Bioaccumulation and effect of sediment-associated silver in different forms in two marine deposit feeders

Dai, Lina; Banta, Gary Thomas; Syberg, Kristian; Selck, Henriette; Gilliland, Douglas; Forbes, Valery E.

Publication date:
2012

Document Version
Early version, also known as pre-print

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 26. Jan. 2020
Bioaccumulation and effect of sediment-associated silver in different forms in two marine deposit feeders

Lina Dai¹, Gary T Banta¹, Kristian Syberg¹, Henriette Selck¹, Douglas Gilliland² and Valery E Forbes¹,³
¹Dept of Environmental, Social and Spatial Change, Roskilde University, Denmark,
²European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Italy.
³School of Biological Sciences, University of Nebraska Lincoln, Lincoln.
E-mail contact: ldai@ruc.dk

Introduction
• Different behaviour and effects of metal-bearing nanoparticles (NPs) have been found compared to their corresponding metallic ions [1,2].
• Toxicity of metal-bearing NPs isn’t easily predicted when comparing to corresponding ionic form
• It is unclear whether toxicity of metal-bearing NPs is dependent on particle size.

The aim of our study is to exam effects at the individual level by measuring size:

Corresponding ionic form/Particle size
•
No significant effects were detected on mortality, condition index or growth of exposed organisms.

Result

Introduction

Bioaccumulation

Hypothesis:
Toxicity and biota is metal form/particle size dependent?
(Here are their relative differences in size)

Experiment design

Capitella teleta exposure (for 14 d):
Age+
30nmNPs(Sigma)
100nmNPs(JRC)
Micron-Ag(Sigma)

Macoma balthica exposure (for 35 d):
Age+
20nmNPs(Sigma)
50nmNPs(Sigma)
Micron-Ag(Sigma)

Endpoints
• Mortality
• Growth
• Health condition
• Body burden

Result – Capitella teleta

Toxicity
No significant effects on either mortality or specific growth rate were detected for any Ag form or nominal concentration (data not shown).

Bioaccumulation
There was no significant effect of Ag form on Ag accumulation in C. teleta, although body burden increased significantly as a function of nominal concentration (One-way ANOVA, p = 0.001) (Figure 2).

Figure 2. Silver concentration measured in Capitella teleta exposed to nominal concentration of 10, 50 and 100 µg/g dw sed. Error bars indicated 1 standard deviation (n=6). 20 nm-nanoparticle at 100µg/g dw sed nominal concentration was removed due to a significant difference in initial measured Ag concentration from the other treatments with the same nominal concentration at day 0.

Conclusions
• No significant effects on mortality and growth of C. teleta and M. balthica.
• All Ag forms are bioavailable to both organisms.
• Metal form/particle size dependence of bioavailability is species specific, possibly due to differences in:
 • gut structure, thus
 • particle sorting mechanisms

Such differences in the bioavailability of metal-bearing particles warrant further investigation and consideration in terms of the impact of them in sediment environments.

References

Figure 1. Silver concentration measured in M. balthica exposed to a nominal conc. of 200µg/g dw sed. *** refers to a significant difference from ionic Ag. Error bars indicated 1 standard deviation (n=5).

Acknowledgement – The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 214478 (NanoReTox)