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Preface
This thesis concerns biological sequence analysis using probabilistic logic general-
izations of hidden Markov models (HMMs), and has been submitted according to the
requirements for obtaining the PhD degree at Roskilde University, Denmark.

My PhD project was part of the Lost Project, a general exploration of the combination
of logic programming and bioinformatics [1], funded by a NABIIT grant from the
Danish Strategic Research Council [09-061842/DSF].

The work has been carried out at the Department of Science, Systems and Models,
Roskilde University, the Department of Communication, Business and Information
Technologies, Roskilde University and at the Department of Bioengineering, Univer-
sity of California - Berkeley.

The thesis consists of a core of three papers and an introduction. The papers describe
probabilistic logic hidden Markov models applied to gene finding, genome annota-
tion, and RNA/mRNA structure prediction.

The introduction starts with a short motivational background section on the impor-
tance of: i: The sequential composition of DNA, RNA and proteins. ii: The over-
lapping biological forms and functions imposed on genomes by the central dogma
of molecular biology. iii: A generalized approach to probabilistic model develop-
ment dictated by this overlap. iv: The use of (prokaryotic) gene finding as a starting
point to develop and test principles for constructing models for biological sequence
analysis.

Hereafter, a concise description of the probabilistic logic programming language and
machine learning system PRISM is given. This is followed by a brief introduction to
HMMs and how they can be implemented in PRISM. The last section of the overview
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details how HMMs implemented in PRISM can be extended, and integrated, in vari-
ous ways to be used for modeling biological sequences and performing fundamental
biological sequence analysis tasks.

The introduction ends with summaries of the papers included in the thesis, some
of the perspectives of the present work, and finally, a general conclusion on the
project.

I have attempted to provide an introduction that is more comprehensible than compre-
hensive. I assume that readers are somewhat familiar with computational biology and
bioinformatics, including basic concepts of molecular biology and machine learning
and general notions of probabilistic modeling and mathematical notation. A good
starting point for a more thorough introduction to probabilistic logic programming is
DeRaedt et al. 2008 [2]. For a brilliant introduction to biological sequence analysis I
highly recommend Durbin et al. 1998 [3].

The PRISM source code for all models used in the papers and accessory scripts are
available at: http://github.com/somork/

The PRISM source code of some examples of model types mentioned in the in-
troduction that have not yet been included in manuscripts are provided in the Ap-
pendix.

I started my PhD project as a molecular evolutionary biologist with a deep interest
in theoretical biology, and only some knowledge of bioinformatics. The PhD project
offered to me by Ole Skovgaard and Henning Christiansen has been an extremely
fortunate opportunity for me to immerse myself in computational biology in general,
and biological sequence analysis in particular. I am very thankful for this. As a
biologist entering into the cross-field of biology and computer science, that the field
of bioinformatics is, my attention has primarily been devoted towards the elements
from computer science necessary for operating in this field. Doing this, I have come
to deeply cherish the fascinating world of computer science, both theoretical and
applied, that probabilistic logic programming has been a (relatively unconventional)
route to.
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Summary
Genomes are templates for the sequential synthesis of DNA, RNA and proteins. Mod-
eling the resultant overlap of biological form and function requires developments
of powerful sub-models and principled model integration. The ease of which this
is achieved is greatly increased by the use of a generalized prototyping environ-
ment.

Here, I describe a range of probabilistic sequence models based on extensions of
hidden Markov models (HMMs), and combinations hereof, that can be used for a
number of basic tasks of biological sequence analysis. The HMM variants presented
here are implemented in the probabilistic logic programming language and machine
learning system PRISM. PRISM provides the ability to produce, combine, test and
compare different probabilistic sequence models, using principled approaches, within
a single unified framework.

The repertoire of models presented include: (i): Models of prokaryotic protein cod-
ing genes based on model types such as mixed memory HMMs. (ii): Models of gene
sequence composition for genome annotation based on delete HMMs. (iii): Models
of RNA secondary structures based on stochastic context free grammar (SCFG)-like
HMMs. (iv): Models for homology assignment based on multi-sequence HMMs
and multi-sequence SCFG-like HMMs. (v): Models of overlapping genomic struc-
tures based on factorial HMMs, factorial SCFG-like HMMs or combined factorial
HMM/SCFG-like HMMs.

The combined work demonstrates the feasibility of using probabilistic logic program-
ming for biological sequence analysis, general principles for improving genome an-
notation and gene structure prediction, and potential for application on additional
tasks within biological sequence analysis.
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Dansk Resume
Genomer fungerer som skabeloner for den sekventielle syntese af både DNA, RNA
og proteiner. For at kunne modelere det deraf følgende overlap af biologisk form
og funktion kræves det, at der både udvikles effektive modeller af de forskellige
typer funktioner, og effektive måder at integrere sådanne modeller på. Udviklin-
gen af sdanne modeller kan gres vsentligt nemmere ved at benytte prototypning af
modelstrukturer i et generaliseret udviklingsmilj.

I denne afhandling beskriver jeg resultater fra arbejdet med udviklingen af en række
probabilistiske sekvensmodeller, med udgangspunkt i forskellige typer hidden Markov
modeller (HMM’er) og kombinationer heraf.

HMM varianterne er alle implementeret i det probabilistisk-logiske programmeringsprog
og maskinlæringssystem PRISM. Dette er gjort for systematiskt at kunne producere,
kombinere, teste og sammenligne forskellige probabilistiske sekvensmodeller.

Samlingen af modeller inkluderer: (i): Modeller af prokaryote proteinkodende gener
baseret på bl.a. mixed memory HMM’er. (ii): Modeller af den sekventielle rækkefølge
af gener i et genom, baseret p delete HMM’er. (iii): Modeller af RNA sekundære
strukturer baseret på stokastisk kontext frie grammatik (SCFG)- lignende HMM’er.
(iv): Modeller til alignment, baseret på multi-sekvens HMM’er og multi-sekvens
SCFG-lignende HMM’er. (v): Modeller af overlappende genomiske strukturer baseret
på faktorielle HMM’er, faktorielle SCFG-lignede HMM’er og kombinerede fakto-
rielle HMM/SCFG-ligende HMM’er.

Det samlede arbejde demonstrerer brugbarheden af probabilistisk logikprogrammer-
ing til biologisk sekvensanalyse, generelle principper til at forbedre genom-annotering
og genstruktur modelering, samt potentiale til yderligere anvendelse indenfor biolo-
gisk sekvensanalyse.
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Introduction

Biological Sequence Analysis

The elucidation of the sequential structure of DNA [4] was the most important bio-
logical discovery of the 20th century.

The sequential structure of DNA is the key to understanding how cells maintain and
regulate the processes that keep them alive. Through the biologically essential pro-
cesses of replication (DNA → DNA), transcription (DNA → RNA) and translation
(RNA→ Protein), DNA sequences serve as the template for the sequential synthesis
of DNA, RNA and proteins alike, the central dogma of molecular biology [5].

The directional flow of information, in collection with natural selection acting on the
rate of surviving replicons, imposes constraints on the composition of DNA sequences
both in terms of the functions they encode, as well as in terms of the sequential com-
position of their ancestors (Figure 1).

Discerning the different sources, and complicated interactions, of the constraints that
govern the sequential composition of the DNA nucleotides; A(denosine), C(ytosine),
G(uanine) and T(hymidine), that constitutes genomes, is one of the major goals of
biology.

Within recent decades enormous amounts of DNA sequence data have become pub-
licly available. As per January 2012, GenBank, the primary deposit of genome se-
quence data, contained more than one hundred million sequences, comprising more
than one hundred billion nucleotides (http://www.ncbi.nlm.nih.gov/genbank/), includ-
ing thousands of complete whole genome sequences from vira, prokaryotes and eu-
karyotes.
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Probabilistic sequence models serve as a rigorous basis for sensible automation of
important computational tasks involving such sequence data [3], and are paramount
for obtaining quantitative descriptions and predictions of sequential form and func-
tion.

The current biological sequence analysis model plethora ranges from relatively sim-
ple models of gene structures, that can be used for single sequence gene finding [6],
over more complicated models for alignment[7] and phylogenetic inferences[8], an-
cestral reconstruction [9], to very complicated models for the simultaneous execution
of multiple such tasks [10, 11]. The basic biological sequence analysis tasks of struc-
ture prediction, alignment and evolutionary inferences are inherently related due to
the constraints imposed by the central dogma (Figure 2).

In the following, I describe how using a unified framework for developing, integrating
and testing models, the probabilistic logic programming language and machine learn-
ing system PRISM [12], can be used for developing powerful probabilistic sequence
models for biological sequence analysis.

The strategy applied is to start from simple models, make generalizations of them
and proceed with incremental changes according to general model types and features
needed to perform the tasks at hand.

Hidden Markov model (HMM) variants for gene finding have been used as a starting
point for the following reasons:

• The single sequence HMMs are very simple models, yet powerful enough to be
applicable for biological sequence analysis problems such as gene finding.

• Due to the linearity of the process of protein translation, and the important short
distant interactions imposed by codon structure, gene finding of protein coding
genes have traditionally been based on a limited number of HMM variants.

• Prokaryotic genes have a relatively simple structure that is easier to capture
with HMMs than that of the truncated genes of eukaryotes, or the very compact
viral genes that frequently are overlapping other genes or harboring structural
components.

• Gene finding is a relatively simple binary classification task. This enables eval-
uation of model performance through relative simple statistical means such
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as sensitivity/specificity measures or receiver operator characteristics (ROC)
curves. Such simple measures are less easily applied to more complicated bio-
logical sequence analysis tasks such as alignment or phylogenetic inferences.

• Gene finding is experimentally verifiable. It is possible (though quite laborious)
to establish a reliable golden standard for gene finding experimentally, making
the classification task much more reliable. This is not possible for alignment
and phylogenetic analysis, that have to rely rely on internal consistency due to
the time-scales involved.

• Well performing single sequence HMMs can serve as the template from which
more elaborate models can be developed in order to improve the more difficult
tasks. Such models include models for non-coding RNA finding and structure
prediction, as well as models that can be used for alignment and incorporating
sequence signals into phylogenetic analysis.

Bacterial genomes have relatively simple structure and moderate sizes, with mostly
text-book gene structures.

One notable example, the genome of the wild-type K-12 E. coli bacteria, is a circular
double-stranded piece of DNA consisting of 4,639,675 base-pairs that was first se-
quenced in 1997 [13]. The current curated GenBank annotation (RefSeq NC000913.2)
of the E. coli K-12 genome contains 4493 genes. Of these, 155 are non-coding RNA
genes (transfer RNAs (tRNAs), ribosomal RNAs (rRNAs) used in translation, as well
as various small RNAs with other functions). 4144 are protein coding genes. De-
spite the fact that this intensely studied model organism has the perhaps best anno-
tated genome of the currently more than 1000 complete prokaryotic genomes, only
roughly half (2413) of the protein coding genes have been experimentally verified
[14]. The remaining 1731 are potential gene candidates suggested by state-of-the-art
prokaryotic gene finding programs based on probabilistic sequence models.

The contiguous protein coding sequences of bacterial genes makes them much easier
to predict computationally than the genes of eukaryotes that have large noncoding
fractions of their gene sequences (introns).

Significant improvements in bacterial gene finding methodology have made it an al-
most solved problem. This makes it hard to come up with significant improvements,
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but provides an ideal benchmark of sequence models that can form the basis of other
types of bioinformatic tasks that can potentially use the sequential signal (e.g. align-
ment).

The earliest attempts of computational gene finding were based on k-mer statistics
[15, 16]. A significant breakthrough came with the HMM based models [6], that
has since been modified in terms of the model types used (e.g. Glimmer [17], and
Genemark [18]), significance calculations (Easygene [19], lenght modeling (Agene
[20]), the incorporation of additional signals such as Ribosome Binding Sites (e.g.
prodigal [21]) and the utilization of comparative approaches (e.g. twin-scan [22] and
N-scan [23]) and combiners (e.g. JIGSAW [24]).

Especially the introduction of comparative approaches, that use conserved sequence
signals and synteny have lifted the prediction accuracy to almost 100%.

Naturally, this has left most recent developments within gene finding with a focus
on eukaryotic gene finding, and with the use of comparative approaches (thanks to
the large amounts of whole genome sequences available for a large number of organ-
isms).

However, the availability of a fast prototyping environment for probabilistic sequence
models (PRISM) is a good opportunity to explore whether there are alternative models
structures that model the sequence component more efficiently.

The application of a combination of logic programming, computational linguistics
and stochastic automata on problems in biological sequence analysis is not a recent
development (e.g. [25, 26, 27, 28]).

The rapid recent growth in probabilistic logic methods has seen numerous applica-
tions on problems in expert systems, data-linguistics, robotics, and has also been
applied to bioinformatic problems - mostly with a strong emphasis on the computer
science.

Notable recent examples of probabilistic logic methods applied on bioinformatics
include using constrained hidden Markov models for haplotyping [29] and gene finder
performance evaluation through the generation of artificial datasets [30].

The use of probabilistic logic programming for biological sequence analysis is still in
its infancy. Paper 1 was the first publication of probabilistic logic programming for
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biological sequence analysis in a dedicated bioinformatic journal.

As a prototyping environment, probabilistic logic programming brings speed to the
development process. The generalized nature of the approach is free from the imple-
mentational fine-tunings of the state-of-the-art approaches available for biologists for
bioinformatic tasks. This is a strong advantage in terms of prototyping, and providing
novel approaches. However, it also means that methods based on probabilistic logic
programming is not likely to be consumer ready state-of-the-art products. Neverthe-
less I sincerely believe that probabilistic logic programming will increase in use in
bioinformatics and computational biology, and that proper state-of-the-art material
will eventually evolve.

The overall approach for model development described in this thesis, based on prob-
abilistic logic hidden Markov models, is conceptually related to the work in Chris-
tiansen et al. 2011 [31], but takes an approach more closely related to the spirit of
Durbin et al. 1998 [3] in providing a model based unified angle to a range of subjects
within biological sequence analysis.

Figure 1: The central dogma of molecular biology relates the sequential informa-
tion transfers between DNA, RNA and protein (green arrows), and the corresponding
constraints that the biological form and functions embedded herein places on the se-
quential composition of DNA (red arrows).
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Biostring Analysis
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Figure 2: An interdependence of the basic biological sequence analysis tasks is dic-
tated by the interactions of overlapping biological form and function that follows
from the central dogma of molecular biology. This manifests itself through the con-
straints imposed on DNA sequences in different dimensions. Naturally, modeling the
sequence composition of DNA requires model integration of the different types of
constraints imposed by these relationships.
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PRISM

PRISM was introduced in [32] by Taisuke Sato and Yoshitaka Kameya and is publicly
available at http://sato-www.cs.titech.ac.jp/prism.

PRISM is particularly well suited for developing models for biological sequence anal-
ysis, due to the high expressive power of the PRISM code, the resultant ease of ex-
tending and combining model types, the subsumption of model types that have tra-
ditionally been used for biological sequence analysis, and the generic nature of the
built-in machine learning capabilities.

PRISM is an extension of the logic programming language B-Prolog, augmented with
predicates that define random variables, probabilistic inferences and machine learn-
ing routines. The built-in routines include predicates for sampling (sample), for cal-
culating the joint probability of data and a model (prob), for calculating the most
probable state of unobserved model variables that comprise an explanation of data
and its associated probability (viterbi). PRISM also has routines for inferring max-
imum likelihood or maximum a posteriori estimates of model parameters through
an Expectation-Maximization (EM) [33] algorithm or through a Variational Bayes
Expectation-Maximization (VB-EM) algorithm [34] (learn).

The types of probabilistic models that can be represented as PRISM programs in-
clude HMMs, stochastic context free grammars (SCFGs) and Discrete Bayesian Net-
works [12]. Program execution results in a type of generic dynamic programming
matrix [35] (an explanation graph) derived through linear tabling of resolvents of the
logic program. The machine learning routines subsequently run on those explana-
tion graphs regardless of which program/model produced them, with the efficiency
dictated by the structure of the probabilistic model.

Model selection is facilitated by various statistics of the learning sessions: most im-
portant of these are the log likelihood values after learning and the size of the expla-
nation graph. Information scores are also available, including Bayesian Information
Criterion (BIC) [36], Cheeseman-Stutz scores [37] and variational free energy scores
[34] when using VB-EM.

A thorough introduction to PRISM is beyond the scope of this thesis. The following
therefore is a very brief and compact introduction to logic programming, PRISM
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programs and some of the central PRISM machine learning routines, sufficient for
understanding the subsequent models and their application on problems in biological
sequence analysis. For a more thorough treatment I refer to Sato et al. 2009 [38], the
PRISM manual [39], and the references herein.

Logic Programming

Logic programming is based on methods from automated theorem proving, and use
syntax and semantics from formal logic. The underlying principle is that of resolu-
tion [40] of Horn clauses [41]. Horn clauses are propositional sentences containing
disjunctions of literals with at most one positive literal. Literals are atomic formulas
of the form: p(t1, . . . , tl), where p is a predicate symbol and t are terms that can be
either logic variables, constants or functions. Functions take the form f (t1, . . . , tl),
where f is a functor symbol and t are terms (constants can be thought of as nullary
functions).

There are four basic Horn clause constructs:

• Definite clauses (rules) are Horn clauses with exactly one positive literal:

∀(L0∨¬L1∨·· ·∨¬Lm)

or equivalently:

L0← L1∧·· ·∧Lm

• Unit clauses (facts) are definite clauses with no negative literals:

∀(L0)

• Goal clauses (potential consequences) have no positive literal:

∀(¬L1∨·· ·∨¬Lm) = ∀(¬(L1∧·· ·∧Lm))

• The empty clause ( /0) contains no literals at all.

Clauses that contain no variables are called ground clauses.

The PRISM model source code directly reflects the underlying structure of the given
probabilistic model (see Figure 4). Being able to read PRISM source code will there-
fore be very helpful for the remaining part of this thesis. The following (general
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Prolog) syntax should be sufficient for the programs included here: Comma denotes
conjunction and semicolon disjunction. Colon dash represents the reverse implica-
tion arrow. Full stop marks the end of a clause. Variable names start with upper case
or underscore. Functor symbols are lowercase and atomic formulas are written as
f (term1, term2, . . .). Underscore denotes the anonymous variable that can unify with
anything but does not bind to values (i.e. multiple occurrences can have different val-
ues). Lists are represented as [Head | Tail], where Head is the first item of the list and
Tail is a list of the remaining items. Using standard Prolog syntax, the Horn clause
constructs are written:

• Rules: H :- B1, . . . ,Bn.

• Facts: H.

• Goals: B1, . . . ,Bn.

• The empty clause: [].

A positive literal is called the head of a clause, the negative literals of a rule is called
the body of a rule, and the literals of a goal are called sub-goals.

A logic program DB (database) is a collection of facts F and rules R, i.e. DB =

F ∪R.

The canonical logic programming computational procedure is SLD-resolution [42].
SLD-resolution is a sound and refutation complete goal reduction procedure that pro-
ceeds by unification of complementary literals of goals and literals of a logic program.
The procedure is left-right, top-down recursive with depth first search. Execution is an
attempt to refuse a conjecture (the top goal). The basic procedure is as follows:

Given a goal G = (A1,A2, . . . ,Ak), select the left-most unresolved subgoal A1 of G

and derive a new goal G′ = (B1, . . . ,Bn,A2, . . . ,Ak)mgu (resolvent) from G using a
definite clause ”H ← B1, . . . ,Bn” in DB, if there exists a most general unifier mgu

such that (B1)mgu = (H)mgu.

A unifier of two terms is a substitution that makes the two terms identical. A substi-
tution is a most general unifier if there does not exist any substitutions that are more
general. A substitution ω is more general than a substitution φ if there exists another
substitution ρ such that φ = ωρ.
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Procedurally, the anonymous variable unifies with any literal but does not bind the
value, uninstantiated variables unifies with any literal, binding the value, instantiated
variables unify like constants and constants unify if they are identical. The goal reduc-
tion procedure produces a derivation tree (AND/OR graph) with the initial top goal
as root node, resolvent goals as child nodes and edges labeled with the mgu substitu-
tions. If the selected literal unifies with a fact (comprised of a Head only), the derived
goal is the empty clause. If there are no Heads that the selected goal can unify with,
the leaf is a failure node. If the derivation contains only the empty clause (or a con-
junction of empty clauses) the leaf is a success node. A path from the root node to a
leaf node is called a derivation. If the derivation tree has the empty clause as a leaf, the
goal is a consequence of the facts and rules of the logic program (nothing remains to
be resolved - the conjecture is refuted). If the goal contains logic variables, potential
variable bindings are returned via the mgu. The search is completed by backtracking
upon failure and continuing with the remaining unresolved subgoals.

Figure 3 gives an example of a small logic program and the resulting derivation trees
obtained from the resolution of a ground and an unground goal.
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p(a).

p(b):-p(a).

1: the goal ”p(b).” does not unify with ”p(a).”
2: ”p(b).” unifies with the head of ”p(b):-p(a).”
3: new resolvent goal ”p(a).”
4: ”p(a).” unifies with ”p(a).”
5: new resolvent goal ”[].” (success)

1: the goal ”p(X)” unifies with ”p(a).” with mgu(X=a).
2: new resolvent ”[].” (success)
3: solution: ”X=a.”
4: more solutions?
5: backtrack to previous goal, i.e. ”p(X).”
6: the goal ”p(X)” also unifies with the head of ”p(b):-p(a).” with mgu(X=b).
7: the goal ”p(b).” does not unify with ”p(a).”
8: ”p(b).” unifies with the head of ”p(b):-p(a).”
9: new resolvent goal ”p(a).”
10: ”p(a).” unifies with ”p(a).”
11: new resolvent goal ”[].” (success)
12: solution: ”X=b.”

8

(a)

p(b)

p(a)

[]

(b)

p(a).

p(b):-p(a).

1: the goal ”p(b)” does not unify with ”p(a).”
2: ”p(b)” unifies with the head of ”p(b):-p(a).”
3: new resolvent goal ”p(a)”
4: ”p(a)” unifies with ”p(a).”
5: new resolvent goal ”[].” (success)

1: the goal ”p(X)” unifies with ”p(a).”
2: mgu(X=a).
3: new resolvent ”[].” (success)
4: solution: ”X=a.”
5: more solutions?
6: backtrack to previous goal, i.e. ”p(X)”
7: the goal ”p(X)” also unifies with the head of ”p(b):-p(a).”
8: mgu(X=b).
9: the goal ”p(b)” does not unify with ”p(a).”
10: ”p(b)” unifies with the head of ”p(b):-p(a).”
11: new resolvent goal ”p(a)”
12: ”p(a)” unifies with ”p(a).”
13: new resolvent goal ”[].” (success)
14: solution: ”X=b.”

8

(c)

p(X)

p(a)

X=a

p(b)

X=b

[] p(a)

[]

(d)

p(a).

p(b):-p(a).

1: the goal ”p(b)” does not unify with ”p(a).”
2: ”p(b)” unifies with the head of ”p(b):-p(a).”
3: new resolvent goal ”p(a)”
4: ”p(a)” unifies with ”p(a).”
5: new resolvent goal ”[].” (success)

1: the goal ”p(X)” unifies with ”p(a).”
2: mgu(X=a).
3: new resolvent ”[].” (success)
4: solution: ”X=a.”
5: more solutions?
6: backtrack to previous goal, i.e. ”p(X)”
7: the goal ”p(X)” also unifies with the head of ”p(b):-p(a).”
8: mgu(X=b).
9: the goal ”p(b)” does not unify with ”p(a).”
10: ”p(b)” unifies with the head of ”p(b):-p(a).”
11: new resolvent goal ”p(a)”
12: ”p(a)” unifies with ”p(a).”
13: new resolvent goal ”[].” (success)
14: solution: ”X=b.”

8

(e)

Figure 3: (a) A small logic program (b) SLD-tree from the resolution of the ground goal
”p(b)”. (c) Procedure of the SLD-resolution of the ground goal ”p(b)”. (d) SLD-tree from the
resolution of the unground goal ”p(X)”. (e) Procedure of the SLD-resolution of the unground
goal ”p(X)”.
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PRISM Programs

PRISM programs define probabilistic models. The probabilistic models are con-
structed as logic programs with predicates that represent random variables. The facts
and rules of the logic program determine the model structure, i.e. how the random
variables are related to each other and to observable data. For the sequential mod-
els, the basic model structure is a recurrence relation. Additionally, the program must
contain rules for initiating the recurrence and facts for terminating the recurrence. Op-
tionally, the program can contain auxiliary predicates for more elaborate sub-model
structures, and predicates for handling system behavior, e.g. options for the build-in
routines. PRISM programs are generative models, that specify a joint probability over
observed data and variable states in the model structure, and can be used both to parse
a given observation and to sample from.

In sample mode, given an unground top-goal (observation) PRISM returns a sample
generated from the model. In explanation mode PRISM can be used with prob,viterbi

or learn. It is possible to use PRISM like regular Prolog with a ground top goal.
However, for a ground top goal to succeed it requires a sample-parse through the
model that generates that goal exactly. For most models the potential outcome space
is enormous and the probability of success is very small - resulting in most cases of
the system returning a ”no”, even if the top goal is derivable from the program in a
deterministic sense.

Random variables in PRISM are declared using the values/3 predicate. The first ar-
gument to values is the name of the random variable, the second argument is a list
of outcomes that define the outcome space of the random variable, and the (optional)
third argument is a corresponding list of point probabilities - the parameters of the
random variable. (The third argument can be omitted leaving the random variable
uniformly distributed). Random variables are invoked via including msw/2 predicates
in the (recurrence) relations that define a given model. The first argument of msw(i,v)

is the name of the random variable defined via a values predicate, the second argu-
ment is a value (outcome) of the random variable.
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PRISM Resolution

The current version of PRISM use linear tabled SLD-resolution to enable dynamic
programming (and handle left-recursion) with recursive programs [43]. The first im-
plementations of PRISM used OLDT resolution (Ordered Linear Definite Clause Res-
olution with Tabling)[44] to construct the generic dynamic programming matrices for
probabilistic logic programs.

The procedure starts from a ground top goal (an observation) and produces a deriva-
tion tree structure called an explanation graph. Dynamic programming behavior is
achieved trough tabling subgoals and reusing their sub-solutions.

When a program encounters a subgoal that has already been resolved and is hence
stored in the solution table, resolution of that goal is put on hold and previous so-
lutions from the solution table are retrieved and applied first. Sub-goals of the sub-
solutions are also tabled, resulting in a general solution table containing subgoals as
keys and sub-solutions as entries.

The explanation graph is constructed from the solution table as ordered factorized iff
formulas:

subgoal/tabled atom⇔ sub-exlanation, i.e.:

Gi⇔ msw1∧·· ·∧mswm∧G′1∧ . . .G′n
where a sub-explanation is a recursive structure consisting of a conjunction of sub-
goals and msw/2 predicates.

An explanation for a given observation is a conjunction of switch instances corre-
sponding to a path in the derivation tree, from the root node to a leaf node. The
probability of an explanation is the product of the switch instance probabilities in
it. The probability of a goal is the sum over the switch instances of all the of its
explanations.
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PRISM Routines

There are three basic routines running on explanation graphs: prob, viterbi, and
learn.

prob calculates the marginal probability Pθ(G) of an observed goal G given a model
parameterized by θ. This is achieved by traversing the explanation graph and sum-
ming over disjunctions of msw/2 instances and multiplying over disjunctions. prob

corresponds to the Forward algorithm for HMMs [45], the Inside algorithm for SCFGs
[46] and the Belief Propagation algorithm [47] for Bayesian Networks.

viterbi finds the most probable explanation E∗= argmaxE∈{E1,...,EK}Pθ(E) via travers-
ing the explanation graph and composing the most probable explanation, using the
most probable sub-explanation at each step. viterbi is a generalization of the Viterbi
algorithm [48] for HMMs.

learn obtains the set of parameters θ that maximize the likelihood ΠtPθ(Gt), given
a collection of observed goals {G1, . . . ,GT}. The maximum likelihood parameter
estimates are obtained using an Expectation-Maximization algorithm.

For models with latent variables, the expected values of the parameters (their frequen-
cies) that optimize the Maximum Likelihood cannot be obtained simply by counting,
since the states of the latent variables are unknown. Instead Maximum likelihood esti-
mates of the parameter values can be obtained by approximating the true values of the
parameters by incrementally changing the parameters in ways that optimizes the like-
lihood function. The Expectation-Maximization algorithm is one such method, that
proceeds via successive iterations of the following two steps (starting from randomly
assigned values of the parameters):

• E(xpectation) step: Compute the expected (most probable) values of the latent
variables given the current parameter values and observable variable values.

• M(aximization) step: Update the parameter values by choosing the maximum
likelihood estimate of the parameters given the the most probable values of the
latent variables and the observable variables found in the preceding step.

Due to the concavity of the logarithmic function and Jensen’s inequality [49], the
likelihood value for each iteration cannot be lower than the previous likelihood value.
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Hence the log-likelihood is guaranteed to converge towards a (local) maximum [33].

The PRISM EM-procedure [50] starts by initializing the parameters with random
values θ̂0, then iterating until convergence (L(G1, . . . ,GT |θ̂n+1)−L(G1, . . . ,GT |θ̂n)≤
τ, (where τ is some preset threshold value):

• E-step: count the (expected) occurrences Ĉi,v of msw(i,v) under θ̂n

• M-step: update each parameter as θ̂n+1
i,v =

Ĉi,v

Σv′Ĉi,v′

Maximum A Posteriori estimated parameters θ̂MAP, that maximize the posterior prob-
ability of the parameters given the data: P(θ|G1, . . . ,GT ) ∝ P(θ)ΠtPθ(Gt), are ob-
tained by assigning a Dirichlet prior P(θ) = 1

Z Πi,vθϑi,v−1
i,v , where Z is a normalizing

constant and ϑi,v are hyper-parameters of the Dirichlet distribution of the correspond-
ing msw(i,v), and using the following M-step:

• M-step: estimate each parameter as θ̂i,v =
Ĉi,v+σi,v

Σv′ (Ĉi,v′+σi,v′ )

where σi,v = (ϑi,v−1) are pseudo-counts for each msw(i,v).

Alternatively, Variational Bayes estimators of the hyper-parameters ϑ̂i,v are obtained
via initializing the hyper-parameters as ϑ0

i,v = ϑi,v +νi,v, where νi,v are small positive
random (gaussian) noises, and then iterating:

• E-step: for each msw(i,v) count C̃i,v, the expected occurrences of msw(i,v) un-
der the hyper-parameters ϑ̂n

i,v

• M-step: update each hyper-parameter as ϑ̂n+1
i,v = ϑ̂n +C̃i,v

Model Selection

Being able to express these different model types in a single framework enables di-
rect comparisons of different underlying model structures in terms of their statistical
characteristics, computational complexity, and performance on given tasks, without
complications due to implementation differences. Such model exploration is an ideal
platform for discovering sequence models that not only lead to a better understanding
of the forces shaping biological sequences, but also lead to general ways of improving
tasks that rely on sequence signals. In order to choose the best model a number of
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criteria can be evaluated for model selection based on statistical measures, computa-
tional complexity and (classification) performance.

Statistical Measures

In addition to the (log) likelihood values after learning, PRISM provides three scores
that can be used for model selection. Generally, the task is to find the most probable
model M∗:

M∗ = argmax
M

P(M|G1, . . . ,GT ) (1)

= argmax
M

P(G1, . . . ,GT |M)P(M)

P(G1, . . . ,GT )

= argmax
M

P(G1, . . . ,GT |M),

i.e. the one that maximize the (log) marginal likelihood P(G1, . . . ,GT |M) assuming
a uniform prior on P(M), where P(M|G1, . . . ,GT ) is the posterior probability of the
model, and P(G1, . . . ,GT ) is the marginal probability of the data (that does not depend
on the model). P(G1, . . . ,GT |M) can be obtained as the expectation of the maximum
a posteriori (log) marginal likelihood: P(G1, . . . ,GT |M) ≡ 〈P(G1, . . . ,GT |θ̂MAP,M)〉
[39].

PRISM provides the following three approximations to P(M|G1, . . . ,GT ):

BIC:

ScoreBIC(M)
def
= P(G1, . . . ,GT |θ̂MAP,M)− |θ|

2
logN (2)

where |θ| is the number of free parameters and N is the sample size.

Cheeseman-Stutz score:

ScoreCS(M)
def
= (3)

P(D̃c|M)−P(D̃c|θ̂MAP,M)+P(G1, . . . ,GT |θ̂MAP,M)

where D̃c is the pseudo-complete data whose sufficient statistics are the expected
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occurrences of the stochastic variables in the model.

Variational Free Energy score:

ScoreV FE(M)
def
= ∑

E

∫
Θ

q(E,θ|G1, . . . ,GT ,M) log
p(E,G1, . . . ,GT ,θ|M)

q(E,θ|G1, . . . ,GT ,M)
dθ (4)

where q is the (approximated) posterior distribution function that maximize the VFE,
and p is the joint distribution function.

Computational Complexity

The complexity of the PRISM algorithms running on the explanation graphs is linear
in the size of the explanation graph [39]. The size of the explanation graph in turn
is dictated by the model structure and the number of parameters. Since the computa-
tional complexity generally is data dependent and usually is given for models in terms
of a worst case upper bound, the possibility to compare the complexity performance
of different models in PRISM on the same data is very useful. Generally, PRISM
models behave as expected in terms of their computational complexity (O). Ordinary
HMMs have O(nm2), where m is the length of the observed sequence and n is the
number of hidden states. Mixed memory (and higher ordered) HMMs have O(npm2),
where p is the size of the memory and np is the number of states. SCFG like models
have O(nm3) complexity. Factorial HMMs have O(mn) complexity. Intractable mod-
els such as factorial HMMs or factorial HMM/SCFGs can be coped with by keeping
the number of parameters low (i.e. using well-fitting sub-models) and/or applying the
models on reduced amounts of data (e.g. prokaryotic genes, viral genomes, potential
open reading frames, genome fragments etc.). For SCFG-like models tractable mod-
els can be obtained via limiting the size of the stack or more generally the number of
successive identical states (see Paper III). Length modeling can then be used to keep
the probability mass contained within that limit (at the cost of slightly increasing time
complexity). Alternatively, complicated models can be approximated by simpler ones
[51, 52], using constraint models [53], viterbi with annotations [54] or using heuristic
approaches to viterbi or (VB-)EM.
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Classification Performance

HMMs can be used as classifiers of (sub)sequences. This can be achieved either by
using the Viterbi path or the maximum posterior probability decoding path through
a sequence to denote membership of a subsequence. An alternative possibility is to
discriminate using log odds ratios of subsequences calculated from the probabilities
obtained with a given model and those obtained with a suitable null model. The
candidate set then consists of subsequences with log-odds scores exceeding a given
threshold, that can be chosen to optimize the classification performance with respect
to a golden standard. The classification performance can be evaluated using a confu-
sion matrix consisting of true positives, false positives, true negatives and false nega-
tives. For gene finding, annotation in terms of correctly predicted residues, correctly
predicted start codons or correctly predicted stop codons are the typical options. Per-
formance measures based on accurate prediction of stop codon position are the most
interesting, since discovery of previously unknown genes is more interesting than cor-
rectly annotating the starting position of an already known gene. Due to the tradeoff
between sensitivity and specificity, a useful tool to evaluate how models compare is
a receiver operator characteristics (ROC) curve [55]. ROC curves are a plot of sen-
sitivity vs true positive rate over all discrimination threshold values. The procedure
for gene finding used in Paper I and Paper II have been to divide all potential ORFs
sequences into a positive set (golden standard) and a negative set. Confusion matri-
ces and prediction performance metrics are then calculated for all observed log odds
values of the positive set as thresholds. If only a single confusion matrix is to be
reported, a suitable choice is the one that maximizes the difference between true pos-
itive rate and false positive rate, corresponding to the intercept of the ROC curve with
the parallel to the no-discrimination line (the ascending diagonal). The area under
the curve (AUC) value [56] of the ROC curve is a useful summary of the classifi-
cation performance over all thresholds for general comparisons of model prediction
performance.
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Hidden Markov Models in PRISM

HMMs are generative probabilistic sequence models. HMMs are characterized by
a set of transition probabilities for parsing between unobserved states and a set of
emissions probabilities of emitting characters from those unobserved/hidden states.
The generation of the state and observed sequence is a Markov process in the sense
that the probability of being in a certain state is independent from the entire sequence
up to that point.

HMMs were originally introduced by Baum and Petrie in 1966 [57], and have been
widely applied [58]. A number of specific types of HMMs have been developed
within biological sequence analysis that express the special functional constraints act-
ing on biological molecules. These models include profile HMMs[59], pair HMMs
[3] and more complicated models such as phylo HMMs[60, 61], coalsecent HMMs[62,
63], input-output HMMs[64] and recombination HMMs[65]. Within the past decades
HMMs have been used for incorporating sequence signals for gene finding [6], se-
quence alignment [3], RNA structure prediction [66] protein structure prediction [67]
and phylogenetic/population genetic inferences [68, 62].

The success of HMMs is due to efficient algorithms that can be used for machine
learning tasks given a dataset of sequences. These can be used to infer the most
probable parameters of the model given the data (the Baum-Welch algorithm [69])
and inferring the most probable annotation of the data given a parameterized model
(the Viterbi algorithm [48]) [58]. The specific HMM machine learning algorithms are
subsumed by the corresponding PRISM algorithms already described.

HMMs can be interpreted as instantiations of probabilistic graphical models (i.e. as
dynamic bayesian networks [70]) as stochastic transformational grammars [71] (i.e.

as stochastic regular grammars), and as stochastic automata [72] (i.e. as stochastic
Moore machines [73] - a type of probabilistic finite state automatons).

An HMM is formally defined as a tuple (S,A,T,E) containing a set of states S =

s1,s2, . . . ,sm, an alphabet of emitted characters A = a1,a2, . . . ,at , a set of transition
probabilities between states T = {tkl},k, l = 1, . . . ,m and a set of emission probabili-
ties of the characters in the alphabet E = {ek(a j)},k = 1, . . . ,m, j = 1, . . . , t. (i.e. the
parameters θ = {T,E}). States that do not emit characters are termed silent states,
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e.g. the begin state β and the end state ε used for modeling the initialization and ter-
mination of a sequence. Given a sequence X = x1,x2, . . . ,xn of characters in A and
a path Π = π1,π2, . . . ,πn of states in S, the transition probabilities tkl are defined for
position i and states k, l in S, as:

tkl = P(πi = l | πi−1 = k) (5)

the emission probabilities ek(a) are defined for position i, state k in S and character a

in A, as:
ek(a) = P(xi = a | πi = k) (6)

and the joint probability of observing the sequence X and the path Π under the pa-
rameters θ is:

Pθ(X ,Π) = tβπ1

n

∏
i=1

eπi(xi)tπiπi+1 (7)

where πn+1 = ε.

PRISM HMMs consists of a collection of values/2 predicates that defines random
variables and their outcome spaces, and recursive structures that define the relations
of the observable data and the parameters.

An observable sequence is given as a list and the recursive structure corresponds to
the factorization scheme of equation (7).

The basic PRISM model consists of:

• values predicates that define the random variables and their outcome spaces

• an initiation rule that defines the predicate (model) that relates the observable
data and the central recurrence relation.

• A recursion clause that defines how the random variables are related to each
other and to the observable data at each recurrence step, defining the structure
of the model.

• A termination clause (typically using a recursion fact) defines the conditions
for stopping the recursion and completing the model.

Figure 4 gives the (fully executable) source code example of a simple two-state HMM
that can parse and generate DNA sequences.
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% Transition Probabilities (eqn. 5):

values(transition(_),[state(1),state(2),end]).

% Emission Probabilities (eqn. 6):

values(emission(_),[a,c,g,t]).

% Initiation:

model(Observables):-

msw(transition(begin),Next_state),

recursion(Next_state,Observables).

% Recursion (eqn. 7):

recusion(state(S),[Symbol | Rest]):-

msw(emission(S),Symbol),

msw(transition(S),Next_state),

recursion(Next_state,Rest).

% Termination:

recusion(end,[]).

19

Figure 4: PRISM source code of a two-state fully connected standard HMM. Note
the close correspondence between the PRISM source code, the structure of equations
5-7 and the graphical model depicted in Figure 5.
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Figure 5: Graphical presentations of HMMs. Square nodes are the hidden state nodes
and the circled nodes are the emitted symbols. Dotted arrows are the transition prob-
abilities and fully drawn arrows are emission probabilities. (a) Finite State Machine
depiction of standard HMM showing the sequence of states and sequence of emit-
ted symbols. (b) Graphical Model depiction of standard HMM with a hidden state
variable Si and a emission variable Xi, begin and end states not shown.
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PRISM HMM Variants for Biological Sequence Analy-
sis

The following section describes a number of variants and extensions of standard sin-
gle sequence HMMs that can be used directly for modeling biological sequences,
and/or illustrate principles of sequence modeling for biological sequence analysis.
Model structures that have been developed for one type of models can readily be
transferred to another type of model.

For more elaborate details and examples on how the models are used for biological
sequence analysis tasks I refer to Papers I-III.

Markov Chains

By omitting the hidden state sequence and conditioning the emissions on the pre-
vious emission we obtain an ordinary (first order) Markov chain [74], that is given
by:

Pθ(X) =
n

∏
i=1

P(xi = ai | xi−1 = ai−1) (8)

Even simpler, a zeroth order Markov chain that corresponds to an independently and
identically distributed (IID) sequence model is given by:

Pθ(X) =
n

∏
i=1

P(xi = ai) (9)

whereas a d-ordered inhomogeneous Markov chain is given by (adding d extra ”de-
pendencies”):

Pθ(X) =
n

∏
i=1

P(xi = ai | xi−1 = ai−1, . . . ,xi−d = ai−d) (10)

With the introduction of the hidden states/latent variables, the notion of higher order
becomes somewhat less well defined. For a first order HMM, the emissions and
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transitions only depend on the present state:

Pθ(X ,Π) = P(π1 = k1 | β)
n

∏
i=1

P(xi = ai | πi = ki)P(πi+1 = ki+1 | πi = ki) (11)

(corresponding to the HMM example in figure 1.4.). For a single state zeroth order
HMM, the emissions do not depend on the state, and the HMM effectively becomes
a zeroth order Markov chain:

Pθ(X ,Π)=P(π1 = k1 | β)
n

∏
i=1

P(xi = ai)P(πi+1 = ki+1 | πi = ki)=
n

∏
i=1

P(xi = ai) (12)

The primary use of simple Markov chain like models in the work described here have
been as null models for calculating log odds ratios for the models used for capturing
protein coding potential in Paper I.

Mixed Memory HMMs

In mixed memory HMMs both emissions and transitions can be conditioned on pre-
vious states or previous emissions [75]. For a second order HMM there are the fol-
lowing four possibilities (that adds an extra term from the immediate vicinity of the
present state/emission): Emissions conditioned on present state and previous emis-
sion:

Pθ(X ,Π) = P(π1 = k1 | β)
n

∏
i=1

P(xi = ai | πi = ki,xi−1 = ai−1)P(πi+1 = ki+1 | πi = ki)

(13)

Emissions conditioned on present state and previous state:

Pθ(X ,Π) = P(π1 = k1 | β)
n

∏
i=1

P(xi = ai | πi = ki,πi−1 = ki−1)P(πi+1 = ki+1 | πi = ki)

(14)
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Transitions conditioned on present state and previous state:

Pθ(X ,Π) = P(π1 = k1 | β)
n

∏
i=1

P(xi = ai | πi = ki)P(πi+1 = ki+1 | πi = ki,πi−1 = ki−1)

(15)
And lastly, transitions conditioned on present state and present emission:

Pθ(X ,Π) =P(π1 = k1 | β)
n

∏
i=1

P(xi = ai | πi = ki)P(πi+1 = ki+1 | πi = ki,xi = ai) (16)

Obviously, a large number of possible different conditioning schemes are available
with even modest numbers of extra terms. Figure 6a gives a schematic presentation
of a mixed memory HMM where the transitions are conditioned on the previous two
states and the emissions are conditioned on the present state, the previous two states
and the previous two emissions. Higher ordered HMMs with emissions conditioned
on (a fixed number of) previous emissions have been used as the underlying proba-
bilistic model for the Genemark gene finder [76]. The large set of different encodings
of dependencies in the data available from specific combinations of the different con-
ditioning schemes offers alternative ways to capture the sequence characteristics (e.g.

codon usage and the presence of start and stop codons with the same numbers of free
parameters). A number of such model structures and how they compare in terms of
classification performance on prokaryotic gene finding is treated in Paper I.

The general principle of mixed memory-ness can easily be extended to more compli-
cated models such as SCFGs or SCFG-like HMMs or any of the other examples of
HMM based models presented here (e.g. see the mm scfg hmm.psm example in the
Appendix).

Multi Sequence HMMs

Ordinary first order HMMs with a single state chain and a single emission chain can
be extended to a single state chain and two emission chains, i.e.:

Pθ(X ,Y,Π) = P(π1 = k1 | β)
n

∏
i=1

P(xi = ai,yi = bi | πi = ki)P(πi+1 = ki+1 | πi = ki)

(17)
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The two emission chains can be composed from the same alphabet or from different
alphabets. This can be achieved either as two independent emissions from a given
state or as emissions of two-tuples from a given state. Figure 6b gives a schematic
presentation of a two-sequence double HMM. Two sequence HMMs can be used for
supervised training by emitting two-tuples containing the ordinary emitted symbols
and the hidden state, with each member of the tuples going into separate sequences.
The first sequence is a regular emitted sequence and the other sequence corresponds
to an annotation of the first sequence. Since the parameter values (the emission and
transition probabilities) of a single and a two- sequence HMMs are identical, the val-
ues can be exported from a two-sequence annotation model trained on fully annotated
data and imported into a single sequence model for decoding. This principle is used
in Paper III for training two-sequence SCFG-like HMMs used for RNA secondary
structure modeling. Three-sequence HMMs can be produced straightforward using
the same principles as for the two-sequence HMMs.

The use of two-sequence HMMs for supervised learning can easily be extended to
multi-sequence HMMs used for supervised learning with multiple annotations.

Indel HMMs

Pair HMMs are two-sequence HMMs with a match state m that emits to both se-
quences 1 and 2, and indel states x (that only emits to sequence 1) and y (that only
emits to sequence 2), either with the same or with different emission probabilities
[3].

Pair HMMs can be used for pairwise alignment [3]. A schematic presentation of a
pair HMM is given in Figure 6e, and an example of the PRISM code of a pair HMM
is given in the Appendix (pair hmm.psm).

A possible extension of pair HMMs are triple HMMs i.e. three-sequence HMMs with
indel states (see triple hmm.psm example in the Appendix).

Potential applications for triple HMMs includes examining iterative refinement based
multiple alignment with fewer (potentially better) steps than iterative refinement based
multiple alignment using pairwise alignments (More generally, a comparison of pair
HMM and triple HMM performance on iterative multiple alignment could be used to
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investigate the trade-off between the number of iterations and the complexity of each
iteration common to all iterative approaches).

Another extension is to combine codon models and/or length modeling sub-models
into pair HMMs for generalized pair HMMs [77] that are specifically tailored for
aligning protein coding regions or more elaborate gene structure compositions (e.g.

pair codon hmm.psm in the Appendix).

The principles of constructing insertion and delete states can also be used for SCFGs
or SCFG-like HMMs for aligning RNA structures (e.g. pair scfg.psm in the Ap-
pendix). Additionally, insertion and delete states can be used for profile HMMs [59]
and for modeling sequencing errors in gene finders.

In Paper II we use a simple HMM model with a delete state to model the reading
frame sequence of genes in a genome where the delete state is used to filter a set of
predictions from another gene finder. Figure 6d depicts an HMM with a single delete
state.

HMMs with Acyclic Directed Phase type Length Modeling

Length modeling is a significant contribution to gene finding, to indel and match
lengths in alignments and for RNA secondary structure components. Very effec-
tive length modeling can be achieved with Acyclic Discrete Phase type models [78]
(e.g. used for gene finders Easygene [19] and Agene [20]. ADHP modeling can be
achieved through breaking a single state up into a number (typically three) states that
share transition probabilities. Generic ADPH code can be included in all of the above
mentioned models. Figure 6f depicts the structure of an ADPH HMM. An example
of the effect of length modeling on gene finder model structure performance can be
found in Paper I.

The principles of ADPH length modeling can be transferred to other HMM based
models or incorporated into sub-model structures (e.g. adph scfg hmm.psm in the
Appendix)
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SCFG-like HMMs

SCFGs are transformational grammars that use production rules for generating se-
quences that contains palindromic subsequences [71]. SCFGs have been used to
model the palindromic sequences arising due to the long distance base-pairing in-
teractions in stem regions that are part of RNA secondary structures [79, 80, 81] (see
scfg.psm in the Appendix for an example of an RNA SCFG model).

SCFG-like HMMs can be obtained by changing one of the lists of a two-sequence
HMM into a stack (a last in - first out data structure). Emissions can be from states,
from the stack or by emptying the stack onto the emitted sequence. A full SCFG
model is obtained if both states and emissions can be added to the stack. However,
all canonical RNA secondary structures can be modeled by SCFG-like HMMs where
only right hand sides of emission tuples are added to the stack, given the right pro-
duction rules. This produces a much simpler model that is not as computationally
demanding as SCFGs. Paper III explores the use of SCFG-like HMMs for modeling
RNA secondary structures.

Factorial HMMs

Factorial HMMs are inverse two-sequence HMMs. They are composed of a single
emission sequence X = x1,x2, . . . ,xn and two hidden state chains with paths Π =

π1,π2, . . . ,πn and Γ = γ1,γ2, . . . ,γn given by:

Pθ(X ,Π,Γ) = (18)

P(π1 = k1,γ1 = l1 | β)
n

∏
i=1

P(xi = ai | πi = ki,γi = li)P(πi+1 = ki+1 | πi = ki)P(γi+1 = li+1 | γi = li)

Factorial HMMs were introduced in [82] and can be used for modeling overlapping
features. Figure 6c shows the basic structure of a factorial HMM. (For a general exam-
ple see factorial hmm.psm, for an example of a factorial model of overlapping reading
frames see mm frames.psm, both in the Appendix). Extensions of factorial HMMs

28



to factorial SCFGs or SCFG-like HMMs can potentially be used for modeling over-
lapping RNA secondary structures (e.g. riboswitches, see factorial scfg hmm.psm in
the Appendix).

Factorial SCFG/SCFG-like codon HMM models with a codon HMM structure in one
state chain and a SCFG/SCFG-like HMM in the other chain are natural models of
overlapping RNA structures and protein coding sequences. For SCFG/codon HMM
models, coordination of the two model types is achieved by the HMM chain ”waits”
when the SCFG/SCFG-like HMM is in non-terminal states and only emits when the
SCFG/SCFG-like HMM is in a terminal state (e.g. scfg mrna.psm in the Appendix).
In SCFG-like HMM/codon HMM models, coordination of the two model types fol-
lows from the ”emissions” from nonterminals to the stack and emissions back again
from the stack to the observed sequence. A factorial SCFG-like HMM/HMM as a
model of mRNAs is treated in Paper III.

Repeat HMMs

Repeat HMMs are HMMs with two lists. The first list is a stack like in the SCFG-
like HMMs. The second list is a queue that the stack empties into. Emptying the
queue results in a repeated sequence. This model is computationally very demanding
but this can be overcome by limiting the size of the stack (e.g the repeat hmm.psm
example in the Appendix)

The approach is related to repeat parsing with probabilistic regular expressions [83].
With the HMM formulation one should easily be able to incorporate the ADPH length
modeling, mixed memory transitions and emissions, multi-sequence models or other
model schemes described above.
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ADPH HMM. (d) Factorial HMM. (e) Delete HMM. (f) Pair HMM.
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Paper Summaries

In this last section of the introduction I briefly summarize the included papers.

Paper I

Hidden Markov models (HMMs) are classic models of protein coding potential for
use in gene finding. Single sequence HMMs can be constructed in a large num-
ber of different structures determined by different conditioning schemes. However,
surprisingly few fundamentally different HMM structures have so far been used for
modeling protein coding potential.

In Paper I, we develop and test different HMM structures for modeling protein cod-
ing potential. The models include the two most common model structures that capture
protein coding potential: a structure with 5th ordered emissions and one with inhomo-
geneous 3-periodic Markov chain like emissions, as well as two new types of struc-
tures consisting of a model based on a amino acid hidden state sequence and model
based on a mixed memory HMM. Also included is a simple IID Markov chain-like
model used as null model. All models have been constructed in single state variants,
three state variants both with and without ADPH length modeling.

The new model structures perform better than the previously used structures in terms
of both statistical information criteria and prediction performance, suggesting that
they could serve as potential improvements for other HMM based models that incor-
porates protein coding potential.

Paper II

Gene finding is typically based on probabilistic sequence models at the intra-gene
level.

In paper II, we introduce a new class of probabilistic models of a genome level se-
quence signal that is interesting from a probabilistic modeling perspective, a genome
organization perspective and for the gene finder development community. We use
a probabilistic logic programming framework to develop and test our models, that
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adds much needed speed and flexibility in discovering novel types of probabilistic
models for biological sequence analysis. The present work connects to previous uses
of probabilistic sequence models within biological sequence analysis - especially the
use of Hidden Markov Models used in contemporary gene finders for modeling the
sequence constraints acting on the nucleotide composition of genes.

In the paper we present a probabilistic sequence model at the inter-gene level. The
model consists of a simple single sequence HMM model with a delete state. The
model parses the reading frame of a gene and the score attributed by a gene finder.
The model produces a parse through gene candidates corresponding to the gene finder
score and reading frame sequence.

The model was tested on E. coli predictions from state-of-the-art gene finders Gene-
mark, Glimmer and Prodigal, trained on a number of increasingly distant prokaryotic
genomes. The gene sequence signal appears to be remarkably widespread, with im-
proved performance over Genemark, Glimmer and Prodigal using models trained on
Escherichia, Salmonella, Legionella, and Bacillus genomes. Performance was not
improved with a model trained on an Archean genome (Thermoplasma), indicating
the potential limits of the conservation of the gene-sequence signal.

In conclusion, our approach demonstrates that delete-HMM based models is a valu-
able method for filtering gene finder candidates into a coherent set with respect to the
sequential composition of reading frames of the genes in a genome.

Paper III

RNA sequences are hard to handle due to the long-distance interactions of the base
pairing of stem regions. Current method for RNA secondary sequence structure is
either based on Minimum Free Energy approaches or on Stochastic Context Free
Grammars.

In Paper III we introduce probabilistic logic programming as a platform for devel-
oping, testing and expanding models for RNA sequence analysis. We introduce and
compare HMM based RNA models with SCFG based RNA models in terms of com-
plexity, learn statistics and prediction performance using cross-validation of a small
dataset of short RNA sequences. We find that RNA HMMs are equivalent to the
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RNA SCFG models in terms of prediction performance, have better complexity for
learning, much worse complexity for decoding and that both RNA HMM and RNA
SCFG models can be improved beyond the prediction performance of RNAfold us-
ing mixed memory model structures. Lastly we provide a number of extensions of
the single sequence secondary structure models for pairwise alignment, pseudo knots
and kissing hairpins, and overlapping RNA structures and protein coding sequences
(mRNAs).

We conclude that probabilistic logic programming is a valuable addition to the ex-
isting toolset for prototyping and testing models that can form the basis of improved
bioinformatic tasks involving RNA sequences.
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Perspectives

Natural extensions of the current work include:

• Benchmarking models that so far only have been prototyped.

• Include more signals like ribosome binding sites and 3’ untranslated regions
(3’ UTRs) signals in the codon models.

• Integration of SCFG-like HMM sub-models into codon models for modeling
e.g. structural RNAs in 3’ UTRs.

• Include splice site signal e.g. using SCFG-like HMM sub-models into the
codon models for eukaryotic gene finding.

• Develop a systematic exploration of model space e.g. using genetic algorithms.

• Using the reading frame sequence model presented in Paper II to examine the
distribution of parameters across a large number of prokaryotic genomes, to see
how the sequence of genes of a genome is phylogenetically distributed.

• Develop and evaluate generalized pair HMM models that use codon structures
and ADPH length modeling over indels and match regions to make specific pair
wise alignments of protein coding sequences.

• Test the use of generalized triple HMMs for iterative refinement of multiple
alignments compared to generalized pair HMMs.

The compactness of viral genomes and the abundance of overlapping genomic fea-
tures therein, make them obvious targets for the more elaborate and computationally
taxing models. The combination of model features presented in this work should be
sufficient for capturing the most important constraints acting on the sequential com-
position of viral genomes. One very interesting possibility would be to use such
models to try to reliably predict how viral genome sequences evolve given the large
number of different constraints acting on them.
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Conclusion

The overall aim of the present PhD project has been to develop, test and benchmark
probabilistic logic HMM variants for biological sequence analysis using a unified
framework consisting of the probabilistic logic programming language and machine
learning system PRISM.

The modeling efforts have been based on HMMs due to their relative simplicity,
their abundant prevalence in computational biology and elsewhere, and their inher-
ent sequential nature that corresponds nicely to the inherently sequential nature of the
molecules of life.

The gradual extension of HMMs have lead to a number of models ranging from
mixed memory HMMs and other single sequence HMM model structures for mod-
eling protein coding potential, indel HMMs for modeling the sequence of genes
in a genome, double HMMs for supervised learning, generic ADPH length model-
ing, factorial HMMs for overlapping features, SCFG-like HMMs for RNA secondary
structure modeling, pair and triple HMMs and SCFG like HMMs for alignment and
complicated combined models like the mixed memory factorial HMM/SCFG-like
HMMs with ADPH length modeling over structural components for modeling mR-
NAs.

The expressive power and generic machine learning algorithms of PRISM have en-
abled the development and testing of models consisting of novel combinations of
model features that it would otherwise have been exceedingly difficult to explore
(e.g. the mRNA models), yet alone to compare in terms of model fit, computational
complexity and prediction performance without the ad-hoc heuristics and implemen-
tation differences, that otherwise cloud the differences and similarities between the
general underlying model types.

The present project have proved the feasibility of, and helped establish the use of,
probabilistic logic programming for biological sequence analysis. During the project,
a number of novel probabilistic models and approaches for evaluating and applying
such models for various tasks within bioinformatics have been developed. The project
has laid out directions that will hopefully lead to further contributions to biological
sequence analysis and bioinformatics in general.
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ABSTRACT

Motivation: Probabilistic logic programming offers a powerful
way to describe and evaluate structured statistical models. To
investigate the practicality of probabilistic logic programming for
structure learning in bioinformatics, we undertook a simplified
bacterial gene-finding benchmark in PRISM, a probabilistic dialect of
Prolog.
Results: We evaluate Hidden Markov Model structures for bacterial
protein-coding gene potential, including a simple null model
structure, three structures based on existing bacterial gene finders
and two novel model structures. We test standard versions as well
as ADPH length modeling and three-state versions of the five model
structures. The models are all represented as probabilistic logic
programs and evaluated using the PRISM machine learning system
in terms of statistical information criteria and gene-finding prediction
accuracy, in two bacterial genomes. Neither of our implementations
of the two currently most used model structures are best
performing in terms of statistical information criteria or prediction
performances, suggesting that better-fitting models might be
achievable.
Availability: The source code of all PRISM models, data and
additional scripts are freely available for download at: http://github
.com/somork/codonhmm.
Contact: soer@ruc.dk
Supplementary information: Supplementary data are available at
Bioinformatics online.

Received on July 7, 2011; revised on December 13, 2011; accepted
on December 19, 2011

1 INTRODUCTION
Protein coding potential has long been recognized as the most
important signal for automated gene finding (Fickett and Tung,
1992; Staden and McLachian, 1982; Staden, 1984). The introduction
of Hidden Markov Models (HMMs) for gene finding by Krogh
et al. (1994a) sparked the production of a large number of HMM-
based, single-sequence gene finders that capture this signal and other
signals (Besemer et al., 2001; Burge and Karlin, 1997; Henderson
et al., 1997; Korf, 2004; Krogh, 1997; Kulp et al., 1996; Larsen and
Krogh, 2003; Lomsadze et al., 2005; Lukashin and Borodovsky,
1998; Majoros et al., 2003, 2004; Munch and Krogh, 2006; Reese
et al., 2000; Shmatkov et al., 1999).

∗To whom correspondence should be addressed.

Restricting our survey to the simplest case of bacterial gene-
finding, the basic codon structure of protein-coding genes has so
far been modeled using the following structures:

The Ecoparse gene finder introduced by Krogh et al. (1994a)
is based on a standard HMM architecture with a silent state
governing codon distributions via transitions to 64 separate three
state submodels where each state of the codon submodels had
fixed emissions of a single character. Stormo and Haussler (1994)
introduced the Generalized Hidden Markov Model (GHMM), a
type of HMM with duration offering the possibility of emissions
of sequences rather than just characters from each state (Rabiner,
1989). Most single sequence de novo gene finders have since been
based on GHMM’s using either emissions of codons according
to a three-periodic inhomogeneous Markov Chain (Besemer and
Borodovsky, 1999; Borodovsky and McInich, 1993) or using
higher ordered emissions, typically fifth ordered (Lukashin and
Borodovsky, 1998) or variable ordered emissions (Delcher et al.,
1999; Salzberg et al., 1998). The single character emitting HMM
based gene finder models has subsequently been elaborated by also
using higher ordered emissions (Krogh, 1997), as well as using
Acyclic Discrete Phase type length modeling (Bobbio et al., 2003),
in Easygene andAgene (Larsen and Krogh, 2003; Munch and Krogh,
2006).

A large number of different HMM architectures have been
developed during the recent decades including profile-HMMs
(Krogh et al., 1994b), pair-HMMs (Durbin et al., 1998), input–
output HMMs or transducers (Bradley and Holmes, 2007), factorial-
HMMs (Ghahramani and Jordan, 1996) and mixed memory HMMs
(Saul and Jordan, 1999). These models each combine different
numbers of emitted sequences, hidden state chains, delete and insert
states and different conditioning schemes for emission probabilities
and transition probabilities. Employing as efficient model structures
as possible for biological sequence analysis is paramount for coping
with the vast amounts of sequence data currently being generated.
The structure space of possible different combinations is large and
exploring it for efficient models for biological sequence analysis is
limited by the time-consuming development of dedicated machine
learning algorithms and benchmarking procedures. Additionally,
efforts to directly compare models are clouded by implementation
differences and the heuristic fine-tunings developed through the
decades that optimize the models in terms of the sequence analysis
task at hand. To overcome these challenges, we use the probabilistic
logic programming language and machine learning system PRISM.
PRISM offers a generic representation of a large number of
diverse model types that subsumes HMMs, SCFGs and Bayesian
Networks. The PRISM machine learning system uses a general set
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of algorithms to perform machine learning tasks for all models (Sato
and Kameya, 2001). Using this approach, we can directly compare
the performance of the underlying model structures of various
gene finders without differences due to training procedures, the
inclusion of different kinds of additional signals, pre/post-processing
of data or other implementation differences. The generalized nature
of PRISM programs allows the formulation of all types of model
structures previously used as well as non-standard conditioning
schemes (such as mixed memory HMM’s) and the ability to export
those conditioning schemes to other types of models [such as pair-
HMMs, factorial-HMMs and Stochastic Context Free Grammars
(Christiansen et al., 2011)]. An alternative approach for using
PRISM for evaluating gene finder programs based on artificially
generated datasets is given in Christiansen and Dahmcke (2007).

2 APPROACH
To keep things as simple as possible, our preliminary benchmark
uses the well-studied test case of bacterial gene finding. We use
Escherichia coli as a test bed for our model structure comparisons,
due to the availability of experimentally verified annotations and
textbook gene structures. To test the robustness of the performance
of the models, we have duplicated the experiments using a distantly
related (and less well annotated) Bacillus subtilis genome. We
evaluate the performance of the models based on learning statistics
from learn sessions on the complete experimentally verified E.coli
dataset as well as on prediction performances based on 5-fold cross-
validation experiments for both genomes. In order to compare the
performances of different gene finder model structures, we have
implemented the first HMM-based gene finder model structure
(ecoparse), the two most common current model structures that
capture protein coding potential: a structure with fifth ordered
emissions and one with inhomogeneous three-periodic Markov
chain like emissions, as well as two new types of structures
consisting of a model based on a amino acid hidden state sequence
and a model based on a mixed memory HMM. In addition to the
basic model structures, we have also included two straightforward
extensions of the model structures: the first extension involves
length modeling, an important feature of contemporary gene finders.
Since the codon usage of highly expressed, normally expressed and
laterally transferred/phage genes are known to differ (Blattner et al.,
1997), the second extension are three-state versions of the models
that encode these three separate classes of genes.

3 METHODS

3.1 PRISM
PRISM is a logic programming language and machine learning system (Sato
and Kameya, 2001). The earliest general-purpose engine for bioinformatics
automata was implemented in Prolog by Searls and Murphy (1995); PRISM
is effectively a probabilistic dialect of B-prolog, allowing a pure declarative
approach that unifies the description of model and data. The distinguishing
feature of PRISM is the build-in predicate msw/2, that represents discrete
random variables. This allows Prolog’s abducible facts to be assigned
probabilistic parameters. Executing a query using a tabled variant of the
prologs SLD resolution produces a tabled search tree—an explanation
graph (corresponds to a dynamic programming matrix), enabling efficient
parameter estimation using a generic expectation–maximization algorithm
running on explanation graphs as reviewed in Sato (2009).

The usefulness of HMM’s is based on a small set of algorithms for
‘decoding’ a sequence, i.e. calculating the most probable path �∗ and its
probability P(�∗)(the Viterbi algorithm), the total probability of a sequence
(the Forward algorithm or the Backward Algorithm) and the posterior
probability that a specific character at a given position is emitted by a certain
state (a combination of the Forward and Backward algorithms) and training
models on data (the Baum–Welch algorithm) (Rabiner, 1989).

These algorithms are subsumed by the graphical EM algorithm that
PRISM runs on the proof tree-like structures generated by a PRISM model,
which means that as soon as one has formulated a PRISM model, one can
parameterize it via EM from training data, calculate various probabilities
of interest, use the parameterized model to decode data as well as generate
simulated data from the parameterized model (Sato et al., 2010). In addition
to the standard EM algorithm and a Deterministic Annealing EM algorithm
(Ueda and Nakano, 1998) that produces estimates of the maximum likelihood
parameter values of a model, PRISM also offers a variational Bayes EM
algorithm (Sato et al., 2008) and a DeterministicAnnealing Variational Bayes
EM algorithm (Katahira et al., 2008).

3.2 HMMs
An HMM is fully characterized by a set of transition probabilities between
unobserved states and a set of emission probabilities of observed characters
emitted from states. The structure of an HMM can be identified from the
factorization scheme used to calculate the joint probability P(O,�) of an
observed sequence O and a hidden state path �. Given an observed sequence
O=x1,x2,...,xn and a path �=π1,π2,...,πn, the transition probabilities akl

are defined for position i and states k and l, as:

akl =P(πi = l |πi−1 =k), (1)

and the emission probabilities ek(b) are defined for path �, character x in
position i, state k and character b, as:

ek(b)=P(xi =b |πi =k). (2)

The joint probability of observing the sequence X and the path � is:

P(X,�)=a0π1

n∏

i=1

eπi (xi)aπiπi+1 . (3)

The PRISM equivalent of a HMM is a collection of “values” predicates,
declaring the values that can be taken by various random variables. These
random variables represent the outcome spaces for probabilistic transitions
and emissions. A recursive structure, with predicates for initiation and
termination, connects these random variables to the state and emission
sequences, specifying the partitioning scheme of the joint probability. The
following is the complete source code of a 2 state DNA HMM (% marks
comments)

% parameters:
values(transition(state(begin)),[state(1),state(2),end]).
values(transition(state(1)),[state(1),state(2),end]).
values(transition(state(2)),[state(1),state(2),end]).
values(emission(state(1)),[a,c,g,t]).
values(emission(state(2)),[a,c,g,t]).

% initiation:
model(Observables) :-

recursion(state(begin),Observables).

% recursion structure:
recursion(state(Si),[Xi|Rest]) :-

msw(emission(state(Si)),Xi),
msw(transition(state(Si)),NS),
recursion(NS,Rest).

% termination:
recursion(end,[]).

This fully functional PRISM program can be parameterized, decoded to
or sampled from using built-in PRISM functions. For example, to fit the
model to a sequence ‘aaagt’, one could use learn([model([a,a,a,g,t])]).; to
Viterbi-decode that same sequence, viterbif(model([a,c,g,t])).; and to sample
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a sequence into samples once, get_samples(1,model(X),Samples). Since the
outcome spaces are shared for transitions and emissions a more compact
program would be the replacement of the parameters section with:

values(transition(state(_)),[state(1),state(2),end]).
values(emission(state(_)),[a,c,g,t]).

where the underscore denotes ‘the anonymous variable’ which is simply
a placeholder for any logic variable. Note that except for the values
and msw predicates that are special PRISM predicates, the names of the
remaining predicates and variables are arbitrary and replacing them with
single letters would result in a program with the exact same properties
(consisting of a single line of code with 138 characters including 5 white
spaces).

The elegant brevity of the source code for a HMM given as a PRISM
program and its close structural resemblance with the model architecture
makes it very easy to produce novel models via small changes, e.g. changing
the emission probabilities to:

values(emission(_,_),[a,c,g,t]).

and the recursive formula to:

recursion(state(Si),P1,[Xi|Rest]): -
msw(emission(state(Si),P1),Xi),
msw(transition(state(Si)),NS),
recursion(NS,Xi,Rest).

transforms a standard HMM into a second-order HMM with emissions
conditioned on the present state and the previous emission, whereas
changing to:

values(transition(_,_),[state(1),state(2)]).

with

recursion(state(Si),P1,[Xi|Rest]):-
msw(emission(state(Si)),Xi),
msw(transition(state(Si)),P1),NS),
recursion(NS,Xi,Rest).

is a second order like mixed memory HMM with transitions conditioned on
present state and previous emission. In the following, we will use such model
extensions to develop novel model structures suitable for modeling protein
coding potential.

3.3 Models of protein coding potential
• iid.psm is an IID like zeroth order emission HMM with a single

state that emits over the alphabet of {acgt}. The model captures
base frequencies and has a geometric length distribution. This type
of model has traditionally been used as null model or as a model of
intergenic sequences.

• mc5.psm is a fifth order Markov chain like HMM, with a single state
and emissions conditioned on state and five previous emissions. The
model captures di-codon preferences of coding regions.

• i3pmc.psm is a inhomogeneous three-periodic Markov chain with
three sequential states with the emission of the first state conditioned
on state, the emission of the second state conditioned on state and the
previous emission, and the emission of the third state conditioned
on state and the two previous emissions. All states emits from
{acgt}.

• eco.psm the ecoparse architecture with three consecutive states with
single symbol emissions for each codon combination and a single
silent state to control the codon distribution.

• aa.psm has 20 hidden states corresponding to the 20 amino acids that
emits synonymous codons. The hidden state path corresponds to the
translated amino acid sequence of the encoded protein. aa models

(a)

(c)

(d)

(f) (e)

(b)

Fig. 1. Graphical representation of the conditioning schemes of the
underlying structure of the models. (a) iid.psm; (b) eco.psm; (c) i3pmc.psm;
(d) mc5.psm; (e) aa.psm; and (f ) mm.psm. Squares represent the hidden
State(S), Previous State(PS) or Next State(S); circles represent emissions
(X) or past emissions (P). The dotted arrows are conditional transition
probabilities and the full arrows are conditional emission probabilities.

codon bias and amino acid sequence composition of the encoded
protein simultaneously. The model assigns higher probability to
synonymous than non-synonymous sequences, hence it is capable of
attaining higher likelihood if the genes have more similar amino acid
sequences than nucleotide sequences. The amino acid frequencies are
governed by transitions from a silent state.

• mm.psm is a three state mixed memory HMM (Saul and Jordan,
1999) with higher ordered transitions, i.e. with transitions conditioned
on the previous emissions. The model recognizes start and stop
codons via making the transition probabilities conditional on the
previous two and the present emission. Triplet emissions with first
position conditioned on state, second position conditioned on state
and previous emission and third emission conditioned on state and
previous two emissions.

All models (except iid.psm that is only used as null model) comes in
three variants: a standard version as outlined above, an Acyclic Discrete
Phase Type (ADPH) length modeling version, and a three-state version with
three separate states that cannot transition to each other (e.g. once there is
a transition to one of the states, the state path stays in that state until the
end state) that corresponds to the three classes of bacterial genes: highly
expressed genes, normally expressed genes and laterally transferred/phage
genes. ADPH versions are created via adding six lines of code to the models
and the three-state versions by adding two lines of code to the models. A
graphical presentation of the standard version model structures are given in
Figure 1.
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4 EXPERIMENTS AND RESULTS

4.1 Training data
The E.coli genome used is the Refseq NC_000913.2 wild-type K12
strain MG1665 genome (Blattner et al., 1997). The E.coli training
set comprise the 2413 experimentally verified E.coli MG1665 genes
from the ecocyc annotation (Keseler et al., 2009) with canonical start
and stop codons and no frameshift mutations. The complete verified
ecocyc training set comprises a total of 2.487.654 nucleotides. The
Bacillus training set used is the Refseq NC_000964 B.subtilis subsp.
subtilis str. 168 (Kunst et al., 1997). The complete Bacillus training
set comprise 4155 genes with canonical start and stop codons and
no frameshift mutations from the .gbk annotation (3.695.139 nt
in total). The E.coli test set comprises all 68.826 potential ORFs
from canonical start codon (ATG, GTG, TTG) to canonical stop
codon (TAA, TAG, TGA) with a length over 60 nt (13.554.717 nt
in total). The Bacillus test set comprises the equivalent 63.198
potential ORFs (11.438.079 nt in total). Training sets for all cross-
validation studies were produced by randomly assigning the genes
of the full training set into five subsets. The E.coli cross-validation
training sets contains ∼ 500 genes each (see Supplementary Material
for exact dataset sizes). Each cross-validation training sets were
removed from the test sets and golden standards for the prediction
performance evaluations. All sequence sets were converted to a
format compatible with the PRISM models, i.e. a collection of e.g.:
‘model([a,t,g,a,a,a,t,a,a]).’. Prediction performances were evaluated
using the complete training sets as golden standards.

4.2 Training algorithms
All models are written as .psm files (available in for download).
An additional prolog file default_setting.pl contains code for batch
execution and settings of learning modes. The models were trained
on the training datasets using learn with standard settings of VB-
EM [see default_setting.pl and Sato et al. (2010) for instructions
and other available options] with learning statistics and parameter
values stored in separate files. Viterbi probabilities were calculated
using viterbi.

4.3 Learning statistics
PRISM reports the following information relevant for model
selection: the size of the explanation graph, the size of the table
space used, the number of EM iterations, the total time of learning,
the number of parameters, the number of parameter instances and the
variational free energy values obtained after VB-EM learning.
The variational free energy score is an approximation of log of the
marginal likelihood (like the Bayesian Information Criterion), and
is explained in detail in Sato et al. (2008). Table 1 shows a summary
of the statistics from the learning sessions.

4.4 Prediction accuracy
Prediction accuracy was obtained using log-odds values obtained
from the Viterbi probabilities of all potential open reading frames
with a length over 60 nt for a given model and its null model
(iid.psm). The log odds scores of the potential ORFs sequence were
divided into a positive set (according to the golden standard) and a
negative set. Confusion matrices and prediction performance metrics
were calculated using all observed log odds scores of the positive set
as thresholds. In order to ensure that a choice of log odds threshold

Table 1. Learn Statistics of the different models trained on the entire E.coli
verified ecocyc dataset

Model Free Variational Graph Learn
parameters free energy nodes time

aa_s 507 −3.229×106 2.476 ×106 750
eco_s 67 −3.252 ×106 9.061 ×106 3024
i3pmc_s 64 −3.26 ×106 4.124 ×106 201
mc5_s 3139 −3.307 ×106 7.448 ×106 5
mm_s 127 −3.244 ×106 4.124 ×106 190

aa_3 1523 −3.211 ×106 7.428 ×106 4451
eco_3 203 −3.235 ×106 27.183×106 24 128
i3pmc_3 74 −3.257 ×106 12.371 ×106 492
mc5_3 9419 −3.307 ×106 22.343 ×106 25
mm_3 383 −3.228 ×106 12.371 ×106 528

aa_a 486 −3.245 ×106 16.433 ×106 3193
eco_a 67 −3.250 ×106 34.470 ×106 12 138
i3pmc_a 64 −3.26 ×106 24.646 ×106 597
mc5_a 3139 −3.306 ×106 49.572 ×106 15
mm_a 64 −3.26 ×106 24.646 ×106 621

Values reported includes the number of free parameters, the Variational Free Energy
score after learning, the number of nodes in the explanation graph, and the learn time
in minutes.

is not biased in favor of any particular model, the prediction
metrics example reported is the one that for each model maximizes
the difference between true positive rate (TPR) and false positive
rate (FPR), corresponding to the intercept of the ROC curve with
the parallel to the no-discrimination line. Performance measures
are all based on accurate prediction of stop codon position only,
since discovery of novel genes is more interesting than correctly
annotating the starting position of an already known gene. Prediction
performance was determined by TPR (sensitivity/precision), FPR
(Recall) and ROC curve area under the curve (AUC) value. AUC
values were calculated from the pairs of TPRs and FPRs using the
trapezoidal rule, which given the large number of points should be a
relatively close approximation (DeLong et al., 1988). Subsequently,
the significance of the ranking of the models based on AUC were
calculated through pairwise paired t-tests in R.

The receiver operator characteristics (ROC) curves from the E.coli
cross-validation experiments is given for the standard versions of
the models in Figure 2. (ROC curves for all the cross-validation
experiments are available in Supplementary Materials.)

Table 2 gives the average ROC optimized prediction
performances of the E.coli cross-validation experiments ±1 SD
as well as the average AUC values ±1 SD. ROC optimized
confusion matrices and prediction performances including match
coefficient and Mathews correlation coefficient are available in
Supplementary Materials. P-values of pairwise paired t-tests of the
ranking of the E.coli AUC values are given in Table 3. P-values
from pairwise paired t-tests of the prediction performance ranking:
three-state version > standard version > adph version, using
the E.coli AUC values are given in Table 4. The corresponding
tables from the Bacillus cross-validation experiments are given as
Tables 5–7. (P-values of pairwise paired t-tests of the ranking based
on variational free energy scores are available in Supplementary
Materials.)
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Fig. 2. E.coli cross-validation ROC curves for the standard models using
thresholds over all log odds values in the positive set. Notice that only the
area from 0.0–0.1 FPR and 0.9–1.0 TPR is shown.

Table 2. Prediction performances of the E.coli verified ecocyc cross-
validation experiments

Model TPR FPR AUC

aa 0.957 ± 0.004 0.045 ± 0.0 0.978 ± 0.001
eco 0.956 ± 0.002 0.047 ± 0.0 0.976 ± 0.001
i3pmc 0.95 ± 0.002 0.043 ± 0.0 0.975 ± 0.001
mc5 0.902 ± 0.002 0.062 ± 0.0 0.951 ± 0.003
mm 0.951 ± 0.001 0.044 ± 0.0 0.976 ± 0.001

aa_3 0.972 ± 0.002 0.042 ± 0.0 0.987 ± 0.0
eco_3 0.971 ± 0.007 0.046 ± 0.0 0.985 ± 0.002
i3pmc_3 0.959 ± 0.004 0.048 ± 0.0 0.979 ± 0.001
mc5_3 0.9 ± 0.004 0.064 ± 0.0 0.952 ± 0.002
mm_3 0.965 ± 0.003 0.046 ± 0.0 0.983 ± 0.002

aa_a 0.954 ± 0.003 0.044 ± 0.0 0.977 ± 0.001
eco_a 0.951 ± 0.005 0.044 ± 0.0 0.975 ± 0.001
i3pmc_a 0.947 ± 0.003 0.042 ± 0.0 0.974 ± 0.001
mc5_a 0.896 ± 0.005 0.064 ± 0.0 0.947 ± 0.002
mm_a 0.954 ± 0.005 0.045 ± 0.0 0.976 ± 0.001

Mean values ±1 SD.

5 RESULTS
The performance of the models both in terms of statistical fit ranked
as per the variational free energy value after training on the complete
training set and in terms of prediction performance evaluated
via cross-validation experiments suggests the following general
ranking: aa >= eco >= mm > i3pmc > mc5. Interestingly, the
model structures that performed the worst were the the two currently
most popular model structures: the fifth order Markov chain model
(mc5) and the three-periodic inhomogeneous Markov chain model
(i3pmc). With a single exception (mm), ADPH length modeling has
an averse effect on the prediction performance, whereas using the
three-state versions dramatically improved the performance of all
models. Even though the difference in prediction performance for the

Table 3. P-values from pairwise paired t-tests of the ranking of the standard
models of the AUC values of the ROC curves from the E.coli verified ecocyc
cross-validation experiments

> aa_ s/3/a eco_ s/3/a i3pmc_ s/3/a mc5_ s/3/a mm_ s/3/a

aa 2.048e-05 9.768e-06 2.095e-05 1.676e-05
eco 1 1.848e-06 3.612e-05 1.393e-05
i3pmc 1 1 4.526e-05 1
mc5 1 1 1 1
mm 1 1 1.586e-07 4.322e-05

aa_3 0.0727 0.0001077 1.857e-06 0.005065
eco_3 0.9273 0.005022 2.35e-05 0.2019
i3pmc_3 0.9999 0.995 1.1e-05 0.9887
mc5_3 1 1 1 1
mm_3 0.995 0.7981 0.01135 2.120e-06

aa_a 0.0001479 1.495e-05 3.621e-06 0.0001170
eco_a 0.9999 2.171e-06 3.826e-06 0.9988
i3pmc_a 1 1 4.879e-06 1
mc5_a 1 1 1 1
mm_a 0.9999 0.001164 6.347e-06 4.17e-06

For each of the model versions, values are reported for comparisons within class only.
Alternative hypothesis is that row entries are greater than column entries.

Table 4. P-values from pairwise paired t-tests of the ranking of the three-
state, standard and ADPH models of the AUC values from the E.coli verified
ecocyc cross-validation experiments

aa eco i3pmc mc5 mm

3>s 1.276e-05 0.001599 0.0004739 0.02713 0.0007062
s>a 0.01031 0.04478 0.03815 0.005672 0.5935

standard models is less pronounced for the B.subtilis experiments,
the general ranking of the models are still the same as for the E.coli
experiments.

6 DISCUSSION
The findings of this study have been based on very architecturally
simple models of protein coding potential only. We have used
bacterial gene finding as a test environment favoring a thorough
comparative test of the most prominent current single sequence
bacterial gene finder model structures. Our results are not directly
comparable to prediction performances of current state of the
art gene finders in absolute terms, since we do not employ the
heuristics that have been carefully developed through the last
decades. However, as more and more data amasses we need as
powerful models as possible. We propose that systematic testing
of underlying model structures in a language where the model is
foregrounded is a valuable approach to constructing reliable models
for real-world applications.

7 CONCLUSION
We have developed and tested a number of both new and existing
gene finder architectures for modeling protein coding potential in
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Probabilistic logic programs

Table 5. Prediction performances of the Bacillus cross-validation
experiments

Model TPR FPR AUC

aa 0.955 ± 0.002 0.056 ± 0.0 0.973 ± 0.001
eco 0.951 ± 0.006 0.053 ± 0.0 0.973 ± 0.001
i3pmc 0.953 ± 0.002 0.055 ± 0.0 0.972 ± 0.001
mc5 0.804 ± 0.006 0.087 ± 0.0 0.884 ± 0.004
mm 0.955 ± 0.004 0.055 ± 0.0 0.973 ± 0.001

aa_3 0.963 ± 0.004 0.052 ± 0.0 0.976 ± 0.001
eco_3 0.959 ± 0.002 0.051 ± 0.0 0.975 ± 0.001
i3pmc_3 0.953 ± 0.005 0.063 ± 0.0 0.971 ± 0.001
mc5_3 0.804 ± 0.005 0.087 ± 0.0 0.884 ± 0.003
mm_3 0.957 ± 0.001 0.051 ± 0.0 0.975 ± 0.001

aa_a 0.951 ± 0.003 0.054 ± 0.0 0.972 ± 0.001
eco_a 0.944 ± 0.004 0.048 ± 0.0 0.972 ± 0.001
i3pmc_a 0.949 ± 0.003 0.052 ± 0.0 0.972 ± 0.001
mc5_a 0.8 ± 0.009 0.091 ± 0.0 0.877 ± 0.004
mm_a 0.946 ± 0.004 0.049 ± 0.0 0.972 ± 0.001

Mean values ±1 SD.

Table 6. P-values from pairwise paired t-tests of the ranking of the AUC
values of the standard models from the Bacillus cross-validation experiments

> aa_ s/3/a eco_ s/3/a i3pmc_ s/3/a mc5_ s/3/a mm_ s/3/a

aa 0.0853 0.006177 2.187e-07 0.02411
eco 0.9147 0.0001165 1.691e-07 0.0003565
i3pmc 0.9938 0.9999 1.588e-07 1
mc5 1 1 1 1
mm 0.9759 0.9996 5.357e-05 1.641e-07

aa_3 0.05268 5.516e-06 2.975e-07 2.137e-05
eco_3 0.9473 0.001716 1.603e-07 0.6412
i3pmc_3 1 0.9983 2.427e-07 1
mc5_3 1 1 1 1
mm_3 1 0.3588 1.72e-05 3.23e-07

aa_a 0.2583 0.01180 2.349e-07 0.9564
eco_a 0.7417 0.0001139 1.833e-07 1
i3pmc_a 0.9882 0.9999 1.78e-07 1
mc5_a 1 1 1 1
mm_a 0.04364 6.121e-05 7.598e-05 1.905e-07

For each of the model versions, values are reported for comparisons within class only.
Alternative hypothesis is that row entries are greater than column entries.

a generalized framework that permits direct comparisons of the
performance of the underlying model structures. Our approach
demonstrates that there are very efficient model structures hidden
in the vast structure space of non-standard HMMs. Specifically,
the novel structures presented here seems promising candidates
for advancing gene finding and additional biological sequence
analysis tasks that rely on protein coding potential. Additionally,
the general approach that we have used for exploring HMM
structures for capturing protein coding potential is a promising
route to exploring and discovering efficient models used for more
complex biological sequence analysis tasks (such as RNA structure
prediction or modeling viral genomes). Lastly, we have shown that

Table 7. P-values from pairwise paired t-tests of the ranking of the three-
state, standard and ADPH models of the AUC values from the Bacillus cross-
validation experiments

aa eco i3pmc mc5 mm

3>s 0.001636 0.01845 0.9704 0.8063 0.007597
s>a 2.219e-05 5.076e-05 3.881e-05 1.553e-05 0.0001157

the probabilistic logic programming language, PRISM, is a capable
framework for the rapid prototyping and benchmarking of statistical
models in bioinformatics, up to datasets the size of small (bacterial)
genomes.
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Table 1: Size of the E. coli (E) and the Bacillus (B) cross-validation training set parti-
tions. Seq are the number of sequences and nts. the total number of nucleotides in the
datasets.

partitions: 1 2 3 4 5
E seq: 488 459 507 464 495
E nts: 515.289 457.527 525.822 472.692 523.548
B seq: 787 816 840 868 844
B nts: 732.015 723.471 700.881 798.621 740.139

Table 2: Confusion matrices based on cross-validation experiments using the E. coli
verified ecocyc dataset as golden standard. Values reported are optimal in terms
of ROC, corresponding to the intercept with the ROC curve parallel to the no-
discrimination line. Mean values ± 1 standard deviation.

Model TP FP FN TN
aa 1861 ± 14 3006 ± 217 84 ± 7 63411 ± 217
eco 1860 ± 15 3152 ± 70 85 ± 3 63265 ± 70
i3pmc 1847 ± 14 2883 ± 47 97 ± 2 63534 ± 47
mc5 1754 ± 14 4089 ± 164 190 ± 4 62328 ± 164
mm 1849 ± 14 2894 ± 68 95 ± 2 63523 ± 68

aa 3 1874 ± 20 2783 ± 45 53 ± 4 63634 ± 45
eco 3 1871 ± 20 3026 ± 106 56 ± 14 63391 ± 106
i3pmc 3 1849 ± 13 3156 ± 151 78 ± 8 63261 ± 151
mc5 3 1734 ± 18 4239 ± 244 193 ± 8 62178 ± 244
mm 3 1860 ± 19 3041 ± 272 67 ± 5 63376 ± 272

aa a 1838 ± 20 2948 ± 153 89 ± 7 63469 ± 153
eco a 1833 ± 20 2892 ± 282 94 ± 9 63525 ± 282
i3pmc a 1826 ± 15 2778 ± 105 101 ± 6 63639 ± 105
mc5 a 1727 ± 22 4242 ± 369 200 ± 10 62175 ± 369
mm a 1838 ± 21 3014 ± 231 89 ± 9 63403 ± 231
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Table 3: Prediction performances of the E. coli verified ecocyc cross-validation exper-
iments. TPR and FPR values reported are optimal in terms of ROC, corresponding to
the intercept with the ROC curve parallel to the no-discrimination line. Mean values ±
1 standard deviation.

model TPR FPR AUC MC MCC
aa 0.957 ± 0.004 0.045 ± 0.0 0.978 ± 0.001 0.955 ± 0.003 0.59 ± 0.013
eco 0.956 ± 0.002 0.047 ± 0.0 0.976 ± 0.001 0.953 ± 0.001 0.58 ± 0.003
i3pmc 0.95 ± 0.002 0.043 ± 0.0 0.975 ± 0.001 0.956 ± 0.001 0.594 ± 0.002
mc5 0.902 ± 0.002 0.062 ± 0.0 0.951 ± 0.003 0.937 ± 0.002 0.5 ± 0.009
mm 0.951 ± 0.001 0.044 ± 0.0 0.976 ± 0.001 0.956 ± 0.001 0.594 ± 0.005

aa 3 0.972 ± 0.002 0.042 ± 0.0 0.987 ± 0.0 0.959 ± 0.001 0.611 ± 0.003
eco 3 0.971 ± 0.007 0.046 ± 0.0 0.985 ± 0.002 0.955 ± 0.001 0.594 ± 0.007
i3pmc 3 0.959 ± 0.004 0.048 ± 0.0 0.979 ± 0.001 0.953 ± 0.002 0.58 ± 0.009
mc5 3 0.9 ± 0.004 0.064 ± 0.0 0.952 ± 0.002 0.935 ± 0.003 0.49 ± 0.01
mm 3 0.965 ± 0.003 0.046 ± 0.0 0.983 ± 0.002 0.955 ± 0.004 0.591 ± 0.019

aa a 0.954 ± 0.003 0.044 ± 0.0 0.977 ± 0.001 0.956 ± 0.002 0.59 ± 0.008
eco a 0.951 ± 0.005 0.044 ± 0.0 0.975 ± 0.001 0.956 ± 0.004 0.593 ± 0.017
i3pmc a 0.947 ± 0.003 0.042 ± 0.0 0.974 ± 0.001 0.958 ± 0.001 0.598 ± 0.007
mc5 a 0.896 ± 0.005 0.064 ± 0.0 0.947 ± 0.002 0.935 ± 0.005 0.489 ± 0.014
mm a 0.954 ± 0.005 0.045 ± 0.0 0.976 ± 0.001 0.955 ± 0.003 0.586 ± 0.012

Table 4: Confusion matrices based on the Bacillus cross-validation experiments. Val-
ues reported are optimal in terms of ROC, corresponding to the intercept with the ROC
curve parallel to the no-discrimination line. Mean values ± 1 standard deviation.

Model TP FP FN TN
aa 1666 ± 13 3409 ± 97 79 ± 3 57608 ± 97
eco 1659 ± 16 3233 ± 336 86 ± 11 57784 ± 336
i3pmc 1663 ± 15 3338 ± 240 82 ± 4 57679 ± 240
mc5 1403 ± 11 5319 ± 146 341 ± 12 55698 ± 146
mm 1666 ± 18 3376 ± 188 79 ± 7 57641 ± 188

aa 3 1683 ± 19 3167 ± 138 64 ± 6 57850 ± 138
eco 3 1675 ± 13 3099 ± 232 72 ± 3 57918 ± 232
i3pmc 3 1664 ± 11 3833 ± 264 83 ± 9 57184 ± 264
mc5 3 1405 ± 13 5324 ± 147 342 ± 10 55693 ± 147
mm 3 1673 ± 13 3093 ± 103 74 ± 2 57924 ± 103

aa a 1659 ± 15 3295 ± 114 86 ± 4 57722 ± 114
eco a 1648 ± 8 2930 ± 273 97 ± 8 58087 ± 273
i3pmc a 1655 ± 13 3197 ± 135 90 ± 6 57820 ± 135
mc5 a 1395 ± 16 5526 ± 476 350 ± 17 55491 ± 476
mm a 1650 ± 6 2983 ± 253 94 ± 7 58034 ± 253
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Table 5: Prediction performances of the Bacillus cross-validation experiments. TPR
and FPR values reported are optimal in terms of ROC, corresponding to the intercept
with the ROC curve parallel to the no-discrimination line. Mean values ± 1 standard
deviation.

model TPR FPR AUC MC MCC
aa 0.955 ± 0.002 0.056 ± 0.0 0.973 ± 0.001 0.944 ± 0.002 0.542 ± 0.007
eco 0.951 ± 0.006 0.053 ± 0.0 0.973 ± 0.001 0.947 ± 0.005 0.552 ± 0.018
i3pmc 0.953 ± 0.002 0.055 ± 0.0 0.972 ± 0.001 0.946 ± 0.004 0.546 ± 0.013
mc5 0.804 ± 0.006 0.087 ± 0.0 0.884 ± 0.004 0.91 ± 0.002 0.381 ± 0.004
mm 0.955 ± 0.004 0.055 ± 0.0 0.973 ± 0.001 0.945 ± 0.003 0.544 ± 0.009

aa 3 0.963 ± 0.004 0.052 ± 0.0 0.976 ± 0.001 0.949 ± 0.002 0.562 ± 0.006
eco 3 0.959 ± 0.002 0.051 ± 0.0 0.975 ± 0.001 0.949 ± 0.004 0.564 ± 0.015
i3pmc 3 0.953 ± 0.005 0.063 ± 0.0 0.971 ± 0.001 0.938 ± 0.004 0.518 ± 0.012
mc5 3 0.804 ± 0.005 0.087 ± 0.0 0.884 ± 0.003 0.91 ± 0.002 0.381 ± 0.004
mm 3 0.957 ± 0.001 0.051 ± 0.0 0.975 ± 0.001 0.95 ± 0.002 0.563 ± 0.007

aa a 0.951 ± 0.003 0.054 ± 0.0 0.972 ± 0.001 0.946 ± 0.002 0.547 ± 0.007
eco a 0.944 ± 0.004 0.048 ± 0.0 0.972 ± 0.001 0.952 ± 0.004 0.567 ± 0.017
i3pmc a 0.949 ± 0.003 0.052 ± 0.0 0.972 ± 0.001 0.948 ± 0.002 0.552 ± 0.008
mc5 a 0.8 ± 0.009 0.091 ± 0.0 0.877 ± 0.004 0.906 ± 0.007 0.373 ± 0.012
mm a 0.946 ± 0.004 0.049 ± 0.0 0.972 ± 0.001 0.951 ± 0.004 0.565 ± 0.016

Table 6: P-values from pairwise paired t-tests of the ranking of the standard models
of the AUC values of the ROC curves from the E. coli verified ecocyc cross-validation
experiments. For each of the model versions values are reported for comparisons within
class only. Alternative hypothesis is that row entries are greater than column entries.
> aa s/3/a eco s/3/a i3pmc s/3/a mc5 s/3/a mm s/3/a
aa NA 2.048e-05 9.768e-06 2.095e-05 1.676e-05
eco 1 NA 1.848e-06 3.612e-05 1.393e-05
i3pmc 1 1 NA 4.526e-05 1
mc5 1 1 1 NA 1
mm 1 1 1.586e-07 4.322e-05 NA

aa 3 NA 0.0727 0.0001077 1.857e-06 0.005065
eco 3 0.9273 NA 0.005022 2.35e-05 0.2019
i3pmc 3 0.9999 0.995 NA 1.1e-05 0.9887
mc5 3 1 1 1 NA 1
mm 3 0.995 0.7981 0.01135 2.120e-06 NA

aa a NA 0.0001479 1.495e-05 3.621e-06 0.0001170
eco a 0.9999 NA 2.171e-06 3.826e-06 0.9988
i3pmc a 1 1 NA 4.879e-06 1
mc5 a 1 1 1 NA 1
mm a 0.9999 0.001164 6.347e-06 4.17e-06 NA

4



Table 7: P-values from pairwise paired t-tests of the ranking of the 3-state, standard
and ADPH models of the AUC values from the E. coli verified ecocyc cross-validation
experiments.

aa eco i3pmc mc5 mm
3> s 1.276e-05 0.001599 0.0004739 0.02713 0.0007062
s> a 0.01031 0.04478 0.03815 0.005672 0.5935

Table 8: P-values from pairwise paired t-tests of the ranking of the AUC values of the
standard models from the Bacillus cross-validation experiments. For each of the model
versions values are reported for comparisons within class only. Alternative hypothesis
is that row entries are greater than column entries.
> aa s/3/a eco s/3/a i3pmc s/3/a mc5 s/3/a mm s/3/a
aa NA 0.0853 0.006177 2.187e-07 0.02411
eco 0.9147 NA 0.0001165 1.691e-07 0.0003565
i3pmc 0.9938 0.9999 NA 1.588e-07 1
mc5 1 1 1 NA 1
mm 0.9759 0.9996 5.357e-05 1.641e-07 NA

aa 3 NA 0.05268 5.516e-06 2.975e-07 2.137e-05
eco 3 0.9473 NA 0.001716 1.603e-07 0.6412
i3pmc 3 1 0.9983 NA 2.427e-07 1
mc5 3 1 1 1 NA 1
mm 3 1 0.3588 1.72e-05 3.23e-07 NA

aa a NA 0.2583 0.01180 2.349e-07 0.9564
eco a 0.7417 NA 0.0001139 1.833e-07 1
i3pmc a 0.9882 0.9999 NA 1.78e-07 1
mc5 a 1 1 1 NA 1
mm a 0.04364 6.121e-05 7.598e-05 1.905e-07 NA

Table 9: P-values from pairwise paired t-tests of the ranking of the 3-state, standard
and ADPH models of the AUC values from the Bacillus cross-validation experiments.

aa eco i3pmc mc5 mm
3> s 0.001636 0.01845 0.9704 0.8063 0.007597
s> a 2.219e-05 5.076e-05 3.881e-05 1.553e-05 0.0001157
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Table 10: P-values from pairwise paired t-tests of the ranking of the Variational Free
Energy values from the E. coli cross-validation experiments. For each of the model
versions values are reported for comparisons within class only. Alternative hypothesis
is that row entries are greater than column entries.
> aa s/3/a eco s/3/a i3pmc s/3/a mc5 s/3/a mm s/3/a
aa s NA 1.988e-06 1.302e-06 7.629e-07 2.166e-06
eco s 1 NA 5.119e-07 7.48e-07 1
i3pmc s 1 1 NA 8.082e-07 1
mc5 s 1 1 1 NA 1
mm s 1 2.839e-06 1.102e-06 8.122e-07 NA

aa 3 NA 0.07047 1.674e-07 1.157e-07 2.756e-05
eco 3 0.9295 NA 0.2624 0.001820 0.7868
i3pmc 3 1 0.7376 NA 2.730e-07 1
mc5 3 1 0.9982 1 NA 1
mm 3 1 0.2132 7.014e-06 3.695e-07 NA

aa a NA 0.03175 1.136e-06 2.936e-07 6.534e-05
eco a 0.9682 NA 0.5598 0.002098 0.9546
i3pmc a 1 0.4402 NA 1.672e-07 1
mc5 a 1 0.998 1 NA 1
mm a 1 0.04538 2.709e-07 1.737e-07 NA

Table 11: P-values from pairwise paired t-tests of the ranking of the Variational Free
Energy values from the Bacillus cross-validation experiments. For each of the model
versions values are reported for comparisons within class only. Alternative hypothesis
is that row entries are greater than column entries.
> aa s/3/a eco s/3/a i3pmc s/3/a mc5 s/3/a mm s/3/a
aa s NA 3.487e-07 2.555e-07 1.617e-07 3.416e-07
eco s 1 NA 1.340e-07 2.147e-07 1
i3pmc s 1 1 NA 3.731e-07 1
mc5 s 1 1 1 NA 1
mm s 1 6.151e-07 2.697e-07 1.965e-07 NA

aa 3 NA 1.161e-07 2.984e-07 9.715e-09 4.856e-07
eco 3 1 NA 1.062e-06 1.922e-08 1
i3pmc 3 1 1 NA 3.281e-07 1
mc5 3 1 1 1 NA 1
mm 3 1 3.345e-05 4.948e-07 4.477e-08 NA

aa a NA 3.821e-07 2.596e-07 1.696e-07 4.806e-06
eco a 1 NA 1.476e-07 1.976e-07 1
i3pmc a 1 1 NA 3.734e-07 1
mc5 a 1 1 1 NA 1
mm a 1 1.777e-07 1.612e-07 1.342e-07 NA
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Figure 1: Length distribution plots of the E. coli verified ecocyc dataset, and 2413
sampled sequences from standard and ADPH version models trained on the E. coli
verified ecocyc dataset.
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Figure 2: Cross-validation Receiver Operator Characteristics (ROC) curves for the E.
coli standard models using thresholds over all log odds values in the positive set. Notice
that only the area from 0.0-0.1 FPR and 0.9-1.0 TPR is shown.
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Figure 3: Cross-validation Receiver Operator Characteristics (ROC) curves for the E.
coli 3-state models using thresholds over all log odds values in the positive set. Notice
that only the area from 0.0-0.1 FPR and 0.9-1.0 TPR is shown.
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Figure 4: Cross-validation Receiver Operator Characteristics (ROC) curves for the E.
coli ADPH models using thresholds over all log odds values in the positive set. Notice
that only the area from 0.0-0.1 FPR and 0.9-1.0 TPR is shown.
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Figure 5: Cross-validation Receiver Operator Characteristics (ROC) curves for the
Bacillus standard models using thresholds over all log odds values in the positive set.
Notice that only the area from 0.0-0.1 FPR and 0.9-1.0 TPR is shown.
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Abstract

We introduce a new type of probabilistic sequence model, that model the sequential composition of

reading frames of genes in a genome. Our approach extends gene finders with a model of the sequential

composition of genes at the genome-level – effectively producing a sequential genome annotation as

output. The model can be used to obtain the most probable genome annotation based on a combination

of i: a gene finder score of each gene candidate and ii: the sequence of the reading frames of gene

candidates through a genome. The model — as well as a higher order variant — is developed and tested

using the probabilistic logic programming language and machine learning system PRISM - a fast and

efficient model prototyping environment, using bacterial gene finding performance as a benchmark of

signal strength. The model is used to prune a set of gene predictions from an underlying gene finder and

are evaluated by the effect on prediction performance. Since bacterial gene finding to a large extent is a

solved problem it forms an ideal proving ground for evaluating the explicit modeling of larger scale gene

sequence composition of genomes.

We conclude that the sequential composition of gene reading frames is a consistent signal present in

bacterial genomes, that can be effectively modeled with probabilistic sequence models.

Introduction

Automated genome annotation is essential for exploiting the enormous amounts of genome sequence

data currently being generated [1]. The initial steps of genome annotation relies heavily on probabilistic

nucleotide sequence models, for generating sets of predicted genes. Such models typically estimate the
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probability that each open reading frame (ORF) is a gene. This estimate is usually based on only a

limited context comprising the ORF nucleotide sequence and perhaps a few hundred bases upstream

and downstream to include signals such as promoters and ribosomal binding sites. The subsequent

steps to assemble a genome annotation typically involves selecting the highly scoring predictions using a

significance criteria or threshold. In some recent gene finders [2–4] the selection of predictions is done as

a genome-wide optimization where the predictions are chosen to form a coherent genome annotation by

taking into account the extent of overlap between genes.

In a similar vein, we introduce a probabilistic sequence model which select the set of predictions that

form the genome annotation, but which is based on sequential composition of gene reading frames, which

we believe is a novel signal to be explored in gene finding. Our purpose is not to build the next state-

of-the-art gene finder, but to present a class of simple models which clearly demonstrates the efficacy of

exploiting the gene-reading-frame-sequence bias.

The gene reading frame sequence bias

The existence of a gene-strand bias in prokaryotes is well established [5]. One source for this bias is

a tendency for genes to be placed on the leading strand due to replication efficiency consequences of

co-directional and head-on collisions of the replication and transcription apparatus [6]. It has also been

argued that the preferential placement of genes in the leading strand is driven by essentiality rather than

expression [7].

A gene-reading-frame-sequence bias is a general signal that can incorporate gene-strand bias, bias due

to clusters of orthologous genes [8], operonic structures [9], phase preference for overlapping genes [10]

and other potential effects yielding non-random sequence composition.

The gene-strand bias account for a large proportion of the gene-reading-frame-sequence bias, but a

pronounced bias is detectable even within the strands. Furthermore, the gene-reading-frame-sequence

bias seems to be symmetric for the two strands, cf. Table 1. This is a convenient property, especially

considering the arbitrary designation of which is the forward and which is the reverse strand.
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Methods

Our gene-reading-frame-sequence model are implemented in PRISM, a probabilistic logic programming

language and machine learning system with generic algorithms for parameter estimation and decoding

[11]. We use PRISM as a convenient model comparison platform, since it is powerful enough to express

the different models and enables a level execution provided by its generic machine learning routines. The

use of probabilistic logic programming for evaluating sequence models as the heart of contemporary gene

finders has recently been demonstrated in [12].

The Frameseq model

The basic Frameseq model is a variant of a fully connected Hidden Markov Model (HMM) [13] with a state

for each of the six possible reading frames — the frame states — and a delete state. Given a sequence of

gene predictions sorted by position, a path through the model capable of emitting this prediction sequence

represents a classification of predictions into presumed true positives emitted from the frame states and

presumed false positives emitted from the delete state. A path with optimal probability represents a

best hypothesis about the classification of predictions into positives and negatives. This path can be

calculated using the Viterbi algorithm which is provided by PRISM.

Each state emits a score symbol and a frame for each gene prediction. Frame states only emit

predictions with a corresponding frame, whereas the delete state may emit predictions of any frame. The

score symbol is a symbolic value representing a range of confidence scores for the predictions of the input

gene finder. The emission probabilities thus reflect the prediction confidence scores in the training set.

Traditionally, the transition probabilities of an HMM are conditioned only on the previous state (the

Markov property). In our model the transition probability is conditioned on the previous frame state

rather than just the previous state. The frame state transition probabilities are thus assumed to reflect

the probability of a seeing a gene in a particular reading frame given the reading frame of the previous

gene.

Higher ordered Markov models have generally shown to be an improvement over standard models for

the nucleotide sequence models used in bacterial gene finding (e.g. as used in Genemark and Glimmer).

To explore the possibility that the same might be true for the gene reading frame sequence, we have also

employed a second order version of Frameseq, i.e., which conditions transitions on the two previous frame
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states.

The transition probabilities between the frame states are estimated as the relative frequency of ob-

served adjacent genes in the various frames observed in the set of verified genes.

The probability of a transition to the delete state (from any state) reflects the probability that a gene

finder prediction is a false positive,

P (delete) = 1− TP

TP + FP

where TP is the number of true positives predicted by the gene finder and FP is the number of false

positives. This probability is directly related to gene finder specificity and may be tweaked for different

sensitivity/specificity trade-offs. We exploit this in experiments reported below.

The frame state transition probabilities are estimated as relative frequencies, which have the interpre-

tation of conditional probabilities given that a transition to the delete state did not occur. We normalize

each of these transition probabilities by multiplying them by 1− P (delete).

Each state is capable of emitting a finite set of i symbols δ1 . . . δn corresponding to ranges of prediction

scores, i.e.n the states emit a discretized symbol corresponding to the confidence score of a prediction

as supplied by the gene finder. The ranges are selected to ensure that each score symbol correspond to

an equal proportion of gene finder predictions. The number of ranges, n, is a configurable parameter;

when n is high the model can better exploit the scores from the gene finder, but the estimated emission

probabilities become more fragile, i.e., more data is needed to reliably estimate them. The emission

probabilities of the delete state are estimated as the relative frequency of each of the possible score

symbols for all false positives predictions, i.e.,

P (δi|state = delete) =
FPδi
FP

where FPδi is the number of false positives with a confidence score within the range symbolized by

δi.

Similarly, the emission probabilities of frame states are estimated as the fraction of true positive

predictions belonging to a particular range within the corresponding frame, i.e.,

P (δi|state = framej) =
TP

framej
δi

TP framej
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where TP framej is the total number true positive predictions in reading frame j and TP
framej
δi

is the

number of true positive predictions in reading frame j with a confidence score within the range symbolized

by δi.

A illustration of the states and transitions and of the model is shown in figure 1.

Instead of using exact empirical frequency counts as described above, we use a variational Bayes version

of the EM algorithm [14] provided with PRISM. This algorithm puts Dirichlet priors (pseudo-counts) on

random variables ensuring that all estimated probabilities are non-zero.

Results and discussion

The phylogenetic reach of the gene reading frame bias

To test the generalization capability and potential phylogenetic reach of our model, we train models on

five different prokaryotic genomes and use them to filter predictions for the E. coli genome. We expect

E. coli to have the most reliable genome annotation and by using it for validation we obtain the most

reliable validation results. By training on distant organisms, we show the robustness of our approach

with regard to both training set quality and phylogenetic distance. Good performance on E. coli should

also imply that we can train our model on a well annotated genome and filter gene finder predictions in

other genomes with increased reliability. To validate this we also do this experiment in reverse, i.e., we

also train our model on E. coli to predict on each of the other genomes. For all models trained, we set

the number of score ranges to n = 15.

The five genomes, listed here in ascending order of phylogenetic distance from E. coli :

• Escherichia coli [REFSEQ:NC 000913],

• Salmonella enterica [REFSEQ:NC 004631.1],

• Legionella pneumophila [REFSEQ:NC 002942],

• Bacillus subtilis [REFSEQ:NC 000964]

• Thermoplasma acidophilum [REFSEQ:NC 002578].

We use Genemark 2.5 [15] which is available as a web-service to produce a large initial set of candidate

genes.
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Genemark is currently available in newer versions (GeneMarkS and GenemarkHMM) with improved

prediction performance.

However, as our main interest is to introduce a new type of genome-sequence model, not to improve

gene finding, the older version of Genemark provides a number of advantages for our purposes that are

not present in other available single-sequence gene finders: Genemark 2.5 use a very simple scoring model

and do not employ any post-scoring prediction selection algorithm, but is capable of producing a large set

of predictions simply by enforcing a (low) score cut-off. As it does not otherwise prune predictions, we

eliminate factors which could affect and reduce the pruning potential available to our model. Obviously,

the accuracy of this gene finder is slightly below what is now state-of-the-art.

The full dataset offered by being able to produce a large set of predictions provides a better evaluation

of the contribution of the reading frame signal than pruning a small optimal prediction set or (for

completeness we do include such more limited experiments for state-of-the-art gene finders below).

We set the configurable score cut-off as low as possible, i.e., to 0.1, to allow as many false positive

predictions as possible. The gene finder predictions are preprocessed to contain only the best scoring

prediction for each distinct stop codon. For each genome, we train using the preprocessed Genemark

predictions and use the RefSeq annotation as golden standard. By inspection of transition probabilities,

we observe that the gene-reading-frame-sequence bias tends to be almost symmetric for the strands, see

tables 1-5.

We test the performance of each model on the Genemark predictions for the target genome by mea-

suring sensitivity and specificity in terms of predicted stop codons with respect to the RefSeq annotation.

We repeat this process with incrementally increasing delete state probabilities resulting in a range

of sensitivity/specificity trade-offs. These are plotted in Figure 2 (predictions on E. coli) and Figure 3

(predictions on the other genomes) as a Receiver Operator Characteristic (ROC) curves.

For comparison we provide a baseline ROC curve, produced via incrementally increasing a cut off

value of the scores for the Genemark predictions for the target genome.

For all organisms except the phylogenetically very distant T. acidophilum, Frameseq improves accu-

racy and the margin of the improvement correlates with phylogenetic distance. The pronounced improve-

ment in the accuracy which can be observed in ROC curves for the frame-bias model as compared to

the baseline demonstrates that for comparable levels sensitivity, Frameseq achieves a lower false positive

rate.
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A higher order signal?

It is plausible that the gene-reading-frame-sequence bias is more complex than just pairwise dependencies

between the frames of genes. More complex dependencies on previous gene reading frames can be modeled

using a higher order model.

We test this hypothesis by using a second order HMM based Frameseq model which is trained and

applied on E. coli. We compare this to the basic Frameseq model which uses a first order HMM. We also

investigate the phylogenic of conservation of a possible higher order signal by training the same model on

S. enterica and decoding on E. coli. In both cases, the we use predictions from the Genemark 2.5 gene

finder, with a score cut-off of 0.1. As in the previous experiments we set the number of score ranges to

n = 15.

We derive and compare ROC curves for threshold selection and Frameseq selection like in the previous

experiments, but here for both the first order and second order models. We provide a separate plot with

the E. coli trained models (Figure 4) and the S. enterica trained models (Figure 5).

In the case where we train on E. coli, the second order Frameseq model results in significantly better

accuracy than with the first order model. The improvement degrades quite a bit when we instead train

the model on S. enterica, but there is still a detectable improvement in accuracy for the second order

model.

It should be noted that, higher order models effectively increase the amount of transition probabilities

involved, but the amount of training data used to estimate these are fixed in our case. This means that

increasing the order of the model results in less reliable transition probabilities. This may explain some

of the loss of accuracy when observed when training on S. enterica as compared to training on E. coli.

On the other hand, the experiment with the second order Frameseq model trained on E. coli demon-

strates the maximal potential of utilizing a higher order signal.

Effect on state-of-the-art gene finders

In this section we explore using Frameseq with Glimmer 3 and Prodigal 2.50 — to evaluate the contri-

bution of a reading frame sequence signal for state-of-the art gene finders.

Genemark 2.5 which was used in the previous experiments, scores each open reading frame individually

and does not attempt to stitch such individual predictions together into a more coherent set of predictions

for the genome.
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The algorithms employed by the two other gene finders have some similarities to the delete-HMM of

Frameseq. Both gene finders use custom dynamic programming algorithms to achieve a more coherent set

of predictions for a genome. Prodigal use several features including hexamer scores, ribosomal binding

site detection, maximal overlap and distance between predictions combined using a custom dynamic

programming algorithm. Similarly, Glimmer 3 also use a dynamic programming algorithm which restricts

the size of overlaps between predictions. Neither of these algorithms utilize the gene frame bias.

Our algorithm is quite simplistic in comparison since it only considers one signal – the gene-reading-

frame-sequence bias. It could undoubtedly be improved by considering other signals and constraints

inherent between predictions such as distance and overlaps. In being simplistic, however, it clearly

demonstrates the utility of the gene-reading-frame-sequence bias without the inherent noise from the

impact of other features – which is our purpose.

In these experiments, we use Frameseq to filter the predictions of the state-of-the-art gene finders

in order to explore the potential beneficial effect they could achieve by incorporating the gene-reading-

frame-sequence bias. For each gene finder — Prodigal 2.50 and Glimmer 3 — we apply the second order

Frameseq model trained on E. coli to filter their respective predictions on also on E. coli. The number

of score ranges is in this experiment set to n = 100 to better capture the more detailed variations of the

scores.

In all cases the filtered predictions have significantly improved specificity for comparable levels of

sensitivity. The effect of Frameseq seems most pronounced with reduced sensitivities which could indicate

that the scores of the gene finders are more reliable for the top-scoring predictions.

These experiments do not conclusively prove that all the gene finders could achieve improved specificity

for the desired levels of sensitivity (close to one) by incorporating the gene-reading-frame-sequence bias.

It should be noted that we slightly over-fit the model by training on E. coli and by doing this we get

more impressive results than would have been the case if the models where trained using other organisms.

Training Frameseq on, e.g., S. enterica and filtering predictions for these gene finders does not result in

significantly improved accuracy (data not shown). We believe this to be mainly a problem of sparsity

of the training data, but also due to the reduced margins for possible improvement as compared to

Genemark 2.5. We demonstrated the phylogenetic reach using Genemark 2.5, but the margin for possible

improvement is significantly smaller with Glimmer and Prodigal. Due to this, a slightly under-fitted

model will generalize sufficiently to improve Genemark 2.5 results, but insufficiently with the state-of-the
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art gene finders.

The experiment here, however, does show that the gene-reading-frame-sequence bias signal provides

useful information which is complementary to the signals used by the contemporary methods.

Conclusions

We have demonstrated the feasibility of modeling the sequential composition of genes in a genome with

simple sequential reading frame models. We obtain surprisingly good results when predicting on one

organism with models trained on phylogenetically distant genomes, which implies both the generality of

the approach and the potential importance of gene reading frame sequence structure across taxa.

The impact of our method is most pronounced for reduced levels of sensitivity. Ideally we would

like to achieve as significant improvements in specificity for a higher level of sensitivity, but improved

specificity with a lower sensitivity is still a good result with important implications; It means that our

approach is capable of supplying a larger set of gene predictions with a specified upper bound on the false

positive rate, than is possible with any other gene finder. This may be useful when selecting candidate

genes for experimental verification and can reduce the likelihood of wasted lab effort.

We also believe that the gene-reading-frame-sequence bias signal can be useful for improving auto-

mated computational genome annotation, but in order to achieve this, it will need to be integrated with

the algorithms of state-of-the-art gene finders instead of the relatively superficial augmentation we do

here.

In order to clearly illustrate the gene-reading-frame-sequence bias, we engineered our method to be

as simple as possible, which in effect have several limitations:

• It relies on gene finder scores rather integrating with the algorithm of the gene finder, thereby

missing out on exploiting possible correlations with signals incorporated in the gene finder.

• It relies on discretization of gene finder scores, i.e., it summarizes of the information contained

in prediction scores and hence cannot fully exploit these. The discretization procedure could be

improved by using variable sized bins, e.g., as in [16], or by instead using a continuous Hidden

Markov Model.

• We do not fully exploit the nature of the gene finder score distribution for parameter smoothing.



10

We do apply limited parameter smoothing by using the variational Bayes EM algorithm, but we

could probably achieve better generalization by fitting a suitable function to the gene finder score

distribution.

• We use only a single organism as training data which become too sparse; This results in slightly

over-fitted models when training on the same genome and slightly under-fitted models when training

on an other genome. This situation could be amended by training on several genomes.

Despite these limitations, our method achieves good results which illustrate the usefulness of the

signal, yet still leaves room for potential improvement.

We choose the problem of bacterial gene finding to exemplify the gene-reading-frame-sequence bias

and its use. This problem has the nice property that it is almost solved, which enables us to use reference

annotations to validate the approach. It should be noted, however, that many reference annotations are

unverified results from the gene finders that we try to improve upon. This bias gives our method a slight

disadvantage.

Lastly, we believe that the gene-reading-frame-sequence bias signal could have applications beyond

gene finding. For instance, it may potentially benefit next generation sequencing and genome assembly

where a complete model of the overall gene content of a genome would be applicable.

Availability The source code of the model and accessory scripts are freely available at:

http://github.com/frameseq/frameseq
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Tables and Figures

Table 1. Gene reading frame transition probabilities E. coli

from \ to 1 2 3 4 5 6
1 0.18 0.20 0.28 0.13 0.1 0.1
2 0.29 0.2 0.2 0.12 0.09 0.1
3 0.22 0.3 0.17 0.1 0.11 0.1
4 0.11 0.1 0.1 0.19 0.23 0.27
5 0.11 0.9 0.1 0.29 0.19 0.22
6 0.09 0.08 0.1 0.23 0.30 0.19

A cell indicates the probability that a gene in the frame indicated by the row is followed by the gene in
the frame indicated by the column. Note that the strands have almost symmetrical probabilities.

Table 2. Gene reading frame transition probabilities S. enterica

from \ to 1 2 3 4 5 6
1 0.19 0.23 0.30 0.09 0.09 0.09
2 0.29 0.20 0.25 0.08 0.10 0.07
3 0.23 0.29 0.18 0.09 0.11 0.10
4 0.10 0.09 0.10 0.21 0.22 0.28
5 0.11 0.10 0.10 0.28 0.18 0.22
6 0.11 0.10 0.10 0.20 0.30 0.21

A cell indicates the probability that a gene in the frame indicated by the row is followed by the gene in
the frame indicated by the column. Note that the strands have almost symmetrical probabilities.

Table 3. Gene reading frame transition probabilities L. pneumophila

from \ to 1 2 3 4 5 6
1 0.18 0.23 0.26 0.10 0.11 0.13
2 0.27 0.18 0.22 0.12 0.09 0.12
3 0.24 0.27 0.18 0.10 0.12 0.10
4 0.09 0.11 0.11 0.18 0.20 0.31
5 0.12 0.11 0.11 0.26 0.17 0.23
6 0.09 0.09 0.11 0.24 0.29 0.18

L. pneumophila

A cell indicates the probability that a gene in the frame indicated by the row is followed by the gene in
the frame indicated by the column. Note that the strands have almost symmetrical probabilities.
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Table 4. Gene reading frame transition probabilities B. subtilis

from \ to 1 2 3 4 5 6
1 0.22 0.24 0.25 0.09 0.10 0.10
2 0.29 0.20 0.23 0.11 0.08 0.09
3 0.25 0.25 0.22 0.08 0.10 0.11
4 0.09 0.10 0.06 0.23 0.24 0.28
5 0.11 0.09 0.09 0.26 0.22 0.23
6 0.10 0.07 0.08 0.26 0.28 0.21

B. subtilis

A cell indicates the probability that a gene in the frame indicated by the row is followed by the gene in
the frame indicated by the column. Note that the strands have almost symmetrical probabilities.

Table 5. Gene reading frame transition probabilities T. acidophilum

from \ to 1 2 3 4 5 6
1 0.18 0.20 0.23 0.17 0.09 0.13
2 0.25 0.16 0.24 0.13 0.13 0.09
3 0.22 0.26 0.21 0.11 0.10 0.10
4 0.12 0.14 0.12 0.18 0.23 0.20
5 0.15 0.16 0.06 0.24 0.18 0.20
6 0.10 0.11 0.15 0.20 0.22 0.21

A cell indicates the probability that a gene in the frame indicated by the row is followed by the gene in
the frame indicated by the column. Note that the strands have almost symmetrical probabilities.



15

F1

F2

F3

F4

F5

F6

delete

Figure 1. The Frameseq delete-HMM model All frame states F1 . . .F6 have transitions to each
other and to themselves. Transitions to the delete state are symbolized by red arrows, to indicate that
they share the transition probability, P (delete). The dashed blue arrows illustrate transitions from the
delete state to a frame state – the probability of which depend on the last frame state visited before the
delete state. Furthermore, the delete state is drawn as circle rather than a box to convey that it
resembles a silent state – it does produce emissions (predicted false positives) but we are only interested
in emissions from the frame states (predicted true positives). To minimize visual clutter, a begin and
end state have been omitted.
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Figure 2. ROC curves illustrating phylogenetic reach. The figure shows ROC curves for
filtering of all Genemark 2.5 predictions with score > 0.1 for E. coli. The black curve shows selection
using a threshold and the colored curves show filtering using Frameseq. Note that the ROC curve does
not extend all the way to the right; this is due to the 0.1 Genemark cutoff which still eliminates a lot of
candidate predictions.
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Figure 3. ROC curve illustrating phylogenetic reach (inverse). The figure shows ROC curves
for filtering of all Genemark 2.5 predictions with score > 0.1 for different organisms. The black curve
shows selection using a threshold and the colored curves show filtering using Frameseq. The Frameseq
model is trained the E. coli for all organisms. The experiment shows that it is possible to train
Frameseq on a well-known and well-annotated organism and apply it to filter predictions on
phylogenetically distant organisms with improved accuracy. Accuracy is improved for both S.
enterica and B. subtilis and in part for L. pneumophila, but not for the phylogenetically distant T.
acidophilum.
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Figure 4. ROC curves illustrating potential accuracy gain with second order model. This
ROC curve compares the basic first order Frameseq model to a second order model. The black curve
indicate threshold selection, the red curve is the first order model and the blue curve is the second order
model. Both the first order model and the second order model are trained on E. coli and applied to
filter the predictions of the same genome. The second order model results in markedly better accuracy
than with the first order model.
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Figure 5. Phylogenetic robustness of a second order signal. This ROC curve compares the
basic first order Frameseq model to a second order model. The black curve indicate threshold selection,
the red curve is the first order model and the blue curve is the second order model. Both the first order
model and the second order model are trained on S. enterica and applied to filter the predictions of E.
coli. The second order model results in marginally better accuracy.
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Figure 6. Frameseq with Glimmer. The red ROC curve shows threshold selection with Glimmer 3
predictions on E. coli and blue curve shows results of filtering these predictions with a second order
Frameseq model trained on E. coli.
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Figure 7. Frameseq with Prodigal. The red ROC curve shows threshold selection with Prodigal
2.50 predictions on E. coli and blue curve shows results of filtering these predictions with a second
order Frameseq model trained on E. coli.



94



Paper III

Prototyping RNA Models as
Probabilistic Logic Programs

Søren Mørk1 Christian Theil Have2 Jakob Hull Havgaard3

1Department of Science, Systems and Models, Roskilde University

2Department of Communication, Busines and Information Technologies, Roskilde University

3Center for Non-Coding RNAs in Technology and Health, University of Copenhagen

Publication Status:

In Preparation

95



96



Prototyping RNA Models as Probabilistic Logic Programs

Søren Mørk, 1,3, Christian Theil Have2, Jakob Hull Havgaard3

1Department of Science, Systems and Models, Roskilde University
2Department of Communication, Business and Information Technologies, Roskilde University

3Center for Non-Coding RNAs in Technology and Health, University of Copenhagen.

Abstract

Motivation: RNA bioinformatics has seen tremendous growth recently. Sequence analysis tasks involving

RNA are complicated by the long-distance interactions inherent in RNA secondary structure. RNA sec-

ondary structure prediction is typically based on either non-probabilistic Minimum Free Energy approaches

or probabilistic approaches like Stochastic Context Free Grammars. These basic approaches have been used

in methods for single sequence RNA secondary structure prediction, incorporated into RNA structural align-

ment, structure predictions from multiple alignments, RNA-RNA interaction prediction and phylogenetic

inferences of RNAs.

Approach: We introduce probabilistic logic programming as a powerful tool for the development and appli-

cation of probabilistic models for RNA sequence analysis. We develop a suite of RNA models as probabilis-

tic logic programs in the probabilistic logic programming language and machine learning system PRISM.

We start by introducing SCFG-like HMMs capable of parsing dot-bracket structures. Such models enable

generic model structure compositions that have previously been developed for HMMs to be applied for mod-

eling RNA secondary structures. These models are complemented by SCFG based RNA models - also with

generic model structure compositions. The model structures are evaluated in terms of complexity measure-

ments, learn statistics and prediction performance on single sequence secondary structure prediction using

data from Rfam - benchmarked against the prediction performance of RNAfold 2.0.0. To examine the ef-

fect of over-fitting due to family structure of the dataset, we perform cross-validation on three test sets: i: an

intra-family set with all families represented in all partitions, ii: an inter-family set with families present only

in specific partitions, and iii: an inter-family test set augmented with more data for parametrization.

Results: We demonstrate the utility of probabilistic logic programming for RNA model development and
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testing. The HMM based models are equivalent to the SCFG based models in terms of single sequence

secondary structure prediction performance. The prediction performance of both HMM based and SCFG

based models can be improved using mixed memory structures, when trained on families, but is prone to over

fitting. The effect is partially reversible by parametrizing models with a larger training set. Standard versions

of both HMM based and SCFG based models perform slightly worse than RNAfold, whereas the mixed

memory versions where better than RNAfold on the intra-family test set, but much worse on the inter-family

set. The performance was recoverable by training on more data. The HMM based models are generally

faster during learning than the SCFGs, obtaining higher likelihoods after EM learning. The HMM based

models however, are much slower on decoding than the SCFGs (and both are orders of magnitude slower

than RNAfold). A main advantage of expressing the models as probabilistic logic programs is the ease of

which one can extend the models for other types of bioinformatic tasks involving RNA. To demonstrate this

potential we briefly introduce a suite of models that can perform a number of different bioinformatic tasks

involving RNA including models for pairwise alignment, pseudoknot and kissing hairpins models, models

of overlapping RNAs, RNA-RNA interaction models and models of overlapping protein coding potential

and RNA structure (mRNAs).

Introduction

RNA has a unique potential triple capacity as information carrier, catalytic agent and as a key regulatory

player. There is an increasing appreciation of the importance of RNA via its centrality in molecular biol-

ogy. This is evident in the recent explosive growth in transcriptome sequencing and expression analysis

that is driving major discoveries in contemporary biology. In parallel, there has been steady growth in the

last decades of computational approaches for RNA bioinformatic tasks such as secondary and 3D struc-

ture prediction, alignment, phylogenetic inferences and genome scanning techniques. The long distance

base-pairing interactions that determine RNA secondary structure, and the low level of primary sequence

conservation due compensatory base changes makes RNA sequence analysis more challenging than DNA

and protein sequence analysis.

Traditionally, RNA secondary structure prediction have primarily been performed via minimization of free

energy (MFE) algorithms [1, 2, 3, 4]. An alternative approach to RNA secondary structure prediction has
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been a probabilistic machine learning approach based on Stochastic Context Free Grammars (SCFGs)[5, 6,

7, 8]. The use of MFE approaches for RNA analysis is currently far more widespread than that of SCFGs.

The recent growth in RNA sequence data [9, 10] however makes probabilistic modeling more and more

attractive. Additionally, using probabilistic sequence modeling makes the analysis of RNA amendable to

the increasing repertoire of computational probabilistic modeling techniques (including probabilistic logic

programming). Stochastic Context Free Grammars (SCFGs) [11, 12] are stochastic transformational gram-

mars that capture the long distance interactions of base pairs related by a parse tree that can be generated and

parsed by a number of (recurrent) production rules that builds a sequence top-down. SCFGs are equivalent

with probabilistic push-down automatons [13] and can be viewed as generalizations of stochastic regular

grammars such as Hidden Markov Models (HMMs). HMMs are ubiqitous in biological sequence analysis

[14] . A large number of special model structures and extensions have been developed, including profile-

HMMs [15] , pair-HMMs [14], factorial-HMMs [16], mixed memory HMMs [17] and HMMs incorporating

Acyclic Discrete Phase Type (ADPH) length modeling [18] . The number of alternative SCFG model types

and their application to RNA bioinformatics is somewhat more limited.

A recent paper by Rivas et. al. [19] show the potential of examining alternative model structures in a

probabilistic setting. The possible structure variants are not exempted, and are currently limited to single

sequence secondary structure prediction. We strongly believe that there is plenty of room for the discovery

of novel probabilistic models for RNA bioinformatics that will provide the basis of better and more efficient

bioinformatic inferences. We also believe that if the barrier to model development and testing due to specific

algorithm development for specific models could be overcome, the discovery rate of better models would be

greatly increased.

Probabilistic Logic programming provides a generic and unified framework for procedural representation of

discrete probability distributions such as stochastic grammars and graphical models, combining the strength

of a probabilistic approach with the expressiveness and the declarative advantages of logical programming.

Logic Programming is a complete high-level programing paradigm that formalize relations in terms of logi-

cal predicates ensuring valid inferences [20]. Adding random variables enables a generic modeling of both

stochastic grammars and graphical models. Probabilistic logic programming (based on the logic program-

ming language prolog) is an ideal prototyping environment for preliminary exploration of this potential

model space, since it offers a high level declarative approach to model development and testing where model
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alterations are easily produced and can be tested on a level platform. The power of probabilistic logic pro-

gramming for bioinformatic model development and testing has previously been demonstrated by the use of

the probabilistic logic programming language and machine learning system PRISM[21, 22] for evaluation

of models underlying bacterial gene finders [23]. Both HMMs and SCFGs can be expressed as PRISM

programs, easily manipulated and use the same generic machine learning routines for parameter estimation,

decoding and sampling. Additionally, logic programs are amendable to various types of systematic program

transformations and specifications that modifies the computational complexity yielding powerful yet realistic

processing of even highly complicated programs.

Here, we present and compare a number of probabilistic logic models for RNA secondary structure mod-

eling, developed and tested in the probabilistic logic language and machine learning system PRISM. The

models are of two different types: HMM based models with a stack or SCFG based models. All models

express the basic structural components of secondary RNA structures including stem regions, hairpin loops,

multi-loops, internal loops, bulges, and external loops. The advantage of modeling RNA structure with a

stochastic push-down automaton/SCFG-like-HMM is that such models can be extended and evaluated using

the same model structure variants as are available for HMMs [24, 23]. Hence, it should be quite easy to

develop and test different model structures such as different conditioning schemes, ADPH length modeling

over structural components and pair- and triple-SCFG-like HMMs for pairwise alignment, repeat structures

for pseudoknot models, complementary pair-HMMs for RNA-RNA interactions, factorial RNA-HMMs for

overlapping RNAs and factorial HMM-SCFG-like HMMs for overlapping RNA structure and protein coding

sequences (mRNAs).

To demonstrate the feasibility of using probabilistic logic programs as RNA models, we perform a number of

experiments with variants of HMM based and SCFG based models on single sequence structure prediction.

The models are benchmarked against RNAfold on a small subset of Rfam data- cleaned up to allow for mod-

erately complex models to be trained and used for decoding. To show the ease of which new types of models

can be developed from well performing models, we also provide a number of model extensions that include

both HMM based and SCFG models for alignment, modeling pseudo knot and kissing hairpins, RNA-RNA

interactions and for modeling overlapping RNA structure and protein coding sequences (mRNAs).
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Materials & Methods

PRISM

We use PRISM version 2.1 (available at http://sato-www.cs.titech.ac.jp/prism/) for our experiments. PRISM

models are extremely brief and elegant, with a close correspondance to the equations and recursive formulas

usually used to present probabilistic models such as HMMs and SCFGs. This results in code that is versatile

and easy to manipulate. The execution of a PRISM program (as with any other logic program) results in a

solution tree. The PRISM machine learning system use this solution tree to build a generic Dynamic Pro-

gramming matrix and run its inference and parameter estimation procedures on. PRISM 2.1 offers a generic

Expectation-Maximization (EM) algorithm for parameter inference, a variational Bayes version (VB-EM)

and a Markov Chain Monte Carlo parameter inference method. Decoding is produced with a Viterbi -like

algorithm, returning an explanation graph from with the most probable state of hidden variables can be

extracted (the Viterbi explanation). For a general introduction to PRISM see [25, 26].

Hidden Markov Models

Before we go on to our probabilistic RNA models, we start by introducing how HMMs can be implemented

in PRISM, and then proceed to extending these models towards models capable of modeling RNA secondary

structure.

An HMM is characterized by a set of transition probabilities between unobserved states and a set of emission

probabilities of observed characters emitted from states. Given an observed sequence O = x1,x2, ...,xn and a

path Π = π1,π2, ...,πn, the transition probabilities akl are defined for position i and states k and l, as:

akl = P(πi = l | πi−1 = k), (1)

and the emission probabilities ek(b) are defined for path Π, position xi, state k and character b, as:

ek(b) = P(xi = b | πi = k). (2)
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The joint probability of observing the sequence X and the path Π is:

P(X ,Π) = a0π1

n

∏
i=1

eπi(xi)aπiπi+1 . (3)

A PRISM implementation of a standard two-state HMM that emits sequences from {a,c,g,u}, is given by

a a collection of values predicates that are unit clauses (facts) that represents the transition and emission

probabilities by conditionals and outcome space, combined with a recursive structure corresponding to the

partitioning scheme of the joint probability equation (and predicates for initiation and termination):

% parameters:

values(transition(state(begin)),[state(1),state(2),end]).

values(transition(state(1)),[state(1),state(2),end]).

values(transition(state(2)),[state(1),state(2),end]).

values(emission(state(1)),[a,c,g,u]).

values(emission(state(2)),[a,c,g,u]).

% initiation:

model(Observables) :-

recursion(state(begin),Observables).

% recursive structure:

recursion(state(Si),[Xi|Rest]) :-

msw(emission(state(Si)),Xi),

msw(transition(state(Si)),NS),

recursion(NS,Rest).

% termination:

recursion(end,[]).

RNA-HMMs

An HMM based model that is capable of generating/parsing palindromic sequences (e.g. RNA stem regions)

can be obtained via adding a stack and providing separate recursive structures for each state, where state 1

writes both to the sequence (the left side of a stem) and the stack (that will become the right side of a stem)

and state 2 empties the stack into the sequence (producing the right side of a stem). The following PRISM

code is of a model that emits dot-bracket structures corresponding to RNA secondary structures.

% parameters:

values(transition(state(begin)),[state(1),state(2),end]).
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values(transition(state(1)),[state(1),state(2),end]).

values(transition(state(2)),[state(1),state(2),end]).

values(emission(state(1)),[(<,>)).

values(emission(state(2)),[’:’]).

% initiation:

model(Observables) :-

recursion(state(begin),[],Observables).

% recursion structure:

recursion(state(1),Stack,[Xi|Rest]) :-

msw(emission(state(1)),(Xi,Wi)),

msw(transition(state(1)),NS),

recursion(NS,[Wi|Stack],Rest).

recursion(state(2),Stack,[Stack_head|Rest]) :-

get_stack(Stack,Stack_head,Stack_tail),

msw(transition(state(1)),NS),

recursion(NS,Stack_tail,Rest).

get_stack([H|T],H,T).

% termination:

recursion(end,[],[]).

Figure 1 shows the complete PRISM source code of an RNA HMM model that can generate RNA secondary

structures. The model generates/parses both a nucleotide sequence and a dot-bracket annotation.

RNA SCFGs

Stochastic Context-Free Grammars is the probabilistic extension of Context-Free Grammars. Context-Free

Grammars (CFG) were introduced by Chomsky [27] and is a generative grammatical formalism which de-

scribe language through recursive structures. A context-free grammar can be characterized using a number

of (recursive) production rules consisting of non-terminals (N) and terminals (t). Without loss of generality

we say that a rule head→ body of a CFG is on the form,

N→ t|tN|tNt
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Terminals are actual symbols in the language and the non-terminals represent the compositional syntax of

the grammar. The meaning of a rule is that the head can be replaced by the sequence of terminals and

non-terminals in the body. Top-down parsing with CFGs derives an observed sequence of terminals from a

single non-terminal. CFGs can be ambiguous in the sense that they may have several rules with the same

non-terminal in the head.

Stochastic Context-Free Grammars (SCFGs) is an extension of CFGs which associate a probability to each

rule. Parsing with SCFGs usually amounts to finding the most probable derivation of the observed terminal

sequence from a (particular) non-terminal.

HMMs are equivalent to (may express the same set of languages as) right-recursive SCFGs, where rules are

on the restricted form,

N→ t|tN

Probabilistic Push-Down Automata (PPDAs), e.g., RNA HMMs, and SCFGs are theoretically equivalent

under certain conditions [28], but are different with regards to parsing strategies. Essentially, PPDAs are

operational specifications with an explicit parsing strategy whereas SCFGs are purely declarative. In the

SCFGs considered here, however, parsing is a top-down process which starts with a non-terminal and ul-

timately derives the observed sequence. In contrast, RNA HMMs can be seen as using a combination of

bottom-up parsing (pushing non-terminals to the stack) and top-down parsing (popping non-terminals from

the stack).

SCFGs for modeling RNA structures can be composed of production rules representing structural compo-

nents including stem regions, hairpin loops, internal loops, multi-loops, bulges, and external loops [14].

The PRISM code of an SCFG that can emit the same types of dot-bracket structures as the RNA-HMM is
given here:

% parameters:

values(transition(free),[[’:’,free],[free,free],[stem],[’:’]]).

values(transition(stem),[

[’<’,stem,’>’],

[stem,stem],

[’<’,stem,rb,’>’],

[’<’,lb,stem,’>’],

[loop]
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]).

values(transition(loop),[[’:’,loop],[c,loop],[g,loop],[u,loop],[stem,loop],[’:’]]).

values(transition(lb),[[’:’,lb],[’:’]).

values(transition(rb),[[’:’,rb],[’:’]]).

% initiation:

model(L):-

scfg(free,L-[]).

% recursion:

scfg(LHS,L0-L1):-

(

terminal(LHS)->

annot(LHS,W,A),

L0=[W|L1]

;

msw(transition(LHS),RHS),

projection(RHS,L0-L1)

).

% "stack termination"

projection([],L-L).

% "stack handling"

projection([RHS_head|RHS_tail],L0-L2):-

scfg(RHS_head,L0-L1),

projection(RHS_tail,L1-L2).

% terminal designation:

terminal(’:’).

terminal(’’<).

terminal(’>’).

Figure 2 show the entire prism code of the an RNA SCFG (rnascfg.psm) in annotation version.

Model structures for supervised learning

In order to parameterize the models using supervised learning model variants are constructed that can parse

and generate both a nucleotide sequence and a dot-bracket notation representation of the secondary struc-

ture (The models can also be be parameterized in sequence mode (unsupervised) from unannotated RNA
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sequences). Supervised learning of the SCFGs can be done using annotation versions trained on data of

the form ”model([a,c,g,u], [<, :, :,>]).”. The parameters of the annotation and the sequence models are

equivalent, so the sequence models can be used to decode sequences using parameter values obtained via

supervised training by the corresponding annotation model.

Extended Structures for Single-Sequence RNA Models

More elaborate model structure can be obtained by using mixed memory [17] versions were transitions

and emissions can be conditioned on the state, previous states, the content of the stack, previous emissions

or any combination hereof. This can be done to allow for larger scale structural composition modeling and

modeling of context effects like stacking. Such models are easily produced by changing just a few characters

in the values declarations and the recursions. See supplementary materials for the PRISM code of all the

models used and presented here.

The five model variants used for the experiments are:

• rnahmm - a standard RNA HMM model with canonical base pairing and wobble base pairs

• mmrnahmm - a mixed memory version of rnahmm with transitions conditioned on state and emission

• mmrnahmm2 - a mixed memory version of rnahmm with transitions conditioned on state, previous

state, emission and previous emission

• rnasc f g - a standard RNA SCFG model with canonical base pairing and wobble base pairs

• mmrnahmm2 - a mixed memory version of rnasc f g with transitions conditioned on the previous Left

Hand Side

Data

The experiments were conducted using RNA sequences and secondary structure annotations derived from

Rfam version 10.1. We use only a subset of Rfam namely families with maximum average pairwise sequence

similarity of 90%, on individual pairwise sequences of < 95% similarity and at minimum 30 members pr

family. The dataset contains 166 families with 15276 sequences in total.
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This dataset was then additionally filtered to only have canonical base-pairing, removing pseudo knot annota-

tions, and removing sequences with non {acgu} characters, and sequences with ”Predicted” in the comment

field - leaving only sequences with a ”Published” tag. This dataset contains 9796 sequences in 104 families.

The length distribution of this dataset is given in figure 3.

Due to the complexity constraints of the RNAHMM models a smaller dataset of sequences with a maximum

length of 50 its was extracted (467 seq.) and partitioned for 5x cross-validation. SCFGs for RNA secondary

sequence prediction are prone to over fitting [19]. To examine this effect we made 3 data sets for cross-

validation studies: Test set 1 partitions were produced such that each family was partitioned separately into

the the 5 fold cross validation partitions in order to ensure that they were represented in each training and

decode datasets. Test set 2 partitions were made using families, such that no family had members in more

than one partition. Test set 3 use test set 2 augmented with the 4430 sequences between 100 and 50 nts in

our initial dataset for training and test set 2 for decoding (to compensate for the data sparseness of test set

2). The training sets for each partition where the concatenation of the other 4 partitions. Training of both

rnahmm and rnascfg models were done on data in model([a,c,g,u, ...], [<, :, :,>, ...]). format. Decoding was

done on data in lst format: ”[a,c,g,u, ...]”.

Model parameterization and decoding

In order to parameterize the models using supervised learning annotation variants are constructed that can

parse and generate both a nucleotide sequence and a dot-bracket notation representation of the secondary

structure.

To speed up training and decoding of the HMM based models, we use the autoAnnotations tool by Chris-

tiansen and Gallagher [29] - that enables efficient supervised learning using an annotation model - and

outputs the most probable annotation sequence after decoding.

Decoding was performed using the single-SCFG like HMM versions with the PRISM viterbi f returning an

annotated viterbi graph from which the state path was retrieved. Evaluation of the models were based on

statistical measures returned by PRISM after learning sessions as well as classification performance in terms

of correctly predicting base-pairing regions with respect to the annotations.

We use the consensus structure of RNA alignments as a golden standard. Prediction performance was mea-
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sured as base pairing True Positive Rate TPR (Sensitivity/Precision), Positive Prediction Value PPV (Speci-

ficity) and MCC value. With True Positive Rate given as:

T PR =
T P

T P+FN
(4)

Positive Predictive Value given as

PPV =
T P

T P+FP
(5)

and MCC value given as

MCC =
T P×T N−FP×FN√

(T P+FP)(T P+FN)(T N +FP)(T N +FN)
(6)

Results

Table 1 show the learn statistics of the learning sessions (average over all training sets) on test set 1. In

learning mode the RNA HMMs are faster than the RNA SCFGs with slightly lower likelihoods obtained

after training, except mmrnahmm2 which have the highest likelihood of all the models.

Complexity analysis

The complexity of the decoding of the different models was determined by decoding random sequences

of lengths 10,20,30,40 and 50 nts - measuring time and memory complexity as user time (in seconds) and

maximum resident set size (in kbytes). The complexity of the decoding of each sequence was recorded

in the same way. Table 2 show average time complexity of the models based on decoding of 5 sets of 10

random sequences in different lengths from 10 its to 50 nts. Table 3 show the corresponding average memory

complexity of the models. Figure 4 show the linear relationship between time and memory complexity of

decoding the test set with rnahmm. Figure 5 show the relationship between time and memory complexity of

decoding the test set with rnasc f g. Figure 6 and 7 show the memory complexity of rnahmm and rnasc f g,

respectively.

Usually, the complexity of RNA folding algorithms are O(M3) in time and O(M2) in memory, where M is
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the length of the sequence. SCFGs are O(M3) in both time and memory and O(M2) in memory, where M is

the length of the sequence and N the number of nonterminals. This is a theoretical (worst case) upper bound,

with actual complexity depending on the sequence composition (e.g. sequences like ’aaaaauuuuu’ has only a

single derivation, and hence folding of such sequences hence scale linearly in their lengths. The RNA HMMs

are orders of magnitude slower than the SCFG and these are again much slower than RNAfold.

The RNA HMMs in their current implementation are O(M3) in both time and memory for all sequences

(see Figure 4), whereas the RNA SCFG models only for some sequences are also O(M3) in both time and

memory.

There is a very large sequence dependent difference in time and memory use of the RNAHMMs (and some

of the RNASCFGs), due to their current implementation (please see Discussion for further details).

Prediction Performance

Prediction performance is given in table 4 for rnahmm, table 5 for mmrnahmm, table 6 for mmrnahmm2,

table 7 for rnasc f g, table 8 for mmrnasc f g and table 9 for RNAfold. The corresponding results on test set 2

are given in tables 10 to 15. The results from test set 3 for rnasc f g is given in table 13.

There is a large variation in prediction performance for all models on the different families. The prediction of

”exotic” RNAs such as JUMPstart, Prion pknot (it is a pseudoknoted sequence - for training and verification

only non-pseudo knotting base pairs are counted), glnA and PK-IAV using test set 1 and Bacteria large SRP

as well for test set 2, is very poor for all models. This is most likely due to ”unusual” structures in the

”exotic” RNAs that leads to data-sparseness when trained only on other families. RNAfold performs very

well on the Bacteria large SRP family, but also poorly on prion pknot and PK-IAV.

Overall, the standard RNA HMM and RNA SCFG models (rnahmm and rnasc f g) are equivalent in total

prediction performance, both being slightly lower than RNAfold. mmrnahmm is significantly worse than the

other models and both mmrnahmm2. and mmrnasc f g are better than RNAfold in terms of total prediction

performance on test set 1.

The opposite effect is seen in the results from test set 2. None of the models perform nearly as well as

RNAfold and the use of mixed memory structures generally impair the prediction performance. This again

is most likely also due to data-sparseness, as the more complex models are more vulnerable to ”lack of data”.
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The data-sparseness problem can be compensated by training on a larger and more diverse dataset as can

be seen from Figure 17, that gives the results of the prediction performance of rnahmm on test set 3 that

includes 4430 additional sequences of length between 50 and 100 nts in the training sets (not present in the

decoding sets). Training on more divergent data increases the prediction performance even as compared to

the inter-family results from using test set 1, especially for the ”exotic” RNAs. The prediction performance

Prion pknot, Bacteria large SRP and PK-IAV was not recoverable by using test set 3, whereas JUMPstart

and pan were partially recovered. rnasc f g trained on test set 3 only outperformed RNAfold on JUMPstart,

glnA, and HIV-FE. mmrnasc f g trained on test set 3 show similar recovery as with rnasc f g, with improved

prediction over mmrnasc f g on test 2, better prediction than rnasc f g on test 3 yet not as good prediction as

RNAfold on test 2 nor of mmrnasc f g on test 1. Prediction performance of mmrnasc f g trained on test set 3

is close to that of RNAfold, with 6 out of 14 families achieving better prediction than RNA fold.

Using the single sequence secondary structure model variants described here with parameters optioned from

training on either all sequences under 100 nts in our initial dataset, possibly augmented by fragments of

longer sequences, would provide powerful secondary structure modeling both in its own right, and when

imported into the models in our RNA model suite.

RNA model suite

One of the main advantages of developing RNA models as probabilistic logic programs is that they are easily

changed into novel model types. These models can be based on modeling principles for well performing

models, and even in some cases use parameter values imported from other models (such as single sequence

RNA models). The following section gives a short description of a suite of model types that we have

developed. The PRISM code of all models are available as supplementary materials.

Pairwise Alignment Models

Pairwise sequence alignment is a cornerstone of contemporary bioinformatics. The papers by Needleman-

Wunsch [30] and Smith-Waterman [31, 32] laid the foundation of dynamic programming pairwise align-

ment algorithms that have since been generalized to probabilistic models [33] including pair-HMMs [14],

extended to multiple alignments [34, 35, 36] and incorporation of phylogenetic structure [37, 38, 39], as well
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as serving as the basis for search tools like BLAST [40].

Pairwise alignment of noncoding RNAs is an important problem, that combines alignment and RNA sec-

ondary structure prediction. The seminal paper by Sankoff [41] described the simultaneous RNA structure

prediction and alignment with a number of approximations of the Sankov 85 algorithm developed subse-

quently e.g. [42].

We have made two models for pairwise alignments constrained by RNA secondary structure.

One model is an RNA HMM based model consisting of a combination of a Smith-Waterman style pair-

HMM with a stochastic push-down automaton (hairpin pair.hmm). The other model is a pair-SCFG model

(pair scfg.psm). The PRISM code of both are available in the supplementary materials. Figure 8 give the

PRISM code of a pair SCFG model.

Pseudoknot and Kissing Hairpins Models

Pseudo knots and kissing hairpins are tertiary structures formed by base pairing interactions between loop

and non-loop regions (pseudoknots) and between loop regions (kissing hairpins). Pseudoknots and kissing

hairpins cannot be expressed by SCFGs, due to the repeat like sequences that require a Context Sensitive

Grammar [14]. We have developed pseudo knot and kissing hairpins models based on RNA HMM models

by adding an extra stack to the model for recoding the pseudo knotted or kissing sequences. Figure 9 gives

the PRISM source code for HMM based pseudoknot and a kissing hairpin models.

mRNA models

Messenger RNA (mRNA) genes are the most abundant type of genes in any organism. mRNA genes gets

transcribed into RNA that then gets translated into protein. Hence, mRNA genes have dual functions: they

encode RNA molecules and they encode protein molecules. RNA molecules adopt various structures and so

do proteins, both of which impose constraints on the DNA sequences that encodes them.

mRNAs are multitasking molecules - the sequential composition of mRNA genes is constrained by both

RNA structure and protein coding potential simultaneously. Modeling this overlapping functionality would

be important for sequence analysis of mRNA genes including gene finding, structure prediction, alignment
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and phylogenetic inferences - as well as for providing an interesting insight into how nature has resolved the

inherent problems in multitasking through the past 4 billion years.

There is a growing catalogue of overlapping RNA structures and protein coding sequences, from examples

in HIV, [43] to the Human genome [44] as well as statistical indications [45, 46] of prevalent overlap, even

indications that bacterial mRNAs are subject to constraints by RNA structure in general [47].

In addition, it is known that synonymous mutations can have effect on gene expression [48, 49, 50, 51], that

mRNA folding effects translational efficiency [52] and even that synonomous substitutions possibly affects

protein structure [53]. There are all indications that RNA structure is potentially important feature of mRNA

sequence composition.

Modeling overlapping RNA structure and protein coding sequences have been performed by [54, 55, 56, 57],

but with an emphasis on phylogenetics with relatively limited models of the overlaps.

The sequential constraints imposed on DNA by protein coding potential is typically modeled using Hid-

den Markov Models (HMMs) that captures the local dependencies between nucleotides. HMMs of protein

coding potential are extensively used for gene finding[14], and protein structure modeling[58]. A number

of different model structures for capturing protein coding potential were explored in Mørk-Holmes 2012

[23].

Here, we demonstrate the feasibility of producing a full probabilistic model encompasing both the RNA

coding and protein coding potential of mRNAs. The model is a factorial-HMM model with two condition-

ally independent state chains and a single emitted nucleotide sequence chain. One state chain is a mixed

memory HMM that models the protein coding potential of the mRNA. The other state chain is an SCFG-like

HMM that models the RNA secondary structure of the mRNA. The RNA submodel and the protein coding

submodel can be parameterized separately and combined for decoding mRNA sequences.

The backbone of the mRNA model is a factorial-HMM [16] like model with two hidden state sequence

chains and a single observable sequence chain.

Each chain emits sequences from {a,c,g, t} and coordination of the behavior of the two sub-models is

achieved by a specific ”agreement” emission of the single observed sequence conditioned on the emissions of

the two sub-models. Coordination is achieved by fixing the parameter values to have point probability close

to 1 for the outcome agreed upon, and uniformly distributed outcomes if the two sub-models disagree.
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Figure 10 give the PRISM code of an RNA HMM based mRNA model. An SCFG based mRNA model is

available in the supplementary materials (mrna scfg.psm).

Discussion

We have demonstrated utility of using probabilistic logic programming as a prototyping environment for

the development and testing of novel probabilistic models for RNA bioinformatics. We have shown how

probabilistic logic programming enables a level comparison of different models. We have tested three dif-

ferent HMM based models and two different SCFG based models, and shown the prediction performance

equivalence of HMM based and SCFG based RNA models. Furthermore we have shown that these are on

par with RNAfold in terms of secondary sequence structure prediction when trained on family members, and

that more capable models can be developed by using mixed memory model architectures.

The driving idea underlying our introduction of probabilistic logic modeling for RNA secondary sctruc-

ture modeling is to be able to swiftly develop models of RNA secondary structure, to test them on a level

platform and to expand them into model types used for other types of bioinformatic tasks involving RNA

sequences.

The single sequence secondary structure models are available in both pure sequence versions and annota-

tion versions. The latter can be used for visualizing the underlying state sequence of sequences sampled

from the model and for supervised learning, given sequences with dot-bracket notation annotated secondary

structure.

The currently very inefficient implementation of the HMM based models makes it hard to evaluate the perfor-

mance of the models on larger datasets, that would increase the reliability of our statistical approach.

The complexity of the RNA HMM models to a large extend is due to an inefficient tabling strategy for the

RNA HMM, where the stack contents are tabled in a way where they add to the number of nonterminals.

Even though the general complexity of the models are the usual O(N3L3) as for the Inside-Outside algorithm

[12], the dynamic variation of N produces a very large number of derivations in a highly sequence dependent

manner. Future work on using an alternative tabling strategy or incorporation of difference lists into the RNA

HMMs might make the models as efficient as SCFGs are.
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Despite the horrendous complexity of the RNA HMM models, the ease of which they are transformed into

other types of models, such as those for pseudo knots and kissing hairpins, these models may still be relevant

in their present form. They can, e.g., useful for incorporating the repeat like base pairing regions of pseudo

knots and kissing hairpins, given that those regions are usually very short, and much simpler than ordinary

RNA secondary structure that have bifurcation and nested structures that needs to be recoded in the stack

and gives rise to the largest growth in complexity due to structural variation.

In order to produce probabilistic models that are comparable to the complexity of thermodynamic DP ap-

proaches one could either implement the (well performing) models in efficient generalized dynamic pro-

gramming languages like Bellman’s GAP [59], and try dynamic pruning of the explanation graph in PRISM,

reducing the number of parses as in Havgaard et. al. 2007 [60].

The performance of our models are very data dependent. We find that our models are prone to over-fitting

when trained on sparse datasets. This leads to good prediction performance on data that resamples the

training data (i.e. data trained on representatives of the same family), but bad performance when decoding

families that have not been used for training. This effect is somewhat compensated by training on a more

diverged dataset. In that respect it must be remembered that our benchmark MFE RNA folding method

(RNAfold) make use of thousands of energy parameters . The validation of RNA alignments (and indeed

RNA secondary structure prediction) is further complicated by a limited amount of proper golden standard

data due to the difficulties in experimental elucidation of RNA structure as a consequence of the instability

of most RNA molecules.

The resemblance of the RNA HMM models to left-corner parsers [61] that parse the sequence bottom up

and sideways, should make it easier to incorporate ordinary sequence constraints due to neighboring effects

such as stacking or higher order signals (longer distance memory of what has been emitted or the sequence

of structural classes represented by the states of the model) in order to provide a model that e.g. models local

interactions in 5’ to 3’ directions prior to downstream base pairing. This would provide models that mimics

the time and orientation dependent aspect of the folding of RNA as it is transcribed, something that current

models do not incorporate. Further work could also be done on examining implementations of RNA models

using left-corner parsers along the same lines as we have provided here.

The limited number of single sequence secondary structure models that we examine here by no means

exhaust the structure space of models capable of parsing RNA sequences. Our formulation of the models
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as declarative logic programs should also make it easier to provide a genetic algorithm based approach for

systematically exploring this structure space.

In addition to the single sequence secondary structure models, we have provided a suite of extended models

for alignment, RNA-RNA interaction modeling, pseudo knot and kissing hairpin modeling and modeling

overlapping RNA structure and protein coding potential, that remain to be benchmarked but demonstrates

that well performing single sequence models can potentially be used as a basis for improving other types of

RNA bioinformatic tasks too.

We conclude that the use of probabilistic logic programming is a promising platform for prototyping and

discovering novel models for RNA bioinformatics, that is likely to produce future models that will improve

and expand the computational prediction and inferences involving RNA sequences.
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model Free param Learn time graph size log Likelihood
rnahmm 21 0.327±0.01 60412±593.836 -25667.19±173.673
mmrnahmm 60 0.398±0.058 60412±593.836 -25284.028±172.03
mmrnahmm2 454 0.41±0.076 62612±598.237 -23414.728±146.826
rnascfg 50 18.487±0.083 4752810±53114.662 -25468.216±188.989
mmrnascfg 119 21.658±0.358 5701716±63731.83 -24593.381±179.637

Table 1: Average learn statistics for the models trained on test set 1 (intra-family partition scheme)). Notice
the difference between HMM based and SCFG based models.

model 10 20 30 40 50
rnahmm 0.019±0.003 0.026±0.005 0.185±0.089 2.778±2.218 45.908±47.053
mmrnahmm 0.03±0.0 0.04±0.009 0.276±0.12 2.907±2.056 47.054±48.884
mmrnahmm2 0.041±0.005 0.068±0.016 0.367±0.127 3.64±2.755 59.625±63.158
rnascfg 0.023±0.005 0.056±0.011 0.127±0.016 0.318±0.06 0.609±0.046
mmrnascfg 0.02±0.0 0.052±0.004 0.139±0.003 0.31±0.011 0.612±0.013
rnafold 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0 0.0±0.0

Table 2: Time complexity results of the different models measured with time -v as User time (in seconds) on
test set 1 (intra-family partition scheme). Notice the large difference between the HMM based models, the
SCFG based models and RNAfold.

model 10 20 30 40 50
rnahmm 51986±5664 68502±9845 259133±96557 2671779±1923772 42460770±42077102
mmrnahmm 53211±2560 69994±8174 258304±98781 2675957±1918706 42459194±42073200
mmrnahmm2 57130±5040 78891±8377 306829±123025 3312350±2414708 52227776±52956070
rnascfg 56696±7103 82773±4949 123677±3474 203259±4956 333770±16234
mmrnascfg 63184±3310 93307±8158 144011±10051 236210±6781 409488±5882
rnafold 5259±26 5270±18 5315±44 5342±35 5302±68

Table 3: Memory complexity results of the different models measured with time -v as Resident Set Size (in
kbytes) for decoding of test set 1 (intra-family partition scheme).
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fam members TPR PPV MCC
IRE 33 0.406 0.297 0.338
JUMPstart 43 0.093 0.107 0.097
Prion pknot 80 0.247 0.353 0.288
mini-ykkC 50 0.912 0.811 0.853
Histone3 48 0.876 0.913 0.893
SAM-SAH 46 0.685 0.528 0.597
Acido-Lenti-1 55 0.883 0.756 0.806
glnA 61 0.829 0.421 0.586
PK-IAV 32 0.05 0.05 0.047
total 448 0.554 0.471 0.501

Table 4: Prediction performance of rnahmm on test set 1 (intra-family partition scheme). Prediction per-
formance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Mathews
correlation coefficient MCC, for each family in the test set. Number of members are also indicated for each
family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.

fam members TPR PPV MCC
IRE 33 0.5 0.4 0.438
JUMPstart 43 0.111 0.14 0.12
Prion pknot 80 0.336 0.385 0.353
mini-ykkC 50 0.873 0.778 0.819
Histone3 48 0.922 0.91 0.914
SAM-SAH 46 0.63 0.498 0.556
Acido-Lenti-1 55 0.902 0.828 0.858
glnA 61 0.213 0.152 0.173
PK-IAV 32 0.078 0.094 0.083
total 448 0.507 0.465 0.479

Table 5: Prediction performance of mmrnahmm on test set 1 (intra-family partition scheme) Prediction per-
formance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Mathews
correlation coefficient MCC, for each family in the test set. Number of members are also indicated for each
family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.
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fam members TPR PPV MCC
IRE 33 0.875 0.791 0.822
JUMPstart 43 0.385 0.391 0.384
Prion pknot 80 0.552 0.567 0.553
mini-ykkC 50 0.898 0.883 0.887
Histone3 48 0.81 0.884 0.841
SAM-SAH 46 0.865 0.87 0.863
Acido-Lenti-1 55 0.936 0.837 0.88
glnA 61 0.669 0.655 0.656
PK-IAV 32 0.471 0.492 0.479
total 448 0.718 0.708 0.707

Table 6: Prediction performance of mmrnahmm2 on test set 1 (intra-family partition scheme) Prediction
performance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Math-
ews correlation coefficient MCC, for each family in the test set. Number of members are also indicated for
each family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.

fam members TPR PPV MCC
IRE 33 0.664 0.525 0.574
JUMPstart 43 0.225 0.362 0.278
Prion pknot 80 0.112 0.149 0.121
mini-ykkC 50 0.631 0.659 0.639
Histone3 48 0.657 0.854 0.741
SAM-SAH 46 0.693 0.539 0.606
Acido-Lenti-1 55 0.787 0.82 0.799
glnA 61 0.704 0.632 0.654
PK-IAV 32 0.18 0.25 0.207
total 448 0.517 0.532 0.513

Table 7: Prediction performance of rnasc f g test set 1 (intra-family partition scheme) Prediction performance
is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Mathews correlation
coefficient MCC, for each family in the test set. Number of members are also indicated for each family.
Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction performance
measures.
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fam members TPR PPV MCC
IRE 33 0.575 0.54 0.548
JUMPstart 43 0.282 0.386 0.323
Prion pknot 80 0.233 0.26 0.239
mini-ykkC 50 0.905 0.889 0.895
Histone3 48 0.818 0.955 0.879
SAM-SAH 46 0.838 0.546 0.671
Acido-Lenti-1 55 0.92 0.903 0.908
glnA 61 0.682 0.643 0.655
PK-IAV 32 0.376 0.378 0.372
total 448 0.625 0.611 0.61

Table 8: Prediction performance of mmrnasc f g on test set 1 (intra-family partition scheme) Prediction per-
formance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Mathews
correlation coefficient MCC, for each family in the test set. Number of members are also indicated for each
family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.

fam members TPR PPV MCC
IRE 33 0.746 0.755 0.745
JUMPstart 43 0.308 0.53 0.398
Prion pknot 80 0.023 0.046 0.024
mini-ykkC 50 0.807 0.828 0.814
Histone3 48 0.694 0.896 0.777
SAM-SAH 46 0.778 0.931 0.847
Acido-Lenti-1 55 0.907 0.907 0.905
glnA 61 0.709 0.764 0.732
PK-IAV 32 0.013 0.031 0.014
total 448 0.554 0.632 0.584

Table 9: Prediction performance of RNAfold on test set 1 (intra-family partition scheme) Prediction perfor-
mance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Mathews
correlation coefficient MCC, for each family in the test set. Number of members are also indicated for each
family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.
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fam members TPR PPV MCC
pan 3 0.925 1.0 0.96
ffh 2 0.875 0.909 0.889
Prion pknot 80 0.185 0.282 0.221
Bacteria large SRP 2 0.0 0.0 -0.006
Hammerhead 3 4 0.804 0.858 0.828
JUMPstart 43 0.093 0.107 0.097
mini-ykkC 50 0.75 0.583 0.655
glnA 61 0.094 0.06 0.074
PK-IAV 32 0.05 0.05 0.047
IRE 33 0.379 0.276 0.315
Acido-Lenti-1 55 0.835 0.696 0.751
HIV FE 6 0.876 0.965 0.912
Histone3 48 0.746 0.788 0.764
SAM-SAH 46 0.719 0.571 0.634
total 465 0.524 0.51 0.51

Table 10: Prediction performance of rnahmm on test set 2 (inter-family partition scheme). Prediction per-
formance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Mathews
correlation coefficient MCC, for each family in the test set. Number of members are also indicated for each
family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.

fam members TPR PPV MCC
pan 3 0.333 0.242 0.278
ffh 2 0.25 0.273 0.251
Prion pknot 80 0.203 0.294 0.235
Bacteria large SRP 2 0.0 0.0 -0.01
Hammerhead 3 4 0.825 0.858 0.839
JUMPstart 43 0.104 0.121 0.109
mini-ykkC 50 0.732 0.542 0.623
glnA 61 0.088 0.046 0.062
PK-IAV 32 0.0 0.0 -0.002
IRE 33 0.397 0.269 0.321
Acido-Lenti-1 55 0.727 0.581 0.642
HIV FE 6 0.904 0.965 0.933
Histone3 48 0.748 0.736 0.734
SAM-SAH 46 0.718 0.55 0.622
total 465 0.431 0.391 0.403

Table 11: Prediction performance of mmrnahmm on test set 2 (inter-family partition scheme). Prediction
performance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Math-
ews correlation coefficient MCC, for each family in the test set. Number of members are also indicated for
each family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.
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fam members TPR PPV MCC
pan 3 0.333 0.242 0.273
ffh 2 0.875 0.591 0.715
Prion pknot 80 0.065 0.077 0.063
Bacteria large SRP 2 0.0 0.0 -0.006
Hammerhead 3 4 0.789 0.594 0.669
JUMPstart 43 0.074 0.083 0.073
mini-ykkC 50 0.504 0.403 0.443
glnA 61 0.267 0.125 0.178
PK-IAV 32 0.0 0.0 -0.003
IRE 33 0.44 0.289 0.344
Acido-Lenti-1 55 0.861 0.622 0.721
HIV FE 6 0.788 0.783 0.782
Histone3 48 0.57 0.651 0.6
SAM-SAH 46 0.457 0.345 0.392
total 465 0.43 0.343 0.374

Table 12: Prediction performance of mmrnahmm2 on test set 2 (inter-family partition scheme). Prediction
performance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Math-
ews correlation coefficient MCC, for each family in the test set. Number of members are also indicated for
each family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.

fam members TPR PPV MCC
pan 3 0.333 0.242 0.276
ffh 2 0.881 1.0 0.938
Prion pknot 80 0.052 0.088 0.059
Bacteria large SRP 2 0.125 0.063 0.077
Hammerhead 3 4 0.689 0.885 0.779
JUMPstart 43 0.121 0.195 0.146
mini-ykkC 50 0.526 0.57 0.541
glnA 61 0.516 0.555 0.529
PK-IAV 32 0.023 0.063 0.031
IRE 33 0.523 0.344 0.406
Acido-Lenti-1 55 0.788 0.835 0.806
HIV FE 6 0.64 1.0 0.796
Histone3 48 0.536 0.813 0.65
SAM-SAH 46 0.652 0.551 0.593
total 465 0.457 0.514 0.473

Table 13: Prediction performance of rnasc f g test set 2 (inter-family partition scheme). Prediction perfor-
mance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Mathews
correlation coefficient MCC, for each family in the test set. Number of members are also indicated for each
family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.
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fam members TPR PPV MCC
pan 3 0.333 0.182 0.236
ffh 2 0.0 0.0 -0.015
Prion pknot 80 0.064 0.1 0.073
Bacteria large SRP 2 0.0 0.0 -0.01
Hammerhead 3 4 0.45 0.5 0.469
JUMPstart 43 0.099 0.13 0.107
mini-ykkC 50 0.632 0.575 0.597
glnA 61 0.517 0.171 0.291
PK-IAV 32 0.0 0.0 -0.005
IRE 33 0.115 0.065 0.076
Acido-Lenti-1 55 0.906 0.751 0.815
HIV FE 6 0.861 1.0 0.927
Histone3 48 0.628 0.896 0.742
SAM-SAH 46 0.32 0.338 0.323
total 465 0.352 0.336 0.33

Table 14: Prediction performance of mmrnasc f g on test set 2 (inter-family partition scheme). Prediction
performance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Math-
ews correlation coefficient MCC, for each family in the test set. Number of members are also indicated for
each family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.

fam members TPR PPV MCC
pan 3 1.0 0.914 0.955
ffh 2 0.959 1.0 0.978
Prion pknot 80 0.023 0.046 0.024
Bacteria large SRP 2 1.0 0.938 0.968
Hammerhead 3 4 0.736 1.0 0.855
JUMPstart 43 0.308 0.53 0.398
mini-ykkC 50 0.807 0.828 0.814
glnA 61 0.709 0.764 0.732
PK-IAV 32 0.013 0.031 0.014
IRE 33 0.746 0.755 0.745
Acido-Lenti-1 55 0.907 0.907 0.905
HIV FE 6 0.623 1.0 0.785
Histone3 48 0.694 0.896 0.777
SAM-SAH 46 0.778 0.931 0.847
total 465 0.665 0.753 0.7

Table 15: Prediction performance of RNAfold on test set 2 (inter-family partition scheme). Prediction per-
formance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and Mathews
correlation coefficient MCC, for each family in the test set. Number of members are also indicated for each
family. Total prediction performance (bottom row) is the arithmetic mean of the family wise prediction
performance measures.
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fam members TPR PPV MCC
pan 3 0.912 0.917 0.912
ffh 2 0.728 0.955 0.829
Prion pknot 80 0.036 0.067 0.041
Bacteria large SRP 2 0.125 0.063 0.079
Hammerhead 3 4 0.713 0.969 0.829
JUMPstart 43 0.413 0.712 0.534
mini-ykkC 50 0.667 0.728 0.692
glnA 61 0.745 0.749 0.741
PK-IAV 32 0.0 0.0 -0.006
IRE 33 0.783 0.694 0.728
Acido-Lenti-1 55 0.761 0.79 0.77
HIV FE 6 0.693 0.965 0.811
Histone3 48 0.671 0.917 0.776
SAM-SAH 46 0.655 0.568 0.603
total 465 0.564 0.649 0.596

Table 16: Prediction performance of rnasc f g test set 3 (augmented inter-family partition scheme). Predic-
tion performance is given as true positive rate (sensitivity) TPR, positive predictive value (specificity) and
Mathews correlation coefficient MCC, for each family in the test set. Number of members are also indi-
cated for each family. Total prediction performance (bottom row) is the arithmetic mean of the family wise
prediction performance measures.

fam members TPR PPV MCC
pan 3 1.0 1.0 1.0
ffh 2 0.783 0.955 0.861
Prion pknot 80 0.115 0.208 0.147
Bacteria large SRP 2 0.0 0.0 -0.009
Hammerhead 3 4 0.887 0.969 0.924
JUMPstart 43 0.278 0.381 0.316
mini-ykkC 50 0.89 0.91 0.897
glnA 61 0.773 0.705 0.733
PK-IAV 32 0.05 0.075 0.055
IRE 33 0.697 0.587 0.628
Acido-Lenti-1 55 0.899 0.908 0.901
HIV FE 6 0.639 0.965 0.779
Histone3 48 0.667 0.872 0.753
SAM-SAH 46 0.733 0.559 0.634
total 465 0.601 0.65 0.616

Table 17: Prediction performance of mmrnasc f g test set 3 (augmented inter-family partition scheme).
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% parameters
values(t(begin),[unpaired(single),push]).
values(t(single),[unpaired(single),push,end]).
values(t(push),[push,unpaired(lbulge),unpaired(loop),pull]).
values(t(loop),[unpaired(loop),pull]).
values(t(pull),[pull,unpaired(rbulge),unpaired(bifurcation)]).
values(t(pullout),[unpaired(single),end]).
values(t(lbulge),[unpaired(lbulge),push]).
values(t(rbulge),[unpaired(rbulge),pull]).
values(t(bifurcation),[unpaired(bifurcation),push]).

values(e(push),[(a,u),(c,g),(g,c),(u,a),(g,u),(u,g)]).
values(e(_),[a,c,g,u]).

model(Seq,Dot_bracket):-
msw(t(begin),NS),
r(NS,[],Seq,Dot_bracket).

r(end,_,[],[]).

r(unpaired(X),Stack,[W|R1],[':'|R2]):-
msw(e(unpaired),W),

        can_empty_stack(Stack,R1),
        msw(t(X),NS),

r(NS,Stack,R1,R2).

r(push,Tail,[W|R1],['<'|R2]):-
msw(e(push),(W,S)),

        can_empty_stack([S|Tail],R1),
        msw(t(push),NS),

r(NS,[S|Tail],R1,R2).

r(pull,[],R1,R2):-
msw(t(pullout),NS), 

        r(NS,[],R1,R2).

r(pull,Stack,[Head|R1],['>'|R2]):-
get_stack(Stack,Head,Tail),

        msw(t(pull),NS),
r(NS,Tail,R1,R2).

get_stack([Head|Tail],Head,Tail).

Figure 1: PRISM code of a RNA HMM model
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% parameters: 
values(transition(free),[[a,free],[c,free],[g,free],[u,free],[free,free],[stem],[a],[c],[g],[u]]).
values(transition(stem),[

[al,stem,ur],
[cl,stem,gr],
[gl,stem,cr],
[ul,stem,ar],
[gl,stem,ur],
[ul,stem,gr],
[stem,stem],

[al,stem,rb,ur],
[cl,stem,rb,gr],
[gl,stem,rb,cr],
[ul,stem,rb,ar],
[gl,stem,rb,ur],
[ul,stem,rb,gr],

[al,lb,stem,ur],
[cl,lb,stem,gr],
[gl,lb,stem,cr],
[ul,lb,stem,ar],
[gl,lb,stem,ur],
[ul,lb,stem,gr],

[loop]
]).

values(transition(loop),[[a,loop],[c,loop],[g,loop],[u,loop],[stem,loop],[a],[c],[g],[u]]).
values(transition(lb),[[a,lb],[c,lb],[g,lb],[u,lb],[a],[c],[g],[u]]).
values(transition(rb),[[a,rb],[c,rb],[g,rb],[u,rb],[a],[c],[g],[u]]).

model(L,A):-
        scfg(free,L-[],A-[]).

scfg(LHS,L0-L1,A0-A1):-
        (
        terminal(LHS)->
        annot(LHS,W,A),

A0=[A|A1],
L0=[W|L1]

        ;
        msw(transition(LHS),RHS),
        projection(RHS,L0-L1,A0-A1)
        ).

projection([],L-L,A-A).

projection([RHS_head|RHS_tail],L0-L2,A0-A2):-
        scfg(RHS_head,L0-L1,A0-A1),
        projection(RHS_tail,L1-L2,A1-A2)
        .

terminal(a).
terminal(c).
terminal(g).
terminal(u).
terminal(al).
terminal(cl).
terminal(gl).
terminal(ul).
terminal(ar).
terminal(cr).
terminal(gr).

Figure 2: PRISM code of a RNA SCFG model
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Figure 3: Length distribution of initial Rfam93.90.30 dataset. Notice the large peak of sequences shorter
than 100 nts. The small peaks of sequences longer than 1500 nts are large subunit ribosomal RNAs.
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Figure 4: Scatterplot of time and memory complexity of rnahmm.psm decoding of test set 1 (intra-family
partition scheme). Notice the somewhat unusual linear relationship for the time and memory complexity.
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Figure 5: Scatterplot of time and memory complexity of rnahmm.psm decoding of test set 1 (intra-family
partition scheme).
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Figure 6: Memory complexity of the rnahmm.psm decoding of the test set 1 (intra-family partition scheme).
Notice that the decoding complexity of rnahmm is heavily dependent upon the sequence composition (due
to the inefficient tabling procedure).
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Figure 7: Memory complexity of the rnascfg.psm decoding of the test set 1 (intra-family partition scheme).
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values(begin, [[match],[x_state],[y_state]]).
values(match,[[m(a,a), match, m(u,u)],

[m(c,c), match, m(g,g)],
[m(g,g), match, m(c,c)],
[m(u,u), match, m(a,a)],
[m(a,a),match],[m(c,c),match],

            [m(g,g),match],[m(u,u),match],
            [x_state],[y_state],
            [m(a,a)],[m(c,c)],[m(g,g)],[m(u,u)]]).
values(x_state,[[ x(a), x_state, x(u)],

[ x(c), x_state, x(g)],
[ x(g), x_state, x(c)],
[ x(u), x_state, x(a)],
[x(a),x_state],[x(c),x_state],

            [x(g),x_state],[x(t),x_state],                
[x(a),match],[x(c),match],

            [x(g),match],[x(t),match],                
[x(a)],[x(c)],[x(g)],[x(u)]]).

values(y_state,[[ y(a), y_state, y(u)],
[ y(c), y_state, y(g)],
[ y(g), y_state, y(c)],
[ y(u), y_state, y(a)],
[y(a),y_state],[y(c),y_state],

            [y(g),y_state],[y(u),y_state],
        [y(a),match],[y(c),match],
            [y(g),match],[y(u),match],
        [y(a)],[y(c)],[y(g)],[y(u)]]).

model(L1,L2):- scfg(begin, L1-[], L2-[]).

scfg(LHS, L10-L11, L20-L21):-
nonterminal(LHS)-> 

        msw(LHS,RHS),
        projection(RHS,L10-L11, L20-L21).

scfg(m(X,Y), L10-L11,L20-L21):-
        L10=[X|L11],L20=[Y|L21].

scfg(x(X), L10-L11,L20-L21):-
        L10=[X|L11],L20=L12.
 
scfg(y(Y), L10-L11,L20-L21):-
        L10=L11,L20=[Y|L21].
     
projection([],L1-L1, L2-L2).

projection([H|T], L10-L11, L20-L21):-
scfg(H, L10-L12, L20-L22),

        projection(T, L12-L11, L22-L21).

nonterminal(begin). nonterminal(match).
nonterminal(x_state). nonterminal(y_state).

terminal(m(a,a)). terminal(m(c,c)).
terminal(m(g,g)). terminal(m(u,u)).

terminal(x(a)). terminal(x(c)).
terminal(x(g)). terminal(x(u)).
terminal(y(a)). terminal(y(c)).
terminal(y(g)). terminal(y(u)).

Figure 8: PRISM code of a pair-scfg model for pairwise alignment
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values(t(begin),[unpaired(5)]).
values(t(unpaired),[push(1),unpaired(5)]).
values(t(push(1)),[loop(1),push(1)]).
values(t(loop(1)),[pseudo,loop(1)]).
values(t(pseudo),[loop(2),pseudo]).
values(t(loop(2)),[pull,loop(2)]).
values(t(pull),[pull]).
values(t(unpaired,stay),[knot,unpaired(3)]).
values(t(knot,stay),[knot]).
values(t(knot,go),[loop(2)]).
values(t(unpaired,go),[end,unpaired(3)]).
values(e(_),[a,c,g,u]).

model(Seq,Dot_bracket):-
msw(t(begin),Next),
r(Next,[],[],Seq,Dot_bracket).

r(unpaired(5),Stack,Knot,[W|R1],['.'|R2]):-
msw(e(x),W),

            msw(t(unpaired),Next),
r(Next,Stack,Knot,R1,R2).

r(unpaired(3),[],[],[W|R1],['.'|R2]):-
msw(e(x),W),

            msw(t(unpaired,go),Next),
r(Next,[],[],R1,R2).

r(unpaired(3),Stack,Knot,[W|R1],['.'|R2]):-
msw(e(x),W),
msw(t(unpaired,stay),Next),
r(Next,Stack,Knot,R1,R2).

r(push(I),Tail,Knot,[W|R1],['<'|R2]):-
msw(e(x),W),

        msw(t(push(I)),Next),
r(Next,[W|Tail],Knot,R1,R2).

r(loop(I),Stack,Knot,[W|R1],['.'|R2]):-
msw(e(x),W),

            msw(t(loop(I)),Next),
r(Next,Stack,Knot,R1,R2).

r(pseudo,Stack,Knot,[W|R1],['i'|R2]):-
msw(e(x),W),

            msw(t(pseudo),Next),
r(Next,Stack,[W|Knot],R1,R2).

r(pull,[],Knot,R1,R2):-
        r(unpaired(3),[],Knot,R1,R2).

r(pull,Stack,Knot,[W|R1],['>'|R2]):-
get_stack(Stack,Head,Tail),
msw(e(Head),W),

            msw(t(pull),Next),
r(Next,Tail,Knot,R1,R2).

r(knot,Stack,[],[W|R1],['.'|R2]):-
msw(e(x),W),

        msw(t(knot,go),Next),
r(Next,Stack,[],R1,R2).

r(knot,Stack,Knot,[W|R1],['j'|R2]):-
get_stack(Knot,Head,Tail),
msw(e(Head),W),

            msw(t(knot,stay),Next),
r(Next,Stack,Tail,R1,R2).

r(end,[],[],[],[]).

get_stack([Head|Tail],Head,Tail).

(a)

values(t(unpaired),[push(1),unpaired(5)]).
values(t(push(1)),[loop(1),push(1)]).
values(t(loop(1)),[kissing,loop(1)]).
values(t(kissing),[loop(2),kissing]).
values(t(loop(2)),[pull,loop(2)]).
values(t(unpaired,stay),[push(2),unpaired(3)]).
values(t(push(2)),[loop(3),push(2)]).
values(t(loop(3)),[kissed,loop(3)]).
values(t(unpaired,go),[end,unpaired(3)]).
values(e(_),[a,c,g,u]).

model(Dot_bracket,Seq):-
r(unpaired(5),[],[],Dot_bracket,Seq).

r(unpaired(5),Stack,Kiss,['.'|R1],[W|R2]):-
msw(e(x),W),

        msw(t(unpaired),Next),
r(Next,Stack,Kiss,R1,R2).

r(unpaired(3),[],[],['.'|R1],[W|R2]):-
msw(e(x),W),

        msw(t(unpaired,go),Next),
r(Next,[],[],R1,R2).

r(unpaired(3),Stack,Kiss,['.'|R1],[W|R2]):-
msw(e(x),W),

        msw(t(unpaired,stay),Next),
r(Next,Stack,Kiss,R1,R2).

r(push(I),Tail,Kiss,['<'|R1],[W|R2]):-
msw(e(x),W),

        msw(t(push(I)),Next),
r(Next,[W|Tail],Kiss,R1,R2).

r(loop(I),Stack,Kiss,['.'|R1],[W|R2]):-
msw(e(x),W),

        msw(t(loop(I)),Next),
r(Next,Stack,Kiss,R1,R2).

r(kissing,Stack,Kiss,['i'|R1],[W|R2]):-
msw(e(x),W),

            msw(t(kissing),Next),
r(Next,Stack,[W|Kiss],R1,R2).

r(pull,[],Kiss,R1,R2):-
           r(unpaired(3),[],Kiss,R1,R2).

r(pull,Stack,Kiss,['>'|R1],[W|R2]):-
get_stack(Stack,Head,Tail),
msw(e(Head),W),
r(pull,Tail,Kiss,R1,R2).

r(kissed,Stack,[],['.'|R1],[W|R2]):-
msw(e(x),W),
r(loop(2),Stack,[],R1,R2).

r(kissed,Stack,Kiss,['j'|R1],[W|R2]):-
get_stack(Kiss,Head,Tail),
msw(e(Head),W),
r(kissed,Stack,Tail,R1,R2).

r(end,[],[],[],[]).

get_stack([Head|Tail],Head,Tail).

(b)

Figure 9: PRISM code of HMM based pseudoknot and kissing hairpins models
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% mRNA.psm

% rna-parameters:
values(scfg_t(begin),[b(f),l,b(x)]).
values(scfg_t(x),[b(x),end]).
values(scfg_t(f),[b(f),l,end]).
values(scfg_t(l),[l,b(o)]).
values(scfg_t(o),[b(o),l,r]).
values(scfg_t(r),[r,b(o)]).

% mm.psm parameters:
values(hmm_t(start),[state(i),state(1)]).
values(hmm_t(i,_,_),[state(i)]).
values(hmm_t(1,_,_),[state(2)]).
values(hmm_t(2,_,_),[state(3)]).
values(hmm_t(3,_,_),[state(1)]).

values(hmm_e(_),[a,c,g,t]).

values(scfg_e(_),[a,c,g,t]).

values(agree(_,_),[a,c,g,t]).

model(O):-
        msw(hmm_t(start),S),
        msw(scfg_t(begin),T),
        p(T,[],S,(b,b),O).

p(end,_,_,_,[]).

p(r,[],state(S),(Y,Z),R):-
        msw(scfg_t(f),NNT),
        p(NNT,[],state(S),(Y,Z),R).

p(Nt,St,state(S),(Y,Z),[W|R]):-
        scfg(Nt,St,ENt,XNt),
        hmm(S,(Y,Z),ES),
        msw(hmm_e(ES),S_w),
        msw(scfg_e(ENt),Nt_w),
        msw(agree(S_w,Nt_w),W),
        msw(hmm_t(S,Y,Z),NS),
        msw(scfg_t(XNt),NNT),
        stack(Nt,St,W,NSt),
        p(NNT,NSt,NS,(Z,W),R).

scfg(b(T),St,b,T).
scfg(r,[],b,f).
scfg(r,[H|_],H,r).
scfg(l,_,l,l).

stack(l,St,W,[W|St]).
stack(r,[],_,[]).
stack(r,[_|T],_,T).
stack(b(_),St,_,St).

hmm(1,(Y,Z),(1,1,1)).
hmm(2,(Y,Z),(2,1,Z)).
hmm(3,(Y,Z),(3,Y,Z)).

hmm(i,(Y,Z),(i,i,i)).

Figure 10: PRISM code of an HMM based mRNA model
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pair hmm.psm

% parameters:

values(emission(indel),[a,c,g,t]).

values(emission(substitution),[(a,a),(a,c),(a,g),(a,t),

(c,a),(c,c),(c,g),(c,t),

(g,a),(g,c),(g,g),(g,t),

(t,a),(t,c),(t,g),(t,t)]).

values(transition(begin),[substitution,insert,delete]).

values(transition(substitution),[substitution,insert,delete,end]).

values(transition(insert),[substitution,insert,end]).

values(transition(delete),[substitution,delete,end]).

% recursion:

recursion(substitution,[Xi | R1],[Yi | R2]):-

msw(emission(substitution),(Xi,Yi)),

msw(transition(substitution),Next_state),

recursion(Next_state,R1,R2).

recursion(insert,[Xi | R1],Seq2):-

msw(emission(indel),Xi),

msw(transition(insert),Next_state),

recursion(Next_state,R1,Seq2).

recursion(delete,Seq1,[Yi | R2]):-

msw(emission(indel),Yi),

msw(transition(delete),Next_state),

recursion(Next_state,Seq1,R2).

% initiation:

model(Seq1,Seq2):-

msw(transition(begin),Next_state),

recursion(Next_state,Seq1,Seq2).

% termination:

recursion(end,[],[]).



triple hmm.psm

values(trans(begin),[xyz,xy,xz,yz,x,y,z]).

values(trans(xyz),[xyz,xy,xz,yz,x,y,z,end]).

values(trans(xy),[xyz,xy,xz,yz,x,y,end]).

values(trans(xz),[xyz,xy,xz,yz,x,z,end]).

values(trans(yz),[xyz,xy,xz,yz,y,z,end]).

values(trans(x),[xyz,xy,xz,x,end]).

values(trans(y),[xyz,xy,yz,y,end]).

values(trans(z),[xyz,xz,yz,z,end]).

values(triple_emit,[(a,a,a),(a,a,c),(a,a,g),(a,a,t),

(a,c,a),(a,c,c),(a,c,g),(a,c,t),

(a,g,a),(a,g,c), (a,g,g), (a,g,t),

(a,t,a),(a,t,c),(a,t,g),(a,t,t),

(c,a,a),(c,a,c),(c,a,g),(c,a,t),

(c,c,a),(c,c,c),(c,c,g),(c,c,t),

(c,g,a),(c,g,c),(c,g,g),(c,g,t),

(c,t,a),(c,t,c),(c,t,g),(c,t,t),

(g,a,a),(g,a,c),(g,a,g),(g,a,t),

(g,c,a),(g,c,c),(g,c,g),(g,c,t),

(g,g,a),(g,g,c),(g,g,g),(g,g,t),

(g,t,a),(g,t,c),(g,t,g),(g,t,t),

(t,a,a),(t,a,c),(t,a,g),(t,a,t),

(t,c,a),(t,c,c),(t,c,g),(t,c,t),

(t,g,a),(t,g,c),(t,g,g),(t,g,t),

(t,t,a),(t,t,c),(t,t,g),(t,t,t)]).

values(double_emit,[(a,a),(a,c),(a,g),(a,t),

(c,a),(c,c),(c,g),(c,t),

(g,a),(g,c),(g,g),(g,t),

(t,a),(t,c),(t,g),(t,t)]).

values(single_emit,[a,c,g,t]).

model(Q1,Q2,Q3):-

msw(trans(begin),S),

parse(S,Q1,Q2,Q3).

parse(xyz,[L1 | Q1], [L2 | Q2], [L3 | Q3]):-

msw(triple_emit,(L1,L2,L3)),

msw(trans(xyz),S),

parse(S,Q1,Q2,Q3).

parse(xy,[L1 | Q1], [L2 | Q2],Q3):-

msw(double_emit,(L1,L2)),

msw(trans(xy),S),

parse(S,Q1,Q2,Q3).

parse(xz,[L1 | Q1],Q2,[L3 | Q3]):-

msw(double_emit,(L1,L3)),

msw(trans(xz),S),

parse(S,Q1,Q2,Q3).

parse(yz,Q1,[L2 | Q2],[L3 | Q3]):-

msw(double_emit,(L2,L3)),

msw(trans(yz),S),

parse(S,Q1,Q2,Q3).



parse(x, [L1 | Q1],Q2,Q3):-

msw(single_emit,L1),

msw(trans(x),S),

parse(S,Q1,Q2,Q3).

parse(y,Q1,[L2 | Q2],Q3):-

msw(single_emit,L2),

msw(trans(y),S),

parse(S,Q1,Q2,Q3).

parse(z,Q1,Q2,[L3 | Q3]):-

msw(single_emit,L3),

msw(trans(z),S),

parse(S,Q1,Q2,Q3).

parse(end,[],[],[]).



pair codon hmm.psm

values(trans(begin),[m1,x1,y1]).

values(trans(m1),[m2]).

values(trans(m2),[m3]).

values(trans(m3),[m1,x1,y1,end]).

values(trans(x1),[x2]).

values(trans(x2),[x3]).

values(trans(x3),[m1,x1,end]).

values(trans(y1),[y2]).

values(trans(y2),[y3]).

values(trans(y3),[m1,y1,end]).

values(emit(m1),[(a,a),(a,c),(a,g),(a,t),

(c,a),(c,c),(c,g),(c,t),

(g,a),(g,c),(g,g),(g,t),

(t,a),(t,c),(t,g),(t,t)]).

values(emit(m2),[(a,a),(a,c),(a,g),(a,t),

(c,a),(c,c),(c,g),(c,t),

(g,a),(g,c),(g,g),(g,t),

(t,a),(t,c),(t,g),(t,t)]).

values(emit(m3),[(a,a),(a,c),(a,g),(a,t),

(c,a),(c,c),(c,g),(c,t),

(g,a),(g,c),(g,g),(g,t),

(t,a),(t,c),(t,g),(t,t)]).

values(emit(x1),[a,c,g,t]).

values(emit(x2),[a,c,g,t]).

values(emit(x3),[a,c,g,t]).

values(emit(y1),[a,c,g,t]).

values(emit(y2),[a,c,g,t]).

values(emit(y3),[a,c,g,t]).

model(Q1,Q2):-

msw(trans(begin),S),

parse(S,Q1,Q2).

parse(m1,[L1 | Q1], [L2 | Q2]):-

msw(emit(m1),(L1,L2)),

msw(trans(m1),S),

parse(S,Q1,Q2).

parse(x1,[L1 | Q1], Q2):-

msw(emit(x1),L1),

msw(trans(x1),S),

parse(S,Q1,Q2).

parse(y1,Q1,[L2 | Q2]):-

msw(emit(y1),L2),

msw(trans(y1),S),

parse(S,Q1,Q2).



parse(m2,[L1 | Q1], [L2 | Q2]):-

msw(emit(m2),(L1,L2)),

msw(trans(m2),S),

parse(S,Q1,Q2).

parse(x2,[L1 | Q1], Q2):-

msw(emit(x2),L1),

msw(trans(x2),S),

parse(S,Q1,Q2).

parse(y2,Q1,[L2 | Q2]):-

msw(emit(y2),L2),

msw(trans(y2),S),

parse(S,Q1,Q2).

parse(m3,[L1 | Q1], [L2 | Q2]):-

msw(emit(m3),(L1,L2)),

msw(trans(m3),S),

parse(S,Q1,Q2).

parse(x3,[L1 | Q1], Q2):-

msw(emit(x3),L1),

msw(trans(x3),S),

parse(S,Q1,Q2).

parse(y3,Q1,[L2 | Q2]):-

msw(emit(y3),L2),

msw(trans(y2),S),

parse(S,Q1,Q2).

parse(end,[],[]).



scfg.psm

values(transition(free),[[n,free],[stem,free],[n]]).

values(transition(stem),[[l,stem,r],[l,leftbulge,stem,r],[l,stem,rightbulge,r],[loop]]).

values(transition(loop),[[n,loop],[n]]).

values(transition(leftbulge),[[n,leftbulge],[n]]).

values(transition(rightbulge),[[n,rightbulge],[n]]).

values(emission(l),[’<’]).

values(emission(r),[’>’]).

values(emission(n),[’.’]).

model(L):-

scfg(free,L-[]).

scfg(LHS,L0-L1):-

(

preterminal(LHS)->

msw(emission(LHS),Symbol),

L0=[Symbol|L1]

;

msw(transition(LHS),RHS),

projection(RHS,L0-L1)

).

projection([],L-L).

projection([RHS_head | RHS_tail],L0-L2):-

scfg(RHS_head,L0-L1),

projection(RHS_tail,L1-L2)

.

preterminal(r).

preterminal(l).

preterminal(n).



mm scfg hmm.psm

% parameters:

values(scfg_t(begin),[b(f),l]).

values(scfg_t(f,_,_),[b(f),l,end]).

values(scfg_t(l,_,_),[l,b(o)]).

values(scfg_t(o,_,_),[b(o),l,r]).

values(scfg_t(r,_,_),[r,b(o)]).

values(scfg_e(_,_,_),[a,c,g,t]).

% initiation:

model(O):-

msw(scfg_t(begin),T),

p(T,[],(b,b),O).

% termination:

p(end,_,_,[]).

% stem termination:

p(r,[],(X,Y),R):-

msw(scfg_t(f,X,Y),NNT),

p(NNT,[],(X,Y),R).

% recursion:

p(Nt,St,(X,Y),[W | R]):-

scfg(Nt,St,ENt,XNt),

msw(scfg_e(ENt,X,Y),W),

msw(scfg_t(XNt,X,Y),NNT),

stack(Nt,St,W,NSt),

p(NNT,NSt,(Y,W),R).

scfg(b(T),St,b,T).

scfg(r,[H|_],H,r).

scfg(l,_,l,l).

stack(l,St,W,[W|St]).

stack(r,[],_,[]).

stack(r,[_|T],_,T).

stack(b(_),St,_,St).



pair scfg.psm

values(transition(free),[[(n,n),free],[stem,free],[(n,n)]]).

values(transition(stem),[

[(a,a),stem,(t,t)],

[(a,c),stem,(t,g)],

[(a,g),stem,(t,c)],

[(a,t),stem,(t,a)],

[(c,a),stem,(g,t)],

[(c,c),stem,(g,g)],

[(c,g),stem,(g,c)],

[(c,t),stem,(g,a)],

[(g,a),stem,(c,t)],

[(g,c),stem,(c,g)],

[(g,g),stem,(c,c)],

[(g,t),stem,(c,a)],

[(t,a),stem,(a,t)],

[(t,c),stem,(a,g)],

[(t,g),stem,(a,c)],

[(t,t),stem,(a,a)],

[leftbulge,stem,(n,n)],

[(n,n),stem,rightbulge],

[loop]]).

values(transition(loop),[[(n,n),loop],[(n,n)]]).

values(transition(leftbulge),[[(n,n),leftbulge],[(n,n)]]).

values(transition(rightbulge),[[(n,n),rightbulge],[(n,n)]]).

values(transition(b),[m,i,d]).

values(transition(m),[m,i,d]).

values(transition(i),[m,i,d]).

values(transition(d),[m,i,d]).

values(emission(a),[a,c,g,t]).

values(emission(c),[a,c,g,t]).

values(emission(g),[a,c,g,t]).

values(emission(t),[a,c,g,t]).

values(emission(n),[a,c,g,t]).

model(L1,L2):-

scfg(b,free,L1-[],L2-[]).

scfg(b,LHS,L10-L11,L20-L21):-

msw(transition(b),S),

scfg(S,LHS,L10-L11,L20-L21).

scfg(m,LHS,L10-L11,L20-L21):-

(

preterminal(LHS)->

get_tuple(LHS,(X,Y)),

msw(emission(X),Symbol_1),

msw(emission(Y),Symbol_2),

L10=[Symbol_1|L11],

L20=[Symbol_2|L21]

;

msw(transition(m),S),

msw(transition(LHS),RHS),

projection(S,RHS,L10-L11,L20-L21)



).

scfg(i,LHS,L10-L11,L20-L21):-

(

preterminal(LHS)->

get_tuple(LHS,(X,Y)),

msw(emission(Y),Symbol_2),

L10=L11,

L20=[Symbol_2|L21]

;

msw(transition(i),S),

msw(transition(LHS),RHS),

projection(S,RHS,L10-L11,L20-L21)

).

scfg(d,LHS,L10-L11,L20-L21):-

(

preterminal(LHS)->

get_tuple(LHS,(X,Y)),

msw(emission(X),Symbol_1),

L10=[Symbol_1|L11],

L20=L21

;

msw(transition(d),S),

msw(transition(LHS),RHS),

projection(S,RHS,L10-L11,L20-L21)

).

get_tuple((X,Y),(X,Y)).

projection(_,[],L1-L1,L2-L2).

projection(S,[RHS_head | RHS_tail],L10-L12,L20-L22):-

scfg(S,RHS_head,L10-L11,L20-L21),

projection(S,RHS_tail,L11-L12,L21-L22)

.

preterminal((a,a)).

preterminal((a,c)).

preterminal((a,g)).

preterminal((a,t)).

preterminal((c,a)).

preterminal((c,c)).

preterminal((c,g)).

preterminal((c,t)).

preterminal((g,a)).

preterminal((g,c)).

preterminal((g,g)).

preterminal((g,t)).

preterminal((t,a)).

preterminal((t,c)).

preterminal((t,g)).

preterminal((t,t)).

preterminal((n,n)).

% enforcing canonical stem base-pairing:

:-fix_sw(emission(a),[0.999997,0.000001,0.000001,0.000001]).

:-fix_sw(emission(c),[0.000001,0.999997,0.000001,0.000001]).

:-fix_sw(emission(g),[0.000001,0.000001,0.999997,0.000001]).

:-fix_sw(emission(t),[0.000001,0.000001,0.000001,0.999997]).



adph scfg hmm.psm

% parameters:

values(t(begin),[unpaired(5)]).

values(t(5),[push]).

values(t(push),[unpaired(loop)]).

values(t(loop),[pull]).

values(t(pullout),[unpaired(3)]).

values(t(pull),[pull]).

values(t(3),[end]).

values(e(unpaired),[’.’]).

values(e(push),[(’<’,’>’)]).

values(adph,[s,g]).

% initiation:

model(Obs):-

msw(t(begin),NS),

r(NS,adph(1),[],Obs).

% termination:

r(end,_,_,[]).

% recursions:

r(unpaired(X),adph(S),Stack,[W | R]):-

msw(e(unpaired),W),

msw(adph,SG),

adph(S,SG,A),

r(unpaired(X),A,Stack,R).

r(unpaired(X),next,Stack,[W | R]):-

msw(e(unpaired),W),

msw(t(X),NS),

r(NS,adph(1),Stack,R).

r(push,adph(S),Tail,[Left | R]):-

msw(e(push),(Left,Right)),

msw(adph,SG),

adph(S,SG,A),

r(push,A,[Right|Tail],R).

r(push,next,Tail,[Left | R]):-

msw(e(push),(Left,Right)),

msw(t(push),NS),

r(NS,adph(1),[Right|Tail],R).

r(pull,A,[],R):-

msw(t(pullout),NS),

r(NS,A,[],R).

r(pull,A,Stack,[Head | R]):-

get_stack(Stack,Head,Tail),

msw(t(pull),NS),

r(NS,A,Tail,R).

get_stack([Head | Tail],Head,Tail).

adph(1,s,adph(1)).

adph(1,g,adph(2)).

adph(2,s,adph(2)).

adph(2,g,adph(3)).

adph(3,s,adph(3)).

adph(3,g,next).



factorial hmm.psm

% parameters:

values(emission(_,_),[a,c,g,t]).

values(transition(_),[state(1),state(2),end]).

% recursion:

recursion(state(S1),state(S2),[Xi | Rest_of_sequence]):-

msw(emission(S1,S2),Xi),

msw(transition(S1),Next_state_S1),

msw(transition(S1),Next_state_S2),

recursion(Next_state_S1,Next_state_S2,Rest_of_sequence).

% initiation:

model(Sequence):-

msw(transition(begin),Next_state_S1),

msw(transition(begin),Next_state_S2),

recursion(Next_state_S1,Next_state_S2,Sequence).

% termination:

recursion(end,_,[]).

recursion(_,end,[]).



mm frames.psm

% parameters:

values(transition(_,_,_,i),[1,2,3,i]).

values(transition(_,_,_,1),[1,2,3,i]).

values(transition(_,_,_,2),[1,2,3,i]).

values(transition(_,_,_,3),[1,2,3,i]).

values(transition(_,_,_,j),[4,5,6,j]).

values(transition(_,_,_,4),[4,5,6,j]).

values(transition(_,_,_,5),[4,5,6,j]).

values(transition(_,_,_,6),[4,5,6,j]).

values(continue,[yes,no]).

values(emission(_,_,_,_),[a,c,g,t]).

% initiation:

model(O):-

recursion(yes,state(i,i,i,j,j,j),x,y,O).

%termination:

recursion(no,_,_,_,[]).

%recursion:

recursion(yes,state(F1,F2,F3,F4,F5,F6),P2,P1,[X | [Y| [ Z | R]]]):-

msw(emission(P2,P1,F1,F4),X),

msw(emission(P1,X,F2,F5),Y),

msw(emission(X,Y,F3,F6),Z),

msw(transition(P2,P1,X,F1),NF1),

msw(transition(P2,P1,X,F4),NF4),

msw(transition(P1,X,Y,F2),NF2),

msw(transition(P1,X,Y,F5),NF5),

msw(transition(X,Y,Z,F3),NF3),

msw(transition(X,Y,Z,F6),NF6),

msw(continue,C),

recursion(C,state(NF1,NF2,NF3,NF4,NF5,NF6),Y,Z,R).



factorial scfg hmm.psm

values(t(scfg),[b(f),l]).

values(t(f),[b(f),l,end]).

values(t(l),[l,b(lb),b(o)]).

values(t(lb),[b(lb),l]).

values(t(o),[b(o),r]).

values(t(r),[r,b(rb)]).

values(t(rb),[b(rb),r]).

values(e(_,_),[a,c,g,t]).

model(O):-

msw(t(scfg),Nt_1),

msw(t(scfg),Nt_2),

p(Nt_1,[],Nt_2,[],O).

p(end,_,_,_,[]).

p(_,_,end,_,[]).

p(Nt_1,St_1,Nt_2,St_2,[W | R]):-

scfg(Nt_1,St_1,Pt_1,TNt_1),

scfg(Nt_2,St_2,Pt_2,TNt_2),

msw(e(Pt_1,Pt_2),W),

msw(t(TNt_1),NNT_1),

msw(t(TNt_2),NNT_2),

stack(Nt_1,St_1,W,NSt_1),

stack(Nt_2,St_2,W,NSt_2),

p(NNT_1,NSt_1,NNT_2,NSt_2,R).

scfg(b(T),L,b,T).

scfg(r,[],b,f).

scfg(r,[H|T],H,r).

scfg(l,St,l,l).

stack(l,St,W,[W | St]).

stack(r,[],W,[]).

stack(r,[H | T],W,T).

stack(b(T),St,W,St).



scfg mrna.psm

% SCFG parameters:

values(transition(free),[[n,free],[stem,free],[n]]).

values(transition(stem),[[a,stem,t],

[c,stem,g],

[g,stem,c],

[t,stem,a],

[leftbulge,stem,n],

[n,stem,rightbulge],

[loop]]).

values(transition(loop),[[n,loop],[n]]).

values(transition(leftbulge),[[n,leftbulge],[n]]).

values(transition(rightbulge),[[n,rightbulge],[n]]).

% HMM parameters:

values(transition(i),[(a,t,g),(c,t,g),(t,t,g),i]).

values(transition((t,a,a)),[i]).

values(transition((t,a,g)),[i]).

values(transition((t,g,a)),[i]).

values(transition((_,_,_)),[(a,a,a),(c,a,a),(g,a,a),(t,a,a),

(a,c,a),(c,c,a),(g,c,a),(t,c,a),

(a,g,a),(c,g,a),(g,g,a),(t,g,a),

(a,t,a),(c,t,a),(g,t,a),(t,t,a),

(a,a,c),(c,a,c),(g,a,c),(t,a,c),

(a,c,c),(c,c,c),(g,c,c),(t,c,c),

(a,g,c),(c,g,c),(g,g,c),(t,g,c),

(a,t,c),(c,t,c),(g,t,c),(t,t,c),

(a,a,g),(c,a,g),(g,a,g),(t,a,g),

(a,c,g),(c,c,g),(g,c,g),(t,c,g),

(a,g,g),(c,g,g),(g,g,g),(t,g,g),

(a,t,g),(c,t,g),(g,t,g),(t,t,g),

(a,a,t),(c,a,t),(g,a,t),(t,a,t),

(a,c,t),(c,c,t),(g,c,t),(t,c,t),

(a,g,t),(c,g,t),(g,g,t),(t,g,t),

(a,t,t),(c,t,t),(g,t,t),(t,t,t)]).

% joint parameters:

values(emission(_,_),[a,c,g,t]).

% parser:

model(L):-

scfg(1,(a,t,g),i,free,L-[]).

scfg(State,Tuple,V,LHS,L0-L1):-

(

nonterminal(LHS),

msw(transition(LHS),RHS),

projection(State,Tuple,V,RHS,L0-L1)

;

preterminal(LHS)->

msw(emission(LHS,V),W),

L0=[W|L1]

).



projection(State,Tuple,V,[],L-L).

projection(1,(X,Y,Z),V,[RHS_head | RHS_tail],L0-L2):-

(

preterminal(RHS_head)->

scfg(2,(X,Y,Z),Y,RHS_head,L0-L1),

projection(2,(X,Y,Z),Y,RHS_tail,L1-L2)

;

scfg(1,(X,Y,Z),V,RHS_head,L0-L1),

projection(1,(X,Y,Z),V,RHS_tail,L1-L2)

).

projection(2,(X,Y,Z),V,[RHS_head | RHS_tail],L0-L2):-

(

preterminal(RHS_head)->

scfg(3,(X,Y,Z),Y,RHS_head,L0-L1),

projection(3,(X,Y,Z),Y,RHS_tail,L1-L2)

;

scfg(2,(X,Y,Z),V,RHS_head,L0-L1),

projection(2,(X,Y,Z),V,RHS_tail,L1-L2)

).

projection(3,(X,Y,Z),V,[RHS_head | RHS_tail],L0-L2):-

(

preterminal(RHS_head)->

msw(transition((X,Y,Z)),New),

scfg(1,New,Z,RHS_head,L0-L1),

projection(1,New,Z,RHS_tail,L1-L2)

;

scfg(3,(X,Y,Z),V,RHS_head,L0-L1),

projection(3,(X,Y,Z),V,RHS_tail,L1-L2)

).

projection(1,i,V,[RHS_head | RHS_tail],L0-L2):-

(

preterminal(RHS_head)->

msw(transition(i),New),

scfg(1,New,i,RHS_head,L0-L1),

projection(1,New,i,RHS_tail,L1-L2)

;

scfg(1,i,V,RHS_head,L0-L1),

projection(1,i,V,RHS_tail,L1-L2)

).

nonterminal(free).

nonterminal(stem).

nonterminal(loop).

nonterminal(leftbulge).

nonterminal(rightbulge).

preterminal(a).

preterminal(c).

preterminal(g).

preterminal(t).

preterminal(n).



repeat hmm.psm

% parameters:

values(transition(1),[state(1),push]).

values(transition(push),[push,state(3)]).

values(transition(3),[state(3),pop]).

values(transition(5),[state(5),end]).

values(emission(_),[a,c,g,t]).

% init

model(O):-

model(1,state(1),[],O).

% recursion:

model(I,state(H),S,[X | R]):-

msw(emission(H),X),

msw(transition(H),N),

model(I,N,S,R).

model(I,push,S,[X | R]):-

I\=10,

msw(emission(push),X),

msw(transition(push),N),

J is I+1,

model(J,N,[X | S],R).

% repeat limit

model(10,push,S,R):-

model(0,state(3),S,R).

model(I,pop,S,R):-

model(I,empty_stack,S,[],R).

model(I,empty_stack,[],Q,R):-

model(I,empty_queue,Q,R).

% stack emptying:

model(I,empty_stack,S,Q,R):-

get_head(S,X,T),

model(I,empty_stack,T,[X | Q],R).

model(I,empty_queue,[],R):-

model(I,state(5),[],R).

model(I,empty_queue,Queue,[X | R]):-

get_head(Queue,X,Tail),

model(I,empty_queue,Tail,R).

get_head([Head | Tail],Head,Tail).

% termination

model(_,end,[],[]).
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