Electrodialytic separation of phosphorus and heavy metals from sewage sludge ash

Viader, Raimon Parés; Jensen, Pernille Erland; Ottosen, Lisbeth M.; Ahrenfeldt, Jesper; Hauggaard-Nielsen, Henrik

Publication date: 2015

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the work immediately and investigate your claim.
Phosphorous –Some facts

• Phosphorous is a limited resource and an essential nutrient.
• Phosphate rock (P-rock) reserves are foreseen to be depleted in 300–400 years [1].
• In the last decade, the EU imported around 90% of the P-rock that it consumed (IFA).
• In the EU there is a flow of 182,000 t of non-recycled P yearly from sewage sludge, around 20% of the EU P-rock consumption (Van Dijk et al. submitted).
• A common practice in some countries (DE, NL, BE, AT, CH, US, JP, HK) is incineration of sewage sludge. In recent years, gasification has gained attention.

Electrodialysis: a technology to recover P from sewage sludge ashes

• A patent has been filed from DTU (WO 2015/032903) for the 2-compartment Electrodialytic (ED) cell.

- Anolyte liquid:
 - P-rich
 - Acidic (H+ generated in the anode)
 - Low in heavy metals
- Bulk ash: can be reused in construction industry

- Catholyte liquid: Mostly Ca and heavy metals

• With this setup, it is possible to recover up to 90% of P from incineration sewage sludge ashes, in the anolyte liquid with low content in heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) [2].

• Only 26% of P was recovered with the same setup at the same conditions (liquid-to-solid ratio, current density and experimental time) with gasification sewage sludge ashes [3]. Most likely, due to the presence of Fe-P bindings. Poor results were previously observed for ashes with high Al content [4].

• Up to 70% of P was eventually recovered for the same ashes with an innovative ED setup. The recovered P-liquid has a content in heavy metals comparable to the one of wet phosphoric acid. The new setup is currently being drafted for a patent filing.

• Further work will focus on sewage sludge ashes containing both high content of Fe and Al.

Low-temperature gasification technology

• Due to the low temperature it is possible to use high alkaline fuels. Examples: straw, sewage sludge, etc.
• The resulting ashes, might have a high content in heavy metals or have a poor P-plant availability.

References