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Topology of helical �uid �ow

MORTEN ANDERSEN1, MORTEN BRØNS1†

1Department of Applied Mathematics and Computer Science and Fluid·DTU, Technical University of

Denmark, Building 303B, DK-2800 Kongens Lyngby, Denmark

(Received To be entered by editorial o�ce)

Considering a coordinate-free formulation of helical symmetry rather than more tradi-

tional de�nitions based on coordinates, we discuss basic properties of helical vector �elds

and compare results from the literature obtained with other approaches. In particular, we

discuss the role of the stream function for the topology of the streamline pattern in incom-

pressible �ows. On this basis, we perform a comprehensive study of the topology of the

�ow �eld generated by a helical vortex �lament in an ideal �uid. The classical expression

for the streamfunction obtained by Hardin (Phys. Fluids 25, 1982, pp. 1949-1952) contains

an in�nite sum of modi�ed Bessel functions. Using the approach by Okulov (Russ. J. Eng.

Thermophys. 5, 1995, 63-75) we obtain a closed-form approximation which is considerably

easier to analyse. Critical points of the stream function can be found from the zeroes of a

single real function of one variable, and we show that three di�erent �ow topologies can

occur, depending on a single dimensionless parameter. Including the self-induced veloc-

ity on the vortex �lament by the localised induction approximation the stream function

is slightly modi�ed and an extra parameter is introduced. In this setting two new �ow

† Email address for correspondence: mobr@dtu.dk
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topologies arise, but not more than two critical points occur for any combination of the

parameters.

Key Words: Helical �ow, �ow topology, vortex �laments, asymptotic expansions.

1 Introduction

Helical �ows (�ows with helical symmetry) arise behind propellers and wind turbines

[19, 26] and helical vortices are important for helicopter rotor performance [18, 36, 30].

Helical pipe �ow has a general engineering interest [11, 24, 21, 38, 17] and has also been

studied as a model for a blood vessel with non-vanishing curvature and torsion [39, 40].

Helical symmetry combines translational and rotational symmetries and have these as

limiting cases. In general, however, �ows with helical symmetry are more complicated

than what can occur in each of these cases separately. Often helical symmetry is described

from a certain coordinate relation [20, 39, 16, 35, 37, 9]. In contrast to this, we will

use a coordinate-free approach from which the basic properties of �elds with helical

symmetry can be obtained in a simple and transparent way. This approach was �rst used

by Ettinger & Titi [15] to investigate global uniqueness and existence of solutions for

inviscid, helical �ow. Using the coordinate free approach we give a short proof that the

velocity �eld generated by a helical vortex �lament is helical and we show consistency to

helical formulations that rely on coordinates.

We then focus on the topological structure of helical �ows, and, in particular, bifur-

cations in the streamline patterns. A topological approach has been used to characterize
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two-dimensional �ows [5, 6, 13] and axisymmetric �ows [8, 7]. For an incompressible he-

lical �ow a stream function can be de�ned, and we discuss to which extent the topology

of the streamlines can be inferred from this. As a speci�c case, we consider the �ow

induced by a helical vortex �lament. At a given helix, the vorticity is tangent to the

helix and elsewhere the �ow is potential. Hardin [19] found an expression for the stream

function in terms of in�nite series of products of modi�ed Bessel functions. Okulov [28]

and Fukumoto & Okulov [16] have obtained an e�cient closed form approximation to

such series and we use this to obtain a topological classi�cation of the �ow with the pitch

of the helix as a bifurcation parameter.

The �ow induced by a vortex �lament impacts the location of the vortex �lament

itself. This can be taken into account using the localised induction approximation (LIA).

When LIA is used [10, 33, 34] a helical �lament has the interesting property that the

self-induced motion does not spoil the helical shape. However, the �lament translates and

rotates as shown by e.g. Batchelor [4]. LIA results in a minor modi�cation of the stream

function discussed above where the speed of the helix appears as an extra parameter

which was investigated by Mezic et al. [27]. We construct a closed form approximation

and make a topological analysis of the �ow �eld in this case as well.

This article is organised as follows. In �2 the notions of helical vector �elds and helical

scalar functions are introduced as well as the helical vortex �lament. Helical coordinates

are then described. The stream function and the geometric implications of its topology

are discussed. In �3 the stream function calculated by Hardin, ψH , is introduced. We �nd

a closed form approximation of the stream function, ψH,c, and analyse the topology of
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the induced �ow. The velocity �eld generated by a translating and rotating helical vortex

�lament is approximated and analysed in �4. In �5 conclusions are drawn.

2 Helical vector �elds and scalar functions

Let e3 be a unit vector in R3 and let Rρ denote the counter-clockwise rotation by the

angle ρ around e3. For a �xed d ∈ R we de�ne a family of helical transformations with

respect to e3 by

Sρx ≡ Rρx+ ρde3 . (2.1)

For a �xed x, the curve ρ → Sρx is a helix with pitch 2πd. In a right-handed cartesian

coordinate system e1, e2, e3, which we will use from now on, we have

Rρx =



cos(ρ) − sin(ρ) 0

sin(ρ) cos(ρ) 0

0 0 1


x . (2.2)

A helical transformation is distance preserving. For a �xed pitch, 2πd, R3 may be �lled

by disjoint helices. All results in the rest of the article rely on the assumption that the

pitch is arbitrary but �xed once chosen. Also the axis of rotation is always the z -axis.

Following Ettinger & Titi [15] we make two basic de�nitions

De�nition 2.1 A scalar function f : R3 7→ R is called helical if

f(Sρx) = f(x) , ∀ ρ ∈ R , ∀x ∈ R3 . (2.3)

Thus, the value of a helical scalar function is constant along any helix.
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De�nition 2.2 The vector �eld v : R3 7→ R3 is called helical if

v(Sρx) = Rρv(x) , ∀ ρ ∈ R , ∀x ∈ R3 . (2.4)

Both helical functions and helical vector �elds are completely determined by their values

in the xy-plane: If x = (x, y, z) and ρ′ = −z/d, the point Sρ′(x) lies in the xy-plane and

we �nd from (2.3) and (2.4)

f(x) = f (Sρ′x) , v(x) = R−ρ′v (Sρ′x) . (2.5)

2.1 Properties of helical scalar functions and helical vector �elds

In the theorem below we collect a number of basic properties ful�lled by helical functions

and vector �elds. We omit the proofs, as the results follow from simple manipulations

with de�nition 2.1 and de�nition 2.2.

Theorem 1 (1) If f is a nonzero helical scalar function then 1/f is a helical scalar

function.

(2) The product of helical scalar functions is a helical scalar function.

(3) A linear combination of helical scalar functions is a helical scalar function.

(4) For i ∈ {1, ..., n} let fi(x) be a helical scalar function and vi(x) be a helical vector

�eld. Then w(x) =
∑n
i=1 fi(x)vi(x) is a helical vector �eld.

(5) The dot product of helical vector �elds is a helical scalar function.

(6) Let u(x) =
∑3
i=1 fj(x)vj(x) where the vj(x) are helical vector �elds constituting
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a basis for R3. Then u(x) is a helical vector �eld if and only if the fj(x) are helical

scalar functions.

(7) The cross product of two helical vector �elds is a helical vector �eld.

(8) The curl of a helical vector �eld is a helical vector �eld.

(9) The gradient of a helical scalar function is a helical vector �eld.

Property (6) shows a vector �eld u is helical if and only if the coordinates of u in any

helical basis are helical scalar functions. Examples of helical vector �elds are er, eθ, ez,

and the normalised tangent to helices t =
(

1 + r2

d2

)−1/2 (
ez + r

deθ
)
whereas e1 and e2

are not helical.

2.2 The helical vortex �lament

To illustrate the use of the coordinate free description we turn to a speci�c case � the

�ow induced by a helical vortex �lament. In an inviscid �uid a helical �lament is placed

with vorticity pointing along the tangent of the helix. The vorticity is zero except at the

�lament. Assuming the velocity goes to zero at in�nite distance the velocity �eld u can

be calculated from the Biot-Savart law. Using the coordinate free form we give a simple

proof that the velocity �eld generated by a number of helical vortex �laments is helical.

The vector potential A satis�es the relation

u = ∇×A . (2.6)
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For any vortex �lament c in an inviscid �uid A can be found from

A =
Γ

4π

∫
c

1

||∆r||
dl, (2.7)

see e.g. [3] where dl is the tangent to the �lament and ∆r is the distance from x to a

point on the �lament which is parametrised by l. A helical �lament can be parametrised

as Sl(y) for a �xed y and since dl = t(Sly)dl = Rlt(y)dl we have

A(x) =
Γ

4π

∫ ∞
−∞

1

||x− Sly||
t (Sly) dl =

Γ

4π

∫ ∞
−∞

1

||x− Sly||
Rlt (y) dl . (2.8)

Lemma 1 The vector potential A given by equation (2.8) is helical.

Proof The proof is by direct use of de�nition 2.2. Fix any ρ ∈ R:

RρA(x) =
Γ

4π
Rρ

∫ ∞
−∞

1

||x− Sly||
Rlt (y) dl =

Γ

4π

∫ ∞
−∞

1

||x− Sly||
Rρ+lt (y) dl . (2.9)

This is now compared to:

A(Sρx) =
Γ

4π

∫ ∞
−∞

1

||Sρx− Sly||
Rlt (y) dl . (2.10)

Changing the integration variable l = ρ+ s in equation (2.10) yields

A(Sρx) =
Γ

4π

∫ ∞
−∞

1

||Sρx− Sρ+sy||
Rρ+st (y) ds . (2.11)

Since Sρ+sy = Sρ (Ssy) we get using that a helical transformation conserves distance i.e.

|y − x| = |Sρy − Sρx|:

A(Sρx) =
Γ

4π

∫ ∞
−∞

1

||x− Ssy||
Rρ+st (y) ds , (2.12)

which is identical to equation (2.9).
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The argument generalises to multiple helical vortex �laments with the same pitch since

equation (2.7) is then a sum of helical terms. Furthermore, since the curl of a helical

vector �eld is helical by property (8) of theorem 1 it follows that u in equation (2.6) is

helical.

2.3 Helical coordinates

Consider cylindrical coordinates (r, θ, z) and de�ne the corresponding helical coordinates

ξ = (ξ, η, ζ) through the following relations:

ξ = r (2.13 a)

η = θ − 1

d
z (2.13 b)

ζ =
1

d
z . (2.13 c)

Since cylindrical coordinates are not well de�ned on the z-axis neither are helical co-

ordinates. Helical coordinates are convenient since the radius ξ and the `helical angle' η

are constant on a helix.

Moving on a helix corresponds to changing only ζ. A helix is a straight line parallel to

the ζ axis in the (ξ, η, ζ) coordinate system. Since a helical scalar function is invariant

along a helix, this means a scalar function is helical if and only if it is independent of ζ.

Hence we have

Lemma 2 A scalar function f : R3 7→ R is helical if and only if ∂f(ξ,η,ζ)
∂ζ = 0.
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A vector �eld is helical if and only if the coordinates in a helical basis are helical scalar

functions according to property (6):

Lemma 3 A vector �eld is helical if and only if the coordinates in a helical basis di�er-

entiated with respect to ζ vanishes.

Since er, eθ and ez constitute a helical basis a vector �eld expressed in cylindrical

coordinates (ur, uθ, uz), is helical if and only if ∂
∂ζur = ∂

∂ζuθ = ∂
∂ζuz = 0.

Finally we have

Lemma 4 If f is a smooth helical scalar function then ∂i∂j∂k

∂ξi∂ηj∂ζk
f is a helical scalar

function.

Lemma 4 is proved using lemma 2 and that taking derivatives commutes.

Fixing two of three helical coordinates and varying the third, a curve in R3 is generated.

The tangent to such a curve, normalised to unity, is the corresponding unit vector to the

coordinate direction. We �nd

eξ = er , eη = eθ , eζ = t . (2.14)

eξ, eη, eζ are helical vector �elds and they constitute a basis for R3 except at the z-

axis. Notice that for points in the xy-plane ζ = 0 and (ξ, η) = (r, θ) are standard polar

coordinates.
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2.4 Stream function

Assuming the velocity �eld is incompressible, ∇ · u = 0, a stream function can be con-

structed. In cylindrical coordinates the incompressibility condition is

1

r

∂

∂r
(rur) +

1

r

∂uθ
∂θ

+
∂uz
∂z

= 0 . (2.15)

The velocity �eld in cylindrical coordinates can be represented by the velocity �eld in

helical coordinates

ur = uξ , uθ = uη +
ξ√

d2 + ξ2
uζ , uz =

d√
d2 + ξ2

uζ , (2.16)

and inserted in equation (2.15)

1

ξ

∂

∂ξ
(ξuξ) +

1

ξ

∂

∂θ

(
uη +

ξ√
d2 + ξ2

uζ

)
+

∂

∂z

(
d√

d2 + ξ2
uζ

)
= 0 . (2.17)

From equation (2.13) the chain rule yields

∂

∂r
=

∂

∂ξ
,

∂

∂θ
=

∂

∂η
,

∂

∂z
=

1

d

(
− ∂

∂η
+

∂

∂ζ

)
, (2.18)

from which we can transform equation (2.17)

1

ξ

(
∂

∂ξ
(ξuξ) +

∂

∂η
uη

)
+

1√
d2 + ξ2

∂

∂ζ
uζ = 0 . (2.19)

For a helical vector �eld the last term vanishes by lemma 3. Then equation (2.19) yields

∂ (ξuξ)

∂ξ
+
∂uη
∂η

= 0 , (2.20)

from which it follows that a stream function ψ : R2 → R exists such that

∂ψ

∂η
= ξuξ , −∂ψ

∂ξ
= uη . (2.21)

It follows that uξeξ + uηeη is parallel to the tangent of the level curves of the stream

function.
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A helical, incompressible velocity �eld thus only depends on two single valued functions

ψ(ξ, η) and uζ(ξ, η) and can always be written

u =
1

ξ

∂ψ(ξ, η)

∂η
er −

∂ψ(ξ, η)

∂ξ
eθ + uζ(ξ, η)t . (2.22)

If the velocity is known in the xy-plane it is easy to calculate the entire velocity �eld

from equation (2.5).

As d → ∞, t → ez and η → θ, and the �ow will have translational symmetry along

the e3-axis. This agrees with equation (2.22) where we recover the standard stream

function formulation in cylindrical coordinates for �ows with translational symmetry. If

further uζ = uz = 0, the �ow is two-dimensional. It is common to use a stream function

depending on ξ and η spanned in the plane normal to the tangent vector [16, 26, 2, 39,

23, 12]. References are often to the work of Landman [22] and Dritschel [14] where a

helical, incompressible velocity �eld is decomposed in the form

u = ∇f1 ×B + f2B , (2.23)

where B is the tangent to the helices not normalised to unity but to be a Beltrami vector

B =

(
1 +

r2

d2

)−1 (
ez +

r

d
eθ

)
. (2.24)

Landman [22] requires f1 and f2 are helical scalar functions i.e. depend on ξ, η (and

time). Dritschel [14] does not explicitly require f1 and f2 being helical. Here f1 plays

the role of the stream function. From theorem 1 it is clear that u in equation (2.23) is

helical for helical f1 and f2. However, we have found no proof in literature why all helical

velocity �eld can be written in the form of equation (2.23). Actually, Childress et al.
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[9] de�ne a helical velocity �eld to be one that obeys equation (2.23). This de�nition is

equivalent to our de�nition 2.2:

Lemma 5 An incompressible vector �eld, u, is helical if and only if there exists helical

scalar functions f1 and f2 such that equation (2.23) holds.

Proof The proof relies on that any helical, incompressible vector �eld can be written in

the form of equation (2.22). First assume f1 and f2 are helical scalar functions. Using

the gradient for cylindrical coordinates and equation (2.18), equation (2.14) and

t =
1√

1 + r2

d2

(
ez +

r

d
eθ

)
(2.25)

then equation (2.23) can be written as

u =
1

ξ

∂f1

∂η
er −

∂f1

∂ξ
eη +

1√
1 + ξ2

d2

(
ξ

d

∂f1

∂ξ
+ f2

)
t . (2.26)

Choosing

ψ = f1 , uζ =
1√

1 + ξ2

d2

(
ξ

d

∂f1

∂ξ
+ f2

)
, (2.27)

equation (2.22) is recovered. To prove the converse statement assume ψ and uζ are

helical scalar functions. Invert equation (2.27) to de�ne f1 and f2 which are helical scalar

functions by lemma 4 and theorem 1. Then we get equation (2.26) which is equivalent to

equation (2.23).
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2.5 Interpretation of level curves of ψ

Figure 1(a) shows an example of a contour plot of ψ in the xy plane. Three critical

points are shown, two elliptic and one hyperbolic. A critical point of ψ is characterised

by ∂
∂ξψ(ξ, η) = ∂

∂ηψ(ξ, η) = 0 i.e. uξ = uη = 0 so in the three dimensional �ow only uζ

may be nonzero. The velocity �eld at some height z = z1 is merely a rotation around the

z -axis of the velocity �eld at z = 0. It is appreciable that the stream function lives in the

xy-plane since we just have to rotate this around the z - axis as well. This is illustrated

in �gure 1.

A critical point of ψ in a plane with constant z-value corresponds to �ow tangential

to a helix in the three dimensional �ow. Since a helical �ow does not depend on ζ the

�ow has constant magnitude along any helix including this special 'critical point helix'.

This is illustrated for the middle critical point in �gure 1. The tangent to a contour of ψ

gives two velocity coordinates according to the properties of the stream function. In two

dimensions (�gure 1(a)) a closed curve of ψ separates the �ow. The same is true in three

dimensions corresponding to a helix tube that separates the �ow. This is shown in �gure

1 for the closed curve surrounding the middle critical point in two dimensions. Thus, a

critical point of ψ corresponds to a stream line in the three dimensional �ow and a level

curve of ψ corresponds to a stream surface of the three dimensional �ow.

Through each point in the xy - plane passes exactly one helix. On each of these helices

uζ is constant. However, uζ may change for di�erent points in the xy - plane. The helical

tube in �gure 1 thus may have di�erent uζ for di�erent helices. The value of uζ can not

be deduced from the stream function in general.



14 M. Andersen and M. Brøns

(a) (b)

x

y

−10 −5 0 5 10

−5

0

5

−10
0

10

−10

0

10
0

5

10

xy

z
Figure 1. (a) Example of contourplot of the stream function. The tangent to the contour curves

of ψ gives two of the velocity coordinates. (b) The corresponding three dimensional picture. A

critical point in (a) corresponds to a helix in (b) with a constant velocity vector parallel to the

tangent of the helix. A closed curve in (a) corresponds to a helix tube in (b) with no cross �ow.

There is an important di�erence between the interpretation of level curves of the

stream function in helical symmetry and in translation symmetry relating to the vorticity

ω = ∇× u. From Kelvin's circulation theorem we have

Γ =

∫
C

u · dl =

∫
S

ω · nds , (2.28)

with C being a closed curve with tangent dl and surface S with normal n. For a smooth

vorticity distribution and a small surface with area S this yields for the the normal

component of the vorticity ω⊥

Γ ≈ ω⊥S . (2.29)

Therefore, nonzero Γ means nonzero vorticity. Now, let C be a small closed level curve of

ψ encircling a critical point. Such curves can be found in the case shown in �gure 1(a).

First imagine this is a translational symmetric case which implies the third basis vector

is e3. Then the value of u3 has no impact on u · dl. The xy - component of the �ow
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is parallel to the tangent to the level curve of ψ. This means u · dl is nonzero and has

constant sign for any point on the curve. Therefore Γ =
∫
C
u ·dl is nonzero. Thus, in the

translation symmetric case the vorticity is non-zero at an elliptic critical point.

In a helical �ow using er, eθ, t as a basis the situation is di�erent since the third basis

vector t is not orthogonal to the xy - plane. Now u · dl also depends on uζ . Therefore, a

closed level curve of ψ may have zero circulation and the vorticity at an elliptic critical

point of ψ may be zero.

The character of a critical point can be determined by the second derivative test

H =
1

ξ2

(
∂2ψ

∂ξ2

∂2ψ

∂η2
−
(
∂2ψ

∂ξ∂η

)2
)
, (2.30)

where the right side is evaluated at the critical point. If H > 0 the critical point is elliptic.

If H < 0 the critical point is hyperbolic.

3 The velocity �eld generated by a helical vortex �lament

Hardin [19] found the stream function for the �ow generated by the vortex �lament of

strength Γ, radius a and pitch d as an in�nite series involving modi�ed Bessel functions,

ψH =
Γ

2π


ξ2

2d2

− ln(ξ) + ln(a) + a2

2d2

− Γaξ

πd2

∞∑
m=1


K ′m

(
ma
d

)
I ′m

(
m ξ
d

)
K ′m

(
m ξ
d

)
I ′m
(
ma
d

)
 cos(mη) .

(3.1)

Here the top line is valid for ξ < a (the inner solution) and the lower line is valid for

ξ > a (the outer solution). We have included a constant ln(a) + a2

2d2 not in the original

expression by Hardin to ensure ψH is continuous at the helix cylinder ξ = a.
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We introduce scaled variables

ξ̃ =
ξ

d
, λ =

a

d
, (3.2)

such that the helix cylinder is at ξ̃ = λ, and de�ne ψ̃H(ξ̃, η) = π
ΓψH(dξ̃, η):

ψ̃H(ξ̃, η) =
1

2


ξ̃2

2

− ln(ξ̃) + ln(λ) + λ2

2

− ξ̃λ
∞∑
m=1


K ′m (mλ) I ′m

(
mξ̃
)

K ′m

(
mξ̃
)
I ′m (mλ)

 cos(mη) ,

(3.3)

We now skip the tilde for convenience (whenever λ is appearing we are using scaled

variables). In the rest of the paper we focus on the topology of the �ow induced by

helical vortex �laments and proceed to state a few basic facts about the critical points

of ψH which can be obtained from equation (3.3).

It is immediately clear that η = 0 and η = π solve ∂
∂ηψH = 0. Whether there are

further solutions is not clear, but a numerical investigation by Mezic et al. [27] �nds no

critical points at other values of η.

The modi�ed Bessel functions are solutions to the equation

x2y′′ + xy′ − (x2 +m2)y = 0 . (3.4)

Using this and the well-known properties Km(x) > 0, Im(x) > 0, I ′m(x) > 0, K ′m(x) < 0

for x > 0 one �nds that ∂
∂ξψ(ξ, 0) has constant sign in the inner and the outer domain.

Thus, there are no critical points at η = 0, but they may occur at η = π. The type of a

critical point is determined by the Hessian (2.30). It is easily seen that

∂2

∂η∂ξ
ψH(ξ,π) = 0 , (3.5)
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while the signs of ∂2

∂ξ2ψH(ξ,π) and ∂2

∂η2ψH(ξ,π) are not obvious.

3.1 Closed form approximation of ψH

The in�nite sum appearing in ψH makes analysis hard, but there are also numerical

issues due to the asymptotic behaviour of the Bessel functions. While I ′m goes to in�nity

for large arguments, K ′m goes to zero. Hence products of the form I ′m(mx)K ′m(my) may

be impossible to evaluate numerically from each of the factors. Mezic et al. [27] use a

�nite number of terms to represent the in�nite series without addressing this issue while

Ijzermans et al. [20] use an asymptotic expansion which is only brie�y discussed. This

asymptotic expansion may be related to the approach by Okulov [28] and Fukumoto &

Okulov [16] we discuss now. In this approach approximations for the modi�ed Bessel

functions for large arguments are used, see Abramowitz & Stegun [1, p. 378] and Olver

[31, 32] for a derivation. The resulting closed-form approximation to ψH is most useful,

but unfortunately there are some misprints. In the following we rederive the closed-form

approximation for equation (3.3).

De�ne

f(x) =
√

1 + x2 + ln

(
x

1 +
√

1 + x2

)
. (3.6)

For later use we notice that f is strictly increasing for positive x. Then for large m

I ′m(mx) ≈ 1√
2πm

(
1 + x2

) 1
4

x
emf(x) (3.7 a)

K ′m(my) ≈ −
√

π

2m

(
1 + y2

) 1
4

y
e−mf(y) . (3.7 b)
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With these we obtain (Re denotes real part)

∞∑
m=1

K ′m (my) I ′m (mx) cos(mη) = Re

( ∞∑
m=1

K ′m (my) I ′m (mx) eimη

)

≈ −Re

 ∞∑
m=1

√
π

2m

(
1 + y2

) 1
4

y
e−mf(y) 1√

2πm

(
1 + x2

) 1
4

x
emf(x)eimη


= −

((
1 + x2

) (
1 + y2

)) 1
4

2xy
Re

( ∞∑
m=1

1

m
e−m(f(y)−f(x)−iη)

)
. (3.8)

This can be further simpli�ed by noting that the well-known formula

∞∑
m=1

(−1)
m+1 x

m

m
= ln(1 + x) for |x| < 1 (3.9)

yields

∞∑
m=1

1

m
e−m(α−iβ) = − ln

(
1− e−α+iβ

)
for α > 0. (3.10)

Note that Okulov [29] and Fukumoto & Okulov [16] have a sign error in this expression.

Consider now equation (3.8) with y > x. Then f(y) > f(x) so equation (3.10) can be

used to get the approximation

∞∑
m=1

K ′m (my) I ′m (mx) cos(mη) ≈
((

1 + x2
) (

1 + y2
)) 1

4

2xy
Re
(

ln
(

1− ef(x)−f(y)+iη
))

.

(3.11)

Denoting

α = α(ξ, η) = f(ξ)− f(λ) (3.12)

we apply equation (3.11) to equation (3.3) to �nally get a closed form approximation

(denoted by subscript c) of Hardin's solution,
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Figure 2. Level curves of the stream function, with the cylinder r = λ = 2 marked as a grey

circle. Critical points of ψH,c are marked with black dots. (a) Level curves of ψH , equation (3.3),

including 300 terms (b) Level curves of ψH,c, equation (3.13).

ψH,c(ξ, η) =
1

2


ξ2

2

− ln(ξ) + ln(λ) + λ2

2

− 1

2

((
1 + λ2

) (
1 + ξ2

)) 1
4 Re

(
ln
(
1− e±α+iη

))
.

(3.13)

The limit of equation (3.13) as ξ tends to λ exists for nonzero η. There only is a problem on

the �lament itself (ξ, η) = (λ, 0) where the velocity �eld diverges similar to the situation

in point vortex dynamics.

An typical example of level curves for ψH and ψH,c is shown in �gure 2. In this example,

and in many other we have tested, a very good agreement between the series and the

closed form is achieved.
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3.2 Topological analysis of the closed form expression

We now analyse the topology of the �ow induced by the closed form expression equation

(3.13). To �nd critical points we compute �rst the partial derivative

∂

∂η
ψH,c(ξ, η) =

1

2

((
1 + λ2

) (
1 + ξ2

)) 1
4 Re

(
ie±α+iη

1− e±α+iη

)
, (3.14)

which is zero only when η = 0,π. These values are also zeroes for the original expression

equation (3.3), but for the closed form it is clear that there are no other solutions. The

other partial derivative is

∂

∂ξ
ψH,c(ξ, η) =

1

2


ξ

− 1
ξ


− 1

2
(1 + λ2)

1
4

(
1

2

ξ

(1 + ξ2)
3
4

Re(ln(1− e±α+iη))∓ (1 + ξ2)
3
4

ξ
Re

(
e±α+iη

1− e±α+iη

))
.

(3.15)

Inserting η = 0, we obtain

∂

∂ξ
ψH,c(ξ, 0) =

1

2


ξ

− 1
ξ


− 1

2
(1 + λ2)

1
4

(
1

2

ξ

(1 + ξ2)
3
4

ln(1− e±α)∓ (1 + ξ2)
3
4

ξ

e±α

1− e±α

)
. (3.16)

Lemma 6 There are no critical points of ψH,c(ξ, 0) o� the �lament.
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Proof We will show that ∂
∂ξψH,c(ξ, 0) has one sign away from the helix cylinder. It is

easy to see that

∂

∂ξ
ψH,c(ξ, 0) > 0 for ξ < λ , (3.17)

since all three terms in equation (3.16) are positive.

To show that ∂
∂ξψH,c(ξ, 0) 6= 0 also for ξ > λ we go back to equation (3.13). We see

that ∂
∂ξψH,c(ξ, 0) < 0 if ∂

∂ξ

(
−
(
1 + ξ2

) 1
4 Re (ln (1− e−α))

)
< 0. From equation (3.10) we

get

−
(
1 + ξ2

) 1
4 Re

(
ln
(
1− e−α

))
=
(
1 + ξ2

) 1
4

∞∑
m=1

1

m
e−mα . (3.18)

Then

∂

∂ξ

(
−
(
1 + ξ2

) 1
4 Re

(
ln
(
1− e−α

)))
=

∞∑
m=1

e−mα

(
1

2m

ξ

(1 + ξ2)
3
4

− (1 + ξ2)
3
4

ξ

)
. (3.19)

It is not di�cult to see that each term in equation (3.19) is negative for ξ > 0 such that

∂

∂ξ
ψH,c(ξ, 0) < 0 for ξ > λ , (3.20)

so combining (3.17) and (3.20) we see that no critical points exist at η = 0.

We now turn to η = π and introduce

F (ξ, λ) ≡ ∂

∂ξ
ψH,c(ξ,π) =

1

2


ξ

− 1
ξ


− 1

2
(1 + λ2)

1
4

(
1

2

ξ

(1 + ξ2)
3
4

ln(1 + e±α)± (1 + ξ2)
3
4

ξ

e±α

1 + e±α

)
, (3.21)
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the zeroes of which represent critical points. To determine the type of a possible critical

point we �nd by direct computation

∂2ψH,c(ξ,π)

∂ξ∂η
=
∂F (ξ, λ)

∂η
= 0 ,

∂2ψH,c(ξ,π)

∂η2
> 0 , for ξ 6= λ . (3.22)

such that the sign of the Hessian (2.30) is solely determined by the sign of
∂2ψH,c(ξ,π)

∂ξ2 =

∂F (ξ,λ)
∂ξ . If it is positive the critical point is a center and if it is negative it is a saddle.

Hence, the function F contains all information about existence and properties of critical

points.

Lemma 7 F (ξ, λ) is negative for �xed λ and ξ small or ξ large.

Proof We consider �rst small ξ. Using L'Hospital's rule on

ξ ln (1 + eα) =
ln
(
1 + ef(ξ)−f(λ)

)
1
ξ

(3.23)

which appears in equation (3.21) we get

lim
ξ→0

ξ ln (1 + eα) = lim
ξ→0
−ξ
√

1 + ξ2
ef(ξ)−f(λ)

1 + ef(ξ)−f(λ)
= 0 . (3.24)

The limits of the rest of the terms in equation (3.21) are easily obtained, yielding

lim
ξ→0

F (ξ, λ) = −1

4

(
1 + λ2

) 1
4 e1−f(λ) < 0 . (3.25)

For large ξ we also have F (λ, ξ) < 0: In the outer region we have, by disregarding a

negative term,

F (ξ, λ) <− 1

2ξ
+

1

2
(1 + λ2)

1
4

(1 + ξ2)
3
4

ξ

e−α

1 + e−α
(3.26)

=
− (eα + 1) +

(
1 + λ2

) 1
4
(
1 + ξ2

) 3
4

2ξ (eα + 1)
. (3.27)
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As ξ > λ it further follows that

F (ξ, λ) <
− (eα + 1) + 1 + ξ2

2ξ (eα + 1)
=
− e

f(ξ)

ξ2 + ef(λ)

2
ξ e
f(λ) (eα + 1)

. (3.28)

Since the denominator in the last fraction in equation (3.28) is positive, we can show

that F < 0 if the numerator is negative. As ef(ξ)/ξ2 →∞ for ξ →∞, we see that this is

indeed the case for ξ su�ciently large and �xed λ.

It follows from lemma 7 that there will in general be an even number (possibly zero)

critical points of ψ at η = π. The innermost will be a centre since ∂F/∂ξ > 0 here, the

next one will be a saddle, and so on.

We now address the existence of critical points in the limits of small and large λ. We

consider �rst the limit of small λ. Then the helix is an almost straight line and therefore

no critical points are expected.

Lemma 8 There are no zeros of F (ξ, λ) for small λ.

Proof First we consider the region ξ < λ and we aim for an upper bound on F (ξ, λ).

The second term in F (ξ, λ) is disregarded

F (ξ, λ) ≤ 1

2
ξ − 1

2

(
1 + λ2

) 1
4
(
1 + ξ2

) 1
4

√
1 + ξ2

ξ
ef(ξ) e−f(λ)

1 + ef(ξ)−f(λ)
. (3.29)

Using 1 + eα < 2, ξ > λ,
(
1 + λ2

) 1
4
(
1 + ξ2

) 1
4 > 1 and

√
1+x2

x ef(x) is increasing for all

positive x and limx→0

√
1+x2

x ef(x) = e
2 so

√
1+ξ2

ξ ef(ξ) > e
2 we get from inequality (3.29)

F (ξ, λ) ≤ 1

2
λ− e1−f(λ)

8
. (3.30)
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Since ef(x) goes to zero for x going to zero then F (ξ, λ) < 0 for ξ < λ and λ small.

For ξ > λ we return to the estimate (3.28). There exists a c > 0 such that the function

ef(ξ)/ξ2 > c for all ξ > 0. Since ef(λ) → 0 for λ→ 0 it follows that F < 0 for λ su�ciently

small.

We now turn to the case of large λ. Then the helix is densely wound and is close to

being a cylindrical vortex sheet.

Lemma 9 There is at least two zeros of F (ξ, λ) for large λ. One zero is located inside

the helical cylinder and corresponds to a center, and one is located outside the helical

cylinder and corresponds to a saddle.

Proof Since F is continuous we can evaluate it at the vortex cylinder using the lower

part of equation (3.21),

F (λ, λ) =− 1

2λ
− λ

4
√

1 + λ2
ln (2) +

1

4

(
1 + λ2

λ

)
, (3.31)

which is positive for large λ. Since F (ξ, λ) is negative for small and large ξ an elliptic

critical point in the inner region and a hyperbolic critical point in the outer region must

exist for large λ.

We now complement our analytical results by a numerical investigation. The main

results are shown in �gure 3. In agreement with the results above, no critical points exist

for small values of λ. However, at λ = 1.265 a saddle-node bifurcation occurs and a centre
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and a saddle are created in the outer region. At λ = 1.313 the elliptic �xed point moves

into the inner region. Increasing λ yields no further bifurcations. While the location of a

critical inside or outside the helix cylinder is not strictly speaking a topological property,

it seems important physically to keep track of this. With this understanding, we conclude

that three di�erent �ow topologies may occur in this �ow.

The streamline patterns have re�ection symmetry around the x-axis. This arises from

the invariance of η → −η in equation (3.13) (and also in the original expression given

by equation (3.3)). This symmetry is due to special properties of the �eld induced by a

helical vortex �lament and is not a general feature of helical �ow �elds.

4 Topological e�ects of self-induced velocity

The self-induced velocity on a vortex �lament has been considered in e.g. [10, 33, 34,

4, 27]. Using the localised induction approximation (LIA) the self induced velocity on

a helix with nonzero core size carrying vorticity is proportional to the binormal of the

helix [27]:

vhel =
κΓ

4π
ln

(
1

ε

)
bhel , (4.1)

where ε is a non-dimensional core radius de�ned by the physical core radius σ and the

curvature κ,

ε = σκ . (4.2)

This means 0 < ε ≤ 1 . Notice that vhel is not de�ned for the core radius being zero.

Equation (4.1) is valid up to order O(1) terms in ε. Introducing

γ =
1

4
ln

(
1

ε

)
, (4.3)
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Figure 3. The three observed �ow topologies of the closed form stream function ψH,c equation

(3.13). The top row shows graphs of F (ξ, λ). The middle row shows isolines of the stream

function ψH,c. Note the di�erent scaling of the axes. The grey circle has radius λ and represents

the �lament cylinder. (a) λ = 1.00. No critical points of the stream function. (b) λ = 1.27. Two

critical points in the outer region. The panel in the third row is a detail near the critical points.

(c) λ = 2.00. The elliptic critical point is now located in the inner region.

the velocity of the helix may be written

vhel = κ
Γ

π
γbhel . (4.4)

Therefore, increasing γ increases the speed of the helix. By equation (4.3) an increase in

γ corresponds to a decrease in ε and thereby improves the accuracy of LIA.

By equation (4.4) the velocity of the vortex �lament has constant components along
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the ez and eθ directions (the component in the er direction is zero). Thus, any point on

the helix is translated in the z-direction with the same speed, and rotated around the

z-axis with same (negative) rotation frequency. Therefore, including �nite core thickness

in this way, the helix remains a helix as time varies. This hinges on b being a helical

vector �eld.

4.1 Topology of velocity �eld generated by constantly rotating and

translating helical vortex �lament

Now we consider an thin helical vortex �lament that translates along the center axis with

constant speed and rotates around the center axis with constant speed. The case emerges

from the sel�nduced velocity on the helix for nonzero core size. However, the assumption

is that the core size only a�ects the velocity of the �lament itself and through that the

entire �ow. The ratio of rotation speed and translation speed is �xed as a consequence

of LIA so the velocity is given by one parameter.

Introducing a non-negative parameter δ by

δ = γ
1√

1 + λ2
, (4.5)

the stream function considered by Mezic et al. [27] (subscript M) can be written

ψM (ξ, η) = ψH (ξ, η)− 1

2
δξ2 . (4.6)
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4.2 Closed form approximation of ψM

Since the same products of modi�ed Bessel functions appear in the expressions of Hardin

and Mezic it is easy to construct a closed form approximation (subscript c) ψM,c from

equation (4.6),

ψM,c = ψH,c −
1

2
δξ2 , (4.7)

with ψH,c is given by equation (3.13). Many of the properties of ψH,c are also valid for

ψM,c and are shown in the same way.

Since
∂ψM,c
∂η =

∂ψH,c
∂η , η = 0 and η = π are the only possible values of η where critical

points can occur. All information about critical points is contained in the function

G(ξ, η, λ, δ) ≡ ∂

∂ξ
ψM,c(ξ, η) =

∂

∂ξ
ψH,c(ξ, η)− δξ , (4.8)

with η = 0,π. The zeroes of G as a function of ξ correspond to critical points, and the

sign of the slope ∂G
∂ξ determines whether it is a center or a saddle.

We summarise the analytical results about the zeroes of G in the following theorem.

We omit the proof.

Theorem 2 (1) There are no zeroes of G when λ is small and δ is �xed for η = 0,π.

(2) There are at least two critical points of G(ξ, 0, δ, λ) for large δ and λ �xed.

(3) Zeroes for G at η = 0 can exist only when δ > 1
2 .

(4) Zeroes for G at η = π can exist only when δ < 1
2 .

(5) There are no zeroes for G in the outer region ξ < λ for η = 0.
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(6) The innermost critical point, if it exists, is elliptic, the next is hyperbolic, and so

on. This holds separately at η = 0,π.

A main di�erence from the case considered in � 3.2 is that critical points can also occur

at η = 0. However, they never exist simultaneously with critical points at η = π. This is

a strict mathematical statement for ψM,c whereas Mezic et al. [27] argue the same holds

for ψM invoking a numerical argument.

We now turn to a numerical investigation of ψM,c. Two new topologies are found. Figure

4(a) shows that for positive δ the hyperbolic critical point may be located in the inner

domain. A critical point is possible for η = 0 as shown in �gure 4(b). Here the elliptic

critical point is still closest to the origin but now the hyperbolic critical point is between

the elliptic critical point and (λ, 0). Only two critical points are observed at a given set

of of parameters and the only bifurcations occurring are saddle-node bifurcations.

The re�ection symmetry around the x - axis is inherited from the invariance of η → −η

in the stream function of Hardin and also the closed form formulation.

The critical point pattern as a function of the parameters is summarised in a bifurcation

diagram, �gure 5. Here the parameter γ =
√

1 + λ2δ is used to facilitate comparison with

the results of Mezic et al. [27] - the results compare very well. Three curves k, l,m split

the parameter space into regions with distinct topologies.

For small δ the topologies observed in the model of Hardin shown in �gure 3 are

recovered. The curves l and m intersect at γ = 0.07 leaving only a very small region

with two critical points in the outer region at η = π. The curve k has a minimum at

γ = 2.15 which is then the threshold for critical points at η = 0 to be present. The



30 M. Andersen and M. Brøns

(a) (b)

0 1 2 3 4
−0.2

−0.1

0

0.1

0.2

ξ
0 0.5 1 1.5 2

−1

−0.5

0

0.5

1

ξ

−5 0 5
−5

0

5

x

y

−2 0 2

−2

−1

0

1

2

x

y

Figure 4. The two topologies of ψM,c not existing for ψH,c. (a) λ = 4, δ = 0.3. The top panel

shows G(ξ,π, 4, 0.3). The bottom panel shows the contour plot of ψM,c. There are two critical

points in the inner region ξ < λ. (b) λ = 2, δ = 2. Top panel shows G(ξ, 0, 2, 2). There are two

critical points in the inner region but here the saddle point is closest to (λ, 0).

curves k and l never cross but have a common asymptote which must be the line δ = 1
2 ,

i.e. γ = 1
2

√
1 + λ2 where no critical points can exist according to Theorem 2. The curve

γ = 1
2

√
1 + λ2 approaches γ = 1

2λ for large λ and this �ts well with the �gure.

Increasing γ improves the accuracy of LIA as discussed in section 4. In �gure 6 the

bifurcation diagram in �gure 5 is superimposed with horizontal lines corresponding to

various values of ε in equation (4.3). Decreasing ε corresponds to increasing the accuracy

of LIA. The velocity �eld generated by the zero thickness helical vortex �lament generates

in�nite speed of the vortex �lament which is unphysical (as well as a zero thickness core).
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l

m

k

Figure 5. Bifurcation diagram for ψM,c. The top full curve k is saddle-node bifurcation of

critical points at η = 0. The curve approaches the γ axis asymptotically as shown in Theorem

2 (1) and (2). The dashed curve l is saddle-node bifurcation of critical points at η = π. The

lower full curve m marks where the hyperbolic critical point at η = π moves from the inner to

the outer region. At γ = 0.07, l and m intersect. Below that value they interchange their role

with crossing l corresponding to the elliptic critical point moving between the inner and outer

region. Between the upper full curve and the dashed curve is the curve (not shown) δ = 1
2
i.e.

γ = 1
2

√
1 + λ2 where no critical points can occur.

However, Hardin's solution is useful for the velocity �eld away from the vortex �lament.

Using LIA the velocity �eld is no longer in�nite on the �lament. By demanding a high

accuracy of LIA the topology with two critical points in the outer domain is not possible.
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Figure 6. The bifurcation diagram from �gure 5 with horizontal lines showing how well LIA

works for the corresponding �lament speed - see section 4. Circles: ε = 10−3, triangles : ε = 10−2,

stars: ε = 10−1, squares : ε = 1. Demanding ε ≤ 10−3 only the part of the bifurcation diagram

above the upper horizontal line is valid. Then the topology with two outer critical points is not

accessible.

5 Conclusions

In theoretical mechanics coordinate-free formulations are generally very useful for high-

lighting fundamental consequences of symmetries. This point of view, however, seems to

have had a quite limited impact on the research in helical �uid �ows. We have extended

the coordinate-free approach by Ettinger & Titi [15] and shown how it clari�es the basic

properties of these �ows.

A main purpose of the present paper was a topological analysis of the streamlines in

�ows induced by helical vortex �laments. Using the closed-form approximation by Okulov

[28] and Fukumoto & Okulov [16] a signi�cant simpli�cation of the stream function was

obtained, making a very complete analytical study of the �ow topology possible. We have

shown that a relatively small set of �ow topologies can occur, even if self-induction of

the �lament is taken into account. Nevertheless, compared to the �ow topology induced



Topology of helical �uid �ow 33

by rectilinear vortex �laments helical �ow is much richer, underlining how complex these

�ows are.

There are obvious extensions of the topological analysis of the present paper, e.g. the

�ow induced by several helical vortex �laments [29, 30] and the �ow in a domain bounded

by a cylinder [20]. Work along these lines is in progress. Also, the topological analysis

is not limited to inviscid �ows. The same approach has previously been used to classify

�ow topologies in vortex breakdown in viscous axisymmetric �ows, using both numerical

computations [8, 7] and experimental data [25]. This could easily be extended to �ows

with helical symmetry.
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