Confluence Modulo Equivalence in Constraint Handling Rules

Christiansen, Henning; Kirkeby, Maja Hanne

Published in:
Logic-Based Program Synthesis and Transformation

DOI:
10.1007/978-3-319-17822-6_3

Publication date:
2015

Document Version
Peer reviewed version

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain.
- You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the work immediately and investigate your claim.
Confluence Modulo Equivalence in Constraint Handling Rules

Henning Christiansen and Maja H. Kirkeby

Research group PLIS: Programming, Logic and Intelligent Systems Department of Communication, Business and Information Technologies, Roskilde University, Roskilde, Denmark
{henning,majaht}@ruc.dk

Abstract. Previous results on confluence for Constraint Handling Rules, CHR, are generalized to take into account user-defined state equivalence relations. This allows a much larger class of programs to enjoy the advantages of confluence, which include various optimization techniques and simplified correctness proofs. A new operational semantics for CHR is introduced that significantly reduces notational overhead and allows to consider confluence for programs with extra-logical and incomplete built-in predicates. Proofs of confluence are demonstrated for programs with redundant data representation, e.g., sets-as-lists, for dynamic programming algorithms with pruning as well as a Union-Find program, which are not covered by previous confluence notions for CHR.

1 Introduction

A rewrite system is confluent if all derivations from a common initial state end in the same final state. Confluence, like termination, is often a desirable property, and proof of confluence is a typical ingredient of a correctness proof. For a programming language based on rewriting such as Constraint Handling Rules, CHR [8,9], it ensures correctness of parallel implementations and application order optimizations.

Previous studies of confluence for CHR programs are based on Newman’s lemma. This lemma concerns confluence defined in terms of alternative derivations ending in the exact same state, which excludes a large class of interesting CHR programs. However, the literature on confluence in general rewriting systems has, since the early 1970s, offered a more general notion of confluence modulo an equivalence relation. This means that alternative derivations only need to end in states that are equivalent with respect to some equivalence relation (and not necessarily identical). In this paper, we show how confluence modulo equivalence can be applied in a CHR context, and we demonstrate interesting programs covered by this notion that are not confluent by any previous definition of confluence for CHR. The use of redundant data representations is one
example of what becomes within reach, and programs that search for one best among multitudes of alternative solutions is another.

Example 1. The following CHR program, consisting of a single rule, collects a number of separate items into a (multi-) set represented as a list of items.

\[
\text{set}(L), \text{item}(A) \iff \text{set}([A|L]).
\]

This rule will apply repeatedly, replacing constraints matched by the left hand side by those indicated to the right. The query

\[
?\text{-} \text{item}(a), \text{item}(b), \text{set}([\]).
\]

may lead to two different final states, \{set([a,b])\} and \{set([b,a])\}, both representing the same set. This can be formalized by a state equivalence relation \(\approx\) that implies \{set(L)\} \(\approx\) \{set(L')\}, whenever \(L\) is a permutation of \(L'\). The program is not confluent in the classical sense as the end states are not identical, but it will be shown to be confluent modulo \(\approx\).

Our generalization is based on a new operational semantics that permits extra-logical and incomplete predicates (e.g., Prolog’s \texttt{var/2} and \texttt{is/2}), which is out of the scope of previous approaches. It also leads to a noticeable reduction of notational overhead due to a simpler structure of states.

It is shown that previous results for CHR confluence, based upon critical pairs, to a large extent can be generalized for confluence modulo equivalence. We introduce additional mechanisms to handle the extra complexity caused by the equivalence relation. We do not present any (semi-) automatic approach to confluence proofs, as this would need a formal language for specifying equivalences, which has not been considered at present.

Section 2 reviews previous work on confluence, in general and for CHR. Sections 3 and 4 give preliminaries and our operational semantics. Section 5 considers how to prove confluence modulo equivalence for CHR. Section 6 shows confluence modulo equivalence for a CHR version of the Viterbi algorithm; it represents a wider class of dynamic programming algorithms with pruning, also outside the scope of earlier proposals. Section 7 shows confluence modulo equivalence for the Union-Find algorithm, which has become a standard test case for confluence in CHR; it is not confluent in any previously proposed way (except with contrived side-conditions). Section 8 comments on related work in more detail, and the final section provides a summary and a conclusion.

2 Background

A binary *relation* \(\rightarrow\) on a set \(A\) is a subset of \(A \times A\), where \(x \rightarrow y\) denotes membership of \(\rightarrow\). A *rewrite system* is a pair \(\langle A, \rightarrow \rangle\); it is *terminating* if there is no infinite chain \(a_0 \rightarrow a_1 \rightarrow \cdots\). The *reflexive transitive closure* of \(\rightarrow\) is denoted \(\rightarrow^*\). The *inverse relation* \(\leftarrow\) is defined by \(\{(y, x) \mid x \rightarrow y\}\). An *equivalence (relation) \(\approx\) is a binary relation on \(A\) that is reflexive, transitive and symmetric.
A rewrite system \((A, \rightarrow) \) is confluent if and only if \(y \overset{\ast}{\leftarrow} x \overset{\ast}{\rightarrow} y' \Rightarrow \exists z. y \overset{\ast}{\rightarrow} z \overset{\ast}{\leftarrow} z' \), and is locally confluent if and only if \(y \leftarrow x \rightarrow y' \Rightarrow \exists z. y \overset{\ast}{\rightarrow} z \overset{\ast}{\leftarrow} z' \). In 1942, Newman showed his fundamental lemma [13]: A terminating rewrite system is confluent if and only if it is locally confluent. An elegant proof of Newman’s lemma was provided by Huet [11] in 1980.

The more general notion of confluence modulo equivalence was introduced in 1972 by Aho et al. [3] in the context of the Church-Rosser property.

Definition 1 (Confluence Modulo Equivalence). A relation \(\rightarrow \) is confluent modulo an equivalence \(\approx \) if and only if

\[
\forall x, y, x', y'. \ y \overset{\ast}{\leftarrow} x \approx x' \overset{\ast}{\rightarrow} y' \Rightarrow \exists z, z'. y \overset{\ast}{\rightarrow} z \approx z' \overset{\ast}{\leftarrow} y'.
\]

This shown as a diagram in Fig. 1a. In 1974, Sethi [17] showed that confluence modulo equivalence for a bounded rewrite system is equivalent to the following properties, \(\alpha \) and \(\beta \), also shown in Fig. 1b.

Definition 2 (\(\alpha \) & \(\beta \)). A relation \(\rightarrow \) has the \(\alpha \) property and the \(\beta \) property if and only if it satisfy the \(\alpha \) condition and the \(\beta \) condition, respectively:

\[
\alpha: \forall x, y, y'. \ y \leftarrow x \rightarrow y' \Rightarrow \exists z, z'. y \overset{\ast}{\rightarrow} z \approx z' \overset{\ast}{\leftarrow} y'
\]

\[
\beta: \forall x, x', y. \ x \approx x' \rightarrow y \Rightarrow \exists z, z'. x' \overset{\ast}{\rightarrow} z' \approx z \overset{\ast}{\leftarrow} y
\]

Definition 3 (Local Confl. Mod. Equivalence). A rewrite system is locally confluent modulo an equivalence \(\approx \) if and only if it has the \(\alpha \) and \(\beta \) properties.

Theorem 1. Let \(\rightarrow \) be a terminating relation. For any equivalence \(\approx \), \(\rightarrow \) is confluent modulo \(\approx \) if and only if \(\rightarrow \) is locally confluent modulo \(\approx \).

The known results on confluence for CHR are based on Newman’s lemma. Abdennadher et al. [2] in 1996 seem to be the first to consider this, and they showed that confluence (without equivalence) for CHR is decidable and can be checked by examining a finite set of states formed by a combination of heads of rules. A refinement, called observational confluence was introduced in 2007 by Duck et al. [6], in which only states that satisfy a given invariant are considered.

Fig. 1. Diagrams for the fundamental notions. A dotted arrow (single wave line) indicates an inferred step (inferred equivalence).
3 Preliminaries

We assume standard notions of first-order logic such as predicates, atoms and terms. For any expression E, $\text{vars}(E)$ refers to the set of variables that occurs in E. A substitution is a mapping from a finite set of variables to terms, which also may be viewed as a set of first-order equations. For substitution σ and expression E, $E\sigma$ (or $E \cdot \sigma$) denotes the expression that arises when σ is applied to E; composition of two substitutions σ, τ is denoted $\sigma \circ \tau$. Special substitutions failure, error are assumed, the first one representing falsity and the second one runtime errors.

Two disjoint sets of (user) constraints and built-in predicates are assumed. For the built-ins, we use a semantics that is more in line with implemented CHR systems than previous approaches and also allows extra-logical devices such as Prolog’s var/1 and incomplete ones such as is/2. While [2,5,6] collect built-ins in a separate store and determine their satisfiability by a magic solver that mirrors a first-order semantics, we execute a built-in rightaway. Thereby, it serves as a test, possibly giving rise to a substitution that is immediately applied to the state.

An evaluation procedure Exe for built-ins b is assumed, such that $\text{Exe}(b)$ is either a (possibly identity) substitution to a subset of $\text{vars}(b)$ or one of failure and error. It extends to sequences of built-ins as follows.

$$\text{Exe}((b_1, b_2)) = \begin{cases} \text{Exe}(b_1), & \text{when } \text{Exe}(b_1) \in \{\text{failure}, \text{error}\}, \\ \text{Exe}(b_2 \cdot \text{Exe}(b_1)), & \text{when otherwise } \text{Exe}(b_2 \cdot \text{Exe}(b_1)) \in \{\text{failure}, \text{error}\}, \\ \text{Exe}(b_1) \circ \text{Exe}(b_2 \cdot \text{Exe}(b_1)), & \text{otherwise} \end{cases}$$

A subset of built-in predicates are the logical ones, whose meaning is given by a first-order theory B. For a logical atom b with $\text{Exe}(b) \neq \text{error}$, the following conditions must hold.

- Partial correctness: $B \models \forall_{\text{vars}(b)} (b \leftrightarrow \exists_{\text{vars}(\text{Exe}(b)) \setminus \text{vars}(b)} \text{Exe}(b))$.
- Instantiation monotonicity: $\text{Exe}(b \cdot \sigma) \neq \text{error}$ for all substitutions σ.

A logical predicate p is complete whenever, for any atom b with predicate symbol p, we have $\text{Exe}(b) \neq \text{error}$; later we define completeness with respect to a state invariant. Any built-in predicate which is not logical is called extra-logical. The following predicates are examples of built-ins; ϵ is the empty substitution.

1. $\text{Exe}(t = t') = \sigma$ where σ is a most general unifier of t and t'; if no such unifier exists, the result is failure.
2. $\text{Exe}(\text{true})$ is ϵ.
3. $\text{Exe}(\text{fail})$ is failure.
4. $\text{Exe}(t \text{ is } t') = \text{Exe}(t = v)$ whenever t' is a ground term that can be interpreted as an arithmetic expression e with the value v; if no such e exists, the result is error.
5. $\text{Exe}(\text{var}(t))$ is ϵ if t is a variable and failure otherwise.
6. $\text{Exe}(\text{ground}(t))$ is ϵ when t is ground and failure otherwise.
7. $\text{Exe}(t == t')$ is ϵ when t and t' are identical and failure otherwise.
8. $\text{Exe}(t \neq t')$ is ϵ when t and t' are non-unifiable and failure otherwise.

The first three predicates are logical and complete; “is” is logical but not complete without an invariant that grounds its second arguments (considered later). The remaining ones are extra-logical.

The practice in previous semantics [2,5,6] of conjoining built-ins and testing them by satisfiability leads to ignorance of runtime errors and incompleteness.

To represent the propagation history, we introduce indices: An indexed set S is a set of items of the form $x:i$ where i belongs to some index set and each such i is unique in S. When clear from context, we may identify an indexed set S with its cleaned version $\{x | x:i \in S\}$. Similarly, the item x may identify the indexed version $x:i$. We extend this to any structure built from indexed items.

4 Constraint Handling Rules

We define an abstract syntax of CHR together with an operational semantics suitable for considering confluence. We use the generalized simpagation form as a common representation for the rules of CHR. Guards may unify variables that occur in rule bodies, but not variables that occur in the matched constraints. In accordance with the standard behaviour of implemented CHR systems, failure and runtime errors are treated the same way in the evaluation of a guard, but distinguished when occurring in a query or rule body, cf. Definitions 4 and 8, below.

Definition 4. A rule r is of the form

$$H_1 \setminus H_2 \leftarrow g \mid C,$$

where H_1 and H_2 are sequences of constraints, forming the head of r, g is the guard being a sequence of built-ins, and C is a sequences of constraints and built-ins called the body of r. Any of H_1 and H_2, but not both, may be empty. A program is a finite set of rules.

For any fresh variant of rule r with notation as above, an application instance r'' is given as follows.

1. Let r' be a structure of the form

$$H_1 \tau \setminus H_2 \tau \leftarrow C\tau\sigma$$

where τ is a substitution for the variables of H_1, H_2, $\text{Exe}(g\tau) = \sigma$, $\sigma \notin \{\text{failure}, \text{error}\}$, and it holds that $(H_1 \setminus H_2)\tau = (H_1 \setminus H_2)\tau\sigma$.
2. r'' is a copy of r' in which each atom in its head and body is given a unique index, where the indices used for the body are new and unused.

The substitution $g\tau$ is referred to the as the guard of r''. The application record for r'' is a structure of the form

$$r \hat{@} i_1, \ldots, i_n$$

where i_1, \ldots, i_n is the sequence of indices of H_1, H_2 in the order they occur.
A rule is a *simplification* when H_1 is empty, a *propagation* when H_2 is empty; in both cases, the backslash is left out, and for a propagation, the arrow symbol is written $==\rightarrow$ instead. Any other rule is a *simpagation*. In case the guard is the built-in *true*, it and the vertical bar may be omitted. A guard (or single built-in atom) is *logical* if it contains only logical predicates. Guards are removed from application instances as they are *a priori* satisfied. The following definition will become useful later on when we consider confluence.

Definition 5. Consider two application instances $r_i = (A_i \setminus B_i \leftrightarrow C_i)$, $i = 1, 2$. We say that r_1 is blocking r_2 whenever $B_1 \cap (A_2 \cup B_2) \neq \emptyset$.

For this to be the case, r_1 must be a simplification or simpagation. Intuitively, it means that if r_1 has been applied to a state, it is not possible subsequently to apply r_2. In the following definition of execution states for CHR, irrelevant details of the state representation are abstracted away using principles of [14]. To keep notation consistent with Sect. 2, we use letters such as x, y, etc. for states.

Definition 6. A state representation is a pair $\langle S, T \rangle$, where

- S is a finite, indexed set of atoms called the constraint store,
- T is a set of application records called the propagation history.

Two state representations S_1 and S_2 are isomorphic, denoted $S_1 \equiv S_2$ whenever one can be derived from the other by a renaming of variables and a consistent replacement of indices (i.e., by a 1-1 mapping). When Σ is the set of all state representations, a state is an element of $\Sigma/\equiv \cup \{\text{failure}, \text{error}\}$, i.e., an equivalence class in Σ induced by \equiv or one of two special states; applying the failure (error) substitution to a state yields the failure (error) state. To indicate a given state, we may for simplicity mention one of its representations.

A query q is a conjunction of constraints, which is also identified with an initial state $\langle q', \emptyset \rangle$ where q' is an indexed version of q.

To make statements about, say, two states x, y and an instance of a rule r, we may do so mentioning state representatives x', y' and application instance r' having recurring indices. The following notions becomes useful in Sect. 5, when we go into more detail on how to prove confluence modulo equivalence.

Definition 7. An extension of a state $\langle S, R \rangle$ is a state of the form $\langle S\sigma \cup S^+, R \cup R^+ \rangle$ for suitable σ, S^+ and R^+; an I-extension is one that satisfies I; and a state is said to be I-extendible if it has one or more extensions that are I-states.

In contrast to [2,5,6], we have excluded global variables, which refer to those of the original query, as they are easy to simulate: A query $q(X)$ is extended to $\text{global}(X', X), q(X)$, where $\text{global}/2$ is a new constraint predicate; X' is a constant that serves as a name of the variable. The value val for X is found in the final state in the unique constraint $\text{global}(X', \text{val})$. References [2,5,6] use a state component for constraints waiting to be processed, plus a separate
derivation step to introduce them into the constraint store. We avoid this as the derivations made under either premises are basically the same. Our derivation relation is defined as follows; here and in the rest of this paper, \sqcup denotes union of disjoint sets.

Definition 8. A derivation step \rightarrow from one state to another can be of two types: by rule $r \rightarrow$ or by built-in $b \rightarrow$, defined as follows.

Apply: $(S \sqcup H_1 \sqcup H_2, T) \xrightarrow{r} (S \sqcup H_1 \sqcup C, T')$

whenever there is an application instance r of the form $H_1 \setminus H_2 \leftarrow C$ with applied$(r) \notin T$, and T' is derived from T by (1) removing any application record having an index in H_2 and (2) adding applied(r) in case r is a propagation.

Built-in: $(\{b\} \sqcup S, T) \xrightarrow{b} (S, T) \cdot \text{Exe}(b)$.

A state z is final for query q, whenever $q \rightarrow^* z$ and no step is possible from z.

The removal of certain application records in Apply steps means to keep only those records that are essential for preventing repeated application of the same rule to the same constraints (identified by their indices).

As noticed by [6], introducing an invariant makes more programs confluent, as one can ignore unusual states that never appear in practice. An invariant may also make it easier to characterize an equivalence relation for states.

Definition 9. An invariant is a property $I(\cdot)$ which may or may not hold for a state, such that for all states x, y, $I(x) \land (x \rightarrow y) \Rightarrow I(y)$. A state x for which $I(x)$ holds is called an I-state, and an I-derivation is one starting from an I-state.

A program is I-terminating whenever all I-derivations are terminating. A set of allowed queries Q may be specified, giving rise to an invariant reachable $Q(x) \Leftrightarrow \exists q \in Q: q \rightarrow^* x$.

A (state) equivalence is an equivalence relation \approx on the set of I-states.

The central Theorem 1 applies specifically for CHR programs equipped with invariant I and equivalence relation \approx. When \approx is identity, it coincides with a theorem of [6] for observable confluence. If, furthermore, $I \Leftrightarrow \text{true}$, we obtain the classical confluence results for CHR [1].

The following definition is useful when considering confluence for programs that use Prolog built-ins such as “is/2”.

Definition 10. A logical predicate p is complete with respect to invariant I (or, for short, is I-complete) whenever, for any atom b with predicate symbol p in some I-state, that $\text{Exe}(b) \neq \text{error}$.

A logical guard (or a built-in atom) is also called I-complete, whenever all its predicates are I-complete. We use the term I-incomplete for any such notion that is not I-complete.

As promised earlier, “is/2” is complete with respect to an invariant that guarantees groundness of the second argument of any call to “is/2”.
Example 2. Our semantics permits CHR programs that define constraints such as Prolog’s dif/2 constraint and a safer version of is/2.

\[
\text{dif}(X,Y) \iff X==Y \mid \text{fail}. \\
\text{dif}(X,Y) \iff X\neq Y \mid \text{true}. \\
X \text{ safer_is } Y \iff \text{ground}(Y) \mid X \text{ is } Y.
\]

5 Proving Confluence Modulo Equivalence for CHR

We consider here ways to prove the local confluence properties \(\alpha\) and \(\beta\) from which confluence modulo equivalence may follow, cf. Theorem 1. The corners in the following definition generalize the critical pairs of [2]. For ease of usage, we combine the common ancestor states with the pairs, thus the notion of corners corresponding to the “given parts” of diagrams for the \(\alpha\) and \(\beta\) properties, cf. Fig. 1a. The definitions below assume a given \(I\)-terminating program with invariant \(I\) and state equivalence \(\approx\). Two states \(x\) and \(x'\) are joinable modulo \(\approx\) whenever there exist states \(z\) and \(z'\) such that \(x \rightarrow^* z \approx z' \leftarrow^* x'\).

Definition 11. An \(\alpha\)-corner consists of \(I\)-states \(x, y\) and \(y'\) with \(y \neq y'\) and two derivation steps such that \(y \gamma \leftarrow x \delta \rightarrow y'\). An \(\alpha\)-corner is joinable modulo \(\approx\) whenever \(y\) and \(y'\) are joinable modulo \(\approx\).

A \(\beta\)-corner consists of \(I\)-states \(x, x'\) and \(y\) with \(x \neq x'\) and a derivation step such that \(x' \approx x \gamma \rightarrow y\). A \(\beta\)-corner is joinable modulo \(\approx\) whenever \(x'\) and \(y\) are joinable modulo \(\approx\).

Joinability of \(\alpha_1\)-corners holds trivially in a number of cases:

– when \(\gamma\) and \(\delta\) are application instances, none blocking the other,
– when \(\gamma\) and \(\delta\) are built-ins, both logical and \(I\)-complete, or having no common variables, or
– when, say, \(\gamma\) is an application instance whose guard is logical and \(I\)-complete, and \(\delta\) is any built-in that has no common variable with the guard of \(\gamma\).

These cases are easily identified syntactically. All remaining corners are recognized as “critical”, which is defined as follows.

Definition 12. An \(\alpha\)-corner \(y \gamma \leftarrow x \delta \rightarrow y'\) is critical whenever one of the following properties holds.

\(\alpha_1\): \(\gamma\) and \(\delta\) are application instances where \(\gamma\) blocks \(\delta\) (Definition 5).

\(\alpha_2\): \(\gamma\) is an application instance whose guard is extra-logical or \(I\)-incomplete, and \(\delta\) is a built-in with \(\text{vars(}g) \cap \text{vars(}\delta) \neq \emptyset\).

\(\alpha_3\): \(\gamma\) and \(\delta\) are built-ins with \(\gamma\) extra-logical or \(I\)-incomplete, and \(\text{vars(}\gamma) \cap \text{vars(}\delta) \neq \emptyset\).

A \(\beta\)-corner \(x' \approx x \gamma \rightarrow y\) is critical whenever the following property holds.
\[-x \neq x' \text{ and there exists no state } y' \text{ and single derivation step } \delta \text{ such that } x' \xrightarrow{\delta} y' \approx y.\]

Our definition of critical \(\beta\)-corners are motivated by the experience that often the \(\delta\) step can be formed trivially by applying the same rule or built-in of \(\gamma\) in an analogous way to the state \(x'\). By inspection and Theorem 1, we get the following.

Lemma 1. Any non-critical corner is joinable modulo \(\approx\).

Theorem 2. A terminating program is confluent modulo \(\approx\) if and only if all its critical corners are joinable modulo \(\approx\).

5.1 Joinability of \(\alpha_1\)-Critical Corners

Without invariant, equivalence and extra-logicals, the only critical corners are of type \(\alpha_1\); here [2] has shown that joinability of a finite set of minimal critical pairs is sufficient to ensure local confluence. In the general case, it is not sufficient to check such minimal states, but the construction is still useful as a way to group the cases that need to be considered. We adapt the definition of [2] as follows.

Definition 13. An \(\alpha_1\)-critical pattern (with evaluated guards) is of the form

\[
\langle S_1 \sigma_1, \emptyset \rangle \xrightarrow{r_1} \langle S, \emptyset \rangle \xrightarrow{r_2} \langle S_2 \sigma_2, R \rangle
\]

whenever there exist, for \(k = 1, 2\), indexed rules \(r_k = (A_k \setminus B_k \leftrightarrow g_k \mid C_k)\), and

\[
R = \begin{cases}
\{a\} & \text{whenever } r_2 \text{ is a propagation with application record } a, \\
\emptyset & \text{otherwise}.
\end{cases}
\]

The remaining entities are given as follows.

- Let \(H_k = A_k \cup B_k\), \(k = 1, 2\), and split \(B_1\) and \(H_2\) into disjoint subsets by \(B_1 = B_1' \uplus B_1''\) and \(H_2 = H_2' \uplus H_2''\), where \(B_1'\) and \(H_2'\) must have the same number of elements \(\geq 1\).
- The set of indices used in \(B_1'\) and \(H_2'\) are assumed to be identical, and any other index in \(r_1, r_2\) unique, and \(\sigma\) is a most general unifier of \(B_1'\) and a permutation of \(H_2'\).
- \(S = A_1 \sigma \cup B_1 \sigma \cup A_2 \sigma \cup B_2 \sigma\), with \(S\) being \(I\)-extendible.
- \(S_k = S \setminus B_k \sigma \cup C_k \sigma\), \(k = 1, 2\).
- \(g_k\) is logical with \(\sigma_k = \text{Exe}(g_k \sigma) \notin \{\text{error}, \text{failure}\}\) for \(k = 1, 2\).

An \(\alpha_1\)-critical pattern (with delayed guards) is of the form

\[
\langle S_1, \emptyset \rangle \xrightarrow{r_1} \langle S, \emptyset \rangle \xrightarrow{r_2} \langle S_2, R \rangle,
\]

where all parts are defined as above, except in the last step, that one of \(g_k\) is extra-logical or its evaluation by \(\text{Exe}\) results in \(\text{error}\); the guards \(g_k \sigma\) are recognized as the unevaluated guards.
Definition 14. An α_1-critical corner $y \xrightarrow{r_1} x \xrightarrow{r_2} y'$ is covered by an α_1-critical pattern

$$\langle S_1, \emptyset \rangle \xrightarrow{r_1} \langle S, \emptyset \rangle \xrightarrow{r_2} \langle S_2, R \rangle,$$

whenever x is an I-extension of $\langle S, \emptyset \rangle$.

Analogously to previous results on confluence of CHR [2], we can state the following.

Lemma 2. For a given I-terminating program with invariant I and equivalence \approx, the set of critical α_1-patterns is finite, and any critical α_1-corner is covered by some critical α_1-pattern.

The requirement of definition 13, that a critical α_1-corner needs to be I-extendible, means that there may be fewer patterns to check than if classical confluence is investigated. Examples of this is used for when showing confluence of the Union-Find program, Sect. 7 below. We can reuse the developments of [2] and joinability results derived by their methods, e.g., using automatic checkers for classical confluence [12].

Lemma 3. If a critical α_1-pattern π (viewed as an α_1-corner) is joinable modulo the identity equivalence, then any α_1-corner covered by π is joinable under any I and \approx.

This means that we may succeed in showing confluence modulo \approx under I in the following way for a program without critical α_2, α_3 and β corners.

- Run a classical confluence checker (e.g., [12]) to identify which classical, critical pairs that are not joinable. Those such that do not correspond to I-extendible α_1 patterns can be disregarded.
- Those critical α_1-patterns that remain need separate proofs, which may succeed due to the stronger antecedent given by I and the weakening of the joinability consequent by an equivalence relation.

Example 3 (Example 1, continued). We consider again the one line program of Example 1 that collects a items into a set, represented as a list. Suitable invariant and equivalence are given as follows; the propagation history can be ignored as there are no propagations.

I: $I(x)$ holds if and only if $x = \{\text{set}(L)\} \cup \text{Items}$, where Items is a set of item/1 constraints whose argument is a constant and L a list of constants.

\approx: $x \approx x'$ if and only if $x = \{\text{set}(L)\} \cup \text{Items}$ and $x' = \{\text{set}(L')\} \cup \text{Items}$ where Items is a set of item/1 constraints and L is a permutation of L'.

There are no built-ins and thus no critical α_2- or α_3-patterns. There is only one critical α_1-pattern, namely

$$\{\text{set}([B|L]), \text{item}(A)\} \leftarrow \{\text{set}(L), \text{item}(A), \text{item}(B)\} \rightarrow \{\text{set}([A|L]), \text{item}(B)\}.$$
The participating states are not I-states as A, B and L are variables; the set of all critical α_1-corners can be generated by different instantiations of the variables, discarding those that lead to non-I-states. We cannot use Lemma 3 to prove joinability as the equivalence is \approx essential. Instead, we can apply a general argument that goes for any I-extension of this pattern. The common ancestor state in such an I-extension is of the form $\{\text{set}(L), \text{item}(A)\} \cup \text{Items}$, and joinability is shown by applying the rule to the two “wing” states (not shown) to form the two states $\{\text{set}(B, A, L)\} \cup \text{Items} \approx \{\text{set}(A, B, L)\} \cup \text{Items}$. To show confluence modulo \approx, we still need to consider the β-corners which we return to in Example 5 below.

5.2 About Critical α_2-, α_3- and β-Corners

It is not possible to characterize the sets of all critical α_2-, α_3- and β-corners by finite sets of patterns of mini-states in the same way as for α_1.

The problem for α_2 and α_3 stems from the presence of extra-logical or incomplete built-ins. Here the existence of one derivation step from a given state S does not imply the existence of another, analogous derivation step from an extension $S\sigma \cup S^+$. This is demonstrated by the following example.

Example 4. Consider the following program that has extra-logical guards.\[\begin{align*}
r_1: & \ p(X) <\rightarrow \text{var}(X) \mid q(X). \\
r_2: & \ p(X) <\rightarrow \text{nonvar}(X) \mid r(X). \\
r_3: & \ q(X) <\rightarrow r(X).
\end{align*}\]
There are no propagation rules, so we can identify states with multisets of constraints. The invariant I is given as follows, and the state equivalence is trivial identity so there are no critical β-corners to consider.

$I(S):$ S is a multiset of p, q and r constraints and built-ins formed by the “$=$” predicate. Any argument is either a constant or a variable.

The meaning of equality built-ins is as defined in Sect. 3 above.

It can be argued informally that this program is I-confluent as all user-defined constraints will eventually become r constraints unless a failure occurs due to the execution of equality built-ins; the latter can only be introduced in the initial query, so if one derivation leads to failure, all terminated derivations do. Termination follows from the inherent stratification of the constraints.

To prove this formally, we consider all critical corners and show them joinable. One group of critical α_2-corners are of the following form, (1)

\[S_1 = \{q(x), x = a\} \cup S \xrightarrow{r_1} \{p(x), x = a\} \cup S \xrightarrow{r_2} \{p(a)\} \cup S = S_2;\]

x is a variable, a a constant and S an arbitrary set of constraints such that I is maintained. Any such corner is joinable, which can be shown as follows, (2).

\[S_1 \xrightarrow{r_2} S_1' \xrightarrow{r_2} \{r(a)\} \cup S \xrightarrow{r_2} S_2;\]
The remaining critical α_2-corners form a similar group.

$$\{q(x), x = y\} \cup S \xrightarrow{r_1} \{p(x), x = y\} \cup S \xrightarrow{\sim} \{p(x)\} \cup S;$$

x and y variables, r_1 and S an arbitrary set of constraints such that I is maintained. Joinability is shown by a similar argument that goes for this entire group. The only critical corners are those α_2 cases that have been considered, so the program is confluent.

We notice, however, that the derivation steps in (1) and (2) are possible only due to the assumptions about the permitted instances of x, a and S. The symbol a, for example, is not a variable in a formal sense, neither is it a constant, but a meta-variable or placeholder of the sort that mathematicians use all the time. This means that we cannot reduce the formulas (1) and (2) to refer to derivations over mini-states, with proper variables as placeholders, as then r_2 can never apply.

To see critical α_3-corners, we change I into I' by allowing also var constraints in a state. One group of such corners will have the following shape.

$$\{\text{var}(a)\} \cup S \xleftarrow{\sim} \{\text{var}(x), x = a\} \cup S \xrightarrow{\text{var}} \{x = a\} \cup S$$

x is a variable, a a constant and S an arbitrary set of constraints such that I' is maintained. For, e.g., $S = \emptyset$, this corner is obviously not joinable, so the program is not confluent (module equivalence) under I'. As above, we observe that the set of critical α_3 corners cannot be characterized by a finite set of mini-states.

The β property needs to be considered when the state equivalence is non-trivial, as in the following example.

Example 5 (Examples 1 and 3, continued). To check the β property, we notice that any β-corner is of the form

$$\{\text{set}(L'), \text{item}(A)\} \cup \text{Items} \approx \{\text{set}(L), \text{item}(A)\} \cup \text{Items} \mapsto \{\text{set}([A|L'])\} \cup \text{Items}$$

where L and L' are lists, one being a permutation of the other. Applying the rule to the “left wing” state leads to $\{\text{set}([A|L'])\} \cup \text{Items}$ which is equivalent (wrt. \approx) to the “right wing” state; there are thus no critical β-corners. Together with results for critical α-corners above, we have now shown local confluence modulo \approx for the sets-as-lists program, and as the program is clearly I-terminating, it follows that it is confluent modulo \approx.

6 Confluence of Viterbi Modulo Equivalence

Dynamic programming algorithms produce solutions to a problem by generating solutions to a subproblem and iteratively extending the subproblem and its solutions (until the original problem is solved). The Viterbi algorithm [20] finds a most probable path of state transitions in a Hidden Markov Model (HMM) that produces a given emission sequence Ls, also called the **decoding** of Ls; see [7].
for a background on HMMs. There may be exponentially many paths but an
early pruning strategy ensures linear time. The algorithm has been studied in
CHR by [4], starting from the following program; the “@” operator is part of the
implemented CHR syntax used for labelling rules.

:- chr_constraint path/4, trans/3, emit/3.

expand @ trans(Q,Q1,PT), emit(Q,L,PE), path([L|Ls],Q,P,PathRev) =>

P1 is P*PT*PE | path(Ls,Q1,P1,[Q1|PathRev]).

prune @ path(Ls,Q,P1,_) \ path(Ls,Q,P2,_) <=> P1 >= P2 | true.

The meaning of a constraint path(Ls,q,p,R) is that Ls is a remaining emission
sequence to be processed, q the current state of the HMM, and p the probability
of a path R found for the already processed prefix of the emission sequence.
To simplify the program, a path is represented in reverse order. Constraint
trans(q,q′,pt) indicates a transition from state q to q′ with probability pt, and
emit(q,ℓ,pe) a probability pe for emitting letter ℓ in state q.

Decoding of a sequence Ls is stated by the query “HMM, path(Ls,q0,1,[])”
where HMM is an encoding of a particular HMM in terms of trans and emit
constraints. Assuming HMM and Ls be fixed, the state invariant I is given as
reachability from the indicated query. The program is I-terminating, as any
new path constraint introduced by the expand rule has a first argument shorter
than that of its predecessor. Depending on the application order, it may run in
between linear and exponential time, and [4] proceeds by semantics preserving
program transformations that lead to an optimal execution order.

The program is not confluent in the classical sense, i.e., without an equiva-
lence, as the prune rule may need to select one out of two different and equally
probable paths. A suitable state equivalence may be defined as follows.

Definition 15. Let ⟨HMM ∪ PATHS₁, T⟩ ≈ ⟨HMM ∪ PATHS₂, T⟩ whenever:
For any indexed constraint (i: path(Ls,q,P,R₁)) ∈ PATHS₁ there is a corre-
sponding (i: path(Ls,q,P,R₂)) ∈ PATHS₂ and vice versa.

The built-ins used in guards, is/2 and >=/2, are logical and I-complete, so
there are no α₂- or α₃-critical corners. For simplicity of notation, we ignore the
propagation histories. There are three critical α₁ patterns to consider:

(i) y ← x ← y′, where x contains two path constraints that may differ only
in their last arguments, and y and y′ differ only in which of these constraints
that are preserved: thus y ≈ y′.

(ii) y ← x ← y′ where x = {π₁, π₂, τ, η}, πᵢ = path(L,q,πᵢ,Rᵢ) for i = 1, 2,
P₁ ≥ P₂, and τ, η the trans and emit constraints used for the expansion step.
Thus y = {π₁, τ, η} and y′ = {π₁, π₂', τ, η} where π₂' is expanded from π₂.
To show joinability, we show the stronger property of the existence of a state
z with y → z → y′. We select z = {π₁, π₁', τ, η}, where π₁' is expanded from
The probability in π'_1 is greater or equal to that of π'_2, which means that a pruning of π'_2 is possible when both are present. Joinability is shown as follows.

$\text{expand } y \mapsto z \text{ prune } \{\pi_1, \pi'_1, \pi_2, \tau, \eta\} \text{ prune } \{\pi_1, \pi'_1, \pi_2, \tau, \eta\} \mapsto y' $

(iii) As case ii but with $P_2 \geq P_1$ and $y = \{\pi_2, \tau, \eta\}$; proof similar and omitted.

Thus all α-critical corners are joinable. There are no critical β corners, as whenever $x' \approx x \mapsto y$, the rule r can apply to x' with an analogous result, i.e., there exists a state y' such that $x' \mapsto y' \approx y$. This finishes the proof of confluence modulo \approx.

7 Confluence of Union-Find Modulo Equivalence

The Union-Find algorithm [19] maintains a collection of disjoint sets under union, with each set represented as a tree. It has been implemented in CHR by [16] who proved it nonconfluent using critical pairs [2]. We have adapted a version from [6], extending it with a new token constraint to be explained; let UF^{token} refer to our program and UF_0 to the original without token constraints.

\begin{align*}
\text{union} & \quad \Theta \text{ token, } \text{union}(A,B) \iff \text{find}(A,X), \text{find}(B,Y), \text{link}(X,Y). \\
\text{findNode} & \quad \Theta \text{ } A \mapsto B \setminus \text{find}(A,X) \iff \text{find}(B,X). \\
\text{findRoot} & \quad \Theta \text{ root}(A) \setminus \text{find}(A,X) \iff A=X. \\
\text{linkEq} & \quad \Theta \text{ link}(A,A) \iff \text{token}. \\
\text{link} & \quad \Theta \text{ root}(A) \setminus \text{link}(A,B), \text{root}(B) \iff B \mapsto A, \text{token}.
\end{align*}

The \mapsto and root constraints, called tree constraints, represent a set of trees. A finite set T of ground tree constraints is consistent whenever: for any constant a in T, there is either one and only one $\text{root}(a) \in T$, or a is connected via a unique chain of \mapsto constraints to some r with $\text{root}(r) \in T$. We define $\text{sets}(T)$ to be the set of sets represented by T, formally: the smallest equivalence relation over constants in T that contains the reflexive, the transitive closure of \mapsto; $\text{set}(a, T)$ refers to the set in $\text{sets}(T)$ containing constant a.

The allowed queries are ground and of the form $T \cup U \cup \{\text{token}\}$, where T is a consistent set of tree constraints, and U is a set of constraints $\text{union}(a_i, b_i)$, where a_i, b_i appear in T. The token constraint is necessary for triggering the union rule, so it needs to be present in the query to get the process started; it is consumed when one union operation starts and reintroduced when it has finished (as marked by the linkEq or link rules), thus ensuring that no two union operations overlap in time. The invariant I is defined by reachability from these queries. By induction, we can show the following properties of any I-state S.

1 It may be the case that π'_1 was produced and pruned at an earlier stage, so the propagation history prevents the creation of π'_1 anew. A detailed argument can show, that in this case, there will be another constraints π''_1 in the store similar to π'_1 but with a \geq probability, and π''_1 can be used for pruning π'_2 and obtain the desired result in that way.
- Either \(S = T \cup U \cup \{\text{token}\} \), where \(T \) is a consistent set of tree constraints and \(U \) a set of \textit{union} constraints whose arguments are in \(T \), or
- \(S = T \cup U \cup \{\text{link}(A_1, A_2)\} \cup F_1 \cup F_2 \) where \(T, U \) are as in the previous case, and for \(i = 1, 2 \),
 - if \(A_i \) is a constant, \(F_i = \emptyset \), otherwise
 - \(F_i = \{\text{find}(a_i, A_i)\} \) or \(F_i = \{(a_i = A_i)\} \) for some constant \(a_i \).

As shown by [16], \(UF_0 \) is not confluent in the classical sense, which can be related to the following issues.

(i) When the detailed steps of two \texttt{union} operations are intertwined in an unfortunate way, the program may get stuck in a state where it cannot finish the operation as shown in the following derivation.

\[
\text{root}(a), \text{root}(b), \text{root}(c), \text{union}(a, b), \text{union}(b, c) \\stackrel{*}{\rightarrow} \\
\text{root}(a), \text{root}(b), \text{root}(c), \text{link}(a, b), \text{link}(b, c) \rightarrow \\
b \rightarrow a, \text{root}(a), \text{root}(c), \text{link}(b, c)
\]

(ii) Different execution orders of the \texttt{union} operations may lead to different data structures (representing the same sets). This is shown in the following derivations from a query \(q_0 = \{\text{root}(a), \text{root}(b), \text{root}(c), \text{union}(a, b), \text{union}(b, c)\} \).

\[
q_0 \rightarrow \text{root}(a), \text{root}(c), b \rightarrow a, \text{union}(b, c) \rightarrow \\
q_0 \rightarrow \text{root}(a), \text{root}(b), c \rightarrow b, \text{union}(a, b) \rightarrow \text{root}(b), b \rightarrow a, c \rightarrow b
\]

We proceed, now, to show that \(UF_{\text{token}} \) is confluent modulo an equivalence \(\approx \), defined as follows; letters \(U \) and \(T \) refer to sets of \textit{union} and of tree constraints.

- \(T \cup U \cup \{\text{token}\} \approx T' \cup U \cup \{\text{token}\} \) whenever \(\text{sets}(T) = \text{sets}(T') \).
- \(T \cup U \cup \{\text{link}(A_1, A_2)\} \cup F_1 \cup F_2 \approx T' \cup U \cup \{\text{link}(A'_1, A'_2)\} \cup F'_1 \cup F'_2 \) whenever \(\text{sets}(T) = \text{sets}(T') \) and for \(i = 1, 2 \), that
 - if \(A_i \) is a constant and (by I) \(F_i = \emptyset \), then \(A'_i \) is a constant, \(\text{set}(A_i, T) = \text{set}(A'_i, T') \) and \(F'_i = \emptyset \)
 - if \(A_i \) is a variable and \(F_i = \{\text{find}(a_i, A_i)\} \) for some constant \(a_i \), then \(F'_i = \{\text{find}(a'_i, A'_i)\} \) and \(\text{set}(a_i, T) = \text{set}(a'_i, T') \),
 - if \(A_i \) is a variable, \(F_i = \{(a_i = A_i)\} \) for some constant \(a_i \) with \(\text{root}(a_i) \in T \)
 - then \(F'_i = (a'_i = A'_i) \), \(\text{root}(a'_i) \in T' \) and \(\text{set}(a_i, T) = \text{set}(a'_i, T') \).

There are no critical \(\alpha_2 \)- and \(\alpha_3 \)-patterns. The \(\alpha_1 \)-patterns (critical pairs) of \(UF_{\text{token}} \) are those of \(UF_0 \) and a new one, formed by an overlap of the \texttt{union} rule with itself as shown below. We reuse the analysis of [16] who identified all critical pairs for \(UF_0 \); by Lemma 3, we consider only those pairs, they identified as non-joinable.

In [16], eight non-joinable critical pairs are identified; the first one (“the unavoidable” pair) concerns issue (ii). Its ancestor state \(\{\text{find}(B, A), \text{root}(B), \text{root}(C), \text{link}(C, B)\} \), is excluded by I: any corner covered, \(B \) and \(C \) must be ground, thus also the \texttt{link} constraint, which according to I excludes a \texttt{find} constraint. This can be traced to the effect of our \texttt{token} constraint, that forces any \texttt{union} to complete its detailed steps, before a next \texttt{union} may be entered. However, issue (ii) pops up in the new \(\alpha_1 \)-pattern for \(UF_{\text{token}}, y \leftarrow x \mapsto y' \) where:

\[
x = \{\text{token}, \text{union}(A, B), \text{union}(A', B')\}
\]
\[
y = \{\text{find}(A, X), \text{find}(B, Y), \text{link}(X, Y), \text{union}(A', B')\}
\]
\[
y' = \{\text{find}(A', X'), \text{find}(B', Y'), \text{link}(X', Y'), \text{union}(A, B)\}
\]
To show joinability of any corner covered by this pattern means to find \(z, z' \) such that \(y \xrightarrow{*} z \approx z' \xleftarrow{*} y' \). This can be done by, from \(y \), first executing all remaining steps related to \(\text{union}(A, B) \) and then the steps relating to \(\text{union}(A', B') \) to reach a state \(z = T \cup U \cup \{ \text{token} \} \). In a similar way, we construct \(z' = T' \cup U \cup \{ \text{token} \} \), starting with the steps relating to \(\text{union}(A', B') \) followed by those of \(\text{union}(A, B) \). It can be proved by induction that \(\text{sets}(T) = \text{sets}(T') \), thus \(z \approx z' \).

Next, [16] identifies three critical pairs, that imply inconsistent tree constraints. The authors argue informally that these pairs will never occur for a query with consistent tree constraints. As noticed by [6], this can be formalized using an invariant. The last four pairs of [16] relate to issue (i) above; [16] argues these to be avoidable, referring to procedural properties of implemented CHR systems (which is a bit unusual in a context concerning confluence). In [6], those pairs are avoided by restricting allowed queries to include only a single \(\text{union} \) constraint; we can allow any number of those, but avoid the problem due to the control patterns imposed by the \(\text{token} \) constraints and formalized in our invariant \(I \).

This finishes the argument that \(UF_{\text{token}} \) satisfies the \(\alpha \) property, and by inspection of the possible derivation steps one by one (for each rule and for the “\(= \)” constraint), it can be seen that there are no critical \(\beta \) corners. Thus \(UF_{\text{token}} \) is locally confluent modulo \(\approx \), and since tree consistency implies termination, it follows that \(UF_{\text{token}} \) is confluent modulo \(\approx \).

8 Discussion and Detailed Comments on Related Work

We already commented on the foundational work on confluence for CHR by [2], who, with reference to Newman’s lemma, devised a method to prove confluence by inspecting a finite number of critical pairs. This formed also the foundation of automatic confluence checkers [2,5,12] (with no invariant and no equivalence).

The addition of an invariant \(I \) in the specification of confluence problems for CHR was suggested by [6]. The authors considered a construction similar to our \(\alpha_1 \)-corners and critical \(\alpha_1 \)-patterns. They noted that critical \(\alpha_1 \)-patterns usually do not satisfy the invariant, so they based their approach on defining a collection of corners based on \(I \)-states as minimal extensions of such patterns. Local confluence, then, follows from joinability of this collection of minimally extended states. However, there are often infinitely many such minimally extended states; this happens even for a natural invariant such as groundness when infinitely many terms are possible, as is the case in Prolog based CHR versions. We can use this construction (in cases where it is finite!) to further cluster the space of our critical corners, but our examples worked quite well without this.

Of other work concerned with confluence for CHR, we may mention [10,15] which considered confluence for non-terminating CHR programs. We may also refer to [18] that gives an overview of CHR related research until 2010, including confluence.
9 Conclusion and Future Work

We have introduced confluence modulo equivalence for CHR, which allows a much larger class of programs to be characterized as confluent in a natural way, thus increasing the practical relevance of confluence for CHR.

We demonstrated the power of the framework by showing confluence modulo equivalence for programs that use a redundant data representation (the set-as-lists and Union-Find programs) and a dynamic programming algorithm (the Viterbi program); all these are out of scope of previous confluence notions for CHR. With the new operational semantics, we can also handle extra-logical and incomplete built-in predicates, and the notational improvements obtained by this semantics may also promote new applications of and research on confluence.

As a first steps towards semi- or fully automatic proof methods, it is important to notice that classical joinability of a critical pair – as can be decided by existing confluence checkers such as [12] – provide a sufficient condition for joinability modulo any equivalence. Thus only classically non-joinable pairs – in our terminology α_1 patterns – need to be examined in more details involving the relevant equivalence; however, in some cases there may also be critical α_2, α_3 and β patterns that need to be considered.

While the set of critical α_1-patterns can be characterized by a finite collection of patterns consisting of mini-states tied together by derivations, the same things is not possible for the other sorts of critical patterns. In our examples, we used semi-formal patterns, whose meta-variables or placeholders are covered by side-conditions such as “x is a variable” and “a is a constant”. However, this must be formalized in order to approach automatic or semi-automatic methods. A formal and machine readable language for specifying invariants and equivalences will also be an advantage in this respect.

References

