Bioaccumulation and effect of sediment-associated silver in different forms in two marine deposit feeders

Dai, Lina; Banta, Gary Thomas; Syberg, Kristian; Selck, Henriette; Gilliland, Douglas; Forbes, Valery E.

Publication date:
2012

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Bioaccumulation and effect of sediment-associated silver in different forms in two marine deposit feeders

Lina Dai1, Gary T Banta1, Kristian Syberg1, Henriette Selck1, Douglas Gilliland2 and Valery E Forbes1,3
1Dept of Environmental, Social and Spatial Change, Roskilde University, Denmark.
2European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Italy.
3School of Biological Sciences, University of Nebraska Lincoln, Lincoln.
E-mail contact: lida@ruc.dk

Introduction
• Different behaviour and effects of metal-bearing nanoparticles (NPs) have been found compared to their corresponding metallic ions [1,2].
• Toxicity of metal-bearing NPs isn’t easily predicted when comparing to corresponding ionic form
• It is unclear whether toxicity of metal-bearing NPs is dependent on particle size.

The aim of our study is to examine effects at the individual level by measuring typical endpoints in two organisms (i.e., a marine polychaete, Capitella teleta and a marine bivalve, Macoma balthica) after exposure to sediment amended with different forms and particle sizes of Ag.

Hypothesis:
Toxicity and biota is metal form/particle size dependent? (Here are their relative differences in size)

Result – Macoma balthica

Toxicity
No negative effects were detected on mortality, condition index or growth of exposed clams for any Ag form (data not shown).

Bioaccumulation
Bioaccumulation of Ag in M. balthica decreased significantly with increasing particle size (One-way ANOVA, p = 0.03) (Figure 1).

Experimental design

Capitella teleta exposure (for 14 d):

Macoma balthica exposure (for 35 d):

Endpoints • Mortality • Growth • Health condition • Body burden

Result – Capitella teleta

Toxicity
No significant effects on either mortality or specific growth rate were detected for any Ag form or nominal concentration (data not shown).

Bioaccumulation
There was no significant effect of Ag form on Ag accumulation in C. teleta, although body burden increased significantly as a function of nominal concentration (One-way ANOVA, p = 0.001) (Figure 2).

Conclusions
• No significant effects on mortality and growth of C. teleta and M. balthica.
• All Ag forms are bioavailable to both organisms.
• Metal form/particle size dependence of bioavailability is species specific, possibly due to differences in:
 • gut structure, thus
 • particle sorting mechanisms

Such differences in the bioavailability of metal-bearing particles warrant further investigation and consideration in terms of the impact of them in sediment environments.

Figure 1. Silver concentration measured in M. balthica exposed to a nominal conc. of 200µg/g dw sed. *** refers to a significant difference from Ag+ form. Error bars indicated 1 standard deviation (n=5).

Figure 2. Silver concentration measured in Capitella teleta exposed to nominal concentration of 10, 50 and 100 µg/g dw sed. Error bars indicated 1 standard deviation (n=5). 20 nm nanoparticle at 100µg/g dw sed. nominal concentration was removed due to a significant difference in initial measured Ag concentration from the other treatments with the same nominal concentration at day 0.

Acknowledgement – The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 214478 (NanoReTox)