiko for program-
meringsfejl: selv sm̊a ændringer i databasens skema kan kræve subtile ændringer af disse
programmer. Der er s̊aledes et behov for at databasesystemerne udvides med faciliteter til,
automatisk og inkrementelt, at kunne verificere at ingen opdatering f̊ar lov at ødelægge
integriteten. Med udgangspunkt i denne problemstilling har vi udviklet en metode til
automatisk at producere betingelser rettet mod inkrementel kontrol som garanterer at
integriteten bevares. En procedure for s̊akaldt simplifikation tager som input et sæt
af integritetsbegrænsninger plus et mønster for mulige opdateringer, og den producerer
afledte begrænsninger, som er optimerede med hensyn til inkrementel evaluering baseret
p̊a en hypotese om at databasen er konsistent fra starten. Det skal fremhæves, at den
foresl̊aede teknik muliggør konstruktion af inkrementelle betingelser p̊a et tidspunkt, hvor
databasen designes, dvs. før den sættes i drift, s̊aledes at potentielt tidskrævende opti-
meringer ikke belaster n̊ar databasen er i drift. Desuden kan disse betingelser kontrolleres
før en p̊atænkt opdatering udføres, s̊a databases aldrig, end ikke midlertidigt, mister sin
integritet; s̊aledes kan besværlige reetableringer og s̊akaldte rollbacks undg̊as.

Det at foretage denne simplifikation s̊a godt som muligt, er uomgængeligt forbundet
med en funktion som giver en tilnærmet m̊al af omkostningen for efterfølgende at eval-
uere de simplificerede betingelser i konkrete tilstande af databasen. Det er naturligt at
karakterisere en simplifikation som optimal, hvis den minimerer værdien af denne funk-
tion. Vi er i stand til at vise, med enhver rimelig omkostningsfunktion, at der ikke kan
findes simplifikationsprocedurer som altid producerer optimale resultater. Dette generelle
resultat forhindrer dog ikke at vi kan udpege vigtige og relevante omr̊ader, hvor optimale
resultater kan garanteres. I de tilfælde, hvor en ikke-optimal simplifikation kan medføre
et tab i forhold til en ideel effektivitet, er det dog stadig tale om en essentiel forbedring i
forhold til en ikke-inkrementel evaluering.

Endelig undersøger vi anvendelsen af simplifikation til en række andre kontekster s̊a
som rekursive databaser, samtidighed i databaser, systemer til dataintegration og baser

af XML-dokumenter, og der foretages m̊alinger af køretider til vurdering af den foresl̊aede
model til simplifikation.

Contents

1 Introduction 1
1.1 Goals and main results . 3
1.2 Thesis organization . 4

1.2.1 Origin of the chapters . 5

2 Integrity Control in Relational and Deductive Databases 7
2.1 Preliminaries . 7

2.1.1 Formulas . 8
2.1.2 Substitutions . 9
2.1.3 Clauses . 9

2.2 Deductive databases . 10
2.2.1 Semantics . 11
2.2.2 Queries and updates . 16
2.2.3 Query containment . 18

2.3 Integrity constraints . 18
2.3.1 Static vs. dynamic constraints . 19
2.3.2 Hard vs. soft constraints . 19
2.3.3 Classification of integrity constraints 20
2.3.4 Constraint specification languages 21

2.4 Integrity control . 22
2.4.1 Immediate vs. deferred semantics 22
2.4.2 Constraint verification . 22
2.4.3 Checking, maintenance, and paraconsistency 23

3 Simplification of Integrity Constraints 25
3.1 The simplification problem . 25

3.1.1 Weakest preconditions . 26
3.1.2 Definition of simplification and ideal simplification 27
3.1.3 Simplification based on optimization 29

3.2 Transformations of integrity constraints 30
3.2.1 The language LS . 30
3.2.2 Generating weakest preconditions 31
3.2.3 Simplification in LS . 37
3.2.4 On pre-tests and post-tests . 44

i

3.3 On the equivalence of ideal simplification and query containment 46
3.4 Ordering and minimality . 49

3.4.1 Ordering and efficiency . 49
3.4.2 Achieving minimal theories . 53

3.5 Ideality and SimpLS
. 54

3.5.1 Completeness of resolution . 54
3.5.2 Local minima in SimpLS

. 56
3.5.3 Complexity . 58

3.6 Related work . 58

4 Extensions 61
4.1 Nested denials . 61

4.1.1 Examples . 67
4.2 Aggregates and arithmetic . 69

4.2.1 A syntax for aggregates and arithmetic 70
4.2.2 Set vs. bag semantics . 70
4.2.3 Rewrite rules for aggregates and arithmetic 71
4.2.4 Examples . 75
4.2.5 Discussion . 76

4.3 Recursion . 77
4.3.1 A simplification pattern for ordered linear recursion 78
4.3.2 Examples . 82
4.3.3 Related work . 84

5 Other Contexts and Applications 87
5.1 Simplification and concurrency . 87

5.1.1 Transactions and serializability . 88
5.1.2 Extended transactions . 89
5.1.3 Locks . 91
5.1.4 Discussion . 92

5.2 Applications to data integration . 93
5.2.1 A framework for data integration 94
5.2.2 Integrity constraints under global-as-view 94
5.2.3 Integrity constraints under local-as-view 96
5.2.4 Absorption of local updates . 99
5.2.5 Related work . 100

5.3 Simplified integrity checking for XML . 100
5.3.1 General constraints over semi-structured data 101
5.3.2 Mapping to the relational data model 103
5.3.3 Simplification of XML constraints 106
5.3.4 Translation into XQuery . 107
5.3.5 Related work . 108

ii

6 Experimental Evaluation 111
6.1 Experiments for non-recursive databases 111
6.2 Experiments for recursive databases . 115
6.3 Experiments for XML databases . 117

7 Conclusion 121

iii

iv

Chapter 1

Introduction

Semantic information in databases is conventionally represented under the form of in-
tegrity constraints. Integrity constraints are properties, typically depending on the nature
of the application domain, that must always be satisfied for the data to be considered
consistent. Besides simple forms of predefined constraints such as primary and foreign
keys, real-world applications may involve nontrivial integrity requirements that capture
complex data dependencies and “business logic”. The need for advanced integrity veri-
fication tools is testified by the introduction of several standard constructs for integrity
support in the SQL language, such as check constraints and assertions. In spite of a long
recognition of the importance of such practices, which are part of the SQL standard since
1992, today’s database management systems are hardly capable of efficiently handling
other than predefined constraints.

Maintaining compliance of data with respect to integrity constraints is an essential
requirement, since, if some data lack integrity, then answers to queries cannot be trusted.
Furthermore, once semantic properties of the data are known to hold, they can be ex-
ploited to improve query evaluation performance by means of so-called semantic query
optimization. Databases, however, usually contain very large collections of data that
quickly evolve over time; this makes unabridged checking at each update too time con-
suming a task to be feasible. Efficiency is indeed a crucial issue, because the complexity
of a complete integrity check is often linear (or worse) with respect to the size of some
database table, which is prohibitive in any nontrivial case. In this regard, DBMSs need to
be extended with the ability to automatically verify, in an optimized way, that database
updates do not introduce any violation of integrity.

To date, the common practice in database applications is still based on ad hoc tech-
niques. The two main approaches are triggers, at the database level, and hand-coding
of tests, at the application level. By their procedural nature, both methods have major
disadvantages, as they are prone to errors, require advanced programming skills and have
little flexibility with respect to changes in the schema of the database. This motivates
the need for automated simplification methods.

In response to this, the database as well as the logic programming and artificial intel-
ligence communities have developed a number of techniques for optimization of integrity
checking. Main approaches to efficient integrity checking that have been proposed since

1

the early eighties include extensions of the SLD(NF) proof procedure, partial evaluation,
update propagation, incremental view maintenance and several others. The way we pur-
sue here is the so-called simplification of integrity constraints — a principle that has
been recognized for more than two decades, dating back to at least [137, 24], and then
elaborated by several other authors, e.g., [100, 102, 122, 143, 147, 48, 71, 114, 155, 70].
Our work is an attempt to reconcile and generalize such ideas in a systematic way that
may promote practical applications with current database management technology.

This thesis presents a general characterization of the simplification problem.
On one hand, simplification means to generate a set of integrity constraints whose

satisfaction implies the satisfaction of the original constraints in the updated state. The
input of the procedure is a set of integrity constraints to be maintained on the database
as well as an update pattern describing a kind of updates that the database can receive;
the produced output is the set of simplified integrity constraints that should be checked
upon reception of an update matching the given pattern. We find it important that
a proposed simplification algorithm can work on parametric update patterns, not only
specific updates. This means that such patterns can be simplified at design time, when
only the schema exists and not yet any database state. At runtime the simplified integrity
constraints can be instantiated with respect to the specific updates and tested in the actual
state.

On the other hand, the main interest of the simplification process is to obtain a set of
constraints that are as easy to evaluate as possible. In this sense, simplification proper
is only feasible by assuming that the database conforms to the integrity constraints in
the state prior to the update. In this respect, we identify as “ideal” a simplification
procedure that outputs a set of integrity constraints that is minimal with respect to
an ordering that represents an approximation of the cost of evaluating the constraints.
Although there is no ultimate criterion that, independently of the actual database state,
perfectly measures the evaluation effort, natural requirements can be imposed that should
be met by any sensible ordering — in particular, that “nothing to check” is the best
possible simplification one can hope for. With this assumption, it can be proved that
ideal simplification is equivalent to decidability of query containment, which is known not
to hold in general (query containment is not decidable, e.g., already for pure datalog

without negation). In fact, ideal simplification is possible in a class of databases if and
only if query containment is decidable in that class.

In spite of this limitation, it can be argued that simplification procedures that are
“almost ideal” can still be of practical use and certainly improve upon non-optimized
integrity checking.

A number of earlier approaches to simplification produce constraints that need to
be checked in the updated database. This is not completely satisfactory because, in
most cases, it is possible to decide, in the current state, whether a proposed update will
introduce inconsistency (i.e., if it were executed). In this way, illegal database states are
completely avoided and therefore expensive rollback operations as well as repair actions
become unnecessary.

Another important aspect is the expressiveness of the language at hand. We present
a framework that can handle a very general class of updates specified with a language
that includes additions, deletions and changes as well as transactions and any kind of
bulk operation expressible with a rule or query. The different steps of the simplification

2

procedure are transformations that operate on pieces of database programs formulated in
datalog

¬, the extension of datalog with negation. The choice of this logical language
instead of the more commonly used SQL is based on its syntactic simplicity and clarity
that make it particularly well suited for the application of proof techniques. Integrity
constraints are written as denial clauses, that roughly correspond to SQL queries for
which an empty answer indicates consistency.

Several challenging problems are posed in a number of different contexts. The pre-
sented transformations almost directly apply to integrity checking for data integration sys-
tems, where a mediator provides a unified view over multiple, autonomous data sources.
In concurrent database systems, simplification techniques need to be strengthened with
locks or similar constructs, because the guarantee of consistency of a transaction may be
affected by another, interleaved transaction. More in line with today’s focus in database
research, integrity requirements need to be enforced in semi-structured contexts. The
growing importance of XML, the de facto standard of semi-structured data, together
with the high availability of online content and the increasing need for data quality in
these settings suggests that simplification techniques should be adapted to these cases.

The availability of methods for efficient integrity constraint checking constitutes an
important step forward to improving performance and reliability of database systems
and applications. The integration of such techniques with commercial DBMSs raises
interesting implementation and technology-related issues that, however, will not be the
core of this thesis.

1.1 Goals and main results

The problem of efficiently checking integrity in relational and deductive databases has
been addressed by a number of heterogeneous techniques. A first objective of this work
is the development of a uniform tool of sufficient generality that covers the domains of
applicability of previous solutions.

• Goal 1: To develop a general framework for the symbolic simplification of integrity
constraints enabling incremental integrity checking.

In order to improve the efficiency of the whole integrity checking process, the output
simplifications must be minimized with respect to a cost function expressing (an approx-
imation of) the effort needed to actually evaluate them.

• Goal 2: To identify possible cost models related to the efficiency of integrity check-
ing and to study feasibility of algorithms that produce optima with respect to those
cost models.

In order to achieve the above goals, notions from Hoare’s logic, such as weakest precon-
ditions, are extended to the context of deductive databases and applied transformation
techniques based on proof procedures, namely resolution, subsumption and factoring.
The following main results were obtained.

• We introduce a framework for the simplification of integrity constraints that has
the following features:

3

– The procedure on which it is based produces a set of integrity constraints that
are a necessary and sufficient condition of consistency of the database in the
updated state.

– It uses a compiled approach: the simplified integrity constraints are derived at
design time. No run time needs to be spent on optimization.

– Consistency of the updated state is tested before the update is executed. Only
consistency-preserving transactions will eventually be given to the database
and no illegal state will ever be reached.

– The update language at hand includes tuple additions, deletions and changes;
transactions and transaction patterns are also supported. In particular, any
set of tuples that can be expressed as the result of a query can be added,
deleted or modified.

– It supports integrity constraints referring to special forms of recursive rules (a
generalization of linear right- or left-recursion).

– It includes special treatment for aggregates.

• Several criteria for measuring the quality of a simplification are proposed and stud-
ied; consequently, ideality of simplification is defined. It is shown that for any ac-
ceptable criterion, decidability of query containment and ideality of simplification
are equivalent.

• Practically relevant classes are shown for which the procedure is guaranteed to
return an ideal simplification.

• On top of the simplification procedure, a schedule construction policy based on
transaction modification is developed that ensures serializability as well as con-
sistency. This is achieved without using the simplifying assumption, common in
the treatment of concurrent database systems, that serial schedules always produce
states that are consistent with the integrity constraints.

1.2 Thesis organization

The thesis is organized as follows. Chapter 2 presents an overall perspective over the
problem of integrity control and provides motivation for this work. In particular, after
introducing the basic notions and notation used throughout the thesis, we describe the
framework of deductive databases and present relevant related problems, including the
important notion of query containment.

Chapter 3 specifies the simplification problem and defines the core components of
a procedure for the simplification of integrity constraints. After identifying a subclass
of datalog

¬ as the initial context of study, the chapter presents a series of syntactic
transformations that comply with certain syntactic and semantic requirements and that
are used to compose the simplification procedure. Criteria to measure the quality of the
procedure’s output are then defined and its ability to produce optimal results is explored.
In particular, the chapter discusses the relationship between optimal simplification and

4

decidability of query containment. Finally, it reviews related work in the field and em-
phasizes the differences and improvements of the present method with respect to existing
approaches.

The limitations introduced in chapter 3 are progressively relaxed in chapter 4. Firstly,
the simplification procedure is extended to the context of non-recursive datalog

¬ data-
bases. Recursion is then dealt with and suitable adjustments of the procedure are con-
sidered that provide improved results for specific recursive patterns in rules and integrity
constraints. Aggregate functions fall outside datalog as well as first-order logic; however,
they are a tool of prime importance in terms of expressiveness of a database language.
An extension of the simplification procedure to deal with such constructs as well as with
arithmetic expressions is also discussed in chapter 4.

Chapter 5 provides an overview on orthogonal aspects related to simplification as
well as on other contexts of applicability of the described transformations. We put in-
tegrity checking in the perspective of concurrent database systems and investigate the
relationships between simplified integrity constraints and efficient evaluation in this set-
ting. Integrity verification can also be regarded from the point of view of a “global”
logical database (the mediator) in a data integration system consisting of several local
data sources. Since integrity constraints do not necessarily hold in the mediator even
though they do locally at the sources, this chapter addresses this problem by adapting
the methods that were applied to a single database. A structurally different context is
that of databases containing hierarchically ordered data, as is the case for collections of
XML documents. The chapter discusses an approach to efficient integrity checking in this
setting, based on mappings of the XML model to a (flat) relational model.

An overall assessment from an experimental viewpoint of the results presented in this
thesis is given in chapter 6. We discuss implementation issues and report on the effi-
ciency of the simplification procedure based on the comparison with previous techniques
developed by other researchers.

1.2.1 Origin of the chapters

An earlier version of parts of the material contained in chapter 3 has appeared in [58].
Chapter 4 incorporates results taken from [125] and [127]. Chapter 5 includes and revisits
material that has been published in [128] and [59]. The experiments on recursive databases
described in chapter 6 were also published in [127].

Papers [58, 59, 128, 127] were written together with Henning Christiansen. The parts
regarding integrity checking for XML in chapter 5 and 6 are an adaptation of unpublished
material written in collaboration with Daniele Braga and Alessandro Campi.

5

6

Chapter 2

Integrity Control in Relational

and Deductive Databases

In this chapter we present the basic concepts related to deductive databases. Section 2.1
introduces the notation used throughout the thesis. The main components of a deductive
database are described in section 2.2, along with an overview of its model-based semantics
and query and update languages. We refer to standard texts in logic, logic programming
and databases such as [163, 45, 139] for further discussion on foundational aspects of
deductive databases. We then take a closer look at integrity constraints. The meaning
of integrity constraints and different kinds thereof are discussed in section 2.3, together
with different languages for the specification of integrity constraints. Finally, strategies
for integrity control are discussed in section 2.4.

2.1 Preliminaries

We base our discourse throughout this thesis on the framework of deductive databases and
use the syntax of the datalog language [163] as a basis to formulate the main concepts.

This choice is motivated by different reasons. First of all, datalog is recognized as
a standard logical language that has evolved from Prolog (the most popular language
for PROgramming in LOGic) into a paradigm designed for use as a database language.
Among the distinctive features of datalog with respect to Prolog we mention:

• set-at-a-time processing (as opposed to Prolog’s tuple-at-a-time), which is more in
line with the fact that queries over a database should return a set of tuples, rather
than individual tuples.

• declarativity: database languages are nonprocedural, i.e., the execution of queries
does not depend on the order of retrieval of tuples. The procedure for accessing
data is left as a system task and is not specified at the language level.

• absence of function symbols, which are typically used to model complex data struc-
tures and objects, and thus may be of little relevance in the context of (flat) deduc-
tive/relational databases.

7

These aspects, together with datalog’s syntactic simplicity, make it a suitable choice
as a database language. Our preference is also determined by the direct applicability
of proof techniques and transformations to datalog rules, which would be much more
problematic with SQL, although since the standard SQL:1999, SQL and datalog have
a very similar expressive power1. A further advantage of datalog with respect to other
database languages is that it has a well understood declarative semantics. This makes it
easier to reason about queries and answers.

2.1.1 Formulas

We assume an alphabet including infinite sets of symbols for predicates, constants , and
variables. As a notational convention, we generally use lowercase letters to denote pred-
icates (p, q, . . .) and constants (a, b, . . .) and uppercase letters (X, Y , . . .) to denote
variables.

Each predicate has an associated nonnegative arity and the notation p/n indicates
that predicate p has arity n. A term is either a variable or a constant2; conventionally,
terms are also denoted by lowercase letters (t, s, . . .) and sequences of terms are indicated
by vector notation, e.g., ~t.

Besides terms and predicates, the alphabet includes:

• Logical connectives (¬,∧,∨,←), including the 0-ary connectives true and false.

• Quantifiers (∀,∃).

• Parentheses.

• Commas.

Definition 2.1.1 (Formula) The set F of well-formed formulas is the smallest set such
that:

• true ∈ F and false ∈ F ;

• if p/n is a predicate and t1, . . . , tn are terms then p(t1, . . . , tn) ∈ F ;

• if both F ∈ F and G ∈ F then (¬F) ∈ F , (F ∧G) ∈ F , (F ∨G) ∈ F , (F ← G) ∈ F ;

• if F ∈ F and X is a variable then (∀XF) ∈ F and (∃XF) ∈ F .

In (∀XF) and in (∃XF), the formula F is called the scope of the quantifier; any oc-
currence of X in F is said to be bound ; it is bound by the quantifier of smallest scope
that causes it to be bound; a variable which is not bound in F is said to occur free in
F . A formula in which all variables are bound is said to be closed . Whenever we have

1In particular, the extension of datalog with negation, known as datalog¬, allows the expression
of multi-linear recursive rules, which are not (yet) allowed in the SQL standard; on the other hand,
SQL includes additional concepts, such as NULL values, aggregates and arithmetic operators and has an
underlying bag semantics.

2The described language, as customary for databases, does not contain any (non-nullary) function
symbols.

8

a sequence of variables ~X = 〈X1, . . . ,Xn〉, the notation ∀ ~XF is taken as an abbrevia-

tion for ∀X1(∀X2(· · · (∀XnF) · · ·)); similarly for ∃ ~X. For convenience, in the following,
free variables are indicated in boldface (a, b, . . .) and referred to as parameters; the
other variables, unless explicitly quantified existentially, are assumed to be universally
quantified. An expression containing parameters is called parametric.

Formulas of the form p(t1, . . . , tn), where p is a predicate of arity n and the ti’s are
terms, are called atoms. An atom preceded by a ¬ symbol is a negated atom; a literal
is either an atom or a negated atom. In the following, we will only consider formulas
that are well-formed and will omit parentheses whenever possible by assuming that the
connectives have the following binding-order: ¬ (strongest), ∧, ∨, ← (weakest). For
example, the formula p ∧ q ∨ r is read as (p ∧ q) ∨ r.

Predicates are divided into three pairwise disjoint sets: intensional , extensional , and
built-in predicates. Intensional and extensional predicates are collectively called database
predicates; atoms and literals are classified similarly according to their predicate symbol.
There is one built-in binary predicate for term equality (=), written using infix notation;
t1 6= t2 is a shorthand for ¬(t1 = t2) for any two terms t1, t2.

2.1.2 Substitutions

A substitution is a mapping from bound variables to terms. A substitution σ is also
written as { ~X/~t} to indicate that the variables in ~X are orderly mapped to the terms in
~t; the notation dom(σ) refers to the set of variables in ~X. Whenever E is a term (resp.

formula) and σ is a substitution { ~X/~t}, the notation Eσ denotes the term (resp. formula)

that arises from E when each occurrence of a variable in ~X is simultaneously replaced
by the corresponding term in ~t; Eσ is called an instance of E. A formula or term which
contains no variables is called ground . A substitution { ~X/~Y } is called a renaming iff ~Y

is a permutation of ~X. Formulas F , G are variants of one another if F = Gρ for some
renaming ρ. A substitution σ is said to be more general than a substitution θ iff there
exists a substitution η such that θ = ση. A unifier of terms (resp. formulas) t1, . . . , tn is
a substitution σ such that t1σ = · · · = tnσ; σ is a most general unifier (mgu) of t1, . . . , tn
if it is more general than any other unifier of these terms (resp. formulas).

Formulas that are equal modulo renaming or differ for orders of operands of commu-
tative and associative connectives are considered identical; for any formula F , ¬¬F and
F are also considered identical.

2.1.3 Clauses

A distinctive feature of deductive database is the ability to express implicit information
in terms of deductive units called clauses.

A clause is usually defined as a disjunction of literals L1∨· · ·∨Ln; as mentioned, all the
variables in a clause, unless indicated as parameters, are implicitly universally quantified
at the outmost level. Conventionally, clauses defined in this way can be represented as
a set of literals {L1, . . . , Ln}. Clauses with at most one positive literal are called Horn
clauses; a clause with no literals is called empty clause.

In the context of deductive databases, however, it is more common to express clauses
in an equivalent implicational form (using ←) that represents inferential knowledge of the

9

type “if some premises hold, then a given consequence also holds”.

Definition 2.1.2 A clause is a formula of the form

A ← L1 ∧ · · · ∧ Ln

where A is an atom and L1, . . . , Ln are literals; A is called the head and L1 ∧ · · · ∧ Ln

the body of the clause and if Li = ¬Ai for some atom Ai, Ai is said to occur negatively.
The head is optional and when it is omitted the clause is called a denial.

A rule is a clause whose head is intensional, and a fact is a clause whose head is extensional
and ground and whose body is empty (understood as true). Two clauses are said to be
standardized apart if they have no bound variable in common.

Denials can be read as clauses in which the omitted head represents the 0-ary con-
nective false. The intuition behind a denial is that its body indicates a condition that
must not hold. The empty clause is a denial with an empty body, which is conventionally
indicated with the 0-ary connective false. For convenience, in the transformations intro-
duced in chapter 3, denials that are recognized to be tautological will be replaced by the
0-ary connective true, although, strictly speaking, this is not a denial.

The presence of negation or built-in predicates (which in most cases correspond to
infinite relations) may compromise the so-called domain independence. Consider, e.g.,
the rule q(X) ← ¬p(X); this indicates that q contains all values that are not in p. The
application of such a rule would, thus, require a complete search on the domain of values
that may apply to p, which in most cases is extremely inefficient. The common measure
used to avoid such behavior is to introduce a syntactic property that forces clauses to be
range restricted3, as defined below.

Definition 2.1.3 (Range restriction) A bound variable in a clause is range bound if
it appears in a positive database literal in the body. A clause is range restricted if all
bound variables in it are range bound.

In the remainder of the thesis we will only consider range restricted clauses.
To simplify the notation, we introduce the pred operator. For a literal L, pred(L)

refers to the predicate of L. For a clause C with non-empty head A, pred(C) refers
to pred(A); for a set of non-headless clauses C, pred(C) refers to the set of predicates
{pred(C) | C ∈ C}.

2.2 Deductive databases

Deductive databases are characterized by three components: facts, rules and integrity
constraints. An integrity constraint can, in general, be any (closed) formula. In the
context of deductive databases, however, it is customary to express integrity constraints
in some canonical form; we adopt here the denial form, that gives a clear indication
of what must not occur in the database. We return on the expressiveness of integrity
constraints again in section 4.1.

3Sometimes also indicated as safe or allowed clauses.

10

Definition 2.2.1 (Schema, database) A database schema S is a pair 〈IDB,
IC〉, where IDB (the intensional database) is a finite set of range restricted rules, and IC
(the constraint theory) is a finite set of integrity constraints. The predicates in pred(IDB)
are said to be defined by IDB and it is assumed that any intensional predicate occurring
in S is defined by IDB.

A database state (or, simply, database) D on schema S is a pair 〈IDB,EDB〉, where
EDB (the extensional database) is a finite set of facts; D is said to be based on IDB.

When the IDB is understood, the database may be identified with EDB and the schema
with IC .

Definition 2.2.2 (Language) Let S be the set of all schemata. Any set L ⊆ S is called
a database language.

We observe here that, from the point of view of formulas, a set of clauses (rules, facts or
integrity constraints) is logically intended as the conjunction of its elements; under this
assumption, an empty set of clauses will interchangeably be indicated as ∅ or as true.
Parameters are not expected to be part of any actual database or integrity constraint,
but the transformations that will be introduced in chapter 3 may generate parametric
versions of these categories. These transformations may introduce new auxiliary inten-
sional predicates in IC . This means that such new IC components are only meaningful
as part of a new schema with an extended IDB part. In order to state that such schema
modifications do not interfere with existing definitions, we define the following notion of
compatible schemata.

Definition 2.2.3 Two schemata S1 = 〈IDB1, IC1〉 and S2 = 〈IDB2, IC2〉 are compatible
whenever pred(IDB1 \ IDB2) ∩ pred(IDB2) = ∅ and pred(IDB2 \ IDB1) ∩ pred(IDB1) = ∅.
They are disjoint if pred(IDB1) ∩ pred(IDB2) = ∅.

Trivially, disjoint schemata are compatible. As a convention, we write S1 ∪ S2 as a
shorthand for 〈IDB1 ∪ IDB2, IC 1 ∪ IC 2〉 whenever S1 and S2 are compatible.

2.2.1 Semantics

We now introduce the semantics of deductive databases based on Herbrand models. For
further details we refer to [121]. When reasoning about the models of a database, it is cus-
tomary to restrict the alphabet to exactly those symbols that occur in the database. It is
also assumed that there is at least one constant, since, otherwise, the domain represented
by the database would be empty.

Definition 2.2.4 (Herbrand base) The Herbrand universe UD of a database D is the
set of constants in D (plus one constant c, if D contains no constants). The Herbrand
base HD of D is the set of all ground atoms that can be constructed from the predicate
symbols in D and constants in UD.

We note that, since we are in a function-free setting, Herbrand bases will always be finite.

Definition 2.2.5 (Herbrand interpretation) Let D be a database and HD its Her-
brand base. Any subset I of HD is a (Herbrand) interpretation of D.

11

Definition 2.2.6 Let I be an interpretation for a database D. A closed formula F is
true in I, written |=I F , according to the following inductive definition. We write 6|=I F
as a shorthand to indicate that it is not the case that |=I F .

• For any I, |=I true and 6|=I false.

• For a ground database atom A, |=I A iff A ∈ I.

• For any constant c, |=I c = c.

• For any closed formulas F, F1, F2,

|=I ¬F iff 6|=I F ;

|=I F1 ∧ F2 iff both |=I F1 and |=I F2;

|=I F1 ∨ F2 iff |=I F1 or |=I F2;

|=I F1 ← F2 iff |=I F1 or 6|=I F2;

|=I ∀XF iff, for all constant c ∈ UD, |=I F{X/c}.

|=I ∃XF iff, for some constant c ∈ UD, |=I F{X/c}.

Definition 2.2.7 (Herbrand model) An interpretation I of a database D = 〈IDB,
EDB〉 is a (Herbrand) model of D if |=I C for every clause C ∈ IDB∪EDB. A model of
D is minimal if none of its subsets is a model of D.

The notion of Herbrand model can be defined in a similar way for any arbitrary closed
formula. In particular, we say that a closed formula F is a logical consequence of a closed
formula G, written G |= F , iff F is true in every model of G; F ≡ G means that both
F |= G and G |= F hold.

Generally, a database does not necessarily have a unique minimal model. However,
there are database classes for which the existence of a unique intended minimal Her-
brand model is guaranteed. In order to identify such classes we introduce the notions of
dependency graph and predicate dependencies.

Definition 2.2.8 (Dependency graph) Given a set of clauses C, the dependency graph
DC of C is a directed graph with labelled arcs. Its nodes are the predicates occurring in
C. For every clause in C with predicate p in the head and predicate q in a positive (resp.
negative) literal in the body there is an arc q ↪→C p with label “+” (resp. “−”). No other
arc is in DC.

The notation q 99KC p indicates that there is a nonempty path from q to p in the
dependency graph DC of C, and in this case we say that p depends on q (in C); if there is
at least one “−” label in some path from q to p, then p depends negatively on q, indicated

q
−

99KC p. For a formula F , we say that F depends (negatively) on q if F contains a
predicate that depends (negatively) on q.

Recursion is one of the distinctive features of deductive databases that is captured by
the dependency graph. In fact, databases can be classified according to the dependency
graph of their IDB .

12

Definition 2.2.9 (Recursion) A predicate p is recursive in a set of clauses C iff p
depends on p in C. Two predicates p and q are mutually recursive in C whenever both p
depends on q and q on p. A rule is recursive whenever there exists a literal in the rule
body whose predicate is mutually recursive with the head predicate; if there is only one
such literal, the rule is linear; if there are exactly two such literals, the rule is bilinear.
A set of rules is linear if every recursive rule in it is linear; a set of rules is bilinear if
every recursive rule in it is linear or bilinear and there is at least one bilinear rule.

Definition 2.2.10 Let D = 〈IDB,EDB〉 be a database. Then IDB and D are called

• positive if there are no predicates p, q such that q
−

99KIDB p.

• semi-positive if there are no predicates p, q such that q
−

99KIDB p and q ∈ pred(IDB).

• hierarchical if there is no predicate p such that p 99KIDB p.

• stratified if there is no predicate p such that p
−

99KIDB p.

A schema S = 〈IDB, IC〉 is positive if IDB is positive and no negation symbol occurs in
IC. S is semi-positive if IDB is semi-positive and negation symbols in IC only occur im-
mediately before extensional predicates. S is hierarchical (stratified) if IDB is hierarchical
(stratified).

Problems arise when trying to soundly derive negative information from a database. A
standard strategy for deriving negative knowledge from a positive database is to assume
that one can draw negative conclusions based on the lack of positive information, known
as closed world assumption (CWA) [145]. Given a set of clauses C of a positive database,
this is expressed as the meta-rule “if A cannot be proved from C, then ¬A is assumed to
hold”, provided that A is a ground literal. This definition is stated proof-theoretically;
however, in case of a sound and complete proof system, it can be replaced by “if A is not a
logical consequence of C, then ¬A is assumed to hold”. A first problem with this approach
is that non-provability is in general undecidable, even for positive databases, thus it is
not possible to determine whether the rule is applicable or not. However, a weaker
version of the CWA, known as negation as finite failure (NaF), makes this rule decidable.
Furthermore, the inferences derived via the CWA may not be logical consequences of the
database: for example, the Herbrand base (in which all ground atoms are true) is always
a model, albeit not minimal, of a positive database D, and thus no negative literal is a
logical consequence of D.

The solution initially proposed by Clark [60] was to discard “uninteresting” models
from consideration. Intuitively, this is done by completing the inferential knowledge
contained in a database in clausal form by adding the only-if part of the rules. Technically,
the clauses in IDB ∪ EDB are transformed according to the following steps:

• Transform each clause of the form p(~t) ← B into p(~X) ← ∃~Y (~X = ~t∧B), where ~Y

are the variables in the original clause and ~X are new variables.

• The formula ∀ ~X(p(~X) ↔ F1 ∨ · · · ∨ Fn) replaces all the formulas p(~X) ← F1, . . . ,

p(~X) ← Fn obtained in the previous step4.

4A ↔ B is a shorthand for (A ← B) ∧ (B ← A)

13

• The formula ∀ ~X(q(~X) ↔ false) is added for each database predicate symbol not
occurring in the head of a clause in the original database.

• Finally, the following free equality axioms, adapted for our function-free setting, are
added to define the equalities introduced in the first step (see, e.g., [139] for a formal
account including axioms that are needed in the presence of function symbols).

– ∀X(X = X)

– ∀X,Y (X = Y ← Y = X)

– ∀X,Y,Z(X = Z ← X = Y ∧ Y = Z)

– ∀ ~X, ~Y (p(~X) = p(~Y) ← ~X = ~Y) for any predicate p.

– c1 6= c2 for any two different constants c1, c2.

The resulting formula, called the completion of a database D = 〈IDB ,EDB〉, is indicated
comp(D).

Example 2.2.11 Consider the database

D = 〈{p(X,Y) ← e(X,Y), p(X,Y) ← e(X,Z) ∧ p(Z, Y)}, ∅〉.

Its completion comp(D) is

∀X1, Y1(p(X1, Y1) ↔ X1 = X ∧ Y1 = Y ∧ e(X,Y)∨
∃Z(X1 = X ∧ Y1 = Y ∧ e(X,Z) ∧ p(Z, Y))).

Completion provides a logical basis for NaF, but has problems of its own once we allow
negations to occur in clauses. For example the clause p ← ¬p is completed as p ↔ ¬p,
which is false in all interpretations.

Such situations are completely avoided in the class of stratified databases, which is
the most general of the four classes of definition 2.2.10 and that prevents mixing negation
and recursion. Stratified databases admit a unique “intended” minimal Herbrand model,
called the standard model . In order to show the construction of the standard model of a
stratified database [8], we need to introduce the immediate consequence operator .

Definition 2.2.12 Let I be a Herbrand interpretation for a database D = 〈IDB,EDB〉
and let gr(D) indicate the set of ground instances of clauses in EDB∪IDB. The immediate
consequence operator TD is defined as follows.

TD(I) = {A|A ← B ∈ gr(D) and |=I B}.

The notation Tω
D(I) denotes the limit of the sequence

T 0
D(I) = I, . . . , Tn+1

D (I) = TD(Tn
D(I)) ∪ Tn

D(I).

A stratified database can be partitioned in layers, called strata, according to the follow-
ing definition. To simplify notation, for two databases D1 = 〈IDB1,EDB1〉 and D2 =
〈IDB2,EDB2〉, we indicate with D1 ∪ D2 the database 〈IDB1 ∪ IDB2,EDB1 ∪ EDB2〉.

14

Definition 2.2.13 A database D has a stratification D1∪· · ·∪Dn = D if, for 1 ≤ i ≤ n,
in the body of clauses in Di:

• only D’s extensional predicates or predicates in ∪i
j=1Dj occur positively

• only D’s extensional predicates or predicates in ∪i−1
j=1Dj occur negatively

It turns out that a program is stratified iff it admits a stratification. We now have all the
elements to compute the standard model.

Definition 2.2.14 Let D be a stratified database and D1 ∪ · · · ∪ Dn a stratification for
D. Consider the sequence M1 = Tω

D1
(∅), . . . ,Mn = Tω

Dn
(Mn−1) = MD. MD is called the

standard model of D.

In [8] it was shown that the standard model is a minimal Herbrand model and does not
depend on the stratification. Furthermore, the standard model is supported .

Definition 2.2.15 An interpretation I of a database D is said to be supported if, for
any ground atom A, A ∈ I implies that there is a clause A ← B ∈ gr(D) such that |=I B.

Example 2.2.16 Consider the sets of rules IDB1 = {p ← ¬q, q ← r} and IDB2 =
{p ← ¬p}. Any database based on IDB1 is stratified, whereas any database based on IDB2

is not stratified. The standard model of the database 〈IDB1, ∅〉 is {p}; another minimal,
but not standard model of this database is {q, r}.

It was also shown by Apt, Blair and Walker [8] that the completion of a stratified
program always admits a model. Determining whether a database is stratified is decidable,
but the problem of determining whether the completion of a database admits a model is
undecidable. Furthermore, it is known that the class of possibly non-stratified databases
is strictly more expressive than that of stratified databases [111]. Other approaches to the
calculation of a minimal model are known in the literature and for slightly more general
classes than stratified databases, e.g., the perfect model for locally stratified deductive
databases [142], the stable model semantics [87] and the well-founded model semantics
[165]. For a survey on these model-theoretic issues we refer to [9]. In the following, we
will focus on stratified databases. We define database semantics in terms of the standard
model.

The notation D |= φ, where D is a (stratified) database and φ is a closed formula,
indicates that φ holds in D’s standard model MD, i.e., |=MD

φ. For any schemata
S1 = 〈IDB1, IC 1〉 and S2 = 〈IDB2, IC 2〉 defined on the same extensional predicates, we
write S1 ≡ S2 to indicate that their constraint theories evaluate in “equivalent ways”,
i.e., for every extensional database EDB , 〈IDB1,EDB〉 |= IC 1 iff 〈IDB2,EDB〉 |= IC 2.
According to this semantics, the negation symbol (¬) used throughout this thesis indicates
what is commonly referred to as default negation, since it is essentially defined by assuming
¬A “by default”, that is, in the absence of sufficient evidence to the contrary5. Specifically,
here ¬A is assumed if A is false in the standard model of the database.

5Default negation is sometimes written as not to distinguish it from logical negation. In this thesis,
the ¬ symbol will always refer to default negation; when needed, we will use the symbol ¬` to indicate
logical negation.

15

In general, we will express our definitions and operators on schemata, so that integrity
constraints are always in the context of an IDB ; however, when the IDB is understood,
the schema may be identified with the integrity constraints and the database with the
extensional database.

2.2.2 Queries and updates

We now introduce a rule-based language for the modification of the relations of a deductive
database.

Definition 2.2.17 (Query) A query for a database D = 〈IDB,EDB〉 is an expression
of the form ⇐ A where A is an atom such that pred(A) ∈ pred(IDB).

For convenience, we include queries in intensional predicates, i.e., if ⇐ p(~X) is a query
for a database D then p is defined in D’s IDB . But when no ambiguity arises, a given
query may be indicated directly by means of its defining formula (instead of the predicate
name).

Definition 2.2.18 (Defining formula) The disjunctive predicate definition for an in-
tensional predicate p in a database schema S is the set of all rules H ← B is S such that
pred(H) = p. Without loss of generality, we assume that they are expressed as follows:

{p(~X) ← B1,
...

p(~X) ← Bn},

where ~X is a sequence of distinct variables, called distinguished variables, and the Bi’s are
conjunctions of literals. Variables that are not distinguished are called non-distinguished
variables. The defining formula of p is

B1ρ1 ∨ ... ∨ Bnρn,

where each ρi is a renaming giving fresh new names to the non-distinguished variables of
Bi to avoid name clashes. The disjunctive predicate definition is also written as

p(~X) ← B1ρ1 ∨ ... ∨ Bnρn,

Using the terminology of relational databases, facts correspond to tuples and intensional
predicates that are not queries are called views; views can occur anywhere in the body of
IDB rules, whereas query predicates can only be used as such (i.e., not in rule bodies).
To complete the mapping with the relational world, a position in a predicate corresponds
to a relational attribute.

Definition 2.2.19 (Extension) The extension of a database predicate p in a database

D is defined as the set of ground tuples {~a | D |= p(~a)}; if ⇐ p(~X) is a query, we refer

also to p’s extension as the answer to ⇐ p(~X) in D and denote it Ap
D.

16

Definition 2.2.20 (Update) A predicate update for an extensional predicate p in a

database D is an expression of the form p(~X) ⇐ p′(~X) where ⇐ p′(~X) is a query for D;
p is said to be affected by the update. A (database) update is a set of predicate updates
for distinct predicates. For a given database D = 〈IDB,EDB〉 and an update U , the
updated database DU is defined as 〈IDB,EDB′〉, where EDB′ is as EDB but in which,

for every extensional predicate p affected by a predicate update p(~X) ⇐ p′(~X) in U , the
subset {p(~t) | D |= p(~t)} of EDB is replaced by the set {p(~t) | D |= p′(~t)}.

As mentioned, integrity constraints need to be specialized for update patterns rather
than for specific updates. This is achieved by using parameters. In general, a parametric
formula does not have a truth value but its meaning may be understood as a mapping
from sequences of constants to truth values. Parameters are not part of any query or
update actually given to a database, but, again, we may have parametric expressions of
these categories.

Definition 2.2.21 (Parametric instance, equivalence) A parameter substitution is
a mapping from parameters to constants. Whenever E is an expression containing pa-
rameters, and π is a parameter substitution for all the parameters in E, the notation
Eπ denotes the parameter-free expression that arises from E when each occurrence of
a parameter is replaced by its value specified by π; Eπ is called a parametric instance
of E. We use the notation {~a/~c} for a parameter substitution in order to indicate that
parameters ~a are orderly mapped to constants ~c.

The notation A |= B is extended to parametric expressions with the meaning that
Aπ |= Bπ holds for all parameter substitutions π such that Aπ and Bπ are parameter-
free; similarly for A ≡ B.

The notation D1 |= φ ⇔ D2 |= ψ, for databases D1 and D2 and constraint theories
φ and ψ, indicates that, for any parametric instance (D′

1, φ
′,D′

2, ψ
′) of (D1, φ,D2, ψ),

D′
1 |= φ′ if and only if D′

2 |= ψ′.

Parametric updates will be used in the following chapters as input to the transformations
that compose the simplification framework; however, there is no sense in directly applying
a parametric update to a database.

Example 2.2.22 Consider the intensional database

IDB1 = {p′(X) ← p(X), p′(X) ← X = a}.

The following update U1 describes the addition of fact p(a) (p is an extensional predicate):

{p(X) ⇐ p′(X)}.

As mentioned, for convenience, defining formulas instead of queries will be written in the
body of predicate updates wherever possible. Update U1 will, e.g., be indicated as follows:

{p(X) ⇐ p(X) ∨ X = a}.

The following U2 means “change any r(a,X) into r(b,X)”, where r is an extensional
predicate.

{r(X,Y) ⇐ (r(X,Y) ∧ X 6= a) ∨ (r(a, Y) ∧ X = b)}.

17

The following U3 is a parametric update that looks very much like U2, but refers to two
parameters instead of constants.

{r(X,Y) ⇐ (r(X,Y) ∧ X 6= a) ∨ (r(a, Y) ∧ X = b)}.

Notice that if a and b are instantiated to the same constant, U3 does not perform any
changes. The following U4 exchanges the contents of extensional predicates p and q.

{p(X) ⇐ q(X), q(X) ⇐ p(X)}.

2.2.3 Query containment

Once a query language is available, a crucial database issue is to answer queries efficiently.
In this respect, optimizing techniques arise naturally by answering a simple decision
problem: given two queries ⇐ p(~X) and ⇐ q(~X), is Ap

D ⊆ Aq
D for all database D?

This problem, known as query containment (QC), has been studied extensively in the
literature.

Definition 2.2.23 (Query containment problem) Let S = 〈IDB, IC〉 be a database

schema and ⇐ p(~X), ⇐ q(~X) two queries with identical arity. The QC problem for p
and q, denoted S : p ⊆ q, is the problem of deciding whether Ap

D ⊆ Aq
D for all consistent

databases D with schema S. QC over a language L is the problem of deciding, for all
schemata S ∈ L and queries ⇐ p(~X), ⇐ q(~X) in S, whether S : p ⊆ q.

Example 2.2.24 Suppose that p and q are defined in the IDB of a schema S and that it
is known that S : p(~X) ⊆ q(~X), i.e., that query ⇐ p(~X) is contained in query ⇐ q(~X).

Consider a query Q defined as ⇐ p(~X)∧q(~X) posed on a database with schema S. Then,

for all databases with schema S, Q is equivalent to the query ⇐ p(~X), in the sense that
they will always produce identical answers. However, the latter contains fewer predicate
symbols and fewer variable bindings than Q, which correspond, respectively, to relations
and joins in the relational setting.

Unfortunately, QC is undecidable in the general case. Shmueli [158], relating QC to the
containment problem for context-free languages, proved that QC is already undecidable
for datalog databases without negation. This means that QC is undecidable also for
larger database classes, such as that of stratified databases. Since integrity constraints
can be regarded as queries whose answer must always be empty, this undecidability will
have some repercussions on the realization of a “perfectly” efficient integrity checker, i.e.,
a tool that is able to eliminate all possible redundancies for query evaluation in all cases.
We will delve into these issues in chapter 3.

2.3 Integrity constraints

Although integrity constraints are a common as well as central notion in the context
of databases and information systems, there is no general consensus on the meaning
of “integrity”. Certainly integrity constraints contribute to the characterization of the
semantics of the data, by imposing dependencies and restrictions that must always be

18

complied with. The very notion of data integrity is usually regarded as correctness and
accuracy of the data in the database. For example, Motro [133] with his equation “In-
tegrity = Validity + Completeness” looks at integrity from the point of view of queries,
stating metaphorically that their “answers have integrity if they contain the whole truth
(completeness) and nothing but the truth (validity)”.

The lack of consensus is apparent once we examine the notion of constraint satisfac-
tion. In [88], two different views are presented: satisfaction of integrity constraints by
entailment (IC must hold in all models of the database) and by consistency (IC must
hold in at least one model of the database, i.e., there exists a model of EDB ∪ IC ∪ IDB ,
where 〈IDB ,EDB〉 is the database in question). These approaches coincide for positive
databases without inequality, but may differ if negation is present. Furthermore, in the
presence of negation, there may be several minimal models of the database. Two extreme
approaches in this case are the pure entailment approach (IC must hold in all minimal
models of the database) and the pure consistency approach (IC holds in at least one min-
imal model of the database). For stratified databases, satisfaction of IC in the standard
model is the usual way of reconciling these approaches.

Definition 2.3.1 (Consistency) A database D is consistent6 with a constraint theory
IC whenever D |= IC.

We chose to represent integrity constraints as denials, instead of any clause, according
to the intuition that they are not used to infer knowledge, but rather to discard models
that are considered unacceptable.

2.3.1 Static vs. dynamic constraints

The kind of integrity constraints that are considered in this thesis are the so-called static
integrity constraints, that indicate properties that must be met by the data in each
database state.

A disjoint class is that of the so-called dynamic constraints, that are used to impose
restrictions on the way the database states can evolve over time. A typical example
of dynamic constraint is “the marital status of a person cannot change from single to
divorced”. This condition is not static in that it does not refer to a single state, but rather
to an old and a new state at the same time. Dynamic constraints, like this one, referring to
the change from a state to the successive state are called transitional constraints. More
complicated conditions involving (possibly infinite) sets of states may be expressed by
resorting to temporal logics that have constructs such as “since”, “until”, “before”, etc.
Dynamic constraints have been considered, e.g., in [53, 65].

2.3.2 Hard vs. soft constraints

Another important distinction can be made between hard (or strong) constraints and soft
(or deontic) constraints. The former ones are used to model necessary requirements of
the world that the database represents. For example, the fact that “every person must

6Note that we use here the terms “consistency” and “integrity” as synonyms, whereas for other authors
[30] the word “consistency” refers to the satisfiability of a set of integrity constraints independently of
any state, i.e., whether there exists any database state in which the integrity constraints are satisfied.

19

be either male or female” can be reasonably considered an intrinsic truth of the world
represented, e.g., by a database containing information on the personnel of a company.
Deontic constraints govern what is obligatory but not necessary of the world. For instance,
the fact that “every ordered item is in the stock” is certainly a requirement for the good
running of an organization but may not correspond to a necessary truth of the world;
however, if the company adheres to a policy that guarantees that ordered items will always
be available, then this might be considered a hard constraint.

In other words, violations of deontic constraints correspond to violations of obliga-
tions that have to be reported to the user or administrator of the database rather than
inconsistencies proper. The wording “soft constraint” sometimes refers to a condition
that should preferably be satisfied, but may also be violated, while with “deontic con-
straint” one usually emphasizes the distinction between what the database believes is
true of the world it represents and what is actually true of the world. In this thesis we
concentrate on hard constraints; deontic constraints have been considered, e.g., in [40]
and soft constraints in [89]. Applications of so-called soft constraints seem to be possible,
albeit to a lesser extent, for integrity checking and semantic query optimization (see [89]
and references therein).

2.3.3 Classification of integrity constraints

Static, hard constraints can be further divided in several subclasses. In the relational
setting, it is common to classify constraints according to the entities that they involve.

At the most specific level are found tuple constraints, that impose restrictions on
the combinations of elements in a tuple. Among these, domain constraints indicate the
possible values that an attribute of a tuple can take.

Constraints that refer to the tuples of a single relation are referred to as intra-relation
constraints and include different kinds of data dependencies that constrain equalities or
inequalities between values of attributes of a relation. Among these, functional depen-
dencies [61] and multi-valued dependencies [78] are the most common ones. A functional
dependency (FD) involves sets of attributes, say X and Y , of a relation R and is written
X → Y to indicate that every pair of tuples in R that agrees on the attributes in X also
agrees on the attributes in Y . While a functional dependency X → Y relates one value
of X to one value of Y , a multi-valued dependency (MVD) , indicated X ³ Y , defines
a relationship in which a set of values of attribute Y is determined by a single value of
X. The multi-valued dependency X ³ Y is said to hold for a relation R with (sets of)
attributes X, Y , Z, written R(X,Y,Z), if for a given set of values for attributes X, there
is a set of associated values for the set of attributes Y and the Y values depend only on
X values and have no dependence on the set of attributes Z. This also indicates that
relation R(X,Y,Z) is the join of its projections R1(X,Y) and R2(X,Z), i.e., it can be
decomposed in R1 and R2 without loss of information. Key dependencies are functional
dependencies that impose a key, i.e., a subset of attributes of a relation that uniquely
identify a tuple in that relation.

Constraints involving two or more relations are known as inter-relation constraints.
Among these are inclusion dependencies (also known as referential constraints), that
involve two relations and constrain the set of values assumed by some attributes on the
first relation to be a subset of the values assumed by the same attributes on the second

20

relation. In particular, when these attributes are a key for the second relation, the
constraint is called a foreign key constraint .

All the constraints mentioned so far can be expressed in the setting of deductive
databases as a finite set of denials (see definition 2.1.2), apart from domain constraints
involving infinite domains. These last ones would be easily captured by a typed version
of datalog; however, such constraints are often considered as structural rather than
semantic constraints, and thus have little interest for this work.

A more complex, and yet very common kind of constraints is that of aggregate con-
straints, that involve several (possibly all) tuples of a relation simultaneously. For exam-
ple, constraints on the number of occurrences of certain tuples in a relation or the average
of values assumed by certain attributes belong to this category. However, aggregates are
not part of standard datalog; we will introduce an extension of the language that takes
into account these constructs in section 4.2.

More detailed classifications of integrity constraints for deductive databases have been
attempted by several authors, e.g., [163, 97].

2.3.4 Constraint specification languages

Different languages for expressing integrity constraints exist. Common paradigms are,
e.g., relational algebra and relational calculus; these (or proper extensions thereof) are
known to have exactly the same expressive power as datalog

¬ [3] (in particular, the
algebra plus while-statements, the calculus plus fixpoint and datalog with negation are
all equivalent). Our choice to express integrity constraints as datalog denials rather
than relational algebraic expressions is motivated by the availability of proof tools for
first-order logic that allow one to reason easily about formulas. The preference granted to
datalog with respect to relational calculus is, however, only made for uniformity with
recent works in the field (such as [70, 20]) and for the closer similarity with Prolog, that
will prove a useful test platform for some of our experiments (see chapter 6).

The techniques presented in this work can also be adapted to the context of SQL. A
mapping between datalog and SQL, although technically nontrivial, is of little theoret-
ical interest and will not be discussed in detail in this thesis7. A technique for translating
datalog into (subsets of) SQL has been described in [70].

SQL provides a series of built-in constructs for specifying integrity constraints, such as
PRIMARY KEY, FOREIGN KEY and UNIQUE. These have obvious datalog counterparts and
can be checked and maintained very efficiently by any relational database management
system. SQL also allows one to express more general constraints, such as conditions
referring to exactly one or several attributes of a relation, called respectively column
check constraints and table check constraints; both are specified with the CHECK keyword.
Since 1992, the SQL standard is equipped with the ASSERTION construct that allows the
specification of general inter-relation constraints. These may contain any condition that
can be expressed with an SQL query and are therefore very powerful. However, typically,
DBMSs are not able to verify CHECK and ASSERTION constraints in an incremental way.

7There may be, however, both syntactic and semantic discrepancies between the two paradigms. We
note that SQL admits null values, which do not have a counterpart in the model-theoretical view of
databases. Furthermore, SQL is based on a multi-set semantics instead of a set semantics, that we will
consider in section 4.2.

21

For this reason, assertions are not commonly supported by today’s vendors, and, even
when they are [140], their use is not encouraged.

The main purpose of this thesis is to provide techniques for efficiently and incremen-
tally checking general integrity constraints. Such techniques are aimed at providing a
realistic framework for extending the capability of relational database systems. It should
be noted at this point that, in some cases, the presence of complex general constraints
may be regarded as a symptom of a badly defined schema, and so schema redesign proves
to be an effective practical means of reducing their complexity. However, there are sev-
eral interesting application scenarios for which the specification of complex constraints is
natural or even necessary; examples will be given throughout this thesis.

2.4 Integrity control

Integrity control addresses the problem of possible integrity violations upon modifications
of the database state determined by updates. We now formalize the problem and spec-
ify when the control takes place and what can be done to maintain the database in a
consistent state.

2.4.1 Immediate vs. deferred semantics

An update transaction (in short: update) can be imagined as a sequence of operations
that modify the state of a database. In this regard, satisfaction of integrity constraints
with respect to the update can be considered under two different perspectives. The
immediate semantics requires satisfaction after each single modification of the state; the
opposite approach is that of the deferred semantics, that requires satisfaction after the
whole update has executed, but not in the intermediate states. We refer in this thesis to
the deferred semantics only, as, from the point of view of integrity checking alone, the
immediate semantics is a special case of deferred semantics when the update transaction
consists of a single operation.

2.4.2 Constraint verification

The constraint verification problem may be formulated as follows. Given a database state
D, a constraint theory Γ, such that D |= Γ, and an update U , does DU |= Γ hold too?

However, checking directly whether DU |= Γ holds may be too expensive, so a suitable
reformulation of the problem is called for. A first improvement is achieved if another
constraint theory ∆, informally referred to as a post-test , can be found such that DU |=
Γ iff DU |= ∆ and ∆ is somehow “easier” to evaluate than Γ. A characterization of
the efficiency of evaluation of integrity constraints with respect to given cost models is
provided in chapter 3.

The way we pursue here is slightly different, in that we prefer to check integrity
in the current state D, i.e., before the execution of a potentially offensive update U .
With our approach we look for a constraint theory ΓU such that DU |= Γ iff D |= ΓU

and ΓU is easier to evaluate than Γ. In other words, condition ΓU , called a pre-test
of the original constraints Γ, should specialize the original Γ, as specific information
coming from U is available, and avoid redundant checks by exploiting the fact that D |=

22

Γ holds. Sometimes, post-tests and pre-tests are referred to as simplifications of the
original constraints. We observe that reasoning about the future database state DU

with a condition (ΓU) that is tested in the present state D, complies with the deferred
semantics and allows avoiding the execution of illegal updates completely.

2.4.3 Checking, maintenance, and paraconsistency

Once illegal updates are detected, it must be decided how to restore a consistent database
state.

The approach described in the previous subsection, that we adopt in this thesis, is
based on a complete prevention of inconsistencies: integrity of the updated state is checked
in the state preceding the update and, whenever an illegal update is detected, it is not
executed.

As mentioned, integrity checking can also be done in the state following the update.
In this case, upon inconsistencies, integrity needs to be restored via corrective actions.
Most typically, such action is a rollback, that simply cancels the effects of the unwanted
update and usually requires costly bookkeeping in order to restore the old state.

In other circumstances, the update can be considered as an operation that is not
completely illegal, but that can only be accepted provided that other parts of the database
be modified. In this case a repairing action is needed to change, add or delete tuples of
the database in order to satisfy the integrity constraints again. The obtained database is
called a repair .

Whereas approaches based on prevention or rollback can be completely automated,
repairs typically require the intervention of the database designer to indicate how to
react upon detection of inconsistencies. For very simple (yet common) cases, SQL itself
provides some standard reaction policies such as cascade and no action for foreign keys.
For more complex circumstances, the DBMS might need to calculate a corrective action
according to some criterion of minimality perhaps corresponding to preferences specified
by the user. The generation of repairs is a nontrivial issue; see, e.g., [10, 36, 11, 96].

Active rules provide a flexible tool that encompasses all these three approaches. Ac-
cording to the event-condition-action paradigm, triggers react upon (either before or after)
a given event (e.g., the update); then they check a given condition specific for that event,
such as a (possibly simplified) integrity constraint; finally, if the condition is satisfied,
they execute some action, such as aborting the transaction or repairing the database.
The main drawback of current trigger-based solutions is that triggers are generated by
hand and are typically very difficult to maintain. Approaches based on automatic or
semi-automatic generation of triggers for constraint maintenance have appeared since the
1990s [46].

In some scenarios, a temporary violation of integrity constraints may be accepted
provided that consistency is quickly repaired; if, by nature of the database application,
the data are particularly unreliable, inconsistencies may be even considered unavoidable.
Approaches that cope with the presence of inconsistencies are commonly referred to as
paraconsistent (see, e.g., [72]). In this direction, a problem that has been studied in the
literature is that of allowing inconsistencies to occur in databases but to filter the data
during query processing so as to provide a consistent query answer [10], i.e., the set of
tuples that answer a query in all possible repairs (of course without actually having to

23

compute all the repairs).

24

Chapter 3

Simplification of Integrity

Constraints

This chapter formally specifies the simplification problem and defines the components of
a procedure that produces a simplification of integrity constraints with respect to a given
update pattern. The key ideas are based on the After and Optimize operations. The
former allows the construction of a schema that represents the given integrity constraints
in the state after the update, but applying to the current state; in this way, integrity can
be checked before performing the update. The latter aims to eliminate redundancies from
After’s output so as to speed up integrity checking.

In section 3.1 we formalize the simplification problem and we also characterize the
notion of ideal simplification, i.e., the ability of a simplification procedure to produce
results that are optimal according to some criterion. Then, in section 3.2, we describe a
procedure by means of transformations that can be used to achieve simplification in a non-
recursive database language called LS. Before assessing the quality of the results obtained
with the described transformations, we first explore the theoretical limits of simplification
procedures in general. In particular, in section 3.3, we show the relationship between
query containment and ideal simplification procedures. In section 3.4, we discuss different
criteria of “ideality” of simplification and describe their relationship with efficiency of
evaluation of integrity constraints. In section 3.5, we identify the cases in which the
simplification procedure described for LS behaves ideally and add some considerations
about the complexity. Finally, we conclude the chapter by discussing related work.

3.1 The simplification problem

As discussed in the previous chapter, our goal is to produce a series of checks that can
be evaluated in the present database state and tell whether the database will remain
consistent after a prospective update has been performed. This is achieved in two steps.
First we produce a new constraint theory that holds in the present state if and only
if the original integrity constraints hold following the update. Then we attempt to re-
move redundancies from the new theory possibly by exploiting the hypothesis that the

25

database was consistent before the update; the obtained theory, as mentioned, is called a
simplification.

In this section we discuss the conditions that must be satisfied in order to achieve
a simplification of a constraint theory with respect to a given update pattern; later, in
section 3.2, we present a concrete simplification framework that operates in terms of
syntactic transformations of integrity constraints.

3.1.1 Weakest preconditions

As already emphasized, it is important to be able to test that a prospective database
update does not violate the integrity constraints — without actually executing the update,
i.e., a test is needed that can be checked in the present state but indicating properties of
the prospective new state. A semantic correctness criterion for such a test is given by the
notion of weakest precondition.

Definition 3.1.1 (Weakest precondition) Let S = 〈IDB,Γ〉 be a schema and U an
update. A schema S′ = 〈IDB′,Γ′〉 compatible with S is a weakest precondition (WP) of S
with respect to U whenever D |= Γ′ ⇔ DU |= Γ for any database D based on IDB∪ IDB′.

As also noticed by Qian [143], this definition of WP is similar to the standard axiom
for defining assignment statements in a programming language, whose side effects are
analogous to a database update. Hoare’s [101] original version of the axiom used only
implication from pre- to postcondition; the notion of weakest precondition that we need
is due to Dijkstra [75]. This definition is here given in terms of schemata instead of
constraint theories, since new intensional predicates might be needed in order to properly
characterize a WP; conversely, in other cases, some predicates originally defined in IDB
might be irrelevant for that purpose. The notion of schema compatibility ensures that no
predicate name clashes occur between the original constraint theory and that of a WP.
In the remainder of the thesis, whenever the IDB is clear from the context, we shall omit
it when indicating a schema or database; in these cases a WP may be simply written as
a constraint theory.

It is also important to notice that parametric updates can result in WPs that may be
parametric.

The notion of weakest precondition is a sufficient but coarse semantic correctness
condition for integrity checks to be performed before an update. In order to also employ
the knowledge that the database is consistent before each update, we extend the class of
checks of interest as follows.

Definition 3.1.2 (Conditional weakest precondition) Let S = 〈IDB,Γ〉 be a schema
and U an update. A schema S′ = 〈IDB′,Γ′〉 compatible with S is a conditional weakest
precondition (CWP) of S with respect to U whenever D |= Γ′ ⇔ DU |= Γ for any database
D based on IDB ∪ IDB′ and consistent with Γ.

A WP is also a CWP but the reverse does not necessarily hold. In fact, we expect that
the optimal condition in many cases is among those CWPs that are not WPs.

Example 3.1.3 Consider U1 and IDB1 from example 2.2.22 and let Γ1 be the constraint
theory {← p(X) ∧ q(X)} stating that p and q are mutually exclusive. Then {← q(a)} is
a CWP (but not a WP) of Γ1 with respect to U1.

26

The following simple but important property indicates how parameters interact with these
notions and follows directly from definition 3.1.2.

Proposition 3.1.4 Let S and S′ be schemata, U a parametric update, and π a parameter
substitution for the parameters in U . If S′ is a CWP of S with respect to U then S′π is
a CWP of S with respect to Uπ.

This indicates that it is meaningful to consider general procedures searching for CWPs
that are used so to speak “statically” on parametric updates corresponding to update
patterns allowed by the database designer before the database contains any data.

3.1.2 Definition of simplification and ideal simplification

A CWP is a necessary and sufficient condition for consistency of a database in the updated
state to be checked in the state prior to the update. In order to qualify as a simplification,
a CWP should be considered preferable than any non-optimized WP.

For this purpose, we assume, for any schema S and update U , the existence of a fixed
reference schema S̄U representing a non-optimized WP of S with respect to U ; we will
show the construction of such a WP in section 3.2. We further assume an ordering to sort
the different CWPs so that the smallest element in this ordering represents an optimum.
For such orderings, we state here a set of natural requirements that are used in our proofs;
in section 3.4, we will review several different orderings.

Definition 3.1.5 An ordering between schemata is a reflexive and transitive binary re-
lation ¹. The ordering is enumerative if, for any two schemata S and S′:

1. 〈∅, ∅〉 ¹ S.

2. It is decidable whether S ¹ S′.

3. S 6= S′ iff either S ≺ S′ or S′ ≺ S (S ≺ S′ means S ¹ S′ but not S′ ¹ S).

4. For a given S, the set {S′′ | S′′ ¹ S} is finite and the schemata in it can be
enumerated.

In order to have conditions 3 and 4 satisfied in interesting cases it is essential to consider as
identical any two expressions that differ only by a consistent renaming of bound variables
or differ for orders of commutative and associative operators. Unless differently stated,
we always refer to enumerative orderings; see section 3.4 for further discussion.

Definition 3.1.6 (Simplification) A function from a schema S and an update U to an-
other schema S′ is called a simplification function for an ordering ¹, written SimpU (S) =
S′, whenever

• S′ is a CWP of S with respect to U (and thus S′ is compatible with S),

• S′ ¹ S̄U .

27

Schema S′ is called a simplification of S wrt U . We say that a simplification is ideal
whenever there is no other schema S′′ that is a CWP of S with respect to U such that S′′ ≺
S′. A simplification function is ideal if, for any S,U , SimpU (S) is an ideal simplification
of S wrt U .

A(n ideal) simplification procedure is an algorithm that implements a(n ideal) simpli-
fication function.

According to this definition, any CWP that is at least as small as S̄U in the ¹ ordering
is considered a simplification; the minimal one, among those, is the ideal simplification.
This distinction makes sense because, as we shall see, it is not always possible to obtain
an ideal simplification in all cases, but even a non-ideal simplification can be a significant
improvement with respect to a non-optimized WP. This is particularly important when
the ordering somehow reflects the effort of checking the satisfaction of the constraint
theory in any database state: ideal simplifications do then express the best possible way
of checking integrity constraints. An immediate consequence of definitions 3.1.5 and 3.1.6
is that, if the update cannot affect the integrity, the ideally simplified constraint theory
must be ∅.

Proposition 3.1.7 Let U be an update and S = 〈IDB, IC〉 a schema such that, for any
database D based on IDB and consistent with IC, DU is also consistent with IC. Let Simp
be an ideal simplification procedure. Then SimpU (S) = 〈∅, ∅〉.

Proof Trivial, as the schema 〈∅, ∅〉 is a CWP of S with respect to U and is minimal with
respect to ¹ (first assumption on the ordering in definition 3.1.5). 2

As mentioned, simplification can be performed statically, but further simplification can
be achieved, in some cases, once the parameters are instantiated, even when the initial
simplification was ideal.

Example 3.1.8 Consider the following constraint theory and update:

Γ = {← p(X,Y) ∧ X 6= Y }

U = {p(X,Y) ⇐ p(X,Y) ∨ (X = a ∧ Y = b)}.

The schema S′ = 〈∅, {← a 6= b}〉 is a CWP of 〈∅,Γ〉 wrt. U; S′ is an ideal simplification
with respect to an enumerative ordering counting the number of literals in a constraint
theory, as S′ cannot be reduced to an expression with fewer literals. However, for π =
{a/c,b/c} we get S′π ≡ 〈∅, ∅〉 ≺ S′π (by assumptions 1 and 3 on ≺ in definition 3.1.5).

We introduce later in proposition 3.1.13 a simple correction for the indicated problem.
When the IDB is clear from the context, we may omit it and write more simply that

SimpU (Γ) = Γ′, where Γ and Γ′ are constraint theories. If U is parametric, the resulting
Γ′ may be parametric. Note, however, that Γ′ is not necessarily parametric even though
U is. This happens, for instance, when U does not affect Γ or when (in)equalities between
parameters become eliminable, as in example 3.1.9.

Example 3.1.9 Consider the constraint theory Γ = {← p(X,Y) ∧ X 6= Y } and the
parametric update U = {p(X,Y) ⇐ p(X,Y) ∨ (X = a ∧ Y = a)}. Then Γ′ = ∅ is a
(non-parametric) CWP of Γ with respect to U .

28

3.1.3 Simplification based on optimization

The basic idea in our approach to produce simplified integrity constraints is to start with
the reference schema and optimize it as much as possible.

Definition 3.1.10 (Conditional equivalence) Let S∆ = 〈IDB∆,∆〉, S = 〈IDB,Γ〉,
S′ = 〈IDB′,Γ′〉 be compatible schemata. Then S and S′ are conditionally equivalent

with respect to S∆, denoted S
S∆

≡ S′, if D |= Γ ⇔ D |= Γ′ in any database D based on
IDB∆ ∪ IDB ∪ IDB′ and consistent with ∆.

Conditional equivalence characterizes the class of constraint theories/schemata that are
equivalent under the hypothesis that another constraint theory/schema holds. In defini-
tion 3.1.10, S∆ typically includes the constraints to be simplified and may also contain
other hypotheses that are trusted. Now we can precisely specify the notion of optimization
with respect to given hypotheses.

Definition 3.1.11 An optimization function takes two schemata S∆ and S and produces
another schema S′, written OptimizeS∆(S) = S′, such that

• S
S∆

≡ S′

• S′ ¹ S

• OptimizeS∆(S′) = S′, i.e., the function is idempotent.

An optimization function is ideal whenever there is no other schema S′′ S∆

≡ S such that
S′′ ≺ S′. An (ideal) optimization procedure is an algorithm that implements an (ideal)
optimization function.

Proposition 3.1.12 follows immediately from the definitions.

Proposition 3.1.12 For a given optimization function (procedure) Optimize, the func-
tion (procedure) defined by

S 7→ OptimizeS(S̄U)

is a simplification function (procedure). If Optimize is an ideal function (procedure), so
is the indicated simplification function (procedure).

We end this section showing how an extra round of optimization can repair the slight
lack of perfection in the application of (even ideal) simplification for parametric updates
indicated in example 3.1.8.

Proposition 3.1.13 Let S = 〈IDB,Γ〉 be a schema, U a parametric update, and π a
parameter substitution for the parameters in U . Assume an ideal simplification procedure
Simp and an ideal optimization procedure Optimize. Then OptimizeS((SimpU (S))π) is a
minimal CWP of S with respect to Uπ.

Proof Let S′ = SimpU (S). By proposition 3.1.4 we have that S′π is a CWP of S with
respect to Uπ. By definition 3.1.11, OptimizeS(S′π) is minimal according to ≺. 2

29

G1 m⊥ − ms∗1

mp1

mr1
¾ ¾

6

G2m⊥ − −mq2
ms∗2

mp2

mr2
¾ ¾ ¾

6
t2m
6

Figure 3.1: The starred dependency graphs for the schemata of example 3.2.2.

3.2 Transformations of integrity constraints

We start this section by formally characterizing a language, that we call LS, on which
a core simplification procedure can be applied. The language LS is described in section
3.2.1. Later, in section 3.2.2, we show a procedure, called After, that, for any given
schema S and update U , effectively generates the reference weakest precondition S̄U that
was only assumed to exist in the previous section. This procedure is then refined for
schemata and updates in LS. In section 3.2.3, we give a concrete implementation for the
operators Optimize and Simp for the language LS. Their usage is then demonstrated in
several examples. Finally, in section 3.2.4 we further discuss differences between pre-tests
and post-tests.

3.2.1 The language LS

We introduce now a few technical notions that are needed in order to precisely identify
the class of predicates, integrity constraints and updates that are part of LS, which is a
non-recursive function-free language equipped with negation.

Definition 3.2.1 (Starred dependency graph) Let S = 〈IDB,Γ〉 be a schema in
which the IDB consists of a set of disjunctive (range restricted) predicate definitions and
Γ is a set of range restricted denials. Let G be a graph that has a node Np for each
predicate p in S plus another node named ⊥, and no other node; if p’s defining formula
has non-distinguished variables, then Np is marked with a “*”. For any two predicates
p and p′ in S, G has an arc from Np to Np′

for each occurrence of p in an IDB rule in
which p′ occurs in the head; similarly, there is an arc from Np to ⊥ for each occurrence
of p in the body of a denial in Γ. In both cases the arc is labelled with a “−” (and said to
be negative) iff p occurs negatively. G is the starred dependency graph for S.

Example 3.2.2 Let S1 = 〈IDB1,Γ1〉 and S2 = 〈IDB2,Γ2〉 be schemata with

IDB1 = { s1(X) ← r1(X,Y)},
Γ1 = { ← p1(X) ∧ ¬s1(X)},

IDB2 = { s2(X) ← r2(X,Y),
q2(X) ← ¬s2(X) ∧ t2(X)},

Γ2 = { ← p2(X) ∧ ¬q2(X)}.

The starred dependency graphs G1 and G2 of, respectively, S1 and S2 are shown in figure
3.1.

Definition 3.2.3 (LS) Let S = 〈IDB,Γ〉 be a database schema in which the IDB consists
of a set of disjunctive predicate definitions and Γ is a set of range restricted denials. Then
S is in LS if:

30

1. its starred dependency graph G is acyclic;

2. in every path in G from a starred node to ⊥ the number of arcs labelled with “−” is
even.

Consider an update U for S of the form {p1(~X1) ⇐ q1(~X1), . . . , pm(~Xm) ⇐ qm(~Xm)},
where the qi’s are intensional predicates in S. Then U is in LS with respect to S if the
graph obtained from G by adding an arc from Nqi to Npi , for 1 ≤ i ≤ m, still satisfies
condition 2 above.

The acyclicity of the starred dependency graph corresponds to the absence of recursion
in the database. The second condition in definition 3.2.3 requires that the unfolding
of the intensional predicates in the constraint theory with respect to their definitions
does not introduce any negated existentially quantified variable, as explained below. A
similar requirement is imposed when the database is updated. In particular, starred nodes
correspond to literals with non-distinguished variables, that are existentially quantified;
therefore, in order to avoid negated existential quantifiers, that cannot be represented in
LS denials, the number of encountered “−” signs must be even, as an even number of
negations means no negation.

Example 3.2.4 Consider S1 and S2 from example 3.2.2. Clearly S1 is not in LS, as in
its starred dependency graph G1 in figure 3.1 there is a path from s∗1 to ⊥ containing one
“−” arc. On the contrary, S2 is in LS, as in G2 the only path from s∗2 to ⊥ contains two
“−” arcs.

In semi-positive schemata, negation can only occur before extensional predicates. There-
fore, in the dependency graph of a semi-positive schema, no path from a starred node to ⊥
can contain negative arcs. This indicates that the language of non-recursive semi-positive
schemata is contained in LS. In fact, the containment is strict, since, e.g., schema S2 is
in LS, but is not semi-positive. According to these considerations, the class of schemata
captured by LS is already sufficiently broad as to include many practically relevant cases.
The extension to more expressive languages will be considered in chapter 4.

3.2.2 Generating weakest preconditions

The following straightforward syntactic transformation After translates a constraint the-
ory A referring to the updated database state into another constraint theory B that holds
in the present state if and only if A holds following the update. In other words, After
generates a WP.

Definition 3.2.5 (After) Let S = 〈IDB,Γ〉 be a schema and U an update such that, for

each predicate update p(~X) ⇐ pU (~X) in U , pU is defined in IDB.

• Let us indicate with ΓU a copy of Γ in which any atom p(~t) whose predicate is

affected by a predicate update p(~X) ⇐ pU (~X) in U is simultaneously replaced by the
expression pU (~t) and every intensional predicate q is simultaneously replaced by a
new intensional predicate qU defined in IDBU below.

31

• Similarly, let us indicate with IDBU a copy of IDB in which the same replacements
are simultaneously made, and let IDB∗ be the biggest subset of IDB∪IDBU including
only definitions of predicates on which ΓU depends.

We define AfterU (S) = 〈IDB∗,ΓU 〉.

The IDBU used in the construction of definition 3.2.5 indicates auxiliary views that are
needed in order to properly characterize the resulting constraint theory. As we shall see,
often no such views are strictly necessary, whereas, in some other cases, they cannot
be avoided; in the former case, when this is clear from the context, we may omit the
specification of the intensional database from schemata. The definition given here is not
limited to constraint theories in LS; we specialize it for LS in definition 3.2.13.

We notice the following trivial property which is paramount for our use of parameters.

Proposition 3.2.6 Let S be a schema, U an update, and π a parameter substitution.
Then (AfterU (S))π ≡ AfterUπ(S).

Proof The claim holds by construction: the parameters present in U are included in
pU ’s defining formula for each predicate update p(~X) ⇐ pU (~X) in U . No pU definition
is modified by After. The effect of applying π either to U or to AfterU (S) is therefore to
replace the parameters in each pU definition. But the construction in (AfterU (S))π and
in AfterUπ(S) is the same. The results are, thus, identical. 2

Example 3.2.7 Consider the updates and IDB definitions of example 2.2.22 on page
17. Let schema S1 be 〈IDB1,Γ1〉, where Γ1 = {← p(X) ∧ q(X)} states that p and q are
mutually exclusive. We have AfterU1(S1) = 〈IDB1,Γ

U1

1 〉, where:

ΓU1

1 = {← p′(X) ∧ q(X)}.

Note that the occurrence of p′(X) in ΓU1

1 can be replaced by its defining formula without
affecting the semantics of ΓU1

1 . As mentioned, we may therefore omit the intensional
database and more conveniently represent the final result of the After transformation as
follows

AfterU1(Γ1) = Σ = { ← p(X) ∧ q(X),
← X = a ∧ q(X) },

observing that AfterU1(S1) ≡ 〈∅,Σ〉. Here the disjunction in U1 was split in two clauses
that only contain conjunctions as to conform to the denial format for integrity constraints.

For Γ2 = {← r(b,X) ∧ q(X)} and update U2 we get in a similar way the following.

AfterU2(Γ2) = { ← r(b,X) ∧ b 6= a ∧ q(X),
← r(a,X) ∧ b = b ∧ q(X) }.

As above, the operation resulted in a disjunction that was split into two denials. Note
that b 6= a and b = b are consequences of the free equality axioms and could be removed.

32

However, when applying instead the parametric update U3 to Γ2 we cannot remove equal-
ities and non-equalities, as they evaluate to different truth values depending on different
instantiations of the parameters. We get:

AfterU3(Γ2) = { ← r(b,X) ∧ b 6= a ∧ q(X),
← r(a,X) ∧ b = b ∧ q(X) }.

If the parameters a, b are respectively instantiated to the two constants a and b, the
result can be reduced to AfterU2(Γ2). In case both parameters are instantiated to the same
constant a, the result collapses to Γ2 which is consistent with the observation that the
update in this case is neutral.

The following example shows that After may introduce new predicates that cannot be
eliminated from the resulting constraint theory by replacing them with their defining
formula, as is the case in example 3.2.8 below.

Example 3.2.8 Let D be a database containing information about the nodes of a directed
graph. The extensional relation e/2 contains pairs of nodes that are connected by a directed
arc. Directed paths between two nodes are expressed by the recursive intensional relation
p/2 defined by the following rules:

IDBp = { p(X,Y) ← e(X,Y),
p(X,Y) ← e(X,Z) ∧ p(Z, Y) }.

Acyclicity of the graph can be imposed with the following constraint theory

Γ = {← p(X,X)},

indicating that there must be no path from a node to itself. Let U = {e(X,Y) ⇐ e′(X,Y)}
be an update pattern that adds the tuple 〈a,b〉 to relation e, where a and b are parameters
and e′ is defined as follows.

IDBe′

= { e′(X,Y) ← e(X,Y),
e′(X,Y) ← X = a ∧ Y = b }.

Let IDB = IDBp ∪ IDBe′

and S be the schema 〈IDB,Γ〉 (which is not in LS). Then
AfterU (S) = 〈IDBU ,ΓU 〉, where

IDBU = { pU (X,Y) ← e(X,Y),
pU (X,Y) ← X = a ∧ Y = b,
pU (X,Y) ← e(X,Z) ∧ pU (Z, Y),
pU (X,Y) ← X = a ∧ Z = b ∧ pU (Z, Y) },

ΓU = { ← pU (X,X) }.

In this case, pU is recursively defined and therefore it is not possible to disregard IDBU

by replacing occurrences of pU in ΓU with its defining formula.

The treatment of such recursive cases will be described in chapter 4.
The characteristic property of the After transformation is that of producing a WP.

33

Proposition 3.2.9 Let S be a schema and U an update. Then AfterU (S) is a WP of S
with respect to U .

Proof Trivially AfterU (S) is compatible with S, as only new intensional predicates are
introduced. Assume S = 〈IDB,Γ〉; assume for now that neither U nor S contain param-
eters. Let D be a database based on IDB ∪ IDBU . By construction, we have that

1. for any database predicate p in Γ, its extension in DU coincides with the extension
of pU in D.

Hence the claim DU |= Γ ⇔ D |= ΓU .
To see that (1) is the case, we note that:

• If p is extensional, (1) coincides with the definition of update.

• If p is intensional, then pU in IDBU is defined exactly as p in IDB modulo renaming
of predicates (adding superscript U). As claim (1) holds for the first stratum of the
standard model (extensional predicates, by the previous point) and the rules are
isomorphic, the argument can be repeated for the second stratum, and so on for all
strata.

To see that this generalizes to the case where U contains parameters, observe that the
arguments above hold for any instance of U and that AfterUπ(S) ≡ (AfterU (S))π for any
parameter substitution π by proposition 3.2.6. 2

Since a WP is also a CWP, the result produced by After is also trivially a CWP. However,
the hypothesis of consistency of the database in the original state is not used at all in
the calculation of After, so we may assume that the reference WP S̄U of a schema S with
respect to update U is given by AfterU (S). Therefore, a simplification procedure must
produce results that are at least as good (wrt. ¹) as those produced by After. We note
that, in some trivial cases, the result of the After transformation itself can be an ideal
simplification, e.g., when the initial constraint theory is ∅.

The After operator simultaneously replaces all occurrences of an updated predicate
with the corresponding query and possibly performs some equivalence-preserving trans-
formations. For LS, we can specialize the After transformation so as to use unfolding
[26] to repeatedly replace every intensional predicate by its definition until only exten-
sional predicates appear in the constraint theory. These replacements may determine
the presence of disjunctions and negated conjunctions in the formula. The denial form
needs then to be restored in order for the database language to be closed under the After
transformation. For this purpose, we use the UnfoldLS

operator below, which is defined
in terms of unification and syntactic simplifications based on de Morgan’s laws to remove
all disjunctions and negated conjunctions.

Definition 3.2.10 (Unfolding) Let S = 〈IDB,Γ〉 be a database schema in LS. Then,
UnfoldLS

(S) is the schema 〈∅,Γ′〉, where Γ′ is the set of denials obtained by iterating the
two following steps as long as possible:

1. replace, in Γ, each occurrence of an atom of the form p(~t) by F p{ ~X/~t}, where

p ∈ pred(IDB), F p is p’s defining formula and ~X its distinguished variables. If no
replacement was made, then stop;

34

2. transform the resulting formula into a set of denials according to the following pat-
terns:

• ← A ∧ (B1 ∨ B2) is replaced by ← A ∧ B1 and ← A ∧ B2;

• ← A ∧ ¬(B1 ∨ B2) is replaced by ← A ∧ ¬B1 ∧ ¬B2;

• ← A ∧ ¬(B1 ∧ B2) is replaced by ← A ∧ ¬B1 and ← A ∧ ¬B2.

Due to the implicit outermost universal quantification of the variables, non-distinguished
variables in a predicate definition are existentially quantified to the right-hand side of
the arrow, as shown in example 3.2.11 below. For this reason, with no indication of
the quantifiers, the replacements in definition 3.2.10 preserve equivalence iff no predicate
containing non-distinguished variables occurs negated in the resulting expression.

Example 3.2.11 Consider S1 from example 3.2.2, which, as shown, is not in LS. With
the explicit indication of the quantifiers we have

IDB1 ≡ {∀X(s1(X) ← ∃Y r1(X,Y))}.

The replacement, in Γ1, of s1(X) by its definition in IDB1 would determine the formula

Γ′
1 = {∀X,Y (← p1(X) ∧ ¬r1(X,Y))}.

However, this replacement is not equivalence-preserving, because a predicate (r1) contain-
ing a non-distinguished variable occurs negated:

Γ1 ≡ {∀X(← p1(X) ∧ ¬∃Y r1(X,Y))} 6≡ Γ′
1.

An extension of the language to cases where ¬∃ may occur in denials is discussed in
chapter 4.

The language LS is closed under unfolding and UnfoldLS
preserves equivalence.

Proposition 3.2.12 Let S = 〈IDB,Γ〉 ∈ LS. Then UnfoldLS
(S) ∈ LS and UnfoldLS

(S) ≡
S.

Proof Each iteration in definition 3.2.10 preserves range restriction: if an atom p(~t) oc-
curs negatively, then, by condition 2 in definition 3.2.3, it is replaced by an expression that
does not contain any extra (non-distinguished) variable not in ~t; if it occurs positively, then
it is replaced by the body of a range restricted rule. The constraint theory in UnfoldLS

(S)
is a set of denials not containing intensional predicates, and therefore UnfoldLS

(S) ∈ LS.
Furthermore, each iteration in definition 3.2.10 is equivalence-preserving. In step 1, con-
dition 2 in definition 3.2.3 ensures that each predicate containing non-distinguished vari-
ables is preceded by an even number of ¬ signs, and thus not negated; step 2 is a collection
of trivial equivalence-preserving rewrites. 2

The After transformation can now be refined for LS, by unfolding the resulting theory.

Definition 3.2.13 Let S ∈ LS and U be an update in LS with respect to S. We define
AfterULS

(S) as UnfoldLS
(AfterU (S)).

35

The closure of LS under AfterLS
follows immediately from the definitions and proposition

3.2.12 and is, thus, stated without a proof.

Proposition 3.2.14 (Closure of LS under AfterLS
) Let S ∈ LS and U be an update in

LS with respect to S; then AfterULS
(S) ∈ LS.

In the following, when IDB is understood or empty, we indicate the constraint theory
instead of the schema in AfterLS

.

Example 3.2.15 Consider a database containing information about marriages, where
the binary predicate m indicates that a husband (first argument) is married to a wife
(second argument). We expect for this database updates of the form U = {m(X,Y) ⇐
mU (X,Y)}, where mU is a query defined by the predicate definition mU (X,Y) ← m(X,Y)
∨(X = a∧Y = b), i.e., U is the addition of the tuple 〈a,b〉 to m. The following integrity
constraint is given:

φ = ← m(X,Y) ∧ m(X,Z) ∧ Y 6= Z

meaning that no husband can be married to two different wives. Following definition
3.2.13 in the calculation of AfterULS

({φ}), first each occurrence of m is replaced by mU ,
obtaining

← mU (X,Y) ∧ mU (X,Z) ∧ Y 6= Z.

Then UnfoldLS
is applied to this integrity constraint. The first step of definition 3.2.10

generates the following:

{← (m(X,Y) ∨ (X = a ∧ Y = b)) ∧ (m(X,Z) ∨ (X = a ∧ Z = b)) ∧ Y 6= Z}.

The second step translates it to clausal form:

AfterULS
({φ}) = { ← m(X,Y) ∧ m(X,Z) ∧ Y 6= Z,

← m(X,Y) ∧ X = a ∧ Z = b ∧ Y 6= Z,
← X = a ∧ Y = b ∧ m(X,Z) ∧ Y 6= Z,
← X = a ∧ Y = b ∧ X = a ∧ Z = b ∧ Y 6= Z }.

Example 3.2.16 We shall now consider an example of referential integrity, where a
relation f (father) is only meaningful if its first argument (the father) is recorded in a
relation p (person) with a specific constant value concerning the gender (m for “male”):

φ = ← f(X,Y) ∧ ¬p(X,m).

The following U and IDB indicate an update transaction adding a father/child tuple 〈a,b〉
to f and a tuple indicating that a’s gender is “male” to p.

U = {f(X,Y) ⇐ fU (X,Y), p(X,Y) ⇐ pU (X,Y)},

IDB = { fU (X,Y) ← f(X,Y) ∨ (X = a ∧ Y = b),
pU (X,Y) ← p(X,Y) ∨ (X = a ∧ Y = m) }.

We have:

AfterULS
({φ}) = { ← X = a ∧ Y = b ∧ X 6= a ∧ ¬p(X,m),

← X = a ∧ Y = b ∧ m 6= m ∧ ¬p(X,m),
← f(X,Y) ∧ X 6= a ∧ ¬p(X,m),
← f(X,Y) ∧ m 6= m ∧ ¬p(X,m) }.

36

3.2.3 Simplification in LS

The theory returned by AfterLS
refers to extensional predicates only, so, from now on, the

IDB component of a database can be completely disregarded.
Clearly, the result returned by AfterLS

may contain redundant denials and sub-formulas
(such as, e.g., a = a). Moreover, the fact that the original integrity constraints hold in the
current database state can be used to achieve further simplification. For this purpose, we
define a transformation OptimizeLS

that optimizes a given constraint theory using a set
of trusted hypotheses. Typically, the input to OptimizeLS

is AfterLS
’s output theory and

the hypotheses are AfterLS
’s input theory. We describe here an implementation in terms

of sound and terminating rewrite rules. An application of a rewrite rule to a constraint
theory always produces a theory that has fewer literals1. OptimizeLS

applies the rules
as long as possible in order to remove from the input theory all denials and all literals
that, with the hypotheses, can be proved to be redundant. Termination is then guaran-
teed, since the size of the theory is reduced at each rule application and the conditions of
applicability of the rules are based on decidable criteria.

Subsumption, reduction and resolution as constraint modification tools

We introduce in this subsection a series of syntactic tools that will be used to compose
the optimization step of the simplification procedure.

Definition 3.2.17 (Subsumption) Given two denials D1 and D2, D1 subsumes D2

(with substitution σ) iff there is a substitution σ such that each literal in D1σ occurs in
D2. The subsumption is strict if D1 is not a variant of D2.

The subsumption algorithm (see, e.g., [94]), besides checking subsumption, also returns
such substitution σ and, for convenience, with the symbols of the definition above, we
say that D1 subsumes D2 with substitution σ.

Example 3.2.18 The denial ← p(X,Y) ∧ q(Y) (strictly) subsumes ← p(X, b) ∧ X 6=
a ∧ q(b) with substitution {Y/b}.

The definition of subsumption is syntactic but has the semantic property that the sub-
suming denial implies the subsumed one. We also note that an ordering of denials based
on strict subsumption is well-founded, i.e., there is no infinite descending chain φ1, φ2, . . .
such that φ1 is strictly subsumed by φ2, φ2 by φ3, and so on, since the initial denial is
finite.

The notion of reduction [93] characterizes the elimination of redundancies within a
single denial.

Definition 3.2.19 (Reduction) For a denial φ, the reduction φ− of φ is the result of
applying on φ the following rules as long as possible, where L is a literal, c1, c2 are distinct
constants, X a bound variable, t a term, A an atom, C, D (possibly empty) conjunctions

1To be precise, the produced theory is either strictly smaller or its expansion is strictly smaller than
the expansion of the original theory. See below in the text and definition 3.2.28.

37

of literals and vars indicates the set of bound variables occurring in its argument.

← L ∧ C ⇒ ← C if L is of the form t = t or c1 6= c2

← L ∧ C ⇒ true if L is of the form t 6= t or c1 = c2

← X = t ∧ C ⇒ ← C{X/t}
← A ∧ ¬A ∧ C ⇒ true

← C ∧ D ⇒ ← D if ← C subsumes ← D with a substitution σ s.t.
dom(σ) ∩ vars(D) = ∅

Clearly, for any denial φ we have φ− ≡ φ and the number of literals in φ− is less than the
number of literals in φ. Obviously, an ordering of denials based on the number of literals
is well-founded, i.e., there is no infinite descending chain φ1, φ2, . . . such that φ1 has more
literals than φ2, φ2 has more literals than φ3, and so on, since the initial denial is finite.
The last rewrite rule is called subsumption factoring [77] and includes the elimination of
duplicate literals from a denial as a special case. We also note that each rule preserves
range restriction. In the last rule, a variable occurring in a negative literal in D and
in a positive literal in C also occurs in a positive literal in D, otherwise this variable
would be in dom(σ). An additional rule for handling parameters may be considered in
the reduction process:

← a = c1 ∧ C ⇒ ← a = c1 ∧ C{a/c1} (3.1)

This may replace parameters with constants and possibly allow further reduction. For
example, the denial ← a = c ∧ b = a would be transformed into ← a = c ∧ b = c, and,
thus, into true, since b and c are different constants. However, rule 3.1 does not reduce
the number of literals, which is a condition for termination that we use in the proofs to
follow. To this end, we may assume that rule 3.1 is applied before the other reduction
rules and that each equality between a parameter and a constant is only processed once.

Although, in most cases, reduction eliminates all redundancies from a denial, this may
not happen in the presence of parameters. For example, the denial

← a 6= b ∧ b = c ∧ c = d ∧ d = a

is clearly a consequence of the free equality axioms, but reduction leaves it unchanged.
To detect this redundancy, a transitivity axiom is needed, as will be discussed in section
3.5.2.

We now briefly recall the definition of resolvent and derivation for the well-known
principle of resolution in the context of clauses with logical negation (¬`); we refer to
[146, 50] for other standard related notions. To stress that the usual context of application
of resolution is not that of deductive databases, we first state the following definition for
clauses expressed as sets of literals of the form {L1, . . . , Ln}, as shown on page 9.

Definition 3.2.20 Let C1 and C2 be two clauses (called parent clauses) with no variables
in common. Let L1 and L2 be two literals in C1 and C2, respectively. If L1 and ¬`L2

have an mgu σ, then the clause (C1σ \{L1σ})∪ (C2σ \{L2σ}) is called a binary resolvent
of C1 and C2. The literals L1 and L2 are called the literals resolved upon.

If two or more literals of a clause C have an mgu σ, then Cσ is called a factor of C.
A resolvent of (parent) clauses C1 and C2 is one of the following binary resolvents:

38

1. a binary resolvent of C1 and C2,

2. a binary resolvent of C1 and a factor of C2,

3. a binary resolvent of a factor of C1 and C2,

4. a binary resolvent of a factor of C1 and a factor of C2.

The resolution principle is a sound inference rule, in that a resolvent is a logical conse-
quence of its parent clauses. In the context of denials with default negation the notion of
binary resolvent can be formulated as in definition 3.2.21, where, apart from the different
syntactic representation, the ¬ symbol replaces the ¬` symbol. The notions of factor and
resolvent for denials with default negation are the same as those for clauses with logical
negation.

Definition 3.2.21 Let φ′
1 = ← L1 ∧ · · · ∧Lm, φ′

2 = ← M1 ∧ · · · ∧Mn be two standardized
apart variants of denials φ1, φ2. If θ is a mgu of {Li,¬Mj} then the clause

← (L1 ∧ · · · ∧ Li−1 ∧ Li+1 ∧ . . . Lm ∧ M1 ∧ · · · ∧ Mj−1 ∧ Mj+1 ∧ · · · ∧ Mn)θ

is called a binary resolvent of φ1 and φ2 and Li,Mj are said to be the literals resolved
upon.

The resolution principle as defined in definition 3.2.20 relies on the fact that the literals
resolved upon are “complementary” in the sense of logical negation. In definition 3.2.21
the literals resolved upon are not complementary in the same sense. Therefore we prove
below that resolution is sound also in the context of range restricted denials with default
negation, i.e., if two denials are satisfied in a given standard model M , then their resolvent
is also satisfied in M .

Proposition 3.2.22 Let φ1, φ2 be denials and I an interpretation such that |=I φ1 and
|=I φ2. Let φ be a resolvent of φ1 and φ2. Then |=I φ.

Proof Assume that φ1 = ← L1 ∧ · · · ∧ Lm and φ2 = ← M1 ∧ · · · ∧ Mn are standardized
apart (as φ′

1 and φ′
2 in definition 3.2.21) and θ is a mgu of {Li,¬Mj}. Assume, for now,

that φ1 and φ2 are ground. To satisfy the parent clauses, I has to dissatisfy at least one
literal in each of them. Let us first consider the case in which I dissatisfies Li. Then it
cannot dissatisfy Mj in φ2 (Li = ¬Mj in the ground case) and hence dissatisfies one of
the Mk’s, k 6= j. This literal belongs to the resolvent, which is therefore also satisfied. In
the other case, I satisfies Li and the proof is symmetric.

Suppose now that φ1 and φ2 are not ground. We show that every ground instance of
φ holds in I. Let σ be a grounding substitution for φ. Then, by construction, φσ is a
resolvent of φ1θσ and φ2θσ. Both φ1θσ and φ2θσ hold in I and both are ground, so the
proof reduces to the previous case. To see that they are ground, consider that σ grounds all
literals in φ1θ and φ2θ, except perhaps for Liθ and Mjθ. However the denials are range
restricted and thus all variables occurring in a negative literal also occur in a positive
literal in the body. Suppose Liθ is the negative literal. Then its variables must also occur
in other literals in φ1θ; but such literals are all grounded by σ, so Liθ is also grounded by
σ. Now, Mjθ has the same variables as Liθ, so it is also grounded by σ. 2

39

We note that if the parent clauses are range restricted, then the resolvent is also range
restricted [162], since the variables that occur in the positive literal resolved upon are
unified with the terms in the negative literal resolved upon, which are either constants,
parameters or range bound variables.

Definition 3.2.23 (Derivation) Let Γ be a constraint theory and φ a denial. A deriva-
tion of φ from Γ is a finite sequence of denials ψ1, . . . , ψk = φ, such that each ψi is either
in Γ or is a resolvent of two denials in {ψ1, . . . , ψi−1} and such that no two resolvents are
resolvents of the same denials or variants thereof. If such a derivation exists, we write
Γ `r φ. A derivation of the empty clause from Γ is called a refutation of Γ.

Definition 3.2.24 (Deduction) Let Γ be a constraint theory and φ a denial. There is
a deduction of φ from Γ, written Γ `d φ if there exists a denial ψ such that Γ `r φ and
ψ subsumes φ.

We also refer to the notion of expansion [48]: the expansion of a clause consists
in replacing every constant or parameter in a database predicate (or variable already
appearing elsewhere in database predicates) by a new variable and adding the equality
between the new variable and the replaced item. We indicate the expansion of a (set of)
denial(s) with a “+” superscript.

Example 3.2.25 Let φ = ← p(X, a,X). Then φ+ = ← p(X,Y,Z) ∧ Y = a ∧ Z = X.

We now describe a resolution-based procedure that limits the size of each resolvent to the
size of the biggest denial in Γ.

Definition 3.2.26 For a constraint theory Γ in LS and a denial φ in LS, the notation
Γ `R φ indicates that there is a resolution derivation of a denial ψ from Γ+ such that in
each resolution step the resolvent has at most n literals and ψ− subsumes φ, where n is
the number of literals of the largest denial in Γ+.

The advantages and disadvantages of such a limit on the size of the resolvents in the
resolution proofs will be discussed in section 3.5.2. Informally, the motivation for this
choice is that the denials whose size is less than n are the only usable clauses for subsequent
elimination of literals by subsumption (and reduction).

Proposition 3.2.27 `R is sound and terminates on any input.

Proof Soundness follows from soundness of resolution and subsumption. Termination
follows from the fact that the set of denials in Γ+ is finite, so there is only a finite number
of clauses of at most n literals that can be generated by resolution steps in Γ+, as Γ+ is
function-free. 2

40

Optimization of integrity constraints

The tools introduced in the previous section can be used to compose a procedure that
eliminates redundant literals and denials from a given constraint theory Γ assuming that
another theory ∆ holds. Definition 3.2.28 below introduces an operator that allows us
to do this. Informally, `R , subsumption and reduction are used here to approximate
entailment; a discussion on how good an approximation is achieved will be provided in
section 3.5.2. In the following, the notation A t B indicates union of disjoint sets, i.e., it
denotes A ∪ B and indicates that A ∩ B = ∅.

Definition 3.2.28 Given two constraint theories ∆ and Γ in LS, Optimize∆
LS

(Γ) is the
result of applying the following rewrite rules on Γ as long as possible. In the following, φ,
ψ are denials in LS, Γ′ is a constraint theory in LS.

{φ} t Γ′ ⇒ Γ′ if φ− = true
{φ} t Γ′ ⇒ Γ′ if (Γ′ ∪ ∆) `R φ
{φ} t Γ′ ⇒ {φ−} ∪ Γ′ if φ 6= φ− 6= true
{φ} t Γ′ ⇒ {ψ−} ∪ Γ′ if ({φ} t Γ′ ∪ ∆) `R ψ and ψ− strictly subsumes φ

The first two rules attempt the elimination of a whole denial, whereas the last two try
to remove literals from a denial2. Notice that if the empty clause is produced during the
process, then OptimizeLS

returns false, as it subsumes every other denial.

Proposition 3.2.29 For any two constraint theories Γ and ∆ in LS, the execution of

Optimize∆
LS

(Γ) terminates. Furthermore the result is in LS and Γ
∆
≡ Optimize∆

LS
(Γ).

Proof Each condition of applicability in the rules of definition 3.2.28 is decidable, as
subsumption, reduction and `R are. Termination follows from the fact that each rule
in the procedure either reduces the number of literals in the constraint theory (first three
rules) or replaces a denial with one that strictly subsumes it (last rule), which is obviously
a well-founded ordering. Every rule preserves range restriction: the first two rules elim-
inate a whole denial; reduction preserves range restriction and so does each resolution
step. Denial form is also preserved, and therefore the result is in LS. By soundness of
subsumption, reduction and `R , all rules preserve ∆-conditional equivalence. 2

The simplification transformation for LS is straightforwardly defined in terms of AfterLS

and OptimizeLS
.

Definition 3.2.30 Let S = 〈IDB,Γ〉 ∈ LS and U be an update in LS with respect to S.
Let UnfoldLS

(S) = 〈∅,Γ′〉. We define

SimpU
LS

(S) = OptimizeΓ′

LS
(AfterULS

(S)).

From the previous results we get immediately the following.

2The last rule does not necessarily reduce the number of literals, but note that the expansion of the
replacing denial will anyhow contain fewer literals than the expansion of the original one.

41

Proposition 3.2.31 Let S ∈ LS and U be an update in LS with respect to S. Then
SimpU

LS
(S) is in LS and is a CWP of S with respect to U .

Example 3.2.32 Consider again the update and the constraint theory from example
3.2.15 on page 36, where we showed the transformation AfterULS

({φ}). In order to ob-

tain SimpU
LS

({φ}), we apply the rewrite rules of OptimizeLS
as follows. The reduction of

each denial in AfterULS
({φ}) generates the following set.

{ ← m(X,Y) ∧ m(X,Z) ∧ Y 6= Z,
← m(a, Y) ∧ Y 6= b,
← m(a, Z) ∧ b 6= Z }.

Then, the third denial is removed, as it is subsumed by the second one3. Similarly, the
first constraint is subsumed by φ and, thus, removed.

SimpU
LS

({φ}) = {← m(a, Y) ∧ Y 6= b}.

This result indicates that, for the database to be consistent after update U , husband a
must not be already married to a wife Y different from b.

Example 3.2.33 We continue example 3.2.32 and suppose now that no duplicate entries
are allowed in the database, i.e., ∆ = {← m(a,b)} is a trusted set of hypotheses when
update U is made. Then, using ∆, we can achieve further simplification, since ∆+ = {←
m(X,Y)∧X = a∧ Y = b} and with a resolution step with the expansion of the previous
result, i.e., {← m(X,Y) ∧ X = a ∧ Y 6= b}, we obtain

Optimize∆
LS

(SimpU
LS

({φ})) = {← m(a, Y)},

i.e., now we only need to check that a is not already married.

Example 3.2.34 Reconsider now the update and the constraint theory from example
3.2.16 on page 36. We have here:

SimpU
LS

({φ}) = ∅.

This indicates that database integrity cannot be violated by this update.

In the following example we show different combinations of tuple updates for predicates
occurring in positive and negative literals. In order to simplify the notation for tuple
additions and deletions, we write p(~a) as a shorthand for the database update p(~X) ⇐

p(~X) ∨ ~X = ~a and ¬p(~a) for p(~X) ⇐ p(~X) ∧ ~X 6= ~a.

Example 3.2.35 Consider the integrity constraint φ = ← p(X)∧ q(X)∧¬r(X), param-
eters a and b and constants a and b. The following transformations show how different

3Alternatively, the second constraint could be removed instead of the third one, as they subsume one
another.

42

instances of the parameters may modify the result of a parametric simplification.

Simp
{p(a),r(b)}
LS

({φ}) = {← q(a) ∧ ¬r(a) ∧ a 6= b}

Simp
{p(a),r(b)}
LS

({φ}) = {← q(a) ∧ ¬r(a)}

Simp
{p(a),r(a)}
LS

({φ}) = ∅

Simp
{p(a),¬r(b)}
LS

({φ}) = { ← q(a) ∧ ¬r(a),
← p(b) ∧ q(b),
← a = b ∧ q(a) }

Simp
{p(a),¬r(b)}
LS

({φ}) = { ← q(a) ∧ ¬r(a),
← p(b) ∧ q(b) }

Simp
{p(a),¬r(a)}
LS

({φ}) = {← q(a)}

Next we show an example of update in which the tuples to be modified are not mentioned
explicitly, but rather specified intensionally with a complex defining formula.

Example 3.2.36 Consider a database of employees e(EMP,DEPT) (an employee works
in a department), and skills s(EMP,SKILL) (an employee has a skill). It is required
that the computer science personnel (cs) has programming skills (pr): φ = ← e(X, cs) ∧
¬s(X, pr). The following update indicates that all employees of department a migrate to
department b: U = {e(X,Y) ⇐ (e(X,Y) ∧ Y 6= a) ∨ (e(X,a) ∧ Y = b)}. We have:

AfterULS
({φ}) ≡ { ← ((e(X, cs) ∧ cs 6= a) ∨ (e(X,a) ∧ cs = b)) ∧ ¬s(X, pr) }

≡ { ← e(X, cs) ∧ cs 6= a ∧ ¬s(X, pr),
← e(X,a) ∧ cs = b ∧ ¬s(X, pr) }

SimpU
LS

({φ}) = { ← e(X,a) ∧ cs = b ∧ ¬s(X, pr) }.

So, if b is computer science, each employee in department a must have programming
skills.

Example 3.2.37 Consider the following constraint theories.

Γ1 = { ← ¬p(X) ∧ q(X) ∧ r(X),
← p(X) ∧ ¬q(X),
← p(X) ∧ ¬r(X) },

Γ2 = { ← s(X) ∧ q(X) ∧ r(X) },
Γ3 = { ← s(X) ∧ p(X) }.

Let Γ1,2 = Γ1 ∪ Γ2 and Γ1,3 = Γ1 ∪ Γ3. For the update U = {p(a)}, the theory obtained

in the calculation of SimpU
LS

(Γ1,3) after all possible reduction and subsumption steps in
OptimizeLS

is as follows:

{← s(a), ← ¬q(a), ← ¬r(a)}.

The denial ← s(a) can be eliminated, as Γ1,3 ∪ {← ¬q(a), ← ¬r(a)} `R (← s(a)). We
have:

SimpU
LS

(Γ1,3) = {← ¬q(a), ← ¬r(a)}.

43

Note that Γ1,2 ≡ Γ1,3 and SimpU
LS

(Γ1,2) = SimpU
LS

(Γ1,3); however, in the calculation

of SimpU
LS

(Γ1,2), subsumption and reduction are sufficient to obtain the same (minimal)
result.

In examples 3.2.32–3.2.37, it appears that the simplified integrity constraints are minimal
in the number of literals and instantiated as much as possible. In examples 3.2.35 and
3.2.36, some parametric simplifications are minimal but could become smaller once the
parameters are instantiated, as was shown in example 3.1.8 on page 28.

3.2.4 On pre-tests and post-tests

In section 2.4.2 we introduced the notions of post- and pre-test. Now that we have tools
for effectively generating pre-tests, we can take a closer look at the relationship between
pre-tests and post-tests.

First, we show with a counter-example that, in general, a pre-test (resp. post-test)
cannot be used as a post-test (resp. pre-test).

Example 3.2.38 Consider the constraint theory Γ = {← p(a) ∧ q(b)} and the update
U = {p(X) ⇐ q(X), q(X) ⇐ p(X)} that exchanges p and q. Then Σ1 = {← q(a) ∧ p(b)}
is a pre-test (returned by SimpLS

) but clearly it is not a correct post-test. Consider, e.g.,
a database D = {p(a), p(b), q(a)}; we have D |= Γ,DU 6|= Γ,DU |= Σ1, i.e., DU |= Σ1 6⇔
DU |= Γ, although D is consistent with Γ. Similarly, Σ2 = {← p(a)∧ q(b)} is a post-test,
but not a pre-test.

We now introduce a restricted class of updates that excludes an update such as U of
example 3.2.38.

Definition 3.2.39 An update U is idempotent if DU = (DU)U for any database D.

For idempotent updates, we can prove that a WP is always a valid post-test.

Proposition 3.2.40 Let Γ be a constraint theory and U an idempotent update. Let Σ be
a WP of Γ with respect to U . Then DU |= Σ ⇔ DU |= Γ for any database D, i.e., Σ is a
post-test of Γ with respect to U .

Proof Since U is idempotent, i.e., DU = (DU)U for any D, we have

(1) DU |= Γ ⇔ (DU)U |= Γ for any D.

Since Σ is a WP of Γ wrt. U , we have

(2) DU |= Σ ⇔ (DU)U |= Γ for any D.

By transitivity between (1) and (2) we obtain the thesis. 2

It is an open question whether, for idempotent updates, any CWP is also a valid post-test.
We conjecture that this claim holds, but we were neither able to prove it nor to disprove
it.

44

Conjecture 3.2.41 Let Γ be a constraint theory and U an idempotent update. Let Σ be
a CWP of Γ with respect to U . Then DU |= Σ ⇔ DU |= Γ for any database D consistent
with Γ, i.e., Σ is a post-test of Γ with respect to U .

We can easily prove that, if D is a consistent state, there is no update U such that D |= Σ,
DU 6|= Σ, and DU |= Γ. However we were not able to exclude the existence of an update
U such that D 6|= Σ, DU |= Σ, and DU 6|= Γ.

On the other hand, we can show with a counter-example that the reverse does not
hold, i.e., for idempotent updates, there are post-tests that are not valid pre-tests.

Example 3.2.42 Consider the constraint theory Γ = {← p(X,Y) ∧ p(Y,X)} and the
update U = {p(a,b)}. Clearly, the theory Σ = {← p(b,a)} is a post-test, but not a
correct pre-test. Suppose, e.g., that a = b = c; then Σ can succeed even though the
updated state is necessarily inconsistent. This is due to the presence of parameters. Note
that the theory returned by SimpU

LS
(Γ), which is a pre-test, is Σ′ = {← p(b,a),← b = a},

that is also a valid post-test.

To substantiate with empirical evidence the claim of conjecture 3.2.41 we used a generator
of random constraint theories and updates of the following form

{p1(~c1), . . . , pn(~cn),¬q1(~d1), . . . ,¬qm(~dm)}, (3.2)

where p1, . . . , pn, q1, . . . , qm are (not necessarily distinct) predicates, ~c1, . . . ,~cn, ~d1, . . . , ~dm

are vectors of constants, m + n > 0, and there are no i, j such that pi(~ci) = qj(~dj). Our
tests showed that all simplifications produced by SimpLS

in these cases were also valid
post-tests. This would suggest that SimpLS

can also be used to produce post-tests for
updates of the form (3.2), a claim that follows directly from conjecture 3.2.41.

Another interesting aspect regarding pre-tests and post-tests is whether their evalu-
ation is at all affected by the update. Proposition 3.2.40 immediately implies that the
evaluation of a WP is not affected by the update, as stated in the following corollary.

Corollary 3.2.43 Let Σ be a WP of a constraint theory Γ with respect to an idempotent
update U . Then D |= Σ ⇔ DU |= Σ for any D.

Proof Since Σ is a WP of Γ wrt. U , we have

D |= Σ ⇔ DU |= Γ for any D,

and, by transitivity with the claim of proposition 3.2.40, we have the thesis. 2

This does not hold in general for CWPs, as demonstrated in the following counter-
example, i.e., the evaluation of a CWP may be affected by the update.

Example 3.2.44 Consider a constraint theory Γ = {← p(X)∧q(X)∧r(X), ← ¬q(X)∧
r(X)} and an update U = {p(a)}. A CWP of Γ wrt. U is Σ = {← q(a)∧r(a), ← p(X)∧
r(X)}, which is obtained from the WP {← p(X)∧q(X)∧r(X), ← q(a)∧r(a), ← ¬q(X)∧
r(X)} by removing the literal q(X) in the first denial by a resolution step with the last
denial, and then by removing the last denial (which also occurs in Γ). The atom p(a) may
affect the evaluation of Σ. Consider, e.g., D = {r(a)}; then D |= Σ but DU 6|= Σ.

45

However, example 3.2.44 is not a counter-example for the claim of conjecture 3.2.41, since
the initial state D is not consistent with Γ.

The following table summarizes the results and open problems presented in this sub-
section. We indicate with preU (Γ) a pre-test of constraint theory Γ with respect to U ,
with postU (Γ) a post-test of Γ with respect to U , and with WPU (Γ) a WP of Γ with
respect to U . We enclose between curly brackets to indicate the set of all such constraint
theories. Known results are in boldface, whereas conjectures are in italics and followed
by a question mark.

for any Γ and for any D any U U idempotent U (3.2)

{preU (Γ)} ⊆ {postU (Γ)}? no yes? yes?

{postU (Γ)} ⊆ {preU (Γ)}? no no ?

{WPU (Γ)} ⊆ {postU (Γ)}? no yes yes

D |=preU (Γ) ⇔ DU |=preU (Γ)? no no no

D |=WPU (Γ) ⇔ DU |=WPU (Γ)? no yes yes

3.3 On the equivalence of ideal simplification and que-

ry containment

There is a direct correspondence between the problem of ideal simplification (definition
3.1.6 on page 27) and query containment (definition 2.2.23 on page 18). In order to
characterize this relationship, we introduce the following lemma.

Lemma 3.3.1 Consider the following constraint theories

Γ = {← A1, . . . ,← An},

Γ1 = Γ ∪ {← p(~X),← q(~X)},

Γ2 = Γ ∪ {← q(~X)},
Γr = {← A1 ∧ r, . . . ,← An ∧ r},

Γr
1 = Γr ∪ {← p(~X) ∧ r,← q(~X) ∧ r},

Γr
2 = Γr ∪ {← q(~X) ∧ r}

and the schemata

S1 = 〈I,Γ1〉, S2 = 〈I,Γ2〉, S
r
1 = 〈I,Γr

1〉, S
r
2 = 〈I,Γr

2〉,

where ⇐ p(~X) and ⇐ q(~X) are queries, r is a nullary predicate not occurring in S1 or S2

and the Ai’s are conjunctions of literals. Assume Simp is an ideal simplification procedure
and let U be the update {r ⇐ true} and let Ti = 〈Ii,Σi〉 = SimpU (Sr

i) for i = 1, 2. Then
T1 = T2 iff S1 ≡ S2.

Proof Preliminary considerations.
Ti is a CWP of Sr

i with respect to U for i = 1, 2, i.e.,

(1) D |= Σi iff DU |= Γr
i for any database D based on Ii ∪ I and consistent with Γr

i .

46

If part. If r is false then Γr
1 and Γr

2 are both true; if r is true then Sr
1 ≡ S1 and Sr

2 ≡ S2

(and S1 ≡ S2 by hypothesis). Therefore Sr
1 ≡ Sr

2 , i.e.,

(2) D |= Γr
1 iff D |= Γr

2 for any D based on I.

By transitivity, we obtain from (1) and (2) that T1 is also a CWP of Sr
2 wrt U (and,

similarly, T2 is also a CWP of Sr
1 wrt U). Assume now, by contradiction, that T1 6= T2.

If, for example, T1 ≺ T2, then T2 would not be an ideal simplification of Sr
2 wrt U , against

the hypothesis that Simp was ideal.
Only if part. Assume, by contradiction, that S1 6≡ S2. Then there exists a state D′ such
that

(3) D′ 6|= Γ1 and D′ |= Γ2
4.

Consider a state D′′ = D′ \ {r}. Both Γr
1 and Γr

2 hold in D′′ (since r is false in it) and
we have D′′U = D′. But since Ti, for i = 1, 2, is a CWP of Sr

i wrt U and D′′ |= Γr
i , we

have, from (1),

(4) D′′ |= Σi iff D′ |= Γr
i ,

and, since {r} ∈ D′, we have

(5) D′ |= Γr
i iff D′ |= Γi.

Now, using (3), (4) and (5), we obtain D′′ 6|= Σ1. Similarly, we obtain D′′ |= Σ2. But
this is a contradiction, since Σ1 = Σ2 by hypothesis. 2

Lemma 3.3.2 Let Γ,Γ1,Γ2, S1, S2 be as in lemma 3.3.1 and consider a schema S =
〈I,Γ〉. Then S : p ⊆ q iff S1 ≡ S2.

Proof By definition of answer and QC, the problem S : p ⊆ q is equivalent to the following

(1) for any ground tuple ~a, D |= p(~a) implies D |= q(~a), in any database D based on I
and consistent with Γ.

Similarly, the equivalence between S1 and S2 indicates that,

(2) for any ground tuple ~a, D |= (Γ∧ ← p(~a)∧ ← q(~a)) iff D |= (Γ∧ ← q(~a)), in any
database D based on I.

Clearly, (2) always holds if D 6|= Γ. If D |= Γ, (2) amounts to the following.

(3) for any ground tuple ~a, D |= (← p(~a)∧ ← q(~a)) iff D |= (← q(~a)), in any database
D based on I.

4We can already exclude the case where D′ |= Γ1 and D′ 6|= Γ2 since Γ1 |= Γ2 by construction.

47

i.e., (2) and (3) are equivalent. But also (1) and (3) are equivalent, as can be seen by
noticing that the truth tables of p → q and (¬p ∧ ¬q) ↔ ¬q are identical. Therefore (1)
and (2) are equivalent. 2

We can now state the main theorem of this section, which shows the correspondence
between query containment and ideal simplification. We implicitly assumed so far that
nullary predicates are available in the predicate language at hand5. In theorem 3.3.3 we
will also assume that, in any given language L, whenever some schema has an integrity
constraint of the form ← A, then the schema with IDB extended with pA ← A is also in
L. Although, strictly speaking, this is not true of all database languages, it is convenient
to assume that any reasonably expressive database language enjoys these properties. The
theorem below refers to such database languages.

Theorem 3.3.3 For any database language L, QC is decidable in L if and only if L
admits an ideal simplification procedure.

Proof If part. Assume an ideal simplification procedure Simp for L and consider the
QC problem S : p ⊆ q over a schema S = 〈I,Γ〉. Consider the schemata and constraint
theories defined in lemma 3.3.1. By lemma 3.3.2, S : p ⊆ q iff S1 ≡ S2. But the last
equivalence can be decided with an ideal simplification procedure, as shown in lemma 3.3.1,
and therefore also the QC problem.

Only if part. For simplicity, we start considering the case with parameter-free updates.
Let SA = 〈IDBA,ΓA〉 = AfterU (S) for some parameter-free update U . By proposition
3.2.9, SA is a CWP of S = 〈IDB,Γ〉 wrt U . Let SB = 〈IDBB ,ΓB〉6 be any schema such
that SB ¹ SA. By definition 3.1.2 (of CWP) and transitivity of ⇔, SB is a CWP of S
wrt U iff the following holds:

D |= ΓA iff D |= ΓB for every D based on IDBA ∪ IDBB such that D |= Γ.

This still holds after adding the following IDBqA to IDBA and IDBqB to IDBB:

IDBqA = {qA ← φ1, · · · , qA ← φn},
IDBqB = {qB ← ψ1, · · · , qB ← ψm},

where ΓA = {← φ1, · · · ,← φn}, ΓB = {← ψ1, · · · ,← ψm} and qA, qB are nullary
predicates not occurring in SA or SB. These definitions state that qA holds iff ΓA does
not hold, and similarly for qB and ΓB. Let IDB′ = IDBA ∪ IDBB ∪ IDBqA ∪ IDBqB ; then
SB is a CWP of S wrt U iff

D |= ΓA iff D |= ΓB for every D based on IDB′ such that D |= Γ.

But the if and, respectively, only-if parts of this condition are the query containment
problems S′ : qA ⊆ qB and S′ : qB ⊆ qA for the schema S′ = 〈IDB′,Γ〉. By properties 2
and 4 of definition 3.1.5 we can enumerate all schemata SB such that SB ¹ SA and test

5Alternatively, we could have used (non-nullary) ground atoms instead of nullary predicates.
6We can assume without loss of generality that SB is compatible with SA, for, if it is not, the predicates

in pred(IDBB \ IDBA) can be renamed.

48

the two conditions above by query containment. This process is then repeated until the
minimal CWP is found. This provides an ideal simplification procedure for the parameter-
free case.

Suppose now that U contains n different parameters. The construction of IDB′ is done
as in the non-parametric case, but this time IDB′ also contains parameters. The two con-
tainment problems above can be decided for every instance of these parameters: the two
QC relationships above hold for the parametric case iff they do for every instance of the
parameters. Furthermore, we only need to consider a finite number of instances. To see
this, let C be a set containing all constants occurring in IDB′ plus n (fixed) constants not
occurring in IDB′. We only need to consider all possible parametric instances mapping
the parameters in IDB′ to constants in C. Considering other mappings (to constants
not in C) amounts to reformulating the same containment problem modulo renaming of
symbols. Since C is finite, the described procedure is terminating. 2

Query containment has been studied extensively in the literature, including identifica-
tion of a number of decidable sub-cases. However, the sort of procedure indicated in the
proof is unlikely to be applicable in practice, since many CWP candidates will be gener-
ated in a typical case. A different strategy to achieve ideal simplifications is described in
section 3.4.2 below. It follows immediately from proposition 3.1.12 on page 29, in which
simplification was obtained in terms of optimization, and the if part of theorem 3.3.3
that no ideal optimization procedure exists for a language for which query containment
is undecidable.

Analogously to the only-if part of theorem 3.3.3, it follows that an optimization proce-
dure can be constructed from a query containment decision procedure (if it exists) using
enumeration.

Theorem 3.3.4 There exists an ideal optimization procedure for a language L if and
only if query containment is decidable in L.

Proof The only-if part holds as, if there is an ideal optimization procedure, then, by
proposition 3.1.12, there also exists an ideal simplification procedure; then, by theorem
3.3.3, query containment must be decidable in L. For the other part, it suffices to note
that, given the schema S to be optimized with respect to schema S∆, we can enumerate

all schemata S′ such that S′ ≺ S, decide S′ S∆

≡ S by query containment as in the proof of
theorem 3.3.3 and then select a minimal one among them. 2

3.4 Ordering and minimality

3.4.1 Ordering and efficiency

In order to characterize a transformed integrity constraint as an optimal simplification, it
must represent a minimum in some ordering that reflects the effort of actually evaluating
it. This can only be an estimate, as the actual execution times depend on the database
state, which is not available at the time of the simplification process. Furthermore, it

49

is highly dependent on the applied database technology that may perform optimizations
that cannot be included in a general definition. We restrict our discourse in this section
to constraint theories in which only extensional predicates may occur, i.e., schemata with
empty IDB , as was the case for unfolded theories in LS.

To find an optimal simplification means then to choose among all the conditionally
equivalent CWPs according to an optimality criterion. Several different criteria can be
defined. A natural choice is a syntactic order based on the number of literals: the optimal
theories are those in which this number is minimal (and when the number of literals is
the same, another standard ordering, such as the alphabetical ordering, is used). This
ordering, indicated as ¹`, may appear a bit coarse, as the number of literals in, say,
← 1 = 2, ← p(a), and ← p(X) is the same. However, it should be kept in mind that
it applies within a class of constraint theories that are pairwise conditionally equivalent
(with respect to a given theory).

Another possibility is to define a semantic order based on the weakness of a theory.
We say that a theory Γ1 is weaker than a theory Γ2 if D |= Γ1 for all database states D for
which D |= Γ2 (and Γ2 is said to be stronger than Γ1). The interest of a weakest constraint
theory is that it typically contains fewer constraints to check than a stronger theory
(adding constraints means strengthening the theory) and a weaker constraint is more
likely to evaluate to true than a stronger one, and therefore may be checked faster with
an optimistic approach. We indicate this ordering as ¹w. Given two constraint theories
Γ and ∆, it trivially follows from the definition of conditional equivalence (definition

3.1.10) that the strongest theory Σ, such that Σ
∆
≡ Γ, is Γ ∪ ∆; similarly, the weakest

one is a theory equivalent to Γ ∨ ¬∆, provided that this formula can be expressed as
a set of denials. However, testing whether, for two given theories Γ and Σ, we have
Γ¹wΣ corresponds to checking entailment, which is undecidable in general (see, e.g., [3]);
therefore ¹w is not an enumerative ordering according to the second point of definition
3.1.5.

Another interesting ordering is based on the notion of resource set, i.e., the set of
extensional atoms that affect the evaluation of a given constraint theory: the smaller the
resource set, the better the CWP7. This notion is formalized below.

Definition 3.4.1 (Uncovered set) Let S = 〈IDB,Γ〉 be a schema and R a set of ex-
tensional atoms. Then R is an uncovered set for Γ whenever

D |= Γ ⇔ D′ |= Γ

for any two databases D,D′ based on IDB with extensional parts, resp., E,E′ such that
E ∩ R = E′ ∩ R. If, furthermore, Γ admits no other uncovered set R′ ⊂ R, R is a
minimal uncovered set for Γ.

Proposition 3.4.2 For any constraint theory Γ there exists a unique minimal uncovered
set.

The minimal uncovered set of a constraint theory Γ is called the resource set of Γ and is
indicated as R(Γ).

7In [59] the notion of “cover” was used instead (the bigger the cover, the better), as opposed to the
dual notion of uncovered set which is used here.

50

Example 3.4.3 Let Γ = {← p(X) ∧ X 6= a} be a constraint theory, p an extensional
predicate, and P the set of all ground atoms constructible with predicate p. The resource
set of Γ is the set P \ {p(a)}. Any set of ground extensional atoms that is a (strict)
superset of P \ {p(a)} is a (non-minimal) uncovered set for Γ.

Consider now Σ = {← p(X) ∧ ¬q(X), ← p(a)} and let Q be the set of all ground
atoms constructible with predicate q. The resource set of Σ is the set (P ∪ Q) \ {q(a)},
since the evaluation of Σ is not affected by the presence of q(a), whereas it is affected by
all other tuples in Q and all tuples in P .

In order to prove proposition 3.4.2, we introduce lemma 3.4.4 below.

Lemma 3.4.4 Consider a schema S = 〈IDB,Γ〉. A set of extensional atoms R is an
uncovered set of Γ iff Γ is indifferent to any single extensional atom A not in R, i.e., iff

〈IDB, (F \ {A})〉 |= Γ iff 〈IDB, (F ∪ {A})〉 |= Γ

for any extensional database F and for any atom A 6∈ R.

Proof
Only-if part
Assume R is an uncovered set of Γ and consider any two sets of extensional atoms E and
E′ that only differ by an atom A 6∈ R, i.e.,

E = F ∪ {A} and E′ = F \ {A},

where F is a set of extensional atoms. Clearly, E ∩ R = E′ ∩ R and, therefore, by
definition of uncovered set, we have the thesis.
If part
Assume Γ is indifferent to any atom A 6∈ R and consider two sets of extensional atoms
E and E′ such that E ∩R = E′ ∩R. Then E and E′ differ by a finite number of atoms
that do not belong to R. In other words, E′ = E ∪E+ \E−, where E+ ∩E− = E+ ∩R =
E− ∩ R = ∅. But since Γ is indifferent to any single extensional atom A 6∈ R, we can
add (resp. remove) any single atom in E+ (resp. E−) at a time without affecting the
evaluation of Γ. Hence the conclusion. 2

Corollary 3.4.5 Let Γ be a constraint theory and R1, R2 two uncovered sets for Γ. Then
their intersection R1 ∩R2 is also an uncovered set for Γ.

Proof For lemma 3.4.4, Γ is indifferent to all extensional atoms in B\R1 as well as of all
extensional atoms in B\R2, and thus of all extensional atoms in their union B\(R1∩R2).
So R1 ∩R2 is also an uncovered set. 2

Now proposition 3.4.2 can be proved as follows.
Proof Suppose that there exist two minimal uncovered sets R1 and R2 such that R1 6= R2.
But then for corollary 3.4.5 their intersection R1∩R2 is also an uncovered set and there-
fore at least one of them is not minimal, against the hypotheses. 2

51

In the ordering based on resource sets, a theory Γ1 precedes another theory Γ2, indicated
Γ1¹rΓ2, whenever R(Γ1) ⊆ R(Γ2). This notion is particularly relevant in the context of
concurrent database systems. In chapter 5 we will discuss a schedule construction policy
that guarantees conflict serializability as well as correctness. If a simplification procedure
for integrity constraints which is ideal in the ¹r ordering is available, then the amount of
database resources that need to be locked for this to happen is minimal.

It is possible to find examples of simplification where the optimal constraint theories
found according to these three criteria (minimal resource set, minimal number of literals,
semantic weakness) differ.

Example 3.4.6 Consider the following constraint theories:

Γ = {← p(X), ← q(a)},
∆ = {← p(a), ← q(a)}.

Among the theories that are ∆-conditionally equivalent to Γ, the minimal ones with respect
to the described orderings are shown in the following table.

¹`-minimal ¹w-minimal ¹r-minimal
{← p(X)} {← p(X) ∧ X 6= a ∧ ¬q(a)} {← p(X) ∧ X 6= a}

The first column has been calculated by removing ← q(a) from Γ as it is true in ∆ and
the only smaller theory is ∅, which is not ∆-conditionally equivalent to Γ. The second
column corresponds to the formula Γ ∨ ¬∆. The last column is derived from ← p(X)
(first column), whose resource set is the entire relation p; the resource set can be reduced
by removing the tuple p(a) from it, whose truth value is already constrained (to be false)
by ∆.

We note that the constraint theories indicated in the two last columns of example 3.4.6
are arbitrary, as any of the infinitely many equivalent constraint theories (obtained, e.g.,
by inserting tautologies in it) would be minimal in the respective ordering. Thus, ¹w and
¹r are not enumerative, as they do not comply with the fourth requirement of definition
3.1.58.

We stress, however, that, with respect to efficient query evaluation, each criterion
can only approximate optimality. For example, a syntactically minimal query does not
necessarily evaluate faster than an equivalent non-minimal query in all database states;
the amount of computation required to answer a query can be reduced, for instance, by
adding a join with a very small relation. Several refinements of the syntactic order ¹`

described in this section can be considered, such as preferring more specific constraints
to more general ones. However, for all such improvements there will be cases in which
efficiency is not measured precisely. For example, ← p(X)∧ q(Y) is likely to be evaluated
faster than the more specific ← p(X)∧q(X), as the former can be checked by verifying that
either p or q are empty, whereas the latter introduces a join that potentially requires that
all tuples in p be looked up in q. Even if we limit such criterion to the preference of ground
literals to non-ground ones, we still do not capture the notion of efficiency correctly. For

8However, one could of course choose to represent the whole class of equivalent constraint theories
with the syntactically minimal one, so that the only possible choices in the table of example 3.4.6 would
be those we have indicated.

52

example, ← p(X) will typically run faster than ← p(a), as for the former it is sufficient
to verify that p is empty, whereas for the latter a lookup in p is needed. However, it
can be argued that a syntactic ordering such as ¹` captures efficiency for most cases, as
will be demonstrated in the experimental tests discussed in chapter 6. Furthermore, the
simplification procedure also conforms to the strategy of specializing integrity constraint
as much as possible, in that variable/constant equalities are removed by substituting the
variable by the constant. So, for example, a denial such as φ =← X = a∧ p(X,Y)∧ q(Y)
is not transformed into ← p(X,Y) ∧ q(Y),9 which has fewer literals but is arguably less
efficient to evaluate than φ, but to ← p(a, Y)∧ q(Y), which contains fewer literals and is
more specialized than φ.

In the literature, most methods do not explicitly refer to any particular ordering;
some refer to syntactic minimality criteria such as ¹` [47, 93, 94]; others [102, 143, 70]
use resource sets (sometimes called checking space).

3.4.2 Achieving minimal theories

In the remainder of the thesis, unless differently stated, we refer to the ¹` ordering,
that has a clear enumeration procedure for all constraint theories. However, enumerating
theories, although theoretically possible, might be practically unfeasible. We describe here
another strategy that tries to progressively eliminate constraints and parts of constraints
from a starting, possibly non-optimal simplification, such as the one returned by After.

A local minimum for a set of denials is recursively defined below. We recall that, given
two denials φ and ψ, φ is a subclause of ψ iff there is a renaming ρ such that each literal
in φρ occurs in ψ.

Definition 3.4.7 A theory Σ is locally below a theory Γ (written Σ≺locΓ) whenever

1. Σ = ∅ and Γ 6= ∅ or

2. Σ = {φ} t Σ′, Γ = {ψ} t Γ′, φ is a subclause of ψ and (Σ′≺locΓ
′ or Σ′ = Γ′)

where φ and ψ are denials. Σ is a local (resp. global) minimum of Γ with respect to a

constraint theory ∆ if Σ
∆
≡ Γ and there is no other theory Σ′′ ∆

≡ Γ such that Σ′′≺locΣ
(resp. Σ′′≺`Σ).

A general procedure to find a local minimum of Γ with respect to ∆ consists in repeating
the following steps as long as possible.

Procedure 3.4.8

1. If for a denial φ ∈ Γ it holds that ∆ ∪ (Γ \ φ) |= φ then φ is removed from Γ.

2. If for a denial ← L1 ∧ · · · ∧ Ln = φ ∈ Γ it holds that ∆ ∪ Γ |=← L1 ∧ · · · ∧ Li−1 ∧
Li+1 ∧ · · · ∧ Ln = ψ for some i such that 1 ≤ i ≤ n then φ is replaced by ψ.

9Unless a constraint such as ← X 6= a ∧ p(X, Y) is known to hold, which could then be used by a
query optimizer to evaluate ← p(X, Y) ∧ q(Y) as fast as ← p(a, Y) ∧ q(Y).

53

Each step preserves conditional equivalence and the strategy guarantees that a local
minimum is found, as, when the procedure stops, no denial or literal can be removed
from the resulting theory. Furthermore, if it was possible to remove more than a literal
or denial at a time, then it would also be possible to remove a single literal or denial at
a time.

Example 3.4.9 Consider the following constraint theories from example 3.2.37.

∆ = { ← ¬p(X) ∧ q(X) ∧ r(X),
← p(X) ∧ ¬q(X),
← p(X) ∧ ¬r(X) },

Γ = { ← s(X) ∧ q(X) ∧ r(X) },
Σ = { ← s(X) ∧ p(X) }.

We have that Σ
∆
≡ Γ, as ∆ is clearly an encoding of the equivalence between p(X) and

q(X) ∧ r(X). Both Γ and Σ are local minima of Γ ∪Σ with respect to ∆ and only Σ is a
global minimum.

In practice there is often only one local minimum, which coincides with the global min-
imum. However, when particular dependencies are encoded in the integrity constraints,
such as equivalences between (sets of) predicates, like in example 3.4.9, then there may
be several local minima. On the other hand, by definition 3.1.5, the global minimum is
unique.

The procedure depicted in this section is, however, based on entailment, which is in
general undecidable; furthermore, sound and complete proof procedures, based, e.g., on
resolution, are not guaranteed to terminate10.

The simplification framework described in section 3.2 implements a practically relevant
approximation of this strategy in which entailment is replaced by specialized sound and
terminating proof procedures. In particular, the first two rewrite rules in the definition
of OptimizeLS

(3.2.28 on page 41) implement step 1, whereas the last two implement step
2.

3.5 Ideality and SimpLS

Before discussing how well SimpLS
approximates the described simplification strategy

for finding a local minimum, we emphasize the completeness of resolution and subcases
thereof.

3.5.1 Completeness of resolution

As shown in proposition 3.2.22 on page 39, resolution is sound; this property was used in
the construction of SimpLS

. Resolution in the context of clauses with logical negation is
also refutation-complete, in the sense specified below.

10In principle, entailment can be implemented by any general theorem prover, properly extended with
a time-out facility to ensure termination. This may provide a procedure that produces minimal or close-
to-minimal theories, but generality and quality would be problematic to characterize.

54

Theorem 3.5.1 [146] Resolution is refutation-complete, i.e., if Γ is an unsatisfiable set
of clauses then there exists a refutation of Γ.

However, we applied resolution in the context of denials with default negation. To see
that refutation-completeness also holds in this context, we note that the notion of unsat-
isfiability of a set of clauses with logical negation coincides with unsatisfiability of a set of
denials with default negation. Indeed, a set is unsatisfiable if it admits no model. In the
setting of denials with default negation, a set Γ is unsatisfiable if no standard model (for
any possible attached database) is a model of Γ, i.e., if Γ admits no model. The latter
can thus be checked via standard resolution by syntactically replacing default negation
with logical negation. Therefore resolution applied to denials with default negation is
also refutation-complete, i.e., if Γ is an unsatisfiable set of denials with default negation
then there exists a refutation of Γ.

Thanks to theorem 3.5.1, proofs can be performed by reductio ad absurdum, i.e., to
prove φ from Γ, one checks whether there is a refutation of Γ∪¬φ. Of course, ¬φ has to
be transformed into clausal form for the proof to be made by resolution. It is possible to
transform any first-order formula F into an equivalent formula G expressed in negation
normal form (NNF), i.e., a formula whose connectives are only ∧,∨,¬ and ¬ can only
occur in front of atoms. An NNF formula can then be transformed into prenex normal
form (PNF) by moving all the quantifiers outwards. Finally, from a PNF formula we
can eliminate the existential quantifiers by performing the so-called skolemization: if ∃X
occurs in G in the scope of universal quantifiers ∀Y1, . . . ,∀Ym, then in sk(G) the ∃X is
removed and X is replaced by f(Y1, . . . , Ym), where f is a new m-ary function symbol not
occurring in G, called a Skolem function. Note that, if ∃X is not in the scope of universal
quantifiers, then f is a nullary function symbol, i.e., a (Skolem) constant. In general
sk(G) is not equivalent to G; however, sk(G) is satisfiable iff G is. The transformation
from sk(G) to clausal form is trivial, and this means that skolemized formulas can be
used in proofs by resolution. A detailed explanation of skolemization and its application
to resolution can be found in [82].

With the addition of subsumption, completeness of resolution can be stated directly
using deduction (`d) by the following theorem.

Theorem 3.5.2 (Subsumption theorem [138]) Let Γ be a constraint theory and φ a
denial. Then Γ |= φ iff Γ `d φ.

Specialized versions of resolution can be used to carry out proofs more efficiently. For
example, a deduction by unit resolution is a deduction in which each resolvent is obtained
by using at least one unit clause, i.e., a clause consisting of a single literal. Unit resolution
is not (refutation-)complete in general.

Example 3.5.3 The theory {← p(X)∧p(Y),← ¬p(Z)∧¬p(W)} is unsatisfiable, but the
empty clause cannot be derived by unit resolution, as there is no unit clause in the set.

However, when all clauses in the set are Horn clauses, unit resolution is refutation-
complete [131]. Besides, in the presence of a Horn set, the subsumption theorem holds
also if resolution is replaced by unit resolution.

Theorem 3.5.4 Let Γ be a Horn constraint theory and φ a Horn denial. Then Γ |= φ
iff there is a unit derivation of a denial ψ from Γ such that ψ subsumes φ.

55

3.5.2 Local minima in SimpLS

As mentioned, the OptimizeLS
procedure gives an approximation of the entailment-based

procedure 3.4.8 described on page 53. The quality of the results produced by SimpLS

depends on how well the described proof procedure implements entailment. It is known
that for certain classes of languages, such as the monadic class, Herbrand’s class and the
one-variable class [115], sound and complete procedures based on resolution refinements
are guaranteed to terminate. In these cases an ideal simplification can be found.

In the described procedure for LS, we chose to limit the size of the resolvents in the
resolution proofs to the number n of literals of the largest denial in the starting theory,
but other techniques could have been used, such as a limit in the depth of the proof tree or
even a time limit. However, our choice is relevant if resolution proofs are performed in a
data driven fashion; in the deductive closure of the original theory, the denials whose size
is less than n are the only usable clauses for elimination of literals by subsumption (and
reduction). The principles of subsumption and reduction are, in practice, sufficient for
most cases of denial elimination, and resolution proper is only needed when the integrity
constraints encode circularity and recursive definitions or extra hypotheses are provided
(see examples 3.2.33 and 3.2.37).

We now discuss how and when SimpLS
reaches a local minimum. To see this, we first

state when a local minimum can be found by procedures based on unit resolution, and
then we relate this result to OptimizeLS

.
There are interesting cases in which entailment can be replaced by a terminating proof

procedure. We recall that a clause is Horn if, when expressed as a disjunction of literals,
it contains at most one positive literal. Equivalently, we say that a denial is Horn if it
has at most one negative literal.

Proposition 3.5.5 Let Γ,∆ be two sets of Horn denials containing no non-nullary func-
tion symbol, no parameters and no equalities. Then:

• Γ is unsatisfiable iff there is a unit derivation of the empty clause from Γ,

• it is decidable whether there is a unit derivation of a given clause from Γ, and

• there is a terminating procedure that produces Γ’s local minimum wrt ∆.

Proof The first claim is trivial because unit resolution is complete for the Horn fragment,
and here the theory is Horn.

For the second claim consider that in every unit resolution step there is one unit clause
and another clause with, say, n literals. The number of literals in the resolvent is n − 1.
Since there is no function symbol and the number of clauses is finite, there is only a finite
number of possible unit resolution steps. Therefore one can generate all possible unit
derivations from Γ in finite time and check whether the given clause has been produced.

From the first two claims we can conclude that satisfiability of a set of Horn denials
containing no non-nullary function symbol, no parameters and no equalities can be decided
by unit resolution, by checking whether there is a unit derivation of the empty clause.

For the last claim consider that a local minimum is found by checking the two entail-
ment properties described in procedure 3.4.8 on page 53. In both cases the entailed formula
is a (subclause of a) denial in Γ, i.e., a formula of the form ∀ ~X(← L1 ∧ · · · ∧Ln), where

56

~X are the variables in L1, . . . , Ln. In order to check such entailments by resolution, the
target denial needs to be negated, transformed into skolemized clausal form, and added to
the initial set. But the skolemized clausal form of the negation of a denial is a formula of
the form: {← ¬L1σ, . . . ,← ¬Lnσ}, where σ is a grounding substitution that instantiates

every different variable in ~X to a different Skolem constant. Therefore, after the addition
of the negated denial, the set is still Horn and function-free and therefore its satisfiability
can be decided by unit resolution, as was concluded above. 2

We note that this result in not in contrast with the fact that query containment is un-
decidable for datalog, since the Horn constraint theory considered in proposition 3.5.5
is part of a schema with an empty IDB , whereas a datalog program may have a re-
cursive (and thus not eliminable) IDB . So, this result is actually in accordance with the
decidability of query containment for non-recursive datalog without negation [3].

Proposition 3.5.6 The OptimizeLS
procedure always returns a local minimum when the

input theories are Horn, parameter-free and with no equalities.

Proof As shown in theorem 3.5.4, for Horn theories, the subsumption theorem holds
when unit resolution is applied instead of resolution. In such case, unit deduction and
`R (which is used in the OptimizeLS

procedure) behave in the same way. Therefore the
result of proposition 3.5.5 applies also to OptimizeLS

. 2

The result of proposition 3.5.5 may be extended to Horn theories with equalities and
parameters provided that proper equality axioms (reflexivity, symmetry, transitivity and
substitutivity), such as the free equality axioms shown on page 14, are added to the input
set. Alternatively, resolution can be extended with paramodulation and the reflexivity
axiom [110] in order to be refutation-complete. The paramodulation rule is an inference
rule that handles equalities in the presence of function symbols and allows replacing terms
in equations. In a function-free settings, however, this generality is not needed, since re-
duction takes care of reflexivity and expansion provides substitutivity, whereas symmetry
was assumed to be an implicit syntactic property of equality. However, the transitivity
axiom (X = Y ← X = Z ∧ Z = Y) would need to be added to the input set to obtain
refutation-completeness and, thus, further refine the simplification procedure.

Example 3.5.7 Consider the constraint theory

Γ = {← p(X) ∧ X 6= a, ← p(X) ∧ X 6= b}.

It is clearly equivalent to {← p(X)} since (X 6= a∨X 6= b) is a consequence of the equality
axioms. The first denial resolves with the transitivity axiom into X = Y ← p(X)∧a = Y ,
which resolves with the second denial into X = b ← p(X) ∧ p(a), a factor of which is
a = b ← p(a), which reduces to ← p(a) and expands to ← p(X) ∧ X = a. A resolution
step with the first denial produces ← p(X), which subsumes all the denials and is thus the
result.

Without the inclusion of the transitivity axiom, there are cases of redundancies that are
not detected by OptimizeLS

that may occur when there are cyclic parameter dependencies.
For example, consider the denial

φ =← a 6= b ∧ b = c ∧ c = d ∧ d = a.

57

With a resolution step of the transitivity axiom with itself, one gets ← X 6= Y ∧ X =
T ∧ T = Z ∧ Z = Y , which subsumes φ; φ can therefore be eliminated. Without the
transitivity axiom, one would not be able to infer this.

3.5.3 Complexity

We cannot hope to obtain an ideal procedure in all non-recursive cases, as QC is already
undecidable for non-recursive datalog with negation [3].

Although QC is decidable for non-recursive datalog programs without negation, it
is known to be decidable in exponential time (see [38] for an overview of this and other
results on QC). The search for a local minimum in these cases, as sketched in procedure
3.4.8 on page 53, is thus also exponential, since it may require solving n+m QC problems,
where n is the number of literals and m is the number of denials in the constraint theory.
These results would suggest that the problem is intractable; however, the complexity is
here measured with respect to the size of the query and not of the data in the database.

Another aspect to be considered is that simplification is a static process, therefore
it is worthwhile to invest resources for compiling the constraints at design time so as to
improve run time efficiency.

Finally, we point out that subsumption, which is used in the simplification proce-
dure, is an incomplete procedure for entailment. However it becomes complete (i.e., C
subsumes D iff C |= D) if C is neither recursive nor tautological [90]. Subsumption is
already NP-complete in general [108]. This complexity is due to the ambiguity of variable
identification and amounts to O(|vars(D)||vars(C)|) to check whether C subsumes D. In
practice, if the domain is weakly structured , i.e., there is only a small number of predi-
cates occurring very often in the clauses, only short clauses are affordable; conversely, for
strongly structured domains, complexity decreases dramatically [152]. This observation
proves very important for data representation issues. For example, in section 5.3, this
will indicate what relational representation of the nested data structure should be chosen
in order to keep the application of the simplification operators tractable.

3.6 Related work

Simplification of integrity constraints is highly relevant for optimizations in database
integrity checking. Typically it gives a speed-up of a linear factor (in the size of the
database state) for singleton updates, but for certain transactions an even higher speed-
up can be gained. We find crucial the ability to check consistency of a possibly updated
database before execution of the transaction under consideration so that inconsistent
states are completely avoided. As mentioned, pre-testing the feasibility of an update with
respect to the integrity constraints is particularly valuable, as it allows one to avoid both
the execution of the update and, especially, the restoration of the database state before
the update, which is typically done by means of expensive rollback or repair operations.
Rollbacks usually require costly bookkeeping in order to restore the old state; as for
repairs, repaired states need to be calculated according to given preference criteria and
then repairing actions need to be executed. Several approaches to simplification first
require the transaction to be performed, and then the resulting state to be checked for

58

consistency [137, 124, 147, 71, 93, 116]. Methods that, as ours, are based on pre-tests are,
e.g., [143, 100, 102, 114], including a few industrial attempts, e.g., [21, 41].

Simplification of integrity constraints with respect to given parametric update patterns
resembles the notion of program specialization used in partial evaluation [106], which is
the process of creating a specialized version of a given program with respect to known
input data. Applications of these techniques to integrity checking have been investigated
in [116], where partial evaluation of a meta-interpreter is used to produce logic programs
that correspond to simplified constraints. A partial evaluator is given a meta-interpreter
that constitutes a general integrity checker and produces as output a version of the meta-
interpreter specialized to specific update patterns to be checked in the updated state (and
employing the hypothesis that integrity holds before the update). Generally, it is difficult
to evaluate such a method as it depends on a number of heuristics in the partial evaluator
as well as in the meta-interpreter.

The proposal of [100] presents several analogies with our method, although it does not
apply to deductive databases, but only to relational databases without views. A series of
tests, expressed in a datalog-like language, is generated from an integrity constraint C
and an update U ; if one of these tests succeeds, then U is legal with respect to C. This
method is based on resolution and transition axioms. The the update language is limited
to single additions, deletions and changes, i.e., no transactions can be specified. Updates
can contain so-called dummy constants, which correspond to our notion of parameters.
A disadvantage of this approach is that, once the set of tests is generated, strategies
have to be employed to decide which specific tests to execute and in which order, i.e.,
redundancies are kept within the generated tests. The authors do not develop this aspect
further. Furthermore, and more importantly, failure of all tests does not necessarily
imply inconsistency: this means that, in such a case, a necessary and sufficient condition
must be used. Instead, our simplification algorithm can handle more general updates and
generates tests that are a necessary and sufficient condition for determining consistency
of the database if the update were performed11.

In [47, 93], the authors introduce a principle called partial subsumption applied, among
other things, to produce simplified integrity constraints. Their method can handle sin-
gleton additions or deletions and produces conditions to be applied after the update.
Some parametric updates can be expressed using variables. However, the described ap-
proach does not consider several occurrences of the same parameter in the same relation
or in different relations within the same update. For compound updates (transactions)
the principle is explained in terms of examples, but no general procedure is described.
Changes are modeled as deletions plus insertions; however, this is not completely satis-
factory, as all deleted and inserted tuples must be known in advance (unlike, e.g., update
U2 of example 2.2.22 on page 17) and for any insertion (resp. deletion) of a tuple, it must
be assumed that the tuple was not present (resp. was present) in the database. Partial
subsumption applies also to semantic query optimization; see [94, 88] for an overview.

Qian [143] observes the relationship between Hoare’s logic [101, 75] for imperative
languages and integrity checking, identifying a simplified integrity constraint as a weakest
precondition for having a consistent updated state. This notion is enforced by assuming
consistency of the database before the update. Qian’s method works for a variety of

11If their tests were a necessary and sufficient condition, they would logically correspond to the negation
of our tests.

59

SQL-like ways of updating relations but with the impractical limitation that it does not
allow more than one update action in a transaction to operate on the same relation;
furthermore, no mechanism corresponding to parameters is present, thus requiring to
execute the procedure for each update. We have no such restrictions.

Integrity checking is often regarded as an instance of materialized view maintenance:
integrity constraints are defined as views that must always remain empty for the database
to be consistent. The database literature is rich in methods that deal with relational
view/integrity maintenance; the book [99] and the survey [76] provide insightful discussion
on the subject.

Abduction in logic programming (e.g., [107]), which concerns the generation of hy-
potheses necessary to explain given observations, typically involves integrity constraints
on the possible hypotheses to be generated, and a classical example of abduction is that
of database updates through view updates. Most abductive methods perform a complete
check of the integrity constraints when a new hypothesis (i.e., a tuple update) is proposed
by the inference engine. By the use of constraint logic programming techniques (such as
Constraint Handling Rules [85]) to implement abduction, incremental evaluation of in-
tegrity constraints may arise without an explicit simplification algorithm: each time an
abducible atomic update a arises, the current representation of the integrity constraints
wakes up, checks a’s dependencies and, in case of success, delays a specialized version
of the integrity constraints waiting for the next update. This principle is applied in the
DemoII system [54, 57] and in the approaches of [1, 56] using Constraint Handling Rules
for abduction; [55] is an attempt to relate such methods to database applications. How-
ever, a common drawback of these techniques is that the delayed constraints typically
unroll to a size proportional to the database and that, occasionally, an unsatisfiable set
of constraints is delayed where a failure should be reported.

As we noticed, ideal simplification is possible if and only if a query containment
decision procedure exists for the class of databases under consideration. Although even
non-ideal simplification procedures prove very useful in practice, progress in the field of
query containment can inspire the construction of more refined simplification algorithms;
we refer to [84, 37, 38, 27] and the references therein for an overview of decidable cases
and decision algorithms that have been studied in the literature.

60

Chapter 4

Extensions

In this chapter we discuss three orthogonal extensions of the language LS and the simpli-
fication procedure SimpLS

.
In the definition of LS we limited the level of interaction between negation and existen-

tial quantification in the constraint theories. In section 4.1, we relax this limitation and
extend the syntax of denials so as to allow the presence of negated existential quantifiers.
The simplification procedure can be adapted to such cases, provided that its components
are adjusted as to handle conjuncts starting with a negated existential quantifier.

In section 4.2, we describe an extension of the syntax of denials that includes arith-
metic operators and aggregates. This requires extending the components of the simpli-
fication procedure with new rewrite rules that possibly interact with a constraint solver
for arithmetic in order to properly handle such constructs.

Finally, in section 4.3, we consider an extension of LS that allows the presence of
recursive predicates. With the precaution that such predicates cannot be unfolded, SimpLS

can be used for such cases. However, for certain recursive patterns, it is possible to refine
the simplification procedure so as to obtain a much higher degree of optimization than
was available with SimpLS

.

4.1 Nested denials

In this section we address the problem of simplification of integrity constraints in hier-
archical databases. As mentioned in section 2.2, all clauses are range restricted and the
schemata of hierarchical databases are assumed to be non-recursive, but there is no other
restriction on the occurrence of negation. We refer to the language of such schemata as
LH.

Definition 4.1.1 (LH) Let S be a schema. S is in LH if its starred dependency graph is
acyclic.

Unfolding predicates in integrity constraints with respect to their definitions cannot be
done in the same way as UnfoldLS

. For this purpose, we extend the syntax of denials so
as to allow negated existential quantifiers to occur in literals.

61

Definition 4.1.2 (Extended denials) A negated existential expression or NEE is

an expression of the form ¬∃ ~XB, where B is called the body of the NEE, ~X are some
(possibly all) of the variables occurring in B and B has the form L1 ∧ · · · ∧ Ln, where
each Li is a general literal.
A general literal is either a literal or a NEE.
A formula of the form ∀ ~X(← B), where B is the body of a NEE and ~X are some (possibly
all) of the free variables in B, is called an extended denial. When there is no ambiguity

on the variables in ~X, extended denials are simply written ← B.

Example 4.1.3 The formula ← parent(X) ∧ ¬∃Y child of(X,Y) is an extended denial.
It reads as follows: there is inconsistency if there is a parent X that does not have a
child. Note that this is different from the (non-range restricted) denial ← parent(X) ∧
¬child of(X,Y), which states that if X is a parent then all individuals must be his/her
children.

We observe that variables under a negated existential quantifier conform with the intuition
behind safeness, so we could conclude that the first formula in example 4.1.3 is safe,
whereas the second one is not. We can now apply unfolding in LH to obtain extended
denials. In doing so, attention needs to be paid when replacing negated intensional
predicates by their definition, since they may contain non-distinguished variables and thus
existential quantifiers have to be explicitly indicated. As was the case for UnfoldLS

, the
replacements may result in disjunctions and negated conjunctions. Therefore, additional
steps are needed to restore the extended denial form.

Definition 4.1.4 Let S = 〈IDB,Γ〉 be a database schema in LH. We define UnfoldLH
(S)

as the set of extended denials obtained by iterating the two following steps as long as
possible:

1. replace, in Γ, each occurrence of a literal of the form ¬p(~t) by ¬∃~Y F p{ ~X/~t} and

of a literal of the form p(~t) by F p{ ~X/~t}, where p ∈ pred(IDB), F p is p’s defining

formula, ~X its distinguished variables and ~Y its non-distinguished variables. If no
replacement was made, then stop;

2. transform the resulting formula into a set of extended denials according to the fol-
lowing patterns; Φ(Arg) is an expression indicating the body of a NEE in which Arg

occurs; ~X and ~Y are disjoint sequences of variables:

• ← A ∧ (B ∨ C) is replaced by ← A ∧ B and ← A ∧ C;

• ← A ∧ ¬(B ∨ C) is replaced by ← A ∧ ¬B ∧ ¬C;

• ← A ∧ ¬(B ∧ C) is replaced by ← A ∧ ¬B and ← A ∧ ¬C;

• ← A ∧ ¬∃ ~XΦ(¬∃~Y [B ∧ (C ∨ D)]) is replaced by

← A ∧ ¬∃ ~XΦ(¬∃~Y [B ∧ C] ∧ ¬∃~Y [B ∧ D]).

Without loss of generality, we can assume that, for any NEE N = ¬∃ ~XB occurring in
an extended denial φ, the variables ~X do not occur outside N in φ. This can simply
be obtained by renaming the variables appropriately and we refer to such an extended

62

denial as standardized . The level of a NEE in an extended denial is the number of NEEs
that contain it, plus 1. The level of a variable X in a standardized extended denial is the
level of the NEE starting with ¬∃ ~X, where X is one of the variables in ~X, or 0 if there
is no such NEE. The level of an extended denial is the maximum level of its NEEs, or 0
if there is no NEE. In example 4.1.3, the extended denial has level 1, X has level 0 and
Y has level 1.

With a slight abuse of notation, we write in the following S ≡ Ψ (or Ψ ≡ S), where
S = 〈IDB , IC 〉 is a schema and Ψ is a set of extended denials, to indicate that, for every
database D based on IDB , D |= IC iff D |= Ψ. We can now claim the correctness of
UnfoldLH

. We state the following proposition without a proof, since all steps in definition
4.1.4 are trivially equivalence-preserving.

Proposition 4.1.5 Let S ∈ LH. Then UnfoldLH
(S) ≡ S.

Since the variables under a negated existential quantifier conform with the intuition be-
hind safeness, the unfolding of a schema in which all the clauses are range restricted yields
a set of extended denials that still are safe in this sense. We also note that the language
of extended denials is very expressive. In [123], it was shown that any closed formula of

the form ∀ ~X(← B), where B is a first-order formula and ~X are its open variables, can be

equivalently expressed by a set of Prolog rules plus the denial ← q(~X), where q is a fresh
predicate symbol. The construction is such that, if B is function-free, then the resulting
rule set is also function-free (no skolemization is needed), i.e., it is that of a schema in LH.
The unfolding of the obtained schema is therefore an equivalent set of extended denials.

A simplification procedure can now be constructed for extended denials in a way
similar to what was done in LS.

Definition 4.1.6 Let S be a schema in LH and U an update. We define AfterULH
(S) as

UnfoldLH
(AfterU (S)).

The optimization step needs to take into account the nesting of NEEs in extended denials.
Besides the elimination of disjunctions within NEEs, which is performed by UnfoldLH

, we
can also eliminate, from a NEE, equalities and non-equalities referring to variables of
lower level with respect to the NEE.

Definition 4.1.7 Let A,B,C be (possibly empty) conjunctions of general literals, ~Y , ~Z

disjoint (sequences of) variables, W a variable of level lower than the level of ~Z, and
Φ(Arg) an expression indicating a NEE in which Arg occurs The following rewrite rules
are, respectively, the equality elimination and non-equality elimination rules.

← A ∧ Φ(¬∃~Y [B ∧ ¬∃~Z(C ∧ W = c)]) ⇒

← A ∧ Φ(¬∃~Y [B ∧ W = c ∧ ¬∃~Z(C)] ∧ ¬∃~Y [B ∧ W 6= c])

← A ∧ Φ(¬∃~Y [B ∧ ¬∃~Z(C ∧ W 6= c)]) ⇒

← A ∧ Φ(¬∃~Y [B ∧ W 6= c ∧ ¬∃~Z(C)] ∧ ¬∃~Y [B ∧ W = c])

The above (non-)equality elimination rewrite rules are equivalence preserving, as stated
below.

63

Proposition 4.1.8 Let ψ be an extended denial and ψ′ (resp. ψ′′) be the extended denial
obtained after an application of the equality (resp. non-equality) elimination rule. Then
ψ ≡ ψ′ and ψ ≡ ψ′′.

Proof Using the notation of definition 4.1.7, we have:

¬∃~Y [B ∧ ¬∃~Z(C ∧ W = c)]

≡ ¬∃~Y [B ∧ (W = c ∨ W 6= c) ∧ ¬∃~Z(C ∧ W = c)]

≡ ¬∃~Y [B ∧ W = c ∧ ¬∃~Z(C ∧ W = c)]∧

¬∃~Y [B ∧ W 6= c ∧ ¬∃~Z(C ∧ W = c)]

≡ ¬∃~Y [B ∧ W = c ∧ ¬∃~Z(C)] ∧ ¬∃~Y [B ∧ W 6= c]

In the first step, we added the tautological conjunct (W = c∨W 6= c). In the second step
we used de Morgan’s laws in order to eliminate the disjunction (as in the definition of

UnfoldLH
). The formula W = c∧¬∃~Z(C ∧W = c) can be rewritten as W = c∧¬(∃~ZC ∧

W = c), and then as W = c ∧ (¬∃~Z(C) ∨ W 6= c), which, with a resolution step, results

in the first NEE in the last extended denial. Similarly, W 6= c ∧ ¬∃~Z(C ∧ W = c) can be

rewritten as W 6= c ∧ (¬∃~Z(C) ∨ W 6= c), which results (by absorption) into the second
NEE in the last extended denial.

The proof is similar for non-equality elimination. 2

In case only levels 0 and 1 are involved, the rules look simpler. For example, equal-
ity elimination can be conveniently formulated as follows.

← B ∧ ¬∃ ~X[C ∧ W = c] ⇒
{ ← B{W/c} ∧ ¬∃ ~XC{W/c}

← B ∧ W 6= c }.
(4.1)

Although (non-)equality elimination does not necessarily shorten the input formula (in
fact, it can also lengthen it), it always reduces the number of literals in higher level
NEEs. Therefore, convergence to termination can still be guaranteed if this rewrite rule
is applied during optimization. Repeated application of such rules “pushes” outwards the
involved (non-)equalities until they reach an NEE whose level is the same as the level
of the variable in the (non-)equality. Then, in case of an equality, the usual equality
elimination step of reduction can be applied.

Example 4.1.9 The following rewrites show the propagation of a variable of level 0 (X)
from level 2 to level 0 via two equality eliminations and one non-equality elimination.

64

← p(X) ∧ ¬∃Y {q(X,Y) ∧ ¬∃Z[r(X,Y,Z) ∧ X = a]}

≡ ← p(X) ∧ ¬∃Y {q(X,Y) ∧ X = a ∧ ¬∃Z[r(X,Y,Z)]}
∧¬∃Y [q(X,Y) ∧ X 6= a]

≡ { ← p(a) ∧ ¬∃Y [q(a, Y) ∧ ¬∃Zr(a, Y, Z)] ∧ ¬∃Y [q(a, Y) ∧ a 6= a],
← p(X) ∧ X 6= a ∧ ¬∃Y [X 6= a ∧ q(X,Y)] }

≡ { ← p(a) ∧ ¬∃Y [q(a, Y) ∧ ¬∃Zr(a, Y, Z)] ∧ ¬∃Y [q(a, Y) ∧ a 6= a],
← p(X) ∧ X 6= a ∧ ¬∃Y q(X,Y),
← p(a) ∧ X 6= a ∧ X = a }

≡ { ← p(a) ∧ ¬∃Y [q(a, Y) ∧ ¬∃Zr(a, Y, Z)],
← p(X) ∧ X 6= a ∧ ¬∃Y q(X,Y) }

In the first step we applied equality elimination to X = a at level 2. In the second step
we applied the rewrite rule (4.1) for equality elimination to X = a at level 1. Then we
applied non-equality elimination to X 6= a at level 1 in the second denial. In the last step,
we removed, by standard application of reduction, the last extended denial and the last
NEE in the first extended denial, which are clearly tautological.

We observe that the body of a NEE is structurally similar to the body of an extended
denial. The only difference is that, in the former, there are variables that are quantified
at a lower level. According to this observation, such (free) variables in the body of a
NEE are to be treated as parameters during the different optimization steps, since, as
was indicated on page 9, parameters are free variables.

Reduction (definition 3.2.19 on page 37) can then take place in NEE bodies exactly
as in ordinary denials, with the proviso above of treating free variables as parameters.

The definition of resolution (3.2.21 on page 39 and following definitions) can be
adapted for extended denials by applying it to general literals instead of literals.

Subsumption (definition 3.2.17 on page 37) can also be applied to extended denials
without changing the definition. However, we can slightly modify the notion of subsump-
tion to explore the different levels of NEEs in an extended denial. This is captured by
the following definition.

Definition 4.1.10 Let φ =← A ∧ B and ψ =← C ∧ D be two extended denials, where
A and C are (possibly empty) conjunctions of literals and B and D are (possibly empty)
conjunctions of NEEs. Then φ extended-subsumes ψ if both conditions (1) and (2) below
hold.

(1) ← A subsumes ← C with substitution σ.

(2) For every NEE ¬∃ ~XNN in B, there is a NEE ¬∃ ~XMM in D such that ← Nσ is
extended-subsumed by ← M .

Example 4.1.11 The extended denial ← p(X) ∧ ¬∃Y,Z[q(X,Y) ∧ r(Y,Z)] extended-
subsumes the extended denial ← p(a)∧¬∃T [q(a, T)]∧¬∃W [s(T)], since ← p(X) subsumes
← p(a) with substitution {X/a} and, in turn, ← q(a, T) subsumes ← q(a, Y) ∧ r(Y,Z).

65

This definition encompasses ordinary subsumption, in that it coincides with it if B and
D are empty. Furthermore, it captures the desired property that if φ extended-subsumes
ψ, then φ |= ψ; the reverse, as in subsumption, does not necessarily hold.

Proposition 4.1.12 Let φ and ψ be extended denials. If φ extended-subsumes ψ then
φ |= ψ.

Proof Let φ, ψ,A,B,C,D be as in definition 4.1.10. If B and D are empty the claim
holds, since φ and ψ are ordinary denials. The claim also holds if D is not empty, since
← C entails ← C ∧ D. We now show the general claim with an inductive proof on the
level of extended denials.
The base case (level 0) is already proven.
Inductive step. Suppose now that φ is of level n + 1 and that the claim holds for extended
denials of level n or less. Assume as a first case that B is empty. Then φ entails ψ,
since φ entails ← C (← A subsumes ← C by hypothesis). Assume for the moment that

B = ¬∃ ~XNN is a NEE of level 1 in φ and that D contains a NEE (of level 1) ¬∃ ~XMM ,
such that φ′ =← Nσis extended-subsumed by ψ′ =← M , as assumed in the hypotheses.
But φ′ and ψ′ are extended denials of level n and, therefore, if ψ′ subsumes φ′ then ψ′

entails φ′ by inductive hypothesis. Clearly, since ← A entails ← C ∧ D (by hypothesis)
and ← Mentails ← Nσ(as a consequence of the inductive hypothesis), then ← A ∧ B
entails ← C ∧ D, which is our claim. If B contains more than one NEE of level 1, the
argument is iterated by adding one NEE at a time. 2

The inductive proof also shows how to check extended subsumption with a finite num-
ber of subsumption tests. This implies that extended subsumption is decidable, since
subsumption is. Now that a correct extended subsumption is introduced, it can be used
instead of subsumption in the subsumption factoring rule of reduction (definition 3.2.19

on page 37). In the following, when referring to a NEE N = ¬∃ ~XB we can also write
it as a denial ← B, with the understanding that the free variables in N are considered
parameters.

Definition 4.1.13 For an extended denial φ, the reduction φ− of φ is the result of ap-
plying on φ equality and non-equality elimination as long as possible, and then the rules
of definition 3.2.19 (reduction on page 37) on φ and its NEEs as long as possible, where
“literal” is replaced by “general literal”, “subsumes” by “extended-subsumes” and “denial”
by “extended denial”.

Without reintroducing similar definitions, we assume that the same word replacements
are made for the notion of `R (definition 3.2.26 on page 40). The underlying notions
of substitution and unification also apply to extended denials and general literals; only,
after substitution with a constant or parameter, the existential quantifier of a variable is
removed. For example, the extended denials φ =← p(X, b) ∧ ¬∃Z[q(Z,X)] and ψ =←
p(a, Y) ∧ ¬q(c, a) unify with substitution {X/a, Y/b, Z/c}. By virtue of the similarity
between denial bodies and NEE bodies, we extend the notion of optimization as follows.

Definition 4.1.14 Given two sets of extended denials ∆ and Γ, Optimize∆
LH

(Γ) is the
result of applying the following rewrite rules and the rules of definition 3.2.28 (OptimizeLS

on page 41) on Γ as long as possible. In the following, φ and ψ are NEEs, Γ′ is a set of

66

extended denials, and Φ(Arg) is an expression indicating the body of an extended denial
in which Arg occurs.

{← Φ(φ)} t Γ′ ⇒ {← Φ(true)} ∪ Γ′ if φ− = true
{← Φ(φ)} t Γ′ ⇒ {← Φ(true)} ∪ Γ′ if (Γ′ ∪ ∆) `R φ
{← Φ(φ)} t Γ′ ⇒ {← Φ(φ−)} ∪ Γ′ if φ 6= φ− 6= true
{← Φ(φ)} t Γ′ ⇒ {← Φ(φ−)} ∪ Γ′ if (({φ} ∪ {← Φ(φ)}) t Γ′ ∪ ∆) `R ψ

and ψ− strictly extended-subsumes φ

Finally, the simplification procedure for LH is composed in terms of AfterLH
and OptimizeLH

.

Definition 4.1.15 Consider a schema S = 〈IDB,Γ〉 ∈ LH and an update U . Let Γ′ =
UnfoldLH

(S). We define

SimpU
LH

(S) = OptimizeΓ′

LH
(AfterULH

(S)).

Similarly to LS, soundness of the optimization steps and the fact that After returns a WP
entail the following.

Proposition 4.1.16 Let S ∈ LH and U be an update. Then SimpU
LH

(S) is a CWP of S
with respect to U .

4.1.1 Examples

We now discuss the most complex non-recursive examples that we found in the literature
referenced in this thesis.

Example 4.1.17 This example is taken from [114]. Consider a schema S = 〈IDB,Γ〉
with three extensional predicates a, b, c, two intensional predicates p, q, a constraint
theory Γ and a set of trusted hypotheses ∆.

IDB = { p(X,Y) ← a(X,Z) ∧ b(Z, Y),
q(X,Y) ← p(X,Z) ∧ c(Z, Y) }

Γ = { ← p(X,X) ∧ ¬q(1,X) }
∆ = { ← a(1, 5) }

This schema S is not in LS and the unfolding of S is as follows.

UnfoldLH
(S) = {← a(X,Y) ∧ b(Y,X) ∧ ¬∃W,Z(a(1,W) ∧ b(W,Z) ∧ c(Z,X))}.

We want to verify that the update U = {b(X,Y) ⇐ b(X,Y) ∧ X 6= 5} (the deletion of all
b-tuples with the first argument different from 5) does not affect consistency. AfterULH

(S)
results in the following extended denial:

← a(X,Y) ∧ b(Y,X) ∧ Y 6= 5 ∧ ¬∃W,Z(a(1,W) ∧ b(W,Z) ∧ W 6= 5 ∧ c(Z,X)).

As previously described, during the optimization process, the last conjunct can be processed
as a separate denial φ = ← a(1,W)∧b(W,Z)∧W 6= 5∧c(Z,X), where X is a free variable

67

that can be treated as a parameter (and thus indicated in bold). With a resolution step
with ∆, the literal W 6= 5 is proved to be redundant and can thus be removed from φ. The
obtained formula is then subsumed by UnfoldLH

(S) and therefore Optimize∆
LH

(SimpU (S)) =
∅, i.e., the update cannot violate the integrity constraint, which is the same result that
was found in [114].

Example 4.1.18 The following schema S is the relevant part of an example described in
[116] on page 24.

S = 〈{ married to(X,Y) ← parent(X,Z) ∧ parent(Y,Z)∧
man(X) ∧ woman(Y),

married man(X) ← married to(X,Y),
married woman(X) ← married to(Y,X),

unmarried(X) ← man(X) ∧ ¬married man(X),
unmarried(X) ← woman(X) ∧ ¬married woman(X) },

{ ← man(X) ∧ woman(X),
← parent(X,Y) ∧ unmarried(X) }〉

If we reformulate the example using the shorthand notation introduced on page 42, the
database is updated with U = {man(a)}, where a is a parameter. The unfolding given by
UnfoldLH

(S) is as follows, where m, w, p respectively abbreviate man, woman, parent,
which are the only extensional predicates.

{ ← m(X) ∧ w(X),
← p(X,Y) ∧ m(X) ∧ ¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ m(X) ∧ w(T)],
← p(X,Y) ∧ w(X) ∧ ¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ w(X) ∧ m(T)] }

We start the simplification process by applying AfterLH
to S wrt U .

AfterULH
(S) ≡ { ← (m(X) ∨ X = a) ∧ w(X),

← p(X,Y) ∧ (m(X) ∨ X = a)∧
¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ (m(X) ∨ X = a) ∧ w(T)],

← p(X,Y) ∧ w(X)∧
¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ w(X) ∧ (m(T) ∨ T = a)] }

After eliminating the disjunctions at level 0, AfterULH
(S) is as follows:

{←m(X) ∧ w(X),
←X = a ∧ w(X),
← p(X,Y) ∧ m(X) ∧ ¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ (m(X) ∨ X = a) ∧ w(T)],
← p(X,Y) ∧ X = a ∧ ¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ (m(X) ∨ X = a) ∧ w(T)],
← p(X,Y) ∧ w(X) ∧ ¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ w(X) ∧ (m(T) ∨ T = a)] }

68

Now we can eliminate the disjunctions at level 1 and obtain the following set.

{← m(X) ∧ w(X),
← X = a ∧ w(X),
← p(X,Y) ∧ m(X) ∧ ¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ m(X) ∧ w(T)]∧

¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ X = a ∧ w(T)],
← p(X,Y) ∧ X = a ∧ ¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ m(X) ∧ w(T)]∧

¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ X = a ∧ w(T)],
← p(X,Y) ∧ w(X) ∧ ¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ w(X) ∧ m(T)]∧

¬∃(T,Z)[p(X,Z) ∧ p(T,Z) ∧ w(X) ∧ T = a] }

We can now proceed with the optimization of this set of extended denials by using the
OptimizeLH

transformation. Clearly, the first, the third and the fifth extended denial are
extended-subsumed by the first, the second and, respectively, the third extended denial in
UnfoldLH

(S) and are thus eliminated. The second denial reduces to ← w(a). In the fourth
denial the equality X = a at level 0 is eliminated, thus substituting X with a in the whole
extended denial. We obtain the following.

{← w(a),
← p(a, Y) ∧ ¬∃(T,Z)[p(a, Z) ∧ p(T,Z) ∧ m(a) ∧ w(T)]∧

¬∃(T,Z)[p(a, Z) ∧ p(T,Z) ∧ a = a ∧ w(T)] }

For the last extended denial, first we can eliminate the trivially succeeding equality a = a
from the body of the second NEE. Then we can consider that

← ¬∃(T,Z)[p(a, Z) ∧ p(T,Z) ∧ m(a) ∧ w(T)]

extended-subsumes

← p(a, Y) ∧ ¬∃(T,Z)[p(a, Z) ∧ p(T,Z) ∧ w(T)]

so we can eliminate by subsumption factoring the subsuming part and leave the subsumed
one. The simplification procedure for LH applied to S and U returns the following result.

SimpU
LH

(S) = { ← w(a),
← p(a, Y) ∧ ¬∃(T,Z)[p(a, Z) ∧ p(T,Z) ∧ w(T)] }

This coincides with the result given in [116], rewritten with our notation, with the only
difference that they do not assume disjointness of IDB and EDB, so, in the latter extended
denial, they have the extra conjunct ¬∃V [married to(a, V)].

4.2 Aggregates and arithmetic

Aggregates and arithmetic operators are among the most used and widespread facilities
in database utilization. To be of practical use, any simplification procedure must support
such constructs. In this section we present a set of rewrite rules that allow the decomposi-
tion of aggregate expressions into simpler ones that can then be simplified by a constraint
solver for arithmetic expressions. The practical significance of these rules is demonstrated
with an extensive set of examples.

69

4.2.1 A syntax for aggregates and arithmetic

In order to extend our framework with arithmetic and aggregates (which are not part
of datalog and are not first-order expressible), a suitable syntax is needed. For this
purpose, we assume throughout this section that terms are typed, so as to recognize
numeric arguments.

We also assume that the language includes built-in arithmetic constraints (<, ≤, >,
≥), whose arguments are arithmetic expressions. An arithmetic formula is a formula in
which all the predicates are arithmetic constraints. An arithmetic expression is a numeric
term, an aggregate term, or a legal combination of arithmetic expressions via the four
operations (+, −, ·, /), indicated in infix notation.

An aggregate term is an expression of the form A[X](∃X1, . . . ,XnF), where A is an
aggregate operator, F is a defining formula, X1, . . . ,Xn (the local variables) are F ’s
distinguished variables, and the optional X, if present, is the variable, called aggregate
variable, among the X1, . . . ,Xn on which the aggregate function is calculated. The non-
local variables in F are called the global variables; the argument of the aggregate is called
the key formula. To simplify notation, inside key formulas we underline the local variables
and do not indicate the existential quantifications. We also assume that the local variables
of a key formula do not occur outside that key formula.

The aggregate operators we consider are: Cnt (count), Sum, Max, Min, Avg (average).

Example 4.2.1 Given the person relation p(name, age), AvgY (p(X,Y)) is an aggre-
gate term that indicates the average age of all persons. Let r(X) indicate that X is
a reviewer and sub(X,Y) indicate that submission X is assigned to reviewer Y . Then
← r(X)∧Cnt(sub(Y ,X)) > 3 is a denial requiring that no reviewer is assigned more than
3 submissions.

The extension of LS in which aggregates and arithmetic expressions can occur is denoted
by LA.

4.2.2 Set vs. bag semantics

The semantics of aggregates depends on the semantics underlying the representation of
data. Two different semantics are of interest: set semantics, as traditionally used in logic,
and bag semantics, typical of relational database systems. A state D contains, for every
extensional predicate p, a relation pD; under set semantics, as we saw in definition 2.2.19
on page 16, pD is the extension of p and is thus a set of tuples; under bag semantics,
pD is a bag (or multiset) of tuples, i.e., a set of 〈tuple,multiplicity〉 pairs, where the
multiplicity is a positive integer. Similarly, any defining formula F defines a new finite
relation FD. Under set semantics, the extension consists of all different answers that F
produces over D; under bag semantics, the tuples are the same as for set semantics and
the multiplicity of each tuple is the number of times it can be derived over D. A complete
formal account on bag semantics is given in [52]; we show here how the multiplicity of a
query is calculated.

Suppose that Q is a conjunctive query , i.e., a query of the form ⇐ p1(~X1)∧· · ·∧pn(~Xn),
where the pi’s are extensional predicates. An assignment mapping of a conjunctive query
Q into a database D is an assignment of constants in D to the variables of Q such that

70

every conjunct in Q is mapped to a tuple in D. For an assignment mapping θ, we denote
by θ(~X) the constants to which θ maps ~X and by mi the multiplicity of the tuple to

which pi(~Xi) is mapped. Then the result due to θ of Q over D is the tuple θ(~X) with

multiplicity m = m1 · . . . · mn, where ~X are the distinguished variables of Q. The result
of a query Q over a database D is given by]θrθ, where θ is any assignment mapping of
Q into D and rθ the result due to θ, i.e., the result is the bag union (]) of all results due
to the possible assignment mappings.

The notion of multiplicity trivially extends to defining formulas, which can be seen as
a generalization of conjunctive queries. Besides positive occurrences of extensional predi-
cates, defining formulas can contain built-in atoms, negative atoms, intensional predicates,
and disjunctions. Consider a range restricted query Q of the form ⇐ P ∧ R, where P is
the body of a conjunctive query and R is a conjunction of built-in or negated extensional
atoms. An assignment mapping of Q into a database D is an assignment of constants in
D to the variables of Q such that every conjunct in Q is mapped to a tuple in D and
every built-in atom in R is satisfied and, for every negative atom ¬A in R, A is not a
tuple in D. Then the multiplicity of the result is defined as before. If the query contains
intensional predicates, their multiplicity is defined as that of the corresponding queries.
If the query is of the form ⇐ P1 ∨ · · · ∨ Pn, then the multiplicity of the result is the sum
of the multiplicities of the results for ⇐ P1, . . . ,⇐ Pn. For simplicity, in the remainder
of the chapter we disregard intensional predicates, as this does not affect the discourse to
follow.

Global variables occurring in an aggregate are expected to be range bound for a
denial in LA to be safe. Given an assignment mapping θ for its global variables ~Y ,
the aggregate Cnt(∃ ~XF) refers to the sum of the multiplicities of the answers to ⇐

F{~Y /θ(~Y)}. Similarly, given an assignment mapping θ for its global variables ~Y , the

aggregate SumX(∃ ~XF) refers to the number

∑
{(Xσ) · m|Fσ is an answer to ⇐ F{~Y /θ(~Y)} and m its multiplicity}.

The other aggregates are defined in a similar way. We note that Max and Min are indif-
ferent of the semantics; for the other aggregates, we use the notation Cnt, Sum, Avg for
bag semantics and CntD, SumD, AvgD when referring to the set of distinct tuples.

Note that, according to the definition of update (2.2.20), in both set and bag semantics,
when an update U determines the deletion of a tuple p(~c) from a relation pD in a state
D, then all of its occurrences in pD are removed, i.e., DU 6|= p(~c). Addition of a tuple
p(c), under bag semantics, means either adding 1 to the existing multiplicity or creating
one with value 1.

4.2.3 Rewrite rules for aggregates and arithmetic

In LA, we can still use AfterLS
to generate weakest preconditions. This may introduce

disjunctions inside key formulas of aggregates.

Example 4.2.2 Let Γ = {← Cnt(p(X)) < 10}, U = {p(a)}, then:

AfterULS
(Γ) = {← Cnt(p(X) ∨ X = a) < 10}.

71

The new Cnt expression returned by AfterLS
should indicate an increment by one with

respect to the original expression. In order to determine this effect, we need to divide
the expression into smaller pieces that can possibly be used during the optimization of
weakest preconditions. To do that, we introduce further sound rewrite rules for aggre-
gates. Care must be taken when applying transformations that preserve logical equiva-
lence on aggregates with bag semantics. Consider, for instance, SumX(p(X)∧X = 1) and
SumX((p(X) ∧ X = 1) ∨ (p(X) ∧ X = 1)). Their key formulas are logically equivalent,
but in the latter, the tuple p(1) has double multiplicity. In other words, the results may
differ because the number of ways in which the key formula may succeed matters.

With regard to arithmetic constraints and expressions, we assume the presence of
a standard constraint solver for arithmetic, such as, e.g., [39, 105], in order to deter-
mine whether the rewrite rules below (introduced in definition 4.2.5) are applicable. A
constraint solver can be regarded as an algorithm whose input is a set of arithmetic con-
straints over terms and variables and whose output is a smaller, but logically equivalent,
set of arithmetic constraints or a “no” if there was no solution for the given problem; the
given input is solved when the output set is a set of variable/term assignments. We use
the notation A ÃC A′ to indicate that a constraint solver C receiving in input an arith-
metic formula A outputs, in finite time, a smaller arithmetic formula A′; conventionally,
A′ is false when there is no solution. We now extend the notion of subsumption to denials
containing arithmetic constraints.

Definition 4.2.3 Let C be a constraint solver for arithmetic and D1,D2 be denials of the
form ← C1 ∧ A1 and ← C2 ∧ A2, respectively, where C1, C2 are conjunctions of literals
without arithmetic constraints and A1,A2 arithmetic formulas. Then D1 C-subsumes D2

iff there is a substitution σ such that each literal in C1σ occurs in C2 and A2 ∧¬A1σ ÃC

false.

Example 4.2.4 Consider the following integrity constraints:

φ = ← Cnt(p(X,Y)) < 10 ∧ q(Y)
ψ = ← Cnt(p(X, b)) < 9 ∧ q(b) ∧ r(Z).

For any constraint solver C for which

E < 9 ∧ E ≥ 10 ÃC false

we have that φ C-subsumes ψ. Note that the arithmetic variable E is used as a shorthand
for Cnt(p(X, b)).

To make the definitions to follow more readable, we introduce conditional expressions,
i.e., arithmetic expressions written C ? E1 : E2, whose value is given by the value of E1

if condition C holds, or by the value of E2 otherwise. Similarly, we introduce two binary
arithmetic operators max and min (not to be confused with the aggregates Max and Min)
and define them in terms of conditional expressions. Square brackets in the subscript
of an aggregate indicate that the rule applies both with and without the subscripted
aggregate variable. Note that the aggregate variable and the global variables are to be
treated as parameters during reduction, as they are not quantified inside an aggregate.

72

Definition 4.2.5 Given two constraint theories ∆ and Γ in LA and a constraint solver
for arithmetic C, OptimizeC

∆(Γ) is the result of applying the following rewrite rules and
those of OptimizeLS

(definition 3.2.28 on page 41) on Γ as long as possible. Here, X is a
local variable, Y a global one, A, B, C are conjunctions of literals such that ← A, ← B,
← C are all range restricted (C with no local variables), E1, E2 arithmetic expressions,
A1, A2, A3 arithmetic formulas, t, s terms, c a constant or parameter, F a key formula,
Γ′ a constraint theory, σ a substitution, ρ a renaming, Agg any aggregate. Φ(Arg) and
Ψ(Arg) are expressions indicating a set of denials and, respectively, a conjunction of
literals, in which Arg occurs. The ⊥ symbol indicates the result of an aggregate applied
to an empty bag of tuples (e.g., 0 for Cnt and Sum).
Rules for all aggregates

Agg[X](A ∧ Y = t) ⇒ Y = t ? Agg[X](A{Y/t}) : ⊥1

Agg[X](A) ⇒ ⊥ if (← A)− = true

Agg[X](A) ⇒ Agg[X](B) if (← A)− =← B and A 6= B

{← Agg(F) 6= c} t Φ(Agg(F)ρ) ⇒ {← Agg(F) 6= c} ∪ Φ(c)

Rules for Cnt and CntD

Cnt(A ∨ B) ⇒ Cnt(A) + Cnt(B)
CntD(A ∨ B) ⇒ CntD(A) + CntD(B) − CntD(A ∧ B)

Cnt[D](A ∧ t 6= s) ⇒ Cnt[D](A) − Cnt[D](A ∧ t = s)
Cnt(true) ⇒ 1
CntD(C) ⇒ C ? 1 : 0

Rules for Sum, Avg and SumD, AvgD

SumX(A ∨ B) ⇒ SumX(A) + SumX(B)
SumDX(A ∨ B) ⇒ SumDX(A) + SumDX(B) − SumDX(A ∧ B)

Sum[D]X
(A ∧ t 6= s) ⇒ Sum[D]X

(A) − Sum[D]X
(A ∧ t = s)

Sum[D]X
(A ∧ X = c) ⇒ c · Cnt[D](A{X/c})
Avg[D]X

(F) ⇒ Sum[D]X
(F)/Cnt[D](F)

Rules for Max and Min

MaxX(A ∨ B) ⇒ max(MaxX(A),MaxX(B))
MaxX(A ∧ X = c) ⇒ A{X/c} ? c : ⊥

MinX(A ∨ B) ⇒ min(MinX(A),MinX(B))
MinX(A ∧ X = c) ⇒ A{X/c} ? c : ⊥

Rules for conditional expressions

{← Ψ(C ? E1 : E2)} ⇒ {← C ∧ Ψ(E1), ← ¬C ∧ Ψ(E2)}
max(E1, E2) ⇒ E1 > E2 ? E1 : E2

min(E1, E2) ⇒ E1 < E2 ? E1 : E2

1Provided that t is not a local variable.

73

Rules for the interaction with the arithmetic constraint solver

{φ} t Γ′ ⇒ {ψ−} ∪ Γ′ if ({φ} t Γ′ ∪ ∆) `R ψ
and ψ− strictly C-subsumes φ

{← A ∧ A1} ⇒ {← A ∧ A2} if A1 ÃC A2

{← A ∧ A1, ← Aσ ∧ A2} ⇒ {← A ∧ A1, ← Aσ ∧ A3} if A1σ ∨ A2 ÃC A3
2

{← A ∧ X ≷ t} ⇒ {← A} if {t,X} ∩ vars(A) = ∅ and t is not X

As mentioned, (global) variables occurring in aggregates or arithmetic expressions must
be range bound by other literals in a denial, for it to be safe. We observe that these rules
preserve safeness, since they only modify the arithmetic part of denials.

The next example illustrates a few, simple rule applications.

Example 4.2.6 Consider the aggregates A1 = Cnt(p(X)∧X 6= a) and A2 = SumX(p(X)∧
X 6= a), a a numeric parameter. We have:

A1 ⇒ Cnt(p(X)) − Cnt(p(X) ∧ X = a)
⇒ Cnt(p(X)) − Cnt(p(a)).

A2 ⇒ SumX(p(X)) − SumX(p(X) ∧ X = a)
⇒ SumX(p(X)) − a · Cnt(p(a)).

Note that the fourth Sum rule in definition 4.2.5 indicates that, when the value of the
aggregate variable is known, the sum will equal that value multiplied by the number of
times the aggregate formula succeeds.

The simplification procedure can now be extended with these new rules.

Definition 4.2.7 Consider a schema S = 〈IDB,Γ〉 ∈ LA and an update U . Let C be a
constraint solver for arithmetic and let UnfoldLS

(S) = 〈∅,Γ′〉. We define

SimpC
U (S) = OptimizeC

Γ′

(AfterULS
(S)).

Since the rules of OptimizeC are equivalence preserving, the correctness of SimpC can be
stated, as for Simp, in theorem 4.2.8, with the extra assumption that the constraint solver
for arithmetic always terminates. Termination is then guaranteed, because it can easily
be shown that the rules of OptimizeC cannot go into a loop3.

Theorem 4.2.8 Given a constraint solver for arithmetic C that terminates on any input,
SimpC terminates on any input and, for any schema S ∈ LA and update U , SimpC

U (S) is
a CWP of S with respect to U .

2Note that when σ is a renaming, the first produced denial is redundant and will be eliminated by
the previous rule.

3The rules in the last subgroup follow the same termination principle as the rules in OptimizeLS
,

whereas the rules in the other subgroups remove equalities, non-equalities and disjunctions from aggre-
gates, which are not reintroduced by the rules in the last subgroup.

74

4.2.4 Examples

We show now a series of examples that demonstrate the behavior of the rules and the
simplification procedure in various cases; for readability, we leave out some of the trivial
steps and only consider empty IDB ’s.

Example 4.2.9 (4.2.2 continued) Let Γ = {← Cnt(p(X)) < 10}, U = {p(a)}, then:

SimpC
U (Γ) = OptimizeC

Γ({← Cnt(p(X) ∨ X = a) < 10})

= OptimizeC
Γ({← Cnt(p(X)) + Cnt(X = a) < 10})

= OptimizeC
Γ({← Cnt(p(X)) + 1 < 10})

= ∅.

The update increments the count of p-tuples, which was known (Γ) to be at least 10
before the update, so this increment cannot undermine the validity of Γ itself. The last
step, obtained via C-subsumption, allows one to conclude that no check is necessary to
guarantee consistency of the updated database state.

Example 4.2.10 Let Γ = {← CntD(p(X)) 6= 10} (there must be exactly 10 distinct p-
tuples) and U = {p(a)}. With a set semantics, the increment of the count depends on the
existence of the tuple p(a) in the state:

SimpC
U (Γ) = OptimizeC

Γ({ ← CntD(p(X) ∨ X = a) 6= 10})

= OptimizeC
Γ({ ← CntD(p(X)) + 1 − CntD(p(a)) 6= 10})

= OptimizeC
Γ({ ← 10 + 1 − p(a) ? 1 : 0 6= 10})

= OptimizeC
Γ({ ← p(a) ∧ 10 + 1 − 1 6= 10,

← ¬p(a) ∧ 10 + 1 − 0 6= 10})
= {← ¬p(a)}.

The arithmetic constraint solver intervenes in the last step suggesting that 10+1−1 6= 10
is a falsity and 10 + 1 − 0 6= 10 a tautology. In the second step, CntD(p(X)) is replaced
by 10 because of the hypothesis Γ by applying the last rule of the first subgroup of rules in
definition 4.2.5. The result indicates that, if a is not among the values already in p, then
the constraint will be violated.

Example 4.2.11 When global variables occur, conditional expressions are used to sep-
arate different cases. Suppose that p(X,Y) indicates that patient X is hospitalized with
illness Y and that q(Y) means that illness Y requires quarantine. Let Γ = {← Cnt(p(X,
Y)) > 10 ∧ q(Y)} be a hospital policy imposing that for each illness requiring quarantine
there are no more than 10 hospitalized patients having that illness. Let U = {p(a,b)} be
the addition of a patient-illness tuple. The calculation of SimpC

U (Γ) is as follows.

OptimizeC
Γ(AfterULS

(Γ))

= OptimizeC
Γ({ ← Cnt(p(X,Y)) + Cnt(X = a ∧ Y = b) > 10 ∧ q(Y)})

= OptimizeC
Γ({ ← Cnt(p(X,Y)) + Cnt(Y = b) > 10 ∧ q(Y)})

= OptimizeC
Γ({ ← Cnt(p(X,Y)) + Y = b ? 1 : 0 > 10 ∧ q(Y)})

= OptimizeC
Γ({ ← Y = b ∧ Cnt(p(X,Y)) + 1 > 10 ∧ q(Y),

← Y 6= b ∧ Cnt(p(X,Y)) + 0 > 10 ∧ q(Y)})
= {← Cnt(p(X,b)) > 9 ∧ q(b)}.

75

In the last step, the second constraint is C-subsumed by Γ and thus eliminated. The
result reads as follows: if illness b requires quarantine, then there must not already be 9
hospitalized patients having that illness.

Example 4.2.12 We propose now an example with a complex update. Let e(X,Y,Z)
represent employees of a company, where X is the name, Y the years of service and Z
the salary. The company’s policy is expressed by

Γ = { ← e(X,Y,Z) ∧ Z = MaxW (e(U, V ,W)) ∧ Y < 5,
← e(X,Y,Z) ∧ Z = MaxW (e(U, V ,W)) ∧ Y > 8 }

i.e., the seniority of the best paid employee must be between 5 and 8 years, and

U = {e(X,Y,Z) ⇐ e(X,Y ′, Z) ∧ Y = Y ′ + 1}

is the update transaction that is executed at the end of the year to increase the seniority
of all employees. Note that the application of AfterULS

to a literal of the form e(X,Y,Z)
generates

e(X,Y ′, Z) ∧ Y = Y ′ + 1.

The aggregate expression is transformed by AfterULS
(Γ) into

MaxW (e(U, V ′,W) ∧ V = V ′ + 1)

which is simplified by OptimizeC into MaxW (e(U, V ′,W)) and thus coincides, modulo re-
naming, with the original one in Γ. After the optimization steps described above, the
result of AfterULS

(Γ) is transformed into:

{ ← e(X,Y ′, Z) ∧ Y = Y ′ + 1 ∧ Z = MaxW (e(U, V ,W)) ∧ Y < 5,
← e(X,Y ′, Z) ∧ Y = Y ′ + 1 ∧ Z = MaxW (e(U, V ,W)) ∧ Y > 8}.

We assume that the arithmetic constraint solver can reduce Y = Y ′ + 1 ∧ Y < 5 into
Y ′ < 4 ∧ Y < 5 for the first denial and Y = Y ′ + 1 ∧ Y > 8 into Y ′ > 7 ∧ Y > 8 for
the second one. Then the first denial is subsumed by the first denial in Γ and we finally
obtain:

SimpC
U (Γ) = {← e(X,Y ′, Z) ∧ Z = MaxW (e(U, V,W)) ∧ Y ′ > 7},

i.e., the person with maximum salary must not exceed 7 years of seniority when the update
is applied.

4.2.5 Discussion

The quality of the simplification produced by SimpC is highly dependent on the precision
of the constraint solver for arithmetic, which might be unable to reduce particular com-
binations of arithmetic constraints. We also note that the interaction between the solver
and the simplification procedure, characterized by the last subgroup of rules of definition
4.2.5, captures many interesting cases in which arithmetic-based simplifications are possi-
ble, even across different constraints in a theory (second rule in the last subgroup). These

76

rules are the result of several rounds of fine-tuning of the simplification process based on
concrete cases and can fully solve all the examples presented in this section; however, we
cannot exclude that more complex cases escape this definition. In this respect, further
study is required to establish when minimality of the result can be guaranteed in the
presence of aggregates and arithmetic expressions.

The constraint solver for finite domains described in [39] and available in current
Prolog systems is able to handle the arithmetic part of most of the examples and rules
described in this chapter (for integers). An implementation of the solver and the rules
that characterize its interaction with the simplification procedure is also possible with
the language of Constraint Handling Rules [85], which is an extremely versatile tool
for constraint programming. For a survey on constraint solvers and constraint logic
programming in general we refer to [105].

The simplification problem for integrity constraints containing aggregates seems, with
few rare exceptions, to have been largely ignored. In [66], the most comprehensive sim-
plification method handling aggregates we are aware of, Das extends the simplification
method of [122] and applies it to aggregates based on an infinitary axiomatization of ag-
gregates for datalog. However, the hypotheses about consistency of the database prior
to the update is not fully exploited; consequently, the simplified test is a set of instances
of the original constraints. In our example 4.2.9, for instance, Das’ method would return
the initial constraint theory, whereas we were able to conclude that no check was needed.

A definition of the semantics of SQL with aggregates is given in [166], where it is
shown how to translate a subset of SQL into relational calculus and algebra and general
strategies for query optimization are investigated for such cases. Further investigation on
the semantics of aggregates is given in [109, 73, 169]. We also point out that query con-
tainment checking with aggregates is known to be more complex than in pure datalog.
Recent works on this topic, providing several complexity results, are [62, 7].

4.3 Recursion

Simplification in the context of recursive databases is an extremely complicated issue
for which, to our knowledge, no general and satisfactory solution has been proposed; in
many cases, no essential simplification of the original integrity constraints is even possible.
However, recursion is a central feature of deductive databases that allows the expression
of complex query problems to be formulated within a declarative query language. To this
end, we can mention flexible query answering based on taxonomies stored in the database,
and various kinds of path-finding problems, such as network routing and travel planning.
The introduction of recursion (since 1999 in the SQL standard [103] as stratified linear
recursion based on fixpoint semantics) naturally raises a need for a satisfactory treatment
of recursion in integrity constraints.

Many researchers have examined the expressive power of different classes of recur-
sion and have described canonical problems for each class. Such investigations are highly
relevant, as recursion makes deductive databases more expressive than first-order query
languages, in that, thanks to fixpoint semantics, transitive closure of relations can be for-
mulated. This gain in expressiveness and other comparisons between deductive database
languages and first-order languages are discussed in [64].

77

The class of problems that can be expressed using linear recursion is very broad. An
extensive discussion of the different kinds of linear recursion is found in [168], where
recursive rules are rewritten as graphs and classified accordingly.

Furthermore, many non-linear problems have an equivalent linear formulation. In [6],
it is explained how to produce a linear version of non-linear problems, such as piecewise
linear datalog programs, and regular and pseudo-regular chain queries. In addition
to that, there are problems that are formulated recursively but that are not inherently
recursive, and therefore have a non-recursive counterpart [51]4. However, there exist non-
linearizable problems [5], but it is known that bilinear recursion is the hardest case [42],
i.e., any database that is neither linear nor bilinear is equivalent to a database that is at
most bilinear. As for mutual recursion, it has been shown that it can always be reduced
to recursion over a single relation [49].

The task of efficiently evaluating a recursive query has been tackled by a large body
of research and has given rise to many different methods using different combinations
of strategies, approaches and implementations (top-down vs. bottom-up, compiled vs.
interpreted, iterative vs. recursive, ...), as extensively described in [15]. Among these,
magic sets and counting are probably the best known evolutions of the basic approach
called naive evaluation.

In this section we describe a simplification procedure that applies to an important
subclass of linear recursion. Discussion and comparison with related work is provided in
section 4.3.3.

4.3.1 A simplification pattern for ordered linear recursion

Let LR be the database language which is defined as LS (definition 3.2.3 on page 30), but
only requiring the database to be stratified, as opposed to the stronger requirement of
having an acyclic (starred) dependency graph.

With the application of the After operator, occurrences of recursive predicates in
integrity constraints are replaced by new recursive predicates defined in terms of new
recursive views. Unfolding for LR is then redefined as in definition 3.2.10, but with the
difference that, if a predicate is recursive, then it is not replaced by its defining formula
(we will indicate it as UnfoldLR

).

Definition 4.3.1 Let S = 〈IDB,Γ〉 be a database schema in LR. We define UnfoldLR
(S)

as the schema 〈R,Γ′〉, where R is the largest subset of IDB such that pred(R) is a set
of recursive predicates and Γ′ is the set of denials obtained by iterating the two following
steps as long as possible:

1. replace, in Γ, each occurrence of an atom of the form p(~t) by F p{ ~X/~t}, where p ∈

(pred(IDB) \pred(R)), F p is p’s defining formula and ~X its distinguished variables.
If no replacement was made, then stop;

2. transform the resulting formula into a set of denials according to the following pat-
terns:

• ← A ∧ (B1 ∨ B2) is replaced by ← A ∧ B1 and ← A ∧ B2;

4But determining whether a problem is inherently recursive is in general undecidable.

78

• ← A ∧ ¬(B1 ∨ B2) is replaced by ← A ∧ ¬B1 ∧ ¬B2;

• ← A ∧ ¬(B1 ∧ B2) is replaced by ← A ∧ ¬B1 and ← A ∧ ¬B2.

Trivially, for any schema S ∈ LR, we have UnfoldLR
(S) ≡ S.

After unfolding, the simplification process could then proceed as in LS, by ignoring
the IDB , but then the resulting constraint theory would hardly be any simpler than the
original one, at least if the update affects some recursively defined predicate.

In the following we describe an important class of linear recursion that embraces
some of the most commonly used recursive patterns (such as left- and right-linear recur-
sion[135]), known as ordered linear recursion (OLR) [154]. For these cases we are able to
refine the simplification process, by possibly eliminating the introduction of new recursive
views.

Definition 4.3.2 A predicate r is an OLR predicate if it is defined as follows

{ r(~X, ~Y) ← q(~X, ~Y)

r(~X, ~Y) ← p(~X, ~Z) ∧ r(~Z, ~Y) },
(4.2)

where p and q are predicates on which r does not depend and ~X, ~Y , ~Z are disjoint sequences
of distinct variables. The first rule is the exit rule, while the other is the recursive rule.

There may in principle be several exit rules and recursive rules for the same OLR predicate
r; however, these can always be reduced to one single exit rule and recursive rule by
introducing suitable new views. Note thus that p and q need not be extensional predicates.

We first transform the definition of r as to decompose it in two parts: a non-recursive
definition (4.3) and a transitive closure definition rp (4.4). If p and q are the same
predicate, then no transformation is needed, as the definition of r is already the transitive
closure of p. Otherwise we replace r’s definition with the union of the two following sets
of rules:

{ r(~X, ~Y) ← q(~X, ~Y)

r(~X, ~Y) ← rp(~X, ~Z) ∧ q(~Z, ~Y) }.
(4.3)

{ rp(~X, ~Y) ← p(~X, ~Y)

rp(~X, ~Y) ← p(~X, ~Z) ∧ rp(~Z, ~Y) }.
(4.4)

Note that the argument is perfectly symmetric when r’s recursive rule is of the form

r(~X, ~Y) ← r(~X, ~Z) ∧ p(~Z, ~Y).

In this case the second rule in (4.3) becomes

r(~X, ~Y) ← q(~X, ~Z) ∧ rp(~Z, ~Y)

and rp is defined exactly as in (4.4).
All occurrences of r in a constraint theory can now be unfolded with respect to the

rules in (4.3), which introduce q and rp, the latter being the transitive closure of p, defined
in (4.4). Intuitively, it is easy to characterize the set of tuples that are added to rp upon
addition of a p-tuple, as rp can be thought of as a representation of paths of a directed

79

graph of p-arcs. Suppose for the moment that update U is the addition of tuple 〈~a, ~b〉 to
p; then all added rp paths are those that pass by the new p-arc and that were not there

before the update. If we indicate as δ+
U rp(~X, ~Y) the fact that there is a new path from

~X to ~Y after the update U , this circumstance can be expressed by the following rule:

δ+
U rp(~X, ~Y) ← (rp(~X,~a) ∨ ~X = ~a) ∧ (rp(~b, ~Y) ∨ ~Y = ~b) ∧ ¬rp(~X, ~Y).

However, in the general case U is not necessarily a single tuple update, so δ+
U rp needs, in

general, to be characterized in terms of “rp in the updated state”, as specified in definition
4.3.3.

Definition 4.3.3 Let U be an update and rp a recursive predicate that expresses the
transitive closure of a non-recursive predicate p in a schema S in LR; let rU

p , pU be the

predicates replacing rp, p in S to obtain S′ = AfterU (S), respectively, as in definition 3.2.5
on page 31. Let OLR(rp, S

′) be the following set of rules:

{ rU
p (~X, ~Y) ← (rp(~X, ~Y) ∧ ¬δ−U rU

p (~X, ~Y)) ∨ δ+
U rU

p (~X, ~Y),

δ+
U rp(~X, ~Y) ← (rU

p (~X, ~W1) ∨ ~X = ~W1) ∧ (rU
p (~W2, ~Y) ∨ ~Y = ~W2)∧

δ+
U p(~W1, ~W2) ∧ ¬rp(~X, ~Y),

δ−U rp(~X, ~Y) ← (rp(~X, ~W1) ∨ ~X = ~W1) ∧ (rp(~W2, ~Y) ∨ ~Y = ~W2)∧

δ−U p(~W1, ~W2) ∧ ¬rU
p (~X, ~Y),

δ+
U p(~X) ← pU (~X) ∧ ¬p(~X),

δ−U p(~X) ← ¬pU (~X) ∧ p(~X) }

We define OLR(S′) as the schema obtained from S′ by replacing the clauses defining each
transitive closure predicate rU

p by OLR(rU
p , S′).

Proposition 4.3.4 Let S′ be as in definition 4.3.3. Then OLR(S′) ≡ S′.

Proof(Sketch) The constraint theories of OLR(S′) and S′ are identical. To see that the
replacement of rU

p ’s definition does not affect its evaluation in any database, it suffices to
consider that there is an isomorphism between rp and the transitive closure of a graph of
p-arcs [3] and that:

• a path is added (deleted) if it exists in the new (old) graph, it passes by an added
(deleted) arc and it does not exist in the old (new) graph.

The isomorphism is as follows: p(~X, ~Y) indicates a (directed) arc between node ~X and

node ~Y in the original graph, pU (~X, ~Y) an arc in the new graph, rp(~X, ~Y) a path between

node ~X and node ~Y in the original graph, rU
p (~X, ~Y) a path in the new graph, δ+

U p(~X) an

added arc, δ−U p(~X) a deleted arc, δ+
U rp(~X, ~Y) an added path, δ−U rp(~X, ~Y) a deleted path.

2

The above isomorphism allows us also to state that if δ+
U p corresponds to the addition of

0 or 1 arcs, then a more convenient expression can be found for δ+
U rp, that only refers to

rp and not to rU
p .

80

Proposition 4.3.5 Consider the set of rules in definition 4.3.3. If δ+
U p(~W1, ~W2) ≡ ~W1 =

~c1 ∧ ~W2 = ~c2 ∧A, where A is a conjunction of literals, and ~c1,~c2 are vectors of constants
or parameters, then the definition of δ+

U rp can be written as follows.

δ+
U rp(~X, ~Y) ← (rp(~X,~c1) ∨ ~X = ~c1) ∧ (rp(~c2, ~Y) ∨ ~Y = ~c2)∧

~W1 = ~c1 ∧ ~W2 = ~c2 ∧ A ∧ ¬rp(~X, ~Y).
(4.5)

The last literal in the body of (4.5) is also known as the effectiveness test .
A sufficient condition to test the applicability of proposition 4.3.5 is given as follows,

using AfterLS
and OptimizeLS

. Let us first consider that, using the rules of definition

4.3.3, we have δ+
U p(~X, ~Y) ≡ pU (~X, ~Y)∧¬p(~X, ~Y). Then, writing all conjuncts as denials

and using the definition of AfterLS
, we have δ+

U p(~X, ~Y) ≡ AfterULS
({← ¬p(~X, ~Y)}) ∪ {←

p(~X, ~Y)}. Note that the variables in δ+
U p(~X, ~Y) are not quantified and therefore are

to be treated as parameters. The expression Optimize∅LS
(AfterULS

({← ¬p(~X, ~Y)}) ∪ {←

p(~X, ~Y)}) is then also equivalent to δ+
U p(~X, ~Y). Proposition 4.3.5 is applicable if the

resulting constraint theory contains two constraints of the form ← ~c1 6= ~X and ← ~c2 6= ~Y ,
i.e., if it matches the pattern given for δ+

U p. This condition is, however, only sufficient, as
the described expression may not reduce to the desired form in all cases.

Definition 4.3.6 Let U be an update and S a schema in LR. Let S∗ be the same as S
but in which, for all OLR predicate r, its definition (4.2) is replaced by (4.3) and (4.4).
Then AfterLR

U (S) is defined as UnfoldLR
(OLR(AfterU (S∗))).

Let R be a set of rules defining a transitive closure predicate rp (as the rules in (4.4)).
We denote with den∗(R) the following set of denials:

{ ← ¬rp(~X, ~Y) ∧ p(~X, ~Y),

← ¬rp(~X, ~Y) ∧ p(~X, ~Z) ∧ rp(~Z, ~Y),

← ¬rp(~X, ~Y) ∧ rp(~X, ~Z) ∧ rp(~Z, ~Y) }

The first two denials are merely a rewriting of the “if” part of the rules; the third denial
captures the knowledge that the linear and the bilinear definition of the transitive closure
are equivalent. Such denials can be used in the optimization phase and typically allow
simplifying the effectiveness test. Let us denote with den(A ← B) the denial ← ¬A ∧B.
Let R = R′ ∪ R1 ∪ . . . ∪ Rn be a set of rules, where each Ri is a set of rules defining
transitive closure predicate rpi

and none of the predicates in pred(R′) is a transitive
closure predicate; then, with den(R) we denote the set {den(C) | C ∈ R′} ∪ den∗(R1) ∪
. . .∪den∗(Rn). We can now define the SimpLR

operator by optimizing the result of AfterLR

using the denial version of the recursive rules.

Definition 4.3.7 Let U be an update and S = 〈IDB,Γ〉 a schema in LR. Let 〈R∆,∆〉 =

UnfoldLR
(S) and 〈R,Γ′〉 = AfterLR

U (S), and let Σ = Optimize
∆∪den(R)
LS

(Γ′). We define

SimpLR

U (S) as 〈R∗,Σ〉, where R∗ is the largest subset of R including only definitions of
predicates on which Σ depends.

The characterization of δ−U rp given in definition 4.3.3 requires the evaluation of ¬rU
p .

However, we shall see that in many interesting cases δ−U rp is going to be simplified away.

81

We also note that the new views introduced by AfterLR
can be completely disregarded

if rU
p does not occur in the simplified constraints. If both the new and the old state

are at disposal, as in some trigger implementations, rU
p can be evaluated as “rp in the

new state”. However, these are precisely the cases where the simplification was, to some
extent, unsuccessful, as accessing or simulating the new state clearly requires extra work.

4.3.2 Examples

We now present an example that will also be used in section 4.3.3 to compare the present
work with previous methods.

Example 4.3.8 Consider the schema and update of example 3.2.8 on page 33 and the
definitions in definition 4.3.3. In order to determine how to check whether the database
is consistent after U , we calculate the simplification of S with respect to U . Γ unfolds
to {← p(X,X)}, which coincides with Γ itself. The constraint theory of AfterLR

U (S) is
calculated as

{← (p(X,X) ∧ ¬δ−U p(X,X)) ∨ δ+
U p(X,X)} ≡ { ← p(X,X) ∧ ¬δ−U p(X,X),

← δ+
U p(X,X) }.

and unfolded accordingly. When OptimizeLS
is applied to AfterLR

U (S), every unfolding
of the first constraint will be removed, as it is subsumed by ← p(X,X). Furthermore,
δ+
U e(X,Y) bounds both X and Y :

δ+
U e(X,Y) ≡ ¬e(a,b) ∧ X = a ∧ Y = b.

Therefore we can replace δ+
U p as in (4.5)

δ+
U p(X,Y) ← (p(X,a) ∨ X = a) ∧ (p(b, Y) ∨ Y = b) ∧ ¬e(a,b) ∧ ¬p(X,Y),

which unfolds in the remaining ← δ+
U p(X,X) expression as follows:

{ ← p(X,a) ∧ p(b,X) ∧ ¬e(a,b) ∧ ¬p(X,X),
← p(b,a) ∧ ¬e(a,b) ∧ ¬p(b,b),
← p(b,a) ∧ ¬e(a,b) ∧ ¬p(b,b),
← a = b ∧ ¬e(a,b) ∧ ¬p(a,a) }.

The second and third constraints are identical, and therefore either can be removed. The
¬p(−,−) literals are removed, in OptimizeLS

, via resolution with the denial ← p(X,X).
Since p is a transitive closure predicate, the hypotheses used in the optimization step

include ← ¬p(X,Y) ∧ e(X,Y), ← ¬p(X,Y) ∧ e(X,Z) ∧ p(Z, Y) and ← ¬p(X,Y) ∧
p(X,Z) ∧ p(Z, Y). Then, all ¬e(a,b) literals can be removed in all denials but the first
one. In the last denial, this is done by reduction and resolution via the intermediate `R -
derivation of ← e(X,X) (obtained via ← ¬p(X,Y) ∧ e(X,Y) and ← p(X,X)). In the
second (and third) constraint we use ← e(X,Z) ∧ p(Z,X) in a similar way (obtained via
← ¬p(X,Y) ∧ e(X,Z) ∧ p(Z, Y) and ← p(X,X)).

Finally, with a resolution step between ← ¬p(X,Y)∧p(X,Z)∧p(Z, Y) and the obtained
← p(b,a), we get ← p(b, Z) ∧ p(Z,a), which subsumes the first constraint.

SimpLR

U (S) = { ← p(b,a),
← a = b }.

82

Note that SimpLR

U (S) is a much simpler test than Γ as it basically requires to check
whether there exists a path between two given nodes, whereas Γ implies testing the existence
of a cyclic path for all the nodes in the graph.

Another interesting and more complex example shows how important problems can
be reduced to OLR and solved accordingly.

Example 4.3.9 In [134], the following recursive predicate b is described:

{ b(X,Y) ← k(X,Z) ∧ b(Z, Y) ∧ c(Y),
b(X,Y) ← d(X,Y) },

where b stands for “buys”, k for “knows”, c for “cheap” and d for “definitely buys”. These
definitions can be rewritten [104] as5:

{ b′(X,Y) ← k(X,Z) ∧ b′(Z, Y),
b′(X,Y) ← k(X,Z) ∧ d(Z, Y) ∧ c(Y),
b(X,Y) ← b′(X,Y),
b(X,Y) ← d(X,Y) }.

Replacing the body of b′’s exit rule with a new view e, makes b′ into an OLR predicate:

IDB = { b′(X,Y) ← k(X,Z) ∧ b′(Z, Y),
b′(X,Y) ← e(X,Y),
e(X,Y) ← k(X,Z) ∧ d(Z, Y) ∧ c(Y),
b(X,Y) ← b′(X,Y),
b(X,Y) ← d(X,Y) }.

Consider now a schema S = 〈IDB,Γ〉 and a scenario in which a given person p does
not want to buy cheap products, expressed by Γ = {← b(p,X) ∧ c(X)}. Suppose that a
person meets another person who is definitely going to buy something. This event can be
represented by the update U = {k(a,b), d(b, c)}. The calculation of SimpLR

U (S) generates
the following set of simplified constraints6:

{ ← c(c) ∧ [p = a ∨ p = b ∨ k′(p,a) ∨ k′(p,b)],
← c(X) ∧ [p = a ∨ k′(p,a)] ∧ {d(b,X) ∨ [k′(b, Z) ∧ d(Z,X)]} },

where k′ is the transitive closure of k. The result indicates that U introduces an incon-
sistency whenever:

• c is cheap, and p is or (in)directly knows a or b, or

• p is or (in)directly knows a, and b definitely buys (or (in)directly knows someone
who does) something cheap.

5The example transformation shown in the referenced article is incorrect. The correct version, which
is shown here, was obtained after personal communication with the first author of the paper.

6For readability, the resulting formula is presented with disjunctions and rearranged via other trivial,
equivalence-preserving steps.

83

4.3.3 Related work

With few exceptions, little attention has been devoted to the problem of checking the
integrity of a database containing recursive views, although recursion is now part of
the current SQL standard. Most methods have been explicitly designed for relational
databases with no views or disallow recursion in integrity constraints; we refer to the
survey [130] for further references falling under these categories. We conclude this section
with a description of some of the methods that apply to recursive databases; we discuss
their behavior when applied to the canonical case of linear recursion shown in example
4.3.8. We use constants a, b instead of parameters a, b for compatibility with these
methods.

The simplification technique for deductive databases described in [122] requires the
calculation of two sets, P and N , that represent the positive and, respectively, negative
potential updates generated by a given update on the database. A set Θ is then computed,
which contains all the most general unifiers of the atoms in P and N with the atoms
of corresponding sign in the integrity constraint. For example 4.3.8, this yields P =
{e(a, b), p(X,Y)}, N = ∅ and Θ = {Y/X}. The updated database is consistent iff every
condition Γθ holds in it, for all θ ∈ Θ, Γ being the original constraint theory. In this case,
the obtained condition is identical to Γ and therefore there is no simplification, unlike the
result shown for our method.

In [114], the authors determine low-cost pre-tests which are sufficient conditions that
guarantee the integrity of the database. If the pre-tests fail, then integrity needs to be
checked with a method, such as ours, that provides a necessary and sufficient condition.
A set of literal/condition pairs, called relevant set , is calculated. If the update in question
unifies with any of the literals in the relevant set and the attached condition succeeds,
then the pre-test fails; otherwise we are sure that the update cannot falsify the integrity
constraints. For example 4.3.8 the relevant set is as follows (the “N” subscript indicates
that the predicate refers to the updated state):

{p(X,X)/true, e(X,X)/true, e(X,Z)/true, p(Z,X)/eN (X,Z)}

The update e(a, b) unifies with e(X,Z), whose associated condition trivially succeeds,
therefore the pre-test fails and an exact test needs to be executed.

In the previous chapter, we discussed a method based on partial evaluation that was
described in [116]. In principle, such method could work for recursive databases, if a
perfect partial evaluator were available. However, as the authors admit, a loop check
needs to be included in the program to ensure termination. This does not partially
evaluate satisfactorily, resulting in an explosion of (possibly unreachable) alternatives.

In [46], the authors proposed for the first time semi-automatic generation of triggers as
a means for constraint maintenance. Their language allows recursively defined constraints
as well as a number of other advanced features. However, the checking predicates are
not semantically optimized: the generated active rules essentially embed the original
constraints. The only semantic enhancement considered is when specific conditions are
met that allow replacing a table by the set of new tuples in the update.

With the method described in [48], which is based on the notion of partial subsump-
tion, database rules are annotated with residues to capture the relevant parts that are
concerned by the integrity constraints. When doing semantic query optimization, such

84

parts can often allow faster query evaluation times. However, when it comes to integrity
checking, the method typically leaves things unchanged in the presence of recursive rules.
In example 4.3.8 we need to calculate the residue of the constraint in Γ associated with
the extensional relation e. In this case the partial subsumption algorithm stops immedi-
ately, as no resolution step is possible, thus resulting in no simplification at all. As the
evaluation of a recursive query involves the evaluation of non-recursive sub-queries inside
a loop, the authors suggest the application of their method to these sub-queries.

In [154], the author proposes an approach based on incremental expressions for OLR.
We have improved on his method in at least the following respects. Firstly, our rule-
based update language is much more general, allowing compound updates, changes and
any kind of bulk operation expressible with rules. Secondly, the simplified constraints
produced by SimpLR

may only need to consult the present database state, whereas the
method of [154] always requires the availability of both the old and the new state, even in
the non-recursive case. For the treatment of recursion it imposes a number of restrictions
on the language (e.g., no negation) that we do not need. Finally, if non-OLR recursive
predicates occur in a constraint, the method fails to apply completely, whereas we can
anyhow simplify the OLR and the non-recursive parts of the constraint; this may also
produce further specialization of the non-OLR recursive predicates.

Recently, renewed attention arose in the field of update propagation building on pre-
vious investigations in the area of view maintenance [99]. Continuing the work of [98], the
author of [20] regards integrity checking as an instance of update propagation. In the pro-
posed method, integrity constraints are expressed as propositional predicates that must
always be derivable. The database schema is then augmented with new rules that express
the incremental evaluation of the new state with respect to a given update. The incre-
mentality of the rules is maximized by rewriting them according to magic sets techniques
[14]. After the rewriting, however, an originally stratified database may become non-
stratified. A reference model (the so-called well-founded model [165]) for these databases
exists, but its computation may be very complex. To this end, a soft consequence opera-
tor [19] is then introduced to compute the model of this augmented database. Instead of
a symbolic simplification of the original constraints, as, e.g., in our method, this method
rather provides an efficient way for evaluating the new state of the database. However, it
can be used for an efficient evaluation of constraints that have been simplified by some
other method; in this respect, it can be seen as orthogonal to our method, at least when
SimpLR

does not eliminate references to the new state.

85

86

Chapter 5

Other Contexts and

Applications

In this chapter we discuss the applicability of simplification techniques in three contexts
in which integrity control is of interest. In section 5.1, we consider concurrency in the
execution of update transactions and show how it may affect simplification. Section 5.2
presents an extension of the simplification procedure shown in the previous chapters that
can be used for integrity checking in data integration systems. In section 5.3, the simpli-
fication procedure is reformulated in the context of databases consisting of collections of
XML documents.

5.1 Simplification and concurrency

When an update transaction is executed on a database, it is important to ensure both
that database consistency is preserved and that the transaction produces the desired
result, i.e., its execution is not affected by the execution of other, possibly interleaved
transactions. A common view in concurrent database systems is that a transaction ex-
ecutes correctly if it belongs to a schedule that is conflict serializable, i.e., equivalent to
a schedule in which all the transactions are executed in series (not interleaved). Several
strategies and protocols, such as two-phase locking (2PL) and timestamp ordering , have
been established that can dynamically enforce conflict serializability. Locking is the most
common practice for concurrency control; however, maintaining locks is expensive and
may limit the throughput of the database, as locks actually reduce the concurrency of
the accesses to the resources.

The literature is rich in methods aimed at the correctness of concurrently executed
transactions, and other protocols than 2PL have been proposed, e.g., [149]. All these
methods depend on the implicit assumption that each single transaction preserves con-
sistency when executed alone [86]; this responsibility is, thus, entrusted to the designer of
the transactions.

We present, instead, an integrated approach to automatically extend update trans-
actions with locks and simplified consistency tests on the locked elements such that all

87

schedules produced in this way are conflict serializable and preserve consistency in an
optimized way. Consequently, the designer only needs to concentrate on the declarative
specification of integrity constraints. Furthermore, with our method, we also determine
the minimal amount of database resources to be locked in order to guarantee correct-
ness of all legal schedules. Indeed, the execution schedule must ensure that the different
transactions can overlap in time without destroying the consistency requirements tested
by other, concurrent transactions.

5.1.1 Transactions and serializability

We now briefly introduce basic notion related to concurrency; we refer to standard
database books, such as [86], for further details.

The notion of transaction includes, in general, write as well as read operations on
database elements. We identify a database element (or resource) with a ground atom of
the Herbrand base, and a write operation adds or removes such an atom from the database
state. A transaction is always concluded with either a commit or an abort; in the former
case the executed write operations are finalized into the database state, in the latter they
are cancelled. We omit, for simplicity, the indication of abort and commit operations in
transactions and consider the execution of a transaction concluded and committed after
its last operation.

Definition 5.1.1 (Transaction) A transaction T of length n is a finite sequence of
operations 〈T 1, . . . , Tn〉 such that each step T i is either a read(ei) or a write(ei) operation
on a database element ei.

A schedule is a sequence of the operations of one or more transactions.

Definition 5.1.2 (Schedule) A schedule σ over a set of transactions T is an ordering
of the operations of all the transactions in T which preserves the ordering of the operations
of each transaction. A schedule is serial if, for any two transactions T ′ and T ′′ in T ,
either all operations in T ′ occur before all operations of T ′′ in σ or conversely. A schedule
which is not serial, for |T | > 1, is an interleaved schedule.

A schedule executes correctly with respect to concurrency of transactions if it corresponds
to the execution of some serial schedule, according to definition 5.1.3 below.

Definition 5.1.3 (Conflict serializability) Two operations in a transaction are con-
flicting iff they refer to the same database element and at least one of them is a write
operation. Two schedules are conflict equivalent iff they contain the same set of commit-
ted transactions and operations and every pair of conflicting operations is ordered in the
same way in both schedules. A schedule is conflict serializable iff it is conflict equivalent
to a serial schedule.

Checking conflict serializability can be done in linear time by testing the acyclicity of
the directed graph in which the nodes are the transactions in the schedule and the edges
correspond to the order of conflicting operations in two different transactions.

88

5.1.2 Extended transactions

To explain the application of the framework in concurrent databases, we restrict to view-
less schemata and limit updates to sets of tuple additions and deletions, i.e., to updates of
the form (3.2) defined on page 45. In other words, the updates consist of write operations
on database elements, where the elements are the tuples of the database relations. These
operations are known and do not depend on previous read operations. Furthermore, an
update does not contain conflicting operations. Therefore we can, for the moment, restrict
our attention to write transactions, i.e., sequences of non-conflicting write operations. In
order to be able to map back and forth between write transactions and updates, we also
indicate for each write if it is an addition or a deletion (using a ¬ sign on the database
element).

Definition 5.1.4 (Write transaction) For a given update U , any sequence T , of min-
imal length, of write operations on all the literals in U is a write transaction on U . Given
a write transaction T , we indicate the corresponding update as T .

Example 5.1.5 The possible write transactions on an update U = {p(a),¬q(a)} are
T1 = 〈write(p(a)),write(¬q(a))〉 and T2 = 〈write(¬q(a)),write(p(a))〉. Conversely, T1 =
T2 = U . 2

In the following we shall indicate the i-th element of a sequence S with the notation
Si. For a given write transaction T of length n and a database state D, the notation

DT refers to the database state (. . . ((D〈T 1〉)〈T
2〉)...)〈T

n〉. Similarly, for a schedule σ over

write transactions, the notation Dσ refers to the state (. . . ((D〈σ1〉)〈σ
2〉)...)〈σ

n〉. Clearly,

DT = DT for any write transaction T . Then the following proposition trivially follows
from the definition of CWP (definition 3.1.2 on page 26). Note that, for a schedule σ,
the notation Dσ is not allowed, as σ might contain conflicting operations, i.e., σ cannot
always be mapped to an update σ.

Proposition 5.1.6 Let T be a write transaction, Γ a constraint theory, D a database
state consistent with Γ and let Σ be a CWP of Γ with respect to T . Then DT |= Γ iff
D |= Σ.

Proposition 5.1.6 indicates that a write transaction executes correctly if and only if the
database state satisfies a corresponding CWP. This leads to the following notion of sim-
plified write transaction.

Definition 5.1.7 (Simplified write transaction) Let T be a write transaction, Γ a
constraint theory and D a database state. The simplified write transaction of T with
respect to Γ and D is

• T if D |= Σ, where Σ is a CWP of Γ with respect to T .

• 〈〉 if D 6|= Σ, where 〈〉 is the empty sequence.

Obviously, the execution of a simplified write transaction never violates the integrity
constraints, as stated in the corollary below, that directly follows from proposition 5.1.6
and definition 5.1.7.

89

Corollary 5.1.8 Let T be a write transaction and Γ a constraint theory. Then, for every
database state D consistent with Γ, DTS |= Γ, where TS is the simplified write transaction
of T with respect to Γ and D.

In order to determine a simplified write transaction, the database state must be accessed.
We can therefore model the behavior of a scheduler that dynamically produces simplified
write transactions by starting them with read operations corresponding to the database
actions needed to evaluate the CWP. Checking a constraint theory Γ corresponds to read-
ing all database elements that contribute to the evaluation of Γ, i.e., its resource set (see
definition 3.4.1 and following text on page 50). The effort of evaluating a constraint
theory can then be expressed by concatenating (◦) the sequence of all needed read oper-
ations with the (simplified) write transaction. To simplify the notation, we indicate any
minimal sequence of read operations on every element of a resource set R as Read(R); in
section 5.1.3 we shall use a similar notation for lock (Lock(R)) and unlock (Unlock(R))
operations.

Definition 5.1.9 (Simplified read-write transaction) For a constraint theory Γ, a
write transaction T and a database state D, any transaction of the form

T ′ = Read(R(Σ)) ◦ TS

is a simplified read-write transaction of T with respect to Γ and D, where TS is the
simplified write transaction of T with respect to Γ and D, and Σ is a CWP of Γ with
respect to T . The execution of T ′ is said to be legal if D is the state reached after
Read(R(Σ)). The execution of a schedule over simplified read-write transactions is legal
if the execution of all its transactions is.

The notion of legal execution of a transaction or schedule relies on the presence of a
scheduler that takes care of checking whether the CWP Σ holds in the state at which the
write transaction T starts.

For a schedule σ containing read operations, we write Dσ as a shorthand for Dσw ,
where σw is the sequence that contains all the write operations as in σ and in the same
order, but no read operation. Note that a legally executing schedule over simplified read-
write transactions is not guaranteed to execute correctly.

Example 5.1.10 [3.2.32 continued] Consider again Γ = {← m(X,Y) ∧ m(X,Z) ∧ Y 6=
Z} disallowing bigamist husbands and the update U = {m(a,b)}. As shown, Σ =
{← m(a, y) ∧ y 6= b} is a CWP of {φ} with respect to U . Let us consider the transac-
tions T1 = 〈write(m(homer,marge))〉 and T2 = 〈write(m(homer,maude))〉. Any schedule
σ over T1, T2 yields an inconsistent database state, i.e., Dσ 6|= Γ for any state D, because
homer would end up having (at least) two different wives. We may try to remedy this sit-
uation by considering schedules over the simplified read-write transactions corresponding
to T1 and T2 with respect to Γ and the state in which their write transaction is executed.
Suitable CWPs of Γ with respect to T 1, T 2 are obtained by instantiating the parameters
in Σ with the actual constants:

Σ1 = {← m(homer, y) ∧ y 6= marge}
Σ2 = {← m(homer, y) ∧ y 6= maude}.

90

In this way a schedule such as

σ1 = Read(R(Σ1)) ◦ 〈write(m(homer,marge))〉◦
Read(R(Σ2)) ◦ 〈write(m(homer,maude))〉

would not be a legally executing schedule over simplified read-write transactions, because
in the database state after the last Read, Σ2 necessarily does not hold. However it is
still possible to create legally executing schedules leading to an inconsistent final state.
Consider, e.g., the following schedule:

σ2 = Read(R(Σ1)) ◦ Read(R(Σ2))◦
〈write(m(homer,marge)),write(m(homer,maude))〉.

At the end of the Read(R(Σ2)) sequence, T1 has not yet performed the write operation on
m, so Σ2 may hold, but the final state is inconsistent.

5.1.3 Locks

The problem pointed out in example 5.1.10 is due to the fact that some of the elements
in the resource set of a CWP of a transaction T were modified by another transaction
before T finished its execution. In order to prevent this situation we need to introduce
locks. A lock is an operation of the form lock(e) where e is a database element; the lock
on e is released with the dual operation unlock(e). A transaction containing lock and
unlock operations is a locked transaction. A scheduler for locked transactions verifies that
the transactions behave consistently with the locking policy, i.e., database elements are
only accessed by transactions that have acquired the lock on them, no two transactions
have a lock on the same element at the same time and all acquired locks are released.
The 2PL protocol requires that in every transaction all lock operations precede all unlock
operations; all 2PL transactions are conflict serializable.

We can now extend the notion of simplified read-write transaction with locks on the
set of resources that are read at the beginning of the transaction and on the elements
to be written. For an update U of the form (3.2), we write R(U) to indicate the set of
atoms occurring in it.

Definition 5.1.11 (Simplified locked transaction) For a constraint theory Γ, a write
transaction T and a database state D, any transaction of the form

T ′ = Lock(R(Σ)) ◦ Read(R(Σ)) ◦ Lock(R(TS) \ R(Σ)) ◦ TS ◦ Unlock(R(TS) ∪R(Σ))

is a simplified locked transaction of T with respect to Γ and D, where TS is the simplified
write transaction of T with respect to Γ and D, and Σ is a CWP of Γ with respect to T .
The execution of T ′ is legal iff D is the state reached before the execution of TS. The
execution of a schedule over simplified locked transactions is legal if the execution of all
its transactions is.

Example 5.1.12 Consider Γ, T1, T2, Σ1, Σ2 and U from example 5.1.10. Using the
policy of simplified locked transactions, there is no schedule that produces an inconsistent
state. Consider, e.g., that the initial database state is empty. Suppose that the simplified

91

locked transaction of T1 executes first. Then the resource set of Γ1 will be locked by it and
the simplified locked transaction of T2 will have to wait until R(Γ1) is unlocked, i.e., after
completion of T1 (T1 executes because Γ1 is satisfied). On the contrary, the simplified
transaction of T2 will not execute T2, since Γ2 does not hold once it has the lock. The
final state is {m(homer,marge)} and is therefore consistent.

Any legally executing schedule over simplified locked transactions is guaranteed to be
correct. For such a schedule σ, we write Dσ as a shorthand for Dσw , where σw is the
sequence that contains all the write operations as in σ and in the same order, but no read,
lock or unlock operation.

Theorem 5.1.13 Let Γ be a constraint theory and D a database state such that D |= Γ.
Given the write transactions T1, . . . , Tn, let T ′

i be the simplified locked transaction of Ti

with respect to Γ and the state Di reached after the last Lock in T ′
i , for 1 ≤ i ≤ n. Then

any legally executing schedule σ over {T ′
1, . . . , T

′
n} is conflict serializable and Dσ |= Γ.

Proof Conflict serializability follows from the fact that all simplified locked transactions
are 2PL. If σ is serial, then the final state is consistent, because, by virtue of corollary
5.1.8, each T ′

i , when executed alone, maps a consistent state to a consistent state, and
the initial state is consistent. Let us assume now that σ is not serial. Consistency of the
final state is guaranteed by the level of isolation of any two transactions T ′

i and T ′
j in σ.

Suppose that T ′
i starts writing before T ′

j. If any of the writes in T ′
i was in R(Σj) or in

R(Tj), or, vice versa, if any of the writes in T ′
j was in R(Σi) or in R(Ti), then the locks

would force T ′
j to wait for completion of T ′

i . In other words, if the behavior of T ′
i affects

the behavior of T ′
j (or vice versa), the scheduler executes the writes of T ′

i and T ′
j serially.

If they do not affect each other, their writes can be interleaved, but their execution does
not depend on the other transaction. Therefore, in all cases their execution is the same
as that of a serial schedule. 2

The result of theorem 5.1.13 describes a transaction system in which all possible schedules
execute correctly. However, the database performance can vary dramatically, depending
on the chosen schedule, on the database state and on the waits due to the locks. For
this reason, we observe that if the CWPs in use in the simplified locked transactions
are minimal according to the resource set criterion, then the amount of locked database
resources is also minimized, which increases the database throughput. As we discussed
in chapter 3, it is not possible to obtain a minimal simplification in all cases. Anyhow,
any good approximation of an ideal simplification procedure, i.e., one which might occa-
sionally contain some redundancy, such as SimpLS

, will be useful as a component of an
architecture for transaction management based on these principles.

5.1.4 Discussion

The proposed approach describes a schedule construction policy that guarantees con-
flict serializability and correctness, which are essential requirements in any concurrent
database system. This approach distinguishes itself from previous ones in the following
respects. Firstly, it complies with the semantics of deferred integrity checking (i.e., in-
tegrity constraints do not have to hold in intermediate transaction states), as opposed

92

to what transaction transformation techniques for view maintenance typically offer. Sec-
ondly, it features an early detection of inconsistency — before the execution of the update
and without simulating the updated state — that allows one to avoid executions of illegal
transactions and subsequent rollbacks. This requires the introduction of locks, whose
amount is, however, minimized and, in the case of well designed transactions, often null.
Consider, e.g., a referential integrity constraint and an update that inserts both the ref-
erencing and the referenced tuple: no lock and no check are needed with our approach,
whereas an (immediate) view maintenance approach would require two checks.

The presented approach can be further refined in a number of ways. For example,
we have implicitly assumed exclusive locks so far; however, a higher degree of concur-
rency is obtained, without affecting theorem 5.1.13, by using shared locks on R(Σ) and
update locks on the other resources in definition 5.1.11. Besides, to achieve serializability,
a so-called predicate lock needs to be used on the condition given by the simplified in-
tegrity constraints; as is well-known, predicate locks require a high computational effort
and, implementation-wise, are approximated as index locks. To this end, performance
is highly improved by adding an index for every argument position occupied by an up-
date parameter in a database literal in the simplified integrity constraints. Finally, we
note that, although the introduced locks may determine deadlocks, all standard deadlock
detection and prevention techniques are still applicable. For instance, an arbitrary dead-
locked transaction T can be restarted after unlocking its resources and granting them to
the other deadlocked transactions.

5.2 Applications to data integration

Data integration has attracted much attention in recent years due to the explosion in
online data sources and the whole aspect of globalization of society and business.

To integrate a set of different local data sources means to provide a common database
schema, often called a global or mediator schema, and to describe a relationship between
the different local schemata and the global one. Two common paradigms for defining
such relationships are the so-called local-as-view (LaV, a.k.a. source-centric) and global-
as-view (GaV, a.k.a. global-centric); see [164] for definitions and comparison.

The contribution of integrity constraints to data integration is usually confined to
query reformulation and query optimization problems. In a GaV approach the global
schema is expressed in terms of views over the sources, whereas in LaV the sources are
formulated as views over the global schema. The former approach is usually considered
simpler for query answering, as this typically amounts to unfolding a query with respect
to the view definitions; on the other hand it is less flexible if new sources are to be
added to (or removed from) the system. The latter has more involved query answering
mechanisms, but enjoys good scalability, as changes at the sources do not require any
modification in the global schema.

However the problem of checking and maintaining integrity in this context is also
crucial, as even though each local database may satisfy its specific integrity constraints,
the combined database may not have a good semantics. Consider, as an example, two
databases registering marriages in two different countries. Both may satisfy, locally, an
integrity constraint that disallows bigamy, but combining the two databases may violate

93

this.
As in a traditional database of nontrivial size, it is not practically feasible to check

integrity constraints for the entire database in one operation: an incremental approach is
needed so that only a small amount of work is required for each update. For the combined
case, it is even more urgent to optimize integrity checking because of the presence of
possible transition delays over network links.

We generalize the presented simplification technique to combined databases and apply
it to two cases: when several sources are integrated and when an updated source notifies
the mediator with a message about the update. When integrating a new source, we trust
satisfaction of its local constraints. When a message about a local update is received,
besides local consistency before the update, we assume that the update has been verified
locally. As a natural result, we obtain that only the possible interference between the
update and the other sources needs to be checked.

5.2.1 A framework for data integration

In the context of data integration, we have in general several databases (the sources and
the mediator) and other operations than database updates need to be considered, such
as database combination. We shall therefore generalize the notation in order to describe
the relevant cases for data integration. In order to provide a unified view of the data
residing at different sources, we need to indicate how the global predicates are expressed
in terms of the source predicates. We shall therefore introduce the notion of mapping,
which we assume to be sound , i.e., the information produced by the views over the
sources contains only, but not necessarily all the data associated to the global predicates.
Complete mappings and exact mappings are defined in a similar way (see, e.g., [33]), but
we do not consider them here. For convenience, we present our formalization for schemata
in LS, but the methodology is general and does not rely on this assumption.

Definition 5.2.1 (Mapping) Consider the disjoint schemata S0, . . . , Sn in LS. A GaV-
mapping M : (S1, ..., Sn) ⇒ S0, is an update in LS for a schema S = S0 ∪ · · · ∪ Sn such
that the affected predicates are exactly the predicates in pred(S0) and the predicates in the
bodies of the defining formulas of predicate updates are in ∪ipred(Si) or are built-ins.

We can now extend the After operator to handle source combination operations described
by a mapping from the sources to the mediator. In particular, for a mapping M :
(S1, ..., Sn) ⇒ S0, the notation Afterdi

M (S0) refers to AfterMLS
(〈IDB0 ∪ · · · ∪ IDBn,Γ0〉),

where Si = 〈IDB i,Γi〉 for 0 ≤ i ≤ n. We use the term operation to refer to either
an update or the application of a GaV-mapping. For a database combination, Afterdi

moves from the state after the integration to the non-integrated state, i.e., from a theory
concerning the mediator to one concerning the sources.

Examples of the application of these extended versions of the operators are shown in
the next sections.

5.2.2 Integrity constraints under global-as-view

In a global-centric approach it is required that the global schema is expressed in terms of
the sources. The global predicates must be associated with views over the sources: this

94

is exactly what the notion of GaV-mapping makes precise, as stated in definition 5.2.1.
We start our analysis by considering a borderline case of GaV-mapping consisting of

the combination of two1 databases having isomorphic schemata. Let S1, S2, S be three
disjoint schemata that are identical up to consistent renaming of predicates and Γ1, Γ2

and Γ the constraint theories defined at the sources and the mediator, respectively. The
global database state consists of the union of the local ones and the GaV-mapping M
used for the combination is defined as a set containing, for every predicate p in pred(S),
the entries:

p(~X) ⇐ p1(~X) ∨ p2(~X),

where ~X is a sequence of variables and p1, p2 are the predicates corresponding to p in S1,
S2, respectively. A simplified test for checking that the combined database is consistent
with Γ (and assuming that Γ holds in an empty database) is then given by SimpM

Γ1∧Γ2
(Γ),

where SimpU
∆(Σ) is used in the following as syntactic sugar for OptimizeΣ∪∆

LS
(Afterdi

U (Σ)).

Example 5.2.2 Let us refer to example 3.2.15 on page 36 and consider the schemata
S0, S1, S2 with Si = 〈∅,Γi〉 and

Γi = {← mi(X,Y) ∧ mi(X,Z) ∧ Y 6= Z}

for i ∈ {0, 1, 2}. Suppose that S1, S2 are the schemata of two source databases and S0 is
the schema of a mediator defined by the GaV-mapping

M = {m0(X,Y) ← m1(X,Y) ∨ m2(X,Y)}

Assuming that the source databases are consistent, their combination at the mediator is
consistent with Γ if and only if the condition given by SimpM

Γ1∧Γ2
(Γ) holds.

Afterdi
M (Γ) ≡ { ← (m1(X,Y) ∨ m2(X,Y))∧

(m1(X,Z) ∨ m2(X,Z)) ∧ Y 6= Z }
≡ { ← m1(X,Y) ∧ m1(X,Z) ∧ Y 6= Z,

← m1(X,Y) ∧ m2(X,Z) ∧ Y 6= Z,
← m2(X,Y) ∧ m1(X,Z) ∧ Y 6= Z,
← m2(X,Y) ∧ m2(X,Z) ∧ Y 6= Z }

The only check that is needed is, as expected, a cross-check between the two databases, as
the other denials are removed by Optimize:

SimpM
Γ1∧Γ2

(Γ) = { ← m1(X,Y) ∧ m2(X,Z) ∧ Y 6= Z }.

We can get even better results when extra knowledge concerning the combination of the
sources is available. This simply amounts to adding the extra knowledge to the conditions
in the subscript of Simp.

Example 5.2.3 Consider example 5.2.2, where we now have the knowledge Γ1,2 that the
data concerning the husbands in the two databases are disjoint:

Γ1,2 = {← m1(X,Y) ∧ m2(X,Z)}.

1The case with more than two sources is similar.

95

A much stronger simplification is obtained now, as

SimpM
Γ1∧Γ2∧Γ1,2

(Γ) = ∅.

The cross-check that was found in example 5.2.2 is subsumed by Γ1,2 and thus discarded,
so no check is needed, as the combined state will anyhow be consistent.

When the mapping is arbitrary, the method can be applied in a similar way.

Example 5.2.4 We consider a data integration problem inspired by [117] but here ex-
tended with global and local integrity constraints. Suppose we have two sources containing
information about movies. We use the variables I, T , Y and R for movie identifiers, ti-
tles, years and reviews respectively. The first source contains movies m(I, T, Y), where I
is key, whereas the second contains reviews r(I,R). Furthermore, we know that the iden-
tifiers in r are a subset of the identifiers in m. The mediator assembles this information
in a relation f(I, T,R) (film), as defined by the following GaV-mapping:

M = {f(I, T,R) ← m(I, T, Y) ∧ r(I,R)}.

The following conditions are therefore known to hold on the ensemble of sources:

Γ1 = { ← m(I, T1, Y1) ∧ m(I, T2, Y2) ∧ T1 6= T2,
← m(I, T1, Y1) ∧ m(I, T2, Y2) ∧ Y1 6= Y2 },

Γ1,2 = { ← r(I,R) ∧ ¬m(I, T, Y) }.

Let Γ express the fact that I is a primary key for f :

Γ = { ← f(I, T1, R1) ∧ f(I, T2, R2) ∧ T1 6= T2,
← f(I, T1, R1) ∧ f(I, T2, R2) ∧ R1 6= R2 }.

In order to check whether Γ holds globally, we calculate Afterdi
M (Γ) and obtain

{ ← m(I, T1, Y1) ∧ r(I,R1) ∧ m(I, T2, Y2) ∧ r(I,R2) ∧ T1 6= T2,
← m(I, T1, Y1) ∧ r(I,R1) ∧ m(I, T2, Y2) ∧ r(I,R2) ∧ R1 6= R2 }.

The first constraint is obviously subsumed by the first constraint in Γ1 and the second one
can be simplified with Γ1,2, which gives the following:

SimpM
Γ1∧Γ1,2

(Γ) = {← r(I,R1) ∧ r(I,R2) ∧ R1 6= R2}.

This evidently corresponds to the requirement that I must be a key for r as well.

5.2.3 Integrity constraints under local-as-view

A LaV-mapping is usually understood as a set of views of source predicates over global
predicates. From now on with the word LaV-view we will refer to a formula of the form
A ⇒ B, where A is an atom (the antecedent) referring to a predicate at a source and
B a conjunction of atoms (the consequents) referring to predicates at the mediator. A
LaV-view A ⇒ B is safe whenever all the variables in B appear in A as well. A set of

96

safe LaV-views is called a safe LaV-mapping. Given a safe LaV-mapping, and assuming
it is sound as discussed in section 5.2.1, we can always rewrite it as an equivalent GaV-
mapping. This is shown in the following examples and can be done by using the fact
that, with safeness, A ⇒ A1 ∧ ...∧An is the same as A1 ⇐ A and ... and An ⇐ A, where
A,A1, ..., An are atoms, and perhaps by adding some equalities in the bodies in order to
have only distinct variables in the heads. Note that, without assuming safeness, a LaV-
mapping cannot always be rewritten as a GaV-mapping in the sense of definition 5.2.1,
in that existentially quantified variables might occur. The treatment of such cases may
be handled with skolemization, but, for compatibility with the simplification framework,
we will only focus on safe LaV-mappings.

Example 5.2.5 Reconsider the scenario discussed in example 5.2.2. The global database
combines now two sources where in the first one the husbands are Italian, and in the
second one Danish, which is expressed by the LaV-mapping

L = { m1(X,Y) ⇒ m(X,Y) ∧ n(X, it),
m2(X,Y) ⇒ m(X,Y) ∧ n(X, dk) },

where m and n are global predicates. An equivalent GaV-mapping is as follows:

ML = { m(X,Y) ← m1(X,Y) ∨ m2(X,Y),
n(X,Z) ← (m1(X,Y) ∧ Z = it) ∨ (m2(X,Y) ∧ Z = dk) }.

Consider a global constraint imposing uniqueness of nationality:

φ = ← n(X,Y) ∧ n(X,Z) ∧ Y 6= Z.

Then, given the local assumptions Γ1 and Γ2, checking φ corresponds to verifying dis-
jointness of m1 and m2:

SimpML

Γ1∧Γ2
({φ}) = ← m1(X,Y) ∧ m2(X,Z).

Example 5.2.6 This example is also inspired by [117] and extended with global and local
integrity constraints. The global database integrates three different sources that provide
information about movies. We use the variables T , Y , D and G for movie titles, years,
directors, and genres respectively. The global predicates are m(T, Y,D,G), representing
a given movie, and d(D), i(D), a(D), . . ., representing nationalities of directors, here
Danish, Italian, American, etc. The following integrity constraints are assumed: a key
constraint on m (T, Y is key), a domain constraint on film genre, and uniqueness of
nationality. Underlines are used as anonymous variables à la Prolog for ease of notation.

Γ = { ← m(T, Y,D1,) ∧ m(T, Y,D2,) ∧ D1 6= D2,
← m(T, Y, ,G1) ∧ m(T, Y, ,G2) ∧ G1 6= G2,
← m(, , , G) ∧ G 6= comedy ∧ G 6= drama ∧ · · · ,
← d(D) ∧ i(D),
← d(D) ∧ a(D),
· · · }.

97

There are three source databases. The first one contains American comedies given as
m1(T, Y,D) with T, Y as key and a LaV-mapping as follows.

Γ1 = {← m1(T, Y,D1) ∧ m1(T, Y,D2) ∧ D1 6= D2}
L1 = {m1(T, Y,D) ⇒ m(T, Y,D, comedy) ∧ a(D)}.

The second source contains Danish movies only, with a key constraint Γ2 on T, Y as usual
and the following LaV-view.

L2 = {m2(T, Y,D,G) ⇒ m(T, Y,D,G) ∧ d(D)}.

The third source is a general list of movies with predicates (m3, d3, i3, a3 etc.) and in-
tegrity constraints Γ3 identical to the global ones modulo consistent renaming of predicates.
The LaV-views are specified as follows.

L3 = { m3(T, Y,D,G) ⇒ m(T, Y,D,G),
d3(D) ⇒ d(D),
· · · }

Since L1 ∪ L2 ∪ L3 is safe we can rewrite it as the following GaV-mapping.2

M = { m(T, Y,D,G) ← m1(T, Y,D) ∧ G = comedy,
m(T, Y,D,G) ← m2(T, Y,D,G),
m(T, Y,D,G) ← m3(T, Y,D,G),
a(D) ← m1(, ,D),
d(D) ← m2(, ,D,),
a(D) ← a3(D),
d(D) ← d3(D),
i(D) ← i3(D),
· · · }

The simplified integrity constraints for the integration of the three databases, given as
Σ = SimpM

Γ1∧Γ2∧Γ3
(Γ), are, as expected, simplified rules covering possible conflicts in

cross combinations only, as local consistency is assumed.

Σ = { ← m1(, ,D) ∧ m2(, ,D,),
← m1(, ,D) ∧ p3(D), (p any nationality pred. different from a)
← m2(, ,D,) ∧ p3(D), (p any nationality pred. different from d)
← m1(T, Y,) ∧ m2(T, Y, ,),
← m1(T, Y,D1) ∧ m3(T, Y,D2,) ∧ D1 6= D2,
← m2(T, Y,D1,) ∧ m3(T, Y,D2,) ∧ D1 6= D2,
← m1(T, Y,) ∧ m3(T, Y, ,G) ∧ G 6= comedy,
← m2(T, Y, ,G1) ∧ m3(T, Y, ,G2) ∧ G1 6= G2,
← m2(, , , G) ∧ G 6= comedy ∧ G 6= drama ∧ · · · }.

The example can be modified in several ways, e.g., by assuming that the third source is
an unchecked database to which enthusiastic amateurs can add arbitrary information. In
that case, the simplified constraints would also include a copy of the full set of global
constraints with predicate names m3, a3, etc.

2If, say, in m1 the genre was left unspecified, skolemization would be needed.

98

5.2.4 Absorption of local updates

A data integration system needs to be able to adjust itself dynamically as sources are
updated over time. We assume that source databases maintain their own consistency and
that reports are available at the global level about which updates have been performed;
this may be supplied, e.g., by a process monitoring the sources. Consistency needs then
to be checked globally. This problem, that we refer to as absorption of local updates, can
be handled as follows.

Assume a GaV-mapping M and a set of conditions ∆ that hold at the sources and
a constraint theory Γ that is maintained at the mediator; this means that the condition
Σ = SimpM

∆ (Γ) is known to hold. Suppose that a source database can receive an update
U of the form (3.2), as defined on page 45. Since U may affect Σ and maintenance of Σ
can be performed only after execution of U , we need a post-test of Σ with respect to U .
For such updates, we conjectured that SimpLS

can also be used as a post-test. Therefore,
if the claim of conjecture 3.2.41 (on page 45) holds (which it does in all cases presented in
this section), Γ is then still satisfied at the mediator if and only if Φ = SimpU

LS
(Σ) holds.

If the claim does not hold, one can always derive a post-test of Σ wrt. U from
SimpU

LS
(Σ) in the following way. Let us indicate as ¬U the set that contains the same

atoms as U but with the negation signs interchanged. We say that a database D is
revertible with respect to U if D = (DU)¬U , i.e., if D does not already contain any
addition in U and D contains all deletions in U . We can assume here that an update U
is only executed on a database that is revertible wrt. U , since the source will actually
know which single updates were performed and which ones were not. Then a post-test of
Σ wrt. U is given by

Ψ = Optimize∅LS
(After¬U

LS
(Φ)).

To see this, consider that D |= Ψ iff D¬U |= Φ for any D, and, thus, DU |= Ψ iff (DU)¬U |=
Φ for any D. Therefore, DU |= Ψ iff D |= Φ for any D revertible wrt. U . Besides, since
Φ is a CWP of Σ wrt. U , D |= Φ iff DU |= Σ for any D consistent with Σ. Finally, by
transitivity, DU |= Ψ iff DU |= Σ for any D consistent with Σ and revertible wrt. U .

Example 5.2.7 In example 5.2.2, the following integrity constraint was generated for
the integration of two sources referred to by predicates m1 and m2:

Σ = ← m1(X,Y) ∧ m2(X,Z) ∧ Y 6= Z.

If the update U = {m1(a, b)} is reported, the optimal way to check the global consistency
is to test SimpU

LS
(Σ) = ← m2(a, Z) ∧ b 6= Z at the updated sources.

Example 5.2.8 Consider Σ from the LaV integrated movie database of example 5.2.6
and assume that the second source reports the addition of a new movie

U = {m2(dogville, 2003, vonTrier, drama)}.

The following tests, calculated as SimpU
LS

(Σ), remain:

{ ← m1(, , vonTrier),
← p3(vonTrier), (p any nationality pred. different from d)
← m1(dogville, 2003,),
← m3(dogville, 2003, d,) ∧ d 6= vonTrier,
← m3(dogville, 2003, , g) ∧ g 6= drama}.

99

5.2.5 Related work

In [95] the problem of answering queries using views (query folding) under LaV is ad-
dressed with a technique based on resolution, and several cases, including integrity con-
straints, negation and recursion, are dealt with.

A short survey on the role of integrity constraints in data integration is given in [35].
They are regarded as means to extract more information from incomplete sources as well
as components that raise the issue of dealing with possibly inconsistent global databases.
Several GaV typologies are studied that include the treatment of key and foreign key
constraints and both sound and exact mappings. In [33] the same authors develop these
ideas to show that, in the presence of integrity constraints, query answering in GaV
becomes as difficult as in LaV, as the problem of incomplete information implicitly arises.
Further discussion on the expressive power of the two approaches, in terms of query-
preserving transformations, is given in [34].

In [164], Ullman relates the problem of constructing answers to queries using views to
query containment algorithms and compares two implemented systems in these terms.

Levy [117] applies techniques from artificial intelligence to the problem of data inte-
gration and shows examples of both GaV and LaV query reformulation with integrity
constraints, including particular data access patterns.

Li [119] considers the use of integrity constraints in LaV query processing and opti-
mization and distinguishes between local and global constraints and, for these, between
general global constraints and source-derived global constraints.

Others, e.g., [16, 17, 120], have approached the global consistency problem by intro-
ducing disjunctive databases. In addition to data-related inconsistencies, the authors of
[120] also consider the problem of merging sources whose compatibility is affected by the
presence of synonyms, homonyms or type conflicts in the schemata.

Another direction of research concerns automatic identification of a common global
schema with mappings from different source schemata. Various techniques, such as lin-
guistic and ontological similarity between relation and attribute names and type struc-
tures, can be used; see [144] for an overview.

Paraconsistent logics can be used to model the possible inconsistencies coming from
database integration and update. In [68] it is shown how inconsistent information can be
stored and managed in this way.

5.3 Simplified integrity checking for XML

Consistency requirements for XML data are as important as those holding for relational
data, and constraint definition and enforcement are expected to become fundamental
aspects of XML data management. However, expressing, verifying and automatically
enforcing integrity in the XML context requires additional effort with respect to the
relational setting.

A first, evident reason is that there is no standard means of specifying generic con-
straints over XML document collections. In current XML specifications, fixed-format
structural integrity constraints can already be defined by using XML Schema definitions;
they are concerned with type definitions, occurrence cardinalities, unique constraints, and

100

referential integrity. However, a generic constraint definition language for XML, with ex-
pressive power comparable to assertions and checks of SQL, is still not present in the XML
Schema specification [167]. We deem this a crucial issue, as this lack of expressiveness
does not allow one to specify business rules to be directly included in the schema.

Secondly, new difficulties are inherent in XML’s hierarchical data model. The infea-
sibility of a brute force approach to integrity checking, i.e., verifying the whole database
each time data are updated, is even more evident when the underlying data management
technology is as young and unripe as in the case of XML.

A suitable formalism for the declarative specification of integrity constraints over XML
data is therefore required in order to apply simplification techniques. More specifically,
we adopt for this purpose a formalism called XPathLog, a logical language inspired to
datalog and XPath and introduced in [129]. In our approach, the tree structure of
XPathLog constraints is mapped to a relational representation. Then, simplification
takes place as usual, and, finally, the simplified constraints are translated into XQuery
expressions that can be matched against the XML document so as to check that the
update does not introduce any constraint violation.

In principle it would be possible to apply simplification techniques directly to XPath-
Log constraints, by appropriately extending the Simp operator. However, XML data is
most often represented and stored with an underlying relational format. In such cases, the
relational representation is already available, and the updates are eventually reverted into
modifications of relational tuples. Still, as native XML repositories become more popular
and reliable, it is desirable to express simplified constraints in XQuery. To this end,
we have introduced the above mentioned final translation step from simplified datalog

constraints to XQuery.
An experimental evaluation of the method is going to be provided in the next chapter,

in section 6.3.
We assume, throughout this section, a basic knowledge of standard XML notions, such

as element and path, and the corresponding syntax [2].

5.3.1 General constraints over semi-structured data

In [129], the XPath language is extended with variable bindings and embedded into first-
order logic to form XPath-Logic; XPathLog is then the Horn fragment of XPath-Logic.
Thanks to its logic-based nature, XPathLog is well-suited for querying XML data and
providing declarative specifications of integrity constraints. It uses an edge-labeled graph
model in which subelements are ordered and attributes are unordered. Path expres-
sions have the form root/axisStep/. . . /axisStep, where root specifies the starting point
of the expressions (such as the root of a document or a variable bound to a node) and
every axisStep has the form axis::nodetest[qualifier]

∗
. An axis defines a navigation di-

rection in the XML tree: child, attribute, parent, ancestor, descendant, preceding-sibling
and following-sibling. All elements satisfying nodetest along the chosen axis are selected,
then the qualifier(s) are applied to the selection to further filter it. Axes are abbrevi-
ated as usual, e.g., path/nodetest stands for path/child::nodetest and path/@nodetest for
path/attribute::nodetest.

XPath-Logic formulas are built as follows. An infinite set of variables is assumed along
with a signature of element names, attribute names, function names, constant symbols

101

and predicate names. A reference expression is a path expression that may be extended
to bind selected nodes to variables with the construct “→ V ar”. XPath-Logic predicates
are predicates over reference expressions and atoms and literals are defined as usual.
Formulas are thus obtained by combining atoms with connectives (∧, ¬, and sometimes
∨ as syntactic sugar) and variables are assumed to be universally quantified. Clauses are
written in the form Head ÃBody where the head, if present, is an atom and the body a
conjunction of literals. In particular, a denial is a headless clause; integrity constraints will
be written as denials, which indicates that there must be no variable binding satisfying
the condition in the denial body for the data to be consistent.

Example 5.3.1 Consider the following two documents: pub.xml containing a collection
of published articles and rev.xml containing information on reviewer/paper assignment
for all tracks of a given conference. We expect the former to be a huge collection of
articles, such as DBLP [118], whereas the latter is a smaller document maintained locally
by a conference administrator. The DTDs are as follows.

<!ELEMENT dblp (pub)*> <!-- pub.xml -->
<!ELEMENT pub (title,(aut)+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT aut (name)>
<!ELEMENT name (#PCDATA)>

<!ELEMENT review (track)+> <!-- rev.xml -->
<!ELEMENT track (name,(rev)+)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT rev (name,(sub)+)>
<!ELEMENT sub (title,(aut_s)+)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT aut_s (name)>

Consider the following integrity constraint, which imposes the absence of conflict of inter-
ests in the submission review process (i.e., no one can review papers written by a former
coauthor or by him/herself):

Ã//rev[name/text()→R]/sub/auts/name/text()→A
∧(A = R ∨ //pub[aut/name/text() → A∧

aut/name/text() → R])

The text() function refers to the text content of the enclosing element. The condition in
the body of this constraint indicates that there is a reviewer named R who is assigned a
submission whose author has name A and, in turn, either A and R are the same or two
authors of a same publication have names A and R, respectively3. Integrity is kept when
this condition does not hold.

This example shows that typical business rules can be expressed naturally with XPathLog.
It would not have been possible to express the same constraint with currently available
specification paradigms, such as XML Schema or DTDs; the same task would have been
much more difficult using any procedural approach.

3Note that, for simplicity, we have assumed here that a reviewer’s name is unique; with a more realistic
design, we could have added, say, a SSN to each reviewer and expressed the constraint on the SSN instead
of the name. Also note that the disjunct A = R is not redundant w.r.t. the other disjunct (in which
A 6= R is not stated), because it catches the (yet unlikely) case of a reviewer without any publication.

102

5.3.2 Mapping to the relational data model

In order to apply our simplification framework to XML constraints, the update patterns,
and the constraints themselves need to be mapped from the XML domain to the relational
model.

Mapping of the schema

There exist several approaches to the problem of representing semi-structured data in
relations [157, 25, 74, 83]. A survey can be found in [112]. Our approach is targeted to
deductive databases: each node type, as defined in the DTD, is mapped to a corresponding
predicate; in some cases further optimization is possible. The shape of the predicates is
fixed for the first three positions, while the remaining positions depend on the schema.
More precisely, the first three attributes of all predicates respectively represent, for each
XML item:

• Its (unique) node identifier.

• Its position among the children of its parent node.

• The node identifier of its parent node.

It is worth noting that the second attribute is crucial, as the XML data model is
ordered, while the relational data model is unordered. Therefore, the positions within
the document must be explicitly represented for each XML item in order to preserve
structural constraints.

Whenever a parent-child relationship within a DTD is a one-to-one correspondence (or
an optional inclusion), a more compact form is possible, because a new predicate for the
child node is not necessary: the attributes of the child may be equivalently represented
within the predicate that corresponds to the parent (possibly allowing null values in case
of optional child nodes).

According to these mapping criteria, the two documents of example 5.3.1 map to the
following relational schema,

pub(Id, Pos, IdParentdblp, T itle)
aut(Id, Pos, IdParentpub, Name)

track(Id, Pos, IdParentreview, Name)
rev(Id, Pos, IdParenttrack, Name)
sub(Id, Pos, IdParentrev, T itle)
auts(Id, Pos, IdParentsub, Name)

(5.1)

where Id, Pos and IdParenttagname preserve the hierarchy of the documents and where
the PCDATA content of the name and title node types is systematically embedded into the
container nodes, so as to reduce the number of predicates.

As already mentioned, mapping a hierarchical ordered structure to a flat unordered
data model forces the exposition of information that is typically hidden within XML

103

repositories, such as the order of the sub-nodes of a given node and unique node iden-
tifiers4. Such identifiers and order information are necessary in order to reconstruct the
hierarchy by means of join conditions over the parent-child containment relationship.

The root nodes of the documents (dblp and review) are not represented as predicates, as
they have no local attributes but only subelements; however, such nodes are referenced
in the database as values for the IdParentdblp and IdParentreview attributes respectively,
within the representation of their child nodes. Publications map to the pub predicate,
authors in pub.xml map to aut, while authors in rev.xml map to auts, and so on, with
predicates corresponding to tagnames. Last, names and titles map to attributes within the
predicates corresponding to their containers.

This representation is convenient for our simplification purposes, in that it embeds
containment relationships in different predicates depending on the element types. If
we had chosen to adopt a more weakly structured representation using, say, a relation
cont(Parent, Child) to indicate parent-child containment independently of the element
type, a potentially high number of instances of the cont relation would be required to
represent non-trivial XML constraint and updates. This would result in explosive behavior
and intractability of the simplification process.

Mapping of update statements

In order to show the mapping criteria for XML updates, we refer to the XUpdate language
[113], but any other formalism that allows the specification of insertions of data fragments
would apply. Consider the following XUpdate statement:

<xupdate:modifications version="1.0" xmlns:xupdate="http://www.xmldb.org/xupdate">
<xupdate:insert-after select="/review/track[2]/rev[5]/sub[6]" >

<xupdate:element name="sub">
<title> Taming Web Services </title>
<aut_s> <name> Jack </name> </aut_s>

</xupdate:element>
</xupdate:insert-after>

</xupdate:modifications>

In the relational model, this update statement corresponds to adding to the database the
following set of facts:

{ sub(ids, 7, idr, “Taming Web Services”), auts(ida, 2, ids, “Jack”) }
where ida and ids represent the identifiers that are to be associated to the new nodes
and idr is the identifier associated to the target rev element. Their value is immaterial
to the semantics of the update, provided that a mechanism to impose their uniqueness
is available. In other words, it is guaranteed that the insertion of a new node never
overwrites an existing node, as a new reserved identifier is supposed to be always available,
and uniqueness of identifiers is guaranteed and maintained by construction.

4Identifiers are unique and characterize the nodes from a structural viewpoint, but they are not
logical keys for the nodes they are attached to. Moreover, such identifiers are typically opaque to the
XPath/XQuery programmer, and we will refer to them as immaterial values without further investigation,
as we can assume that they are implicitly available whenever a document collection is stored into an XML
repository. As an example, consider that the same reviewer can occur more than once in the document
for reviewing different papers; such multiple entries occur of course with the same name (which is the
logical key in the running example) but with different node identifiers.

104

On the other hand, the actual value of idr depends on the dataset and needs to be
retrieved by interpreting the select clause of the XUpdate statement. Namely, idr is the
identifier for the fifth (reviewer) child of the second (track) node, in turn contained into the
root (review) node of the document rev.xml. Positions (7 and 2 in the second argument of
both predicates) are also derived by parsing the update statement: 7 is determined as
the successor of 6, according to the insert-after semantics of the update; 2 is due to the
ordering, since the aut_s element comes after the title element.

For simplicity we have shown an example in which node identifiers were easily derived
from the candidate location of the inserted fragment. Should the location specification
be more complex, this would result in a heavier pre-processing phase so as to identify the
positions at which the update is to occur. Generality of the approach, however, would
not be affected.

Finally, note that the same value ids occurs both as the first argument of sub() and
the third argument of auts(), since the latter represents a subelement of the former.

Mapping of integrity constraints

The last step in the mapping from XML to the framework of deductive databases is to
compile XPathLog denials into corresponding datalog denials. Input to this phase are
the two schemata (the XML and its relational counterpart, generated according to the
principles stated above) and an XPathLog denial.

All path expressions in an XPathLog statement generate a chain of conditions over
the predicates corresponding to the node types traversed by the path expression. The
containment in terms of parent-child relationship translates to correspondences between
variables in the first position of the container and in the third position of the contained
item. Quite straightforwardly, the XPathLog denial

Ã//pub[title = “Duckburg tales”]/aut/name → N ∧ N = “Goofy”

which expresses the fact that the author of the “Duckburg tales” cannot be Goofy, maps
into

← pub(Ip, , , “Duckburg tales”) ∧ aut(, , Ip, N) ∧ N = “Goofy”.

In general, all variables used in the XPathLog denial may also occur in the datalog

denial. In the above example, however, variable N is not strictly necessary to formulate
the constraint (it would disappear, e.g., after a reduction step).

Longer path expressions would map to longer chains of predicates. Difficulties may
arise if the path expressions contain wildcards or the ‘//’ step. In both cases the predicate
chain may not be uniquely determined; a schema like (5.1) allows the inference of the
possible steps in the chain; alternative chains map to disjunctions within denials (i.e.,
different denials). If the schema allowed circular references between node types, the
mapping would then require the introduction of recursive views that express the transitive
closure of the containment relationship between all possible combinations of compatible
node types. We focus here on acyclic schemata only.

All other XPathLog predicates are transcribed in the datalog translation, as we
assume that the set of built-in predicates is the same.

105

References to the position() function or position filters in the XPathLog denial are
handled by associating a variable to the second argument in the relational predicate and
then matching it against the corresponding expression.

Example 5.3.2 The XPathLog constraint of example 5.3.1, here repeated for the reader’s
convenience,

Ã//rev[name/text() → R]/sub/auts/name/text() → A
∧(A = R ∨ //pub[aut/name/text() → A∧

aut/name/text() → R])

is translated into the following set of datalog denials.

Γ = {← rev(Ir, , , R) ∧ sub(Is, , Ir,) ∧ auts(, , Is, R),
← rev(Ir, , , R) ∧ sub(Is, , Ir,) ∧ auts(, , Is, A)

∧aut(, , Ip, R) ∧ aut(, , Ip, A)}

5.3.3 Simplification of XML constraints

The mappings described in the previous section allow us to express XML schemata, up-
dates and constraints in the relational model. Therefore, we can apply the simplification
procedure shown in the previous chapters to simplify the relational counterparts of con-
straints and updates.

Example 5.3.3 Let us consider constraint Γ from example 5.3.2. An update of interest
is, e.g., the insertion of a new submission to the attention of a reviewer, as considered in
section 5.3.2. For instance, a submission with a single author complies with the pattern
U = {sub(is,ps, ir, t), auts(ia,pa, is,n)}, where the parameter referring to the submission
id (is) is the same in both added tuples. The fact that is and ia are fresh new node
identifiers can be expressed as a set of extra hypotheses to be exploited in the constraint
simplification process:

∆ = {← sub(is, , ,),← auts(, , is,),← auts(ia, , ,)}.

Uniqueness of each such parameter can be imposed both as an element identifier and as a
parent identifier, for all element types. Here, ∆ only includes such uniqueness conditions
for the relevant element types: as an identifier for all elements of the same type, and as
a parent identifier for all children of that element (note that auts has no children in the
relational model).

The simplified integrity check with respect to update U and constraint theory Γ is given
by SimpU

∆(Γ):

{← rev(ir, , ,n),
← rev(ir, , , R) ∧ aut(, , Ip,n) ∧ aut(, , Ip, R)}.

The first denial requires that the added author of the submission (n) is not the same person
as the assigned reviewer (ir). The second denial imposes that the assigned reviewer is not
a coauthor of the added author n. These conditions are clearly much cheaper to evaluate

106

than the original constraints Γ, as they are instantiated to specific values and involve fewer
relations. Note that, without the first hypothesis in ∆, one would also need to check that
the reviewer is not (already) an author of submission is, nor a coauthor of an (existing)
author of is. Without the second hypothesis in ∆, one should also check that n is not a
reviewer to which is has already been assigned nor the coauthor of such a reviewer. The
last hypothesis in ∆ is not used in this case.

5.3.4 Translation into XQuery

The obtained simplified constraints must be checked before the corresponding update
statement, so as to prevent the execution of statements that would violate integrity. Un-
der the hypothesis that the dataset is stored into an XML repository capable of executing
XQuery statements, the simplified constraints need to be translated into suitable equiva-
lent XQuery expressions in order to be checked. This section discusses the translation of
datalog denials into XQuery.

We exemplify the translation process using the (non-simplified) set of constraints Γ
defined in example 5.3.2. For brevity, we only show the translation of the second denial.

We first expand the atoms of the datalog denial, except for the first and the third
positions, which refer to element and parent identifiers and thus keep information on the
parent-child relationships of the XML nodes. Here the expansion is:

← rev(Ir, B,C,R) ∧ sub(Is,D, Ir, E) ∧ auts(F,G, Is, A)
∧aut(H, I, Ip, J) ∧ aut(K,L, Ip,M) ∧ J = R ∧ M = A

The atoms in the denial must be sorted so that, if a variable referring to the par-
ent of a node also occurs as the identifier of another node, then the occurrence as an
identifier comes first. Here, no such rearrangement is needed. Then, for each atom
p(Id, Pos, Par,D1, . . . ,Dn) where D1, . . . , Dn are the values of tags d1, . . . , dn, respec-
tively, we do as follows. If the definition of $Par has not yet been created, then we generate
the following XQuery variable definitions

$Id in //p, $Par in $Id/..

Otherwise we just generate

$Id in $Par/p

This is followed by

$Pos in $Id/position(), $D1 in $Id/d1/text(), ..., $Dn in $Id/dn/text()

After the generation of all variable definitions, we build an XQuery boolean expression
(returning true in case of violation) by prefixing the definitions with the some keyword and
by suffixing them with the satisfies keyword followed by all the remaining conditions in
the denial separated by ands. This is a well-formed XQuery expression. Here we have:

some $Ir in //rev, $C in $Ir/.., $B in $Ir/position(), $R in $Ir/name/text(),
$Is in $Ir/sub, $D in $Is/position(), $E in $Is/title/text(),
$F in $Is/auts, $G in $F/position(), $A in $F/name/text(),

$H in //aut, $Ip in $H/.., $I in $H/position(), $J in $H/name/text(),
$K in $Ip/aut, $L in $K/position(), $M in $K/name/text()

satisfies $J=$R and $M=$A

107

Such expression can be optimized by eliminating definitions of variables which are never
used, unless they refer to node identifiers. Such variables are to be retained because they
express an existential condition on the element they are bound to. Variables referring to
the position of an element are to be retained only if used in other parts of the denial. In
the example, we can therefore eliminate the definitions of variables $B, $C, $D, $E, $G, $I, $L.
If a variable is used only once outside its definition, its occurrence is replaced with its
definition. Here, e.g., the definition of $Is is removed and $Is is replaced by $Ir/sub in the
definition of $F, obtaining $F in $Ir/sub/auts.

Variables occurring in the satisfies part are replaced by their definition. Here we
obtain the following query.

some $Ir in //rev, $H in //aut
satisfies $H/name/text()=$Ir/name/text() and

$H/../aut/name/text()=$Ir/sub/auts/name/text()

The translation of simplified version SimpU
∆(Γ) is made along the same lines. Again, we

only consider the simplified version of the second constraint (the denial ← rev(ir, , , R)∧
aut(, , Ip,n) ∧ aut(, , Ip, R)). Now, parameters can occur in the simplified denial. If
a parameter occurs in the first or third position of an atom, it must be replaced by a
suitable representation of the element it refers to. Here we obtain:

some $D in //aut
satisfies $D/name/text()=%n and

$D/../aut/name/text() = /review/track[%i]/rev[%j]/name/text()

where /review/track[%i]/rev[%j] conveniently represents ir, as was done for the update state-
ment of section 5.3.2. Similarly, %n corresponds to n. The placeholders %i, %j and %n will
be known at update time and replaced in the query.

5.3.5 Related work

An attempt to adapt view maintenance techniques to the semi-structured data model has
been made in [159] and, recently, in [150], which however only considers additions and
deletions of leaf nodes and only allows predicate tests that refer to nodes in the subtree
of the node being tested. Several recent papers address the problem of incrementally val-
idating XML documents with respect to DTD or XML Schema definitions. In particular,
[141] provides an algorithm for validation upon insertions and deletions of leaf nodes,
whereas [18] also considers insertions of subtrees. The complexity of validating an XML
document with respect to a DTD, including structural as well as ID/IDREF constraints,
has been shown to be low [18]: in O(n log n) time and linear space. Incremental validation
with respect to document updates has been studied for specific classes of DTDs (1,2-CF
DTDs) and shown [18] to be substantially simpler than complete revalidation, with a
logarithmic time complexity. Validation of schema, key and foreign key constraints is
also considered in [4], where the validator is represented by a bottom-up tree transducer;
as in our approach, an update is performed only if it is first accepted by the validator.
An attempt to simplification of general integrity constraints for XML has been made in
[21], where, however, constraints are specified in a procedural fashion with an extension
of XML Schema that includes loops with embedded forbidden assertions.

108

We are not aware of other works that address the validation problem with respect to
general constraints for XML. However, integrity constraint simplification can be reduced
to query containment as long as the constraints can be viewed as queries. To this end,
relevant works on containment for various fragments of XPath that would foster a direct
simplification approach for XML are [151, 136].

There are several proposals and studies of constraint specification languages for XML
by now. In [79], a unified constraint model (UCM) for XML is proposed that captures
in a single framework the main features of object-oriented schemata and XML DTDs.
Special attention has been paid to key constraints for XML in [31], where the notion of
relative key (i.e., key relative to a fragment) is introduced and the implication problem is
shown to be decidable in polynomial time; further complexity and axiomatization results
are given in [81] and [32]. Satisfiability of DTD specifications has been studied in [80]
and shown to be NP-complete.

The XUpdate language that was used for the experimental evaluation is described in
[113]. A discussion on update languages for XML is found in [161]; an XQuery-based
implemented prototype of XML update language is described in [160], whereas a rule-
based framework is presented in [129]. The output of the simplification process described
in this paper is a query expressed in XQuery, a query language based on XPath. The
complexity of XPath query evaluation has been studied in [91, 92].

109

110

Chapter 6

Experimental Evaluation

In order to demonstrate the effectiveness of the simplification procedure, we have tested it
on more complex examples and show here our experimental results, both for the recursive
and the non-recursive case, in sections 6.1 and 6.2 respectively.

All the tests were run on a machine with a 2.4 GHz processor, 1 GB of RAM and 80
GB of hard disk. The random data sets used for the tests were generated beforehand, so
that the different procedures under analysis could run on exactly the same data and thus
be compared fairly. All tests were repeated 20 times, so as to have an average measure
of the execution time.

The symbolic simplifications shown in this chapter were obtained with an experimental
implementation of the simplification procedure which is available on the world wide web
[126]. The time needed to obtain the simplifications shown in this chapter is negligible
with respect to the execution times of the tests and is therefore not reported.

Finally, in section 6.3 we show a performance analysis for XML databases.

6.1 Experiments for non-recursive databases

We first consider the tests presented in [153], which were initially proposed in [67]; the
method of the so-called inconsistency indicators of [153] was shown to run more effi-
ciently than previous methods, namely [147, 122, 69] and naive constraint checking (i.e.,
with no simplification). We show that, on their examples, we obtain a much better
performance (all obtained simplifications are indeed ideal). For compatibility with the
compared method, the tests are run under a Prolog system1.

1All experiments, including the replication of results from [153] and [155], were run under SICStus
Prolog 3.11.

111

Let S1 be the schema with the following intensional database

mother(X,Y) ← husband(Z,X) ∧ father(Z, Y)
parent(X,Y) ← father(X,Y)
parent(X,Y) ← mother(X,Y)

wife(X,Y) ← husband(Y,X)
married(X,Y) ← husband(X,Y)
married(X,Y) ← wife(X,Y)

employed(X) ← occup(X, serv)
student(X) ← occup(X, stud)

dependent(X,Y) ← parent(Y,X) ∧ employed(Y) ∧ student(X)
dependent(X,Y) ← married(Y,X) ∧ employed(Y) ∧ ¬employed(X)

self(X) ← married(Y,X) ∧ ¬employed(Y)
guardian(X,Y) ← dependent(Y,X)

and the following integrity constraints:

← guardian(X,Y) ∧ ¬sponsor(X,Y)
← married(X1, Y1) ∧ student(X1)
← occup(X2, Y2) ∧ occup(X2, Z) ∧ Z 6= Y2

The distribution of facts in the initial database considered in [153] is as follows: 177
father facts, 229 husband facts, 620 occup facts and 59 sponsor facts. We considered
additions of tuples to the father and husband relations. To test whether an update
U1 = {father(a,b)} leads to inconsistency, the method of the inconsistency indicators
proposes the following tests (rewritten with our notation):

{ ← ¬sponsor(a,b) ∧ guardian(a,b),
← guardian(X,b) ∧ ¬sponsor(X,b) }.

These can be checked by asserting the update as a Prolog fact father(a,b) and calling
the Prolog query inconsistent(father(a,b)) on the following Prolog program:

inconsistent(father(X,Y)) :- \+ sponsor(X,Y), guardian(X,Y).

inconsistent(father(Z,Y)) :- guardian(X,Y), \+ sponsor(X,Y).

Their checking strategy is therefore: assert the update, then retract if inconsistency was
detected.

The simplification given by Simp is more specialized and refers only to the extensional
predicates:

SimpU1(S1) =

{ ← occup(a, serv) ∧ occup(b, stud) ∧ ¬sponsor(a,b),
← husband(a,X) ∧ occup(X, serv) ∧ occup(b, stud) ∧ ¬sponsor(X,b)}.

Our strategy is: first test, then assert the update if inconsistency was not detected.
To see whether the approaches “scale”, we ran our tests on databases that are bigger

than the initial one by a given factor. Figures 6.1 and 6.2 report this factor on the X-
axis and the measured average execution times (in milliseconds) for the additions of 177

112

father facts and 229 husband facts, respectively, with both the inconsistency indicators
(II) approach and our simplification (Simp) approach.

In both cases, the performance worsens very quickly with the inconsistency indicators
method, whereas it basically remains constant with our approach, with times under 10ms.

The last example of [153] considers a schema S2 consisting of the following integrity
constraints and intensional predicates2.

← civilst(X,Y1, Z1, t1) ∧ civilst(X,Y2, Z2, t2) ∧ ¬(Y1 = Y2 ∧ Z1 6= Z2 ∧ t1 6= t2)
← father(X1, Y) ∧ father(X2, Y) ∧ X1 6= X2

← husband(X1, Y) ∧ husband(X2, Y) ∧ X1 6= X2

← husband(X,Y1) ∧ husband(X,Y2) ∧ Y1 6= Y2

← civilst(X,Y,Z, Tax) ∧ (¬(X > 0 ∧ X < 100000 ∧ Y > 0 ∧ Y < 125)
∨(Z 6= m ∧ Z 6= f) ∨ (Tax 6= stud ∧ Tax 6= ret ∧ Tax 6= biz ∧ Tax 6= serv))

← civilst(X,Y,Z, stud) ∧ ¬(Y < 25)
← civilst(X,Y,Z, ret) ∧ ¬(Y > 60)
← father(X,Y) ∧ civilst(X,P, S,Q) ∧ S 6= m
← father(X,Y) ∧ civilst(Y, P, S,Q) ∧ S 6= m
← husband(X,Y) ∧ civilst(X,P, S,Q) ∧ S 6= m
← husband(X,Y) ∧ civilst(Y, P, S,Q) ∧ S 6= f
← husband(X,Y) ∧ age(X,P) ∧ age(Y,Q) ∧ (P < 20 ∨ Q < 20)
← civilst(X,Y,Z, Tax) ∧ Y < 20 ∧ Tax 6= stud
← dependent(X,Y) ∧ ¬tax(Y,X)

parent(X,Y) ← father(X,Y)
parent(X,Y) ← mother(X,Y)
mother(X,Y) ← father(Z, Y) ∧ husband(Z,X)

age(X,Y) ← civilst(X,Y, P,Q)
dependent(X,Y) ← parent(Y,X) ∧ occup(Y, serv) ∧ occup(X, stud)

occup(X,Y) ← civilst(X,P,Q, Y)

The update in question is a transaction of the form:

U2 = { civilst(a,pa,m,oa),
civilst(b,pb, f,ob),
civilst(c,pc, sc, stud),
husband(a,b), father(a, c), tax(a, c)}

We observe that in the example it is explicitly assumed that the added family facts were
not already in the database; let us indicate this extra hypothesis as ∆. The simplification
given by the II method consists of several sets of simplified constraints: one set for every
single update in U2. Instead, the simplification with respect to the whole transaction
given by Optimize∆(SimpU2(S2)) returns 〈∅, ∅〉. The results of [153] have execution times
that vary roughly linearly with respect to the size of the database. Our simplified theory
(∅) is clearly a great improvement over these results, since it executes in virtually no time
and guarantees, without further checking, that this transaction pattern cannot affect
integrity. This example was also used in [116], where the authors, unfortunately, only

2For compactness, the notation uses disjunctions, but is otherwise compatible with LS.

113

�

���

���

���

���

����

����

����

����

� � � 	
 �� �� �� �	 �
 �� �� �� �	 �
 �� �� �� �	 �
 �� �� �� �	 �

������

�
� ��������

����������

Figure 6.1: Simp vs. Inconsistency Indicators: father

compare their method to [122], but not to [153]. However, our transactional simplification
is clearly unbeatable.

The redundancies of [153] were reconsidered by the same author in [155]. For the
extended example discussed in [155], the schema is as follows.

S3 = 〈 { mother(X,Y) ← husband(Z,X) ∧ father(Z, Y),
parent(X,Y) ← father(X,Y),
parent(X,Y) ← mother(X,Y),
agediff (X,Y, n) ← age(X,n1) ∧ age(Y, n2) ∧ minus(n, n1, n2)},

{ ← parent(X,Y) ∧ agediff (X,Y, n) ∧ n < 15 } 〉

The results for their revised inconsistency indicators method (RII) and Simp on the ad-
dition of father facts on a distribution similar to that considered for S1 are reported in
figure 6.3. In this case our simplifications basically correspond to the unfolding of their
so-called revised inconsistency indicators, so there is almost no observable difference in
the execution times of the two methods. We stress, however, that the method of [155]
has a much more restricted expressive power, in that the updates are limited to singleton
insertions and no negations are allowed in the database. Furthermore, in this case the
update was simple, so the computational effort required for assertion and retraction of
facts was little; however, our approach based on early recognition of inconsistency proves
yet more efficient for cases in which updates lead to illegal states (dramatically, if the

114

�

���

���

���

���

���

���

���

	��

� � � �
 �� �� �� �� �
 �� �� �� �� �
 �� �� �� �� �
 �� �� �� �� �

������

�
� ���������

�����������

Figure 6.2: Simp vs. Inconsistency Indicators: husband

transactions are complex). To see this effect we updated a small database (2 father facts
and 2 age facts) with schema S3 with an illegal father insertion and measured, with the
RII method, an answer time approximately four times bigger than with the method based
on Simp. This behavior is amplified as the database grows (and it is thus more expensive
to add facts for the DBMS): attempting 10000 times the insertion of an illegal father fact
on a database with approximately 5000 father facts took about 1s with the RII method,
but only 70ms with Simp. This reflects the fact that with our strategy, upon an illegal
update, we just perform a test, whereas the RII method requires to execute the update,
perform a consistency test and then roll back the update.

6.2 Experiments for recursive databases

In order to demonstrate the effectiveness of the simplification procedure, we have tested
it on random update sets for example 4.3.8 on page 82. Our tests were run using DES
1.1 [148], which is a datalog system featuring full recursive evaluation and stratified
negation. DES is implemented on top of Prolog; we could therefore program our tests
in Prolog and simulate insertions by means of assert and deletions by retract. The
DES query engine is optimized with memoization techniques for answering queries based
on previous answers. In this case, we always pose the same query ← p(X,X) to check
whether the graph is acyclic, and therefore answers can be reused for subsequent queries.
Our method greatly improves performance even in the presence of an already optimized

115

�

���

���

���

���

����

����

����

����

� � � 	
 �� �� �� �	 �
 �� �� �� �	 �
 �� �� �� �	 �
 �� �� �� �	 �

������

�
� ������

�������

Figure 6.3: Simp vs. Revised Inconsistency Indicators: age

system.
Average execution times are indicated in milliseconds (within a time frame of 50

seconds) and the number of attempted insertions of edge facts is indicated on the X-axis.
Each figure reports the execution times needed to update the database and check its
consistency according to:

• The un-optimized integrity constraint (diamonds).

• The II produced by Seljée’s method [154] (crosses).

• The formula ← p(b, a) (II∗), produced by manually removing redundancies from the
II (squares).

• The simplification obtained with Simp (triangles). Note that in this case consistency
is checked before the update.

The third curve (a “perfect” post-test, which was produced by hand) was included for
comparison with the test-before-update strategy. In particular, in figure 6.4 we randomly
generated 1500 arcs between 1000 different nodes, whereas in figure 6.5 we only used 50
different nodes. In the former case the formation of cycles is less likely and the times
are generally better. In the latter, however, updates are much more likely to be rejected
(44% of the updates were rejected in total, while only 12% in the former case); Simp in
this case performs significantly better, with improvements around 20% even with respect

116

to the manually produced formula. The interpretation of these results is in accordance
with the following observations:

• The comparison between the performance of the optimized and non-optimized
checks shows that the optimized version is always more efficient than the original
one.

• In both the un-optimized and II methods the updated state (i.e., many more paths)
needs to be computed before the consistency test, which is a possibly expensive
operation in the presence of recursive views.

• The gain of early detection of inconsistency, which is a distinctive feature of our
approach, is unquestionable in the case of illegal updates. In such a case, with
our optimized strategy, the simplified constraint immediately reports an integrity
violation with respect to the proposed update, which is therefore not executed.
On the other hand, the other methods require to execute the update, perform a
consistency test and then roll back the update.

Note that the extra burden due to the execution and subsequent rollback of an illegal
update is even more evident for compound updates, such as those of example 4.3.9 on
page 83; in these cases the benefits of a pre-test with respect to a post-test are even
greater. We observe that the above comparisons did not take into account the time spent
to produce the optimized constraints, as these can be generated at schema design time
and thus do not interfere with run time performance.

6.3 Experiments for XML databases

We now present some experiments conducted on a series of XML datasets matching the
DTD of example 5.3.1 on page 102, varying in dimension from 32 to 256 MB. Figure
6.6 refers to the integrity constraints of example 5.3.1. The data were generated by re-
mapping data from the DBLP repository [118] into the schema of our running example.
Our tests were run using eXist [132] as XQuery engine.

Execution times are indicated in milliseconds and represent the average of the mea-
sured times of 20 attempts for each experiment (plus 5 additional operations that were
used as a “warm-up” procedure and thus not measured). The size of the documents is
indicated in MB on the x-axis. The figure reports three curves representing respectively
the time needed to:

• Verify the original constraint (diamonds).

• Verify the optimized constraint (squares).

• Execute an update, verify the original constraint and undo the update (triangles).

Again, we do not have to take into account the time spent to produce the optimized
constraints, as these are generated at schema design time and thus do not interfere with
run time performance.

The curves with diamonds and squares are used to compare integrity checking in the
non-simplified and, resp., simplified case, when the update is legal. The execution time

117

�

�����

�����

�����

�����

�����

�����

�� ��
�

��
�

��
�

��
�

��
�

��
�

��
�

	�
�

�
�

��
��

��
��

��
��

��
��

��
��

�������

�
�

������

���

���

��

Figure 6.4: Tests on recursive databases: sparse data

needed to perform the update is not included, as this is identical (and unavoidable) in both
the optimized and un-optimized case. The curve with triangles includes both the update
execution time and the time needed to rollback the update, which is necessary when the
update is illegal; when the update is illegal, we then compare the curve with triangles to
the curve with squares. Rollbacks were simulated by performing a compensating action to
re-construct the state prior to the update. The interpretation of these results is twofold,
as we must consider two possible scenarios:

• The update is legal : in the un-optimized framework the update is executed first
and the full constraint is then checked against the updated database (showing that
the update is legal); on the other hand, with our optimized strategy, the simplified
constraint is checked first and the update is performed afterwards.

• The update is illegal : in the un-optimized framework execution is as in the previous
case, but this time the check shows that there is some inconsistency and, finally, a
compensative action is performed. On the contrary, with our optimized strategy,
the simplified constraint is checked first, which reports an integrity violation with
respect to the proposed update; therefore the update statement is not executed.

From the experimental results shown in figure 6.6 it is possible to observe two important
features.

• Again, the optimized version is always more efficient than the original one. In
some cases, as shown in figure 6.6, the difference is remarkable, since the simplified

118

�

����

�����

�����

�����

�����

�����

�����

�����

�����

�����

�� ��
�

��
�

��
�

��
�

��
�

��
�

��
�

	�
�

�
�

��
��

��
��

��
��

��
��

��
��

�������

�
�

������

���

���

��

Figure 6.5: Tests on recursive databases: dense data

version contains specific values coming from the concrete update statement which
allow one to filter the values on which complex computations are applied. Further
improvement is due to the elimination of a join condition in the optimized query.

• Early detection of inconsistency pays off in the case of illegal updates. This is
prominently apparent in the case considered in figure 6.6, since, as is well-known,
the modification of XML documents is an expensive task.

119

��������	��	���
�
���

����

������

�������

�������

�������

�������

�������

�������

�������

�������

�������

���	 ���	 ����	 ����	

��

�
�

������
�����

��������
�����

��������

������
�������
���
����

Figure 6.6: Conflict of interests

120

Chapter 7

Conclusion

We applied program transformation operators to the generation of simplified integrity
constraints. A procedure was constructed that makes use of these transformations and
produces the simplification searched for according to a minimality criterion. An impor-
tant contribution of this thesis is the definition of the notion of ideality of a simplification
procedure, its connection with the query containment problem, and the analysis of differ-
ent minimality criteria that can be used to characterize an ideal procedure. In particular,
we showed that, for any sensible ordering in which an empty constraint theory repre-
sents a minimal element, ideality of simplification corresponds to decidability of query
containment.

For specific database languages, we described the implementation of these operators
in terms of rewrite rules based on resolution, subsumption and replacement of specific
patterns. The versatility of the transformation operators, together with the ability of
producing a necessary and sufficient condition for checking integrity before a database
update, constitutes the main advantage of our method with respect to earlier approaches.
Importantly, we have shown practically relevant cases for which the simplification process
is guaranteed to return a minimal result and we have given evidence of the feasibility of
the approach with an extensive set of experiments.

We have also indicated how this method can be extended so as to handle existential
quantification, recursion, arithmetic and aggregates and how it integrates with locking
strategies for databases with concurrent transactions. Cases including all these extensions
at the same time could be trivially handled by a rule set comprising all rewrite rules
defined in chapter 4, in that such rules are not mutually exclusive. However, it should be
interesting to study to which extent this is possible and whether further improvements
can be obtained by exploiting the interaction between these rules. Investigation on sub-
languages for which some form of minimality can be guaranteed in these cases should also
be part of future research.

We believe that present database practice can benefit by the described method. An
immediate application is, e.g., the implementation of a database driver that, upon requests
from an application, communicates with the database and transparently carries out the
required simplified integrity checking operations. This would result in major assets in
terms of efficiency, all with a compiled approach, since simplifications are generated at

121

design time. Practical work based on the foundations provided in this thesis still is in its
initial phase, although a Prolog implementation of the simplification procedure is already
available [126]. Our results form a nucleus that may inspire the extension of commercial
systems based on these principles.

Although we used a logical notation throughout the thesis, standard ways of translat-
ing integrity constraints into SQL exist, although further investigation is needed in order
to handle additional language concepts of SQL like null values. In [70], Decker showed
how to implement integrity constraint checking by translating first-order logic specifica-
tions into SQL triggers. The result of our transformations can be combined with similar
translation techniques and thus integrated in an active database system, according to the
idea of embedding integrity control in triggers, as was indicated (albeit without semantic
optimization) by Ceri and Widom [46, 44, 43]. In this way the advantages of declarativity
are combined with the efficiency of execution. Along these lines, it should be interesting
to study the feasibility of a trigger-based integrity maintenance approach for XML that
would combine active behavior with constraint simplification.

Further lines of investigation include integration of visual query specification tools,
such as [28], to allow the intuitive specification of XML constraints; in this way domain
experts lacking specific competencies in logic would be provided with the ability to design
constraints that can be further processed with our approach. Initial analysis of the topic
was given in [29]. In this respect, a challenging research topic would be a reformulation
of the notion of simplification described in this thesis by means of transformation rules
into a set of graph transformation rules expressed in terms of graph grammars for the
manipulation of visual constraints.

Other possible enhancements of the proposed framework may be developed using sta-
tistical measures on the data, such as estimated relation sizes and cost measurements for
performing join and union operations, which are often known by database administra-
tors. Work in this area is closely related to methods for dynamic query processing, e.g.,
[63, 156]. Finally, we mention that the problem of integrity checking has been or could
be addressed also for other paradigms, which were not dealt with in this thesis, such as
object-oriented database languages [23, 22] and data streams [13, 12].

122

Bibliography

[1] S. Abdennadher and H. Christiansen. An experimental CLP platform for integrity
constraints and abduction. In H. L. Larsen, J. Kacprzyk, S. Zadrozny, T. An-
dreasen, and H. Christiansen, editors, Flexible Query-Answering Systems (FQAS
2000), pages 141–152, 2000.

[2] S. Abiteboul, P. Buneman, and D. Suciu. Data on the Web: From Relations to
Semistructured Data and XML. Morgan Kaufmann, 1999.

[3] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

[4] M. A. Abrão, B. Bouchou, M. H. F. Alves, D. Laurent, and M. A. Musicante.
Incremental Constraint Checking for XML Documents. In Z. Bellahsene, T. Milo,
M. Rys, D. Suciu, and R. Unland, editors, Database and XML Technologies, Second
International XML Database Symposium, XSym 2004, Toronto, Canada, August
29-30, 2004, Proceedings, volume 3186 of Lecture Notes in Computer Science, pages
112–127. Springer, 2004.

[5] F. Afrati and S. S. Cosmadakis. Expressiveness of restricted recursive queries. In
D. S. Johnson, editor, ACM Symposium on Theory of Computing, pages 113–126.
ACM Press, 1989.

[6] F. Afrati, M. Gergatsoulis, and F. Toni. Linearisability on Datalog programs. The-
oretical Computer Science, 308(1-3):199–226, 2003.

[7] F. N. Afrati, C. Li, and P. Mitra. On containment of conjunctive queries
with arithmetic comparisons. In E. Bertino, S. Christodoulakis, D. Plexousakis,
V. Christophides, M. Koubarakis, K. Böhm, and E. Ferrari, editors, Advances in
Database Technology - EDBT 2004, 9th International Conference on Extending
Database Technology, Heraklion, Crete, Greece, March 14-18, 2004, Proceedings,
volume 2992 of Lecture Notes in Computer Science, pages 459–476. Springer, 2004.

[8] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge.
In J. Minker, editor, Foundations of Deductive Databases and Logic Programming.,
pages 89–148. Morgan Kaufmann, Los Altos, CA, 1988.

[9] K. R. Apt and R. N. Bol. Logic programming and negation: A survey. Journal of
Logic Programming, 19/20:9–71, 1994.

123

[10] M. Arenas, L. E. Bertossi, and J. Chomicki. Consistent query answers in inconsis-
tent databases. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, May 31 - June 2, 1999, Philadel-
phia, Pennsylvania, pages 68–79. ACM Press, 1999.

[11] O. Arieli, M. Denecker, B. V. Nuffelen, and M. Bruynooghe. Database repair by
signed formulae. In D. Seipel and J. M. T. Torres, editors, Foundations of In-
formation and Knowledge Systems, Third International Symposium (FoIKS 2004),
volume 2942 of Lecture Notes in Computer Science, pages 14–30. Springer, 2004.

[12] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues
in data stream systems. In L. Popa, editor, Proceedings of the Twenty-first ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June
3-5, Madison, Wisconsin, USA, pages 1–16. ACM, 2002.

[13] S. Babu, U. Srivastava, and J. Widom. Exploiting k-constraints to reduce memory
overhead in continuous queries over data streams. ACM Transactions on Database
Systems (TODS), 29(3):545–580, 2004.

[14] F. Bancilhon. Naive evaluation of recursively defined relations. In M. L. Brodie and
J. Mylopoulos, editors, On Knowledge Base Management Systems (Book resulting
from the Islamorada Workshop 1985), Topics in Information Systems, pages 165–
178. Springer, 1986.

[15] F. Bancilhon and R. Ramakrishnan. An amateur’s introduction to recursive query
processing strategies. In C. Zaniolo, editor, Proceedings of the 1986 ACM SIGMOD
International Conference on Management of Data, Washington, D.C., May 28-30,
1986, pages 16–52. ACM Press, 1986.

[16] C. Baral, S. Kraus, and J. Minker. Combining multiple knowledge bases. IEEE
Transactions on Knowledge and Data Engineering, 3(2):208–220, 1991.

[17] C. Baral, S. Kraus, J. Minker, and V. S. Subrahmanian. Combining knowledge
bases consisting of first-order analysis. Computational Intelligence, 8:45–71, 1992.

[18] D. Barbosa, A. O. Mendelzon, L. Libkin, L. Mignet, and M. Arenas. Efficient
Incremental Validation of XML Documents. In Proceedings of the 20th International
Conference on Data Engineering, ICDE 2004, 30 March - 2 April 2004, Boston,
MA, USA, pages 671–682. IEEE Computer Society, 2004.

[19] A. Behrend. Soft stratification for magic set based query evaluation in deductive
databases. In Proceedings of the twenty-second ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems, pages 102–110. ACM Press, 2003.

[20] A. Behrend. Soft Stratification for Transformation-Based Approaches to Deductive
Databases. PhD thesis, University of Bonn, 2004.

[21] M. Benedikt, G. Bruns, J. Gibson, R. Kuss, and A. Ng. Automated Update Man-
agement for XML Integrity Constraints. In Informal Proceedings of PLAN-X Work-
shop, 2002.

124

[22] V. Benzaken and A. Doucet. Thémis: A database programming language handling
integrity constraints. VLDB Journal, 4(3):493–517, 1995.

[23] V. Benzaken and X. Schaefer. Static management of integrity in object-oriented
databases: Design and implementation. In H.-J. Schek, F. Saltor, I. Ramos, and
G. Alonso, editors, Advances in Database Technology - EDBT’98, 6th Interna-
tional Conference on Extending Database Technology, Valencia, Spain, March 23-
27, 1998, Proceedings, volume 1377 of Lecture Notes in Computer Science, pages
311–325. Springer, 1998.

[24] P. A. Bernstein and B. T. Blaustein. Fast methods for testing quantified relational
calculus assertions. In M. Schkolnick, editor, Proceedings of the 1982 ACM SIGMOD
International Conference on Management of Data, Orlando, Florida, June 2-4,
1982, pages 39–50. ACM Press, 1982.

[25] P. Bohannon, J. Freire, P. Roy, and J. Siméon. From XML schema to relations:
A cost-based approach to XML storage. In Proceedings of the 18th International
Conference on Data Engineering, 26 February - 1 March 2002, San Jose, CA, pages
64–75. IEEE Computer Society, 2002.

[26] R. N. Bol. Loop checking in partial deduction. Journal of Logic Programming,
16(1):25–46, 1993.

[27] P. A. Bonatti. On the decidability of containment of recursive Datalog queries -
preliminary report. In A. Deutsch, editor, Proceedings of the Twenty-third ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June
14-16, 2004, Paris, France, pages 297–306. ACM, 2004.

[28] D. Braga, A. Campi, and S. Ceri. XQBE (XQuery By Example): a visual interface
to the standard XML query language. ACM Transactions on Database Systems
(TODS), 30(2):398–443, June 2005.

[29] D. Braga, A. Campi, D. Martinenghi, A. Raffio, and D. Salvi. XQBE: the Swiss
Army Knife for Semi-structured Data. In Proceedings of the Thirteenth Italian
Symposium on Advanced Database Systems, SEBD 2005, Brizen-Bressanone, Italy,
June 19-22, 2005, pages 284–291, 2005.

[30] F. Bry and R. Manthey. Checking consistency of database constraints: a logical ba-
sis. In W. W. Chu, G. Gardarin, S. Ohsuga, and Y. Kambayashi, editors, VLDB’86
Twelfth International Conference on Very Large Data Bases, August 25-28, 1986,
Kyoto, Japan, Proceedings, pages 13–20. Morgan Kaufmann, 1986.

[31] P. Buneman, S. B. Davidson, W. Fan, C. S. Hara, and W. C. Tan. Reasoning about
keys for XML. Information Systems, 28(8):1037–1063, 2003.

[32] P. Buneman, W. Fan, and S. Weinstein. Interaction between path and type con-
straints. ACM Transactions on Computational Logic (TOCL), 4(4):530–577, 2003.

125

[33] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under
integrity constraints. In A. B. Pidduck, J. Mylopoulos, C. C. Woo, and M. T. Özsu,
editors, Advanced Information Systems Engineering, 14th International Conference,
CAiSE 2002, Toronto, Canada, May 27-31, 2002, Proceedings, volume 2348 of
Lecture Notes in Computer Science, pages 262–279. Springer, 2002.

[34] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. On the expressive power
of data integration systems. In S. Spaccapietra, S. T. March, and Y. Kambayashi,
editors, Conceptual Modeling - ER 2002, 21st International Conference on Concep-
tual Modeling, Tampere, Finland, October 7-11, 2002, Proceedings, volume 2503 of
Lecture Notes in Computer Science, pages 338–350. Springer, 2002.

[35] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. On the role of integrity
constraints in data integration. IEEE Data Engineering Bulletin, 25(3):39–45, 2002.

[36] A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity of query
answering over inconsistent and incomplete databases. In PODS ’03: Proceedings
of the twenty-second ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 260–271, New York, NY, USA, 2003. ACM Press.

[37] D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proceedings of the seventeenth ACM SIGACT-
SIGMOD-SIGART symposium on Principles of database systems, pages 149–158.
ACM Press, 1998.

[38] D. Calvanese, G. De Giacomo, and M. Vardi. Decidable containment of recursive
queries. In D. Calvanese, M. Lenzerini, and R. Motwani, editors, Database The-
ory - ICDT 2003, 9th International Conference, Siena, Italy, January 8-10, 2003,
Proceedings, volume 2572 of Lecture Notes in Computer Science, pages 330–345.
Springer, 2003.

[39] M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In H. Glaser, P. H. Hartel, and H. Kuchen, editors, Programming Languages:
Implementations, Logics, and Programs, 9th International Symposium, PLILP’97,
Including a Special Trach on Declarative Programming Languages in Education,
Southampton, UK, September 3-5, 1997, Proceedings, volume 1292 of Lecture Notes
in Computer Science, pages 191–206. Springer, 1997.

[40] J. Carmo, R. Demolombe, and A. J. I. Jones. An application of deontic logic to
information system constraints. Fundamenta Informaticae, 48(2-3):165–181, 2001.

[41] S. Carrico, B. Ewbank, T. G. Griffin, J. Meale, and H. Trickey. A tool for developing
safe and efficient database transactions. In XV International Switching Symposium
of the World Telecomminications Congress. April, 1995, pages 173–177, 1995.

[42] T. Catarci and I. F. Cruz. On expressing stratified datalog. In 2nd ICLP Workshop
on Deductive Databases and Logic Programming, June 1994, Italy, pages 85–100,
1994.

126

[43] S. Ceri, R. Cochrane, and J. Widom. Practical applications of triggers and con-
straints: Success and lingering issues (10-year award). In A. E. Abbadi, M. L.
Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter, and K.-Y. Whang,
editors, VLDB 2000, Proceedings of 26th International Conference on Very Large
Data Bases, September 10-14, 2000, Cairo, Egypt, pages 254–262. Morgan Kauf-
mann, 2000.

[44] S. Ceri, P. Fraternali, S. Paraboschi, and L. Tanca. Automatic generation of pro-
duction rules for integrity maintenance. ACM Transactions on Database Systems
(TODS), 19(3):367–422, 1994.

[45] S. Ceri, G. Gottlob, and L. Tanca. Logic programming and databases. Springer-
Verlag New York, Inc., 1990.

[46] S. Ceri and J. Widom. Deriving production rules for constraint maintainance. In
D. McLeod, R. Sacks-Davis, and H.-J. Schek, editors, 16th International Conference
on Very Large Data Bases, August 13-16, 1990, Brisbane, Queensland, Australia,
Proceedings, pages 566–577. Morgan Kaufmann, 1990.

[47] U. S. Chakravarthy, J. Grant, and J. Minker. Foundations of semantic query op-
timization for deductive databases. In J. Minker, editor, Foundations of Deductive
Databases and Logic Programming, pages 243–273, Los Altos, CA, 1988. Morgan
Kaufmann.

[48] U. S. Chakravarthy, J. Grant, and J. Minker. Logic-based approach to semantic
query optimization. ACM Transactions on Database Systems (TODS), 15(2):162–
207, 1990.

[49] A. K. Chandra and D. Harel. Horn clause queries and generalizations. Journal of
Logic Programming, 1(2):158–163, 1985.

[50] C. L. Chang and R. C. Lee. Symbolic Logic and Mechanical Theorem Proving.
Academic Press, 1973.

[51] S. Chaudhuri and M. Y. Vardi. On the equivalence of recursive and nonrecursive dat-
alog programs. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, June 2-4, 1992, San Diego, Cali-
fornia, pages 55–66. ACM Press, 1992.

[52] S. Chaudhuri and M. Y. Vardi. Optimization of real conjunctive queries. In Proceed-
ings of the Twelfth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, May 25-28, 1993, Washington, DC, pages 59–70. ACM Press,
1993.

[53] J. Chomicki. Efficient checking of temporal integrity constraints using bounded
history encoding. ACM Transactions on Database Systems (TODS), 20(2):149–
186, 1995.

[54] H. Christiansen. Automated reasoning with a constraint-based metainterpreter.
Journal of Logic Programming, 37(1-3):213–254, 1998.

127

[55] H. Christiansen. Integrity constraints and constraint logic programming. In
INAP’99; Proceedings of the 12th International Conference on Application of Pro-
log, pages 5–12. Science University of Tokyo, Japan, 1999. Invited talk.

[56] H. Christiansen and V. Dahl. Assumptions and abduction in Prolog. In S. Muñoz-
Hernández, J. M. Gómez-Perez, and P. Hofstedt, editors, Proceedings of WLPE
2004: 14th Workshop on Logic Programming Environments and MultiCPL 2004:
Third Workshop on Multiparadigm Constraint Programming Languages Workshop
Proceedings, pages 87–101, 2004.

[57] H. Christiansen and D. Martinenghi. Symbolic constraints for meta-logic program-
ming. Applied Artificial Intelligence, 14(4):345–367, 2000.

[58] H. Christiansen and D. Martinenghi. Simplification of database integrity constraints
revisited: A transformational approach. In M. Bruynooghe, editor, Logic Based
Program Synthesis and Transformation, 13th International Symposium LOPSTR
2003, Uppsala, Sweden, August 25-27, 2003, Revised Selected Papers, volume 3018
of Lecture Notes in Computer Science, pages 178–197. Springer, 2004.

[59] H. Christiansen and D. Martinenghi. Simplification of integrity constraints for data
integration. In D. Seipel and J. M. T. Torres, editors, Foundations of Information
and Knowledge Systems, Third International Symposium (FoIKS 2004), volume
2942 of Lecture Notes in Computer Science, pages 31–48. Springer, 2004.

[60] K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and
Data Bases, Symposium on Logic and Data Bases, Centre d’études et de recherches
de Toulouse, 1977. Advances in Data Base Theory, pages 293–322. Plenum Press,
New York, 1978.

[61] E. F. Codd. Further normalization of the database relational model. In R. Rustin,
editor, Courant Computer Science Symposium 6: Data Base Systems, pages 33–64.
Prentice-Hall, Englewood Cliffs, N.J., 1972.

[62] S. Cohen, W. Nutt, and Y. Sagiv. Containment of aggregate queries. In D. Cal-
vanese, M. Lenzerini, and R. Motwani, editors, Database Theory - ICDT 2003, 9th
International Conference, Siena, Italy, January 8-10, 2003, Proceedings, volume
2572 of Lecture Notes in Computer Science, pages 111–125. Springer, 2003.

[63] R. L. Cole and G. Graefe. Optimization of dynamic query evaluation plans. In
R. T. Snodgrass and M. Winslett, editors, Proceedings of the 1994 ACM SIGMOD
International Conference on Management of Data, Minneapolis, Minnesota, May
24-27, 1994, pages 150–160. ACM Press, 1994.

[64] S. S. Cosmadakis. On the first-order expressibility of recursive queries. In Proceed-
ings of the eighth ACM SIGACT-SIGMOD-SIGART symposium on Principles of
database systems, pages 311–323. ACM Press, 1989.

[65] W. Cowley and D. Plexousakis. Temporal integrity constraints with indeterminacy.
In A. E. Abbadi, M. L. Brodie, S. Chakravarthy, U. Dayal, N. Kamel, G. Schlageter,

128

and K.-Y. Whang, editors, VLDB 2000, Proceedings of 26th International Con-
ference on Very Large Data Bases, September 10-14, 2000, Cairo, Egypt, pages
441–450. Morgan Kaufmann, 2000.

[66] S. Das. Deductive Databases and Logic Programming. Addison-Wesley, 1992.

[67] S. K. Das and M. H. Williams. Integrity checking methods in deductive databases:
a comparative evaluation. In BNCOD 7: Proceedings of the seventh British national
conference on Databases, pages 85–116. Cambridge University Press, 1989.

[68] S. de Amo, W. A. Carnielli, and J. Marcos. A logical framework for integrating
inconsistent information in multiple databases. In T. Eiter and K.-D. Schewe, ed-
itors, Foundations of Information and Knowledge Systems, Second International
Symposium, FoIKS 2002 Salzau Castle, Germany, February 20-23, 2002, Proceed-
ings, volume 2284 of Lecture Notes in Computer Science, pages 67–84. Springer,
2002.

[69] H. Decker. Integrity enforcement on deductive databases. In L. Kerschberg, editor,
Expert Database Conference, Proceedings From the First International Conference,
Charleston, South Carolina, USA, April 1-4, 1986, pages 381–395. Benjamin Cum-
mings, 1987.

[70] H. Decker. Translating advanced integrity checking technology to SQL. In J. H.
Doorn and L. C. Rivero, editors, Database integrity: challenges and solutions, pages
203–249. Idea Group Publishing, 2002.

[71] H. Decker and M. Celma. A slick procedure for integrity checking in deductive
databases. In P. Van Hentenryck, editor, Logic Programming: Proc. of the 11th
International Conference on Logic Programming, pages 456–469. MIT Press, Cam-
bridge, MA, 1994.

[72] H. Decker, J. Villadsen, and T. Waragai, editors. Paraconsistent Computational
Logic, This proceedings volume contains the papers presented at the ICLP 2002
workshop Paraconsistent Computational Logic, on July 27, in Copenhagen, Den-
mark, as part of the Federated Logic Conference (FLoC), volume 95 of Datalogiske
Skrifter. Roskilde University, Roskilde, Denmark, 2002.

[73] M. Denecker, N. Pelov, and M. Bruynooghe. Ultimate well-founded and stable
semantics for logic programs with aggregates. In P. Codognet, editor, Logic Pro-
gramming, 17th International Conference, ICLP 2001, Paphos, Cyprus, November
26 - December 1, 2001, Proceedings, volume 2237 of Lecture Notes in Computer
Science, pages 212–226. Springer, 2001.

[74] A. Deutsch, M. Fernandez, and D. Suciu. Storing semistructured data with
STORED. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIGMOD
1999, Proceedings ACM SIGMOD International Conference on Management of
Data, June 1-3, 1999, Philadelphia, Pennsylvania, USA., pages 431–442. ACM
Press, 1999.

[75] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

129

[76] G. Dong and J. Su. Incremental Maintenance of Recursive Views Using Relational
Calculus/SQL. SIGMOD Record, 29(1):44–51, 2000.

[77] N. Eisinger and H. J. Ohlbach. Deduction systems based on resolution. In D. M.
Gabbay, C. J. Hogger, and J. A. Robinson, editors, Handbook of Logic in Artificial
Intelligence and Logic Programming - Vol 1: Logical Foundations, pages 183–271.
Clarendon Press, Oxford, 1993.

[78] R. Fagin. Multivalued dependencies and a new normal form for relational databases.
ACM Transactions on Database Systems (TODS), 2(3):262–278, 1977.

[79] W. Fan, G. M. Kuper, and J. Siméon. A unified constraint model for XML. Com-
puter Networks, 39(5):489–505, 2002.

[80] W. Fan and L. Libkin. On XML integrity constraints in the presence of DTDs.
Journal of the ACM, 49(3):368–406, 2002.

[81] W. Fan and J. Siméon. Integrity constraints for XML. Journal of Computer and
System Sciences, 66(1):254–291, 2003.

[82] C. G. Fermüller, A. Leitsch, U. Hustadt, and T. Tammet. Resolution decision
procedures. In J. A. Robinson and A. Voronkov, editors, Handbook of Automated
Reasoning (in 2 volumes), pages 1791–1849. Elsevier and MIT Press, 2001.

[83] D. Florescu and D. Kossmann. Storing and Querying XML Data using an RDMBS.
IEEE Data Engineering Bulletin, 22(3):27–34, 1999.

[84] D. Florescu, A. Levy, and D. Suciu. Query containment for conjunctive queries with
regular expressions. In PODS ’98. Proceedings of the ACM SIGACT–SIGMOD–
SIGART Symposium on Principles of Database Systems, June 1–3, 1998, Seattle,
Washington, pages 139–148, New York, NY 10036, USA, 1998. ACM Press.

[85] T. W. Frühwirth. Theory and practice of constraint handling rules. Journal of
Logic Programming, 37(1-3):95–138, 1998.

[86] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems. The complete
book. Prentice-Hall, 2002.

[87] M. Gelfond and V. Lifschitz. Minimal model semantics for logic programming. In
R. Kowalski and K. Bowen, editors, Proceedings of the Fifth Logic Programming
Symposium, pages 1070–1080. MIT Press, 1988.

[88] P. Godfrey, J. Grant, J. Gryz, and J. Minker. Integrity constraints: Semantics
and applications. In J. Chomicki and G. Saake, editors, Logics for Databases and
Information Systems (the book grow out of the Dagstuhl Seminar 9529: Role of
Logics in Information Systems, 1995), pages 265–306. Kluwer, 1998.

[89] P. Godfrey, J. Gryz, and C. Zuzarte. Exploiting constraint-like data characteriza-
tions in query optimization. In W. G. Aref, editor, SIGMOD ’01: Proceedings of
the 2001 ACM SIGMOD international conference on Management of data, pages
582–592. ACM Press, 2001.

130

[90] G. Gottlob. Subsumption and implication. Information Processing Letters,
24(2):109–111, 1987.

[91] G. Gottlob, C. Koch, and R. Pichler. The complexity of XPath query evaluation. In
Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 9-12, 2003, San Diego, CA, USA, pages
179–190. ACM, 2003.

[92] G. Gottlob, C. Koch, and K. Schulz. Conjunctive Queries over Trees. In A. Deutsch,
editor, Proceedings of the Twenty-third ACM SIGACT-SIGMOD-SIGART Sympo-
sium on Principles of Database Systems, June 14-16, 2004, Paris, France, pages
189–200, 2004.

[93] J. Grant and J. Minker. Integrity constraints in knowledge based systems. In
H. Adeli, editor, Knowledge Engineering Vol II, Applications, pages 1–25. McGraw-
Hill, 1990.

[94] J. Grant and J. Minker. The impact of logic programming on databases. Commu-
nications of the ACM (CACM), 35(3):66–81, 1992.

[95] J. Grant and J. Minker. A logic-based approach to data integration. Theory and
Practice of Logic Programming (TPLP), 2(3):323–368, 2002.

[96] S. Greco, C. Sirangelo, I. Trubitsyna, and E. Zumpano. Preferred repairs for in-
consistent databases. In 7th International Database Engineering and Applications
Symposium (IDEAS 2003), 16-18 July 2003, Hong Kong, China, pages 202–211.
IEEE Computer Society, 2003.

[97] P. W. P. J. Grefen. Combining theory and practice in integrity control: A declar-
ative approach to the specification of a transaction modification subsystem. In
R. Agrawal, S. Baker, and D. A. Bell, editors, 19th International Conference on
Very Large Data Bases, August 24-27, 1993, Dublin, Ireland, Proceedings, pages
581–591. Morgan Kaufmann, 1993.

[98] U. Griefahn. A Uniform Approach to the Implementation of Deductive Databases.
PhD thesis, University of Bonn, 1997.

[99] A. Gupta and I. S. Mumick, editors. Materialized views: techniques, implementa-
tions, and applications. MIT Press, 1999.

[100] L. Henschen, W. McCune, and S. Naqvi. Compiling constraint-checking programs
from first-order formulas. In H. Gallaire, J. Minker, and J.-M. Nicolas, editors,
Advances In Database Theory, February 1-5, 1988, Los Angeles, California, USA,
volume 2, pages 145–169. Plenum Press, New York, 1984.

[101] C. Hoare. An axiomatic basis for computer programming. Communications of the
ACM, 12(10):576–580, 1969.

[102] A. Hsu and T. Imielinski. Integrity checking for multiple updates. In S. B. Na-
vathe, editor, Proceedings of the 1985 ACM SIGMOD International Conference on

131

Management of Data, Austin, Texas, May 28-31, 1985, pages 152–168. ACM Press,
1985.

[103] INCITS. Information technology - Database languages - SQL - Part 2: Foundation
(SQL/Foundation) - INCITS/ISO/IEC 9075-2-1999, 1999.

[104] Y. E. Ioannidis and E. Wong. Towards an algebraic theory of recursion. Journal of
the ACM, 38(2):329–381, 1991.

[105] J. Jaffar and M. J. Maher. Constraint logic programming: A survey. Journal of
Logic Programming, 19/20:503–581, 1994.

[106] N. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice Hall International, 1993.

[107] A. C. Kakas, R. A. Kowalski, and F. Toni. Abductive logic programming. Journal
of Logic and Computation, 2:719–770, 1992.

[108] D. Kapur and P. Narendran. NP-Completeness of the Set Unification and Matching
Problems. In J. H. Siekmann, editor, 8th International Conference on Automated
Deduction, Oxford, England, July 27 - August 1, 1986, Proceedings, volume 230 of
Lecture Notes in Computer Science, pages 489–495. Springer, 1986.

[109] D. B. Kemp and P. J. Stuckey. Semantics of logic programs with aggregates. In
V. A. Saraswat and K. Ueda, editors, Logic Programming, Proceedings of the 1991
International Symposium (ISLP), San Diego, California, USA, Oct. 28 - Nov 1,
1991, pages 387–401. MIT Press, 1991.

[110] D. Knuth and P. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebras, pages 263–297. Pergamon
Press, 1970.

[111] P. Kolaitis. The expressive power of stratified logic programs. Information and
Computation, 90(1):50–66, january 1991.

[112] R. Krishnamurthy, R. Kaushik, and J. F. Naughton. XML-SQL query translation
literature: The state of the art and open problems. In Proceedings of the Interna-
tional XML Database Symposium (XSym), pages 1–18, 2003.

[113] A. Laux and L. Matin. XUpdate working draft. http://www.xmldb.org/xupdate,
October 2000.

[114] S. Y. Lee and T. W. Ling. Further improvements on integrity constraint checking for
stratifiable deductive databases. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan,
and N. L. Sarda, editors, VLDB’96, Proceedings of 22th International Conference
on Very Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages
495–505. Morgan Kaufmann, 1996.

[115] A. Leitsch. Resolution theorem proving: A logical point of view. In M. Baaz, editor,
Logic Colloquium ’01: Proceedings Of The Annual European Summer Meeting Of
The Association For Symbolic Logic, Held In Vienna, Austria, August 6-11, 2001,
pages 3–42. A. K. Peters Ltd, 2001.

132

[116] M. Leuschel and D. de Schreye. Creating specialised integrity checks through par-
tial evaluation of meta-interpreters. Journal of Logic Programming, 36(2):149–193,
1998.

[117] A. Y. Levy. Combining artificial intelligence and databases for data integration.
In M. Wooldridge and M. M. Veloso, editors, Artificial Intelligence Today: Recent
Trends and Developments, volume 1600 of Lecture Notes in Computer Science, pages
249–268. Springer, 1999.

[118] M. Ley. Digital Bibliography & Library Project. http://dblp.uni-trier.de/.

[119] C. Li. Describing and utilizing constraints to answer queries in data-integration
systems. In S. Kambhampati and C. A. Knoblock, editors, Proceedings of IJCAI-03
Workshop on Information Integration on the Web (IIWeb-03), August 9-10, 2003,
Acapulco, Mexico, pages 163–168, 2003.

[120] J. Lin and A. O. Mendelzon. Merging databases under constraints. International
Journal of Cooperative Information Systems, 7(1):55–76, 1998.

[121] J. Lloyd. Foundations of Logic Programming (2nd Edition). Springer, Berlin, 1987.

[122] J. W. Lloyd, L. Sonenberg, and R. W. Topor. Integrity constraint checking in
stratified databases. Journal of Logic Programming, 4(4):331–343, 1987.

[123] J. W. Lloyd and R. W. Topor. Making Prolog more expressive. Journal of Logic
Programming, 3:225–240, 1984.

[124] J. W. Lloyd and R. W. Topor. A basis for deductive database systems II. Journal
of Logic Programming, 30(1):55–67, 1986.

[125] D. Martinenghi. Simplification of integrity constraints with aggregates and arith-
metic built-ins. In H. Christiansen, M.-S. Hacid, T. Andreasen, and H. L. Larsen,
editors, Flexible Query Answering Systems, 6th International Conference, FQAS
2004, Lyon, France, June 24-26, 2004, Proceedings, volume 3055 of Lecture Notes
in Computer Science, pages 348–361. Springer, 2004.

[126] D. Martinenghi. A simplification procedure for integrity constraints. http://www.
dat.ruc.dk/~dm/spic/index.html, 2004.

[127] D. Martinenghi and H. Christiansen. Efficient integrity checking for databases
with recursive views. In J. Eder, H.-M. Haav, A. Kalja, and J. Penjam, editors,
Ninth East-European Conference on Advances in Databases and Information Sys-
tems (ADBIS 05), September 12-15, 2005, Tallinn, Estonia, volume 3631 of Lecture
Notes in Computer Science, pages 109–124. Springer, 2005.

[128] D. Martinenghi and H. Christiansen. Transaction management with integrity check-
ing. In K. V. Andersen, J. Debenham, and R. R. Wagner, editors, Database and
Expert Systems Applications, 16th International Conference, DEXA 2004 Copen-
hagen, Denmark, August 22-26, 2005, Proceedings, volume 3588 of Lecture Notes
in Computer Science, pages 606–615. Springer, 2005.

133

[129] W. May. XPath-Logic and XPathLog: a logic-programming-style XML data manip-
ulation language. Theory and Practice of Logic Programming (TPLP), 4(3):239–287,
2004.

[130] E. Mayol and E. Teniente. A survey of current methods for integrity constraint
maintenance and view updating. In P. P. Chen, D. W. Embley, J. Kouloumdjian,
S. W. Liddle, and J. F. Roddick, editors, Advances in Conceptual Modeling: ER
’99 Workshops, Paris, France, November 15-18, 1999, Proceedings, volume 1727 of
Lecture Notes in Computer Science, pages 62–73. Springer, 1999.

[131] J. D. McCharen, R. A. Overbeek, and L. Wos. Problems and experiments for and
with automated theorem-proving programs. IEEE Transactions on Computers,
25(8):773–782, 1976.

[132] W. Meier. eXist: An Open Source Native XML Database. In Revised Papers from
the NODe 2002 Web and Database-Related Workshops on Web, Web-Services, and
Database Systems, pages 169–183, London, UK, 2003. Springer-Verlag.

[133] A. Motro. Integrity = validity + completeness. ACM Transactions on Database
Systems (TODS), 14(4):480–502, 1989.

[134] J. F. Naughton. Minimizing function-free recursive inference rules. Journal of the
ACM, 36(1):69–91, 1989.

[135] J. F. Naughton, R. Ramakrishnan, Y. Sagiv, and J. D. Ullman. Efficient evaluation
of right-, left-, and multi-linear rules. In J. Clifford, B. G. Lindsay, and D. Maier,
editors, Proceedings of the 1989 ACM SIGMOD International Conference on Man-
agement of Data, Portland, Oregon, May 31 - June 2, 1989, pages 235–242. ACM
Press, 1989.

[136] F. Neven and T. Schwentick. XPath Containment in the Presence of Disjunction,
DTDs, and Variables. In D. Calvanese, M. Lenzerini, and R. Motwani, editors,
Database Theory - ICDT 2003, 9th International Conference, Siena, Italy, January
8-10, 2003, Proceedings, volume 2572 of Lecture Notes in Computer Science, pages
315–329. Springer, 2003.

[137] J.-M. Nicolas. Logic for improving integrity checking in relational data bases. Acta
Informatica, 18:227–253, 1982.

[138] S.-H. Nienhuys-Cheng and R. de Wolf. The equivalence of the subsumption theo-
rem and the refutation-completeness for unconstrained resolution. In K. Kanchana-
sut and J.-J. Lévy, editors, Algorithms, Concurrency and Knowledge: 1995 Asian
Computing Science Conference, ACSC ’95, Pathumthani, Tailand, December 11-
13, 1995, Proceedings, volume 1023 of Lecture Notes in Computer Science, pages
269–285. Springer, 1995.

[139] U. Nilsson and J. MaÃluzyński. Logic, Programming and Prolog (2nd ed.). John
Wiley & Sons Ltd, 1995.

[140] Ocelot Computer Services Inc. The Ocelot SQL DBMS. http://www.ocelot.ca/.

134

[141] Y. Papakonstantinou and V. Vianu. Incremental Validation of XML Documents.
In D. Calvanese, M. Lenzerini, and R. Motwani, editors, Database Theory - ICDT
2003, 9th International Conference, Siena, Italy, January 8-10, 2003, Proceedings,
volume 2572 of Lecture Notes in Computer Science, pages 47–63. Springer, 2003.

[142] T. C. Przymusinski. On the declarative semantics of deductive databases and logic
programming. In J. Minker, editor, Foundations of Deductive Databases and Logic
Programming, pages 193–216, Los Altos, CA, 1988. Morgan Kaufmann.

[143] X. Qian. An effective method for integrity constraint simplification. In Proceedings
of the Fourth International Conference on Data Engineering, February 1-5, 1988,
Los Angeles, California, USA, pages 338–345. IEEE Computer Society, 1988.

[144] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB Journal, 10(4):334–350, 2001.

[145] R. Reiter. On closed world databases. In H. Gallaire and J. Minker, editors, Logic
and Databases, pages 56–76. Plenum Press, New York, 1978.

[146] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

[147] F. Sadri and R. Kowalski. A theorem-proving approach to database integrity. In
J. Minker, editor, Foundations of Deductive Databases and Logic Programming,
pages 313–362. Morgan Kaufmann, Los Altos, CA, 1988.

[148] F. Sáenz-Pérez. Datalog Educational System V1.1. User’s Manual. Techni-
cal Report 139-04, Faculty of Computer Science, UCM, 2004. Available from
http://www.fdi.ucm.es/profesor/fernan/DES/.

[149] K. Salem, H. Garcia-Molina, and J. Shands. Altruistic locking. ACM Transactions
on Database Systems (TODS), 19(1):117–165, 1994.

[150] A. Sawires, J. Tatemura, O. Po, D. Agrawal, and K. S. Candan. Incremental
maintenance of path expression views. In SIGMOD Conference, 2005: Baltimore,
Maryland, USA, 2005.

[151] T. Schwentick. XPath query containment. SIGMOD Record, 33(1):101–109, 2004.

[152] M. Sebag and C. Rouveirol. Any-time relational reasoning: Resource-bounded
induction and deduction through stochastic matching. Machine Learning, 38(1-
2):41–62, 2000.

[153] R. Seljée. A new method for integrity constraint checking in deductive database.
Data & Knowledge Engineering, 15(1):63–102, 1995.

[154] R. Seljée. A Fact Integrity Constraint Checking System for the Validation of Se-
mantic Integrity Constraints after Updating Consistent Deductive Databases. PhD
thesis, Tilburg University, 1997.

135

[155] R. Seljée and H. C. M. de Swart. Three types of redundancy in integrity checking:
An optimal solution. Data & Knowledge Engineering, 30(2):135–151, 1999.

[156] P. Seshadri, J. M. Hellerstein, H. Pirahesh, T. Y. C. Leung, R. Ramakrishnan,
D. Srivastava, P. J. Stuckey, and S. Sudarshan. Cost-based optimization for magic:
Algebra and implementation. In H. V. Jagadish and I. S. Mumick, editors, Proceed-
ings of the 1996 ACM SIGMOD International Conference on Management of Data,
Montreal, Quebec, Canada, June 4-6, 1996., pages 435–446. ACM Press, 1996.

[157] J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F.
Naughton. Relational databases for querying XML documents: Limitations and
opportunities. In M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik,
and M. L. Brodie, editors, VLDB’99, Proceedings of 25th International Conference
on Very Large Data Bases, September 7-10, 1999, Edinburgh, Scotland, UK, pages
302–314. Morgan Kaufmann, 1999.

[158] O. Shmueli. Decidability and expressiveness aspects of logic queries. In Proceedings
of the sixth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database
systems, pages 237–249. ACM Press, 1987.

[159] D. Suciu. Query Decomposition and View Maintenance for Query Languages for
Unstructured Data. In T. M. Vijayaraman, A. P. Buchmann, C. Mohan, and N. L.
Sarda, editors, VLDB’96, Proceedings of 22th International Conference on Very
Large Data Bases, September 3-6, 1996, Mumbai (Bombay), India, pages 227–238.
Morgan Kaufmann, 1996.

[160] G. Sur, J. Hammer, and J. Siméon. UpdateX - An XQuery-Based Language for
Processing Updates in XML. In PLAN-X 04, pages 40–53, 2004.

[161] I. Tatarinov, Z. G. Ives, A. Y. Halevy, and D. S. Weld. Updating XML. In W. G.
Aref, editor, ACM SIGMOD Conference 2001: Santa Barbara, CA, USA, 2001.

[162] R. W. Topor. Domain-independent formulas and databases. Theoretical Computer
Science, 52:281–306, 1987.

[163] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume I & II.
Computer Science Press, 1988/89.

[164] J. D. Ullman. Information integration using logical views. Theoretical Computer
Science, 239(2):189–210, 2000.

[165] A. van Gelder, K. Ross, and J. S. Schlipf. Unfounded sets and well-founded se-
mantics for general logic programs. In Proceedings of the ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS 88), pages 221–230.
ACM Press, 1988.

[166] G. von Bültzingsloewen. Translating and Optimizing SQL Queries Having Aggre-
gates. In P. M. Stocker, W. Kent, and P. Hammersley, editors, VLDB’87, Proceed-
ings of 13th International Conference on Very Large Data Bases, September 1-4,
1987, Brighton, England, pages 235–243. Morgan Kaufmann, 1987.

136

[167] W3C. XML Schema 1.0. http://www.w3.org/XML/Schema, May 2001.

[168] C. Youn, L. J. Henschen, and J. Han. Classification of recursive formulas in deduc-
tive databases. In H. Boral and P.-Å. Larson, editors, Proceedings of the 1988 ACM
SIGMOD international conference on Management of data, Chicago, Illinois, June
1-3, 1988, pages 320–328. ACM Press, 1988.

[169] C. Zaniolo. Key constraints and monotonic aggregates in deductive databases. In
A. C. Kakas and F. Sadri, editors, Computational Logic: Logic Programming and
Beyond, Essays in Honour of Robert A. Kowalski, Part II, volume 2408 of Lecture
Notes in Artificial Intelligence, pages 109–134. Springer, 2002.

137

138

Index

Symbols
= (equality), 9
≡ (equivalence), 12
∃ (existential quantifier), 8
∀ (universal quantifier), 8
∧ (conjunction), 8
← (left implication), 8
not (default negation), 15
¬ (negation), 8, 15
¬` (logical negation), 15
∨ (disjunction), 8
⇔ (parametric equivalence), 17
|= (semantics, consequence), 12, 15

Ã(XPathLog left implication), 102
6= (non-equality), 9
≷ (greater or less than), 74
¹` (number-of-literals ordering), 50
¹r (resource set ordering), 52
¹w (weakness ordering), 50
≺loc (local ordering), 53
`d (deduction), 40
`R (derivation with size limit), 40
`r (resolution derivation), 40
ÃC (constraint solver reduction), 72
⇒ (rewrite), 38
LA, 70
LH, 61
LS, 30
LR, 78
A (query answer), 16
+ (sum), 70
− (difference), 70
· (multiplication), 70
/ (division), 70
< (less than), 70
≤ (less than or equal), 70
> (greater than), 70

≥ (greater than or equal), 70
⊥ (default aggregate value), 73
◦ (concatenation), 90
→ (functional dependency), 20
³ (multi-valued dependency), 20
↪→ (arc in a graph), 12
99K (path in a graph), 12
−

99K (negative dependency), 12
∅ (empty set), 11
∩ (set intersection), 11
\ (set difference), 11
∪ (set union, schema union), 11
t (union of disjoint sets), 41
] (bag union), 71

Other operators
After, 31
Afterdi, 94
AfterLH

, 63
AfterLS

, 35
AfterLR

, 81
Avg, 70
AvgD, 71
CntD, 71
comp, 14
Cnt, 70
den, 81
den∗, 81
dom, 9
false, 8
gr, 14
TD, 14
Max, 70
Min, 70
Optimize, 29
OptimizeC , 73
OptimizeLH

, 66

139

OptimizeLS
, 41

pred , 10
Simp, 27
SimpC , 74
SimpLR

, 81
SimpLH

, 67
SimpLS

, 41
sk, 55
Sum, 70
SumD, 71
true, 8
UnfoldLS

, 34
UnfoldLH

, 62
UnfoldLR

, 78
vars, 38

Abbreviations
2PL (two-phase locking), 87
CWA (closed world assumption), 13
CWP (conditional weakest precondition),

26
FD (functional dependency), 20
GaV (global-as-view), 93
II (inconsistency indicator), 113
LaV (local-as-view), 93
mgu (most general unifier), 9
MVD (multi-valued dependency), 20
NaF (negation as finite failure), 13
NEE (negated existential expression), 62
NNF (negation normal form), 55
OLR (ordered linear recursion), 79
PNF (prenex normal form), 55
QC (query containment), 18
RII (revised inconsistency indicator), 114
SQL (structured query language), 21
WP (weakest precondition), 26

absorption, 99
aggregate term, 70
aggregate variable, 70
allowedness, 10
arithmetic constraint, 70
arithmetic expression, 70
arithmetic formula, 70
arity, 8
assignment mapping, 70

atom, 9
negated atom, 9

attribute, 16

binding-order, 9

Clark’s completion, 14
free equality axioms, 14

clause, 9
body, 10
empty clause, 9
head, 10
Horn clause, 9
standardized apart, 10

closed world assumption, 13
conditional equivalence, 29
conditional expression, 72
conditional weakest precondition, 26
consistency, 19
constant, 8
constraint theory, 11

database, 11
based on, 11
consistent database, 19
disjunctive database, 100
element, 88
extensional database, 11
global database, 93
hierarchical database, 13
intensional database, 11
language, 11
positive database, 13
resource, 88
revertible database, 99
schema, 11

compatibility, 11
disjointness, 11

semantics, 12
semi-positive database, 13
state, 11
stratified database, 13
updated database, 17

datalog, 7
typed datalog, 21

datalog
¬, 21

default negation, 15

140

denial, 10
dependency graph, 12

starred dependency graph, 30
disjunctive predicate definition, 16
domain independence, 10

edge-labeled graph, 101
effectiveness test, 81
equality elimination rule, 63
exit rule, 79
expansion, 40
extended denial, 62

level, 63
standardized extended denial, 63

extension, 16

fact, 10
formula, 8

closed formula, 8
defining formula, 16
ground formula, 9
well-formed formula, 8

free equality axioms, 14

general literal, 62
global variable, 70
global-as-view, 93
global-centric, 93

Herbrand base, 11
Herbrand interpretation, 11
Herbrand universe, 11

immediate consequence operator, 14
inconsistency indicator, 111
integrity, 19
integrity constraint, 10, 18

aggregate constraint, 21
column check constraint, 21
consistency, 19
deontic constraint, 19
domain constraint, 20
foreign key constraint, 21
functional dependency, 20
hard constraint, 19
integrity, 19
inter-relation constraint, 20

intra-relation constraint, 20
key dependency, 20
multi-valued dependency, 20
pure consistency approach, 19
pure entailment approach, 19
referential constraint, 20
satisfaction by consistency, 19
satisfaction by entailment, 19
satisfiability, 19
semantic constraint, 21
soft constraint, 19
strong constraint, 19
structural constraint, 21
table check constraint, 21
transitional constraint, 19
tuple constraint, 20

integrity control, 22
deferred semantics, 22
immediate semantics, 22
post-test, 22, 44–46
pre-test, 22, 44–46
prevention, 23
simplification, 23, 26, 28

interpretation, 11

key formula, 70

level, 63
literal, 9
local variable, 70
local-as-view, 93
locking, 87

exclusive lock, 93
index lock, 93
predicate lock, 93
shared lock, 93
timestamp ordering, 87
two-phase locking, 87
update lock, 93

logical connective, 8
logical consequence, 12
logical negation, 15

mapping
complete mapping, 94
exact mapping, 94
GaV-mapping, 94

141

LaV-view, 96
safe LaV-mapping, 97
safe LaV-view, 96
sound mapping, 94

mediator, 93
model

Herbrand model, 12
intended model, 12
minimal model, 12
perfect model, 15
stable model, 15
standard model, 14, 15
supported model, 15
well-founded model, 15

most general unifier, 9

negated existential expression, 62
level, 63

negation, 15
default negation, 15
logical negation, 15

negation as finite failure, 13
negation normal form, 55
non-equality elimination rule, 63

operation, 94
optimization, 29

ideal optimization function, 29
ideal optimization procedure, 29
optimization function, 29
optimization procedure, 29

ordering, 27
checking space, 53
enumerative ordering, 27
global minimum, 53
local minimum, 53
locally below, 53

paraconsistency, 23, 100
parameter, 9

parameter substitution, 17
parametric expression, 9
parametric instance, 17

predicate, 8
affected predicate, 17
built-in predicate, 9
database predicate, 9

extension, 16
extensional predicate, 9
intensional predicate, 9
mutually recursive predicate, 13
recursive predicate, 13

prenex normal form, 55

quantifier, 8
query, 16

answer, 16, 18
chain queries, 78
conjunctive query, 70
consistent answer, 23
containment, 18, 46–49

query folding, 100

range bound, 10
range restriction, 10
recursion, 13

bilinear recursion, 13, 78
counting, 78
left-linear recursion, 79
linear recursion, 13
magic sets, 78
multi-linear recursion, 8
mutual recursion, 78
mutually recursive predicate, 13
naive evaluation, 78
ordered linear recursion, 79
piecewise linear programs, 78
recursive predicate, 13
recursive rule, 79
right-linear recursion, 79

reduction, 37
for extended denials, 66

relational algebra, 21
relational calculus, 21
relative key, 109
relevant set, 84
renaming, 9
repair, 23
residue, 84
resolution

binary resolvent, 38
deduction, 40
derivation, 40

142

factor, 38
parent clause, 38
reductio ad absurdum, 55
refutation, 40
refutation completeness, 54
resolved upon, 38
resolvent, 38

resource set, 50
minimal uncovered set, 50
uncovered set, 50

revised inconsistency indicator, 114
rule, 10

safeness, 10
schedule, 88

conflict equivalence, 88
conflict serializability, 88
conflicting operations, 88
interleaved schedule, 88
legal execution, 90, 91
serial schedule, 88

schema
conditional equivalence, 29

simplification, 28
ideal simplification, 28
ideal simplification function, 28
ideal simplification procedure, 28
simplification function, 27
simplification procedure, 28

skolemization, 55
soft consequence, 85
source-centric, 93
starred dependency graph, 30
stratification, 15
stratum, 14
strongly structured domain, 58
substitution, 9
subsumption, 37

C-subsumption, 72
extended subsumption, 65
partial subsumption, 59, 84
strict subsumption, 37
subsumption theorem, 55

term, 8
equality, 9

non-equality, 9
sequence of terms, 8

transaction, 88
legal execution, 90, 91
locked transaction, 91
simplified locked transaction, 91
simplified read-write transaction, 90
simplified write transaction, 89
write transaction, 89

tuple, 16

unfolding, 34
unifier, 9
update, 17

affected predicate, 17
database update, 17
idempotent update, 44
predicate update, 17
revertible database, 99

variable, 8
bound variable, 8
distinguished variable, 16
free variable, 8
non-distinguished variable, 16
scope, 8

variant, 9
view, 16

weakest precondition, 26
weakly structured domain, 58
weakness, 50

XML, 100
XPath, 101
XPath-Logic, 101
XPathLog, 101

denial, 102
reference expression, 102

XQuery, 101

143

	Abstract
	Acknowledgements
	Dansk resum´
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Bibliography
	Index

