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Abstract in English

The present thesis applied Functional Data Analysis (FDA) to empirical rolling resistance
modelling. More specifically, the rolling resistance modelling concerned the relation between
road macrotexture and rolling resistance. The guiding objective of the modelling efforts has
been its potential use in strategic pavement management of an entire road network.

A new texture measure for road macrotexture called Texture Penetration Depth (TPA) have
been developed with the intent of assessing rolling resistance from 2D road profiles. Two
versions have been presented - a simple and a full version. The latter have been founded on
methods from FDA. TPA is distinguished by being based on fundamental principles of what
causes macrotexture induced rolling resistance as opposed to, e.g., MPD which is constructed as
a purely empirical measure that correlates with the old “sand patch“ texture measurement method.
The intuitive foundation of the TPA measure enables a rather straightforward generalisation for
3D profiles which can accommodate the future generation of road profiling equipment.

The capability of the TPA measure, compared to MPD, has been tested on two kinds of
rolling resistance data: (1) Rolling resistance data measured directly by a specially designed
rolling resistance trailer developed by the Technical University of Gdansk in Poland and (2) data
of coast-down experiments performed by Swedish Statens väg- och transportforskningsinstitut
(VTI). In addition, both TPA and MPD have been used together with a profile enveloping
algorithm as a recent study showed that it significantly improved correlations.

The results of (1) showed that TPA correlates significantly better than MPD i most cases.
Especially, the simple TPA performed better. However, the data set is rather slim so further
similar studies are needed before any definite conclusions can be drawn. Furthermore, the
results of profile enveloping substantiated earlier findings that enveloping increases correlations
for MPD as well as TPA in this case. The results of (2) showed that MPD and simple TPA
performed equally well, but further investigations showed that the coast-down model’s fit to data
did not depend significantly on changes in macrotexture parameters. The explanation for this, it
is argued, is that the contribution from macrotexture on the overall driving resistance, is small.

Finally, the application of FDA in large part of the data analysis and the TPA development
is discussed. It is concluded that the use of FDA in connection with coast-down modelling
has been fruitful. Moreover, FDA is a potential analysis tool for, e.g., trailer rolling resistance
measurements. However, the amount of data in this work have been too small for this to be
thoroughly demonstrated. On the other hand, the application of FDA in connection with TPA
have been unnecessary and the advanced TPA have probably been over-engineered.
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Abstract in Danish

I denne afhandling forsøges Funktional Data Analyse (FDA) anvendt indenfor empirisk rullde-
modstandsmodellering. Mere specifikt omhandler modelleringen sammenhængen mellem
belægningers makrotekstur og rullemodstand. Det overordnede og ledende mål for model-
leringen er, at det potentielt skal kunne anvendes inden for strategisk vejvedligehold af et helt
vejnet.

Der er udviklet et nyt teksturmål for makrotekstur, kaldet “Texture Penetration Area“ (TPA),
med henblik på at estimere rullemodstand ud fra 2D vejprofiler. To udgaver af TPA bliver præsen-
teret - en simpel og en avanceret udgave. Sidstnævnte er baseret på metoder fra FDA. TPA
udmærker sig ved at bygge på grundlæggende principper for, hvad der forårsager makrotekstur-
induceret rullemodstand i modsætning til klassiske teksturmål, som f.eks. MPD, der er kon-
strueret som en ren empirisk mål, der korrelerer med den gamle “sand patch“ målemetode for
tekstur. TPA målets intuitive grundlag gør det også muligt at generalisere det til 3D-profiler,
hvilket imødekommer næste generation af måleudstyr.

TPA målets duelighed i forhold til MPD er testet på to typer af rullemodstandsdata: (1)
rullemodstandsdata målt direkte vha. en speciel rullemodstandstrailer udviklet af Technical Uni-
versity of Gdansk i Polen og (2) data fra coast-down eksperimenter foretaget af Statens väg- och
transportforskningsinstitut (VTI) i Sverige. Derudover er både TPA og MPD anvendt sammen
med “profile enveloping“, da dette har vist sig at forøge korrelationen mellem MPD i et nyligt
studie. Resulterne af (1) viste, at TPA korrelerer mærkbart bedre end MPD i de fleste tilfælde.
Dette gjaldt specielt den simple udgave af TPA. Det skal dog bemærkes, at da datagrundlaget er
spinkelt, bør der foretages flere lignende undersøgelser, før der kan drages endelige konklusioner.
Derudover blev resultaterne vedrørende enveloping eftervist for både MPD og TPA. Resultaterne
af (2) viste, at MPD og den simple TPA klarede sig lige godt. Nærmere undersøgelser viste dog
også, at coast-down modellens fit til data ikke afhang signifikant af ændringer i parametrene for
makroteksturen. Begrundelsen for dette formodes at være makroteksturens lille bidrag til den
overordnede kørselsmodstand, som coast-down modellen er en model for.

Eftersom FDA har været benyttet i forbindelse med store dele af dataanalysen, samt udviklin-
gen af TPA, diskuteres anvendeligheden af denne. Det konkluderes, at FDA med fordel kan
anvendes i forbindelse med coast-down modelleringen, samt at FDA har potentiale som analy-
seværktøj af eksempelvis rullemodstandsmålinger med trailer. Sidstnævnte har dog været svært
at eftervise, da datagrundlaget var for småt. Til gengæld har FDA vist sig at være unødvendigt
og overkomplicerende i forbindelse med udviklingen af den (avancerede) TPA.
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List of commonly used notation and abbreviations

FDA Functional Data Analysis
Dn nth differential operator
yi, ti, si Discrete data point measured at time ti or distance si
y(t), y(s) Functional data depending on time and distance, respectively
WLS Weighted Least Squares
OLS Ordinary Least Squares
PCA Principal Component Analysis
fdPCA Functional Principal Component Analysis
CRR/CR Rolling resistance coefficient defined as CRR = FRR/Fz
K Number of measurements between knots in the TPA measure
λ Smoothing parameter in roughness penalized data functionalisation
e Enveloping parameter representing tyre stiffness
d Texture penetration depth
TPA Texture Penetration Area
TPV Texture Penetration Volume
MTD Mean Texture Depth
MPD Mean Profile Depth
IRI International Roughness Index
RMS Root Mean Square
Skew Skewness
Lλ Root Mean Square of third-octave band centred about λ
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1 Introduction

This thesis is part of the research project “CO2 emission reduction by exploitation of rolling
resistance modelling of pavements” (COOEE) funded by The Danish Strategic Research Council.
At the same time, the thesis is part of a Ph.D. school programme “Mathematical Modelling and
its Mathematical Prerequisites” at Roskilde University. These two prerequisites, while having a
lot of common ground, are also quite different in aim and goal. Roughly speaking, the COOEE
project represents the engineering side and the Ph.D. school is the mathematical side of the
thesis. How these distinct goals interplay and have formed the work contained in this thesis is
the main topic of this chapter.

1.1 Thesis Aim & Scope
The primary and overall goal of the COOEE project is to model the relation between rolling
resistance and pavement characteristics, most notably the pavement surface, which in turn makes
it possible to derive the energy use and thus fuel consumption contribution of a given pavement.
This enable National Road Administrators (NRAs) together with pavement entrepreneurs to
optimize pavement construction with respect to rolling resistance and thus save CO2 emissions
by saving fuel. Other related objectives include molecular level investigations of bitumen and
novel pavement development. Given the title of this thesis, it should be clear that its object of
study lies at the core of the first and primary goal of the COOEE project, but to get a clearer idea
of this we need to look at the general outline of the COOEE project. The present research is
situated in Work Package (WP) 2 of the following WPs1:
WP1 Novel pavements: Development of pavements with low rolling resistance that simultane-

ously preserves durability

WP2 Models of rolling resistance: Modelling the relation between pavement, rolling resistance,
and fuel consumption

WP3 Wear and ageing of pavement: Studying the process of chemical ageing to identify critical
factors that can be targeted in trying to mitigate the ageing process.

WP4 Measurement of rolling resistance: Provide rolling resistance and pavement characteristics
measurements for use in WP2.

WP5 Asset Management Systems: Incorporating the knowledge obtained in the COOEE project
to build system components which enable NRAs to use this knowledge in actual road
maintenance.

As this list indicates, there is a serialisation: WP4→WP2→WP5 where measurements of
WP4 have been used in this work (WP2) and the results from rolling resistance modelling and
investigations presented here will be the primary input for WP5. WP1 and WP3 are more

1 See http://www.cooee-co2.dk/ for further description of the WPs and the project in general.
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2 Introduction

concerned with pavement development and thus not of much concern here2. What is important
to note here, is that this work should be applicable to the asset management development in WP5
and this certainly restricts the possible methods and object of study in this thesis. For instance, a
major requirement in the rolling resistance modelling efforts is that model input should be based
on production grade data sources, i.e., the rolling resistance models should be usable with data
routinely measured as part of ordinary road maintenance procedures. These sources are not as
detailed as one could wish, but that is what we have at our disposal. Of course, it is possible
to use more detailed measurements in the model development, as is indeed the case with the
data presented in chapter 5 and 6, but the overall complexity and theoretical detail of the models
are restricted by this. Moreover, it has forced the modelling approach to be mostly empirical in
nature. Although this is on par with much of the existing literature on the subject, it excludes
more theoretical approaches such as those employed in Finite Element Modelling (FEM) and
the like. While some of these theoretical approaches are promising[66, 6, 7, 102] they are still
remote from the practical reality of NRAs.

As mentioned above, this Ph.D. is also part of a Ph.D.-programme in applied mathematics
that deals with mathematical modelling and its mathematical prerequisites. In this thesis it will
come into play through the novel techniques of Functional Data Analysis (FDA) and parameter
optimization. Especially FDA will be a topic in its own right, and a thorough introduction
to the subject will be given in chapter 2 that also discusses the mathematical foundation of
FDA, as as well as its connection to classical procedures that have a special formulation in
FDA. These questions are not directly related to the COOEE project but are of pure (applied)
mathematical interest that falls within the Ph.D. programme. Where rolling resistance modelling
in the COOEE project and research topics in applied mathematics meet, is the application of
FDA in the rolling resistance modelling efforts. Since FDA is quite new, its use in modelling
efforts and data analysis are limited and non-existent in the rolling resistance modelling literature.
This makes the application of FDA to rolling resistance modelling an interesting undertaking
from the perspective of applied mathematics as well as road engineering.

Finally, since the rolling resistance modelling work here is so closely related to the work in
WP5 about asset management, some overlaps have occurred. More specifically, a big part of the
asset management development in WP5 has been undertaken by the author and the experiences
gathered while working with data and models in relation to rolling resistance modelling in
WP2 have inspired the asset management developments in WP5. Indeed, the work on rolling
resistance modelling has raised some practical questions that can only be answered and dealt
with in the context of asset management. Even though the work on asset management is quite
remote from the purely mathematical goals, it fits perfectly as a natural extension to the rolling
resistance and surface modelling part of the thesis. Therefore, some results and reflections
related to asset management are also presented here, although to a far lesser extent than FDA
and rolling resistance modelling. As noted above, the end goal of the modelling efforts has been
the potential ability to use the work in asset management, and this has steered the modelling
efforts away from more theoretical modelling approaches.

All in all, this gives three different topics that overlaps in this work: 1) FDA 2) rolling
resistance and surface modelling, and 3) asset management. Each have their own set of questions
inherent to the topic itself and irrelevant to the other topics, but in each topic there are also
questions having common ground to the other topics of thesis, as illustrated in figure 1.1.

2 Some of the results about aging in WP3 that may yield important information about pavement lifetime to use in the
asset management system development (WP5).



1.2 Thesis structure & reading guide 3

Figure 1.1 Illustration of subjects, their overlap, and relative scope in this thesis.

1.2 Thesis structure & reading guide
Because of the three different topics the thesis can be divided into three different parts that are
almost self-contained. While the parts are almost self-contained there is an interdependence that
gives a natural order of presentation: Rolling resistance modelling makes use of the vocabulary
and theory from FDA so the chapters about rolling resistance modelling presupposes FDA.
In turn, the asset management part presupposes the results, theory and vocabulary of rolling
resistance modelling, so it is treated lastly. Thus, the order is FDA first, rolling resistance
modelling second, and asset management last. Moreover, the interdisciplinary nature of this
thesis makes the target audience more heterogeneous, i.e., the thesis should in principle be
accessible to both researchers in applied mathematics and road engineering. This fact has been
kept in mind while writing this thesis and therefore some of the discussions and expositions
have been elaborated more than would be necessary had the work been targeting a narrow group
of researchers. Therefore some passages might be too detailed for a mathematician while better
fit for an road engineer and vice versa.

1.3 Reflections on the presented work
Writing an interdisciplinary thesis like this has been quite a challenge but also extremely
rewarding. The collaboration with people from entirely different fields of interest and the
necessary context switching it entails has been very instructive. A problem and its possible
solutions can look quite different if viewed by an engineer working in road maintenance or a
mathematician doing applied mathematics, and getting these different perspectives to meet is
quite a challenge. Nevertheless, the author has a background in mathematics and the overall take
on the subject of rolling resistance modelling has intentionally been from the point of view of a
mathematician, not an engineer or physicist. This is probably reflected in some of the approaches
as well as lingual subtleties, but hopefully it has provided interesting and refreshing views on
the subject of rolling resistance modelling even though the author is not an experienced road
engineer.
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2 Functional Data Analysis

In this chapter we introduce Functional Data Analysis (FDA) and its mathematical foundations
with an emphasis on topics needed for the investigations put forward in chapter 5 and 6. Therefore
this chapter serves two purposes: 1) Introduction of FDA and the mindset underlying it, which
is closely connected to its mathematical foundation. 2) Introduction of the mathematical tools
that are going to be used in this thesis as well as other tools which could potentially be used in
surface and rolling resistance modelling. In particular, some concepts from signal processing
are presented in section 2.6. While this is not conceived as being core FDA knowledge, the
mathematical foundation is quite similar so it is presented in connection with FDA and put into
the overall functional paradigm. To quote the authors of the ’FDA-bible’:

..it is not our intention to provide a cook-book for functional data analysis. In broad
terms, we have a grander aim: to encourage readers to think about and understand
functional data in a new way.[143, p. 18]

This chapter is written in the same spirit, and it is intended to be an integral part of the subsequent
chapters.

2.1 Notation
Before we begin, lets state some notational conventions. In the following, bold capital letters
such asX,Y ,Φ refer to matrices whereas normal bold letters x,y, t,β refer to vectors. Using
a ‘ behind vectors or matrices implies transposition. A sequence of discrete data y1, y2, . . . , yn is
related to an independent variable, which is usually time t or distance s, such that the yi-values
are said to be sampled at times t1, t2, . . . , tn (or distances s1, s2, . . . , sn). This dependence
is usually abbreviated with square brackets like y[t]. When discrete data are converted into
functions, the standard function notation y(t) is used, possibly with a tilde on top ỹ(t) to stipulate
the fact that this is a function estimated from data. If we refer to a specific value, we use the
notation ỹ(t0) and if multiple values are referred to, we use ỹ(t). In many instances the reference
to the independent variable, as well as whether it is discrete or functional, is implicit so we drop
t, s (or t, s) from the notation and use a plain y or y1, y2, . . . , yn etc. For derivatives like

dy(t)
dt

,
dy2(t)
dt2

,
dyn(t)
dtn

we will use the simpler notation Dy(t), D2y(t), and Dny(t). In addition, when using definite
integrals the interval will usually be dropped since it will be given implicitly. Lastly, if a function
is Cn it means that its nth derivative exist and is continuous.

5



6 Functional Data Analysis

2.2 Introduction
The main idea in functional data analysis is to perceive discrete data as observations of a function
and to see the function as the primary object of study. A more mathematical formulation would
be to say that traditionally, we generally view our data to be a finite subset of Rn. For instance,
each tuple (ti, yi) of a time series data set [(t1, y1), . . . , (tn, yn)] = y[t] is an element of R×R
(or more precisely, (ti, yi) ∈ [t1, tn]× R). In FDA we think instead of our data as belonging
to a function space, and in this example it could be the Hilbert space of square integrable
functions defined on the interval [t1, tn], which we will denote L2[t1, tn]. This implies that our
data, essentially, are infinite dimensional and the finite set of measurements y[t] are merely
samples from an uncountable amount of data points, i.e., for each t ∈ [t1, tn] a corresponding
value y(t) exists. Thus, the discrete data set is viewed as functional data meaning that the
data is inherently a function, hence the name of the subject. In addition, we often expect the
underlying process, from which the data set has originated, to behave nicely, i.e., there are no
abrupt changes in quantity (or rate of change of that quantity etc.). In other words, some degree
of smoothness is assumed to hold for our functional data. With smoothness we refer to the
degree of differentiability and what class Cn of functions that a given functional data belongs
to, and smoothness becomes a property of the data which is used repeatedly in analysis and
method. Incorporating derivatives in the data analysis is basically a study of the dynamics of
the data[143, p.39]. As it turns out, the FDA approach is powerful in parameter estimation of
differential equations[141].

Of course, the discrete data set is usually also assumed to be distorted by noise and therefore
we do not expect the underlying function y(t) to pass through all our observations y[t] of it.
More generally, one should consider what features of the data set should be captured by an
estimated function.

2.3 From Functional Data to Functions
The first step in FDA is to convert a set of data points y[t] into a function ỹ(t) such that all relevant
features of the data set are captured by the function. We will call this process funtionalization.
Since we only have a finite amount of data points, an upper bound to features that we are able to
capture exists, i.e., we do not have any knowledge of events occurring between the points. As
such, this is an inverse problem: Given a discrete set of (possibly noisy) occurrences, find the
underlying function that gave rise to them. In principle, there is a continuum of possibilities since
there is a continuum of functions that could be suspected of being the underlying phenomena
behind the observations. This might a bit overwhelming, however, in practice we might expect
some general/abstract properties to hold for the phenomena giving rise to the data, such as
smoothness, periodicity, monotonicity, etc., which in turn affect and restrict the functionalisation
process, thus the estimated function’s behaviour between data points. Furthermore, we are
only interested in a certain amount of accuracy. All in all, while functionalisation introduces
an additional step in data processing and some additional considerations have to be dealt with
in that account, it also introduces a lot of new possibilities and a few of these are introduced
here. Note that although we might know of properties that holds of the observed phenomena
and which we can be used in the functionalisation process, the point is to be descriptive: The
intention is to capture significant features in the data that seems to be caused from the underlying
phenomena and not the features that can be readily explained or captured by a theoretical model.

Another important aspect is the functionalisation performance, i.e. we should be able to
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Figure 2.1 Example of rolling resistance measurements made by the TUG rolling resistance trailer at
Værløse airbase treated in chapter 5. This shows the high resolution and act as an example of a data type
where the resolution is much higher than the features present in the data. This i probably due to some
filtering unkown to the author. For a discussion see chapter 5. Left: A single measurement run of one of
the road sections. The rectangle indicates the part of the figure shown to the right. Right: A zoom-in of the
figure to the left. The blue line is linear interpolation and the red markings are the actual measurement
points.

convert the data set, extracting derivatives etc. relatively fast.
Having good performance while using a generic function that can capture a diverse set of

features to a high precision, is accomplished by composing the data function y(t) as a sum
of simple functions φ1(t), φ2(t), . . . , φn(t)[143, p.43]. These simple functions are linearly
independent, hence they are basis functions (more generally, vectors) and y(t) is a linear
combination of basis functions

y(t) =
n∑
k=1

ckφ(t) (2.1)

where the ck’s are coefficients estimated from the data set. The amount of features present in
the data that should be captured by y(t) determines, informally, its dimension which then is
related to the number of basis functions (and thus coefficients). The upper bound of features
mentioned above is also reflected by a maximum number of basis functions that is sufficient for
a satisfactory fit that captures all features in the data. What this maximum is exactly depends on
what kind of basis functions that are being used. In many cases it is not necessary to use the
maximum number of basis functions because small local features are noise and should not be
present in an estimated function or the resolution of the data set is higher than the process it
represents. These cases are illustrated in figure 2.2 and 2.1, respectively, using measurements
used in later chapters.

The first step in data functionalisation is deciding which type of basis functions to use. Many
different types exists, but only two will be treated here, namely B-spline and Fourier basis
functions. Many more are covered elsewhere, for instance in [143]1. These two basis function
types are well known, and especially the latter is implicitly used in road engineering, where a
common approach to the study of road surfaces is to represent road profiles in the frequency

1 A lot of other examples can be found in functional analysis text books such as [178] although the material is
approached in a much more mathematical way.
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Figure 2.2 Example of coast-down measurements made by Swedish VTI in Sweden. The data set is
treated in chapter 6. This show an even higher resolution than figure 2.1 and act as an example of data with
both highly local features (measurement noise) and a global qualitative behaviour. These two phenomena
are taking place at markedly different length-scales. Left: A single measurement run of one of the road
sections. The rectangle indicates the part of the figure shown to the right. Right: A zoom-in of the figure to
the left. The blue line is linear interpolation and the red markings are the actual measurement points.

domain. Using FDA terminology “represent road profiles in the frequency domain” translates to
“representing the road profile function in the Fourier basis”.

The concept of splines as a means for approximating functions traces back to Karl Weierstrass,
who proved that any continuous real function defined on a real interval could be approximated
to an arbitrary degree of precision by a polynomial. Since every polynomial can be expressed
as linear combination of functions from {1, x, x2, . . . , xn, . . . } it follows that this set forms a
basis for the function space C([a, b]) of continuous functions defined on [a, b]. Indeed, this basis
could also be used to represent our functional data, however, better polynomial-based solutions
exists: Splines.

Splines are polynomials pieced together at specified points called knots, as illustrated in figure
2.3. B-splines are a special case of splines where any spline of orderm can be expressed as linear
combination of m-order B-splines[32, chapter IX]. In addition, B-splines have compact support
and fast algorithms exists for evaluating basis functions, such as, e.g., de Boors algorithm[32,
chapter X].

The B-spline system is defined in terms of a weakly increasing knot sequence τ = {τ0, ..., τk},
specifying where the basis function polynomials are glued together and the order m that refers
to the number of parameters needed to define the polynomials or, equivalently, the degree of
the polynomial. It is only required for the knot sequence to be weakly increasing, which can be
utilised when discontinuities are required, since placing coincident knots at a point t0 decrease
the smoothness of the overall spline at t02. In the following it is assumed to be strictly increasing.

In general, an order m system with knot sequence τ containing k + 1 knots results in
m + k − 1 basis functions φi(t). Thus, assuming we have a set of discrete data defined on

2 A real world example where they need a discontinuous first derivative and thus used a knot sequence containing
coincident knots is given in [138].
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Figure 2.3 Splines are polynomials glued together in a smooth manner (top). For B-splines the degree of
smoothness (i.e., differentiability) at these points, called knots, depend on the order of the polynomials
used. The sequence of these points together with the order of the polynomials uniquely defines the spline.

[t1, tn], our functional data ỹ(t) : [t0, tn]→ R can then be viewed as

ỹ(t) =
m+k−2∑
i=0

ciφi(t) = c′φ(t) (2.2)

where the φi(t)’s are (m− 1)’th degree polynomials constructed by the following recurrence
relation[32, p. 89-90]

φ1
j (t) =

{
1, if τj < t < τj+1

0, otherwise
(2.3)

for m = 1 and with m > 1 the polynomials are constructed as

φmj (t) = ωmj (t)φm−1
j (t) + [1− ωmj+1(t)]φm−1

j+1 (t) (2.4)

with

ωmj (t) = t− τj
τj+m+1 − τj

(2.5)

The resulting function ỹ(t) is Cm−1 and, as mentioned above, the latter does not necessarily
hold if τ is weakly increasing. In addition, the compactness is not formulated in equation 2.2
but can be described briefly as follows. Mostly, each φi(t) is only non-zero in the interval
[τi, τi+m+1], however, the last m− 1 basis functions in either end covers less. More precisely,
as the end-points are reached the basis functions decreases in range such that the last basis
functions in either end only spans an interval spanned by two consecutive knots. This implies
that all k intervals partitioned by τ have m basis functions that are non-zero which also gives a
total of k +m− 1 basis functions3.

3 This is actually more complicated as there are coincident knots in either end, however, it is not of practical importance
here. For further details about the behavoir at the endpoints, see [143].
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A crucial point when fitting a B-spline system to a discrete set of observations is defining a
knot-sequence which reflects the process properly[143, p. 68]. A badly chosen knot-sequence
could result in poor spline fits, which in turn reduce the quality of the subsequent model
estimation[138], statistical analyses etc. However, when the number of observation points is low
(whatever that may be) an obvious candidate for a knot-sequence is placing a knot at each data
point. With large sets of measurement data this could be problematic since a large number of
knots results in a large number of coefficients ci, thus potentially increasing the computation
time heavily when working with functional data. However, B-splines have compact support
since each mth order B-spline φi(t) is non-zero only in the interval [τi, τi+m+1]. This makes it
very efficient to compute a function value ỹ(t0) since the amount of basis functions that requires
evaluation only depends on the order of the φi(t)’s and not the number of basis functions used on
the entire data set. It also implies that many of the matrices used below will be sparse if B-splines
are used as basis functions, e.g., the matrix of inner products 〈fi, fj〉 between B-splines basis
functions will be a sparse matrix where the main diagonal and m− 1 sub diagonals above/below
the main diagonal are the only non-zero entries. An example of a matrix of inner products is
shown in equation 2.21 with fi = D2φi. In general, B-splines are a very flexible, robust and
fast type of basis functions that is by far the most common basis function type available and will
be directly used in the following chapters. For a detailed account on B-splines, see [32].

Another widely used type of basis functions is the Fourier basis which is well-known in a
many areas such as signal processing, partial differential equation modelling etc. While we do
not use this kind of basis functions directly, they are used implicitly in some of the investigations
in later chapters that involves the frequency domain. Furthermore, the principles of Fourier
analysis are also frequently used when investigating road surfaces influence on rolling resistance,
skid resistance, and noise, so a brief introduction to Fourier series is given below.

Instead of polynomials as basis functions, trigonometric functions are used in Fourier analysis
and instead of defining a basis in terms of order and knot sequence, a Fourier basis is defined by
a range of frequencies. Fourier basis functions can be represented in many ways, and different
representations are suited for different use cases. Given L = tn − t0 and a maximum frequency
m, the data function ỹ(t) : [t0, tn]→ R can be expressed in the following ways:

ỹ(t) = = A0/2 +
m∑
n=1

An sin
(2nπt

L
+ f

)
(2.6)

=
m∑

n=−m
Cie

i 2nπt
L (2.7)

= a0/2 +
m∑
n=1

(
an sin

(2nπt
L

)
+ bn cos

(2nπt
L

))
(2.8)

where

Ci =


An
2 e

iφn = 1
2 (an − ibn) for n > 0

1
2A0 for n = 0
c∗|n| for n < 0.

ai = Ai sin(f)
bi = Ai cos(f).
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equation 2.6 emphasise the fact that each basis function represents a particular frequency,
equation 2.7 is the representation used by the FFT algorithm and equation 2.8 is the presentation
used in the FDA literature[143].

Just as polynomials constitutes a basis for the space C[a, b] above so does the set of Fourier
basis functions {en2πit|n ∈ Z} form an orthogonal basis of, e.g., the Hilbert space L2[0, 2π]4.
The orthogonality means low computation time since, e.g., the matrix of inner products of
Fourier basis function pairs will be a diagonal matrix (inner product matrix shown in equation
2.21). A standard method in Fourier analysis is to study the spectrum of a data set (e.g., a road
profile), which in FDA lingo becomes a study of the coefficients used in the linear combination
of Fourier basis functions that represents the functional data. This is of course just hypothetical
but illustrates the different mathematical perspectives. The work presented here is not using
Fourier series as a basis function system since our data are not inherently periodic, which is one
of the common reasons for using a Fourier basis[143, p.46]. However, Fourier series will be put
to use in chapter 5 where they are used in the road surface analysis. Moreover, as Fourier analysis
is used in the road engineering literature and in connection with road profile measurements,
some of the challenges connected with this are treated later, in section 2.6, since this is not
directly related to FDA.

Both Fourier and B-spline bases can be viewed as an infinite set of linearly independent
functions in Hilbert spaces. While this serves as a theoretical foundation it is not very useful
with our finite computers, so we pick a finite subset of basis functions which then spans a finite
dimensional (function) subspace. Thus, the selected subspace depends on the types of basis
functions used and the defining parameters pertaining to it. For B-splines it is the order and knot
sequence that uniquely determines a subspace and for the Fourier basis it is the frequencies used.
This gives us great flexibility in how we will represent our data and it stipulates that discrete
observations are the result of an underlying phenomenon. After a proper subspace has been
found, the next step is to find a proper representation of the data, i.e., finding a proper linear
combination of basis functions. This amounts to finding the ci’s that results in the best fit.

Finally, it should be noted that several other bases exist to represent functional data, however,
they will not be used in this work. Of potential interest in transportation engineering is the
wavelet basis function system, which is a hybrid between the frequency approach of Fourier
series and the spatial approach of splines[143, p.53].

2.4 Fitting Basis Functions
Once we have found a proper subspace to represent our data function, a proper fit to the data
needs to be estimated. What makes up a ’proper fit’ is not an easy question, and many answers
exist. However, a specific answer that fits well within the paradigm of FDA is given here.

The classical way to estimate a parameter vector is by minimizing the sum of squared errors
between model and data. In our case the model is a linear combination

∑n
i=1 ciφi(t) = c′φ(t)

of basis functions and both bases presented above can be put into this form. Thus, the objective
function to be minimized is given by

LOLS(c) =
m∑
j

(
yj −

n∑
i=1

φi(tj)ci
)2 = (y −Φc)′(y −Φc). (2.9)

4 L2[0, 2π] is the space of all square-integrable functions defined on [0, 2π] with inner product given by
〈f(x), g(x)〉 =

∫
f(x)g(x)dx.
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where

Φc =


φ(t1)
φ(t2)

...
φ(tm)



c1
c2
...
cn

 =


φ1(t1) φ2(t1) . . . φn(t1)
φ1(t2) φ2(t2) . . . φn(t2)

...
...

. . .
...

φ1(tm) φ2(tm) . . . φn(tm)



c1
c2
...
cn

 .

The resulting function estimate ỹ(t) is then

ỹ(t) = ĉφ(t) , ĉ = min
c

[LOLS(c)]

This is standard linear regression and if we choose our subspace to be spanned by the first
two monomials φ1(t) = 1, φ2(t) = t we have simple linear regression with a straight line
y = ax+ b as the model. ĉ can be found in a standard way by solving the linear system which
is obtained by setting the derivative of LOLS(c) equal to zero, i.e., solving

2ΦΦ′c− 2Φ′y = 0 (2.10)

which, for the sake of completion, gives

ĉ = (ΦΦ′)−1Φ′y. (2.11)

The usual statistical error model is yj = ỹ(tj) + εj where the εj’s are independent, normally
distributed, homoscedastic, and with zero mean and variance σ2. Furthermore, as the statistical
model indicates, the independent variable is assumed to be practically error free. Many general-
isations of this model exist, e.g., by relaxing homoscedasticity we get weighted least squares
instead:

LWLS(c) =
m∑
j

wj
(
yj −

n∑
i=1

φi(tj)ci
)2 = (y −Φc)′W (y −Φc) (2.12)

whereW is the inverse of the covariance matrix, i.e. wj = 1/σ2
j . It follows from the indepen-

dence thatW is a diagonal matrix with the weights in the diagonal5. equation 2.12 coincides
with equation 2.9 ifW = I . Similarly to equation 2.11, ĉ can be expressed as

ĉ = (Φ′WΦ)−1Φ′Wy. (2.13)

Two different remarks about using this approach in FDA and the modelling efforts put forward
here: 1) These classical methods rely on certain statistical assumptions which may or may not
hold for a given data set. In the following chapters it is either hard to ascertain the statistical
properties or an intuitive approach will suffice. An example is illustrated in figure 2.2 where the
noisy fluctuations are clearly visible in the velocity measurements and visual inspection should
be enough to determine noise and amount of smoothing from measurements without going into
detailed statistical analyses. A quite different example is the high-frequency laser profiles investi-
gated in both chapter 5 and 6 that have some potential sources of measurement errors. Although

5 We can also relax the independence condition, in which case we have Generalized Least Squares(GLS) where the
off-diagonal entries ofW can be non-zero.
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product information of common laser equipment indicates very low measurement errors6, it is not
a guarantee against measurement errors in actual road measurements. Furthermore, testing and
calibration are made routinely by profiler operators, but it is usually performed on homogeneous
surfaces with idealised profiles and are thus very far from production measurements. See section
3.3.3 for a discussion of these issues. However, given a large amount of road profile data it is
assumed that the essential surface behaviour is approximated and calculations based on it should
be relatively stable with respect to errors.

2) The wj’s in equation 2.12 can also be viewed as smoothing parameters since each wj
determines how important the residuals (ỹ(tj)− yj)2 are in the overall estimate. E.g., relatively
low values of a set of consecutive wj’s implies that local features causing high residual values
in that part of the data are suppressed by the low weights. In general, OLS/WLS methods are
specific linear smoothers that (linearly) maps a set of observations y into a smoothed image Sy.
In case of OLS S can be derived from equation 2.11 by noting that ỹ = Φc̃, thus substitution
gives

ỹ = Φĉ ⇔
ỹ = Φ(Φ′Φ)−1Φ′y = Sy ⇔
S = Φ(Φ′Φ)−1Φ′.

In the case of WLS S is similarly given by Φ(Φ′WΦ)−1Φ′W . If n is close to m, a
perfect/near perfect fit to the data will result if OLS/WLS is applied, and additional smoothing
must be made. Many other linear smoothers exists such as kernel smoothers which, can also be
used together with basis function schemes[143, 76].

If statistical details are not a major concern or hard to obtain, WLS and kernel smoothers
can be replaced by another class of linear smoothers where the smoothing is based on the data
function itself, as opposed to OLS/WLS. Furthermore, it is a natural extension to the function
defined in equation 2.12, and it relies on the observation that a function with many local features
will exhibit higher absolute values of its derivatives compared to a function that does not have
these features. A concrete example is the velocity data in figure 2.2 where many local (unwanted)
features increases the absolute value of its derivatives. A function f that only captures the slow
decrease will exhibit smaller absolute values of its derivatives compared to a function g that
also captures the small fluctuations. Using vector space terminology, we say that the magnitude
(or norm) of the derivatives of f are smaller than g’s. In the Hilbert spaces mentioned above,
and thus subspaces thereof, the norm of a function h : [a, b] → R is given by

∫ b
a

[f(x)]2dx.
An obvious candidate for this measure is the second derivative since it is used as a measure of
curvature in differential geometry and it fits well with intuition[139, p. 24]. For instance, a
straight line has curvature zero and the curvature of a circle is given by 1/radius so the curvature
decreases as the size of the circle increases. Combining this with the classical approach in

6 E.g., worst case vertical resolutions between 0.25 and 0.0015 mm for Selcom SLS5000 lasers, depending on exact
model number.
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equation 2.12 above, we get

LPEN(c) =
m∑
j

wj
(
yj − ỹ(tj)

)2 + λ

∫
[D2y(t)]2dt

=
m∑
j

wj
(
yj −

n∑
i=1

φi(tj)ci
)2 + λ

∫
[
n∑
i=1

D2φi(t)ci]2dt
(2.14)

as the objective function where the functional
∫

[D2ỹ(t)]2dt measures curvature (or variability)
of the data function and λ determines the trade-off between fidelity of ỹ(t) to the discrete
observations y and the variability of ỹ(t). The functional term is also called roughness penalty.
Obviously, as λ → 0 the estimated function ỹ(t) = ĉφ(t) approaches that which would be
obtained with LWLS and as λ → ∞ we have that ỹ(t) approaches ỹ(t) = ãt + b̃. The latter
comes from the fact that the kernel7 of

∫
[D2ỹ(t)]2dt are the functions spanned by {1, t}, i.e.,∫

[D2y(t)]2dt = 0 for y(t)at + b (a, b ∈ R). LPEN is the objective function that will be used
whenever our functional data requires smoothing, however, other functionals than what is used in
equation 2.14 can be used. Obviously, any derivative Dn can be used in equation 2.14, provided
it exists, but more exotic functionals exists[143, 65], depending on the context of the data. For
instance, using

F [y(t)] =
∫
D2y(t) + ωD3y(t)dt

with

Kern(F ) = a0 + a1 sin(ωt) + a2 cos(ωt) a0, a1, a2 ∈ R

instead of
∫
D2y(t) in equation 2.14 would imply that ỹ(t) → a0 + a1 sin(ωt) + a2 cos(ωt)

as λ→∞ and this would fit very well with data where an underlying periodicity is expected.
As mentioned above, this procedure fits very well with our needs and it gives an intuitive and
holistic approach to the smoothing problem involved in functionalisation. Furthermore, this
technique has been incorporated into many techniques developed in the framework of functional
data analysis. Since the differential operator D2 is used in the functionalization of our data, we
will use it as the default roughness operator in the rest of this chapter.

Another important aspect of basis function fitting using equation 2.14 is computational
efficiency which can be seen by observing that the roughness term can be rewritten as∫

[
n∑
i=1

D2φi(t)ci]2dt =
∫

[D2c′φ(t)]2dt (2.15)

=
∫
D2c′φ(t)D2c′φ(t)dt (2.16)

=
∫
D2c′φ(t)D2φ(t)′cdt (2.17)

= c′[
∫
D2φ(t)D2φ(t)′dt]c (2.18)

= c′Rc (2.19)
(2.20)

7 Not to be confused with the kernel smoothers briefly mentioned above.
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whereR is an n× n matrix. If we drop the independent variable t of φi(t) in our notation,R
can be expressed as

R =


∫

[D2φ1]2dt
∫
D2φ1D

2φ2dt . . .
∫
D2φ1D

2φndt∫
D2φ2D

2φ1dt
∫

[D2φ2]2dt . . .
∫
D2φ2D

2φndt
...

...
. . .

...∫
D2φnD

2φ1dt
∫
D2φnD

2φ2dt . . .
∫

[D2φn]2dt

 (2.21)

When B-splines or Fourier series are used, the integrals can be computed analytically and thus
very fast. If more exotic operators are used, numerical integration techniques must be deployed
instead, such as Simpon’s Rule. Another computational nicety with B-Splines and Fourier series
is that many entries inR are zero. For Fourier seriesR is a diagonal matrix, and for B-splines it
is a band matrix with bandwidth m − 1. All in all, this reduces the minimisation of equation
2.14 to fast linear algebra which can be expressed in compact matrix notation as

LPEN(c) = (y −Φc)′W (y −Φc) + λc′Rc

which can be solved in a similar manner as equation 2.13 above, such that the estimate ĉ can be
expressed in matrix form as

ĉ = (Φ′WΦ + λR)−1Φ′Wy. (2.22)

This approach is similar to regularisation techniques used in classical statistics such as ridge
regression[113]. In our case we regularize our solution using the curvature which, in turn, is a
global property of the function itself.

What have been presented above are some of the essential and basic techniques deployed
in FDA and they form the basis for almost every approach to data analysis within this field.
Since it is by far too comprehensible (and irrelevant) to give a thorough exposition of techniques
available, we will try give a few examples that 1) exemplifies how the techniques above can be
used as building blocks 2) hint at more advanced techniques that might be relevant in rolling
resistance modelling, but which are out of scope of the present work.

2.5 PCA in FDA
Principal Component Analysis (PCA) is a well-known statistical technique frequently used in
many different areas which can be readily adapted to FDA in a version that we will refer to as
fdPCA.

Informally, the classical PCA method transforms a set of data vectors into a new set of
vectors, called principal components, that identify the variation present in the original data. In
addition, the principal components are ranked such that the first components captures as much
variance of the data as possible, and the second component captures as much variance as possible
under the constraint of being orthogonal to the first component and so on. More specifically,
consider a set of data vectors yi = (yi1, . . . , yiP )′ i ∈ {1, . . . , N}. Without loss of generality,
we assume that each entry in the data vectors have zero mean across all vectors. PCA seeks to
find vectors ξ1, . . . , ξN in the following manner

1. ξ1 is the vector that maximizes

N−1
N∑
i=1

t2i = N−1t′t where ti =
P∑
k=1

yik · ξk = y′iξ = 〈yi, ξ〉 (2.23)
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with respect to ξ and under the condition that ‖ξ‖ = 1. The latter ensures that N−1t′t
cannot be arbitrarily large. Informally, given the constraint on the magnitude of ξ1, the
only way to maximize equation 2.23 is by attributing high weight (value) in the entries
ξk of ξ1 where the corresponding values of the yik’s are high across all yi’s. Given the
zero-mean property, this coincides with high variance.

2. ξ2 is found in a similar way as ξ1 with the additional constraint that 〈ξ1, ξ2〉 = 0, i.e., ξ1
and ξ2 are orthogonal.

n ξn is found in a similar way as ξ2 except that ξn must be orthogonal to all the n − 1
previous ξi’s.

By lettingX be the N × P matrix of stacked data vectors y′i we have that t = Xξ which can
be substituted into equation 2.23, and thus the maximisation can be expressed as

maxN−1ξ′X′Xξ = max ξ′V ξ = max〈ξ,V ξ〉 with ‖ξ‖ = 1 (2.24)

where V = N−1X′X is the P × P covariance (estimate) matrix. The fact that it is the
covariance matrix is due to the zero-mean property of the data set. Since V is symmetric, it is
diagonalisable and it can be shown that the solution to the eigenvalue problem

V ξ = λξ (2.25)

given as pairs (ξ1, λ1), (ξ2, λ2), . . . , (ξP , λP ) of eigenvalues and eigenvectors is also the
solution to the PCA problem stated above. More specifically, the eigenvectors ξ1, . . . , ξP
are the principal components and their order is given by the order of the eigenvalues, i.e.,
λ1 > λ2 > . . . > λP .

When we turn to fdPCA, the mathematical setting is not that of classical Euclidean vector
spaces but infinite dimensional Hilbert spaces instead. Thus, our observations are now functions

y(t) =
(
y1(t), . . . , yN (t)

)
=
( P∑
k=1

c1kφk(t), . . . ,
P∑
k=1

cNkφk(t)
)

(2.26)

and the covariance matrix V is now a covariance function

v(t, s) = N−1
N∑
i=1

yi(t)yi(s) = N−1y(t)′y(s) (2.27)

and just as the symmetric covariance matrix V can act on vectors ξ, the covariance function can
be used as a self-adjoint operator V[ξ(t)] acting on functions ξ(t) by8

V[ξ(s)] = ξ̂(t) =
∫
v(t, s)ξ(s)ds. (2.28)

With these generalizations, together with the fact that in function spaces an inner product can
be defined as 〈g(t), f(t)〉 =

∫
g(t)f(t)dt, we can express a functionalized version of equation

2.24 as

max
〈
ξ(t) , V[ξ(s)](t)

〉
=
∫
ξ(t)

∫
v(t, s)ξ(s)dsdt with ‖ξ(t)‖ = 1 (2.29)

8 Compare this with the well-known Fourier operator: F [f(t)] = f̂(s) =
∫
e−2πitsdt
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and just as in the Euclidean case, the fdPCA components are given as eigenfunctions of the
functionalized eigenvalue problem∫

v(t, s)ξ(s)ds = λξ(t). (2.30)

Thus our principal components are (ξ(t)1, λ1), (ξ(t)2, λ2), . . . with λ1 > λ2 > . . .. Generally
in infinite dimensional function spaces there are an infinite number of eigenfunctions which
are too many for our practical purposes. However, as noted earlier, we are working in finite
dimensional subspaces of these function spaces and so in practice there are only a finite set of
eigenfunctions.

We began by considering the finite dimensional (Euclidean) case and then we generalized
it to the infinite dimensional case. Now we will return to the finite arena by restricting the
general infinite formulation to one of finite dimensional subspaces, when considering the
computational details on how to calculate the functional principal components in practice. Since
every functional observation is represented as a linear combination of the same basis functions
spanning our subspace, we can express the vector of data functions as

y(t) = Cφ(t) (2.31)

where φ(t) is the vector of length P containing the basis functions and C is the N × P matrix
of parameters where row i contains the coefficients for yi(t). By noting that we can express
y(t)′ as φ(t)′C ′ we can express a finite subspace version of the covariance function in equation
2.27 as

v(s, t) = N−1φ(s)′C ′Cφ(t). (2.32)

Moreover, by assuming that an eigenfunction ξ(t) is on the following form

ξ(t) =
P∑
k=1

bkφk(t) = φ(t)′b (2.33)

we can reformulate the self-adjoint operator in equation 2.28 in terms of the covariance function
in equation 2.32 as

V[ξ(s)] =
∫
v(t, s)ξ(s)ds. =

∫
N−1φ(t)′C ′Cφ(s)φ(s)′bds (2.34)

= φ(s)′N−1C ′CWb (2.35)

whereW =
∫
φ(s)φ(s)ds since it is the only part of the expression that is not constant under

the integral. This derivation is similar to the derivation of R in equation 2.15. With a finite
dimensional but functional version of the covariance operator we can easily substitute it into the
eigenvalue problem stated in equation 2.30 and get

φ(s)′N−1C ′CWb = λφ(s)′b (2.36)

Since equation 2.36 should hold for all s, by definition, we can drop φ(s) and get the following
eigenvalue problem

N−1C ′CWb = λb (2.37)
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with respect to the coefficient vector b. However, the vectors b satisfying equation 2.37 is only
of implicit interest since it is the functions ξ1(t), . . . , ξP (t), that they provide coordinates for,
that is of real interest. In other words, we are not interested in an orthonormal basis b1, . . . , bP
(of RP ) where each bi satisfies equation 2.37, but an orthonormal basis ξ1(t), . . . , ξP (t) (of a
L[a, b]2-subspace) where each ξi(t) satisfies equation 2.36. Fortunately, the inner product used
for the ξ(t)’s can be expressed as a inner product for the b’s (using a similar derivation as in
equation 2.15):

〈ξ1(t), ξ2(t)〉 =
∫
b′1φ(t)b′2φ(t)dt

= b′1[
∫
φ(t)φ(t)′dt]b2

= b′1Wb2 = 〈b1, b2〉W

so ‖ξ(t)‖ = 1 implies bWb′ = 1 and 〈ξi(t), ξj(t)〉 = 0 implies b′iWbj = 0. Thus, if we set
b = W− 1

2u and substitute into equation 2.37 and rearranging we get a eigenvalue problem

N−1W
1
2C ′CW− 1

2u = λu (2.38)

where 〈u1,u2〉 = 〈b1, b2〉W and so the eigenvectors derived from 2.38 can be transformed into
coordinates for the eigenfunctions ξ(t) that we seek. This functionalized version of PCA is
exemplified with our own data in section 5.2.1.

This derivation illustrates a general methodology used to adapt classical analysis techniques
to functional data. The first step is analysing the linear algebra used in the classical technique
and reformulate it using general concepts from functional analysis that also holds for infinite
dimensional function spaces. Then reintroduce the linear algebra by using finite subspaces of the
general infinite function space such that it can be computed in practice. Another direct approach
is to convert the data functions back to discrete data by evaluating the functional data for a
fine grid of values t1, . . . , tM (M >> P ) and then perform the classical PCA on the resulting
Euclidean vectors. However, this introduces computational overhead since the actual dimension
of the problem is only P and it does not utilize any orthogonality or compact support properties
of basis functions such as, e.g., the Fourier basis whereW = I .

Note that fdPCA presented above can be extended in many different ways. For instance, it
can be extended to deal with pairs (yi(t), zi(t)) (or n-tuples for that matter) of data functions
or it can be extended to mixed data where, e.g., the data is composed of tuples (yi(t), zi) of
data functions and vectors. Another extension concerns smoothing of eigenfunctions where
the requirement ‖ξ(t)‖ = 1 is extended to take roughness of ξ(t) into account, e.g., by using a
penalty like λ‖D2ξ(t)‖ (used in equation 2.14) that utilises the smoothness of the functions. We
will refrain from covering the nitty gritty details of these extensions as we did with fdPCA.

While fdPCA is the only classical technique examined here, many other techniques have
been adapted to functional data. Most of these have also been extended to take advantage of
smoothness properties of the data functions by. e.g., incorporating a roughness penalty. For
instance, Cannonical Correlation Analysis (CCA)9 as well as many different linear modelling
approaches where combinations of parameters, independent, and dependent variables can be
functional. Some of these techniques could prove valuable in rolling resistance modelling

9 In the case of CCA, introducing a roughness penalty is not just a feature but a necessity for the functionalized version
to work.
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Figure 2.4 Illustration of aliasing. The black circles are discrete observations. The red and blue lines are
two different sines that both are able to replicate the discrete set of observations.

approaches similar to this work, but with more comprehensive sets of data than what have been
available here (and treated in chapter 5 and 6).

2.6 Fourier series revisited
Fourier analysis and Fourier series are popular tools in road engineering. Investigations are often
undertaken by transforming road surface profiles into the frequency domain where wavelengths
can be correlated to other quantities such as rolling resistance, skid resistance, noise, and so
forth. In general, road engineers often characterise the road surface by partitioning spatial
wavelengths into conceptual meaningful intervals (this classification is described in section 4.1
and an overview of it is given in figure 4.1). E.g., macro-texture is defined to be wavelengths
from 0.5 to 50 mm. Moreover, the de facto standard for measuring road unevenness that is
used in road maintenance today, the so-called International Roughness Index (IRI), relies, in
practice, on the frequency domain for calculation (IRI is described historically in chapter 3 and
the technical formulation is described in chapter 4). As mentioned in section 2.3 there are some
challenges related to Fourier analysis when applied to road profiling, that will be discussed in
detail now.

One of the phenomena discussed in road profiling literature is aliasing which occurs when a
discrete set of observations are converted to the frequency domain (see chapter 3 for an overview
of this issue). The root of the problem lies in the fact that a discrete set of observations cannot, in
general, be uniquely replicated by a finite sum of sines, i.e. there are many possible (finite sums
of) sines that will be able to replicate the observations. A simple example illustrating the matter
is given in figure 2.4. If we imagine that the red sine in figure 2.4 represents a 2D road profile
where its road length on the x-axis is plotted against vertical position on the y-axis and the black
filled circles are measurements obtained of it. Then the blue sinusoid is the one given to us by
a discrete Fourier transform that clearly is far from a fit to the actual profile. Thus, while the
observations can be replicated, the frequency domain representation of the function is erroneous
and so, e.g., any interpolation or spectrum derived from it will be wrong.

More precisely, assume a continuous function y(t) can be expressed as a (finite) linear
combination of Fourier basis functions from the orthonormal set {en2πit| n ∈ Z} and assume
that the highest n needed is N . Then a sample rate B equal or higher than 2N is necessary to
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Figure 2.5 Two different functions representing idealised surfaces.

find the coefficients used in the linear combination. This is an FDA flavoured version of the so-
called Nyquist-Shannon sampling theorem, and the sample rate 2N is called the Nyquist-rate[13,
p.328]. Aliasing problems arise when the sample rate is not sufficient: If y(t) is sampled with
2N and there exists frequencies n > N which also contribute to y(t), then they will contaminate
lower frequencies as illustrated in figure 2.4. In the road profile studied later, we do not have any
a priori knowledge of minimum frequencies so the problem of aliasing is not only a theoretical
problem. This issue can be mitigated by applying analog filters that attenuate frequencies higher
than the Nyquist rate before any discretization occurs. If there is only a discretized set of
observations available and sampling frequency is much higher than the frequency range under
investigation, observations can be aggregated into sub-averages before transformation to the
frequency domain[87, p.14].

Another important aspect of Fourier analysis that will be relevant in our later investigations
is correspondence between a function y(t) and its frequency spectrum. The spectrum only
plots information about amplitudes of each frequency component which is, in principle, only
half the story, as can be seen from equation 2.6 where there is a phase parameter for each
frequency component. Thus different y(t)’s can have equal spectra. To illustrate this, consider
the two functions plotted in figure 2.5. While they do have the same period, they have qualitative
different behaviours as one of them have spikes while the other have valleys. From our rolling
resistance modelling point of view, these two functions are very different. Nevertheless, their
spectra are identical with the most significant frequencies plotted to the left in figure 2.6. The
reason the functions differ is because of their different phases and, as illustrated to the right
in figure 2.6, for each frequency the valley and spike sinusoids are in antiphase. If these two
functions represented two different road surfaces, we would not expect those surfaces to have
equal properties with respect to skid resistance, rolling resistance etc. Therefore it is not enough
to study the road profile spectra only, if the goal is to understand the relationship between road
surface and, e.g., rolling resistance. This have also been mentioned in the road/transportation
literature[112].
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3 Overview of Vehicle Rolling Resistance

In this chapter we present the general theory of rolling resistance of motor vehicles as well as
measurement methods of rolling resistance and road surfaces. Much of the literature reviewed
here and in chapter 4 have also been reviewed and published in [4], so there will be a slight
overlap between the two expositions. However, the purpose and focus of these chapters deviates
from [4] in a couple of respects: First of all, this is not intended as a neutral and descriptive
exposition of rolling resistance research as is the case with [4]. Instead, the analysis put forward
here will be of a critical nature, with the intention of creating research questions to be pursued
in the following chapters. Secondly, the scope of [4] is broader compared to what is presented
here, and [4] covers many more aspects of rolling resistance research than what is needed for
our scientific endeavours in later chapters. E.g., detailed Finite Element Models as mentioned in
chapter 1 are not considered here since their level of detail exceeds the practical goals of the
present research.

The bulk literature reviewed here are of a peculiar nature, compared to the previous scientific
fields that the author has been acquainted with. Much of the research and results that have been
produced in the past decades have, to a large extent, been in the form of technical reports and
therefore to a lesser extent as articles in scientific journals. An advantage of this is that these
reports are usually publicly available, but unfortunately this also means they are scattered across
various websites pertaining primarily to research projects and government bodies that produced
them. A related observation is that the literature is generally quite fragmented with only a few
common treads of research. Of course some publications stand out and are frequently cited in
other works, but generally the links between different research projects and groups are more
implicit than is the case elsewhere in the scientific and engineering communities.

3.1 Introduction to Rolling Resistance
In this section we are going to take a look at rolling resistance and what phenomena are causing
rolling resistance, but first we will start by looking at all factors that resist vehicle movement.
The exposition in this section is largely based on [154] and [49].

3.1.1 Driving Resistance
Rolling resistance is only one component among many that resist vehicle movement and thus
consumes energy during driving. In [154] a list has been made that will inspire the list below.
The main focus here is on energy loss and general phenomena that occur in different parts of the
vehicle. Some of these are included rolling resistance components, which will be elaborated
below. Of course, this is a simplification, but it will suffice for our purpose here. It is essentially
an expanded version of the list in [63], which in turn is an expanded version of the list in [117].

a) Tyre-related energy loss: This is the main constituent of rolling resistance. This energy
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loss comes from hysteresis effects of tyre deformation, shear of the tyre, and adhesion
between surface and tyre.

b) Suspension loss: Energy loss in the shock absorbers, especially when driving on uneven
roads.

c) Aerodynamic drag: Energy loss due to air drag. While aerodynamic drag holds for the
whole car, a subset of it is specifically related to high-speed rotations of the wheels.

d) Inertial resistance: When accelerating, the entire vehicle resists change in speed which re-
quires energy to overcome. This phenomena also occurs locally with angular acceleration
of axles and wheels.

e) Gravitational resistance: When the road has a positive longitudinal gradient, energy is
consumed to overcome earths gravitational pull. With a negative gradient potential energy
is released instead.

f) Transmission loss: When the kinetic energy is transferred from the engine to the wheels,
a transmission loss occurs. This loss is primarily due to friction, but aerodynamic drag of
rotating axles might also play a minor role.

g) Engine resistance: Various components that gives rise to energy loss in the engine when
transferring energy from the fuel to the drive-shaft. Examples are excess combustion heat
and piston-related friction.

h) (Loss from auxillary equipment): Additional energy consumed to power equipment not
related to driving, such as air condition, radio etc. This is not really related to driving
resistance.

There are a couple of alterations between this list and the one found in [154]. They will be
mentioned here, as they illustrates some of the ambiguties that inevitably arise when categorizing
driving resistance (and rolling resistance in particular). Firstly, ’side force resistance’, i.e.
resistance from driving in curves, is an independent item found in [154] which is implictly
included under a) here. This is also mentioned as a possibility in [154]. Secondly, a) has been
called rolling resistance in [154] but as subsequent discussions here and discussions in [154]
suggests, this is not necessarily accurate. Indeed, several of the items in the list above could be
viewed as contributors to rolling resistance. This will be the topic of the section below.

3.1.2 Rolling Resistance Constituents
Before going into detail with the constituents of rolling resistance we will give a definition first.
Several definitions have been given in the literature and in connection with rolling resistance mea-
surement standards such as SAE J1269, SAE J2454, and ISO 28580:2009. Historically, rolling
resistance has been defined as a force[49], which traces back to initial work by Coulomb[163] in
1785, and is at the core of modern definitions exemplified by the standards above. However, in
[163] Schuring argued, by analysing the work in [67], that rolling resistance should be defined
in terms of energy loss (per unit distance traveled) instead of force, and thus renaming rolling
resistance to rolling loss:

... rolling resistance is defined as work expended by the tyre per unit distance
traveled. [163, p.32]

While the definition of rolling resistance in terms of energy per unit distance or force is dimen-
sionally equivalent, Schuring argued that defining rolling resistance in terms of energy per unit
distance is a more general formulation that can account for a wider range of conditions compared
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to the definition using force[163, p.32]. This definition might also be more suitable, since the
main component in rolling resistance is energy dissipation due to hysteresis losses. Furthermore,
given the aim of this research, as described in chapter 1, our interest is in determining energy
consumption due to the tyre/road interaction and not the magnitude of the rolling resistance
force. Regardless of Schurings discussions, rolling resistance is still a very common term used
instead of rolling loss, but standards such as ISO 28580 defines rolling resistance in terms of
energy consumed per unit distance[80, p.1]. We will use ’rolling resistance’ and ’rolling loss’
interchangeably in the following chapters. Unsurprisingly, rolling resistance of a tyre depends on
the load Fz applied to the tyre. Studies have suggested that a linear relationship exists between
rolling resistance FRR and tyre load, so a dimensionless rolling resistance coefficient CRR or
CR has been formulated[154, 80] as

CR = FRR/FZ . (3.1)

This is a widely used measure of rolling resistance and is used by, e.g., the rolling resistance
trailer discussed below.

While Schurings general definition seems fit for our purposes, it does not specify any details
as which phenomena give rise to the energy consumption. For our purpose here it seems
suitable to partition different rolling resistance components into 3 broad categories: Components
that takes place in the tyres (and vehicle) only, components that takes place in the pavement,
and components that are a result of the interaction between pavement and tyre. Some of the
components can be split into sub-components that are in different categories, and if that is the
case they will be placed in all of them. First we have the wheel and tyre related components:

• Hysteresis loss due to tyre deformation. Even on a smooth and planar surface tyre
deformations occur during rolling such as sidewalls and tread-block deformations. Besides
tyre material composition and geometry, these phenomena depends on tyre pressure and
the load applied to the tyre.

• Inertial resistance. When the vehicle changes speed, the tyres change rotation speed which
causes inertial resistance.

• Aerodynamic drag of the rolling tyre. As the tyre moves through the air an aerodynamic
drag is created. Note that this is not considered to be part of rolling resistance in ISO
28580 but is instead described as ’parasitic losses’.

• Transmission loss. Even though most of the transmission loss does not occur in the tyre,
there is some energy loss due to bearing friction. This is also not considered to be part of
rolling resistance in ISO 28580.

As mentioned above, some of the components do not count as rolling resistance by some drum
measurement standards which suggests that the primary target of these is to measure the energy
loss due to tyre deformation only. Even so, since the object of study in this thesis is rolling loss
from tyre/road interaction and not the purely tyre-related losses, we will not go into a detailed
discussion about it. The same goes for the tyre independent pavement rolling losses, which
primarily consists of the following:

• Deflection of the pavement due to the load of the vehicle. While this of course depends on
the load exerted by the tyre on the surface, it is mostly independent of the tyre.

• Deterioration and movement of chips and stones. Loose and loosened stones in the surface
patch creates energy loss when moved between tyre and surface.
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While these phenomena are relevant for, e.g., road administrators and pavement entrepreneurs
the focus of the present work is on the tyre/road interaction as discussed in chapter 1. The
portion of rolling resistance that is our primary object of investigations here are related to the
tyre/road interaction which are summarized below:

a) Hysteresis loss by tyre deformation due to road longitudinal unevenness. This type of
loss is happening at the larger end of the length-scales of rolling losses and is caused by
irregualarities on the surface (like bumbs, holes, etc.) that causes the tyre to bounce, thus
absorbing some of the corresponding shocks in, e.g., the tyre side-walls.

b) As above, but with tyre deformation due to transversal unevenness which can be caused
by slanted road, rutting etc.

c) Hysteresis loss by tyre deformation due to road texture. Local tyre deformations occurring
at the tyre/surface contact patch where tyre tread-blocks are deformed and penetrated by
e.g., chips and stones in the pavement.

d) Deformation of tread-blocks also creates tangential motions that causes tread-blocks to
’slip out’ of the contact patch when they leave it. This is also referred to as ’stick-slip’.

e) Molecular bonds between tyre and road surface in the contact patch also creates adhesive
forces that needs to be overcome when tread blocks leaves the contact patch. This is also
called the stick-snap phenomena.

As can be seen from the list above, many different phenomena account for the tyre/surface part
of rolling loss which altogether are extremely complicated and detailed models capturing all of
these phenomena would likewise be very complex. It should be noted that this categorisation is
rough in the sense that distinctions between different length-scales have been made. For instance,
item a) and c) are not completely separated, but represents two extremes in a continuous array
of length-scales. If we imagine a road bump that is, e.g., 1 meter wide in the driving direction,
we would say that the tyre deformation caused by driving over this bump would belong to the
first item and a stone 1 cm in diameter would belong to the second first item. However, a rock
10 cm in diameter can cause side wall deformation as well as local tread block deformation and
thus could be categorised into both. In practice, however, it is the road measurements available
to us that determines which aspects of the road that we can model. How to measure these
road properties as well as rolling resistance are the primary topics of the last sections in this
chapter. In chapter 4 a new texture measure for rolling resistance assessment is proposed and it
is especially item c) and e) that are relevant to consider there. While the phenomena in d) are
also pertaining to the texture level, it does not seem to be directly dependent on the road surface
geometry (although it should depend on speed).

3.2 Rolling Resistance Measurement Techniques
There are essentially two types of measurements that will be relevant for our investigations in
later chapters: Rolling resistance and road surface measurements. We will begin by discussing
rolling resistance measurement techniques.

Since the beginning of the twentieth century, several measurement techniques have been
used to measure vehicle/tyre rolling resistance. Essentially four techniques are used, although
the exact procedure can vary:

1. Drum measurements
2. Trailer measurements
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3. Coast-down measurements

4. Vehicle fuel consumption
Note that they have been ranked according to idealization, i.e., the first one excludes most
disturbing factors and the last item includes every driving and rolling resistance component
mentioned earlier. Moreover, every step includes (more or less) the rolling and driving resistance
components of the former step. What is excluded and what is included will be discussed for
each method as it is described below.

3.2.1 Drum Measurements
This procedure goes back to (at least) 1922 with the work of [67]. The drum measurement
technique is widely used in the tyre industry, and several standards have been made in order to
harmonize the procedure[79, 80, 147]. In 2009 the EU label directive was put into effect, which
requires tyre manufacturers to label their tyres with a rolling resistance efficiency indicator. The
basis for these labels are drum measurements, and a report commissioned by the EU1 set forth
practices for these measurement procedures.

The basic idea is to have a tyre pushed onto a drum with an applied load and having the
drum run by a motor attached to it. Rolling resistance will then retard the rotation of the drum
and this retardation is measured in several ways. The ISO 28580 standard mentions tyre spindle
force, drum input torque, drum deceleration, or drum motor power consumption[80]. In addition,
parasitic losses have to be dealt with in the resulting measurements[80, p.9]. The standard also
specifies measurement times, formulas for rolling resistance calculation, temperature correction,
drum curvature correction etc.

The drum measurement are the most idealized method since almost all disturbances have
been removed, including the road itself. The advantage of this is that we are closer to measure
pure tyre rolling resistance, but it can be argued that important effects from the real setting are
left out such as, e.g., pavement unevenness and texture. The latter can be accommodated by using
a rough surface on the drum, but it is questionable whether or not this is a true representation of
the texture variety of real roads. With our aim of understanding tyre/surface rolling resistance
this makes the drum method unsuitable. Another unrealistic factor that has to be corrected for is
the curvature of the drum[80, p.13][29]. The standard formula used for curvature correction has
recently been questioned for correctness[47].

3.2.2 Measurement Trailer
This measurement technique is relatively new. The first trailer was developed and build in the
eighties by the Belgian Research Road Center[154]. Measurement results with this trailer was
presented in 1989[34] and showed a substantial influence on rolling resistance from the so-called
’megatexture’ length-scale range (to be explained below). Since then, several other trailers
for personal car tyres have been developed2 by, e.g., Technical University of Gdansk (TUG)
and Bundesanstalt für Strassenwesen (BASt), which have also developed a trailer for lorries
together with Forschungsvereinigung Automobiltechnik (FAT)[154, p. 69]. The TUG trailer
has recently been modernized by reducing aerodynamic drag[182] and reducing influence of,

1 For more information about this, see the web resource http://ec.europa.eu/energy/en/topics/energy-efficient-products-
and-labels/tyres (accessed 1st of February 2015).

2 Hugo Lesdos from the Technical Campus of COLAS told the author in a personal communication (at the ’Green
Road Infrastructure Workshop, November 2014) that COLAS is also working on a rolling resistance trailer.
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e.g., inertia[183]. This trailer is widely used in rolling resistance measurement campaigns in
Europe[15, 144, 145, 68, 144] (including the COOEE project) as well as America[41]. Unfortu-
nately, the aforementioned trailers differ significantly in design and inter-trailer measurement
comparisons have not been satisfactory[15, 145]. To rectify this, the ROSANNE project aiming
at standardizing rolling resistance measurement trailers, among other things, has recently been
launched3.

The basic principle of the measurement trailer is to have a tyre mounted on the trailer with
an applied load. When the trailer is towed by a vehicle with (preferably) constant speed, the
rolling resistance of the mounted tyre exerts a retarding force which is then measured by the
trailer. It can be measured in many different ways and in the case of the TUG trailer this is done
by measuring the deflected angle of the measuring arm where the wheel is attached.

The measurement trailer is not as idealized as the drum measurements, since the measurement
is performed on the actual roads. Thus, many tyre/surface interactions will be included in the
measurements such as those arising from texture, cracks etc., as well as pure pavement losses
like pavement deflection. Depending on the trailer construction, some suspension losses might
also be present. The same goes for wheel bearing losses, which are also present in drum
measurements, although specifications exists to correct for it[80]. Any correction terms for the
trailer are not known to the author. In principle, the trailer measurement method seems ideal
for our present purpose of assessing the energy consumption due to the tyre/surface interaction
since the measurements includes relevant rolling resistance components and excludes irrelevant
ones. On the other hand, this measurement technique, as hinted above, seems not entirely mature
as inter-trailer comparison is not optimal[15]. Nevertheless, trailer measurements are a source of
rolling resistance measurements in this thesis.

3.2.3 Coast-Down Measurements
According to [154, p.85] this kind of measurement traces back to the 1920s. Besides rolling
resistance, the coast-down method has been used to assess vehicle aerodynamic drag[179, 176,
22, 43] which has been shown to correlate well with wind tunnel experiments [39, 21, 18,
169, 98]. The main idea of this measurement technique is to let a vehicle coast freely from
an initial velocity and position, with clutch down in neutral gear. With engine and gear train
disengaged, the velocity depends solely on gravity, rolling resistance, aerodynamic resistance,
and a minor subset of the friction forces such as bearing friction. Most forces are retarding the
speed of the vehicle with some exceptions such as those arising from tail wind and downhill
coasting. By measuring the speed of the vehicle at (preferably) high resolution the resulting
net force acting on the vehicle during the coast-down can be inferred. If, in addition, other
quantities are measured such as road texture, gradient, wind speed/direction, barometric pressure
etc., it is possible to determine the force contributions from, e.g., rolling resistance, side force
resistance, and aerodynamic drag by fitting a model to the measurements. The model is based on
Newtons second law of motion, but the exact formulation can vary in many respects depending
on assumptions and the types of measurement available. As an example, the simple model used
in[43]

a(t) = dv

dt
= cv2 + r

m+mrot
(3.2)

3 Since this project is far from finished there are no publications yet. For more information see the following webpage
http://rosanne-project.eu/
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where

c = 1
2ρACd and r = R+mgθ. (3.3)

m is the mass of the vehicle,mrot is the inertial mass of rotating wheels, ρ is air density,A frontal
area of the coasting vehicle, Cd the aerodynamic drag coefficient, R is rolling resistance, g is
gravitational acceleration and θ is the longitudinal slope of the road. All quantities except R and
Cd is measured in [43] so by approximating a(t) from pairs of time and position measurements,
the rolling resistance R and aerodynamic drag coefficient Cd can be estimated. From our point
of view this model is rather coarse since, e.g., the rolling resistance is only represented as a
constant. Recent coast-down experiements[63, 89] have expanded the model above as well as
provide more measurements of other quantities such as transversal slope, road texture etc. These
new models and data will be treated in chapter 6 and used in investigating our own attempts at
assessing road surface induced rolling resistance.

Since the coast-down procedure involves the entire vehicle, it poses a significant step down
from the idealized pedestal compared to the measurement trailer. This means that all vehicle
transmission losses, except for losses occurring before the clutch and losses in connection with
the gear train, are present during measurement. Suspension losses are also better captured than
the trailer because the suspension losses experienced in the coast-down procedure stems from
the vehicles actual suspension system. This is of course important if the effect of the roads
unevenness is a specific subject of investigation. Furthermore, air resistance of the entire vehicle
is captured by this method, hence the use of coast-down procedures to estimate aerodynamic
drag coefficient. The closeness to actual driving is both the strength and weakness of this method:
The closeness to actual driving makes it ideal for investigating phenomena that more idealized
methods are unable to capture. On the other hand a good deal of modelling work (i.e. model
formulation and parameter estimation) has to be made to be able to distinguish the different
forces acting on the vehicle. A detailed model also requires a great deal of measurements which
will be apparent in chapter 6 where a model much more detailed than the model in eq. 3.2 and 3.3
is used. In addition, these extra measurements and modelling efforts introduces additional layers
where noise and other factors might distort the results. All in all this seems like an interesting
measurement method to use in research and that is why it is included here.

3.2.4 Fuel Consumption Measurements
The last, in no way idealized, method is direct fuel consumption measurements where fuel
consumption of the engine is measured directly. These kind of measurements have been brought
into use in many different ways. For instance, high frequent measurements of fuel inflow to the
engine have been used along with other data, such as measurements of the roads surface[151],
to see if any correlation exists. Previously, fuel consumption measurements have also been
used in investigating tyre energy loss[94, 162] and many different models of vehicle fuel
consumption have been made[19] which recently have been used in general Vehicle Operating
Cost models[58, 26]. Some of these are mechanistic and resembles the ones used in coast-down
modelling. For an introduction to the development of these models, see [58, 26]. We will
not go into detail about fuel consumption models here as they are too general for the present
purposes of this thesis. Besides picking up the same driving resistance components as the
coast-down method, fuel consumption also depends on the internal engine friction as well as
energy consumption of auxiliary equipment. Since these sources of energy consumption are
entirely irrelevant for the aims in this thesis, fuel consumption measurements have not been
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considered. Nevertheless, they might be of interest if they are combined with other sources of
data. Especially [151] showed some interesting use of fuel consumption measurements.

3.3 Surface and Pavement Measurement Techniques
The other source of key data to the present work is pavement measurements. In this section we
are going to present some of the different measurement techniques that are relevant for surface
induced rolling resistance. We are also examining the historical background as it explains some
of the essential road engineering concepts and why they are used today. The focus will be on two
kind of road properties that have been measured before the introduction of modern laser profilers
and the subsequent development that it has resulted in. The first property is the so-called ’road
unevenness’, which, informally, refers to the ’bumpiness’ of the road and other properties in the
length scale of meters. The second property is ’road texture’ and refers to mm scale irregularities
that results from the mix of mineral aggregates in the pavement. Another way of expressing road
texture is by using the term ’surface roughness’. Unfortunately, ’roughness’ is a very ambiguous
word in road engineering, since it is also used instead of ’unevenness’ in American English for
describing road unevenness mentioned above.

Another road property that is also frequently measured and studied, is the ’pavement deflec-
tion’, i.e. the pavement deformation due to the load of a vehicle. This is not related to pavement
surface as such, but relates to the layers below the pavement surface, and therefore it is out of
scope of the present work. Furthermore, a study prior to the COOEE project estimated that at
most a couple of percentages of total rolling resistance (measured with the TUG trailer) were
due to pavement deflection on wearing surfaces from normal Danish state roads[161].

Much of the measurement equipment and techniques presented here produces a large amount
of data. This is especially the case for modern laser-based equipment used today and thus also
in this work. In order to use these data to assess rolling resistance, pavement condition, etc.,
they are reduced to road metrics. Road metrics are used to describe road properties, such as
road unevenness, in an easy and quantifiable way, which can then be used for road research and
maintenance purposes. Two of the most common road metrics are mentioned in this chapter
but several more will be introduced in chapter 4 where a new road metric for rolling resistance
assessment is proposed as well. The term ’road metric’ will be used interchangeably with ’road
measure’ and ’road parameter’ and ’road’ will often be omitted if it is obvious from the context.

Finally, it should be noted that the distinction between road unevenness and texture is rather
coarse and the description above is rather vague and intuitive at this point. A much more
differentiated view of the surface is presented in chapter 4. However, the unevenness and texture
terms suffices for this section as it reflects the practical way of measuring and are also common
terminology used by engineers working in the field of road maintenance today4.

3.3.1 Unevenness measurement
The initial interest in road unevenness traces back as early as 1920s when road engineers wanted
to study the relationship between the roads unevenness and the suspension system[156, p.39]
which in turn could be used to assess an important aspect of road condition and quality, namely
the ’bumpiness’. Since a bumpy road is a great nuisance to its users5 and can potentially compro-

4 This is at least the terms used in the Danish Road Directorate.
5 In the 1960’s a correlation between pavement condition ratings (made by a panel of raters) and road unevenness was

found in studies by American Association of State Highway and Transportation Officials (AASHTO)[54, p.1]
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mise traffic safety, it is of central importance for maintenance purposes of road administrators to
measure and quantify this quality of the road . To measure this, road engineers developed the
so-called road meters or response-type road roughness measuring system (RTRRMS) which
are vehicles equipped with a measurement device that records the deflection occuring in the
suspension system during driving. That is, they did not measure the road itself, but the sus-
pension systems response to the road. These devices were very popular among engineers[156,
p.40] to determine, e.g., road quality, and many of these devices were developed and used in
the following decades. Unfortunately, these devices that were the de-facto standard in deter-
mining unevenness were used without any standardization whatsoever. Since the measurements
were affected by the suspension-system of the vehicle, the vehicle itself, and the measurement
device, comparison between RTRRMS’s was impossible. For this reason The World Bank
initiated a project in 1982 to establish standard methods for correlation and calibration of various
different unevenness measurement devices and published it in [158]. Based on the results of
[158] and another study by the National Cooperative Highway Research Program (NCHRP)
(published in [54]) a standardized measure of road unevenness was formulated. This is the
so-called International Roughness Index (IRI) and it is based on a quarter-car model, i.e., a
mathematical model of a single wheel and suspension system. IRI is our first example of a
road metric/parameter. The mathematical model behind IRI is described in detail in chapter 4.
Since it basically models the RTRRMS system it could be seen as a standard for calibration
and measurement interpretation of RTRRMS’s and this is probably one of the major reasons for
IRIs success. The reason for mentioning IRI here, is that even though better and vastly different
equipment have been developed since the RTRRM’s, modern unevenness measurements are still
converted to the IRI metric when used in research and road maintenance. This entanglement of
IRI with road unevenness is so widespread that the two terms are used interchangeably by some
engineers in the road maintenance community[168, p.25]. This entanglement also happens for
road texture and MPD discussed in section 3.3.2.

Different kinds of methods and equipment exists today that attempts to measure the actual
road unevenness and not the vehicle response to road unevenness. The most straight forward
measuring approach is the so-called ’rod and level’ method[156] which is in use today[88]. The
idea is to keep a stationary reference stick fixed and then measure the elevation relative to this
stick by placing a tripod, with a laser pointing at the reference stick, at a measured distance on the
road from the reference stick. Example of usage shown to the right of Fig. 3.1. After measuring
the vertical displacement from the reference stick, the tripod is moved a bit further away from the
reference stick and a new measurement is made. This is a very slow and laborious process and
unfortunately not very reliable[88, p.11]. Another approach is to use inclinometer-based devices
such as The Dipstick to measure road unevenness. These devices work by having two supports
separated by a fixed distance of 250-300 mm[156, 88] and the slope between the supports is
used to calculate unevenness. Some of the inclinometers are on wheels and are hand-pushed by
an operator but in the case of the Dipstick it is a cane with two supports mounted at the bottom.
After each measurement the operator pivots the cane 180◦ such that the support that was in front
(w.r.t. walking direction) at the last measurement is in the back on the next measurement and so
forth. A pictogram of this device is shown to the left in Fig. 3.1.

While the above measurement techniques are used by the road maintenance community, the
inertial profilers are by far the most popular and most of the profile data that we have at our
disposal in this project originate from this kind of equipment. Nowadays inertial profilers are
both used for unevenness and texture measurements, so some of the discussions that apply to
both use cases are discussed in the end of this section. The inertial profiler, which was developed
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Figure 3.1 Left: Pictogram of the dipstick (taken from [127]). Right: Surveyors measuring with a ’rod
and level’. The picture is taken by Intergovernmental Committee on Surveying and Mapping (ICSM) and
can be found at http://www.icsm.gov.au/mapping/surveying3.html. Licensed under Creative Commons
Attribution 3.0 Australia (http://creativecommons.org/licenses/by/3.0/au/deed.en).

at General Motors Research Laboratories in the 1960s[156], consists of three components: An
accelerometer that measures vertical acceleration of the vehicle, a non-contacting sensor (laser,
infrared, optical or ultrasonic) measuring surface elevation, and a speed/distance measuring
device usually mounted on a host vehicle such as a van. During measurement, the driving vehicle
measures the vertical acceleration (cause by, e.g., bumps in the road) of the vehicle and uses
this to correct a initial height reference set before driving. This continually revised reference
height is subtracted from the elevation measurements performed by the non-contacting sensors
thus yielding the final unevenness measurements. In general, laser, infra-red and optical height
sensors gives precise and sufficient reproducible measurements of the road profile for use in
IRI calculation, if profile measurements are properly processed afterwards[87, p.33]. Ultra
sonic height sensors have been deemed insufficient[87, p.xiv] since they can be distorted by
road texture and are unable to register cracks that would be well within the unevenness range.
Optical sensors are sensitive to ambient light and can give erroneous measurements on, e.g.,
white pavement markings[87, p.11]. Today, lasers are the most widely used technology for
height sensors and all of the equipment used in this work have been equipped with lasers for
height sensoring. It is interesting to note that while laser, infrared, and optical sensors give
reproducible results, there are significant differences in the results due to the different footprint
sizes of the sensors, i.e., the diameter of the measuring beam they produce. For instance, in [87]
they studied infrared sensors with a footprint of approximately 6 mm in diameter and lasers
sensors with a footprint 1-2 mm in diameter and it was shown how the former was unable to
capture cracks as precisely as the laser. More generally, the lasers capture much more detailed
texture features than infrared sensors and whether this are desirable or not is an open question,
that depend on the intended use of the measurements: Small cracks in the pavement does not
affect ride quality, for instance, but it does tell road administrators something about the state
of the road. It can be argued that local features such as cracks, can be removed by filtering if
necessary, but it illustrates the need for clarification about what the measurements are used for.
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3.3.2 Texture measurement
While unevenness measurements were initially used to assess road ’bumpiness’ as perceived
by road users, road texture has been used to assess another important aspect of road quality,
namely their ’slipperiness’ or ’skid resistance’. This is of course of vital importance in road
safety as this is a key factor in breaking distance, etc. so ways of measuring and quantifying
texture have been developed for many years. Road texture can be described informally as
the ’roughness’ of the pavement surface and is, roughly speaking, determined by the mineral
aggregates in the pavement mix. The first widely used and investigated measurement method for
pavement texture was the so-called ’sand-patch’ method (also called volumetric technique[11])
which has been used in connection with skid-resistance research and assessment[110, 30] since
at least 1960[100]6. Although modern laser inertial profilers are gaining ground, the sand-
patch method is still in use today and, e.g., sand-patch measurements as new as 2011 from
Minnesota Department of Transportations MnROAD pavement test track is publicly available7.
The popularity of the method is probably to low cost and simplicity, however extremely slow
compared to modern measurement techniques used in network level monitoring. Test standards
for the sand-patch method have been published by, e.g., the American Society for Testing
and Materials (ASTM)[11] and standard EN 13036-1:2010 from the European Committee for
Standardization (CEN). The procedure can be summarized as follows:

1. Find a suitable patch of the pavement without cracks or other irregularities and possibly
sweep the patch for dirt with a brush.

2. Pour a pile of sand (or glass beads) of a known volume onto the patch.

3. Carefully spread out the sand with a puck or spreading disc such that a circular sand patch
is formed.

4. When the level of sand is levelled with the top peaks of the surface, measure the diameter
of the resulting circle. This could be repeated several times to get an average diameter

5. Calculate the Mean Texture Depth (MTD) as MTD = 4V
πD2 where V is volume of sand

used and D is the measured diameter.
In the last step the measured quantities (V and D) are converted into MTD. MTD is another
example of a road metric just as IRI, although it is easier derived from measurement results.

With the advent of laser inertial profilers, it became possible to make detailed (2D) surface
profiles at operating speed but unfortunately the derivation of MTD made little sense with this
new equipment. Given the large amount of research and data gathered over the years using the
sand-patch method, a new road metric was sought that could correlate with MTD. The result of
these efforts is the so-called Mean Profile Depth (MPD) which was standardized in 1996 and
1997 by ASTM and ISO, respectively[10, 75]. The details of the calculation is left for chapter
4, but the important thing here is the fact that MPD calculated by modern laser profilers have
been shown to correlate with MTD and thus are compatible with the sand-patch test[45]. It is
interesting to note a certain similarity with the development of the IRI metric presented above:
The new road metric (MPD/IRI) is essentially a means to make newer measurement equipment
backwards compatible, and thus relate them to older equipment8. While MTD and MPD were

6 This is the year of the oldest reference found by the author. Older references might exist.
7 Overview of MnROAD data collection can be found here: http://www.dot.state.mn.us/mnroad/instrumentation/surfacecharacteristics.html.

Last accessed 08/20-2014.
8 IRI also served another purpose, though, to give a golden standard to use in calibration of the old (RTRRMS)

equipment.
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primarily used in skid resistance investigations, they have recently also been used in rolling
resistance research (discussed in chapter 4).

Today, inertial laser profilers are the preferred method to obtain texture measurements and
MPD is the preferred road metric calculated from these measurements and used as an indicator
of the surface texture. The principle of these inertial profilers are identical to the ones described
in the section about unevenness and these measurement devices will be discussed in more detail
below. These are the usual method of choice in network level measurements since they work at
highway speeds, but several other texture measurement devices have been developed in recent
years that are slower and more precise. These are usually used in research projects etc. Some
of these devices measure texture in 3D, for instance the Texture Scanner, developed by Ames
Engineering9, is a stationary measurement device that scans a 100 mm times 75 mm patch
of the surface at a vertical resolution of 0.015 mm. Another similar device is the Robotex
measurement device developed by Transtec Group, which measures a 100 mm strip at walking
speed. Measurements from the latter have been used in this project, and device specification
is given in chapter 5. The ability to simultaneously scan the surface in both longitudinal and
transversal directions seems very promising. The data they provide will probably prove valuable
in future research into road noise, skid resistance and rolling resistance. The author has not
heard about any laser 3D-scanning devices used at highway speeds in routine maintenance
measurements. However, recent developments in road measuring technologies suggests that this
might be possible in the near future10.

3.3.3 Additional inertial profiler considerations
Inertial profilers are so widely used in road maintenance and research today and they are the
primary source of road surface measurements in this project11, so some additional considerations
about these devices are given here.The discussions will generally hold for both texture and
unevenness measurements and if any part holds specifically for one or the other it will be
mentioned explicitly. We will also focus on factors that affect laser profilers in particular.

In [87] results of an elaborate empirical study concerning factors affecting accuracy of
inertial profilers measuring unevenness is presented, and a handbook on recommended profiler
operation guidelines was based on it[53]. The factors identified were based on decades of
roughness profiling experience by members of, e.g., the American Road Profiler Users Group as
well as previous studies on the subject[87, p.5] and while the road metrics used for comparison
were IRI and Ride Number(RN)12 the factors can easily be transferred to general profiling
practices, surface texture measurement included. They are presented in a slightly modified form
below followed by a brief discussion of each. An exhaustive discussion is out of scope here, but
further details can be found in [87, 53]. Four distinct factors have been identified:

• Surface Shape: Geometrical properties such as isotropy, texture and cracking.

• Environment: Environment in which the measurements takes place, such as temperature,
humidity etc.

9 See http://www.amesengineering.com/TextureScanner.html. Last accessed 08-21-2014.
10 A glimpse of these new developments have been shown at the TRIMM/ERPUG conference, 23rd-24th of October
2014.
11 Since the 3D Robotex equipment also uses laser height sensors, some of the discussions here will also apply to this
device.
12 The Ride Number is index to describe ride quality. It was developed under the National Cooperative Highway
Research Program[156, p.55].
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• Operation: How the profiler is used, i.e. changes in speed, transversal position, awareness
of road irregularities and so on.

• Equipment design: Design of the measurement equipment such as sample frequency,
measurement resolution, initial data processing etc.

Surface and road shape
General properties of the surface can have a big effect on unevenness and texture profile
measurements and their repeatability. One of the major factors are the transversal variation,
i.e., different transversal positions of the height sensor yields different results. Transversal
variation can be caused by many phenomena at many different length-scales: At the texture level,
each small (mm-scale) mineral aggregate affect the profile such that two parallel longitudinal
profiles, which are transversally close, exhibit significantly different profiles as different mineral
aggregates lie in their paths. Even two profiles measuring across the same small stone can
exhibit variation depending on where the two profiling paths crosses the stone. At larger length
scales, there are various phenomena like rutting, polishing, crocodile cracking, potholes etc.
that give rise to local variations. See Fig. 3.2 for examples of this. Some of these variations
might be a primary concern for texture measurements, some for unevenness or some a concern
for both. A special case is concrete pavements that can be textured by, e.g., diamond grinding
which creates a systematically textured surface thus making it especially sensitive to transversal
position (see Fig. 3.3 for an illustration of this). With asphalt based pavements, an additional
factor is how the pavement mix is handled and laid out during road construction. Improper
handling can cause, e.g., heterogeneous distribution of mineral aggregates in the pavement
mix which might make profile measurements more sensitive to positioning. In [87] variation
in unevenness measurements was studied through the road metric IRI, by letting the profiler
operator keep the height sensor at the center line of the wheel tracks within a margin of +/−30
cm. The results showed[87, p.47] that on newly laid asphalt (less than 6 months) there was a
variation in measured IRI of 0.13 and 0.05 on the two wheel tracks, respectively. On old worn
asphalt with mild rutting the numbers were 0.65 and 0.37, respectively. By comparison, the
overall IRI range of the experiment, which included pavements and in a variety of conditions was
0.56 to 4.40, so the variation is far from negligible. Transversal variation and general isotropy
of surface texture will be investigated in chapter 5.

While transversal variation is to be considered when interpreting measurements, it is not
necessarily caused by errors but rather reflect the fact that irregularities exists in the pavement.
Even if we had two hypothetical ’true’ profilers that measured the road with infinite detail,
they would still produce different longitudinal profiles if they measured at different transversal
positions. The following factors of the surface shape can cause outright erroneous measurements.
Cracking is another contributor to inaccuracies in the measurements and if not handled properly,
can cause erroneous or invalid readings that can bias the resulting road metric calculation. For
instance, a crack with a width smaller than the sampling interval will, if detected, appear wider
than it actually is. This phenomena is related to the problem of aliasing[85, p.73], the theoretical
details of which have been discussed in section 2.6. It is not just a theoretical problem though,
and aliasing-related problems have been observed and studied in connection with unevenness
measurements and IRI calculation[87, p.119][85, p.2]. The latter is highly sensitive to distortion
of the frequency domain. It is especially significant with laser profilers because of the narrow
height sensor footprint[86, p.16] which makes it easier to detect local features and cracks that
contributes to the higher frequencies. Thus, frequencies at, e.g., the texture level can affect
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Figure 3.2 Pictures of pavement deterioration that introduces local features in the surface. The pictures
have been taken from the Danish Road Directorates ’Vejregler’[174] (http://vejregler.lovportaler.dk).

Figure 3.3 Picture showing non-isotropic concrete pavement surface due to diamond grinding
treatment. It was taken at the Minnesota MnROAD testing facility and can be found on the web at
http://www.thetranstecgroup.com/fhwa-mndot-investigate-pavement-surfaces-effect-fuel-consumption/.

lower frequencies in the unevenness level. As mentioned in section 2.6 aliasing can be mitigated
by applying a analog filter before digitisation or by measurement aggregation, however the
implementation details of this are probably specific to the vendors of the profiling equipment
and kept a business secret.

On a higher length scale, the road curvature can possibly affect profile measurements since it
can distort the accelerometer measurements. Tests reported in [87, p. 77] showed that unevenness
profile measurements where affected by curvature, although the affected wavelengths were rather
large (8 - 40 m) and did not even affect calculations of IRI. Therefore it seems highly unlikely
that curvature should affect profiling at the texture level. The error on unevenness measurements
was also investigated for hills and grades and reported to be “extremely small” [87, p. 79].
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Environment
While other height sensors might be sensitive to wind or ambient light, the laser sensor is
incredibly robust. Nevertheless, there are a few environmental factors that can affect laser
sensors. Temperature is mentioned in [87] as a potential cause for inaccuracies, especially with
temperature gradients along the direction of measurement, although a previous study reportedly
found the effect negligible[87, p.81]. The sensors are also very robust with respect to ambient
temperature. Selcom, one of the main laser sensor manufacturers, specify their sensors to work
in ambient temperatures ranging from 0 to 50◦C and a temperature stability (error) of 0.01%
of the total measurement range per ◦C13 which should be sufficient for most locations and
measurement objectives. The same goes for humidity which is specified to work in a relative
humidity of 95% that is not condensing. It is of course important to avoid condensation on
the equipment (especially on lenses, mirrors etc.) as this will distort the measurements. The
same goes for surface moisture which is to be avoided entirely, especially when measuring
in the texture range. Needless to say, profiling a road with snow or ice is not possible. Road
contaminants like leaves, dirt etc. are also to be avoided, if possible. However, this can be
hard to remove when measuring on, e.g., a highway and in that case if the operator observes
contaminants in the vicinity of the height sensors, a marking should be made for removal in
subsequent data processing. To illustrate the impact of road contaminants, a piece of tyre tread
with a height and width of 2.5 cm can contribute 0.09 m/km to the measured IRI value of a 160
m section[87, p.83]. In the case of texture measurements the impact would be much higher, but
extreme cases likes this should be easily detectable during data processing.

Another slightly different environmental factor that affects profiling is the general seasonal
fluctuations in meteorological conditions such as precipitation, humidity, and temperature which
affect the pavement, and pavement surface. In the case of asphalt pavements, subsurface layers
can be sensitive to moisture which, when combined with freezing temperatures, can expand
substantially and thus create bumps in the pavement which can subside when temperature
rises again[87, p.59]. This is essentially a particular instance of the general phenomena called
’frost heave’ 14 and is also the preliminary phase in pothole formation. While the seasonal
meteorological variation plays a big part in this, it is not very systematic given the erratic
behaviour of the weather. However, it is closely related to freezing temperatures[87, p.60].
In addition, large volumes of traffic and other factors can also play a role when looking at
time scales of months or even years15. Note that these considerations concerns unevenness
measurements only, and no known problems of this kind have affected texture which would
probably also ’drown’ in other disturbances such as wear and transversal positioning.

Operation
There are some important considerations to make when using a profiler which we will briefly
touch upon below since it gives some background knowledge of the data used in the following
chapters. However, a thorough treatment will not be relevant here. Some precautions have
already been mentioned above: Checking height sensor equipment for condensation, keeping an
eye on possible road contaminants or irregularities that would distort the measurements, and
try to keep a steady transversal position. In many cases, the transversal position should be in

13 Based on the specifications of the SLS7000 and SLS5000 16kHz laser series.
14 See http://en.wikipedia.org/wiki/Frost_heave for a general description of frost heaving.
15 Concrete pavements should also exhibit daily variations[87, p.55] but this is out of scope with the present investiga-
tions.
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the wheel track since this is where most vehicles are driving. It is especially important in the
case of texture measurements that are highly sensitive to smoothing of the surface. Another
phenomenon that can introduce measurement errors is heavy vehicle deceleration/acceleration
during operation which introduces wrong accelerometer readings, thus producing erroneous
profiles.

Equipment design
In [87] a lot of investigations are devoted to studying profiling design. Some of this is relevant for
texture profiling as well, but it should be kept in mind that a lot of technological developments
have occurred in 15 years. For instance, the technology of height sensors has improved: It is
mentioned in [87] that the sampling interval is as low as 10 mm[87, p. 6] and laser footprint
is 1-4 mm in diameter with a vertical resolution of 0.06 mm[87, p. 32-33] for Selcom lasers.
Nowadays Selcom lasers samples with a frequency of 16 to 64 kHz16 and a laser footprint of
0.07 mm in diameter with a vertical resolution of 0.00015 mm (worst case 0.0015 mm)! This
means we have much better data at our disposal, and detailed texture measurement can be made
on a road network scale, and operating at highway speeds. The sampling interval given in [87]
is not very precise since it is not mentioned what speed is used or if anti-aliasing measures have
been performed before the measurements are stored. Nevertheless, since we know that highway
speeds are around 100 km/h and that 64 kHz lasers are presently used in texture measurements,
we have a sample interval of

100 km/h
64kHz

= 1× 108 mm/h
64× 103 Hz

= 27.78× 103mm/sec
64× 103 sec−1 = 0.43 mm.

Whether or not this sample interval includes anti-aliasing filtering is unknown and the filtering
done on-the-fly by the profiling equipment is a business secret. This makes it hard to get
information on the filtering algorithms, what algorithms are used, if they are applied to the analog
or digital signals, etc. (see section 2.6 for a discussion of anti-aliasing). A further complication is
the variability of equipment, algorithms etc. among different profiler manufacturers, which also
explains why some variation between texture profilers have been observed17. Nevertheless, the
sample interval derived above gives a rough estimate on the capabilities of present road profiling
technology and is backed up by actual data: The road network level data used in appendix A
includes texture measurements with an average sample spacing of 1 mm. While aliasing is still
an obstacle to consider, it seems that technologies have improved on the data-acquisition side
such that the aliasing problems encountered are primarily due to improper data processing.

While height sensor resolution has improved and error sources reduced, the longitudinal
measurement devices were already rather stable 15 years ago: A study in [87] showed that five
repeated longitudinal measurement runs by four different profilers of a 14.3 km road segment
resulted in a variation of 0.04-0.07% of the total range between the maximum and minimum
of the five runs. In addition, the inter-profiler variation was about 0.4%[87, p. 38]. The latter
variations were suspected to be caused by calibration errors. All in all, this is a very small
margin of error which could be due to small changes in effective rolling radius of the tyre since
calibration18. Variations in effective rolling radius can be caused by changes in tyre pressure

16 DRD has a road profiler with 78khz lasers, but this is an extraordinary high sampling rate.
17 In a personal communication with Jens Oddershede from the Danish Road Directorate, he informed the author that
measurements from a few profilers have indeed differed during comparison measurements on a known surface.
18 The term ’effective rolling’ refers to the fact that the tyre is loaded and rolling. The radius of a tyre differs between 1)
loaded and stationary 2) Loaded and rolling (as in this case).
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or temperature (which causes a change in tyre pressure as well). Although the longitudinal
measurement error is small, it can accumulate over large distances and thus be a problem for
network profiling. This is usually solved by comparing longitudinal measurements to chainage
markings19 on the roads.

The accelerometer can affect the resulting profile measurements if it is disturbed by, e.g.,
hills and curves on the road etc. as described above.

Another aspect that we are not going into here is the case where the signal from the
measurement components are lost or disturbed. This can be hard to detect, but should be taken
care of by the profiler operator. These signal disturbances can also introduce spikes in, e.g.,
texture profiles which can be detected and removed during data processing.

3.4 Concluding remarks
The intention of this chapter was to give a general introduction to the phenomena of rolling
resistance with an emphasis on the rolling resistance components that are related to the road and
surface geometry. Ideally, a continuum of different length scales are involved in the tyre/surface
interaction, but in practice two concepts/properties have been used to identify two different
length scales: Texture and unevenness of the road. The development of these two concepts
are closely related to how they are measured and this development has also been covered. In
addition, an overview of present measurement methods have also been given for both road
surface properties and rolling resistance. It is interesting to note that the present popular road
metrics IRI and MPD are so closely related to first generation road measurement methods, as
have been described above. However, we have avoided the technical details of these metrics
which will be covered in the next section. This chapter has set the scene by introducing general
concepts and techniques together with a review of their developments. The next chapter will be
focused on the present work in relation to rolling resistance and surface modelling.

19 The term ’chainage’ refers to a longitudinal length measure of the road used in road surveying and classification.
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4 Development of new Texture Measure for
Rolling Resistance Assessment

This chapter is a continuation of the previous chapter that concerned rolling resistance and
measurement techniques in a general and historical perspective. Here we present some details
of the popular road metrics as well as particularly interesting developments related to rolling
resistance which leads to a proposal for a new texture metric for rolling resistance assessment.
Some studies will be thoroughly discussed as they have directly influenced our own work in
proposing a new texture measure. Other ideas and investigations are mentioned for completeness
and because they were good candidates for further pursuit in this work.

Before going into specific studies and results, an introduction to the technical background
behind the road metrics used today for measuring road unevenness, texture etc., is given. The
history of the most important ones, namely International Roughness Index (IRI) and Mean
Profile Depth (MPD), have already been covered in the previous chapter but the technical details
will be described and discussed below.

4.1 Surface Classification and Current Road Metrics
As mentioned in section 2.6, Fourier analysis has been frequently used in road engineering
(mostly in research about traffic noise) and the modern classification of road properties is
expressed in the Fourier analysis terminology of wavelengths. The first reference relating surface
wavelengths to noise, skid resistance, rolling resistance, etc., that the author could track down,
is a technical report by PIARC in 1978[1, 42]. Furthermore, addition, the division of surface
characteristics into ’unevenness’ and ’texture’ have also been expanded into more categories.
An overview of wavelengths, texture classification, and influences was given in [42], which has
been modified and updated in [152]. The latter has been reproduced in figure 4.1 with minor
modifications. The old road surface characterisation with ’unevenness’ and ’texture’ which,
historically, have been closely connected with measurement practices, are defined in figure
4.1 as ’unevenness’ with spatial wavelengths in the range of 0.5 - 50 m and ’macrotexture’
(i.e., ’texture’) in the range of 0.5 to 50 mm. It is well established that macrotexture (usually
represented by MPD) does affect rolling resistance, so the bar which indicates the frequencies
relevant to rolling resistance in figure 4.1 has been lengthen closer to microtexture compared
to the overview given in [152]. While the classification is rather coarse, it gives a good overall
view of the different aspects of the road and the phenomena usually studied by road engineers.

Presently, laser-based 2D profiling equipment exists such that unevenness, megatexture,
and macrotexture can be measured at traffic speed. In the Danish Road Directorate (DRD)
this is accomplished by two different sets of profiling lasers, one set covers (approximately)
megatexture to unevenness and the other set measures macrotexture. The microtexture range
is too small for these kind of measurement, but a study of microtexture is possible by, e.g.,
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Figure 4.1 Illustration of the different road surface domains and some general indicators as to which
wavelengths affect which aspect of road transportation.

extracting pavement samples and treating these in the laboratory1. However, since microtexture
is not assumed to significantly affect rolling resistance, this is out of scope with the present
work. It should be noted that with the recent developments in profiling equipment, routine
measurements in 3D instead of 2D will be possible in the not so distant future2.

As mentioned above, IRI and MPD are presently used in rolling resistance assessment,
modelling, and they are used in the work described below. Thus, a description of them is given
here.

IRI is defined in terms of quarter-car model, as mentioned in chapter 3. More specifically, it
is defined as system of linear differential equations

msz
′′
s (t) = csz

′
u(t) + kszu(t)− csz′s(t)− kszs(t) (4.1)

muz
′′
u(t) = csz

′
s(t) + ksz

′
s(t)− csz′u(t)− (ks + ku)zu(t) + kuh(t) (4.2)

comprising of two masses ms, mu tied together by a spring ks and a shock absorber cs. ms

represents the quarter-car as a whole while mu represents the wheel which in turn is related to
the road profile h(t) by another spring ku representing the vibrations of the tyre.

1 In DRD this is achieved by covering the samples with fluorescent epoxy which are then photographed through a
microscope.

2 An example of state-of-the-art in profiling equipment was demonstrated at the ERPUG 2014 meeting (23-24 Oct.) in
Brussels.
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A schematic drawing of the system is shown to the left in figure 4.2. Using this quarter-car
model, the systems response R to the road profile h(t) over a road segment of length L driving
at speed v is defined to be

R = 1
L

∫ L/v

0
|zs(t)− zu(t)|dt. (4.3)

This should emulate the workings of the RTRRMS equipment mentioned in section 3.3.1.
Reference parameters[54, p.78] defining the IRI quarter-car relative to car weight are

ks/ms = 62.31/sec2 ku/ms = 653sec2 mu/ms = 0.150 cs/ms = 6.001/sec2 (4.4)

The response R defined in equation 4.3 is also the IRI value when parameter values in equation
4.4 are used. A description of the system in term of its frequency response function using
the IRI parameters are given to the right in figure 4.2. This highlights the frequencies of the
road profile that will be attenuated/enhanced by the system. Note how the response function
varies significantly across different parameter sets. It also illustrates the problems with aliasing
mentioned in 2.6 since high frequencies, if not properly filtered, might cause aliases at lower
frequencies important to the IRI measure. IRI is widely used today (i.e., the de facto standard)
as measure of road unevenness, and is usually derived from road profiles obtained from laser
equipment. However, it is questionable whether the parameters in equation 4.4, which have been
derived from a an American personal car in the seventies, are still representable for modern cars
in use today. Moreover, IRI is used in ride comfort estimation, pavement condition number and
as a road parameter in rolling resistance estimation[63, 15] and especially the latter use was not
intended when the road metric was designed. Thus renewed investigations into road metrics,
IRI in particular, aimed at the unevenness property of roads might be relevant, especially for
rolling resistance. Nevertheless, the quarter-car model is a great simplification of reality, that
has proven very useful in research and maintenance.

MPD is the other major road metric used in rolling resistance modelling, as well as skid
resistance and noise assessment. As mentioned in chapter 3, MPD was created as a measure
that could be calculated from 2D road profiles (usually measured by a laser) and correlated with
volumetric methods like the sand patch test. Thus it is the macrotexture that this road metric tries
to assess. How the idea for the algorithm came to be as it is, is unknown to the author, but the
calculation procedure is specified and standardised in ISO 13473-1[75] and ASTM E1845[10].
The procedure described in ISO 13473-1 can be summarised as follows:

1. The profile data used in the calculations should be of proper quality. E.g., Longitudinal
resolution should be at least 1 mm and vertical resolution must be at least 0.05 mm.

2. The profile data used in the calculations should be properly filtered such that wavelengths
not in the range between 100 m and 2.5 mm are removed/attenuated. If step 4 is performed,
the high pass part of the filtering can be omitted.

3. Partition the profile in 100 mm high-resolution segments.

4. Slope suppression: Normalise the profile by calculating the regression line based on the
profile and subtract it from the original profile.

5. Divide the segment into 2 50 mm sub-segments and find the maximum value of both
sub-segments.

6. Take the average of these two values which gives the Mean Segment Depth (MSD).
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Figure 4.2 Left: Schematic drawing of the quarter car model. Right: Gain factor for quarter car system
with 1) ’golden car’ parameters used in IRI calculations[155] and 2) average parameters for terrain
vehicles[101]. The plot is taken from [4].
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Figure 4.3 Illustration of MPD calculation algorithm using a piece of profile from coast-down
measurements introduced in chapter 6. Left: Original profile and the regression line estimated from it.
Right: Dotted line is original profile, solid black line is the profile after regression line has been subtracted,
blue and red horizontal lines are the two halves maxima and the green dot is the resulting MPD value.

7. Take an average of at least 10 MSD values (i.e. for an entire meter of profile segment)
which gives the MPD.

The essentials of the procedure are also illustrated in figure 4.3 using a real profile segment from
the coast-down experiments from chapter 6. Note that MPD values correlates well with Mean
Texture Depth (MTD), which is the number obtained by the sand patch method. In [75, p. 9] the
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conversion is performed by using

ETD = 0.2mm + 0.8 MPD .

The author is not aware any theoretical or intuitive basis for this method, except that it should
correlate with MTD. Nevertheless, this is the de facto standard road metric used to describe road
texture and it is used in practically every study to be discussed below. It should be noted that as
of writing this, the MPD calculation ISO standard is being revised. One of the general design
goals of this revision is to make MPD calculations more uniform across different equipment of
different quality. To achieve this goal high frequencies that less precise profiling equipment is
unable to measure, should be attenuated3. Other proposals are the relaxation of the vertical and
longitudinal resolution to 0.1 mm and 1.5 mm, respectively, and the Butterworth filter[24] is
to be used for profile filtering. While this should improve comparability, it is hard to eliminate
discrepancies entirely, given that profilers differ in equipment, algorithm implementation etc. as
mentioned in section 3.3.3.

Other road metrics have been used concurrently with IRI and MPD in rolling resistance
studies. For instance, ISO 13473-2 contains several different terms and parameters that can be
used to handle and process profile data. In the following, y(s) refers to a function representing
vertical displacement at distance s[76, p.12]. Additionally, it is assumed that y(s) have zero
mean and low frequencies have been removed.

An example from ISO 13473-2 is Root Mean Square(RMS) deviation from the profile which
has been used in some recent studies[153, 63] that measures the variability of a profile. It is
defined as[76, p. 12]

RMS =

√
1
L

∫ L

0
y2(s)ds. (4.5)

While the formulation in [76] is expressed in terms of a continuous function, the profile is made
up of discrete measurements, so linear interpolation interpolation must be made beforehand.
Another straightforward approach is to adapt equation 4.5 to handle a finite set of samples in
which case equation 4.5 is transformed to

RMSdiscrete =

√√√√ 1
N

N∑
i=1

y2
i . (4.6)

Note that since the mean y of the samples is 0 by definition, equation 4.6 can be rewritten as

RMSdiscrete =

√√√√ 1
N

N∑
i=1

(yi − y)2 (4.7)

which is the formula for estimating sample variance (second moment) of a population. The
RMS road metric can be adapted to specific wavelength ranges by applying proper filtering of
the profile before calculating RMS[153, 63]. Thus, if the RMS of the megatexture is sought,
wavelengths not in range of 50 mm - 0.5 m should be removed/attenuated. In [76, p.14] the
’texture profile level’ is essentially based on this, where filtered RMS values are expressed as

3 This was some of the content of the talk given by Ulf Sandberg at TRIMM/ERPUG conference, 23rd-24th of October
2014.
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Figure 4.4 Illustration of the different modes of skewness.

ratios between RMS values for particular wavebands, usually expressed in third-octave bands,
and the RMS value of the third-octave waveband centred about 10−6 m, i.e.

Lλ = 20 log10(aλ/aref ) (4.8)

where Lλ is texture measure (in decibels) at the third-octave band centred about the wavelength
λ, aλ is the RMS value of the profile filtered with a third-octave band filter centred about λ, and
aref is the RMS calculated from the the profile filtered by a third-octave band filter with centre
wavelength of 10−6 m. Several variations of this approach exists, such as using octave band
filters instead of third-octave bands. Another common approach, used in some of the studies
discussed below, is to encompass several third-octave bands in a band filter, e.g., LMi refers to a
band-bass filter where the passband is comprised of all third-octave bands in the microtexture
range. Equivalently, LMa is defined with the macrotexture third-octave bands, LMe used the
megatexture third-octave bands, or even a custom passband can be used. A brief overview of the
third-octave bands used in road characterization is given in table 4.1

While RMS describes variability, it does not distinguished between profiles consisting
primarily of trenches and profiles consisting of spikes. In other words, it does not take the
possible asymmetry or skewness in the distribution of vertical displacements into account. This,
however, is what the Skew measures and it is expressed as[76, p.13]

Skew = 1
RMS3

( 1
L

∫ L

0
y3(s)ds

)
. (4.9)

As illustrated in figure 4.4, a symmetric distribution (e.g., the normal distribution) has Skew = 0,
a asymmetrical distribution with the density shifted to the left has Skew < 0, and Skew > 0
if the density is shifted to the right. Using analogous arguments as in the case of RMS, the
Skew can be adapted to work with a discrete set of samples, and using the fact that y = 0 it
can be shown that it corresponds to an estimator of skewness (third moment) of a population
distribution.

Another term, which is not a road metric directly, is the envelope of a profile[76, p.11]. When
a tyre runs over a non-smooth road surface, the tyre is pushed down into surface by the weight of
the vehicle and since the tyre is made up of visco-elastic material, the peaks/spikes of the surface
is indented into the tyre. However, the tyre might not come in full contact with the road surface,
since it usually has surface valleys/grooves, as illustrated in figure 4.5. The pseudo-profile that
simulates this contact line between tyre/surface and tyre/air, in the case of valleys, is called the
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Table 4.1 List of third-octave bands and the texture range they belong to. The table is an adapted version
of table 1 in [76].

Centre Frequences [mm]
Octave band One-third-octave band

Microexture
0.4

0.5 0.5
Macroexture

0.63
0.8

1.0 1.0
1.25
1.6

2.0 2.0
2.5
3.15

4.0 4.0
5

6.3
8.0 8.0

10
12.5

16.0 16.0
20
25

31.5 31.5
40
50

Megatexture
63 63

80
100

125 125
160
200

250 250
315
400

500 500
Unevenness

630
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Figure 4.5 Illustration of the envelope procedure described in [115]. To the left is an example of
enveloping of one of the VTI road sections used in chapter 6 and to the right is an example from a road
section used in chapter 5.

profile envelope. Many different algorithms exists that are able to approximate this behaviour.
Some of these are of a more empirical nature[115] while others are based on physical principles
of visco-elastic bodies[93] and are thus much more theoretical in their formulation. However,
while the latter kind of algorithms are much more theoretical they are still approximative,
complex and not guaranteed to do a better envelope simulation[153, p.58] than the fast but
empirical approach of [115]. Because of the complexity of the theoretical approaches, they are
too remote from the practical goals of this work (as discussed in the introduction). Nevertheless,
the ideas are very interesting and future work in this area is promising.

The method in [115] is basically to put an upper bound on the size of the second derivative
of the profile y(s), i.e.

|D2y(s)| ≤ e (4.10)

for some parameter e. If only (uniformly) samples values of y(s) are available a finite differ-
ences method can be deployed to equation 4.10. Assuming the sample distance is ∆s we can
approximate D2y(s) at sample point s0 by

D2y(s0) ≈
Dy(s0 − 1

2∆s)−Dy(s0 + 1
2∆s)

∆s . (4.11)

The two first order derivatives can be approximated by

Dy
(
s0−

1
2∆s

)
≈ y(s0)− y(s0 −∆s)

∆s and Dy
(
s0+ 1

2∆s
)
≈ y(s0 + ∆s)− y(s0)

∆s . (4.12)
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Substituting equation 4.12 in equation 4.11 and rearranging yields

D2y(s0) ≈
y(s0)−y(s0−∆s)

∆s − y(s0+∆s)−y(s0)
∆s

∆s ≤ 2e⇔

y(s0)− y(s0 −∆s)− (y(s0 + ∆s)− y(s0))
∆s2 ≤ 2e⇔

2y(s0)− [y(s0 −∆s) + y(s0 + ∆s)]
∆s2 ≤ 2e⇔

y(s0)− 1
2 [y(s0 −∆s) + y(s0 + ∆s)]

∆s2 ≤ e

where the last expression is the formula given in [115]. The parameter e from equation 4.10
can be interpreted as a parameter of the tyres stiffness. In [115] a value for e of 0.054[m−1]
was found to be optimal and is also the value used in the trailer comparison study [15]. The
method from [115] was originally used in tyre/surface noise modelling, but recent studies in
rolling resistance assessment have shown very interesting results when used in combination with
classical road metrics such as MPD[15, 153]. This is the primary reason for using enveloping in
later chapters.

4.2 Recent Work on Road Surface Influence and Rolling Resistance
In this section we will briefly discus some of the recent work on practical rolling resistance
assessment that have inspired the work presented here. For instance, these studies also use
2D/3D texture laser profiles, trailer rolling resistance measurements and in general there is a
similarity in methodology, which is empirical in spirit. Thus, the investigations presented in
chapters 5 and 6 is seen as a continuation of the work presented here. In the latter chapter,
however, the rolling resistance is not given directly as trailer measurements, but is extracted
from coast-down measurements instead. The specifics of this, and the study it is based on, will
be postponed until chapter 6.

Notice that the TUG rolling resistance trailer is frequently used for measurements in this kind
of studies and besides our own data in chapter 5, it has also been used in the studies discussed
here. All of TUGs rolling resistance measurements presented in this thesis use a small selection
of tyre types. They are described in table 4.2 where it is also specified which measurement
campaign uses which tyres.

4.2.1 MIRIAM project studies
The first study to be discussed here have been undertaken by the MIRIAM project which is a
collaborative project between partners primarily from Europe but also USA. One of the MIRIAM
projects major studies focused on rolling resistance trailer equipment. More specifically, they
tested three different rolling resistance trailers with a collection of different tyres by doing
comparable measurements on a French test track. In addition, the rolling resistance of the tyres
was measured at two different drum testing facilities. Based on these measurements, several
investigations were made and a subset of these that are interesting for our later investigations
and discussions, will be examined here.

The three different trailers were supplied by TUG, the Belgian Road Research Centre
(BRRC), and Bundesanstalt für Straßenwesen (BASt). These trailers varies significantly in
design, which of course complicates comparison. However, they all measure in the center wheel
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Table 4.2 Information about test tyres for all projects discussed in this thesis. MIRIAM-RRT refers to the
study discussed in section 4.2.1, MnRoad refers to the study discussed in section 4.2.2, Dutch M+P refers
to the study discussed in section 4.2.3, and COOEE refers to measurements obtained in this project which
discussed in chapter 5.

Tyre SRTT AAV4 MCEN16 MCEN14

Manufacturer Uniroyal Avon Michelin Michelin
Size P225/60R16 195R14C 225/60R16 195/70 R14
Index 97S 106/104N 98V 91T
Thread TIGER PAW SUPERVAN AV4 Energy Saver Energy Saver

Measurement
campaign

MIRIAM-RRT
COOEE
MnRoad
Dutch M+P

MIRIAM-RRT
COOEE
MnRoad

MIRIAM-RRT
COOEE
MnRoad

MIRIAM-RRT

path. Some important design features are listed in table 4.3. Since the TUG trailer have also been
used in the COOEE project it will be our primary focus. The test track used for measurements is

Table 4.3 Overview of trailer features. This table is reproduced from table 3.1 in [15].

Owner BASt BRRC TUG
Test tyre size 14"-16" 14" 14"-16"
Wind shield yes no yes
Measurement method force angle angle
Number of test tyres 1 1 1
Number of
supporting tyres

2 0 (test tyre supports) 2

Self-supporting
construction

no no yes

Tyre load 4000 N 2000 N 4000 N
Tyre pressure 200 kPa 200 kPa 210 kPa
Tyre temperature
measurement method

exterior exterior/interior exterior

Corrections made
during measurement
or afterwards

afterwards afterwards during measurement

Measurement wheel
position

middle track middle track middle track

located in Nantes, France, and is owned by l’Institut Français des Sciences et Technologies des
Transports, de l’Aménagement et des Réseaux4 (IFSTTAR). It is composed of 12 test sections

4 French institute of sciences and technology for transport, development and networks
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between 50 and 250 meters in length, with different pavements and thus different surfaces.
BRRC measured the test sections with laser profiling equipment at a resolution of 0.2 mm in
the longitudinal direction and 1 µm in the vertical direction[15, p.72]. The surfaces spans a
wide selection of textures with a range in MPD-values from 0.08 to 2.77. An overview of the
test sections is given in table 4.4. As table 4.4 shows, there are some surface disturbances on

Table 4.4 Overview of road sections from the Nantes test track. This table is a simplified union of tables
4.2, 4.3, and 4.4 in [15].

Section Length [m] Width [m] MPD Remarks
M1 244 3.00 1.14 Grinded in middle, steel plate at 1550 km point.
F 250 3.00 1.00 -

L1 128 3.00 0.08 Epoxy Resin (smooth section).
L2 116 2.50 0.42 -
E1 252 3.45 0.59 Road markings in middle, crack.
E2 250 3.45 0.82 Disposed and existing road markings in middle.
M2 150 3.90 0.86 -
C 244 3.00 0.35 Transversally uneven, cracks, repaired cracks.
N 185 2.60 1.92 Interrupted at west end by concrete plates.
A 50 3.00 0.93 -
A’ 220 3.00 2.77 -
CC 90 - 0.35 -

some of the road strips such as, e.g., road markings. In addition, the road sections vary in width,
which make it hard for trailer operators to measure in the same path throughout the test track.
All measurements in this campaign are divided into two categories with respect to speed, 50
km/h and 80 km/h. Moreover, before performing measurements the tyres were warmed up by
driving approximately 80 km/h for 15 minutes. All measurements were performed from the
6th to the 10th of June, 2011, and no temperature corrections have been used in this study. An
overview of the tyres can be seen in table 4.2 and specific hardness measurement results of each
tyre is shown in table 4.5. As can be seen from table 4.5 the trailers have their own tyre of a
given type and tyres of the same type varies in hardness. Finally, it should be noted that the
trailer measurements and testing were performed by different teams, which is reflected in the
results that sometimes differs slightly in content and presentation.

The three trailers were investigated for two kinds of variation, day-to-day and short term.
Unfortunately, the TUG trailer was not investigated for day-to-day variation. Short term variation
means variation between measurements performed immediately after one another. The short-
term tests were performed by making several measurements for different combinations of tyre,
test section, speed, and direction for each trailer. Of course, exhausting all possible combinations
would be practically impossible5, so only a small subset has been chosen and the subset varies
with the trailer being tested. However, for each trailer, road section, tyre configuration all
combinations of direction and speed were tested. The specific details and overall results of the
short term measurements for each trailer are summarized below. For each configuration the
standard deviation was calculated and expressed as a percentage of the mean rolling resistance
value.

5 There is a total of 576 combinations of trailer, tyre, test section, speed, and direction which should be measured
several times.



52 Development of new Texture Measure for Rolling Resistance Assessment

Table 4.5 Information about hardness of test-tyres from [15, p.25]. Note that AAV4-CT refers to a specific
AAV4 tyre with a poor tread alignment.

Tyre Hardness [Sh]∗

SRTT/TUG 65
SRTT/BASt 68
AAV4/TUG 62
AAV4-CT/TUG 64
AAV4/BASt 64
MCEN16/TUG 63
MCEN16/BASt 66
MCEN14/TUG 63
MCEN14/BRRC 66

BASt Measured the SRTT, AAV4 and MCEN16 tyres on L2 and M1. All combinations were
measured 4-6 times except for L2 with ES16 at 50 km/h which was measured 2 and 3
times for east and west, respectively. Average standard deviation of all combinations is
2.6%.

BRRC Measured the ES14 tyre on L2 and M1. Every combination were measured 10-11 times.
Average standard deviation is 2.7%.

TUG Measured all tyres on all test sections except section CC and N. Most combinations
were measured 2 times, however 25 combinations were measured 4-8 times and a single
combination was measured 17 times. Average standard deviation is 1.1%.

The reproducibility of the TUG trailer is remarkable although the two other trailers also show
quite stable results in the authors opinion. In [15] they refer to the results of the two other trailers
as ’just acceptable’[15, p. 95], but considering the many factors that can potentially influence
rolling resistance and the measurements thereof, it does not seem that bad. For instance, recall
the many different effects mentioned in section 3.1 that causes rolling resistance, as well as
transversal variation of pavements mentioned in section 3.2.

Another interesting aspect was the comparison between trailers, by measuring rolling resis-
tance on several test sections with each trailer and comparing the result. BASt-TUG, BRRC-TUG,
and BRRC-BASt comparisons have been made in [15] but we will only consider BASt-TUG
here, since they are similar in construction, e.g., both have a wind shield protecting the measuring
tyre from aerodynamic disturbances as well as 2 supporting tyres. In addition, the day-to-day
results showed that the BRRC trailer was quite unstable and in the comparison test, and the
BASt-TUG comparison showed significantly better results than BRRC-TUG and BRRC-BASt.
Since each trailer had their own collection of tyres, measurements were made where the BASt
and TUG trailers used their respective tyres as well as where both trailers used BASts tyres.
Table 4.6 summarizes the results of the BASt-TUG comparison.

First of all, there are outliers with AAV4 at 80 km/h when the trailers use their own tyre
and when they use BASts. This can be traced back to test sections M1 and L2 where BASt
diverges substantially from TUGs measurements, but the exact reasons for this deviation is
not known[15, p.58]. In the following we will omit these two cases in our consideration. By
looking at the offsets (b-value) it can be seen that a substantial variation exists between the
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Table 4.6 Results of trailer comparison between TUG and BASt trailers. Upper part of table is a summary
of figure 8.5-8.12 and the lower part is a summary of figures 9.12-9.16 from [15].

Trailer comparisons: BASt and TUG use their respective tyres.
Tyre-[km/h] Sections used R2 Reg. line (TUG = a · BASt + b)
ES16-50 9 0.82 y = 0.849x− 0.0017
ES16-80 8 0.88 y = 0.880x− 0.0035
SRTT-50 9 0.79 y = 0.629x+ 0.0007
SRTT-80 9 0.98 y = 0.914x− 0.0015
AAV4-50 9 0.91 y = 0.807x+ 0.0044
AAV4-80 8 0.17 y = 0.159x+ 0.0129

Trailer comparisons: BASt and TUG both uses the BASt tyres.
Tyre-[km/h] Sections used R2 Reg. line (BASt = a · TUG + b)
SRTT_BASt-50 9 0.84 y = 1.380x− 0.0027
SRTT_BASt-80 9 0.98 y = 1.064x− 0.0001
AAV4_BASt-50 9 0.88 y = 1.047x− 0.0026
AAV4_BASt-80 8 0.20 y = 1.280x− 0.0052

trailers, i.e., one of the trailers consistently measures higher or lower than the other. In rough
numbers it is 10% - 30% of the overall mean rolling resistance coefficient and which trailer
measures higher than the other changes for each measurement run. When the same (SRTT-Bast)
tyre is measured by both trailers a significant difference in b-values is observed, 0.0027 vs.
0.0001. If we look at the slope of the regression line we see a difference between the two
trailers that persist across comparisons: When the BASt trailer measures two CRR-values that
differs by a unit, the corresponding difference of the two values measured by TUG will be
less than a unit. This trend holds for all comparisons in table 4.6 and could mean that the two
different trailers indeed does diverge in what they measure. That being said, the goodness-of-fit
is rather good (R2 > 0.8) and in most cases despite the fact that these two trailers have been
developed independently and uses different measurement principles etc. In addition, there is
also variation among tyres and especially the two SRTT tyres used in the comparison above
showed approximately 30% difference in rolling resistance when measured on a drum[15, p.51].
By comparison, the AAV4 tyres only showed 1%− 2% difference. Another aspect is that only
8-9 data points are used in the linear regressions in table 4.6. With the amount of disturbance
and/or noise that seems to be present, this might be too small a data set. However, these results
also illustrates that rolling resistance measurements by trailer does not give a bullet-proof result,
and that errors and/or disturbances play a significant role. As noted in the previous chapter,
the newly started ROSANNE project has a focus on rolling resistance trailer standardization
which might improve the situation. Finally, the investigations in [15] only considered data in a
test-section level manner, without investigating the measurements in finer detail. As illustrated
in chapter 5 there might be more information to obtain by studying the data in more detail, i.e.,
by considering the data in 10-100 meter intervals. This would also be an obvious candidate for
the FDA methodology as described in chapter 2.

Another type of investigation undertaken in [15] that is of interest here, is the road surface
influence on rolling resistance. Based on the texture measurements by BRRC, several road
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metrics were were correlated to rolling resistance measurements by linear regression. More
specifically, macrotexture in the form of MPD and LMa, as well as megatexture quantified by
LMe were used. Additionally, these road metrics were calculated from both the 2D laser profiles
directly, and after the profiles have been treated with the enveloping procedure expressed in
equation 4.10. A value of 0.0025 mm−1 for the e parameter in equation 4.10 was used[15, p.20].
The results of the linear regression analysis for MPD is shown in table 4.7 and are based on test
sections A, A’, F, E1, E2, M1, M2, L1, and L2.

Table 4.7 Results of correlation analysis between MPD and rolling resistance (CRR). Both normal MPD
and MPD where the underlying profile have been enveloped is shown. Based on table 11.1-11.4 of [15].

BASt TUG
env. env. env. env.

Tyre-Speed R2 R2 Slope Slope R2 R2 Slope Slope

AAV4-50 0.79 0.91 0.0014 0.002 0.91 0.98 0.0014 0.0018
AAV4-80 0.27 0.29 0.0016 0.0032 0.92 0.97 0.0015 0.0019
SRTT-50 0.77 0.70 0.0024 0.0031 0.91 0.98 0.0020 0.0025
SRTT-80 0.82 0.93 0.0019 0.0027 0.92 0.97 0.0020 0.0025
MCEN16-50 0.87 0.82 0.0017 0.0021 0.88 0.92 0.0017 0.0021
MCEN16-80 0.40 0.60 0.001 0.0023 0.81 0.84 0.0018 0.0022
MCEN14-50 - - - - 0.88 0.87 0.0016 0.0020
MCEN14-80 - - - - 0.90 0.93 0.0015 0.0018

Mean 0.65 0.71 0.0017 0.0026 0.89 0.93 0.0017 0.0021

As can be seen from the results, TUG does provide the best correlation results for all common
combinations of tyre and speed. It is also quite clear that enveloping significantly improves
correlation quality for both trailers. This is a very interesting result as it is the first systematic
application of enveloping in surface/rolling resistance influence investigations that the author
know of, and the results seems promising. The enveloping method will be revisited in section
4.3 and used in our own data analysis in chapter 5 and 6. In general, the correlation results based
on TUGs measurements are better in this study than in the following studies discussed in section
4.2.2 and 4.2.3.

Since the point of the enveloping procedure is to emulate indentation of the surface into the
tyre, we would not expect any noticeable effect for higher wavelengths. However, correlations
between LMe (which is a measure pertaining to wavelengths between 63 mm and 500 mm) and
rolling resistance, which is shown in table 4.8, shows that the enveloping procedure does in fact
increase R2 substantially, with an increases of R2 between 0.21 and 0.28 for the TUG trailer.
Given that the smallest wavelength contributing to LMe is roughly half the length of the contact
patch, it seems far from obvious that enveloping should increase correlation. This might indicate
that enveloping has a more general effect on the 2D profiles which is not necessarily related to
the aforementioned tyre/surface phenomena.
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Table 4.8 Results of correlation analysis between LMe and rolling resistance (CRR). Both normal LMe

and LMe where the underlying profiles have been enveloped is shown. Based on table 11.9-11.12 of [15].

BASt TUG
env. env.

Tyre-Speed R2 R2 R2 R2

AAV4-50 0.53 0.80 0.61 0.92
AAV4-80 0.17 0.22 0.67 0.94
SRTT-50 0.59 0.77 0.62 0.91
SRTT-80 0.59 0.83 0.66 0.93
MCEN16-50 0.79 0.84 0.69 0.94
MCEN16-80 0.43 0.50 0.72 0.93
MCEN14-50 - - 0.76 0.94
MCEN14-80 - - 0.71 0.94

Mean 0.52 0.66 0.68 0.93

4.2.2 Measurements at MnROAD, USA
In 2011 3D texture measurements using the RoboTex line laser profiler and rolling resistance
measurements using the TUG trailer were performed on the MnROAD test track in Minnesota,
USA. Both measurement devices have been used in a small measurement campaign in the
COOEE project at Værløse airbase and used in chapter 5. RoboTex measures the road with a line
laser scanning at a width of 10 cm and a resolution of 1 mm, thus it stores 100 parallel 2D profiles
spaced 1 mm apart (see chapter 5 for more equipment details). Rolling resistance measurements
were performed with three tyre models that were also used in the COOEE measurements, but it
is not known whether it was the exact same tyres. General tyre specifications are given in table
4.2 and specific hardness measurements are given in table 4.9. Rolling resistance measurements
were performed at four different speeds, 50, 80, 110, and 130 km/h. The rolling resistance
measurements discussed below are measured at 80 km/h using the SRTT tyre.

Table 4.9 Information about hardness obtained from [41, p.2].

Tyre Hardness [Sh]∗

SRTT 65
AAV4 62

MCEN16 63

The MnROAD test track is composed of two roads, Mainline and Low Volume Road (LVR),
and each road is divided into cells containing different pavement types. The cells vary in
size with the maximum and most frequent size being approx. 150 meters although some cells
are smaller than 50 meters. A total of 58 cells are measured by both measurement devices
and 34 of these are paved with asphalt. In addition to these measurements, tyre-pavement
noise, friction, and unevenness measurements have been measured beforehand by Minnesota
Department of Transportation (MnDOT)[168, p. 24]. The rolling resistance measurements are
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described in detail in [41] while a more general and detailed analysis that also incorporates
texture, unevenness, and friction, is given in [168].

A wide selection of road parameters and their influence on rolling resistance have been
investigated in [168] by means of linear regression. The texture parameters includes RMS
for specific octave bands, standard RMS, MPD measured in both longitudinal and transversal
directions, as well as, skewness, and SMTD(= MPD /RMS) in both directions. In [168],
the specific waveband RMS measures are referred to as ’texture wavebands’ and are denoted
Lwaveband center (e.g., L3.25 mm) while the rest is called ’texture variables’. Several other parameters
are investigated although we will not go into details with these. Since the texture parameters are
extracted from 3D texture measurements, several variations can be made, e.g., by calculating
a particular measure in both transversal (tr) and longitudinal (lg) drection. Moreover, as there
are 100 parallel longitudinal 2D profiles the 10%, 50%, and %90 precentiles can be chosen as
well. This gives several different values for, e.g., MPD such as LgMPD, TrMPD, 10%MPD,
50%MPD, and 90%MPD and so on. All these variations across many different texture metrics
yields a very high amount of parameters to use in linear regression. In [168] they report a total of
105 texture parameters which is too comprehensive to describe in detail, but it clearly illustrates
the scope of their investigations. In addition to the texture measures they have 31 unevenness
measures, including IRI, and 4 friction parameters.

Using all these data they were able to perform different kinds of regression analyses. Due to
poor regression results the models were fitted separately for different groups of data.

• Asphalt

• Portland Cement Concrete with diamond grind finish (PCC grind)

• Portland Cement Concrete without diamond grind finish (PCC non-grind)
This grouping makes good sense since each group represents vastly different types of pavements,
e.g., concrete pavements have direction-dependent surfaces as shown in figure 3.3 in chapter
3. Only the regression analyses concerned with asphalt pavements, are considered here. Fur-
thermore, since our primary focus is texture parameters the following regression models used
in [168] are the only ones discussed here (see [168, p.41] for the complete list of models they
considered).

a) MPD, IRI: CRR = β2 MPD + β1 IRI + β0 + βqRoad

b) Texture, Unevenness: CRR = β2Texture + β1Unevenness + β0 + βqRoad

c) Texture: CRR = β1Texture + β0 + βqRoad

d) Texture, Texture: CRR = β2Texture2 + β1Texture1 + β0 + βqRoad
’Road’ is a qualitative variable indicating whether the road is Mainline or LVR, that was added to
the regression models since it showed to be significant in regression analyses. It is hypothesized
that it might be due to, e.g., the difference in traffic volume[168, p.36]. This makes good sense
since the trailer measured between wheel paths while texture profiling was performed in the
right wheel path. Note that c) was performed for all possible parameters, including unevenness
and friction, but it was only texture that showed meaningful proper fits with R2 > 0.4. A brief
overview of the results of b), c), and d) is shown in table 4.10. Notice that p-values have been
calculated as well and used discard regression results having p-values below the threshold of
0.05, meaning there is over 5% chance that the null-hypothesis, stating that a given parameter
β = 0.

a) is a special case of b) using the standard parameters (MPD50%) which of course makes
it especially relevant here. The results of a) are poor with the asphalt pavement group having
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Table 4.10 Overview of lineare regression results for the asphalt pavements in [168]. Lλ refers to
third-octave band texture levels as described in section 4.1. Lλ1−λ2 refers to all third-octave bands from
λ1 to λ2.

b) Texture, Unevenness c) Texture d) Texture, Texture
Texture Uneven. R2 Texture R2 Text.1 Text.2 R2

L3.15mm L5m 0.79 L63mm 0.81 L5mm 50%LgRdCf 0.77
L3.15−8mm L5m 0.79 L40mm 0.80 L5mm 50%TrRpk 0.76
L10mm L5m 0.79 L3.15−50mm 0.80 L5mm 50%LgRpk 0.76
L12.5mm L5m 0.79 L50mm 0.80 L5mm 50%TrMaxPeak 0.76
L8mm L5m 0.79 L31.5mm 0.80 L5mm 50%LgMaxPeak 0.76
L4mm L5m 0.78 L50−160mm 0.80 L5mm 50%TrMaxHeight 0.76
L6.3mm L5m 0.78 L80mm 0.80 L5mm 50%TrMPD 0.76
50% TrRpk L5m 0.77 L25mm 0.79 L5mm 50%LgMAxHeight 0.76
90% TrRpk L5m 0.77 L20mm 0.79 L5mm 50%LgMPD 0.76
50% LgMaxPeak L5m 0.77 L3.15mm 0.79 L5mm 50%LgRkTotal 0.76

R2 = 0.73 while regressions using PCC grind, PCC non-grind, and all road sections had R2-
values between 0.29 and 0.45. Moreover, Asphalt, all road sections and PCC grind had β1 < 0
which is counter-intuitive to the relation between road unevenness and rolling resistance.

In the general case of b) the top 10 in R2 values lie in [0.77 − 0.79]. It would probably
be too much to say that it is a good correlation, but it is a great improvement compared to a).
As a side note, in the asphalt regression shown in table 4.10, the 7 best texture measures are
texture levels Lλ for different third-octave bands going from 3.15 to 12 mm (all having L5m
as the unevenness variable). This is peculiar because it is completely different measures, e.g.,
Tr/LgSkewness, in the top ten for PCC grind and non-grind[168, p. 52] (not shown here). Also,
the unevenness components for PCC grind/non-grind are Lλ metrics for smaller octave bands
(0.1-1.25 m) than asphalt. This divergence might be due to different surface characteristics of
concrete pavements and asphalt, but given the overall low R2 values it might also be due to
deficiency of the road metrics.

With c) only RMS for specific wavelengths show up on the top ten (R2-values from 0.77 to
0.81) with wavelengths between 3.15 and 80 mm. Although it is generally higher wavelengths
compared to b) there are some overlap. It should be noted that in general most texture measures
performed well here.

In the regression model d) Texture1 ranges over texture band levels whereas Texture2 ranges
over median texture metrics (50%LgMPD, 50%TrSkew, etc.). The only Texture1 waveband that
is within a valid p-value is L5mm, thus it is the only measure for Texture1. This is rather strange
since many texture band measures dominates the texture variable in b) and c). In fact, while
many band level measures are represented in the models of b) and c), L5mm is not one of them.

This summary of a 130 pager report is of course brief. However, the findings discussed
here clearly illustrates a general trend that holds for the entire data analysis. Namely, that the
relation between all the different texture variables and rolling resistance measurements is not
very clear. It seems like many of the road measures investigated does quantify something that
can be related to rolling resistance but the relation seems weak. This is shown, not only by low
R2 values, but also by the fact that different regression models rank the road metrics according
to R2 in substantial different ways. That MPD performed poorly is also interesting, and the
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authors note that MPD might not be a optimal measure for rolling resistance[168, p.25]. One
explanation might be that most texture measurements had been performed in the right wheel
track, and the rolling resistance trailer measures between wheel-paths. However, the position of
the TUG-trailer has not been discussed so this is an open question. All in all, this study did not
identify any texture parameter as a potential candidate for rolling resistance assessment, and it
illustrates the difficulties involved in these efforts.

It should be noted that the rolling resistance measurements performed here have been for
smaller road sections that what is usually done in other studies. The road section lengths in,
e.g., Swedish and Danish rolling resistance measurement campaigns (including the COOEE
measurements) have been larger than what is measured here, which might be a reason for the
bad correlations[41, p. 25]. All in all, this report stands out as a rather comprehensive study of a
variety of road parameters, many of which are rather exotic and not used elsewhere.

4.2.3 Dutch Measurement Campaign
Another recent measurement campaign using the TUG trailer was carried out in April 2013 in
the Netherlands[68]. In contrast to the MIRIAM and MnRoad studies, that was based on rolling
resistance and texture measurements from a test track, this study is based on data obtained from
actual roads of the Dutch road network. It is a fairly large data set with 68 main road sections
consisting of both highway and provincial roads, where texture profiles and rolling resistance
have been measured. Most of these road sections are above 500 meters with a total length of
approximately 48 km. 25 of the 68 road sections have been measured 5 times whereas the
rest have been measured once. Thus, a total of 168 measurement runs have been performed.
In addition, the TUG trailer had measured approximately 150 kilometres spread across 38
additional road sections, but without any texture measurements. The texture laser was mounted
directly on the TUG trailer, such that the laser and rolling resistance measurements are aligned,
which is very important especially on real roads where the traffic load wears the pavement and
causes transverse variation of the surface. All in all this is a very comprehensive measurement
campaign using real roads.

One of the main goals in [68] is to study the relation between texture and rolling resistance,
but some auxiliary investigations into, e.g., temperature and pressure dependence have also been
undertaken. It was found that the influence on rolling resistance from tyre pressure changes
were too small to be corrected for, given that the measurement procedure protocol adjusts tyre
pressure if it is higher than 215 kPa and lower than 205 kPa. To investigate temperature influence
on rolling resistance, two road sections were measured for rolling resistance 12 times, spanning
several days. For each measurement run air, road, and tyre wall temperature were measured
together with rolling resistance. A regression line was fitted for each combination of road and
temperature type[68, p.20]. The tyre-wall temperature gave the best fit, so a formula was derived
from tyre-wall temperature and used to correct all the rolling resistance measurements before
subsequent analysis. Since the coefficients of the two regression lines derived from tyre wall
temperatures differs it would have been interesting to see the result of a combined regression
using both road sections together with a qualitative variable. Instead the authors use an average
of the two. However, their investigations clearly illustrates the important role of temperature
during rolling resistance measurements.

The texture/rolling resistance modelling in [68] is also based on linear regression, as in the
previous studies discussed here. However, the amount of models and parameters is much smaller
compared to the previous study discussed in section 4.2.2. The texture road metrics used are
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MPD, RMS, SMTD(= MPD/RMS), and Skewness together with the following linear models.
a) Texture: CRR = β1Texture + β0

b) MPD, SMTD: CRR = β2 SMTD + β1 MPD + β0

c) RMS, Skewness: CRR = β2 RMS + β1 Skew + β0

d) Skew, RMS, MPD: CRR = β3 Skew + β2 RMS + β1 MPD + β0

These models have been fitted to temperature corrected CRR measurements on a road section
basis, i.e., CRR and texture parameter values have been aggregated into one average value for
each road section. A summary of the modelling results is given in table 4.11. If we look at

Table 4.11 Overview of regression results from [68].

Model R2 β̃3 β̃2 β̃2 β̃0
CRR = β1 MPD +β0 0.65 0.96 7.92
CRR = β1 RMS +β0 0.53 1.06 8.12
CRR = β1 Skew +β0 0.10 0.65 10.0
CRR = β2 SMTD +β1 MPD +β0 0.69 0.63 1.00 7.03
CRR = β2 RMS +β1 Skew +β0 0.65 1.08 0.71 8.87
CRR = β3 Skew +β2 RMS +β1 MPD +β0 0.68 0.17 0.55 1.36 8.13

the three single variable models, the model fits are very poor, especially with skewness as the
explanatory variable (R2 = 0.10) and MPD is the best (R2 = 0.65) but still a very poor fit. The
situation does not improve much by introducing more explanatory variables where the best fit is
the model b) which is not that surprising since MPD is part of both explanatory variables. It
should be noted that data obtained at a particular date they stood out compared to the rest and
were corrected by adjusting the mean of that date to match the mean of the rest. Without this
correction, the goodness-of-fit drops from R2 = 0.64 to 0.52 and the slope changes from 0.95
to 1.14.

Given the huge dataset and high degree of averaging the results of the regression does not
seem very satisfactory. Just as in the MnRoad study the correlations in the form of R2 values do
not seem very high. The overall results of these two studies are quite unfavourable compared to
the results obtained in the MIRIAM project in section 4.2.1. Even though MPD also performed
poorly in the last two studies, it still seems like the best choice compared to all the other road
metrics explored here.

All in all, these three studies shows the difficulties involved in assessing surface induced
rolling resistance by means of road profile measurements.

4.3 New Road Metric Proposal
Given the history, development and recent studies in rolling resistance modelling and road
surface measurement characterisation, a new road metric for the macrotexture range is proposed.
The reasons for doing so will be discussed below. As mentioned above, the present standard
road metric for the unevenness range, IRI, might not be suitable for rolling resistance modelling.
However, we have not made any attempts at defining a new metric for this road property since
it would make the present work too comprehensive. In addition, the macrotexture is easier to
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adjust with a new pavement mix, which is what the COOEE project intends to do. Nevertheless,
road unevenness is a property that can be controlled to some extent by road administrators and
research into the relation between rolling resistance and unevenness (not necessarily represented
by IRI) would be a very interesting undertaking. An example of a recent large-scale study
investigating the fuel consumption effect of road roughness is published in [3].

4.3.1 Background
The primary reason for the differences in rolling resistance caused by road macrotexture is that
the rough surface causes local hysteresis losses when it indents into the tyre surface as well as
energy loss due to adhesion or other chemical reactions. This also explains that all the different
results presented in section 4.2 have one general conclusion in common: Rougher macrotexture
implies higher rolling resistance. However, the different studies do not agree on the quantitative
side, i.e., how much does rolling resistance increase with rougher macrotexture, let alone the
question of how to quantify macrotexture roughness in terms of rolling resistance. As shown
in section 4.2, different road metrics are able to correlate with rolling resistance, although to a
limited degree of success. The question is what metric describes rolling resistance best in terms
of macrotexture, and up until now it seems to be MPD.

MPD is derived from the sand patch test which was used in connection with skid resistance
and while it has shown very useful in rolling resistance as well, there is not much in the
specification that suggests this would be a good measure for rolling resistance. Implicitly there
are some indicators which might explain its usability: 1) MPD measures the highest peak for
each 5 cm and it seems reasonable to assume that higher peaks implies higher indentation and
thus higher energy loss. 2) The slope suppression takes skewness into account since it ’pulls
down’ profiles with a negative skewness and thus reduces the height of the highest point in the
profile. On the other hand 1) seems a bit arbitrary. Why should it only be the two highest peaks
each 10 mm that counted? With 2) there is the risk of having deep cracks, or a road surface with
many deep valleys, slope suppression pulls the profile down even though there are some high
peaks which could indent deeply into the tyre and create substantial energy loss. The obvious
solution is to use high pass filtering, however, this seems a bit implicit. What is sought is not to
remove small frequencies per se, but to remove deep trenches in the surface profile. As a small
aside, it is ironic that MPD is derived from the sand-patch test which actually is sensitive to
cracks and valleys in the profile, assuming they are wide enough for grains of sand. All in all it
can be argued that MPD might have some properties that makes it useful in rolling resistance
assessment. However, as discussed above, these properties are vaguely related to the theory of
macrotexture level rolling resistance and it would be desirable to have a measure that is more
explicit in this relation.

Compare this situation to the IRI measure when used as a measure of ride comfort which
was one of its first uses. IRI is based on a theoretical model of a vehicles response to road
unevenness, and while the model greatly simplifies the complex reality, it is still based on basic
principles about how a vehicle is reacting to the surface and how this reaction is reflected in the
ride comfort. The MPD measure on the other hand is not as directly related to the phenomena
for which it is used and seems closer to the RMS and Skew measures described above. RMS
and Skew are statistical properties of the distribution of profile measurements, and while we
can relate these statistical measures with a basic understanding of the relation between road
texture and surface induced energy loss, the relation is based on implicit properties of the rolling
resistance phenomena. For instance, we expect that, in general, a profile with a large negative
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Figure 4.6 Illustration of different measures and modelling approaches and how theoretical and empirical
they are perceived to be. The ranking is merely qualitative and should not be considered and exact
quantification. Also note that ranking into computational efficiency should be taken with a grain of salt
since IRI/TPA/MPD are all almost equally efficient to compute.

skewness will cause a higher energy loss than a profile with lesser negative skewness, mainly
because the indentation is expected to be higher in the former case. However, we also know that
this depends on the exact geometry of the profile as well as tyre, temperature etc. Since most
profile geometries are very complex, the above rule of thumb is not guaranteed to hold and, e.g.,
the Dutch and MnRoad studies discussed above did not find very good correlations between
skewness and rolling resistance[68, ch. 7].

Enveloping is a method that resembles IRI, in that it is founded on general knowledge con-
cerning the phenomena that it is supposed to model. However, enveloping is not a road measure
since it takes a profile and outputs a processed profile instead of a single value. Nevertheless,
enveloping is based on the simple idea of mimicking the visco-elastic deformation of the tyre
when it is pressed against a surface. Compare this to, e.g., the purely statistical RMS/Skewness
measures. It is also interesting to note that the initial results with enveloping, in combination
with MPD, have been very good and promising[15]. On the other hand, enveloping is still an
empirical measure that lacks a solid theoretical foundation compared to other complex models
such as the those presented in [93]. Unfortunately, the complexity of these models are also what
makes them unusable here because they are impractical to compute for large data sets, which
is needed in network level road maintenance and monitoring. As such, enveloping and IRI are
optimal trade-off’s between theory and practical needs and serves a template for the measure
proposed below. To illustrate and clarify this discussion, figure 4.6 ranks the different measures
and models that have been considered above, including the TPA measure described below. This
also illustrates the main design goal behind TPA: Develop a measure that tries to be faithful to
the theory behind macrotexture induced rolling resistance while still being practical enough for
it to be used in road maintenance and asset management.

4.3.2 Description of the New Measure
The main source of macrotexture induced energy loss comes from local tyre deformations
caused by the tyre being pushed down into the surface. Thus, the magnitude of the surface
induced tyre indentation should be the quantity that we try to estimate or quantify. This is a
much more explicit approach compared to MPD, RMS, and Skew since the indented volume
should be directly related to the resulting energy loss. In the 2D-case this magnitude should be
an area which can be extracted from profile data, although the details of this requires careful
consideration. However, the main idea is to calculate the area of the peaks in the profile. What
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is defined as a peak is an open question, but an obvious approach is to specify a depth d and
then find the area of the profile larger than d, as shown in figure 4.7. Thus, d determines what is
a peak, and finding a value for d will be a central question that is discussed below. Since this
area can be found by integration, it is obvious to view the profile as a function y(t) which can
be transformed to a new function ŷd(t) where

∫
ŷd(t)dt will give the area of the peaks of y(t)

defined by d. Converting segments of profile data into functions is a interesting use case of FDA
using a standard (cubic) B-spline subspace for the functional data. However, using simple linear
interpolation is also worth exploring as it is very fast. How this is done in practice and the details
of the function y(t) will be discussed in section 4.3.3. For the rest of the thesis, this measure
will be referred to as the “Texture Penetration Area”(TPA).

Because we are interested in the indentation area, it is obvious to combine this technique
with the empirical enveloping procedure discussed above, since tyre indentation is exactly what
profile enveloping is about. This is done by treating the profile with the enveloping procedure
before applying the rest of the algorithm.

Another aspect of the calculation is the partitioning size and filtering where there is no
reason not to follow the procedure described for MPD in ISO13473-1[75]. This means that
the segment size of 100 mm is followed and segment normalisation using slope suppression
(i.e., by subtracting the regression line) is also applied to the TPA measure. Low-pass filtering
will not be explicitly used, but the smoothness technique from section 2.4 using a roughness
penalty term with a roughness parameter λ will be deployed instead. Unfortunately, it is not
known whether or not low-pass filtering is already performed on the data used in this work. In
case of rolling resistance measurements by the TUG trailer, this definitely seems to be the case,
although the applied algorithms could not be disclosed by TUG.

Given the description so far, there are several parameters whose values are not given to us a
priori. The set of parameters involved depends on the implementation, but there are at least two
and at most four different parameters:

Penetration depth d Represents how far the surface penetrates into the tyre. Important factors
that influence this parameter is the visco-elastic properties of the tyre and geometry of
the surface. How much this depends on the surface geometry/tyre is an open question
that should be investigated, but in theory it should be stable over a road segment with
the same pavement and tyre. Therefore, d should be estimated for each combination of
tyre and road section, although it might be the case that a single value will suffice. It
is also not clear whether the ambient and tyre temperatures will have an effect on this
parameter. Given that data for every road section used in later chapters will be measured
with a warmed up tyre, the tyre temperatures are fixed for each road section. There is also
the question about how to determine and interpret d. A direct interpretation of d would be
as the distance from the highest peak of the profile segment under consideration. However,
that would make the resulting TPA algorithm extremely sensitive to outlier peaks in the
profile. Instead d is a percentage of the upper profile curve such that d = 10% means that
the highest 10% of the profile curve is used.

Envelope parameter e This parameter concerns the enveloping of the tyre with the road surface
as described above. Since e can be viewed, intuitively, as a parameter describing tyre
stiffness in the empirical algorithm of [115] it should, ideally, depend on tyre type. Thus,
it would be preferable to consider it on a tyre/surface combination basis as well. However,
in order to limit the investigations in chapter 5 and 6 we will only look at the parameter
values used in the literature: e = 0.0025[15], e = 0.054[115] and of course e = 0 (i.e.,
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no enveloping). This parameter together with d is the essential parameters used in TPA
measure.

Roughness parameter λ (FDA-specific) As described in section 2.4 this parameter determines
the amount of smoothing used when estimating a function from data and this should have
an effect similar to low-pass filtering. This parameter is not present when y(t) is piece-wise
linear.

Knot Placement Parameter K (FDA-specific) Because of the large data sets it is interesting
to investigate how many knots are needed in the B-spline basis. More precisely, how many
data points between each knot: A knot at every data point (K = 0), every second data
point (K = 1), every third (K = 2), and so on.

Of course, the devil is in the detail and the details are in the implementation, so we will consider
a couple of the details in the next section.

4.3.3 TPA Calculation Details
Now that the parameters have been introduced and described, we can give a stepwise description
of the algorithm. Assuming a texture profile y[s] = (y1(s1), . . . , yN (sN ))′ from which the
TPA-measure is to be calculated for a fixed set of the parameters d0, e0, λ0,K0, we do as follows:

1 Apply the envelope operator Ee0

(
·
)

(parametrised by e) to the profile data, i.e.

Ee0 : y[s] 7→ ŷ[s] (4.13)

We use the envelope algorithm proposed in [115] and used in [15], but other algorithms
could be used as well. For the sake of completeness we define Ee0 to be the identity
operator when e = 0.

2 Following ISO-13473[75] the initial step in the MPD calculation procedure, the profile
is partitioned into 100 mm segments and for each of these sections, the regression line
is subtracted. The next steps will be performed piecewise on each of these segments, as
when calculating MPD.

3 In order to get a consistent measure in the last step, we require that yi(si) > 0 for all
i. Since slope suppression causes the measurements to be distributed around y = 0, we
vertically translate the profile data by adding |min

(
ŷ[s]

)
| to ŷ[s].

4 Convert the discrete laser profile ŷ[s] into a functional form ŷ(s). Implicit in this conver-
sion is of course the choice of basis functions. In principle any basis could be used, but
given our discussion above, we have essentially two approaches here.

a) Define a cubic B-spline basis system using K0 and fit the basis to each 100 mm
segment using the smoothing value λ0 supplied to obtain the C2-function ŷ(s).

b) Interpolate linearly between measurement points, thus giving a piecewise-linear
C0-function ŷ(s). In this simple case each knot is trivially at every measurement
point and there is no smoothing, thus K0 and λ0 is omitted using this approach.

5 In this step it is assumed that d∗0 has been derived as the height where d0 percent of the
profile function lies above. This conversion from percentage to height will be determined
for each 100 mm profile segment. To calculate TPA, define a new function ŷ(d, s) by

ŷ(d, s) =
{

0 if ŷ(s) < d,

ŷ(s)− d if ŷ(s) ≥ d.
(4.14)
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Figure 4.7 Illustration of the TPA measure. To the left is approx. 100 mm of texture profile ŷ(s) taken
from road ID 3 of the VTI data investigated in chapter 6. ŷ(s) was obtained using linear interpolation
using e = 0. The filled curves to the right are 4 different curves of ŷ(d, s) for four different values of d.
The first number in the legend is the TPA value [mm ·m] which is also illustrated by the coloured area of
the curves. The TPA value of the red curve is the red area as well as all curves contained in it, and so on.
The second number denotes the d values which each curve corresponds to. The curve with d = 100%
seems rather unrealistic but is included for completeness.

Since we normalized the profile in step 3 we know that ŷ(d, s) will be non-negative for all
s as long as d∗0 ≤ max

(
ŷ(s)

)
. The TPA-value for each 100 mm segment is thus defined

as

TPA(d∗0) =
∫
ŷ(d∗0, s)ds. (4.15)

Explicitly denoting the d-value can be omitted if it is not necessary in the context.

6 Once again ISO-13473 is followed by taking the mean of 10 100 mm sections to get TPA
values in approximately 1 meter intervals.

This procedure is formulated using mathematical terminology. When calculating step 5 in
practice, the functional profile ŷ(s) is evaluated on each road section by choosing a suitable
set of evaluation points s∗ = (s1, . . . , sN ′)′ where N << N ′ and then carrying out the
calculations on the resulting function values. The integral is approximated using standard
trapezoidal rule and the largerN ′ is, the higher the precision of TPA will be. Examples of ŷ(d, s)
for d ∈ {25%, 50%, 75%, 100%} are shown to the right in figure 4.7.

It follows from this formulation that TPA(d) as function of d is strictly increasing as d
increases and that it does so smoothly. However, the way that TPA increases with d differs from
each segment. The qualitative behaviour of TPA and its sensitivity to d is illustrated in figure
4.8.

4.3.4 Concluding Remarks on TPA Measure
All macrotexture road metrics discussed above have one thing in common, they are all extracted
from a 2D profile of the road surface. This is of course a very rough approximation to the true
3D surface. Thus, an implicit assumption about isotropicity of the surface is underlying the
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Figure 4.8 Illustration of the TPA values sensitivty to d. All segments are from road ID 3 of the VTI data
investigated in chapter 6. To the left are TPA-values for several 100 mm segments shown as a function
of d. To the right are several TPA curves, with varying d-values shown. Note the smooth transition as d
increases as well as the variation among each segment.

hypothesis that it is possible to assess rolling resistance (or skid resistance) from a 2D profile.
However, when dealing with asphalt pavements there are some circumstances that justifies this
assumption. More specifically, the top layer of the pavement is basically composed of bitumen,
filler6 and mineral aggregates. It is specifically the latter which is responsible for the roads
macrotexture. Since grain sizes of the mineral aggregates are tightly controlled, the resulting
asphalt should be somewhat homogeneous. Furthermore, careful mixing of the asphalt also
ensures a homogeneous material and if properly paved this should ensure an isotropic surface.
Of course, since different batches of asphalt can be composed of filler, bitumen, and mineral
aggregates from different sources their might be some variation between equal pavement types
mixed at different times. This is not a problem as long as the isotropic assumption holds within
each road segment being measured. However, there are some cautionary remarks that should be
taken into account. First of all, when the pavement is laid out there can be some complications
affecting isotropicity. For instance, if the pavement mix is not properly handled during pavement
construction, the mineral aggregates in the asphalt mix can settle at the bottom of the asphalt
container which result in non-homogeneous asphalt mix and thus a non-isotropic pavement
surface. In addition, as the road is worn by traffic it becomes non-isotropic due to rutting and
other traffic wear. This often creates transversal variation of the road as, e.g., the macrotexture
of the surface is worn much more in the wheel paths compared to the rest of the road. In severe
cases the wheel path surface is outright depressed compared to the rest of the road. This makes
it extremely important to measure the road profile in the same wheel track where, e.g., rolling
resistance is measured. Although isotropy seems a reasonable assumption, there is still high
transversal variation in macrotexture profiles, as discussed in section 3.3.3. It will in turn result
in high variation of TPA values (or MPD or any other macrotexture measure) which can be
perceived as noise, complicating attempts at modelling the relation between macrotexture and
rolling resistance. Thus, having a road metric that produces the least amount of variation across
a homogeneous road section is a desirable property. In relation to this, it should be noted that
the data used in chapter 5 have been obtained from a closed airbase that has not been used much,

6 Filler is, roughly speaking, small mineral aggregates (<63µm) that stabilises the bitumen.
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so the pavements were not noticeably worn and no rutting has been observed on the measured
road sections. Since the profile data used in chapter 5 are 3D instead of the ordinary 2D, some
investigations concerning isotropy have been undertaken to substantiate the hypothesis.

An interesting feature of the TPA measure is that, intuitively and formally, it can be adapted
to be used on 3D surface profiles. In fact, this would be a much more natural setting compared to
the 2D version. The latter, however, is still the standard way of measuring road surface texture,
but as mentioned earlier this will probably change in the future. In the 3D version y(s), ŷ(s),
and ŷ(d, s) would be functions of two distance parameters, e.g., y(s1, s2) so the TPA measure is
reformulated as a double integral

TPV =
∫∫

ŷ(d0, s1, s2)ds1ds2. (4.16)

and renamed to TPV since the measured quantity is a volume instead of area. The envelope
algorithm discussed above and used in the following chapters might also be modified to work
in the three dimensional case although that is not immediately obvious. Note the relationship
between TPV and the sand patch-test mentioned in chapter 3. Roughly speaking, the purposes
of the sand patch test is, implicitly, to estimate the volume of the void in the surface texture, i.e.,
the volume of void between the surface and an upper bound given by the top peaks. TPV is a
measures the volume of the surface itself between the same upper bound and some depth d. To
clarify this relationship, assume a specified volume V has been spread out in a circle with area
A and radius r according to the sand-patch test. Furthermore, assume that the sand used is ideal
in the sense that it fills up every valley and crack in the surface. Set d′ to be equal to the depth of
the deepest crack/valley and calculate the TPV value of the circle obtained by the sand-patch
using d′ as the penetration depth (and no enveloping), i.e.,

TPV =
∫∫

A

y(d′, s1, s2)ds1ds2. (4.17)

Then

TPV +V = πr2d′, (4.18)

i.e., the TPV and the volume obtained in the sand-patch test give the entire volume of the
cylinder and thus are complements to each other, relative to the surface patch A. Given this
relationship between sand-patch and TPV, it is interesting that while MPD was created as a 2D
substitute for the 3D sand-patch test, just as TPA is a 2D version of the 3D TPV measure, there
is no connection between MPD and the sand-patch test except for a correlation. As we have
seen above, TPA is direct 2D version of TPV. However, since 3D-profiling is on a very early
stage far from network level monitoring practices we will not investigate these matters further in
this work. Still, this potential generalization is a nice by-product of the TPA definition which
deserves further study.

A final aspect that needs to be discussed is the estimation of d. By definition, and as can be
seen from figure 4.8, each TPA value TPA(d) (derived from 100 mm of road profile) increases
monotonically with d, starting with TPA(0%) = 0 and ending with TPA(100%) = TPAmax.
Combining this with the observation that in principle d should vary across different pavements,
this gives quite a lot of flexibility for any optimization routine in minimizing a given loss
function. Thus, overfitting is a real concern that should be considered when investigating TPA
in connection with real data. For instance, in chapter 5 a simple linear relationship between
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rolling resistance measurements and TPA is investigated by using, essentially, two road sections.
If the optimal correlation is found by having TPA(d1) for one road section and TPA(d2) for
the other, where d1 << d2 which implies that, on average, TPA(d1) << TPA(d2) then this
is probably due to overfitting. On the other hand, letting d vary for different road section and
studying the estimates that is produced can provide valuable information about the TPA-measure
in general. In addition, there might be substantial differences between TPA values calculated
within a given road section which might hinder overfitting.

Therefore, we will in general investigate two scenarios, one where d vary across road sections
and one where d is kept fixed for all road sections. In the former case care will be taken to
observe the estimated values of d.

4.4 New Road Metric Validation
The main purpose of the data analysis will be to test and examine the TPA texture metric as
a rolling resistance indicator. The considerations put forward in the previous section have
to be tested up against experimental data. As mentioned in chapter 3, several kinds of data
exists for both pavement and rolling resistance. In addition, we have several sources of data
available to choose from. Since the preparation of raw data is a cumbersome and time consuming
process, only a selected number of data sets can be used in our investigations. Therefore careful
considerations have to be made in order to use the proper data that best suits our needs at the
lowest time-cost. At our disposal we have the following list (in chronological order):

1. Measurement campaign by the COOEE project in 2013 where approximately 125km of
state road network of Zealand have been measured: RR data with TUG RR trailer as well
as texture and unevenness measurements by the Danish Road Directorate.

2. Measurement campaign by the COOEE project in 2012 with 3D texture measurements by
Transtec group and RR data by the TUG RR trailer. Measurements were performed on
Værløse air base in June.

3. Dutch pavement and TUG RR trailer data from a measurement campaign in the Nether-
lands in 2012 by M+P Raadgevende ingenieurs BV for the Dutch Rijkswaterstaat.

4. Coast-down data from 2011 by VTI in Sweden on 8 different road strips. Includes many
different pavement and vehicle measurements. Results on these measurements have been
published in [89].

5. Measurement campaign by the MIRIAM project in 2009 at the IFSTTAR test track
in Nantes, France. In this study, rolling resistance measurements from three different
trailers, including the TUG trailer, where performed as well as texture and unevenness
measurements. In addition RR drum measurements where made by TUG. Results on these
measurements have been published in [15].

6. Coast-down data from 2009 by VTI in Sweden on 14 different road strips. Includes many
different pavement and vehicle measurements. Results on these measurements have been
published in [63] and [89].

7. Measurement campaign by the Danish Road Directorate in 2009 on approximately 8km
of state roads on Zealand. RR trailer measurements by TUG and texture measurements by
The Danish Road Directorate. Results of this have been published in [144].

Two test-sets that stand out from the rest are the ones from VTI, which are the only ones with
no direct rolling resistance measurements. Instead, the rolling resistance has to be extracted
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from a model fitted to various data sources, including texture and road gradient. Several factors
have been taken into account when choosing the data: Preparation time, scope of measurements
and type of measurements. All data sources have their pros and cons with respect to these
factors. Although the preparation time is difficult to estimate, some key indicators to navigate
by, are complexity and origin. Complex data involving many variables takes longer time to
understand and parse, compared to a simple data set. By the same token, data of many road
sections, directions etc. also increases complexity and thus time. By this indicator, item 7
is the easiest since involves only texture and trailer data for at a few road sections. 2 is also
relatively easy although handling 3D data does require some additional effort. Origin refers
to the owners of the data. If the data has been made in-house such as the COOEE and Road
Directorate measurements, it is easier to prepare the data for analysis, compared to foreign data
where knowledge about the data collection procedure is not as easily accessible. Once again,
7 and 2 rank high. Another aspect is the scope of data, i.e., size of the data set and spread in
measured values such as MPD and rolling resistance. In this category many of the measurement
campaigns rank high. 6 ranks high since the amount of measurements and spread i texture
and unevenness values are high. The same goes for the 3 campaign and to some extent also 1,
although the latter has discrepancies because texture is measured in the wheel tracks whereas
rolling resistance is measured between wheel tracks. The scope of 5 w.r.t texture is also good,
since the test track contains many different pavement types. Nonetheless, the length of the test
sections are quite small which makes it difficult to get reliable trailer results. Of course, as the
amount measurement of data increases the preparation time increases as well. Last but not least
we have measurement types, i.e. what kind of measurements are available. Again 6 ranks high,
since detailed data exists on texture, unevenness, cross fall, meteorological conditions etc. This
also goes for 2 where there is detailed 3D measurements, but unfortunately the diversity is not
optimal since only three road sections have been measured.

Based on the above considerations, data from 2 and 6 have been chosen. This gives different
sources of data: Coast-down measurements and trailer data together with 3D texture profiles.
It would have been desirable to have 3 as well, but it would have been too time-consuming
and so this data set have unfortunately been omitted. Data from 1 have also been considered,
but the difference in setting for RR and texture measurements mentioned above made these
measurements less attractive.



5 Data from Værløse Airbase

The data used here has been made as part of WP4 in the COOEE-project and supervised by Niels
Djuradin from the Danish Road Directorate. The measurements were made on Værløse military
air base which was closed down (beginning in 2004), so the measurements could be performed
without external disturbances. Three road sections were selected for the measurements: Curved,
Main, and Parallel. A air photo of the location is shown in figure 5.1. Initial pilot measurements
were performed on all three road sections to see if the spread in MPD/IRI resembles that of the
entire state road network (which it did). See table 5.1 for an overview of these results. The main
measurement campaign consisted of three kinds of measurements that were carried out on the
test sections:

1. Measurements by the rolling resistance trailer developed at the Technical University of
Gdansk (TUG) and performed by Prof. Jerzy A. Ejsmont from TUG. The trailer measured
with 3 different tyres: SRTT, AAV4, and MCEN16. General information about these tyres
is given in table 4.2 and specific details particular to these measurements are shown in
table 5.3. Each tyre was measured three times on each of the three selected road sections.
See table 5.2 for an overview of the results and additional information.

2. 3D laser profiles of the three road sections made by RoboTex, a measurement device
developed by The Transtec Group Inc. These measurements were performed by Dr. Robert
Otto Rasmussen and Richard C. Sohaney and consist of 100 parallel longitudinal lines
on a 100 mm interval. Each road section was measured two times, in opposite direction,
in approximately the same 100 mm track and the transversal, longitudinal and vertical
resolution is 1.00, 0.50 and 0.01 mm, respectively. See figure 5.2 for a 100 mm by 100
mm sample of these measurements.

3. 2D and ’2.5D’ measurements performed by the Danish Road Directorates noise research
group to test their new equipment. These measurements have not been used in this study
since the 3D laser profiles are of much higher resolution.

Unfortunately, the ’Curved’ road section caused problems with the measurements. Both The
Transtec Group and especially Prof. Ejsmont operating the TUG trailer said that their equipment
was not well-suited for a curved road section, and therefore the data from this road has been
used with caution, if at all.

While the primary goal is to validate the TPA measure we begin with two additional
investigations that this data set is used for: Isotropy investigations and an illustration of how to
use fdPCA with rolling resistance measurements.

5.1 Isotropy Investigations
In chapter 4 it was mentioned that the way asphalt mix is produced, it should be isotropic and this
serves as an implicit assumption when using 2D texture profiles for assessing surface induced

69
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Figure 5.1 Air photo of Værløse airbase.

Table 5.1 Information about texture measurements.

Road section Main Parallel Curved
Length [m] 550 640 600

1st run

MPD left 1.81 0.87 1.23
MPD right 1.47 0.79 1.20
IRI left 0.97 1.71 1.65
IRI Right 1.01 2.06 1.65

2nd run

MPD left 1.61 0.82 1.20
MPD right 1.56 0.81 1.14
IRI left 1.14 1.67 1.73
IRI Right 1.11 1.99 1.62

Mean MPD 1.61 0.82 1.19
IRI 1.06 1.86 1.66

rolling resistance. A couple of investigations have been deployed here but they will only be
limited in scope and merely substantiate the claim, not give a definitive answer.

5.1.1 Histogram comparison
An obvious examination is to look at the distribution of height values of the 3D-profiles, i.e.,
the height histograms. A necessary (but not sufficient) condition for isotropicity would be
that different longitudinal 2D-profiles from the same road sections will have a similar height
histogram. On the other hand, two longitudinal 2D-profiles from different road sections would
generally have significantly dissimilar height histograms. Similarity is not well defined but
fortunately we have a straightforward and intuitive way of determining dissimilarity. If the
histograms differs in a statistically significant way from each other, i.e., if the difference persist
across confidence intervals. Given the large amount of data, confidence intervals can easily
be calculated from the 100 longitudinal lines and visually inspected. Since each line contains
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Table 5.2 Overview of the rolling resistance measurement results and additional information.

Tyre Section Speed CRR Temp. Air [C◦] Surface [C◦]
SRTT

Main
80 0.0111 12.0 16.0

AAV4 80 0.0158 12.0 20.0
MCEN 80 0.0107 12.0 17.0
SRTT

Parallel
80 0.0099 12.0 21.0

AAV4 80 0.0153 12.0 24.5
MCEN 80 0.0107 12.0 20.5
SRTT

Curved
80 0.0094 12.0 19.0

AAV4 80 0.0151 12.0 22.5
MCEN 80 0.0099 12.0 21.0

Table 5.3 Overview of pilot measurement results.

Tyre Hardness [Sh]∗ Max load [kg] Max inflation [kPa]
SRTT 65 730 240
AAV4 62 900 405

MCEN16 63 750 350

more than 106 measurements it should be more than enough for a detailed histogram, where the
bin-size is given by the vertical resolution of 0.01 mm. Thus, for each road section a histogram
with bin-size of 0.01 of the vertical values have been calculated, for each of the 100 lines. See
an example of one of these in figure 5.3. Then the two maximum and the two minimum values
of the 100 lines have been removed from each bin, such that the maximum and minimum values
after this removal gives the 96% confidence interval, see figure 5.3.

As these confidence intervals show, there seem to be little deviation from the mean trend for
a particular histogram and given the fact that most bins contain between 1000 and 5000 data
points this suggests a rather stable behaviour. The confidence histograms from all three road
sections are shown in figure 5.4 and it is quite clear from this plot that the three road sections
have statistically significant differences in distributions of data points. This strengthens the
hypothesis that some isotropicity in the longitudinal direction is present.

5.1.2 Spectral Analysis
The major drawback of the approach above is that the histograms are global for the entire road
section in question. Thus, it is not possible to examine whether there are any differences in the
longitudinal versus transversal direction. In this section this matter is addressed using Fourier
analysis to compare quantities in the frequency domain between transversal and longitudinal 2D
slices of the 3D profile.

Since the transversal width is 100 mm, the 3D road profiles will partitioned into 100 x 100
mm squares. Given that the sampling frequency in the longitudinal direction is twice as high
as in the transversal direction, every second measurements in the longitudinal direction have
been removed. For each square, the Fourier transform of the 100 transversal and longitudinal
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Figure 5.2 A sample plot of the 3D measurements made at Værløse air base. This sample is from the
measurements made on the ’Main’ road section.
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Figure 5.3 Left: Histogram (out of 100 for each section) from road section ’Main’. The bins have 0.01
mm in width and are not visible to the naked eye. Right: Mean and confidence for all the 100 histograms
for road section ’Main’.

lines were calculated, and since the road sections are 550 to 640 meters in length, this gives
550.000-640.000 transversal/longitudinal transformed data sets to work with. In figure 5.5
spectral plots of three of these samples, in the longitudinal direction, are shown.

The approach of section 5.1.1 is also used here to calculate mean spectrum and corresponding
96% confidence intervals for both longitudinal and transversal data sets. Plots of the two non-
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Figure 5.4 Mean and confidence limits calculated for all three road sections. The significant difference
between them is apparent from this plot.

curved road sections are shown in figure 5.6 and 5.7, respectively. Unfortunately, each sample
is based on a much lower set of points than the histograms of section 5.1.1, so the individual
variation will play a much more significant role. This is also noticeable from figure 5.5 and
figure 5.6. However, if we compare figure 5.6 and 5.7, it is clear that the spectra of the two road
sections are significantly different while the transversal and longitudinal spectra for each road
section are quite similar.

As discussed in chapter 3, merely looking at the amplitude for the frequencies in question
does not give the entire picture. As illustrated in figure 2.5 and 2.6, radically different schematic
profiles can have an approximately equal spectrum. Basically, since the Fourier transform is
bijective, it follows that the differences in the frequency domain of the functions in figure 2.5 and
2.6 are solely due to phase differences. In other words, since their amplitudes are almost equal it
must be the phases that makes them differ so much. Although the situation in figure 2.5 is rather
schematic, it might be the case that a similar phenomenon occur for pavement profiles and these
data in particular. By using the same procedure as above, a plot of mean + confidence intervals
for the phases of the ’Main’ road section is shown in figure 5.8. The figure suggests that there is
a difference between the two directions: In the transversal direction the phases fluctuates with
frequency as opposed to a more steady behaviour for the longitudinal direction, although they
maintain approximately the same level. Note the large width of the confidence intervals, given
that all the phases should be contained in [−π, π]. To get an overview of all data, the transversal
and longitudinal phase plots for all road sections are shown in figure 5.9 and 5.10, respectively.
From this it is clear that the phase distribution is almost equal for all frequencies, across all three
road sections. It is especially noteworthy how close the mean and confidence interval of the
three road sections follows each other in the transversal direction where the phase fluctuates the
most. Therefore it seems safe to conclude that the phase distribution is equal for all three road
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Figure 5.5 Three samples of spectrograms from the ’Main’ road section. The samples have been obtained
from 100x100 mm slices of the road section.
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Figure 5.6 Mean and 96% confidence intervals for the two road sections

sections and that the distribution is different for the transversal and longitudinal directions. The
latter observation is particularly interesting in light of the fact that the difference persist for all
three road sections which suggests that the difference might be road section independent. The
reason for this could be measurement accuracy. When Transtec Group provided the data, the
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Figure 5.7

transversal measurement resolution was given implicitly, whereas the longitudinal resolution
was provided with as an array of distance values. This array showed an average distance
between measurements of 0.5 mm, but with small variation. More specifically it varied between
0.49800mm and0.53500mm. This variation could affect the Fourier transformation since the
FFT routine requires uniform spacing between measurements. This explains the discrepancy in
transversal and longitudinal phase distribution was identical for all road sections.

In conclusion, the isotropy investigations indicate that the leap from 3D to 2D seems
reasonable, i.e., road sections have a uniform behaviour that does not depend on the exact
position or direction. Furthermore, there were unambiguous differences between the road
sections investigated. A couple of remarks should be tied to this conclusion. First of all, the
dataset used above is scarce and using only three road sections, where one of them have not
been measured under optimal conditions, might not be sufficient. Secondly, the plots showed
differences between longitudinal and transversal direction. While the difference is suspected
to come from the measurement equipment, it cannot be excluded that it is caused by direction-
dependent differences in the surface. On the other hand note that the spread in MPD is very high,
which indicates that the pavement might not differ that much in texture. Thus the results about
the differences between road sections are even more interesting given that the road sections do
not differ much in texture as measured with MPD.
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Figure 5.8 Example of mean and confidence intervals for the phases for the Main road section
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Figure 5.9 Phase plot of all three road sections in the transversal direction. Solid lines are mean phase
plot and dashed lines denoted confidence intervals.
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Figure 5.10 Phase plot of all three road sections in the longitudinal direction. Solid lines are mean phase
plot and dashed lines denoted confidence intervals.
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Figure 5.11 TUG trailer at the measurement site.

5.2 Trailer Data
As mentioned above, the rolling resistance trailer from TUG was used for these measurements.
A picture of the trailer is shown in figure 5.11 which was taken from the measurement site
at Værløse airbase. To get a rough overview of the data all three measurements of the SRTT-
tyre have been plotted for all road sections in figure 5.12. There seems to be a rather good
reproducibility of the trailer, so the three measurements for each road section are hard to
distinguish from each other. Nevertheless, there are a few remarks to be made about figure
5.12. The measurements of the ’Curved’ road section is by far the most fluctuating of the three,
whichmight be caused by the high road curvature. This was mentioned in the beginning of this
chapter as a potential problem since the trailer is not build to handle high road curvature. In
contrast, the ’Main’ and ’Parallel’ road sections are much more stable and a mean difference in
rolling resistance is clearly observable, although it is rather small. More precisely, the average
of the two (taken over all three road sections) is 0.01113 for ’Main’ and 0.00994 for ’Parallel’.

To get a clearer picture of the separate road sections, all measurements for all tyres from
’Main’ and ’Parallel’ have been plotted in figure 5.13 and 5.14, respectively. It is clear from the
measurements that the AAV4 tyre has the highest rolling resistance, whereas MCEN and SRTT
is ambiguous: On ’Parallel’ the SRTT tyre has the lowest rolling resistance with the MCEN
tyre having second lowest, while it is the other way around on the ’Main’ road section. On the
’Curved’ road section AAV4 also ranks highest and SRTT lowest, although close to MCEN. The
reason for the interchange of MCEN and SRTT on ’Main’ is unknown, but intuitively one would
expect that the tyres were ranked equally for all three road sections.

The degree of measurement repeatability is also much clearer in figure 5.13 and 5.14. The
average value of a single tyre is quite stable and there seem to be a good correlation in some of
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Figure 5.12 Overview of rolling resistance measurements for all three roads.

the fluctuations that occur during a measurement, especially for the same tyre. These fluctuations
also holds to some extent across tyres as can be seen, e.g., between 180 m and 250 m in figure
5.14, as well as the valley at 360 m, the peak at 500 m or the valley at about 380 m in Fig
5.13. However, even within measurements using a single tyre there seems to be significant
irregularities in all plots and the inter-tyre correlation seems much weaker in figure 5.13 than
figure 5.14.

In general, the causes of variation in rolling resistance across a measurement run is not
clearly understood. The variation occurs at approximately 20-100 m wavelengths and appears
to be consistent in the sense that it varies smoothly across data points. In contrast, e.g., MPD
values have a high data-point-to-data-point variation even though they are constituted as a mean
of at least 10 MTD values. Therefore it seems implausible that the variation is due to macro
texture. In addition, inertial resistance, aero dynamic drag, trailer tilting and road gradient
should be dealt with in the design, according to TUG[182, 183] which should exclude, e.g.,
cross-sectional displacement, unevenness etc. Since the data has been delivered from TUG in a
filtered form without any details disclosed, this is more or less a black box and therefore it is
mere speculation whether, e.g., unevenness plays a role in the rolling resistance measurements
(even though unevenness might explain the partial repeatability).
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Figure 5.13 Rolling resistance measurements for all tyres on ’Main’.
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Figure 5.14 Rolling resistance measurements for all tyres on ’Parallel’.
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5.2.1 Functional PCA example using Trailer Measurements
As mentioned in the previous section, the degree of reproducibility is ambiguous which will be
investigated in more detail here. Another goal of this section is to illustrate the usage of fdPCA
as discussed in section 2.5. Given the small amount of measurement runs for each combination
of tyre and road section, the analysis will use data from all tyres on each road section. This
gives 9-10 measurement runs per road section. However, it would be interesting to perform a
similar analysis with more repeated measurements and road sections such as the data obtained
in studies discussed in section 4.2.1 and 4.2.2. In addition, the focus will be on the ’Main’ and
’Parallel’ road sections. All in all, this analysis will merely serve as a concrete example using
real measurements that hopefully illustrate the usefulness which would be more pregnant with a
more comprehensive data set.

To get a better overview of the data than what can be provided by figure 5.13 and 5.14, new
plots of the rolling resistance measurements, is shown in figure 5.16-5.15 where all measurements
using a particular tyre have been normalized. This is done by subtracting the total mean across
all runs and distances, i.e., we remove the mean rolling resistance measured for each tyre, thus
highlighting the variability between individual measurement runs. The mean for all runs is
also plotted in black to show the mean behaviour of all runs. From visual inspection of these
plots, it seems that the ’Main’ road section exhibit least reproducibility across measurements
compared to ’Parallel’ or even ’Curved’ where some fluctuation would be expected due to road
curvature. While there is variation across measurements of ’Parallel’ it can be seen that much of
it is mainly due to differences in amplitudes. If we compare this to the measurement runs of
’Main’ in figure 5.17 we see a much more erratic behaviour with additional irregularities with
respect to phases of common undulations and even significant fluctuations that seems to pertain
to one or few measurement runs only. In this respect, the results from the ’Curved’ road section
seems to be more on par with ’Parallel’ where large parts of the measured road section mainly
have variation with respect to amplitude and not as much difference in phase. All in all, however,
all road sections seem to exhibit quite substantial variation despite the fact that these data clearly
have been filtered in some undisclosed way. Also, there seems to be no significant grouping
in variation across tyre types, except for the ’curved’ road section where blue curves represent
measurements with the AAV4 tyre. This might be caused by the dip at 300 - 400 m.

To investigate the variation across each road section in more detail, consider figure 5.20-5.19
which are ’curved’, ’parallel’, and ’main’, respectively. They show the mean function µ(t) for
all road sections together with µ(t)± Cξn(t) n ∈ {1, 2} where C is a constant that depends on
µ(t) and a scaling factor chosen to give the visually best plot (see [143, p.155] for details). The
figures illustrate the distribution of weight for the given principal component.

We start by the curved road section in figure 5.15 since it has the most obvious and clear
interpretation. The first component accounts for about 67% of the variability while the second
accounts for 11%. It is pretty clear from figure 5.20 that the first component accounts for
the variation caused by tyre-related grouping in the data. The second component seems to be
covering other variations such as the general high variation observed in the valley at 300 - 400
m where fluctuating weight seems to imply non-uniform oscillation across measurement runs.
In addition, the last 100 m exhibits high variation as well. The variation in these two ranges is
also observable by visual inspection of figure 5.15.

In figure 5.18 we see the two first components account for approximately 30% and 22% for
the two first components, respectively, thus only showing 50% of the total variation in the data.
Both components contributes a substantial amount of weight in the range of approx. 70 - 170 m.
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Figure 5.15 Normalized rolling resistance measurements from the ’curved’ road section.
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Figure 5.16 Normalized rolling resistance measurements from the ’parallel’ road section.
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Figure 5.17 Normalized rolling resistance measurements from the ’main’ road section.

Since the principal components are orthogonal, each of them covers different modes of variation.
The 70 - 180 m variation seems to be different in nature whereas, e.g.,the twin peaks centered at
300 m seems to be related to differences in amplitude in both components. In the former case
it seems to be very irregular variation whereas the latter seems to be mainly a question about
the size of the amplitude. The first component of ’parallel’ also attributes weight to the valley
between peaks at 400 and 500 m and again in the oscillation occurring at approx. 500 - 550 m.
Especially the latter seems to be caused by vertical shift. Finally, many of the peaks/valleys have
a concentration of variation in both components which implies variation in amplitude.

figure 5.19 shows results for the ’main’ road section where the first component covers
about 49% of the variation while the second only covers 14%. The first component attributes a
substantial amount of weight in the 100 - 200 m range and also some weight in what looks like a
vertical shift of the oscillation starting at approx. 400 m. It is interesting to note that for the 100 -
200 m range the weight has the opposite sign of the outlier and by closer inspection it can be
seen that the point (approx. 140 m) where the outlier and weight changes sign is also where the
majority of measurements change sign in the opposite direction of the outlier and thus following
the sign of the weight. A conclusion to be drawn from this is that the outlier is a major influence
on the variation but the majority of measurements are the ones that have been prioritized when
optimizing the sum of squared scores. In the second component there is most weight for the first
peak after the 200 m mark with a phase shift component probably caused by the outlier, and
again after the 300 m mark. As with the ’parallel’ road section many peaks/valleys do have a
concentration in variation.

One interesting conclusion to be drawn from all road sections is that the amplitudes seems,
in general, to be subject to most variation. Whether this is a property of the phenomena being
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Figure 5.18 Plots showing mean function of ’parallel’ measurements, together with the mean function
where a multiple of the first (left) and second (right) principal components have been added (red) and
subtracted from it.

measured or if phase shifts or other disturbances have been filtered is unknown. Nevertheless,
some areas have been identified as having more erratic variation and in the case of ’curved’ some
areas are clearly identified as being more noisy. As such, this method seems fruitful in finding
irregular parts of rolling resistance measurements thus aiding in locating parts of road sections
where validity of the measurements are low. It has also been possible to identify the nature of
the variation, i.e., if it is variation in amplitude, phase, vertical shift, a combination of these or
something else entirely. This could be useful in analysing rolling resistance measurements in
larger data sets. It would thus be interesting to make a similar analysis with rolling resistance
measurements covering more road sections and with more repeated measurements, as in the
studies discussed in section 4.2. This could potentially shed some light on the relationship
between the low-frequency fluctuations observed in data, and the tyre and/or road.

Besides potential computational efficiency, the fdPCA approach used here might not differ
substantially from what could have been performed with ordinary PCA. However, if we had
unfiltered data at our disposal it would be obvious to include smoothness regularisation during
functionalization or when calculating functional principal components. Regularisation could
also be deployed if the measurement runs were longer and covering several pavements types as
it could highlight potential variation on the road section level. Rolling resistance measurements
performed in the Dutch study discussed in section 4.2.3 seem to be a good candidate for this
kind of analysis.

5.3 Investigation of Texture Measures
In the previous sections we looked at the raw profile and trailer data in isolation. Now both types
of measurements are used to compare TPA and MPD, i.e., we will calculate the MPD and TPA
texture measures based on the raw profiles and investigate their relation to rolling resistance
measurements. The typical way of assessing performance of a road metric is by assuming a
linear relationship between texture measure and rolling resistance as it is done in the studies
discussed in section 4.2. We will divide the investigation into two parts, the first part concerns the
full TPA measure using fourth order B-splines, thus including parameters K and λ. Computing
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Figure 5.19 Plots showing mean function of ’main’ measurements, together with the mean function where
a multiple of the first (left) and second (right) principal components have been added (red) and subtracted
from it.
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Figure 5.20 Plots showing mean function of ’curved’ measurements, together with the mean function
where a multiple of the first (left) and second (right) principal components have been added (red) and
subtracted from it.

the full TPA measure is a rather laborious task and in this case, with 3D measurements, there
are 100 2D-profiles per road section. Thus, to minimize computations the full TPA measure is
only investigated for e = 0 which also enables a much more fine grained investigation of the
remaining parameters. The second part concerns the simple version of TPA that relies on linear
interpolation instead of fourth order B-splines. This is much faster to compute and does not
depend on λ and K so all three values of e will be investigated.

Another consequence of the computational resources required is that we will not rely on
numerical optimization methods to estimate the TPA parameters, which is the approach used
in chapter 6. Instead, a suitable set of values from each parameter λ,K, d, e are selected for
the full TPA (and d, e for the simple TPA) and every combination of these values are used to
produce a TPA data set which can then be examined. As will be shown below, there is good
reason to suspect that the simple TPA will suffice. The following sets of parameter values have
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been chosen for the full TPA

λ = {10−13, 10−12, 10−11, 10−10, 10−9, 10−8} (5.1)
K = {0, 1, 2, 3, 4} (5.2)
d = {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%} (5.3)
e = {0}. (5.4)

The λ-values have been chosen by identifying extreme values by visual inspection, i.e., finding
two opposing values where one gives a practically perfect fit to data and the other gives a highly
(but reasonable) smooth fit to the data (an example of this is given in figure 6.6 of chapter 6).
Then 4 different values (logarithmically scaled) between the extremes have been selected, which
gives a total number of 6 different values, not too comprehensive to simulate. The K-values
have been chosen as all values up until a maximum number of measurements between knots
that have been assessed by visual inspection to give meaningful results. d is one of the primary
parameters so every tenth percentile have been chosen except for 0 and 100% which is not
physically consistent. Finally, as mentioned above, only e = 0 is used here. Thus, the set of
different parameter configurations for the full TPA is

X = d× e× λ×K

and with the sizes of the sets described above, this gives

|X| = |d| · |e| · |λ| · |K| = 9 · 1 · 6 · 5 = 270

different TPA texture measure variations to calculate. For the simple TPA measure the parameter
sets are

d = {10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%} (5.5)
e = {0, 0.054, 0.0025} (5.6)

and therefore only 27 different variations for each road section.
The following general approach has been used to determine the correlation between texture

measures (MPD/TPA) and trailer rolling resistance measurements: The TPA/MPD measures
were paired with the RR measurements and in case of, e.g., full TPA it was done for all parameter
configurations (λ0, d0, e0,K0) ∈X . We will investigate a linear relationship, so simple linear
regression was performed on these paired data, i.e., linear regression on (x, y) = (TPA,RR)
and (x, y) = (MPD,RR). The coefficient of variation R2 has been used as a goodness-of-fit
and correlation measure as is customary in this field of research. As mentioned in section 4.3, d
could potentially vary across road sections which is one of the primary questions to investigate
below. The parameter configurations above only hold for the case were d is fixed/uniform on
all road sections. When investigating varying/dynamic penetration depth d we will expand the
parameter configuration tuple above to include a d-parameter for each road section. In case of
the full TPA examined for all road sections, R2-values will be generated for each parameter
configuration (dP , dC , dM , e, λ,K) in the set of extended parameter configurationsX ′ defined
as

X ′ = dP × dC × dM × e× λ×K
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where dP ,dC , and dM are the sets of penetration depth values used for the Parallel, Curved,
and Main road sections, respectively.

Finally, in the studies discussed in section 4.2 of chapter 4, calculated road metrics have
been averages across all road sections. This seems quite coarse to the author and it is not known
whether this is just a standard practice or if correlations quickly break down if less averaging
is used. Therefore are different aggregation lengths from 10 to 100 meters considered here to
examine how R2-values behave under varying aggregation. Since most of the road sections
considered in the aforementioned studies are more than 100 meters, our highest aggregation
length is actually quite low. Investigations discussed below that is not concerned with aggregation
uses 100 meters unless stated otherwise.

5.3.1 Results - full TPA
In this section we start looking at the case with no enveloping and we start by examining the
case where the value of d is constant over all road sections.

As mentioned in the beginning, rolling resistance data from the road section ’Curved’ might
not be usable because of its curved geometry. Thus, the first thing to check is if the rolling
resistance measurements from the ’Curved’ road section is usable at all to this investigation,
i.e., do the R2 values drop significantly when using this road section in the regression described
above. To verify this and compare overall correlation results, R2 values for all road sections and
when ’Curved’ is excluded are plotted in figure 5.21 and 5.22, respectively. The former is for all
road sections, whereas ’Curved’ is excluded in the latter.

By direct comparison between the y-axes of figure 5.21 and 5.22 it is seen that correlation is
non-existent if the ’Curved’ road section is taken into account. The R2 value drops from the
best correlations above 0.9 in figure 5.22 to below 0.2 in figure 5.21! This was, unfortunately,
expected and all subsequent analysis will omit the ’Curved’ road section which limits the scope
of the analysis.

If we take a closer look at the left plot in figure 5.22, some interesting observations can be
made. There exists a substantial amount of variation between the different tyres. The SRTT tyre
especially stands out with extremely poor correlation, in particular with MPD. While the rolling
resistance between tyres is known to vary significantly, they should still correlate with MPD.
The small data set could be the reason for the lack of correlation, but the drop is so consistent
through all three plots (figure 5.21 and 5.22) that this does not seem to be the case. Another
explanation might be measurement-problems for this specific tyre. If we look at figure 5.13
we see that the rolling resistance measurements for the SRTT tyre stand out as highly irregular
compared to the others. The reason for this irregularity is unknown but the SRTT tyre has been
unproblematic in other studies so it is likely because of some error related to the measurement
of ’Main’.

If we compare the different texture measures, the results are mixed. In the left plot where d
is constant across road sections, MPD and TPA seems to be rather close with respect to goodness
of fit. With the AAV4 tyre the TPA measure has a slightly better R2 value than MPD and with
the MCEN tyre it is the other way around. It is noticeable that although TPA performs poorly
on the SRTT tyre it is still significantly better than MPD. To get a clearer picture than merely
looking at R2 values, plots of raw data that give rise to the R2 values are shown in figure 5.23
for the MCEN tyre and figure 5.24 for SRTT tyre. These two highlights best and worst cases of
figure 5.22 where d is constant. When comparing figure 5.23 and figure 5.24 the difference in
R2 values are clearly seen in the amount of dispersion of data points. In the case of the SRTT



88 Data from Værløse Airbase

AAV4 SRTT MCEN
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

R
2
 value

R
2
 coefficients, All sections, Uniform PD

 

 

MPD

TPA

Figure 5.21 This plot shows the R2 coefficients for the linear regressions based on all road sections. The
plot shows MPD vs. TPA when the penetration depth d is held constant for all road sections.
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Figure 5.22 This plot shows the R2 coefficients for the linear regressions based on ’Parallel’ and ’Main’.
The left plot shows MPD vs. TPA when penetration depth d is held constant for all road sections and to the
left the optimal d ∈ d has been chosen for each road section. Note that the R2-values for MPD are equal
on both plots and have been included in both for completeness.

tyre with low R2 in figure 5.24, the spread in rolling resistance values for a given texture metric
is very high and the lack of correlation is apparent. The opposite conclusion could be said of
figure 5.23 where data points from the two road sections are clearly separated in both the TPA
and MPD plots. This behaviour is repeated with the AAV4 tyre which is not plotted here. One
noticeable difference between MPD and TPA in figure 5.24 is how the texture metric values are
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Figure 5.23 Both plots show the calculated texture measures vs. rolling resistance trailer measurements
for the MCEN tyre. The measurements and texture measures have been aggregated into 10 meter
segments . Equation for the regression line for the MPD-case to left is y = 0.0021x + 0.0078 and
y = 0.0014x+ 0.0068 for the TPA-case.
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Figure 5.24 Both plots show the calculated texture measures vs. rolling resistance trailer measurements
for the SRTT tyre. The measurements and texture measures have been aggregated into 10 meter
segments. Equation for the regression line for the MPD-case to left is y = 0.0001x + 0.0106 and
y = 0.0003x+ 0.0106 for the TPA-case.

distributed on each road section. In the case of MPD, the spread in rolling resistance values
is extremely high even though the MPD values of the two road sections are clearly separated.
In the case of TPA the data points are much more mixed, but higher rolling resistance values
do seem to correlate slightly with higher TPA-values on the Parallel road section. This might
explain the better R2 compared to MPD. All in all, the two texture measures seem to exhibit
similar qualitative behaviour, but definitive conclusions are hard to make when only two road
sections have been used. The TPA calculations used in the comparison above are primitive
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compared to the full-fledged measure where d also varies across road sections which is depicted
in the right plot of figure 5.22. In this plot the TPA-measure performs better than MPD on all
tyres but the result should be taken with a grain of salt due to several factors: First of all it is to
be expected a priori since the parameter space, when d is constant, is a subset of the parameter
space where d can vary across road sections. The general aspects of this is discussed in section
4.3 of chapter 4 but in this particular investigation it is especially illustrative as there is only a
finite set of d-values. The superset (where d vary across road sections) is defined as

A = d× d = {(d1, d2) | d1, d2 ∈ d} (5.7)

corresponding to the set of possible penetration depth configurations tried out, before arriving at
the results plotted to the right of figure 5.22. The situation with constant d across road sections
can be described as

B = {(d1, d2) | d1, d2 ∈ d and d1 = d2} ⊂ A. (5.8)

Thus, the configuration with the best result from B that can be found when d is constant, is also
contained inA, i.e., since there are many more configurations in the former case, an improvement
is to be expected. This, combined with the fact that the data set is particularly small makes
the validity of the observed improvement in going from constant to dynamic d questionable.
Therefore an in depth analysis is omitted here, but this question will be revisited in the next
section when the simple TPA is investigated.

There is one notable difference between bar plots such as figure 5.22 and plots of raw data as
figure 5.23, namely the amount of data aggregation used. In figure 5.22 the underlying data have
been aggregated into 100 meters and for the raw data plot such as figure 5.23 the aggregation is
10 meters. The former resembles the practice of previous work, but it was found that a lower
aggregation showed the true nature of the data better in figure 5.23. As expected, the correlation
drops as data aggregation decreases. This is shown for all three tyres and uniform d in figure
5.25. It can be seen how quickly the correlation drops with aggregation1. Note the difference
between rate of decrease between the MCEN and AAV4 tyre where the latter drops much faster
than the former. Also, MPD gets a better correlation as aggregation decreases for the AAV4 tyre,
although the overall difference is rather small. On the other hand, MPD drops quicker than TPA
for the MCEN tyre. The SRTT tyre is plotted with the others for completeness. As with the
results above, there is no clear conclusion to be drawn, except perhaps that high aggregation is
needed to get proper results. This is probably not surprising, since the underlying phenomenon
causing the energy loss that we are trying to measure, is subject to much noise.

We would also like to investigate the role of the global parameters λ and K and how they
affect TPAs goodness of fit. Given the discussion about varying d versus keeping it constant
across road sections, we will keep d constant here. We will also keep the data aggregation
constant at 10 meter to include as much data as possible. Furthermore it would be desirable
to keep the influence of d at a minimum, even though the value of R2 is expected to vary
substantially as a function of d. Therefore we normalise by subtracting the mean of R2 for each
tuple of R2-values corresponding to varying λ (K, resp.) while keeping parameters d and K (λ,
resp.) constant. In the case of λ we have |d| × |K| = 45 different R2-tuples and |d| × |λ| = 54

1 If we aggregated each road section into one texture measure value and one rolling resistance value, we would trivially
have R2 = 1
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Figure 5.25 Plot of data aggregation vs. R2 values. For each aggregation, the best possible value of R2 is
found out of different combinations of λ, K, and (uniform across road sections) d.

for K. After normalisation, a box plot2 is made for each entry in the tuples corresponding to
a specific value of λ or K. The results are plotted in figure 5.26 for λ and figure 5.27 for K.
In figure 5.26 the result is unambiguous: The best distribution of normalised R2-values occurs
when λ = 1×10−13 and 1×10−12 which have almost equal distribution. But then it slowly and
consistently drops until λ = 1× 10−8 where it gets much worse. Although the underlying data
set is small, the trend is clear: Low to no smoothing is optimal when converting discrete data into
functions during TPA calculation. The results for K in figure 5.27 is not as unequivocal a result
as in the case of λ. With 3 to 4 measurements between knots, the overall results seems to be a
trend towards lower R2 values with some positive outliers. 0-2 data points between knots gives
significantly better correlation values than with 3-4 knots, but 0 knots between measurements
seems like the optimal choice. Although the distribution of R2 values is more dispersed for 0
knots than 1-2 knots, the spreading is skewed towards better R2 values. All in all, it seems that

2 A boxplot is a classical method for visualising data dispersion in a compact way. The graphical represententation
is made as follows: The line in the box represents the median of the data. The bottom (top) of the box represents the
first Q1 (third Q3) quartile of the data, respectively. The bottom (top) of the whiskers (vertical dotted lines) represents
Q1 − 1.5 · (Q1 − Q3) (Q3 + 1.5 · (Q1 − Q3)), respectively. The ’+’-points represents outliers from the interval
demarcated by the whiskers.
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Figure 5.26 Box plot showing the effect of λ on values of R2.
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Figure 5.27 Box plot showing the effect of data points between knots (K) on values of R2.

K = 0 is marginally better than K = 1 or K = 2.

5.3.2 Results - Simple TPA and Enveloping
Now the time has come for the results of the simple TPA investigations. As the discussion
from the last section suggests, using fourth order B-splines might not be necessary. For an
overall comparison of the two TPA measures, a bar-plot similar to figure 5.22 has been made
for the simple TPA in figure 5.28. It shows that the simple TPA actually performs better for
the MCEN and AAV4 tyres than the full version. For the MCEN tyre the simple TPA shows
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Figure 5.28 R2 coefficients for the linear regressions based on ’Parallel’ and ’Main’ using e = 0. The left
plot shows MPD vs. TPA when penetration depth d is held constant for all road sections and to the left the
optimal d has been chosen for each road section. Note that the MPD values are equal on both plots and
have been included in both for completeness.

an approximately equal correlation with MPD as opposed to figure 5.22 where MPD is slightly
better. For the AAV4 tyre TPA has increased its lead from figure 5.22. The only drawback is
the drop in correlation of the SRTT tyre, although it is still much better than MPD. However,
the overall correlation for this particular tyre was very poor to begin with and so is not very
interesting. Note that the situation does not improve for MCEN and AAV4 when d is dynamic,
i.e., allowed to vary across road sections. This is in contrast to the full TPA where a significant
improvement was observed in going from uniform to dynamic d. The exception is the SRTT
tyre which improved substantially.

Besides the case with no enveloping shown in figure 5.28, similar results have been made
with enveloping where e = 0.0025 and e = 0.054. To get a general overview of these results,
for all values of e, see table 5.3.2 which shows R2 values (rounded up to two significant digits).
For the MCEN tyre all R2-values are (almost) constant across envelope values and road metrics,
showing very good correlations. The behaviour of the SRTT tyre follows the same pattern as
shown in figure 5.28 for all values of e. For the AAV4 tyre the TPA measures performs better
than MPD for all values of e and the R2 values are equal for the uniform and dynamic cases.
e = 0.0025 stands out by having the best correlations for both MPD and TPA, while R2 values
are almost equal for e = 0 and e = 0.054 for both measures, respectively. The result that
enveloping improves correlations with e = 0.0025 substantiates the findings of the MIRIAM
project discussed in section 4.2.1.

Since the differences between uniform and dynamic TPA are almost non-existent for the
MCEN and AAV4 tyres, an examination of the underlying d-values is made here. The d-values
underlying the results from table 5.3.2 have been listed in table 5.3.2, and it can be seen that
the values of d for the two road sections are equal for most dynamic TPA calculations based on
the MCEN and AAV4 tyres. This is rather surprising as it was expected that adjusting d could
improve correlations, as discussed earlier. This result indicates that using a constant d-value for
all road sections might be sufficient and even necessary for an optimal fit. It also explains the
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TPA TPA
Envelope MPD Uniform Dynamic

MCEN
0 0.97 0.97 0.97
0.0025 0.97 0.97 0.97
0.054 0.97 0.96 0.97

AVV4
0 0.83 0.88 0.88
0.0025 0.88 0.92 0.92
0.054 0.84 0.89 0.89

SRTT
0 0.01 0.02 0.61
0.0025 0.01 0.07 0.50
0.054 0.01 0.03 0.58

Table 5.4 Summarizing results of the simple TPA calculations: R2-values for linear regressions between
rolling resistance measurements and MPD/TPA for different tyres and values of e.

Envelope Uniform Dynamic
MCEN

0 10 10, 10
0.0025 80 70, 60
0.054 50 50, 40

AAV4
0 40 40, 40
0.0025 20 20, 20
0.054 10 10, 10

SRTT
0 40 60, 80
0.0025 20 80, 90
0.054 10 40, 50

Table 5.5 Summarizing results of the simple TPA calculations: d-values used in the TPA calculations
shown in a).
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stability in results between uniform and dynamic TPA. However, the d-values vary across both
tyres and enveloping. The former was anticipated since the tyres differ in visco-elastic properties
(as discussed in section 4.3) and the latter is also unsurprising since enveloping transforms the
profile substantially. In the case of the unstable results obtained with the SRTT tyre, where the
relative improvement between uniform and dynamic TPA is large, the difference in d-values
between them are large as well, which was expected.

Another interesting aspect of the simple TPA explored here is the aggregation. Figure 5.29
shows the influence of aggregation on correlation results. Only the MCEN and AAV4 tyres
have been shown since the SRTT tyre showed poor overall results. Given the small difference
between uniform and dynamic TPA, only uniform is showed in figure 5.29. For the AAV4
tyre correlations drops below 0.65 for all values of e with aggregation values of 25 meter (and
less) which is indeed very poor correlations questioning the significance of the results. In
most cases TPA retains the better performance compared to MPD, especially for the higher
aggregation values, although the difference in correlations seems to drop. The latter is a general
trend that holds for both tyres and values of e. With the MCEN tyre, correlations do not drop
as rapidly, and even with an aggregation of 10 meters, R2 keeps well above 0.8. Table 5.3.2
showed that MPD and TPA performed almost equally well for the MCEN tyre which is still
the case for lower aggregations. However, it is interesting that TPA performs slightly better
compared to MPD for e = 0 and e = 0.0025 for aggregation lengths of 25 and 50 meters. For
e = 0.054 the performance of the two measures is almost equal. These results supports the
presumption that TPA is an effective road parameter for rolling resistance. Moreover, reducing
the aggregation sizes when investigating the relation between rolling resistance and surface
texture seems possible. The robustness of road metrics across different aggregation values are
also an aspect that should be taken into account. With a larger data set this could also provide a
better picture of potential road metrics ability to be used in modelling rolling resistance.

From all these investigations we can summarise the following key points:
• Isotropy investigations indicated that the surface is isotropic.

• Investigations of the full and simple TPA showed that the simple version did suffice. With
full TPA the examination of λ and K also showed that smoothing was not needed and
relaxation in the amount of knots degraded correlation values.

• TPA as a road metric in rolling resistance assessment showed promising results, however,
further studies are needed to see if the performance is indeed better than MPD.

• Investigations into enveloping substantiated the findings of [15] that enveloping improves
correlations.
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Figure 5.29 Plots of R2-values as a function of aggregation length using Main and Parallel road sections.
The first column show results for the MCEN tyre and the second column is AAV4. The first row is with no
enveloping, the second is for e = 0.0025 and the last row is plots where e = 0.054.



6 Coast-Down data from the Swedish VTI

This chapter deals with a completely different kind of data compared to chapter 5. In this chapter
we consider measurements made in connection with the coast-down measurement technique
described in chapter 3.

The coast-down experiments have been performed by Swedish Statens väg- och transport-
forskningsinstitut (VTI) on Swedish roads as part of WP5 in the EU project “Energy Conservation
in Road Pavement Design, Maintenance and Utilisation” (ECRPD) and presented in [63] in 2009.
The measurements have also been used in a later study[89]. In [63] the data were primarily
used to assess unevenness and macrotexture influence on rolling resistance. Unevenness and
macrotexture were represented by IRI and MPD, but RMS for different wavelengths were also
considered.

For this measurement campaign 14 different Swedish road sections were carefully selected.
Since each road section have been measured in both directions this gives a total of 28 road
sections. Besides being placed geographically convenient, the following criteria guided the road
section selection[63, p. 29]

• The longitudinal gradient and road curvature must be low.

• The set of road strips must have high variation in Mean Profile Depth (MPD) and Interna-
tional Roughness Index (IRI) in order to get the optimal experimental setting.

• Differing speed limits ensuring that coast-downs could be performed with varying initial
velocities.

• Proper length for performing coast-downs.

The road sections selected ranged between 400 and 1000 meters in length and a total of 421
coast-downs have been performed. An overview of the road sections is given in table 6.1.

In addition, coast-downs were only performed under suitable meteorological conditions, i.e.,
no rain, low wind, and steady temperature. Together with air pressure, these quantities were
carefully measured and monitored during measurements as described in [63] section 6.8. Each
road section were marked by reflective tape that could be detected by the photo sensor which was
mounted on the rear bumper of the measurement vehicle. Velocity measurements were made by
mounting a measurement device on the right rear wheel which, roughly speaking, emits a pulse
approx. every 78th cm that is registered together with a time stamp from a high frequency (1
MHz) clock. From this, velocity can be calculated with high precision. An elaborate description
is given in [63, p.26-27]. The measurement campaign performed coast-down measurements
with three different vehicles, a personal car (Volvo 940), a van (Chevrolet CG21305 VAN), and
a heavy lorry (Scania R143), although the personal car was the primary object of study. All
measurement series were performed after a 30 minute warm up driving period[63, p. 99]. A
small sub-study[63, p. 31] showed that tire temperature and pressure rose by 15◦C and 0.2 bar,
respectively, during warm up.

97
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Table 6.1 Overview of road sections chosen for coast-downs in [63].

Coast- Speed limit Mean Mean
ID Name Direction downs Length [km/h] MPD IRI

1 Flygrakan 1 18 1000 90 1.10 0.83
2 2 18 1000 90 1.12 1.05
3 Stora Aska 1 21 300 70 2.54 2.04
4 2 19 300 70 2.49 1.79
5 Vikingstad 1 15 600 70 1.19 1.18
6 2 15 600 70 1.21 1.68
7 Fornåsa 1 14 1000 90 0.82 1.40
8 2 14 1000 90 0.76 1.08
9 Vaesterlösa 1 15 500 70 2.42 2.64

10 2 14 500 70 2.40 3.23
11 Vattenskidsklubben 1 15 900 90 1.00 3.30
12 2 14 900 90 0.93 3.55
13 MaspelösaA 1 14 500 70 1.07 2.18
14 2 13 500 70 0.90 2.15
15 MaspelösaB 1 14 400 70 0.74 2.57
16 2 14 400 70 0.59 2.84
17 MaspelösaC 1 14 580 70 0.86 2.82
18 2 14 580 70 0.86 2.48
19 Brokind 1 15 550 90 0.39 1.11
20 2 14 550 70 0.44 1.02
21 Hundklubben 1 15 570 70 1.76 2.23
22 2 16 570 70 1.72 2.40
23 Hycklinge 1 15 560 90 0.64 3.66
24 2 14 560 90 0.75 3.05
25 Kisa 1 14 620 70 0.59 1.77
26 2 14 620 90 0.58 1.50
27 Rimforsa 1 16 630 90 0.66 0.79
28 2 14 630 90 0.58 0.83

On each of the 28 strips various road quantities were measured with VTIs ’Laser RST’ vehicle
which measures several road surface properties with its 10 lasers mounted on a bumper-bar in
front of the vehicle[9]. The following data have been supplied by VTI:

• Unevenness measurements in 10 cm longitudinal resolution (have not been used here)

• Texture measurements in 1 mm longitudinal resolution

• Road crossfall [%]

• Road curvature radius [1000/m]

• Longitudinal gradient [%]

• IRI [mm/m]

• MPD [mm]
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Except for unevenness and texture measurements, the data have been supplied in a 1 meter
resolution. The model used in [63] and adopted here is based on Newtons 2. law of motion and
assumes that the total force acting on the coasting vehicle is composed of a sum of the following
forces[63, p. 24]

Ftotal = Froll + Fair + Fside + Fg. (6.1)

where Ftotal is the total force acting on the vehicle, Froll is the rolling resistance force, Fair
is aerodynamic drag, Fside is the side force resistance from road curve/crossfall and Fg is
gravitational pull. Froll is the most interesting from our perspective and is given by

Froll = m(η0 + η1T + η2 IRI +η3 IRI(v − 20) + η4 MPD +η5 MPD(v − 20)) (6.2)

where v is speed, T is temperature and η1, . . . , η5 are parameters to be estimated during model
fit. This term is purely empirical as there is no theoretical derivation of the relationship between
MPD/IRI and rolling resistance. Furthermore, Froll is defined in a fairly general way such that
η0 also accounts for transmission losses from, e.g., the gearbox [63, p.15], as well as surface
independent tire losses. As we have discussed in, e.g., the Dutch study, rolling resistance is
also dependent on temperature of the surroundings since it affects tire temperature/pressure
equilibrium in the tire. Since this phenomena is considered to be independent of the surface
itself, it is included as a term η1T only dependent on air temperature T and not on MPD or IRI.
Implicit in this formulation is the assumption that the tire temperature and pressure depends
on the temperature of the surroundings. The temperature part of Froll also covers temperature
dependent components of transmission losses. Besides a linear relationship between MPD/IRI
and rolling resistance, two additional terms are also included to account for speed dependence.

Fair is a simplified version of the drag equation

Fair = 0.5ρ(T, p)AyzCL[v − cos(α)w]2 with ρ(T, p) = Kρ
p

T + T0
(6.3)

were Ayz is projected frontal area of the vehicle, CL is the air dynamic drag coefficient, w is
wind speed, α is the wind angle, and p is atmospheric pressure. Kρ = 0.3847 ◦Ks2/m2 and
T0 = 273.2◦K are conversion constants. Since w is low we can assume that w2 ≈ 0 and thus
simplify equation 6.3 by expanding [v − cos(α)w]2 and dropping the term containing w2, i.e.,

Fair = 0.5ρ(T, p)AyzCL[v − cos(α)w]2 ≈ η6ρ(T, p)v2 + η7ρ(T, p) cos(α)wv (6.4)

where η6 and η7 are regression parameters. Substituting 0.5ρ(T, p)AyzCL with two regression
coefficients η6, η7 seems reasonable since CL and w are not very precise, i.e., the latter is mea-
sured only in the beginning of the coast-down and the former is hard to determine experimentally.
This also supports the simplification by w2 ≈ 0 as well. More elaborate expressions of Fair
can be formulated [63, 89], but since the term is being estimated by regression and since higher
order terms of v and w are small, it has been omitted here.

Just as some of the parameters in Fair are estimated, we will also estimate the tire stiffness
CA occurring in the side force Fside term

Fside = − 1
CA

F 2
y = η8F

2
y (6.5)

where Fy is given by
Fy = m[cos(γ)v2/R− g sin(γ)cos(β)] (6.6)
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with γ being crossfall angle, m vehicle mass, g gravitational constant, β longitudinal gradient
and R radius of road curvature. Finally, Fg is straightforwardly formulated as

Fg = −mg sin(β). (6.7)

Now, the left hand side of equation 6.1 can be rewritten as follows

Ftotal = (m+mrot)
dv

dt
= (m+ nwhKJJ/r

2
wh)dv

dt
(6.8)

where mrot is the inertial mass of a wheel (plus additional rotating transmission parts), nwh is
the number of wheels, rwh is the radius of the wheels, J is the inertial moment per wheel, and
KJ is a correction factor of J to include rotating transmission parts. Inserting equation 6.2, 6.4,
6.5, 6.7 and 6.8 into equation 6.1, and rearranging/simplifying yields

dv

dt
= µ0 + µ1T + µ2 IRI +µ3 IRI(v − 20) + µ4 MPD +µ5 MPD(v − 20)

+ µ6
ρ(T, p)v2

m+mrot
+ µ7

ρ(T, p) cos(α)wv
m+mrot

+ µ8
F 2
y

m+mrot
− κg sin(β)

(6.9)

where κ = m/(m + mrot) and µi = κηi for i ∈ {0, .., 5} and µi = ηi for i ∈ {6, 7, 8}.
(µ0, ..., µ8)′ = µ is the coefficient vector estimated by fitting the model to data obtained from
the coast-downs. In this formulation it is as an ordinary differential equation with respect to v(s).
Since the road and velocity data have been supplied to us using distance as the independent
variable, the final regression model must have distance as the independent variable as well.
Therefore equation 6.9 is converted to

dv

ds
= 1
v

[µ0 + µ1T + µ2 IRI +µ3 IRI(v − 20) + µ4 MPD +µ5 MPD(v − 20)

+ µ6
ρ(T, p)v2

m+mrot
+ µ7

ρ(T, p) cos(α)wv
m+mrot

+ µ8
F 2
y

m+mrot
− κg sin(β)].

(6.10)

which gives us the regression model that forms the basis for our investigations in this chapter.
Besides the velocity data which have been measured for each coast-down, there are also

auxiliary road data which have been measured along the road sections. More precisely, we
have macrotexture (MPD), unevenness (IRI), road curvature (R), road gradient (β), and road
crossfall (γ). Since the coast-down model is an ODE it is functional by definition: A differential
equation is an equation with functions and the solution is C1 at least. Thus, it seems obvious to
functionalize the auxiliary road data using tools from FDA. More specifically, we will express
the data in cubic B-spline bases making equation 6.10 look like

Dv(s) = 1
v(s)

(
µ0 + µ1T + µ2 IRI(s) + µ3 IRI(s)

(
v(s)− 20

)
+ µ4 MPD(s) + µ5 MPD(s)

(
v(s)− 20

)
+ µ6

ρ(T, p)v2(s)
m+mrot

+ µ7
ρ(T, p) cos(α)wv(s)

m+mrot

+ µ8
F 2
y

(
v(s), γ(s), R(s), β(s)

)
m+mrot

− κg sin
(
β(s)

))
.

(6.11)
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which highlights data sources that are functionalized.
In [63] and [89] they estimate µ by standard regression, i.e., if we denote the right-hand

side of equation 6.10 by G(µ; v,R, β, γ,MPD, IRI), which highlights regression parameters
and auxiliary data that vary with position s, the standard regression of equation 6.10 can be
formulated as estimating µ by minimizing

Lreg(µ) =
∑
i

(dvi
dsi
−G

(
µ; vi, Ri, βi, γi,MPDi, IRIi

))2
. (6.12)

The functional version derived from equation 6.11 uses integration instead of summation, thus

Lfdreg(µ) =
∫ (

Dv(s)−G
(
µ; v(s), R(s), β(s), γ(s),MPD(s), IRI(s)

))2
ds (6.13)

which can be reduced to a sum of squared residuals like equation 6.12 by using a quadrature
scheme like the trapezoid or Simpson’s rule for approximating integrals. Specifically, if we
denote the discretisation by s1, . . . , sN then Lfdreg(µ) of equation 6.13 can be approximated as

Lfdreg(µ) ≈
N∑
i=1

wi

(
Dv(si)−G

(
µ; v(si), R(si), β(si), γ(si),MPD(si), IRI(si)

))2

(6.14)
where wi are weights. The precision of this approximation, and thus the dimensionality of the
regression problem, can be varied as necessary. Also note that we have many coast-downs
to use in the estimation, so in practice Lfdreg(µ) is composed of several integrals that are
approximated like equation 6.14 and concatenated into one big least squares problem.

Using FDA in data processing enables a couple of convenient methodologies to be used:
• Smoothing by roughness regularisation discussed in chapter 2 is easily implemented. As

can be seen in figure 2.2, velocity measurements have distinctive noise which is easily
removed by the technique described in section 2.4.

• Approximation of Dv(s) is straightforward and fast since it can be done analytically.
Moreover, the result will be smooth as well, since we use cubic splines for v(s) where
the first derivatives of the functional data are C1. This method is more elegant compared
to estimating Dv(s) by finite differencing (used in, e.g., [63] and [89]) which is highly
sensitive to noise.

• Since all auxiliary road data measured on each road section also have been functionalized,
they can be integrated into the ODE model such that numerical solutions, requiring
arbitrary evaluations of input functions, are possible. Numerical solutions are desirable
for directly assessing model fit to data, as well as getting a direct overview of how the
different components behaves during model simulation.

• The functional approach makes it easy to add noise sources to the data by expressing it
directly in the linear combination of basis functions such that the qualitative behaviour of
the data is preserved. An example using the gradient data β(s) is discussed in section 6.1
below.

It is of course possible to use non-functional methodologies that would enable similar possibil-
ities, but by using the basic apparatus of FDA we get it for free without any additional effort.
Most of the data supplied by VTI are very well suited for functional data. For instance, in figure
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Figure 6.1 Example of road curve R data (left) and road crossfall γ (right).

6.1 road crossfall γ and road curvature R data are shown, together with their functionalized
representations. As can be seen, the latter is given as discrete measurements, probably because
of limitations of the measurement vehicle, although we know that the underlying road curve
varies smoothly. The functionalized version does seem to be more faithful in this respect. In
addition, some degree of smoothing has also been used to ease the the transition between discrete
values.

Another more explicit example of smoothing concerns velocity measurements of the coast-
down runs. As shown in figure 2.2 (chapter 2) the velocity measurements contains high-frequency
noise which is easily removed by setting an appropriate value of the roughness penalty parameter
λ during funtionalization, as shown in figure 6.2.

Being able to compute model simulations and comparing them to actual measurements offers
a concrete way of determining model performance. Figure 6.3 shows a good and a bad fit to
raw data and illustrates that some coast-downs are nicely replicated by model simulations, while
others fit quite poorly. However, this only represents two extremes of a large data set and it
does not show anything about the distribution of fits in between. To get a better overview of
the entire data set, the best and worst fit (to the functional data) along with 16 intermediate
coast-downs have been plotted in figure 6.4. It shows that many coast-downs are captured quite
well by model simulations. The second-worst in figure 6.4 improves significantly compared to
the worst, although not entirely satisfactorily. The two upper thirds of the simulations follow the
measurements quite good. All in all, the model seems to capture a large part of the data set, but
there is still room for improvement. This will be taken up in section 6.2.

Having all data on a functional form makes it easy to visualize model components, i.e.,
how the different resistance terms affect the vehicle during a coast-down run. Two examples of
this are shown in figure 6.5. These plots clearly illustrates which components have the highest
influence on vehicle speed. Unsurprisingly, the road gradient plays a major role while side
force and temperature dependent rolling resistance contributions are very small. What is more
interesting is the fact that IRI does not have any significant effect while MPD play a modest role
in overall driving resistance. Also note that the the constant term also plays a substantial role
which is probably because many different phenomena are subsumed under this parameter. All in
all, this give a good overview of the different components in the model.
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Figure 6.2 Coast-down velocity measurement sample showing effect of roughness penalized functional-
ization.
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Figure 6.3 Two different coast-down plots illustrating the different degrees of fit to the data set. Black
line is model simulation and grey line is raw velocity data. Reproduced from [5].

6.1 Sensitivity analysis
A preliminary investigation of the model in equation 6.10 have been undertaken and published in
[5] and found in appendix B.2. In this section we only give a brief summary of the investigations
and refer to appendix B.2 for further details.

First of all, the purpose of [5] was to demonstrate the usefulness of FDA in coast-down
modelling, which entailed the convenient methodologies mentioned above. Moreover, several
combinations of smoothing parameter pairs (λIRI, λMPD) for IRI(s) and MPD(s) in equation
6.11 were tested to see which ones gave an optimal fit, using equation 6.13 as loss function. More
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Figure 6.4 Coast-down runs ranked according to how well model simulations replicate measurements
(normalized by length). Only coast-downs spanning more than 150 meters have been included in the
ranking. Dashed lines represent (functional) measurement data and solid lines represent model simulation.
Each measurement + simulation pair have been vertically shifted such that the rank is also reflected
in vertical start position. The lowest (red) coast-down represents the worst fit, the highest (dark blue)
represents the best fit and the intermediate coast-downs are of increasing goodness of fit and uniformly
spaced between each other in the overall ranking.

specifically, the pairs (λIRI, λMPD) were defined as all elements of the Cartesian product λ×λ
with λ = (λ1, . . . , λ19) being a vector of logarithmically equidistant points from 10−2 to 500.
For each pair of smoothing parameters (λIRI, λMPD), MPD and IRI data were functionalized
and an estimate µ̃ was found by minimizing equation 6.13. Using µ̃, a numerical solution
ṽ(s) was computed by applying a Runge-Kutta scheme on equation 6.11 with µ̃. Finally, ṽ(s)
was compared to the original discrete measurements as a goodness of fit. It was shown that
(λIRI, λMPD) = (0.0182, 4.0789) yielded the best model fitting result. As illustrated in Fig 6.6,
this implied a substantial amount of smoothing in case of MPD. It is perhaps surprising that IRI
did not show a similar result, but it might be because IRI contributes much less to the overall
driving resistance compared to MPD and so the difference caused by smoothing is perhaps
insignificant.

Another investigation in [5] concerned a sensitivity analyses performed on the model as an
extension of the perturbation analysis in [63]. The amount of tests cases and aspects covered
in [63] are incredibly comprehensive, but most tests were very simple involving only a few
systematic changes of the data set in order to test the sensitivity of the parameter estimates. A few
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Figure 6.5 Plots showing how the contributions from the different components of the model evolve during
coast-down experiements. ’air’ refers to the air resistance terms, ’grav’ is the gradient term, ’const’ is the
constant parameter that is part of Froll, ’temp’ is the temperature dependent part of Froll, ’IRI’ and ’MPD’
are the contributions from unevenness and macrotexture, respectively, and ’side’ refers to the sideforce
resistance. Taken from [5].
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Figure 6.6 Illustration of all functionalizations (different λ-values) of the MPD data sets investigated in
[5].

of these tests became too simplified for the authors taste and an example is given here to illustrate.
Section 8.4.3.1.1 in [63] presents one of the test results on the influence of the meteorological
conditions. The test scales wind speed w with a constant, thus modifying equation 6.9 to

µ7
ρ(T, p) cos(α)wvε

m+mrot
(6.15)

where ε is the perturbation error. This is done for different values 0.5, 1.0, 1.5, and 2.0 of ε
and for each case the parameters are estimated and their values are compared. This general
approach is used several times, i.e., a single (or one for each road section) constant random
error is introduced to distort part of the data. The modified data set is then used to re-estimate
model parameters µ which are then compared to the original parameter fit and it is discussed
how sensitive the model is to that particular part of the data. This seems like a small basis
for assessing sensitivity, and in this particular example with w, the models response to the
perturbation is readily explained. For all values of ε it is demonstrated that only the regression
parameter for the wind dependent term µ7 changes value. In addition, it can be seen that it scales
with ε, i.e., µ7 = −0.000303 when ε = 1 and µ7 = −0.000152 when ε = 2 and so on[63, p.
60]. The reason for this is probably that the optimization algorithm can recreate the result of the
original regression by scaling µ7 and thus cancelling the random perturbation. I.e., if µ̃7 is the
original estimate and the wind speed data is modified by ε set µ̂7 = µ̃7/ε and the perturbation is
simply cancelled. A similar phenomena occurs with µ0 and the gradient term when the gradient
data is investigated in [63] and it illustrates the problem with too simplified perturbation analyses.
In contrast, the gradient was selected in [5] and thoroughly tested using hundreds of samples for
each test case instead of only one as above. Thus, results are produced in the form of confidence
intervals. Each sample consisted of gradient (functional) data that had been perturbed using a
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Figure 6.7 Different ways of incorporating random noise into the road elevation data. Solid lines are
perturbed functional data and stars are measurements. Too many knots (left) will cause fluctuations in the
functional data curve which does not reflect the behaviour of the underlying measurements. By using fewer
knots (right) the noise introduced to the data causes fluctuations that reflects the qualitative behaviour of
data. Taken from [5].

Gaussian noise source. As mentioned in the previous section, it was implemented directly on the
functional data by adding noise to the coefficients of the basis function expansion. Since the
features in the gradient data was much lower than the resolution of data points, a small number
of knots sufficed to reproduce these features. When noise was added to the resulting functional
data, the qualitative behaviour was preserved as illustrated in figure 6.71.

In addition to the gradient perturbation, two bootstrapping-techniques were used to investi-
gate sensitivity of model parameters to data quantity. The results of these sensitivity tests are
shown in [5, p.12-13] located in appendix B.2. We will only give the overall results here, while
referring to the discussion of the article in appendix B.2 for further details. In general the model
responds well to all tests, except for the parameters pertaining to the temperature dependent
term and the two velocity dependent terms for IRI/MPD which fluctuates substantially. These
parameters have one thing in common, namely that their contribution to the overall driving
resistance is minute. This might explain the high variation as they need to adjusted a lot in order
to achieve a significant effect on overall fitting results. In other words, the fact that they play a
minor role in the model make them quite sensitive to change.

All in all, the sensitivity analysis showed that the model seemed quite stable with respect to
model fit for MPD and IRI. In the next section we will try and incorporate the TPA-measure into
the model.

6.2 Estimation of TPA parameters
The last section described how the coast-down model used in [63] and [89] is quite stable with
respect to the perturbation of the data. Thus, this model seems fairly robust to measurement
errors, although it does not fit all the coast-downs well. Therefore it would be interesting to try
and modify the Froll term by substituting the macro texture measure with the Texture Penetration

1 A similar approach could have been to used more knots and a higher roughness penalty.
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Area (TPA) described in chapter 4 and see if a noticeable improvement could be made. Recall
from chapter 4 that the TPA measure depended on the penetration depth d, envelope parameter
e, and possibly, if a cubic B-spline basis is used, a smoothing parameter λ and knot placement
parameter K. Although it would be desirable to estimate λ and K, it will be clear from the
considerations below that this will be far too computationally expensive. Fortunately, results
from chapter 5 seemed to suggest that using a B-spline basis does not significantly increase
correlations. Therefore it seems a reasonable modification to simplify the functionalization
of the data by using linear interpolation instead and thus avoiding estimation of λ and K. As
mentioned in chapter 4 this has the fortunate side-effect that the function fit can be performed
directly by a simple subroutine in MATLAB/Octave which makes it really fast.

The model in equation 6.9 should be modified by substituting

Froll = m(η0 + η1T + η2 IRI +η3 IRI(v − 20) + η4 MPD +η5 MPD(v − 20)) (6.16)

with

F ∗roll = m(η0 + η1T + η2 IRI +η3 IRI(v − 20) + η4 TPA +η5 TPA(v − 20)) (6.17)

and carrying out the loss function derivation similar to above we end out with

L∗fdreg(µ) =
∫ (

Dv(s)−G∗
(
µ; v(s), R(s), β(s), γ(s),TPA(s, d, e, λ), IRI(s)

))2
ds.

(6.18)
similar to equation 6.13 where G∗ is similar to G except that the expression for equation 6.16
has been replaced with equation 6.17. Obviously, this integral can be approximated to a form
similar to equation 6.14. µ needs to be re-estimated using equation 6.18 to see if that improves
model fit and since TPA is parametrised by e, d, and λ these have to be considered as well.

The penetration depth d should depend on the particular road geometry and visco-elastic tire
properties, and therefore it so should, ideally, be considered a vector d with values (d1, d2, .., dn)
for each combination of tires and road types. Furthermore, d-values are supplied as percentages
which are converted to heights during TPA calculation. Since these coast-down experiments
were performed with the same tire on 14 different road sections, with a wide range of macro
texture and unevenness values, d should be vector of length 14 with an element for each road
section. However, raw profile data for one road section is missing, so there are only 13 different
road sections (and 26 road strips) available with 320 coast-down runs. The enveloping should
depend on tire and tire parameters such as pressure, temperature etc. and as mentioned in chapter
4 we will stick to the values used in the literature, i.e. e ∈ {0, 0.054, 0.0025}. Adding these to
the parameters already discussed in section 6.1, gives a super-vector of parameters that needs to
be estimated from the coast-down, i.e.,

θall = (µ,d, e, λout)′. (6.19)

λout is the smoothing parameter used in transforming the TPA-measurements into a function
that can be used as input function in the ODE coast-down model. The λout has been given a
subscript to emphasize that it is used in converting road metric data to functions and not raw
profile data to functions as a means for calculating a road metric. Also, the influence of λout
has been investigated in [5] as mentioned in section 6.1 and since this investigation showed that
high smoothing was preferable that is also being used here. Since MPD and TPA are roughly in
the same range of values, using the same value for λout as that which was found in [5] seems
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reasonable. Thus, λout will be fixed during estimation of d and so the core estimation will
concern d only (which is also the largest part of θ). Although the general model regression
parameters, µ, are important in analysing the coast-down model, they are of no direct interest in
relation to the investigation of the proposed TPA measure and it is only used implicitly through
model fitting. Therefore we will primarily focus on the reduced parameter vector

θ = (d, e, λout)′ (6.20)

in the following.
In section 6.1 (and chapter 5) a straightforward approach was used to find optimal sets

of parameters by systematically computing a goodness-of-fit for a wide range of parameter
combinations and comparing the result. This approach is not computationally feasible for
the TPA-measure investigation (and appertaining parameters) here, as it involves far more
parameters. More specifically, there are two primary reasons:

1) Computation time for one parameter guess: Calculating the numerical solution used
for goodness-of-fit as described in section 6.1 was a computationally expensive task compared
to the estimation of µ̃2. The reason for this was because it provided an intuitive goodness
of fit directly related to the visual comparisons between model simulation and measurements.
However, it required a cluster-computer to perform calculations within a practical time-span.
Instead, the goodness of fit relying on numerical ODE solutions is substituted with the goodness
of fit expressed in equation 6.13 (and adaptated to TPA in equation 6.18) which can be evaluated
directly. Since equation 6.18 is also used in the regression, the new goodness of fit is computed
along with the estimate µ so we get it ’for free’. The downside of this approach, however, is that
the model fit is assessed by squared residuals in the derivative domain which is not as intuitive.

2) Number of iterations: As described above, the size of θ is much larger than, e.g., the
pairs of smoothing parameters (λIRI, λMPD). Thus, checking combinations of parameter values
based on a Cartesian product of vectors for each parameter in θ would result in a huge number
of parameter estimations. If, e.g., we would systematically check 4 different values for each
element in θ we would have to check 418 ≈ 6 ∗ 1010 tuples to check all combinations! By
comparison, 19× 19 = 361 combinations were checked in [5]. In order to accommodate this
problem, a fundamental change in the procedure presented in 6.1 has to be made. Since a
systematic brute force check for an optimal model fit is practically impossible, an optimisation
algorithm have to be deployed instead.

6.2.1 The objective function
Given the discussion in the previous section, as well as the outline of TPA in chapter 4, the
objective function value is calculated by these steps for a fixed value θ0 of θ:

1 From the raw texture profiles, calculate TPA values as prescribed in section 4.3.3 to obtain
TPA values in a one meter resolution similar to the MPD data supplied by VTI.

2 Functionalize the discrete TPA values obtained in step 1 using λout0 as the smoothing
value. Denote the result by TPA(s).

3 Find the parameter estimate µ̃ of the coast-down model parameters by solving the least
squares regression in equation 6.18, i.e., by minimizing L∗fdreg(µ).

2 A trick can be used to vectorize the problem: Numerically simulate several instances of equation 6.10 simultaneously
for different values of µ̃, λIRI and λMPD. Nevertheless, the numerical ODE solution is still the most expensive part.
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4 Calculate the goodness of fit by evaluating L∗fdreg(µ̃) which is then the value of the
objective function.

Roughly speaking, this gives a function FN (θ) : RM+ → RN+ where M = |θ| and N depends
on the concrete implementation. The largest value of N is the number of quadrature points
used when approximating the integrals in L∗fdreg(µ̃). Depending on the implementation, these
quadrature points can reduced by summation: Coast-down wise, road section wise or summed up
altogether. This comprehensive loss function does not have a closed form solution, so an iterative
minimization or similar approach is needed one way or another. No matter what minimization
algorithm is used, it will require several evaluations of FN (θ).

Computational considerations of the objective function
Given the massive amount of computation involved in an evaluation of FN (θ), careful analysis
and consideration have been made to optimise the algorithm. First of all, since we only use three
different values of e it is obvious to create three different scenarios with separate estimations of
d for each case.

We will refer to the loss function as FN (d) when d are the only parameters of interest.
It should also be noted that in [5] an iterative procedure was used to estimate µ, however, as
Lfdreg(µ) is linear in µ the simple linear closed form solution is used below instead.

Another aspect, mentioned in chapter 4, is the observation that TPA values calculated in
step 5 behaves nicely (is strictly monotone and smooth) as d increases, which can also be seen
in figure 4.8. In addition, given the construction of d as a percentage, natural upper and lower
bounds for meaningful values of d exists. This can be used to create an optimized version of
FN (d) by doing the following for each road section profile data. For each 100 mm segment
[si, si+1], we calculate

TPAi(dk) =
∫ si+1

si

ŷ(dk, s)ds where k ∈ {1, . . . ,K} (6.21)

for a suitable grid of percentages d1, . . . , dK . In the investigations used here d1 = 10%
and dK = 90% since higher values are considered unrealistic. These discrete values can be
functionalized using simple linear interpolation, such that a data function TPAi(d) exists for
each 100 mm segment i (a handful of these functions are shown to the left in Fig 4.8 ). Thus, for
each d0 ∈ [d1, dK ] we can efficiently produce all arrays of TPA-values by evaluating all data
functions TPAi(d0) belonging to each road section as prescribed in step 1 above.

Furthermore, step 2 can also be optimized. Recall the matrix expression in equation 2.22 for
calculating the coefficients vector which can be modified to

ĉ = (Φ′Φ + λR)−1Φ′y = Sλy (6.22)

(W = I since no weights are used here). This equation is used for functionalization of TPA-
values in step 2 where y =

(
TPA1(d0), . . . , TPA1(d0)

)′
and ĉ is the coefficient estimate

for TPA(s). Since λout0 is fixed during minimization of d, Sλ is fixed and can be computed
beforehand such that the basis function fitting in step 2 is only one matrix multiplication
instead of the complex expression in equation 6.22 that involves matrix inversion which is
computationally expensive.

Finally, another important aspect concerns the smoothness of FN (d). Since each evaluation
of FN (d) requires many different steps including the solution of a couple of least squares fits,
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Figure 6.8 Plot of F0(d) as function of d where each line represents the iterative incrementation of a
single parameter di of the vector d.

it is natural to ask whether this function, in practice, behaves smoothly. If it does, we can use
iterative algorithms like Levenberg-Marquardt to estimate FN (d). Figure 6.8 show the results
of iteratively incrementing each µi of µ and observing the corresponding value of F0(d). It is
quite clear that F0(d) behaves nicely enough for derivative approximation to work. Note the
small overall changes of F0(d) when the di’s are incremented. This will be investigated below.

6.2.2 Results
In chapter 5 we compared MPD and TPA by looking at correlations in linear fit but with
these coast-down data, we evaluate Lfdreg(µ̃) or L∗fdreg(θ̃) where µ̃ and θ̃ are estimates
corresponding to the two different models, i.e., the model underlying Lfdreg(µ̃) using MPD as
the macrotexture road metric and the model underlying L∗fdreg(θ̃) that uses TPA instead. Three
different model scenarios were investigated: 1) Standard model with MPD 2) TPA where 13
different penetration depths (one for each road section) have been estimated, and 3) TPA with
only one penetration depth which is then applied to all road sections. The latter two scenarios
involved iterative estimation of d and d, respectively, using Levenberg-Marquardt algorithm
to minimize squared residuals obtained by approximating the integrals in L∗fdreg(θ̃). This was
done for three different values of e, as mentioned above, and the overall results are shown in
table 6.2. The most conspicuous feature in table 6.2 is the small differences between the model
fits which is measured in fractions of ten thousands. This will be discussed in detail below. For
each value of e the goodness-of-fit improves from MPD to TPA with uniform d and then again
from TPA uniform d to pure TPA. Given the small magnitude in the differences, the observed
behaviour is probably due to minute improvements by estimation and not a indication of a better
road measure. In other words, since TPA with uniform d has one parameter to adjust in order
to improve model fit, it would be expected to be better than MPD which has no parameters
and, similarly, with penetration depth d versus 13 penetration depths d. The estimate of TPA
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Table 6.2 Overall estimation results, compared to MPD, for three different degrees of enveloping. The
upper half of the table presents the model fit directly as F(µ) whereas the lower part presents it in a
normalized fashion such that the results are easier to analyse. ’TPA uniform d’ refers to the TPA measure
where d is fixed for all road sections instead of varying across road sections as with the TPA-measure.

Envelope (e) MPD TPA uniform d TPA

F0(µ)
0 3.653628 3.653618 3.653606

0.0025 3.653652 3.653618 3.653614
0.0540 3.653663 3.653618 3.653610

(F0(µ)− 3.6536) · 105

0 2.8 1.8 0.59
0.0025 5.2 1.8 1.4
0.0540 6.3 1.8 1

with uniform d is also constant for all three envelope values might be due simplicity of the
optimization problem where one parameter translates all TPA values, across all road sections, up
or down as d is increased and decreased. This could probably give a similar effect to what was
described in section 6.1 in regard to the perturbation analysis performed in the ECRPD report.

As mentioned above, the differences in model fits are extremely small. This has been
examined more concretely as it would be interesting to see, hands on, how much these differences
actually affected model simulations. It was done by creating model simulations for every
coast-down run using a Runge-Kutta solver using each of the three scenarios from table 6.2.
All simulations have been made using no enveloping. The model simulation having greatest
discrepancy between MPD and TPA simulation was identified and plotted in figure 6.9. It is clear
that even for this coast-down their paths are almost identical. A small portion of the coast-down
is shown to the right in Fig 6.9 and it is clear that TPA and MPD simulations do in fact differ,
however, to a very small extent. Compared to the MPD models ability to replicate measurements,
as shown in figure 6.4 TPA provides an insignificant improvement.

It is, however, interesting to investigate the extent of these small differences, i.e., is this a
general trend or just an outcome of the optimization. For each value of e, 5200 uniformly chosen
values of d have been created, where each entry di ∈ d, have been sampled from the valid range
of possible percentages permitted, i.e., di ∈ [10%, 90%]. For each sample the loss function
F(d) has been evaluated to see the resulting goodness of fit. Combining these goodness of fit
values for all e gives a total of 15600 different evaluations of F0(d) and subtracting the lowest
from the highest value of all these samples gives a difference of 2.0306 · 10−5 which is roughly
in the same range as the lowest and highest value in table 6.2. Thus, we can conclude that no
matter what parameter configuration d is being used, the model gives roughly the same result.
The most plausible explanation for this behaviour is that during the evaluation of F(d) the best
fit µ̃, given d, e, λout, to the coast-down model is found by linear least squares fit and apparently
over-fitting occurs. Since, from a computational point of view, many different values of TPA
can be obtained by adjusting d, this implies that the model is quite unaffected by changes in the
macro-texture part of the Froll term. As such, we could replace MPD/TPA with random noise
and the model could adapt to it giving roughly the same fit.
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Figure 6.9 Measurements and model simulations of a coast-down run. To the left is the entire coast-down
while a zoom-in is given to the right. The TPA simulation (green) is not visible as it almost coincides with
TPA-uniform (magenta).

Finally, it is investigated how d behaves during optimization, i.e., how different components
of d migrates during optimization. Again, randomly chosen initial values d0 have been sampled
and the results d̃ after optimization have been recorded as well. The differences between d0
and d̃ have been illustrated in figure 6.10 for 96 samples and a few components di of d. The
two plots in figure 6.10 have been chosen to illustrate a common trend in estimates of d. With
very few exceptions the estimates converge to one of the endpoints, i.e., 10% or 90%. For
some di it is the same endpoint for every iteration as with d1 and d2 to the left in figure 6.10,
and sometimes the endpoint of convergence varies across samples, as seen with d5 and d7 to
the right in figure 6.10. Thus, it seems that the destination of of these endpoints depends on
the initial values of all components. Note that some of the estimated components of d that
have not converged to the end points might be due to slow convergence of the optimization
algorithm, i.e., the optimization algorithm stopped too early for proper convergence had been
achieved. Nevertheless, this behaviour is a good indication that something is not quite right.
The observation that the values of the TPA measure are driven to its extremes for each road
sections suggests that the model tries to use the parameter d to compensate for something other
than what it is intended for (macrotexture induced rolling resistance). This could mean that
TPA as road metric for (macrotexture) rolling resistance is not satisfactory. However, since TPA
performs almost identical to MPD, it is more likely that the lack of fit observed in figure 6.3
and 6.4 was due to, e.g., external disturbances that influenced measurements. As mentioned
previously, the unevenness and macrotexture part of Froll constitutes only a small part of the
total driving resistance which makes this term especially sensitive to external disturbances and
variations across all measurements.
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Figure 6.10 Movement of parameter values from a randomly chosen initial value to the result after
optimization, for 96 samples of d. Each entry di in d have been chosen from the uniform distribution
between 10 and 90 %. The blue lines shows the distance travelled from initial value d0 to estimated value
d̃. The red filled circles are the endpoints, i.e., d̃.



7 Discussion

In this chapter we sum up and discuss the results of the of the present work. First and foremost
we are going to discuss the new texture measure, TPA, proposed in section 4 as well as the
results of using it to model rolling resistance in chapter 5 and 6. After that the role of FDA in
rolling resistance modelling is evaluated and potential directions for further use of FDA are
discussed as well. We conclude by some general remarks about the work as a whole, the general
lessons learned, and directions of future work.

7.1 Discussion of Proposed Texture Measure
The TPA metric was developed for macrotexture induced rolling resistance assessment. The
basic idea behind its development was to make a road metric based on the theory of what causes
surface related rolling resistance on the macrotexture level. At the same time it should be suitable
for practical purposes, i.e., for use with network level measurements in road maintenance and
asset management, which substantially restricts the potential algorithmic complexity of the
metric. The result was a road metric that is based on principles of what causes rolling resistance
which is slightly different than the purely empirical texture measures used today. Present road
metrics are largely based on Fourier analysis, statistical properties or algorithmic adaptations
of previous practical methods, to the capabilities of modern measurement equipment. While
TPA is definitely closer to the empirical measures than, e.g., complex FEM models, it shares
one thing with the latter: It is based on principles of tyre/surface interaction and the energy loss
pertaining to it, albeit in a very simple way.

This seems like a novel approach similar to the empirical enveloping algorithm of [115]
which is used in chapter 5 and 6. However, enveloping is not a road metric since it does not
reduce the profile data segments to a single index, but instead acts like a filter that transforms the
profile. Nevertheless, the enveloping procedure is based on theoretical principles of tyre/surface
interaction which is emulated in a simple way. In fact, TPA complements enveloping very well
with respect to rolling resistance assessment: Enveloping emulates tyre indentation and TPA
assesses the resulting area indented by the surface. In accordance with this, it was shown in
chapter 5 that using TPA with enveloping (e = 0.0025) gave significantly better correlations
than without enveloping. A similar improvement was seen with the classical MPD texture
measure which underpin the previous studies in the MIRIAM project[15] and suggests that this
enveloping should definitely be studied further.

To fully explore the idea of determining rolling resistance by assessing the road textures
penetration into the tyre, two different variants of the TPA measure were proposed: The ’simple’
version and the ’full’ version. The full version was based on B-splines, fitted using a roughness
penalty, and had a total of three parameters d, λ andK that should be estimated. The general idea
of using such a complex formulation was to have some calibration parameters that could be tuned
by estimation and subsequently analysed. This could potentially lead to some insights between

115
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profile data and its relation to rolling resistance. For instance, had the full TPA significantly
shown to perform better with substantial weight λ attributed to the roughness term, it would
imply that local features of the profile where unimportant. However, the investigations of the
full TPA in chapter 5 indicated that these parameters might be superfluous. In fact, the simple
TPA, having only one parameter, d, performed slightly better.

Another related aspect concerned how d should be estimated. It was hypothesized that the
penetration depth d could potentially vary across different road sections, i.e., across different
surfaces. However, the simple TPA investigations of chapter 5 showed unambiguously that while
d varied across tyres (which was also hypothesized) and enveloping, it did in fact not vary across
road section for a given combination of tyre and envelope. Together with the discussion about
the full TPA above, this cemented that the general approach in defining the TPA has been overly
complex. The simple TPA using linear interpolation of the profile data and using a uniform
value of d seems to suffice.

The results of correlating TPA/MPD with CRR in chapter 5 showed that TPA, with or
without enveloping, outperformed MPD for the majority of different combinations of tyre type,
aggregation lengths, and enveloping. In some cases they performed almost equally well and only
in a few cases did MPD perform better. All in all, these data shows that TPA could indeed be
a serious candidate for a texture measure used in rolling resistance assessment. However, the
data set consisted of only two road sections which is quite low so any results should be taken
with a grain of salt. On the other hand, the length of the road sections is quite large compared to,
e.g., the MIRIAM and MnRoad studies discussed above, so the results cannot be dismissed as
mere coincidence. All in all, TPA shows very promising results with data created in COOEE
project, but more investigations using a large number of road section needs to be made before
any definite conclusions can be drawn.

Besides the rolling resistance measurements of chapter 5, coast-down data from VTI was
used to investigate the performance of TPA in rolling resistance modelling. With this kind of data
the rolling resistance is derived implicitly from velocity data by a mathematical model. Initially,
this approach seems promising as the model showed robustness with respect to noise and TPA
seemed to be performing just as well as MPD. However, during investigations into the estimation
of d, the model produced strange results indicating that: 1) The model fits where almost equally
good no matter the values of d, and 2) the values of d clearly indicated that the model was using
d to compensate for something that probably had nothing to do with texture induced rolling
resistance. While coast-down modelling might be fruitful when using an established measure,
the investigations in chapter 6 suggests that it is not good for exploring new road measures. This
is probably because surface induced rolling resistance components are only minor contributions
to the overall driving resistance. Thus, distinguishing the rolling resistance term from noise
and other disturbances is difficult enough in itself, let alone fine tuning and investigating new
potential road metrics used to define it.

Irrespective of the problems encountered with the coast-down data in chapter 6, the general
conclusion still stands: Simple TPA with a fixed d used together with the enveloping of [115]
with e = 0.0025 looks very promising, but further investigations are needed. In relation to
this, the question of how d depends on various factors like tyre and enveloping is still open and
needs to be investigated further. Examining the 3D-version of TPA in the form of TPV is also a
potentially interesting undertaking and its potential generalizability is an interesting feature of
the TPA metric. It would be extremely advantageous to have a measure that is easily adaptable
to, and could take advantage of, the next generation of measurement devices.

On a more general level, the overall approach of actually using basic knowledge of the
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phenomena being assessed as an underlying basis for road metric development, seems like a
fruitful approach in advancing in this field. Even though the road metrics are simple and based
on profile measurements that are non-trivial to obtain and which is only a 2D-projection of a
3D world, the connection with theory seems important. This approach will hopefully also make
it easier to use insights from highly theoretical FEM modelling in practical rolling resistance
modelling and vice versa. Better measurement equipment would of course reinforce this synergy
as well.

7.2 Discussion of FDA in Rolling Resistance Modelling
Another goal of this work was to try and evaluate the usability of FDA in this field of research.
In connection with the coast-down data and modelling of chapter 6, FDA proved to be a natural
setting for overcoming challenges associated with coast-down modelling. Challenges include
implementation of data sources into the model and model stability testing using smooth noise.
Furthermore, it made numerical solutions of the system straightforward, which was valuable
in assessing model fit. The naturalness consisted in the fact that representing high-resolution
data, originating from phenomena that is evolving smoothly, is very convenient. Moreover, the
coast-down model was a differential equation which formally is an equation involving functions,
so it is natural to use functions for data.

On the other hand, functionalization of texture profiles using a fourth order B-spline basis
together with roughness penalty based fitting, as a means of calculating TPA, proved to be
unnecessary. The reason is probably that the relation between TPA calculated from a 2D-profile
and rolling resistance measurements is very noisy, so any improvements that could be achieved
by a more advanced formulation of TPA would be insignificant. In other words, the full TPA was
over-engineered and as discussed in section 7.1 above, even letting d vary across road sections
might be irrelevant. Since we are only interested in determining an average energy loss on the
meter length scale, of a phenomena that occurs on the mm length scale, the finer details of the
profile are probably not relevant. The simple TPA which gave the best results, however, is based
on linear interpolation and while this is also a kind of functionalization it is not smooth. Since
smoothness is a fundamental aspect of FDA, the simple TPA is hardly relevant for methods of
FDA.

Another example was the usage of fdPCA in chapter 5. While it did illustrate the potential,
it was a quite simple application of the FDA technique. Using fdPCA or similar functionalized
versions of classical techniques might be interesting with larger data sets of texture profiles
and rolling resistance measurements, but the data presented in chapter 5 was just too small.
With a larger data set it would be interesting to calculate MPD and TPA values, functionalize
the result using a roughness penalty to avoid small fluctuations, and comparing the result with
trailer measurements using a functionalized linear model. However, this seemed like an excess
approach given the small data set. Moreover, standard linear regression is what was used in
previous studies and by using the same technique it was easier to compare the results.

More generally, the author had hoped that more advanced FDA-techniques could have been
deployed, but in many cases it seemed to be introducing unnecessary complexity. Besides the full
TPA presented in the thesis, there was also a case with parameter estimation of the coast-down
model. Initially it was believed that some non-linearities in the parameters would result from
modelling efforts which would enable application of non-linear parameter estimation of the
coast-down model parameters µ. Since non-linear parameter estimation of differential equations
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is one of the areas in which FDA really shines, this would have been a perfect application
example. However, as it turned out, non-linearity was not needed.

All in all, FDA did prove useful, especially in coast-down modelling, but the data sufficiency
and the immediate challenges in connection with the new road metric formulation and subsequent
investigation did not require the full potential of FDA.

7.3 General Remarks
The author began the present work with no prior knowledge of the field. This required elaborate
preparatory studies but in the author’s opinion this also gave a unique opportunity to approach
the subject from a different perspective that what is customary. Some words on this below.

While the development of full TPA might be overcomplicating the matters, the general
approach of founding a new road metric seemed like a non-standard approach. This also
manifested itself when trying to acquire data from other measurement campaigns. Although
there has been a great deal of goodwill in sharing measurements, which is greatly appreciated and
acknowledged by the author as this is by no means a standard practice in other areas, getting hold
of raw profile data have been quite difficult. This seems to be because standard road metrics is
usually what people want so there is no need to exchange raw profile data. Unfortunately, getting
raw profile data is essential in the kind of work put forward here, so making it easier to exchange
data would, in the author’s opinion, greatly benefit this area of research. In general it seems like
there is a unused potential in the massive amount of data being produced in this area1. Another
related observation is that dealing with road data is quite cumbersome from a programming
perspective. Parsing and creating the right data structures for the data sets used in chapter 5 and
6, as well as implementing basic road metrics, have been laborious and time consuming. In
addition, the initial efforts in using this kind of work in road network level asset management
have also been undertaken by the author and it has further underlined the need for a solution to
the difficulties of road data management. Similar work that the author has encountered deals
with these difficulties by aggregating large amounts of measurements and using exemplary
road sections. The former has also been used in measurement campaigns discussed in section
4.2 which was one of the reasons for exploring data aggregation in section 5.3. This might
also explain the reluctance for dealing with raw profile measurements in many cases. What is
required is the development of a software framework to deal with large amounts of road data
which in turn requires careful considerations of architectural design and implementation details
of a framework. While such considerations might be peripheral to the work described here, they
are nonetheless very important and requires understanding of the data and its use in modelling.
Therefore, they have been briefly described in appendix A together with sample results of the
efforts in asset management.

1 The author has also heard the term ’graveyard of data’ referring to this circumstance.
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A.1 Introduction
The framework is written in Python and is build upon ’Numpy’ which is the Python package for
numerical and scientific computations. Python together with numpy package gives essentially the
same capabilities as any other numerical tool like MatLab/Octave, R, SPSS etc. One important
difference is the fact that Python is a powerful general purpose language which makes well
suited for building a framework like this. A small example using a simplified way of calculating
fuel consumption is shown here to illustrate the intent of the framework. The present version of
the documentation is supplied in section A.2 and the code for the framework can be found at
https://github.com/lgandersen/RDMS. Note that this repository will be continually
updated.

In 2010 Niras made a socio-economic report1 estimating the potential fuel savings from
deploying so-called ’green pavements’ to the road network. Green pavements are pavements
with low rolling resistance due to lowered road texture and unevenness. Texture and unevenness
are usually represented by the road metrics MPD and IRI. It was assumed that by introducing
green pavements on the Danish state road network the MPD would be lowered to 0.55 and IRI to
0.9. For any road having larger MPD/IRI values, a fuel consumption reduction estimate could be
derived. The parameters for the model are listed in the table A.1. Niras made the calculations on
a road section basis, i.e., they made the calculation for an entire motorway, main road etc. This
coarse approach have been improved by using the RDMS framework to import raw MPD/IRI
values from the Danish Road Directorate2 which have an approximate resolution of 1 0 m.
Using these data gives us a much more detailed view of the state road network and some simple
illustrations of this have been given below. In figure A.1 the differences between the distribution
of MPD and IRI values on the state road network. Note how the IRI distribution is clearly not
normally distributed. Also, the driven kilometres are based on Annual Daily Traffic of a low
resolution. The author is aware of more precise data that should be available in the Danish Road
Directorate and it would be interesting to see how a better resolution will affect the distribution
of MPD/IRI for driven kilometres. More importantly, figure A.2 shows the effect of averaging
several 10 m MPD/IRI values, and it clearly shows the different result that is obtained depending
on the amount of data aggregation. Especially the calculated fuel consumption reduction by
IRI is significant with a difference of about 40% and while IRI contributes the least, it still
illustrates the importance of studying the road network in its entirety. While these calculations
were simple, the data management was not, and it is hoped that this framework will facilitate the
implementation of more advanced models of fuel consumption based on the wealth of data that
is available at road administrators.

1 C. Nielsen and T. de Fine Skibsted, The energy-saving road - Improving socio-economic conditions by reducing
rolling resistance. NCC Green Road, 2010.

2 These data are then again based on raw profiles with a 1 mm/1 dm resolution for MPD/IRI, respectively. However,
these have not been supplied to the author yet.
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Table A.1 Calculation parameters

Average spped 90km/h
Rolling resistance per unit MPD 30%
Rolling resistance per unit IRI 6%
Fuel consumption/Rolling resistance ratio 3%/10%
MPD scenario 0.55 [mm−1]
IRI scenario 0.9 [mm/km]

Figure A.1 Distribution of IRI (left) and MPD (right) according to road length (km) and driven km.

Figure A.2 Fuel consumption savings as a function of road network data aggregation.
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CHAPTER

ONE

INTRODUCTION

This software package is used to handle road data in both project-level and network-level applica-
tions by providing tools for handling, manipulating and surveying road-related data. Examples of
road data:

• Road surface data such as rutting, texture, unevenness and road metrics derived from them
such as Mean Profile Depth (MPD) and International Roughness Index (IRI).

• Traffic data such as Annual Daily Traffic (ADT), speed limits, and measured speed.

• Pavement related data such as pavement types and pavement age.

When working with road data (both in road maintenance and research) there are several essential
challenges and routine tasks that users of road data have to deal with. Examples of challenges and
tasks that this software package tries to facilitate:

• Handling data measured at different times. A road network is not static but evolves over
time, and some roads disappear while new ones are created. Also, only parts of the road
network might be measured. Dealing with these circumstances requires routines that:

– Checks road data for consistency relative to a road network ‘snapshot’, i.e., a data set
containing chainage 1 information for all roads in the network.

– Merges road data measured at different times and therefore might contain incompatible
parts which must be discared.

Both types of routines should also produce detailed information about which data failed,
why they failed as well as supplying the user with general statistics about how the chainage
validation/data merge/etc. went.

• Calculating road metrics like MPD and IRI and filtering of raw profiles from bad readings,
spikes, and unwanted wavelengths.

• Storing road data and calculated output in a large database that keeps track of processing
flows. For instance, what raw profile data have been filtered to produce filtered laser profile
data which in turn have been used in the calculation of a particular set of MPD data and so
on.

1 http://en.wikipedia.org/wiki/Road_surveying#Chainage_or_station

1
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• Using road network level data in asset management. Tasks related to this is estimating pave-
ment wear as function of pavement type, ADT, road metrics etc. and implementation of
Markov Decision Models.

RDMS provides a python framework based on Numpy and a toolbox of routines to handle these
tasks and challenges. In addition, a web-frontend is supplied, for road engineers to use when
undertaking routine tasks such as importing/exporting, surveying and doing routine calculations
on road data.

1.1 Data Structure in RDMS

The most fundamental part of RDMS is how roaddata is represented, stored, and accessed. Thus,
we begin with a general outline of the data structure in RDMS.

1.1.1 Road Data Components

Almost all kinds of road data are comprised of a few common constituents which have been re-
flected in RDMS as well:

Road Identifier All road data and measurements have been obtained from a road/road sec-
tion/road part etc. Moreover, each collection of roads, e.g., a road network or a test track, is
equipped with a classification that uniquely identifies all parts of the roads. No matter how
the classification is defined, it can always be described as a combination of road identifiers.
As an example, consider a hypothetical road network where each road is determined by a
region and a road-id. Each road within this classification is then identified by a (region,
road-id) tuple. Thus:

(’East’, ’12’) # A road identifier
(’East’, ’12A’) # Another road identifier
(’West’, ’64B’) # Yet another road identifier

identifies different roads. In RDMS this is formalized through the RoadIdentifier
classes which are similar to namedtuples. Usually they are determined and created implicitly
whenever data is imported from, e.g., a csv-file. Each instance of a RoadIdentifier
class uniquely determines a road segment/section/part/etc. in a road collection. Note that
different types of roaddata can have different degrees of detail. For example ADT might
be defined by (Region, Road-id) while MPD requires (Region, Road-id, Direction). This is
also accomodated in RDMS such that it is possible to merge two different data sets like the
example with ADT and MPD.

Road Data Another common aspect of road data is that they are usually composed of two parts

Chainage The (possibly degenerate) interval within a given road section where the data.
At the moment chainage is usually given by four values: km_start, m_start,
km_end, m_end but it could easily be modified to handle other units such as miles

2 Chapter 1. Introduction
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and inches. Future support for GPS-coordinates could also be implemented if the need
arise 2.

Data Actual data corresponding to a given chainage interval. This could be ADT, MPD,
pavement type etc. and it can be single values or higher dimensional. The type of the
data can be str or any type that numpy supports.

The data is usually composed of a chainage interval and one or more types of data and is
contained by a RoadData object. RoadData is essentially a wrapper around a tuple of
numpy arrays and is create during data import. Data can be accessed by an index or through
attribute name. E.g.,:

roaddata.km_start
roaddata.m_end
roaddata.MPD
roaddata.ADT
roaddata[0]

It is also possible to extract the chainage or data, respectively. In addition, there is only some
type-checking of the data behind the scenes that tries to preserve numpy array views. See
RoadData for details. All the storage types described below uses RoadDatawith the only
difference being size of the numpy arrays and whether they are views or not.

1.1.2 Road Data Storage and Access

Essentially the data is structured and accessed through three different layers:

Road Network The top layer in the data storage hierachy which contains road data from several
road sections. In RDMS, a road network is primary road data storage and is represented by
instances of the RoadNetwork class, which are usually created when importing data from,
e.g., csv-files.

Internally, the data is stored as numpy arrays spanning all road sections with one array for
each data component such as, e.g., ‘MPD’ or ‘km_start’. Furthermore, information about
which segments of the arrays corresponds to which road section is also stored such that road
data can be accessed on a per road section basis. In general, Road network data can be
accessed in three different ways:

1. Directly, by accessing the entire arrays and thus all road sections.

2. As road sections, by iterating through RoadSection type objects. See below for a
description of road sections.

3. As singletons, by iterating through each single road data element. See below for a
description of singletons.

2 This is tailored to the DRD road network (atm.), and due to the format of some of these data (where the end mark
might be given as the first meter of the next kilometer), the length of the consecutive interval is also required.

1.1. Data Structure in RDMS 3
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For details on how to access data from a road network in practice, see RoadNetwork.

Road Section As mentioned above, road network level data can be accessed on a per-road sec-
tion basis. In practice this is usually done by iterating through all RoadSection ob-
jects contained in a RoadNetwork. Essentially, the RoadSection objects contain a
RoadIdentifier defining the road section and a RoadData object holding the road
data. Initially, the road data in the RoadData object are numpy views into the larger arrays
of the RoadNetwork. However, if they are overwritten with arrays of a different shape, the
underlying arrays of the road network will be resized automatically. See RoadSection
for details.

The road data can be accessed in essentially two ways:

1. Directly, by accessing the (view) arrays of the road section.

2. As singletons, see below for a description of singletons.

For details on how to access data from a road section in practice, see RoadSection.

Singleton The smallest quantity of road data in RDMS. A singleton is a RoadData object with
only one chainage interval and the data attached to it. Thus, all chainage components have
only one value while the the rest of the data can have higher dimensions. Singletons are
usually wrapped in a Singletons object which is a modified list type. The singletons are
created as views into the larger RoadSection and/or RoadNetwork.

1.2 Chainage Management

Due to the fact that a road network evolves over time, the chainage is not necessarily homoge-
neous, i.e., a kilometer can be larger/smaller than 1000 meters and there might be holes within
a chainage kilometer. This implies that when importing data with non-homogeneous chainage
interval their length cannot be determined. To be able to determine lengths and verify that each
road data singleton have a valid chainage specification, chainage information of the road network
is needed.

As an example, assume we have a ADT measurement with the following chainage:

km_start=5, m_start=675, km_end=6, m_end=15

Then we do not know the length, since we do not know how many meters constitute the fifth
kilometer nor if there are any holes. Now, assuming that the chainage information of the fith and
sixth kilometer is given by the following ChainageMark‘s:

ChainageMark(km=5, m_start=10, m_end=800)
ChainageMark(km=5, m_start=900, m_end=1050)
ChainageMark(km=6, m_start=0, m_end=1000)

we can determine the length. In this case it is:

4 Chapter 1. Introduction
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(800 - 675) + (1050 - 900) + (15 - 0) = 290.

Doing this for all of our hypothesized ADT measurements we could we could throw away the
chainage information. However, if we split up our ADT data in such a way that each singleton
spanned only one ChainageMark we would preserve the chainage while being able to extract
the length.

More precisely, if we split the data into three parts:

km_start=5, m_start=675, km_end=5, m_end=800
km_start=5, m_start=900, km_end=5, m_end=1050
km_start=6, m_start=0, km_end=6, m_end=15

we do not need any chainage information to determine the length of each singleton. The length
can easily be obtained by subtracting m_start from m_end. Road data that have been brought
to this form is referred to as normalised data. Note that data normalisation is relative to a specific
chainage data set. The RoadNetworkChainage class handles chainage data on a road network
level and its main use is to normalise the set of data contained in RoadNetwork. Since chainage
data is also road data, it can be imported similarly to how RoadNetwork data is imported. See
RoadNetworkChainage for a description of how this is done in practice.

1.2. Chainage Management 5
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CHAPTER

TWO

API REFERENCE

This is the entire list of modules, classes, functions and minor objects used in RDMS.

2.1 Data Containers

This module specifies the data containers used in RDMS as well as auxilliary classes and functions
used in connection with them. See Introduction for a description of how the these containers are
interrelated.

class rdms.containers.Singletons
list-like container of singleton RoadData with an additional attribute:

roadidentifier
RoadIdentifier object indentifying the road section that the singleton roaddata
belongs to.

class rdms.containers.RoadSection
Object containing data and metadata for a single road section. It is usually not constructed
directly but is obtained, e.g., looping over a RoadNetwork object.

Attributes

roadidentifier
RoadIdentifier object indentifying this road section in the road network.

metadata
RoadMetaData object that stores meta information about the road data.

roaddata
RoadData object that contains data for this road section.

Methods

edit()
Create a context with a copy of the road section data as a list of singleton roaddata. As

7
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the context code block is exited the singleton roaddata list is converted to arrays and
reinserted into the road section:

with roadsection.edit() as roaddata_singletons:
# Do some manipulation of the singleton_list within this block:
roaddata_singletons.pop()

print ’Now the contents of singleton_list is reinserted into networkdata’

class rdms.containers.RoadNetwork
Iterable of RoadSection objects and primary container of road data. It is usually created
by calling a class-methods such as from_csv().

Attributes

roaddata
RoadData object contain all data for the road network. Each chainage and data fields
contains a numpy array spanning all roadsections.

metadata
RoadMetaData object that stores meta information about the road data.

roadsection_keys
list of RoadIdentifier objects pertaining to the road sections in the road network.

Methods

classmethod from_csv(fname, columns, delimiter=’, ‘, nline2skip=0, re-
verse=None, check_interval_consistency=True)

Read a csv file and return a RoadNetwork object.

Parameters

• fname (str) – File name and path to the csv-file.

• columns (list of Column objects) – Which columns csv-file should
be used and how to process them. The order of the columns in the
list determine the order of datatuples in the RoadIdentifier and
RoadData classes.

• delimiter (str) – Delimiter used in the CSV-file.

• nline2skip (int) – Number of first lines to skip (e.g., to avoid importing
headers).

• reverse (function) – Function to determine direction of the chainage in-
terval. The function is passed a RoadIdentifier object and should
return True if data should be reversed and False otherwise. If None no
reverser is used.

• check_interval_consistency (bool) – Whether or not to check for neg-
ative or zero data interval lengths

8 Chapter 2. API reference
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classmethod load(fname)
Shortcut for unpickling the object.

save(fname)
Shortcut for pickling the object.

class rdms.containers.RoadNetworkChainage
Special container for network level chainage data to be used in chainage validation and
modification. Its primarily used for the chainage processing functions described in Chainage
Validation and Normalisation.

Methods

add_km(roadidentifier, km, m_start, m_end)
Adds a chainage mark to the road section identified by roadidentifier.

classmethod from_csv(fname, columns, delimiter=’, ‘, nline2skip=0)
Read a csv file and return a RoadNetworkCSVReader object.

Similar to the RoadNetwork.from_csv() method where the only differences are
that the columns list must contain the following names:

•km Chainage kilometer.

•m_start Start meter of the interval.

•m_end End meter.

•length Length which is used in case the end meter is 0 (referring to the next
kilometer).

The kind attribute of the column objects will not be used.

classmethod load(fname)
Shortcut for unpickling the object.

roadsection_length(roadidentifier)
Returns the length (int) of the road section defined by roadidentifier.

save(fname)
Shortcut for pickling the object.

2.1.1 Container Related Classes and Functions

class rdms.containers.RoadData
Basic data structure for storing road data in RDMS and used by RoadNetwork,
RoadSection, and Singletons. This class is customized at creation
and usually not created manually but by data importing methods such as
RoadNetwork.from_csv(). It can be created manually, however, by using

2.1. Data Containers 9
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create_roaddata_cls(). Upon creation, the names of the data compo-
nents is supplied by the user and a RoadData class is returned. To illustrate,
consider the following RoadData class creation:

>>> RoadData = create_roaddata_cls([’km_start’, ’km_end’], [’data’], [’int’, ’int’, ’float’])

This RoadData class is extremely simple but illustrates how RoadData classes
generally behaves. See create_roaddata_cls() for further details on how
to create RoadData classes yourself. We are now able to create some instances:

>>> km_start, km_end, data = (np.arange(1, 4), np.arange(1, 4), np.zeros((3,)))
>>> roaddata1 = RoadData(km_start=km_start, km_end=km_end, data=data)
>>> roaddata1
RoadData(km_start=array([1, 2, 3]), km_end=array([2, 3, 4]), data=array([ 0., 0., 0.]))
>>> roaddata2 = RoadData(km_start=1.0, km_end=2, data=0.0)
>>> roaddata2
RoadData(km_start=array([1]), km_end=array([2]), data=array([ 0.]))
>>> roaddata3 = RoadData(*[1, 2, 0.0])
>>> roaddata3
RoadData(km_start=array([1]), km_end=array([2]), data=array([ 0.]))

Notice how the input data for roaddata2 are converted to numpy arrays of the
dtype supplied when we created the RoadData class. Internally, RoadData al-
ways stores the data as numpy arrays of the dtype supplied when the class was
created. Another important feature of RoadData instances is that they try to pre-
serve the original numpy arrays, if possible:

>>> roaddata1.data = np.arange(1336, 1339)
>>> roaddata1
RoadData(km_start=array([1, 2, 3]), km_end=array([1, 2, 3]), data=array([ 1336., 1337., 1338.]))
>>> data
array([1336, 1337, 1338])

The RoadData instances always tries to write into the arrays already stored. This
behaviour is especially benficial when the arrays stored are actually views into
larger arrays, which is the case with, e.g., RoadSection objects created from
a RoadNetwork.

<data_component_name>
Upon creation, an attribute is created for each data name component by
which this particular piece of data can be accessed.

fields
Tuple of data component names. The ordering of the names is the same as
the ordering of the data.

Methods

get_chainage

10 Chapter 2. API reference
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Returns a tuple of the chainage.

get_data
Returns a tuple of the data.

rdms.containers.create_roaddata_cls(chainage_names,
data_names, dtypes,
rename=False)

Create a RoaoData class where chainage_names and data_names are lists con-
taining the names for the data attributes. The underlying data tuple is ordered
like chainage_names + data_names. dtypes is a list of dtypes for the
data of length len(chainage_names) + len(data_names) ordered
like chainage_names + data_names. rename have the same meaning
as collections.namedtuple.

class rdms.containers.RoadIdentifier
Contains and represents all road identification components used to iden-
tify a given road section. This class is a namedtuple and is usually
created by RDMS when importing road data. See documentation on
collections.namedtuple() for further details.

rdms.containers.create_roadidentifier_cls(roadidentifier_names)
Creates a namedtuple called RoadIdentifier with attribute names given by roadi-
dentifier_names.

class rdms.containers.RoadMetaData
Meta data of roadnetwork data.

Contains meta-information about the roaddata, i.e., the classes used in construct-
ing road sections and data.

RoadIdentifier
See RoadIdentifier

RoadData
See RoadData

class rdms.containers.ChainageMark
Namedtuple used by RoadNetworkChainage for chainage data.

2.2 Chainage Validation and Normalisation

This section specifies all functions that modify and validates chainage related issues. In this sec-
tion it is implicityly assumed that all RoadData have well-defined chainage, i.e., contains the
following data names: km_start, m_start, km_end, and m_end.

For a general description of chainage management, see Introduction.

2.2. Chainage Validation and Normalisation 11
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rdms.dataprocessing.singletons_normalize_chainage(singletons, net-
workchainage)

Normalises all singleton RoadData in singletons as described in Introduction (relative to
networkchainage). It is done by calling the following ordered list of functions:

1.singletons_validate_chainage()

2.singletons_splitup_many_km_chainage()

3.singletons_splitup_1km_chainage()

rdms.dataprocessing.singletons_validate_chainage(singletons, net-
workchainage)

Removes all singleton RoadData in singletons that are not consistent with net-
workchainage. A singleton is consistent if its the chainage end-points fall within a
ChainageMark from networkchainage.

To exemplify, consider the following ChainageMark‘s

ChainageMark(km=1, m_start=10, m_end=100)
ChainageMark(km=2, m_start=10, m_end=100)
ChainageMark(km=4, m_start=10, m_end=100)

which validates a selection of RoadData as follows:

RoadData(km_start=1, m_start=10, km_end=1, m_end=100, ...) # Valid
RoadData(km_start=1, m_start=50, km_end=2, m_end=50, ...) # Valid
RoadData(km_start=1, m_start=50, km_end=4, m_end=50, ...) # Valid
RoadData(km_start=1, m_start=150, km_end=2, m_end=50, ...) # Invalid
RoadData(km_start=1, m_start=150, km_end=3, m_end=10, ...) # Invalid

rdms.dataprocessing.singletons_splitup_many_km_chainage(singletons,
net-
workchainage)

Splits up every singleton RoadData in singletons into one or more new singletons con-
taining the same data but with a chainage interval within one kilometer. A new singleton is
created for each kilometer contained in the chainage interval of the original singleton. All
singleton road data in singletons whose chainage interval is contained within one kilometer
are unchanged. Only the largest/smallest ChainageMark‘s (in networkchainage) for each
kilometer is checked, respectively. Any intermediate kilometers in a singletons chainage
mark missing in networkchainage is ignored.

Note: It is assumed that the singletons have a valid chainage relative to networkchainage.
This can be achieved with singletons_validate_chainage().

To exemplify, the following ChainageMark‘s

ChainageMark(km=1, m_start=10, m_end=100)
ChainageMark(km=2, m_start=100, m_end=200)

12 Chapter 2. API reference
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ChainageMark(km=2, m_start=210, m_end=300)
ChainageMark(km=4, m_start=20, m_end=100)

will cause the following singleton:

RoadData(km_start=1, m_start=50, km_end=4, m_end=50, ...)

to be splitted up into:

RoadData(km_start=1, m_start=10, km_end=4, m_end=100, ...)
RoadData(km_start=2, m_start=100, km_end=2, m_end=300, ...)
RoadData(km_start=4, m_start=20, km_end=4, m_end=100, ...)

rdms.dataprocessing.singletons_splitup_1km_chainage(singletons,
net-
workchainage)

Any singleton RoadData in singletons contained within one kilometer is splitted up in
one or more new singletons such that each new singleton corresponds to exactly one
ChainageMark in networkchainage. The remaining singletons in singletons is ignored.

Note: It is assumed that the singletons have a valid chainage relative to networkchainage.
This can be achieved with singletons_validate_chainage().

To exemplify, the following ChainageMark‘s

ChainageMark(km=2, m_start=100, m_end=200)
ChainageMark(km=2, m_start=210, m_end=300)
ChainageMark(km=2, m_start=300, m_end=400)

will cause the following singleton:

RoadData(km_start=2, m_start=150, km_end=2, m_end=350, ...)

to be splitted up into:

RoadData(km_start=2, m_start=150, km_end=2, m_end=200, ...)
RoadData(km_start=2, m_start=210, km_end=2, m_end=300, ...)
RoadData(km_start=2, m_start=300, km_end=2, m_end=350, ...)

rdms.dataprocessing.roadsection_normalize_chainage(roadsection,
net-
workchainage)

Wrapper around singletons_normalize_chainage() that takes a RoadSection
object as input instead of a list of singletons.

rdms.dataprocessing.roadsection_chainage_validate(roadsection, net-
workchainage)

Wrapper around singletons_validate_chainage() that takes a RoadSection
object as input instead of a list of singletons.

2.2. Chainage Validation and Normalisation 13
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rdms.dataprocessing.roadsection_splitup_many_km_chainage(roadsection,
net-
workchainage)

Wrapper around singletons_splitup_many_km_chainage() that takes a
RoadSection object as input instead of a list of singletons.

rdms.dataprocessing.roadsection_splitup_1km_chainage(roadsection,
net-
workchainage)

Wrapper around singletons_splitup_1km_chainage() that takes a
RoadSection object as input instead of a list of singletons.

rdms.dataprocessing.network_normalize_chainage(roadnetwork, net-
workchainage)

Wrapper around singletons_normalize_chainage() that takes a RoadNetwork
object as input instead of a list of singletons.

rdms.dataprocessing.network_chainage_validate(roadnetwork, net-
workchainage)

Wrapper around singletons_validate_chainage() that takes a RoadNetwork
object as input instead of a list of singletons.

rdms.dataprocessing.network_splitup_many_km_chainage(roadnetwork,
net-
workchainage)

Wrapper around singletons_splitup_many_km_chainage() that takes a
RoadNetwork object as input instead of a list of singletons.

rdms.dataprocessing.network_splitup_1km_chainage(roadnetwork, net-
workchainage)

Wrapper around singletons_splitup_1km_chainage() that takes a
RoadNetwork object as input instead of a list of singletons.

2.3 Miscellaneous

class rdms.misc.Column
Configuration information for a single column in a csv-file.

Parameters

• kind (str) – Which kind of data this column contains: ‘roadidentifier’,
‘chainage’ or ‘data’.

• name (str) – Name of the data contained in this column. This will be the
attribute name in the RoadData instances.

• idx (int or list) – 0-indexed index or list of indices referring to the
columns containing the data.

14 Chapter 2. API reference
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• parser (str) – Function that parses the content of the column when im-
porting data. Besides a user-supplied function several parsers exists and
can be used by using appropriate strings:

– “float” treat data as floating point number

– “int” treat data is integer

– “string” treat data as string

– “vd_km” and “vd_m” refers to special DRD parsing that extracts the
kilometer or meter from the special DRD chainage mark.

– “static” enables a field value to be hardcoded into the data. If this is
set, the csv-importer assumes that the idx parameter is not a row index,
but the value to be hardcoded into data.

• dtype – The dtype to use when storing data in numpy arrays. Must be
given as a string.

2.4 Exceptions

List of special exceptions used by RDMS

exception rdms.exceptions.ChainageValidationError
Raised when a chainage inconsistency have been detected. This usually occurs during
chainage validation and normalisation.

exception rdms.exceptions.DataParsingError
Raised when data failed to parse into the proper type. For instance, if a column value in
a CSV-file was ‘example’ but that particular column have been configured as a float then
a:class:.DataParsingError will be raised.

2.4. Exceptions 15
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CHAPTER

THREE

INDICES AND TABLES

• genindex

• modindex

• search

17
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Rolling Resistance Measurement and Model Development
Lasse G. Andersen1; Jesper K. Larsen2; Elsje S. Fraser3; Bjarne Schmidt4; and Jeppe C. Dyre5

Abstract: There is an increased focus worldwide on understanding and modeling rolling resistance because reducing the rolling resistance
by just a few percent will lead to substantial energy savings. This paper reviews the state of the art of rolling resistance research, focusing on
measuring techniques, surface and texture modeling, contact models, tire models, and macro-modeling of rolling resistance. DOI: 10.1061/
(ASCE)TE.1943-5436.0000673. This work is made available under the terms of the Creative Commons Attribution 4.0 International
license, http://creativecommons.org/licenses/by/4.0/.

Introduction

The total annual emission of CO2 in the United States exceeds
7 billion t of which the transport sector’s share is 29% (U.S. Depart-
ment of Transportation 2010). Consequently, a reduction of rolling
resistance will lead to substantial energy savings and CO2 emission
reductions. Although the European Union has been able to reduce
total greenhouse gas emissions by approximately 5% between 1990
and 2006, CO2 emissions from road transport in the same period
increased by 26% and now constitute 12% of total CO2 emissions
in the European Union (Schmidt and Dyre 2012), so rolling resis-
tance reductions are also important here.

Fuel consumption, and hence CO2 emission in road transport,
depends on a number of factors that relate to the vehicles, the qual-
ity of the road, and their interaction. Low rolling resistance tires
have been available from the tire industry since 1993, and every
second tire sold today is a low rolling resistance tire.

Rolling resistance related to the road surface is responsible
for about 20% of the CO2 emitted by a passenger car driving at
100 km/h (Haider et al. 2011). This paper focuses on the role of
the road surface on rolling resistance.

In order to overcome the resistance, vehicles consume fuel. The
resistance can be categorized as follows (Sandberg et al. 2011b):
• Rolling resistance.
• Air resistance.
• Inertial resistance.
• Gradient resistance.
• Side force resistance.

• Transmission loss.
• Losses from the use of auxiliary equipment.
• Engine friction.

The rolling resistance is defined as the energy loss per distance
traveled by the vehicle due to nonelastic deformations of the tires
and losses in the wheel suspension system. Energy dissipation in
asphalt pavement structures also contributes to the rolling resis-
tance, but studies [e.g., Pouget et al. (2012)] show this to be of
minor importance. Because energy (measured in Joules) divided
by distance (measured in meters) has the unit of force (measured
in Newtons), the rolling resistance coefficient, defined as the energy
loss per tire per distance travelled divided by the normal force on
the tire, is dimensionless.

The emphasis in this paper is on the literature from the 1980s to
the present day. First, the different ways of measuring rolling
resistance are reviewed. Then the literature on surface roughness
and texture modeling is considered. The interaction between road
surface and tire is considered in the next two sections, and finally
there is a section on macro-modeling of rolling resistance. Due to
the wide diversity of areas connected with rolling resistance
measuring and modeling, this paper will not go into specifics
nor engage in in-depth critiques of the presented material; the
aim is primarily to provide an overview of the references in the
area and uncover common threads in the research field.

Rolling Resistance Measuring Techniques

Measurements of rolling resistance date back several centuries and
originated with the military’s interest in reducing the horsepower
for the traction of canons (Luchini 1983). Great scientists such as
Coulomb and Reynolds contributed to the field. Only in the last
50 years, however, has a systematic treatment been attempted with
the aim of establishing standards for the measurement of rolling
resistance. Recently, Sandberg et al. (2011b) classified the rolling
resistance measuring techniques into:
• Drum tests of tires;
• Trailer methods;
• Coast-down methods; and
• Fuel consumption methods.

The drum test is ideal for testing of tires in the laboratory. Trailer
methods add the variation of the road surface to the testing and
also monitor some of the transmission loss [see the discussion in
Section 3 of the Models for rolling resistance In Road Infrastructure
Asset Management systems (MIRIAM) project report Sandberg
et al. (2011b)]. Coastdown methods include still further properties
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of the car, while fuel consumption methods measure all the energy
losses experienced by the car.

Drum Tests of Tires

Rolling resistance of tires can be measured by the drum test, which,
as the name suggests, is performed by holding the test tire up
against a drum and applying a load to the tire. By rotating the drum
and measuring the resistance the tire exerts on the rotation of the
drum, the rolling resistance force of the tire can be deduced.
The advantage of this setup is the exclusion of various factors that
influence the rolling resistance of a tire. Before 1975 the experi-
ment protocol varied with different studies, e.g., different loads
on the test tire, different inflation pressure and drum setup. This
was standardized in 1975 when the Society of Automotive Engi-
neers (SAE) formed a committee to standardize the drum testing
procedure (Luchini 1983). Today several standards have been pub-
lished by the International Organization for Standardization (ISO)
and SAE [SAE J2452 (SAE 1999), SAE J1269 (SAE 2006), ISO
28580 (ISO 2009), ISO 18164 (ISO 2005)] and a physical and
mathematical justification for ISO 18164 has been proposed by
Hublau and Barillier (2008). For an overview of the different stan-
dards the reader is referred to Gent and Walter (2006, Chapter 12)
and Sandberg et al. (2011b). Several aspects of the drum testing
procedure have been investigated, such as interlaboratory correla-
tion (Clark and Schuring 1978; O’Neal et al. 1982) and curvature
correction (Clark 1976; Luchini 1982) when converting drum re-
sults to a flat surface, although the latter was recently disputed by
Freudenmann et al. (2009).

Besides direct rolling resistance measurement, drum testing
has been used for several other related purposes such as surface
texture testing (Luchini and Simonelli 1983), warm-up effects
(Warholic 1983), wheel cornering effects (Keefe and Koralek
1983), prediction of cavity air temperature (Kenny 1983), and
prediction of transient rolling resistance (Luchini and Popio 2007;
Mars and Luchini 1999).

Trailer Methods

The trailer method uses a trailer with one or more test wheels being
towed by a vehicle while the test wheels’ resistance to rolling is
measured by force transducers. The trailer method has been in de-
velopment since the 1980s up until today and has been documented

in Sandberg et al. (2011b). In the 1980s the Belgian Road Research
Centre (BRRC) designed a trailer to assess rolling resistance, and in
1990 data produced with the trailer were published and correlated
with road profile spectra (Descornet 1990). The trailer was im-
proved in 2009 (Sandberg et al. 2011b). Since then, the Technical
University of Gdansk (TUG), the Federal Highway Research Insti-
tutte of Germany (BASt), and Helsinki University of Technology
(HUT) have developed trailers, the latter with limited success,
though, according to Leinonen and Juhala (2006). The TUG trailer
depicted in Fig. 1(a) has been described in the literature (Wozniak
et al. 2011a, b). BRRC, BASt, and TUG trailers are used today in
various projects dealing with rolling resistance and road asset
management, see, e.g., the results from the European-American
MIRIAM project (Sandberg et al. 2011a), the Danish NordFoU
project (Kragh 2010), as well as two Dutch studies (Roovers et al.
2005) and (Boere 2009).

In Sandberg et al. (2011a), the trailer measurements are a key
component in creating a linear model for the rolling resistance’s
dependence on the road surface. The BRRC, BASt, and TUG trail-
ers were used. The NordFoU project compared macrotexture in the
form of mean profile depth (MPD) values with TUG trailer mea-
surements with mixed results. The first Dutch study (Roovers et al.
2005) mentioned previously used the BASt and TUG trailers to
determine differences in rolling resistance for different pavement
types, but no low rolling resistance pavement was indentified
within statistical significance. In Boere (2009) a good correlation
between tire model predictions of rolling resistance and TUG trailer
measurements was found. The tire-interaction model in Boere
(2009) has two main components: One component accounts for
rolling resistance of a smooth road, i.e., the hysterectic losses
due to the flattening of the tire in the tire/surface contact zone.
The second component relates to surface-texture-induced tire
deformations and is based on Andersson and Kropp (2008), which
uses a linear spring system and a nonlinear stiffness function to
account for the tire-texture interaction.

A subproject of MIRIAM made an extensive comparative study
between the BRRC, BASt, and TUG trailers on a test track in
Nantes, France, and showed overall good correlations with both
macrotexture and megatexture (Bergiers et al. 2011). Short-term
repeatability was found to be acceptable with approximately 3%
variation for the BRRC and BASt trailer and approximately 1%
for the TUG trailer (Bergiers et al. 2011). Unfortunately,

Fig. 1. (a) Rolling resistance trailer developed by the University of Gdansk, Poland (for further details on the device pictured, please refer to Wozniak
et al. 2011a); (b) RoboTex laser profilometer for obtaining a three-dimensional surface profile (for further details on the device pictured, please refer to
Rasmussen and Sohany 2011) (images courtesy of The Danish Road Directorate)
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day-to-day variations were significant. As Bergiers et al. (2011)
suggests, this should be subject to further study. More generally,
this also shows that further research and perhaps trailer standardi-
zation are needed. Nevertheless, the trailer measurement approach
seems fruitful: On one hand, many disturbing factors such as
transmission losses and air resistance have been reduced or elim-
inated in contrast with coast-down experiments (see “Coast-Down
Methods”), and on the other hand the trailers are still measuring
rolling resistance on actual roads in contrast to the laboratory drum
tests.

The above-mentioned trailers focus on the personal car, but
recently BASt and Forschungsvereinningung Automobiltechnik
(FAT) have developed a rolling resistance trailer using trucks
and truck tires (Sandberg et al. 2011b, p. 66).

Coast-Down Methods

The coast-down method pinpoints all significant contributions to
driving resistance, not merely the rolling resistance. The principle
in coast-down measurement is to accelerate a vehicle to a certain
speed and then let it roll freely in neutral gear or clutch down
(Sandberg et al. 2011b). As the car “coasts down,” velocity and
time are measured as a minimum (Evans and Zemroch 1984),
but other quantities like wind speed and road texture may be mea-
sured as well (Hammarström et al. 2009). The velocity is usually
measured at a high frequency for accurate results. This method does
not yield any direct results on rolling resistance, but must be fitted
to a mathematical model by, e.g., estimating parameters with least-
squares regression. The formulation and complexity of the model
may vary depending on the experimental setting, sources of data,
and so on. The development of models is treated in “Rolling
Resistance Macromodeling.”

Fuel Consumption Methods

Measurement of fuel consumption is the most general way of
assessing rolling resistance because it includes all possible factors
that influence the rolling resistance assessment. The tire rolling

resistance obviously affects the fuel consumption (Schuring 1994;
Hammarström et al. 2012), but because many factors influence the
energy loss experienced by a car, it is difficult to pinpoint the roll-
ing resistance loss in the fuel consumption method (Barrand and
Bokar 2009). Modern fuel consumption models are complex
and include many components such as, e.g., submodels of engine,
powertrain, wheels, driver and brake control, road and meteorologi-
cal conditions as detailed in, e.g., Sandberg (2001). The fuel con-
sumption measurement method will not be discussed further in this
paper; the reader is referred to Greenwood and Bennett (2001) for
an introduction to fuel consumption measurement and modeling.

Surface Roughness and Texture Modeling

The basic challenge in roughness modeling is to extract useful in-
formation from road data. This depends on what kind of road data
are available and what kind of information is sought. In the case of
rolling resistance modeling, there are different kinds of information
extractable on various length scales, as well as different measure-
ment techniques. Fig. 2 shows effects related to vehicle and
surroundings during driving, such as noise, rolling resistance, and
tire wear, plotted against texture wavelength.

Two road measures, the International Roughness Index (IRI)
and the MPD, are widely used in rolling resistance estimation today
(Hammarström et al. 2009; Karlsson et al. 2011; Sandberg et al.
2011a, b; Kragh 2010); both have been derived from early meas-
urement practices. They aim at modeling two of the texture types
shown in Fig. 2, i.e., roughness and unevenness (IRI) and macro-
texture (MPD). These two measures are briefly summarized now.

MPD has been derived from the sandpatch test, which was an
early measure of macrotexture in the research of, e.g., skid resis-
tance (Lupton and Williams 1972; Corley-Lay 1998). The test con-
sists of spreading out a known amount of sand (or small glass
spheres) on a road surface with a puck, in a large circle, and meas-
uring the diameter [ASTM E965-96 (ASTM 2006), ISO 10844
(ISO 1994)]. The ratio between area covered and amount of sand
used gives the mean texture depth (MTD) measure of macrotexture

Fig. 2. Illustration of texture wavelengths, anticipated effects, and the classification into, e.g., megatexture, macrotexture; rolling resistance is affected
by unevenness or roughness, megatexture, and macrotexture [reproduced with permission from Sandberg and Ejsmont (2002)]
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as described in Annex A of ISO 10844 (ISO 1994). The sandpatch
test is simple and robust, although prone to error because the test
has to be carried out manually. With the advent of laser profilom-
eters, MPD is used to describe macrotexture in a similar way, i.e., to
obtain a number that correlates well with the sand patch test
(Flintsch et al. 2003) and for which a simple transformation exists
for conversion of MPD to MTD [ASTM E1845-09 (ASTM 2009),
ISO 13473-1 (ISO 1997)]. In ISO 13473-1 (ISO 1997) the MPD is
calculated as follows:
1. Take at least 10 100-mm laser profile segments of the road

section where the MPD is to be found;
2. For each segment, substract the regression line such that the

average vertical displacement is zero;
3. Find the maximum vertical displacement values of the first and

second half of each segment and take the average of these; and
4. Take the average across all segments of the values found

previously that yield the MPD value of the road section.
Both ISO and ASTM have developed several standards to ac-

count for macrotexture, and these texture measures are used today
in road safety, maintenance, and research (Hall et al. 2009). In some
cases the root-mean square of the road profile has been used instead
of MPD (Boere 2009), although this is not common.

Measurement of road roughness has been developed since the
1920s according to Sayers and Karamihas (1998, p. 39), and road
roughness has been measured by the so-called response-type road
roughness measuring systems (RTRRMSs). The general construc-
tion of RTRRMSs consists of a wheel mounted to a spring that
records and accumulates any bumps in the longitudinal road profile
(measured in, e.g., meters). By dividing this quantity with the dis-
tance travelled (in, e.g., kilometers), a measure of road roughness
(m=km) is obtained. Other roughness measurement techniques
have been developed, e.g., the rod and level profiler and the inertial
profiler (Sayers and Karamihas 1998, 1996; Visser 1982; Bester
1984; Hveem 1960), but the RTRRMS devices form the basis of
the IRI measure. They were developed as a common standard for
calibration (Gillespie et al. 1980; Sayers et al. 1986; Bennett 1996)

of RTRRMSs and are based on a quarter-car model simulating
the RTRRMS measuring device. The IRI measure stems from a
mathematical model that represents a (quarter) vehicle’s damping
response to the road’s longitudinal profile. An equivalent way of
describing this is in terms of a frequency response function of the
road profile frequency spectrum, as shown in Fig. 3. Modifications
to the IRI measure have been proposed in, e.g., Sayers (1989),
where the quarter-car model is expanded to a half-car model.

Instead of just modeling and measuring a fraction of the fre-
quency domain like macrotexture or road unevenness and rough-
ness, the entire profile spectrum can be used. This simple but
powerful approach to road texture and roughness modeling trans-
forms the longitudinal road profile into the frequency domain. This
has been especially useful with the introduction of laser profiles
because they measure with high frequency and precision, c.f. the
profile shown in Fig. 4. A standardization of the profile spectrum
can be found in ISO 13473-4 (ISO 2008). The disadvantage is that
it does not yield a single number, but, e.g., correlation analyses
working in the frequency domain seems ideal as shown in Sandberg
(1990). The spectral analysis approach has also been used to high-
light the influence of megatexture on rolling resistance (and noise),
which has usually been attributed to macrotexture (Descornet
1989, 1990).

Different texture types are defined in terms of wavelengths
(Fig. 2). This approach may hardly deserve the term modeling, but
by reducing a laser profile to a spectrum, an idealization is made
and information is lost. More specifically, the surface profile spec-
trum omits phase information, and by doing this, surface properties
relevant to rolling resistance modeling are lost. In Männel and
Beckenbauer (2007), a discussion of these matters is undertaken
with examples of different schematic profiles that should result in
different tire-surface interaction dynamics, but which yields similar
power spectra. Another example of different profiles with charac-
teristics invisible in surface spectra are given in Pinnington (2012).

Recently, various other approaches have been investigated
as alternatives to the classical measures mentioned previously.
In Anfosso-Lédée and Do (2002), certain geometric descriptors
and their properties have been developed and extracted from laser
profiles. More specifically, peaks, valleys, and the angles of these
are calculated from the profiles and correlated with the tire-road
noise (Anfosso-Lédée and Do 2002). Even though a correlation
was observed, it was concluded that further research is needed
(Anfosso-Lédée and Do 2002, p. 167), and the methods’ usefulness
has been disputed (Sandberg and Ejsmont 2002). Another approach
is the use of fractals in surface modeling (Panagouli and Kokkalis
1998; Kokkalis et al. 2002) and design (Yeggoni et al. 1996).

Fig. 3. IRI gain obtained from a quarter-car model with the golden car
parameters (Sayers and Karamihas 1996) and the average parameters
for terrain vehicle (Lajqi et al. 2012); the gain is highly sensitive to the
parameters
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Fig. 4. Detailed surface elevation of the Værløse, Denmark, airfield
pavement as obtained by the RoboTex laser profilometer shown in
Fig. 1(b)
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By estimating the fractal dimension of a surface laser profile, a
surface measure relating to macrotexture and microtexture is
obtained. This has been shown to correlate well with the skid re-
sistance number (SN) (Panagouli and Kokkalis 1998; Kokkalis
et al. 2002), and in addition the fractal dimension drops with SN,
as expected, when the pavement wears (Kokkalis et al. 2002).
Fractals are also being used in Pinnington (2012) in which a surface
model is constructed and comprises three different layers corre-
sponding to different length scales. Yet another approach is to
use classical measures like MPD, obtained from road laser profiles,
in conjunction with an envelope algorithm that mimics the visco-
elastic properties of the tire. A purely empirical formula developed
in Meier et al. (1992) has increased the correlation between MPD
and trailer measurements of rolling resistance in studies from
the MIRIAM project (Sandberg et al. 2011a). Similar enveloping
methods have been reported and developed in Klein and Hamet
(2004), based on the viscoelastic properties of the tire instead of
a purely empirical algorithm. In addition, Klein and Hamet
(2004) discuss how the enveloping procedure affects the surface
profile spectra.

Contact Models

In the 1980s efforts to understand and quantify texture effects on
the tire-pavement interaction were limited. There were many diffi-
culties in theoretically and experimentally determining the many
individual contact areas and contact pressures produced by irregu-
larly shaped asperities indenting the tire tread. In Yong et al. (1980),
an analytical model is developed using experimental data for indi-
vidual tire types to predict the contact area. A numerical method
is demonstrated in Yong et al. (1980) to approximate the collective
contact stress for individual contact areas using a computational
algorithm requiring only the two-dimensional (2D) road profile
geometry and tire inflation pressure as input.

Gall et al. (1993) introduced a finite-element model for the tire
in the contact area, focusing on the correct representation of the
contact area including the edge effects of the tire-soil contact,
a friction law including normal stress, and correct modeling tech-
niques such as the use of symmetry.

By the beginning of this century, considerable advances had
been made in numerical computing resources, giving the opportu-
nity to investigate the contact area in more detail. It became pos-
sible to include the nonlinear behavior of the contact zone that
was previously overlooked or simplified. In Andersson and Kropp
(2008) the contact geometry is discretized into smaller length scales
using multiple pairs of matching points with nonlinear springs
between each pair of contact elements. The stiffness functions of
these springs are determined from a method for assessing the stiff-
ness of the nonlinear springs based on detailed scans of the surface
geometry, elastic data of the tread, and a flat circular punch-
indenting method for normal (out-of-plane) contact model of an
elastic layer. The Newton-Raphson iterative scheme is used to solve
the nonlinear contact equations. Green’s functions calculate
analytically the dynamic response of the tire by convolving the
contact forces.

Ivanov et al. (2010) identify and address parameters that char-
acterize the interaction of a tire-soil interaction using fuzzy set
theory. The contact of the tire with both hard and soft soil is dis-
cussed with specific focus on how to handle the parameters of
tire-soil friction and rolling resistance. The advantage of these
methods lies in their ability to take into account fluctuating external
conditions that are not directly related to a vehicle.

Dubois et al. (2011) deal with the numerical study of a friction-
less viscoelastic tire-road contact area. This is done by means of a
macroscale approach in which only the contact forces are calcu-
lated for a rough multi-indentation surface of a viscoelastic half-
space based on an imposed load at road surface asperities peaks.
This approach takes into account both the viscoelastic behavior
of the tire and the roughness of the road surface. The viscoelastic
solution is reduced to an elastic solution, significantly reducing the
calculation time, and a simplified description of the viscoelastic
material behavior by a rheological model is used.

The Lund-Grenoble (LuGre) model, describing three-
dimensional tire friction dynamics simplified by assuming con-
stant slip along the contact patch, is elaborated in Deur et al.
(2005). This model includes the effects of lateral deformation of
the tire tread, which leads to varying slip speeds along the contact
patch. This is done using a stepwise approximation of the slip
speed. In Faraji et al. (2010), this simplification is not used and
a quarter-car model and an average lumped LuGre model are
used instead.

The current trend in modeling the contact zone between tire
and pavement is to include all the major aspects, i.e. noise, rolling
resistance, and skid resistance, cf. Andersson et al. (2012).

Tire Models

The relation of tire rolling resistance to the viscoelastic and dy-
namic hysteresis properties of typical tire materials is complex.
The combination of operational variables such as pressure, load,
speed, and deflection, and the tire design variables complicate
the characterization of the stress-strain hysteresis contribution of
each tire component and the interaction between them, and hence
the determination of the rolling resistance of the tire on a given
surface. In the 1980s, Williams and Dudek (1983) compared the
sinusoidal radial load-deflection cycling of a rolling tire with a non-
rolling tire. From these comparisons, relations were made between
the footprint load-deflection hysteresis and the rolling resistance
drag force, and the contribution of tread and sidewall deformation
to the hysteresis was determined.

An alternative to viscoelastic models is given in Luchini et al.
(1994), detailing a finite-element strain-based model using direc-
tional incremental hysteresis to predict rolling resistance. The tire
material model is here developed for the rubber components only,
while the cords are included for structural aspects of the model.
Shida et al. (1999) presents a static finite-element model for fiber-
reinforced rubber capable of handling anisotropic loss factors.
The algorithm proposed by Shida et al. (1999) estimates the energy
dissipation from the hysterectic loss in a tire, using the variations
of the approximated stresses and strains. These stresses and strains
are calculated using a Fourier series with a viscoelastic phase lag
in the frequency domain.

Due to hysteresis losses, heat energy is generated, which leads
to higher tire pressure and thus lower rolling resistance and vehicle
fuel consumption. The complex relationship between the various
design attributes and operating conditions makes it difficult to
develop analytical models. Various attempts have been made to
model the total behavior through a semicoupled representation.
Three models, the dissipation, deformation, and thermal models,
have been considered. In the late 1990s, Park et al. (1997) used
these three major analysis models and viscoelastic theory to calcu-
late the heating of a rolling tire. Results were compared with physi-
cal measurements and comparisons made between quadratic and
linear finite elements. Due to the delicate nature of the prediction
of energy loss in a tire, specifically the numerical analysis of the
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strain dependent carbon black-filled rubber, special attention is paid
to the material representation in Ebbott et al. (1999). In this paper
the dissipation and deformation models are based on the strain-
amplitude dependence of carbon black-filled rubber, and the ther-
mal model does not require the use of correlation coefficients
for accurate results. The algorithm developed takes both strain
and temperature dependence into account. Tire temperatures are
obtained by solving steady-state linear heat transfer equations using
the finite-element technique. This algorithm was used and ex-
panded in the following decade in Narasimha Rao et al. (2006).
A three-stage finite-element model consisting of a deformation
model, a dissipation model, and a thermal model is used to deter-
mine characteristics for tires with smooth and circumferential
groove tread patterns. In Narasimha Rao et al. (2006) variations
in several aspects affecting rolling resistance is made and the results
discussed. These include the tire rolling speed, tread profile, infla-
tion pressure, a varying normal load, and ambient temperature.
Comparisons are made between a flat road surface and a circular
drum. Various hyperelastic and viscoelastic properties of the tread
material are considered. The results are summarized in a table
showing that the effective rolling radius is insensitive to parameter
variations, whereas the rolling resistance (and hence the total en-
ergy loss per revolution) is insensitive to rolling speed, convection
loss, and friction, but increases significantly with increasing normal
load, tread profile, and tread material loss modulus and decreases
significantly with increasing ambient temperature, convection loss,
tread mechanical stiffness, and tread thickness.

A widely used empirical tire model is expressed in the so-
called Magic Formula, the development of which started in Delft,
Netherlands, in the mid-1980s (Pacejka 2012). By way of example
the authors give the relation between the side force Fy and the slip
angle α, i.e., the angle between the lateral and forward velocities
of the wheel center

Fy ¼ D sinðC arctanfBα − E½Bα − arctanðBαÞ�gÞ ð1Þ

Here B, C, D, and E are parameters that are determined by fitting
the relation to data. The Magic Formula produces characteristics
that closely match measured curves for the side force and longitu-
dinal force as a function of their respective slip qualities. A typical

graph of the magic formula is shown in Fig. 5. For a full treatment
of the Magic Formula, the reader is referred to Pacejka (2012). The
Magic Formula has been extended to cope with large camber angles
and tire inflation pressure by Besselink et al. (2010). The ability to
deal with pressure changes eliminates the need to have separate
parameter sets for different tire pressures, leading to a reduction
in the total number of measurements required. In addition, the
description of the rolling resistance and overturning moment is
improved. Changes in the modeling of the tire dynamics allow a
smooth and consistent switch from simple first-order relaxation
behavior to rigid ring dynamics. The effect of inflation pressure
on the loaded radius and the tire enveloping properties is discussed
by Besselink et al. (2010) and some results are given to demonstrate
the abilities of the model.

The development of tire models is constantly improving and
expanding. A methodology using probabilistic characteristics of a
vehicle and road to model the interaction between them, including
rolling resistance, is presented in Vantsevich and Stuart (2008).
The authors represent the interaction of the vehicle with the road
by means of a quarter-car model, the characteristics of which are
varied randomly for the interaction with the vehicle surroundings.
A full two-dimensional semianalytical model for viscoelastic
cylinders rolling on a rigid surface is developed in Qiu (2009).
Problems arising from high-speed contact for layered viscoelastic
rollers rolling on a rigid surface and standing-wave phenomena are
addressed here.

The previously mentioned papers all use a finite-element model
for simulation of various aspects of the rolling pneumatic tire. A
general review of the literature on finite-element modeling of roll-
ing tires is given by Ghoreishy (2008). This review gives a survey
on finite-element modeling of rolling tires, application of rolling
tire models, and finite-element codes. The challenge is to obtain
realistic material models, model the tread blocks, further develop
the finite-element models to include multiphysics, include transient
behavior, and finally include the modeling of nonrigid surfaces.
Finite-element modeling of the rolling tire is complex, and al-
though more comprehensive and true to physical first principles,
for many applications they are not yet fast enough for realistic
vehicle simulations. Here empirical models are still needed.

Rolling Resistance Macromodeling

Apart from the detailed tire and contact models of rolling resis-
tance, more empirical macromodels exist and have been in develop-
ment since 1935 according to Petrushov (1997). These models
focus on coast-down experiment data (see experiment description
in “Rolling Resistance Measuring Techniques”). Initially, the pri-
mary goal of these models was to assess vehicle aerodynamic drag
(White and Korst 1972; Walston et al. 1976; Buckley et al. 1976),
which correlates well with wind-tunnel experiments (Eaker 1988;
Buchheim et al. 1980; Bester 1984; Swift 1991; Korst and White
1990). In recent years, coast-down models have been used for roll-
ing resistance assessment as well (Roussillon 1981; Hammarström
et al. 2009; Karlsson et al. 2011). The general formulation of coast-
down models is based on Newton’s second law (Hammarström
et al. 2009, p. 24), i.e.

Ftotal ¼ m
dvðtÞ
dt

¼ Froll þ Fair þ Fg þ Fmisc ð2Þ

where the total force Ftotal acting on the coasting vehicle is given by
the rolling resistance contribution Froll, aerodynamic drag Fair, the
gravity’s component in the direction of motion Fg, and Fmisc rep-
resenting various other forces like side force or transmissionlosses,
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Fig. 5. Illustration of the Magic Formula (Pacejka 2012) showing the
nondimensionalized side force Fy (D ¼ 1) as a function of the slip
angle α (B ¼ 1), with parameters C ¼ 1.4 and E ¼ −0.2
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although the latter can be included in Froll (Hammarström et al.
2009; Karlsson et al. 2011). The mathematical formulations of
the coast-down model equations, the experimental setup, and quan-
tities measured vary greatly from study to study in the literature.
A few of the different approaches are summarized below.

The complexity of the mathematical models varies from rela-
tively simple equations governing vehicle motion with only veloc-
ity and gradient data and a simple empirical quadratic reistance
model (Evans and Zemroch 1984) like

dvðtÞ
dt

¼ a0 þ a1vðtÞ þ a2vðtÞ2 ð3Þ

to much more complex nonlinear models (Hammarström et al.
2009; Karlsson et al. 2011). The complex models depend on a large
amount of additional data being measured, such as gradient, road
crossfall, macrotexture, roughness, and meteorological conditions,
which greatly enhances the resulting rolling resistance estimates.
The advantages of choosing simple models lies in the possibillity
of obtaining an analytical solution to the differential equation
model as in, e.g., Ivens (1987), thus greatly reducing the computa-
tional demands. In Petrushov (1997), the analytical solution is used
to convert the velocity-time function to distance-time instead, thus
reducing error sources. Another approach is to simplify the exper-
imental setting by, e.g., having a flat test section such that the road
gradient can be neglected (Hamabe et al. 1985; Djordjevic et al.
2009) or using data from an anemometer mounted on the vehicle
(Buckley 1995). As mentioned previously, coast-down models
have been used for several purposes, and apart from rolling resis-
tance and aerodynamic drag assessment, the methodology has been
used to estimate fuel consumption (Hunt et al. 2011), transmission
losses (Dunn et al. 2009), and maximum vehicle speed (Lieh 2008).

Although macromodels of rolling resistance are primarily based
on coast-down models, other approaches have also been developed
like, e.g., viscoelastic models used in connection with laboratory
rolling resistance experiments to predict rolling resistance of tires.
These experiments have shown that tire rolling resistance energy
loss is correlated with hysteresis loss in the tire (Pillai 1995; Pillai
and Fielding-Russell 1991). Thermomechanical models have also
been developed and used to predict transient rolling resistance
(Mars and Luchini 1999), and thermomechanical principles were
essential in developing a new macromodel of rolling resistance that
showed the importance of tire temperature on rolling resistance
(Sandberg 2001).

Concluding Remarks

This paper briefly reviewed the state of the art of rolling resistance
modeling. Regarding the optimal quantitative characterization of
a road surface for predicting the rolling resistance, more work is
needed. On the one hand, MPD, although a purely empirical adap-
tation of the sand patch test derivedMTD to laser profiles, is widely
used throughout the rolling resistance literature. MPD’s popularity
is probably due to the historical background and the simplicity of
the algorithm. This combined with correlations with diverse rolling
resistance measurements makes it a practical choice when a texture
measure needs to be extracted from laser profile data. On the other
hand, in recent studies such as, e.g., Sandberg et al. (2011a), MPD
was combined with a physically intuitive envelope procedure that
improved correlations substantially. Taking fundamental physical
considerations into account when using laser profiles or other
modern measurement techniques for surface characterization thus
seems promising. A similar trend can be seen in the development of
macromodels, from the simple and purely empirical approach of

coast-down modeling in Evans and Zemroch (1984) to elaborate
models based on physical principles in Karlsson et al. (2011).

Because of advances in numerical computing resources, it is
now possible to model the tire pavement contact zone in much
more detail than previously. This development will continue and
likely be combined with more detailed tire models. Tire modeling
depends on the overall purpose of modeling. Magic Formula type
of modeling is used for fast response in real-time vehicle modeling,
whereas the tendency in modeling the interaction between tire and
pavement surface is to use some kind of finite-element modeling.

In a recent study (Nielsen and de Fine Skibsted 2010), it has
been estimated that potential savings in fuel consumption (and
hence CO2 emissions) from optimizing the pavement with respect
to rolling resistance represent a value to society as large as the entire
cost of maintaining the pavement. Because the optimization in an
asset management system requiring reliable models of rolling
resistance, further research in rolling resistance modeling is
warranted by their benefits to society.
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Abstract

Coast-down modeling has been widely used to as-
sess vehicle aerodynamic drag and rolling resistance
by fitting a vehicle resistance model to speed mea-
surements and thereby get an estimate on model pa-
rameters. Here a coast-down model is used for as-
sessing how road surface characteristics influence
rolling resistance. Parameter estimation as well as
an extensive perturbation analysis of the parameter
fit with respect to data noise has been performed.
Functional Data Analysis (FDA) is introduced and dis-
cussed. It is concluded that FDA is a powerful tool for
1) approximating derivatives, 2) assessing the degree
of smoothing of the data 3) handling noise sources
in the perturbation analysis and 4) enabled numeri-
cal solutions of the coast-down ODE model. Inves-
tigations showed that MPD was the most important
parameter compared to IRI although MPD data re-
quired smoothing for optimal model fit. Furthermore,
it is concluded that the model responds nicely to the
statistical tests in the perturbation analysis. How-
ever, certain parameters associated with surface re-
lated rolling resistance were unstable in the sensitivity
tests.

INTRODUCTION

Environmental concerns related to energy consump-
tion has increased rapidly in the last decades. Since
transportation by car accounts for about 20% of the
worlds energy consumption [21], reducing energy
consumption in this area is highly desirable. One way
of lowering energy consumption in car transportation

is to decrease rolling resistance, primarily by develop-
ing low rolling resistance tires and pavements. Thus
a deeper understanding of the relationship between
rolling resistance and the tire/pavement interaction is
an important step in reducing energy consumption (as
well as noise) and thereby reducing CO2 emissions.

Four standard methods exist for measuring or esti-
mating rolling resistance [19]: Drum (laboratory) mea-
surements , measurements by trailer [4, 18, 23, 24],
coast-down procedures [6, 11, 20, 2, 12, 7, 8, 9]
and fuel consumption measurements [17, 1]. These
methods can be ranked by how idealized the test
setup is: The drum only measures the tire, the trailer
method includes road properties and some transmis-
sion losses, coast-down includes even more features
such as whole-car transmission losses, various road
properties etc. Finally, the fuel consumption measure-
ment procedure is the most natural setting compared
to real-world car transportation. As the measuring
methods come closer and closer to actual driving, the
number of error sources increases as more and more
factors influence the measurements and have to be
taken into account. Thus, these four methods rep-
resents different trade-offs between disturbing factors
and affinity with actual driving on real roads. Each
of these methods have their advantages and short-
comings so they are suited for different purposes. In
this paper the coast-down method is used since it in-
cludes transmission losses that can be considered as
part of rolling resistance, and which is not included
in trailer measurements. The downside of the coast-
down is the many potential disturbing factors that can
influence measurements such as, wind, traffic, and ir-
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regularities in transmission losses etc.

Large data sets with a comprehensive amount of sup-
plement data, obtained by the Swedish National Road
and Transport Research Institute (VTI) [7], is ana-
lyzed. The widely used coast-down procedure can
be performed to various degrees of detail both with
respect to data and regression model. In this coast-
down experiment different measurements account-
ing for road properties and meteorological conditions
have been collected in connection with speed data. A
suitable model that utilizes these data has been for-
mulated.

The mathematical and statistical framework of ’Func-
tional Data Analysis’(FDA) is proposed as a resource-
ful tool in handling these large data sets and the pri-
mary goal of this paper is to show that FDA is a use-
ful choice in handling these amounts of high resolu-
tion data. In addition, Monte Carlo and bootstrapping
methods are applied in a sensitivity analysis of the
coast-down parameter estimation results.

COAST-DOWN DATA AND MODEL

The coast-down measurements used here have been
performed by VTI and the procedure will be briefly
described here. For a detailed account of the coast-
down measurement procedure, see [7]. A suitable set
of road strips were selected which was subject to cer-
tain requirements. Among these are

• The longitudinal gradient and road curvature
must be low.

• The set of road strips must have high variation
in Mean Profile Depth (MPD) and International
Roughness Index (IRI) in order to get the optimal
experimental setting.

• Different speed limits such that the coast-downs
could be performed with varying initial velocities.

Furthermore, meteorological variations had been kept
at a minimum, e.g., no rain, low wind and steady tem-
perature. Fourteen different road strips have been
selected and by including direction this yields 28 dif-
ferent road strips. The average length of the strips
ranged between 400 and 1000 meters. Beginning and
end of the coast-down sections were marked by re-
flective tape which could be detected by a photo sen-
sor mounted on the rear bumper of the car. On each
of the 28 strips various quantities were measured with
a 1 meter resolution before the actual coast-down pro-
cedures were performed. The measured quantities of
interest here are

• Roughness: IRI [#]

• Road texture: MPD [mm]

• Longitudinal gradient [%]

• Road crossfall [%]

• Road curvature radius [m]

Other measured quantities of interest are wind speed,
air temperature and air pressure which are measured
at the beginning of the coast-down. An overview of
measured quantities and extreme values are shown
in table 1. The test car used is a Volvo 940 that had
been warmed up at least 30 minutes before every
coast-down series to ensure equilibrium tire temper-
ature and pressure. The speed measurements were
obtained by a wheel pulse instrument that measured
position and time at approximately every 77 cm. In or-
der to have a data set of varying speed, coast-down
measurements were carried out in sequences of vary-
ing speed. Depending on the speed limit for at a par-
ticular road strip, the measurements were carried out
in sequences of 70-65-60-65-70 km/h or 90-80-70-80-
90 km/h. The initial velocities are target values, since
a specific initial speed is difficult to achieve. To avoid
additional error sources, the driver was able to press
an abort button to indicate that the measurements
henceforth were invalid in subsequent analysis. E.g.,
if oncoming traffic occurred during a coast-down pro-
cedure, the abort button was activated and the mea-
surements discarded. An average of 15 coast-downs
were performed for each road strip and direction yield-
ing approximately 420 coast-downs.

The measurements were used to estimate the coeffi-
cients of a coast down model [7], which can be written
as a sum of forces acting on the vehicle during coast-
down

F = Froll + Fair + Fside + Fg. (1)

where F is the total force acting on the vehicle, Froll is
the rolling resistance force, Fair is aerodynamic drag,
Fside is the side force resistance and Fg is gravita-
tional pull. It is assumed that the forces acting on the
vehicle is additive. Note that Froll used here is empir-
ical and tentative. The former is given by [7, p. 24]

Froll =m(η0 + η1T + η2 IRI+η3 IRI(v − 20)

+ η4 MPD+η5 MPD(v − 20))
(2)

with v being speed, T temperature and the ηi’s (i =
1..5) are rolling resistance regression coefficients to
be estimated. Froll is defined in a fairly general way
such that η0 also accounts for transmission losses
from, e.g., the gearbox [7, p.15], in addition to sur-
face independent tire losses. Since the latter is
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known to be dependent on air temperature through
the pressure-temperature relation of the tire at equi-
librium, an additional surface independent and tem-
perature dependent term η1T is added. The surface
texture and roughness dependent part of the rolling
resistance are assumed to be linearly dependent on
speed, as shown in the latter four terms. Fair is a
simplified version of the drag equation

Fair = 0.5ρ(T, p)AyzCL[v − cos(α)w]2 (3)

were Ayz is projected frontal area of the vehicle, CL
the air dynamic drag coefficient, w wind speed, α is
the wind angle, and ρ(T, p) is the air density function
given by

ρ(T, p) = Kρ
p

T + T0
(4)

with p being atmospheric pressure, Kρ = 0.3847
◦Ks2/m2 and T0 = 273.2◦K are conversion con-
stants. Since w is low, eq. 3 can be simplified by
expanding the quadratic term and only retaining the
linear term (assuming w2 ≈ 0) such that

Fair = 0.5ρ(T, p)AyzCL[v − cos(α)w]2

≈ η6ρ(T, p)v2 + η7ρ(T, p) cos(α)wv
(5)

where η6 and η7 are regression parameters. Simpli-
fying the expression by substituting 0.5ρ(T, p)AyzCL
with two regression coefficients ηi seems reasonable
since CL and w are not very precise (i.e. the latter is
measured only in the beginning of the coast-down and
the former is hard to determine experimentally) , thus
viewing them as unknowns. The fact that eq. 5 is re-
duced by w2 = 0 supports this decision as well. More
elaborate expressions of Fair can be formulated [7, 9],
but since the term is being calibrated by regression,
it has been omitted here. By the same argument, tire
stiffness CA in

Fside = −
F 2
y

CA
= η8F

2
y (6)

is replaced by a regression parameter η8. Fy is given
by

Fy = m[cos(γ)v2/R− g sin(γ)cos(β)] (7)

with γ being crossfall angle, m vehicle mass, g gravi-
tational constant, β longitudinal gradient and R radius
of road curvature. Fg is straightforwardly formulated
as

Fg = −mg sin(β). (8)

Finally, the inertial force is

F = (m+mrot)
dv

dt
= (m+ nwhKJJ/r

2
wh)

dv

dt
(9)

where mrot is the inertial mass of a wheel plus addi-
tional rotating transmission parts, nwh is the number

of wheels, rwh the radius of of the wheels, J the in-
ertial moment per wheel and KJ a correction factor
of J to include rotating transmission parts. See table
2 for an overview of the parameters presented here.
Inserting eq. 2, 5, 6, 8 and 9 into eq. 1, and rearrang-
ing, yields

dv

dt
= µ0 + µ1T + µ2 IRI+µ3 IRI(v − 20)

+ µ4 MPD+µ5 MPD(v − 20)) + µ6
ρ(T, p)v2

m+mrot

+ µ7
ρ(T, p) cos(α)wv

m+mrot
+ µ8

F 2
y

m+mrot
− κg sin(β)

(10)

where κ = m/(m+mrot) and µi = κηi for i ∈ {0, .., 5}
and µi = ηi for i ∈ {6, 7, 8}. µ = [µ0, ..., µ8]

′ are
the regression coefficients to be estimated from the
coast-down data above. See table 2 for at complete
list of parameters. Since the road data is measured
per meter the final regression model must have dis-
tance as the independent variable. Therefore eq. 10
is converted to
dv

ds
=

1

v
[µ0 + µ1T + µ2 IRI+µ3 IRI(v − 20)

+ µ4 MPD+µ5 MPD(v − 20)) + µ6
ρ(T, p)v2

m+mrot

+ µ7
ρ(T, p) cos(α)wv

m+mrot
+ µ8

F 2
y

m+mrot
− κg sin(β)]

(11)

making an assessment of rolling resistance and its
various components achievable. Normally the ac-
celeration data have to be calculated by finite dif-
ferencing of the speed measurements, which usu-
ally yields noisy fluctuating results. For this rea-
son, speed measurements have been sought to be
avoided entirely[12]. Below the derivative of the
speed data is extracted from the speed data in func-
tional form. Furthermore, the supplement data will be
converted to functions as well, such that it is possible
to study the model by solving eq. 11 numerically by,
e.g., a Runge-Kutta algorithm.

FUNCTIONAL DATA ANALYSIS

This is a very brief introduction to functional data anal-
ysis tailored to the present needs. For a general and
thorough exposition to the computational, mathemati-
cal and statistical aspects, see [15] and [16]. The ba-
sic idea in FDA is to convert discrete data into func-
tions for further study, e.g., statistical investigations.
Data in functional form can be treated by different
methods that utilizes properties pertaining solely to
functions, such as smoothness. Usually a functional
data function is a linear combination of several ba-
sis functions. This can be a truncated Fourier series
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expansion, sum of wavelets or a sum of B-spline poly-
nomials, the latter being used here. We have

ỹ(t) =

m∑

i=0

ciφi(t) = c
′φ.

where φ = [φ1(t), ..., φm(t)]′ is the vector of B-spline
basis polynomials and c = [c1, ..., cm]′ is the vector
of coefficients (′ denotes the transpose operation).
Since B-splines are closed with respect to linear com-
binations ỹ(t) is a B-spline as well. The degree of
smoothness of ỹ(t) depends on the degree of the
φi(t)’s such that N degree polynomials φi(t) yields
a CN−1 function ỹ(t). For a detailed account of B-
splines, see [3]. Normally N = 3 which is also the
case here, so the functional data used below have
continuous second order derivatives.

Fitting the B-spline basis system is done by an ex-
tension of the ordinary least squares (OLS) algorithm
that includes a smoothness penalty. Assuming a
set of data points y = [y1, .., yn] measured at times
t = [t1, ..., tn]

′ we have

L(c) =

n∑

i=1

[ỹ(ti)− yi]2 + λ

∫
[D2ỹ(t)]2dt

= (y −Φc)′(y −Φc) + λc′Rc

(12)

where the first term is classical OLS and the second
term is the aforementioned smoothness penalty. Φ is
the n ×m matrix of basis function evaluated at times
t and R is the m ×m matrix of inner products where
the (i, j) entry is given by

∫
D2φi(s)D

2φj(s)ds. The
specific choice of differential operator D2f(t) = d2f

dt2 is
based on the assumption that a smooth curve means
a curve with low curvature [16, p.84]. Since the in-
tegral equals zero if ỹ(t) = at + b the fit based on
eq. 12 will converge to a straight line as λ → ∞.
Thus, the smoothness parameter λ represents a bal-
ance between fitting the data and obtaining a smooth
curve with zero curvature. Estimating λ for some of
the data is one of the objectives here. For fixed λ a
unique ĉ exists which minimizes eq. 12. Since no nu-
merical optimization is involved, finding ĉ is quick and
computationally simple.

When the speed and additional data have been
brought in a functional form it is straightforward to es-
timate the regression parameters µ by minimizing

L(µ) =
∫
{dṽ(s)
ds
− F [ṽ(s), R̃(s), β̃(s), γ̃(s), ˜MPD(s), ˜IRI(s)]}2ds

(13)

where F is the right hand side of eq. 11 and ṽ(s),
R̃(s), β̃(s), γ̃(s), ˜MPD(s), ˜IRI(s) are the additional

data in functional form. In the optimization pro-
cess the integral must be approximated by a quadra-
ture rule which is Simpsons in this case. Using a
quadrature rule reduces the optimization problem to
a squared residual one, for which several specific al-
gorithms exist, e.g., the Gauss-Newton optimization
routine. More advanced FDA-based parameter esti-
mation techniques exist, taking e.g. c into the opti-
mization process [14, 22]. However, this case is lin-
ear in the parameters so a simple method have been
used.

Several advantages exist in the simple methodology
sketched above. Firstly all the functional approach
assumes, is that the measurements represent sam-
ples from a continuous process which is certainly true
here. Secondly estimating µ requires the derivative of
the speed which is easily obtained by analytically cal-
culating the first derivative which is smooth and with-
out fluctuations caused by numerical methods such
as finite differencing. Thirdly, having the data set in
functional form makes it possible to numerically solve
the non-autonomous differential equation model given
by eq. 11 by, e.g., a Runge-Kutta scheme. Last but
not least, the adjustment of λ makes it possible to ad-
just the smoothness of the functional data according
to an expected noise intensity. The high frequency
fluctuations in the speed measurements are clearly
noise, but measurements of MPD and IRI also show
high fluctuations (see fig.1 ) and estimating λ in these
two cases points to how much the fluctuations can be
attributed to noise and what is actual variations in the
measured phenomenon.

The fluctuations in the MPD and IRI measurements
have been tested up against the model in the following
way: A 19×19 grid of points is made, where each point
in the grid represents λ-values (λIRI, λMPD) used in
functional fit of IRI and MPD. The λ value in each com-
ponent have been chosen as a set of logarithmically
equidistant points in a interval where the end points
represents the lower and upper bound on the degree
of smoothing. Lower and upper values are 10−2 and
500 for both IRI and MPD. The maximum and mini-
mum values have been chosen by visual inspection
of the functional data plots. See Fig. 2 for an illus-
tration of the relationship between λ and functional
data smoothness. Each point (λIRI, λMPD) has been
used in converting the IRI and MPD data into func-
tional form. An estimation of the regression parame-
ters µ have subsequently been performed according
to the method presented above. A numerical solution
v(t) to eq. 11 based on the regression parameter es-
timate µ̃ (and the functional data giving rise to µ̃) was
compared to the speed data by calculating the sum of
least squares between them. In short: Estimate µ for
different values of λIRI and λMPD and calculate the fit
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to the functional data in the OLS sense. The results
can be visualized with a 3d-plot where the xy-plane is
spanned by log(λMPD) and log(λIRI), and the z-axis
represents the summed OLS values.

The results have been plotted in figure 3 and shows
generally that a small value of λIRI and large a
value of λMPD yield the best OLS fit with λIRI be-
ing the most sensitive parameter. The overall mini-
mum is, as the 3d-plot suggests, when (λIRI, λMPD) =
(0.0182, 4.0789) which is used in the following stability
analysis.

STABILITY ANALYSIS

In [7] and [9] an extensive selection of factors that
could potentially affect estimation results were inves-
tigated. Two interesting results have formed the basis
for further investigation: Errors in the longitudinal gra-
dient data and reduced data set size seem to have a
substantial impact on the estimation results. It is of
course of vital importance to asses the magnitude of
these error sources and to this end we devise some
techniques based on Monte Carlo and bootstrapping
methodologies [5, chap. 14].

The effect of the gradient have been tested by intro-
ducing error sources into the data, which can be sam-
pled many times yielding a large amount of pseudo-
data. Each of these sets of pseudo data can be
used in the parameter estimation procedure intro-
duced above and statistical information can be ex-
tracted from the results. Two kinds of error sources
have been used: 1) Assume that the measurement
error is systematic, i.e. the deviation from the true
profile accumulates linearly as the test section is be-
ing measured. 2) Assuming random error perturba-
tions while measuring the gradient. In the systematic
case the amount of deviation per meter of the data set
is given by a normally distributed variable and in the
random case the specific data points is perturbed by
a normally distributed error. Since normal stochastic
variables are preserved under linear transformations,
the variance σ2 of the perturbed data points can be
transformed into variances of perturbed coefficients of
the basis function expansion instead. Given that the
knots are properly spaced, this preserves the qualita-
tive behavior of the gradient data instead of fluctuating
the data in a unrealistic way, see fig. 4 for an illustra-
tion of this.

To asses the variance on model estimation results,
a classical bootstrapping technique have been de-
ployed. More specifically, by using uniform sampling
with replacement of our original data set, a boot-
strapped data set is obtained having an equal num-

ber of measurements as the original. In order to keep
the road strip diversity of the original data, the boot-
strap sampling is partitioned, corresponding to each
road and direction giving a total of 28 partitions. Boot-
strap samples is then performed separately on each
partition and the union of these sub-samples consti-
tutes the bootstrapped data set which is used to esti-
mate model parameters. Iterating the this procedure
a large number of times will give a general picture of
the stability of the estimation results, i.e., if the num-
ber of measurement runs on each road strip is suf-
ficient for stable parameter estimates. The classical
bootstrap technique is used as base case to be used
when comparing the results of the other techniques
used here as it represents a sensitivity measure of
the entire system, i.e., both data and model.

Given the large amount of measurement runs for each
road section, it is also of interest to investigate how
much a reduced data set will affect the estimation re-
sults. To this end the classical bootstrap technique
described above will be slightly modified. The parti-
tioning scheme is used again, however, uniform sam-
pling without replacement is used to randomly pick
a subset of each partition that will be omitted in the
parameter estimation. Once again, this procedure is
repeated a large number of times and statistical infor-
mation extracted. Three different scenarios where 3,
5, and 7 measurement runs are removed from each of
the 28 partitions, have been investigated here. Note
that these two methods are not directly comparable
except that the classical bootstrap is standard and
thus can be seen as a reference study.

RESULTS

Since all road data is on a functional form, they serve
as input functions to the ODE model in eq. 11. Nu-
merical solutions have been made and all 421 coast-
downs were compared to the speed data by visual in-
spection. The model fits data very well in many cases
as shown in Fig. 5. The quality of the fit is specific
to a specific road, i.e., if one model fit is good/bad in
one coast-down on a specific road, it will be good/bad
for all other coast-downs made on that road. Also, for
some roads, the numerical solution deviates from the
measurements, see Fig. 5.

When the data have been put on a functional form it
is also possible to get an overview of how the differ-
ent terms in eq. 11 affect vehicle resistance. A plot of
the different components during a two coast-downs is
shown in Fig. 6. It is confirmed from Fig. 6 that the
gradient plays a substantial role in vehicle resistance,
as well as air resistance for high velocities. Further-
more, MPD has a significant effect as opposed to IRI
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that shows almost the same effect as side force resis-
tance. While low side force resistance was expected,
the IRI effect is surprisingly low even though it is a
widely used parameter in road surface characteriza-
tion and considered an important parameter in the re-
lationship between surface and rolling resistance[18]
as well as skid resistance.

In table 3, 4 and 5 the results of the bootstrap/Monte
Carlo stability analysis are shown. The first two
columns indicates parameter estimates obtained from
the original data and the remaining columns shows of
the stability methods in the form of normalized confi-
dence intervals containing 90% of the parameter es-
timates. To ease readability the intervals have been
normalized as follows: The absolute value of the end-
points have been used since all parameter and con-
fidence limits are negative. The result have been di-
vided with the absolute value of the parameter esti-
mate from the first column and the result is shown in
the tables. Thus, the actual confidence interval is ob-
tained by multiplying the normalized values with the
estimate value from the first column (and reversing
the interval since the sign have been changed). The
normalized numbers can also be interpreted as a per-
centage reduction/increase, e.g., [0.96, 1.04] indicates
a confidence interval where the lower limit is a 4%
reduction of the estimated value and the upper limit
is a 4% increase. The number of samples indicate
how many pseudo-data sets and subsequent param-
eter estimates have been used for the 90% intervals
and it should be chosen high enough for the results to
converge and stabilize.

A general trend that holds for all results is that con-
fidence intervals of µ1, µ3, and µ5 are much larger
than the rest. E.g. for the classical bootstrap method
in table 3 they have confidence intervals of 40% to
50% decrease/increase of their parameter estimates
indicating high fluctuations in their estimates. This
is quite unsettling, however, a possible explanation
might be that their contribution is small compared to
the total driving resistance. Therefore these parame-
ters will be highly sensitive to disturbances while hav-
ing minimal influence on the overall fit to measure-
ments. Moreover, all three parameters, representing
temperature and velocity dependent surface contribu-
tions, are part of the empirical rolling resistance Froll
term of the model and thus is rather tentative. This
is also substantiated by the observation that while µ7

and µ8 also have a minimal influence on overall model
fit, their confidence intervals are more akin to the re-
maining parameters. For the rest of this section µ1,
µ3, and µ5 will be considered as outliers and omitted
from the statistical considerations below.

Table 3 shows results for the bootstrapping method

described above. By considering the classical boot-
strap results it can be seen that the average confi-
dence limits for the stable parameters is a 7.8% de-
crease and a 8.8% increase, respectively. Given the
comprehensive measurement campaign with many
disturbing factors as well as the difficulty in model-
ing surface rolling resistance this seems rather robust.
The rest of the columns shows results of the bootstrap
reduction where n in n × 28 denotes the amount of
randomly chosen road segments per road strip that
have been removed prior to parameter estimation.
The results show that reducing the amount of coast-
downs per road strip by 3 − 5 does not significantly
affect overall estimation results compared to classical
bootstrap. When n = 7, average spread in parame-
ter estimates starts to resemble classical bootstrap-
ping with average confidence limits given by a 8.2%
decrease/increase in estimated parameter. This is
a very interesting result, but it should be noted that
the classical bootstrap is not directly comparable with
the reduction bootstrap method as no duplicates are
present in reduction bootstrapped samples.

The systematic perturbation of the road elevation is
shown in table 4. σ2 = n denotes the size of the
variance used in the normal distribution from which
the amount of deviation have been sampled. Since
the road elevations have been measured in both di-
rections for each road section, a value sampled for
one direction will have same value but with opposite
sign in the other direction. The spread in estimation
results increases rapidly, which is not too surprising
since the systematic deviation will attain rather high
values in the end of the road section. E.g. a devia-
tion of 1 mm/m from the true profile yields almost one
meter in the end of the longest road segments! Since
the gradient contributes substantially to overall driving
resistance it is not that surprising that even for error
source with σ2 = 1 [mm/m] gives rise to higher fluctu-
ations in parameter estimates compared to the clas-
sical bootstrap technique. The average confidence
interval for the stable parameters is 11.5 smaller and
12% larger for σ2 = 1 and 22.4% smaller and 38.4%
larger for σ2 = 2.

The random perturbation results in table 5 has the
same meaning for σ2 as above except the unit is now
cm instead of mm/m. The spread in the estimates
is quite low for σ2 = 1 and 2 while resembling that
of classical bootstrap for σ2 = 5 and 10 cm. For
σ2 = 2 the confidence interval is 3.4% smaller and
4.2% larger while it is 7.7% smaller and 9% larger
for σ2 = 5 and 14.2% smaller and 17.7% larger for
σ2 = 10. Note that the noise intensity used in the
systematic and random perturbation are high com-
pared to measurement accuracy of modern road pro-
filing equipment. Thus, the estimation results seem
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quite stable with respect to measurement noise in the
road elevation data, even though the road gradient is
a major component in vehicle resistance. However, as
mentioned above, some of the parameters behaved
rather unstable.

CONCLUSION

Regarding FDA, both implementation and subse-
quent analysis of the data and model relied heavily
on the apparatus of FDA:

1. Derivative estimation of velocity measurements
to obtain acceleration.

2. Data-smoothing was used for the measured
quantities such as velocity, IRI, and MPD.

3. Numerical solution of the cost-down model using
a Runge-Kutta scheme was also possible since
the data was put on a functional form and thus
could be viewed as smooth input functions to the
ODE model. Solving the system numerically en-
abled a direct comparison of model simulation
and actual data, as shown in Fig. 5. In addi-
tion, these simulations were used to make com-
ponent plots showing the evolution of the different
components during entire measurement runs, as
shown in Fig. 6.

4. Data on a functional form enabled implementa-
tion of noise sources that were in accordance
with the qualitative behavior of the data.

5. Parameter estimation of differential equations is
straightforward in FDA as the optimization pro-
cess does not require repeated numerical simu-
lations.

This shows that the FDA methodology is fruitful in this
area of research, as well as other areas with detailed
data sets available. In particular, several insights and
results about coast-down modeling were obtained:

1. IRI only gave a small contribution to the overall
driving resistance.

2. MPD on the other hand gave a substantial con-
tribution and it was shown that a high degree of
smoothing gave the best model fit.

3. Numerical simulations showed that generally the
coast-down model was able to reproduce the
data. However, for a few selected road strips,
model simulations diverged greatly from mea-
surements which prompts for further model de-
velopments.

4. The perturbation analysis showed that the model
responded nicely to the sensitivity tests and slight
reduction in the number of measurement runs for
each road strip does not significantly increases
estimate uncertainties. However, three parame-
ters of the rolling resistance term in the model
showed very high fluctuations which require fur-
ther investigations.

A general conclusion to be drawn for this, is that
the model does have some shortcomings and the re-
sults points to the empirical Froll term, and the road
measures it is based on, as possible cause. It is
questionable whether the fluctuations in both IRI and
MPD values reflects a change in the surface contri-
bution to rolling resistance, or if the MPD/IRI mea-
sures also captures features that play a minor role
in vehicle rolling resistance. It could be accommo-
dated by averaging (although the MPD measure is
already constructed by averaging) or by considering
new road measures as alternatives to MPD and IRI
[10, 13]. More generally, modifying the expression of
Froll might improve model fit. These questions re-
quire further study. In addition, the relationship be-
tween road surface texture contribution to RR and ve-
hicle speed need a more careful investigation as the
literature on the subject is ambiguous.
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Table 1: Overview of road sections
Road Length Speed # of Avg. IRI Avg. MPD

ID [m] Limit [km/h] runs [mm/m] [mm]
1 1000 90 19 0.83 1.10
2 1000 90 19 1.05 1.12
3 300 70 21 2.04 2.54
4 300 70 19 1.79 2.49
5 600 70 13 1.18 1.19
6 600 70 15 1.68 1.21
7 1000 90 14 1.40 0.82
8 1000 90 14 1.08 0.76
9 500 70 15 2.64 2.42
10 500 70 14 3.23 2.40
11 900 90 15 3.30 1.00
12 900 90 14 3.55 0.93
13 500 70 14 2.18 1.07
14 500 70 14 2.15 0.90
15 400 70 14 2.57 0.74
16 400 70 14 2.84 0.59
17 580 70 14 2.82 0.86
18 580 70 14 2.48 0.86
19 550 90 15 1.11 0.39
20 550 90 14 1.02 0.44
21 570 70 14 2.23 1.76
22 570 70 15 2.40 1.72
23 560 90 15 3.66 0.64
24 560 90 14 3.05 0.75
25 620 70 14 1.77 0.59
26 620 70 14 1.50 0.58
27 630 90 16 0.79 0.66
28 630 90 14 0.83 0.58
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Figure 1: Example of MPD and IRI measurements.
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Figure 4: Different ways of incorporating random
noise into the road elevation data. Solid lines are per-
turbed functional data and stars are measurements.
Too many knots (left) will cause fluctuations in the
functional data curve which does not reflect the be-
havior of the underlying measurements. By using
fewer knots (right) the noise introduced to the data
causes fluctuations that reflects the qualitative behav-
ior of data.
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Figure 6: Plot of the different terms from eq. 11 for
two different cost-downs.
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Table 2: List of parameters in coast-down model
Parameter unit description

v [m/s] Velocity of vehicle
IRI [mm/m] Roughness measure
MPD [mm] Macrotexture measure
ρ(T, p) [kg/m3] Air density
p mbar Pressure
Ayz [m2] Projected frontal area of the vehicle
CL [#] Air dynamic coefficient
α [rad] Angle between wind and driving direction
w [m/s] Wind speed
T [◦C] Temperature
T0 [◦C] Temperature
CA [N/radians] Tire stiffness
m [kg] Vehicle mass
g [m/s2] Earths gravitational acceleration
β [radians] Longitudinal slope
γ [radians] Road crossfall
KJ [#] Correction factor
Kρ [kg◦Km−3mbar−1] Conversion constant
nwh [#] Number of wheels
J [kgm2] Inertial moment per wheel
rwh [m] Wheel radius
mrot [kg] Inertial mass of rotating parts

Table 3: Overview of bootstrap results. Number of samples: 2000
µn Estimate Reduction Bootstrap Reduction Bootstrap Reduction Bootstrap Classical Bootstrap

value 3× 28 5× 28 7× 28

0 Const. -0.0807 [0.96 , 1.04] [0.94 , 1.06] [0.92 , 1.07] [0.93 , 1.08]
1 T -5.5383e-04 [0.69 , 1.32] [0.58 , 1.47] [0.44 , 1.66] [0.41 , 1.63]
2 IRI -0.0043 [0.95 , 1.07] [0.93 , 1.09] [0.91 , 1.12] [0.91 , 1.12]
3 IRI(v − 20) -1.7600e-04 [0.78 , 1.29] [0.67 , 1.37] [0.56 , 1.52] [0.53 , 1.48]
4 MPD -0.0197 [0.97 , 1.04] [0.96 , 1.06] [0.95 , 1.08] [0.94 , 1.08]
5 MPD(v − 20) -6.9376e-04 [0.85 , 1.23] [0.79 , 1.31] [0.72 , 1.37] [0.72 , 1.41]
6 FAir1 -3.2016e-04 [0.94 , 1.06] [0.91 , 1.09] [0.88 , 1.12] [0.88 , 1.12]
7 FAir2 -4.4371e-05 [0.95 , 1.04] [0.92 , 1.06] [0.89 , 1.07] [0.91 , 1.10]
8 FSide -2.6755e-04 [0.98 , 1.02] [0.97 , 1.02] [0.96 , 1.03] [0.96 , 1.03]

Table 4: Systematic gradient stability test [σ2] = mm/m. Number of samples: 2000

µn Estimate Systematic Noise Systematic Noise
value Intensity: σ2 = 1 Intensity: σ2 = 2

0 Const. -0.0807 [0.92 , 1.08] [0.83 , 1.17]
1 T -5.5383e-04 [0.20 , 1.81] [0.60 , 2.71]
2 IRI -0.0043 [0.86 , 1.16] [0.70 , 1.30]
3 IRI(v − 20) -1.7600e-04 [0.38 , 1.62] [0.24 , 2.24]
4 MPD -0.0197 [0.98 , 1.02] [0.96 , 1.04]
5 MPD(v − 20) -6.9376e-04 [0.55 , 1.44] [0.11 , 1.87]
6 FAir1 -3.2016e-04 [0.29 , 1.70] [0.42 , 2.41]
7 FAir2 -4.4371e-05 [0.85 , 1.15] [0.70 , 1.31]
8 FSide -2.6755e-04 [0.99 , 1.01] [0.99 , 1.01]
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Table 5: Random gradient stability test [σ2] = cm. Number of samples: 1500
Parameter Estimate Random Noise Random Noise Random Noise Random Noise

µn value Intensity: σ2 = 1 Intensity: σ2 = 2 Intensity: σ2 = 5 Intensity: σ2 = 10

0 Const. -0.0807 [ 1.00 , 1.01] [0.99 , 1.02] [0.96 , 1.04] [0.92 , 1.08]
1 T -5.5383e-04 [ 0.99 , 1.06] [0.95 , 1.10] [0.83 , 1.21] [0.64 , 1.40]
2 IRI -0.0043 [ 1.02 , 1.07] [1.02 , 1.09] [0.95 , 1.16] [0.84 , 1.28]
3 IRI(v − 20) -1.7600e-04 [ 1.11 , 1.36] [0.98 , 1.49] [0.60 , 1.86] [0.03 , 2.49]
4 MPD -0.0197 [ 0.97 , 1.01] [0.95 , 1.02] [0.90 , 1.07] [0.82 , 1.16]
5 MPD(v − 20) -6.9376e-04 [ 0.86 , 1.07] [0.75 , 1.17] [0.44 , 1.44] [0.07 , 2.02]
6 FAir1 -3.2016e-04 [ 0.99 , 1.01] [0.99 , 1.02] [0.96 , 1.04] [0.93 , 1.08]
7 FAir2 -4.4371e-05 [ 0.97 , 1.05] [0.93 , 1.09] [0.81 , 1.20] [0.61 , 1.39]
8 FSide -2.6755e-04 [ 0.99 , 1.00] [0.98 , 1.01] [0.96 , 1.03] [0.92 , 1.07]
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