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Towards a nano geometry?
Geometry and dynamics on nano scale

Bernhelm Booß–Bavnbek

Dedicated to Steven Rosenberg on his 60th birthday

Abstract. This paper applies I.M. Gelfand’s distinction between adequate
and non-adequate use of mathematical language in different contexts to the
newly opened window of model-based measurements of intracellular dynamics.
The specifics of geometry and dynamics on the mesoscale of cell physiology
are elaborated - in contrast to the familiar Newtonian mechanics and the
more recent, but by now also rather well established quantum field theories.
Examples are given originating from the systems biology of insulin secreting
pancreatic beta-cells and the mathematical challenges of an envisioned non-
invasive control of magnetic nanoparticles.

1. The Challenge of Nano Structures

There are many different geometries around. Do we really need new kinds of
geometries? Why and how?

1.1. Nanoparticle-Based Transducer for Intracellular Structures.
These days, we are witnessing dramatic progress in various technologies devoted to
capturing intracellular dynamics of highly differentiated animal cells like the deli-
cate insulin secreting pancreatic β-cell with its thousands of freely moving insulin
granules, rails of microtubuli, fences of actin filaments, zoos of organelles, proteins,
genes, ion channels, electrostatic and electrodynamic phenomena. A radically new
world of geometry and dynamics is evolving before our eyes. The most decisive
technological advances are in the following domains:

• Life imaging, for instance confocal multi-beam laser microscopy, admitting
up to 40 frames per second for tracking position and movement of suitably
prepared nanoparticles within the cell and without overheating the tissue;

• Magnetic nanoparticle design and coating, admitting electromagnetic ma-
nipulation, docking to selected organelles and tracking their movement;

• Computer-supported collection and administration of huge databases.
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This raises the question: Are we on the verge of a need and, then, of the emergence
of radically different new mathematical concepts, as predicted by the late I.M.

Gelfand in 2003 at a conference (see [Eti]) on The Unity of Mathematics, held in
honor of his 90th birthday. He said:

... we have a “perestroika” in our time. We have computers which
can do everything. We are not obliged to be bound by two oper-
ations - addition and multiplication. We also have a lot of other
tools. I am sure that in 10 to 15 years mathematics will be abso-
lutely different from what it was before. ([Glf, p.xiv])

Then, how reasonable is it to demand and to expect new geometries only in view
of the new time and length scales of cell physiology: much larger than the scales
underlying particle physics, quantum mechanics, proteomics and genetics with its
characteristic operator analysis, geometric foldings and stochastic processes; and
much smaller than the scales underlying tissue, organ, patient and population bi-
ology and medicine with its characteristic statistics and bifurcations? Can’t we
transfer geometric and dynamic concepts all the way up and down the scales?
What should be so special for geometers with the mesoscale of a few nanometers
and a few seconds and minutes?

1.2. Gelfand’s Dictum. At the mentioned conference, the honoree surprised
by qualifying the general praise of mathematics as an adequate language for science.
Against the supposed unity and adequacy of mathematics he insisted on the dis-
tinction between adequate and inadequate use of mathematical concepts, depending
on the context (see [Glf] for the whole talk):

An important side of mathematics is that it is an adequate lan-
guage for different areas: physics, engineering, biology. Here, the
most important word is adequate language. We have adequate and
nonadequate languages. I can give you examples of adequate and
nonadequate languages. For example, to use quantum mechanics
in biology is not an adequate language, but to use mathematics in
studying gene sequences is an adequate language.

Clearly, on one side, Gelfand played on the common pride of mathematicians
regarding Galilei’s famous dictum of [Gal, Il Saggiatore, cap. 6]:

La filosofia è scritta in questo grandissimo libro che continuamente
ci sta aperto innanzi a gli occhi (io dico l’universo), ma non si può
intendere se prima non s’impara a intender la lingua, e conoscer i
caratteri, ne’ quali è scritto. Egli è scritto in lingua matematica, e
i caratteri son triangoli, cerchi, ed altre figure geometriche, senza
i quali mezi è impossibile a intenderne umanamente parola; senza
questi è un aggirarsi vanamente per un oscuro laberinto.1

On the other side, Gelfand warned in the given quote against the misleading
playing around with mathematical concepts without due regard to the characteristic
lengths, times, data and problems of a concrete context. Is there a contradiction?

1In English: “Philosophy is written in that great book which ever lies before our eyes – I
mean the universe – but we cannot understand it if we do not first learn the language and grasp
the symbols, in which it is written. This book is written in the mathematical language, and the
symbols are triangles, circles and other geometrical figures, without whose help it is impossible to
comprehend a single word of it, without which one wanders in vain through a dark labyrinth.”
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1.3. The Common Regard and Disregard of Context. Deep in our
heart, we mathematicians believe in the unity and universality of mathematics.
We are not topologists, algebraists, pde folk or applied, as little as a music composer
is a quartet or a trio composer, as Gelfand also noted in his talk. We are mathe-
maticians, and our belief in the unity and universality of our concepts is based on
three solid pillars,

(1) our Emmy Noether and N. Bourbaki belief in the universal meaning
of structures;

(2) our semiotic training which assigns to even the most abstract concepts
very concrete, worldly, human, mental images (a process intensively stud-
ied by Charles Sanders Peirce, the American physicist and philoso-
pher); and

(3) our acceptance of the universality of phenomena, be it the universality
of the conic sections of Apollonius of Perga in the level curves of all
binary quadratic forms in two variables Q(x, y) = a11x

2+2a12xy+a22y
2 =

c, or the universality of René Thom’s seven elementary catastrophes
(generic structures for the bifurcation geometries) in all dynamical systems
subjected to a potential with two or fewer active variables, and four or
fewer active control parameters.

On Sundays we are easily seduced to contempt of the context and into belief of
universality.

However, from the history of our subject we know that there are no great eternal
lines in mathematics. Euclid did not suffice for Newton’s study of planetary
motion, and the calculus was created. Classical analysis did not suffice for Bohr’s
study of the atom, and operator theory in Hilbert space was created. Functional
analysis did not suffice for the study of elementary particles, and spectral geometry
was developed for the sake of quantum field theories. Worst of all, there is no
mathematics around or emerging in physics to support a Theory of Everything
(TOE) merging all four interactions into one, in spite of the solid mathematical
foundations and the high promises of the Grand Unified Theory (GUT) to replace
the ad hoc Standard Model of particle physics. On the contrary, looking through
a modern textbook on Quantum Gravity like [Bo10] will support Niels Bohr’s
view of the complementarity and — in tendency — the mutually unrelated state
of different areas of our investigation. So, we have to study a subject with focused
glasses, directed to limited segments, full of surprises. We have grown used to all
kinds of limitations, due to peculiar aspects of the chosen level of physical reality
or due to fashions, Führers, external impact that can devaluate earlier approaches
and demand radically new ideas over a night. In daily work we have learned to live
without universality.

2. Typology of Mathematics Use in Cell Physiology

For capturing the geometry and the dynamics of insulin secretion of pancreatic
β-cells (regulated exocytosis, see Figures 1, 2), it may be helpful to distinguish the
following modeling purposes:

2.1. Model-Based Capturing of Intracellular Dynamics. With the sud-
den technology-stimulated opening of a window to intracellular positions, shapes
and movements, it seems to me that the descriptive role of mathematics will be
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Figure 1. Basic rail road model of the transport routes of insulin
granules in pancreatic β-cells: Before reaching the plasma mem-
brane, the granules are transferred along microtubuli.
Drawn by H. Larsen, Roskilde, based on information provided
by H.G. Mannherz, Bochum

the most decisive contribution to the progress of medical biology, i.e., supporting
model-based measurements in the laboratory. To a large extent, the technological
progress has given immediate access to machine-generated cell data in β-cells like

• precise measurements of the quantitative and temporal sequence of glycose-
stimulus secretion-response;

• precise determination of changes in the electrostatic potential over the
plasma membrane and the opening and closing of ion channels across the
plasma membrane upon stimulation;

• precise observation of positions of organelles, microfilaments and granules
by electron microscopy and electron tomography under rapid freezing, and
vaguely by luminescent quantum dots and other fluorescent reporters in
living cells;

• identifying proteins, enzymes; and
• determining genes in DNA sequences.

These observations have been around for decades. The drawback with all of them is
their static and local character. No matter how valuable they are for some purposes,
they do not give access to the intracellular dynamics. The true functioning (or
dysfunctioning) of a living β-cell is not immediately accessible.
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Figure 2. Two-phase secretion of insulin with three different β-
cell modes. The figure shows at the bottom three β-cells in three
different states. The smaller circles symbolize insulin vesicles. The
graph on top shows the insulin secretion over time for a single cell.
As the graph shows, the insulin secretion is explosive in the short
first phase (mode i). In the longer second phase (mode iii), the
secretion is rather constant and more evenly distributed. Between
the two phases is the waiting state ii. As depicted in the β-cells
at the bottom of the figure, the three molecular states are similar
to each other. Consequently, they do not explain the order in the
sequence of phases. It is that order which one now seeks to explain
by models of the underlying geometry and dynamics that involve
the interplay between all processes. After Renström (2011) in
[Bo11, p.40], reproduced with permission. c© of the original figure
Springer-Verlag.

Many biomedical quantities cannot be measured directly. That is due to the
subject matter, here the nature of life, partly because most direct measurements
will require some type of fixation, freezing and killing of the cells, partly due to the
small length scale and the strong interaction between different components of the
cell. Just as in physics since Galileo Galilei’s determination of the simple (but
at his time not measurable) free vertical fall law by calculating “backwards” from
the inclined plan, one must also in cell physiology master the art of model-based
experiment design.

Below in Section 3.3 we shall discuss essential parameters for the insulin gran-
ule motility in β-cells like the viscoelasticity of the cytosol or the magnetic field
strength of the pulsating flux of calcium ions between storage organelles (mito-
chondria and endoplasmic reticulum). For high precision in the critical period of
granule preparing, docking and bilayer fusion with the cell membrane, radically new
possibilities appear by tracking the movements of labeled magnetic nanoparticles
in controlled electrodynamic fields (see below). In this case, solving mathematical
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equations from the fields of electrodynamics and thermoelasticity becomes manda-
tory for the design of the experiments and the interpretation of the data. In popular
terms, one may speak of a mathematical microscope (a term coined by J. Ottesen

[Ott]), in technical terms of a transducer, sensor, actuator that becomes useful as
soon as we understand the underlying mathematical equations.

2.2. Simulation and Prediction. Once a model is found and verified and
the system’s parameters are estimated for one domain, one has the hope of doing
computer “experiments” (i.e., calculations and extrapolations for modified data
input) to replace or supplement costly, time-consuming and sometimes even physi-
cally impossible experiments. The latter happens when we are permitted to change
a single parameter or a selected combination of parameters in the calculation con-
trary to a real experiment, where typically one change induces many accompanying
changes. In this way we may predict what we should see in new experiments in
new domains (new materials, new temperatures etc). Rightly, one has given that
type of calculations a special name of honor, computer simulations: As a rule, it
requires one to run the process on a computer or a network of computers under
quite sophisticated conditions (discussed by J. Shillcock in [Shi]). Typically,
the problem is to bring the small distances and time intervals of well-understood
molecular dynamics up to reasonable mesoscopic scales, either by aggregation or
by Monte Carlo methods – as demonstrated by Buffon’s needle casting for the
numerical approximation of π.

One should be aware that the word “simulation” has, for good and bad, a
connotation derived from NASA space simulators and Nintendo war games and
juke boxes. Animations and other advanced computer simulations can display an
impressive beauty and convincing power. That beauty, however, is often their
dark side: Simulations can show a deceptive similarity with true observations, so
for the lipid bilayer fusion of an insulin vesicle with the plasma membrane and
the release of the bulk of hormone molecules. The numerical solution of huge
systems of Newton’s equation, i.e., the integration of all the forces between the
membrane lipids can be tuned to display a convincing picture of the secretion course
in a nanosecond time span, whereas that very process in reality takes seconds and
minutes. In numerical simulation, like in mathematical statistics, results which fit
our expectations too nicely must awaken our vigilance instead of being taken as
confirmation.

2.3. Control. The prescriptive power of mathematization deserves a more
critical examination. The time will come when the model based understanding of
intracellular dynamics in healthy and dysfunctional β-cells will lead to new diag-
nostic approaches, new drugs and new treatments. In physics and engineering we
may distinguish between the (a) feasibility, the (b) efficiency, and the (c) safety of
a design. A design can be an object like an airplane or a circuit diagram for a chip,
an instrument like a digital thermometer, TV set, GPS receiver or pacemaker, or a
regulated process like a feed-back regulation of the heat in a building, the control of
a power station, the precise steering of a radiation canon in breast cancer therapy
— or the design of a new, non-symptomatic diagnostic procedure or therapy.

Mathematics has its firm footing for testing the feasibility of new approaches
in thought experiments, estimations of process parameters, simulations and solv-
ing equations. For testing efficiency, a huge inventory is available of mathematical
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quality control and optimization procedures by variation of key parameters. It
seems to me, however, that safety questions provide the greatest mathematical
challenges. For early diagnosis, say of juvenile diabetes (DT1) and drug design,
mathematics does not enter trivially into the certification of the correctness of the
design copy and the quality test of the performance. Neither do we come to a
situation where it suffices to modify and re-calculate well-established models and
procedures. Experienced pharmacologists and medical doctors, we may hope, will
not trust mathematical calculations and adaptations. Too many parameters may
be unknown and pop up later. Here is a parallel to the early days of traditional
railroad construction: A small bridge was easily calculated and built, but then
photogrammetrically checked when removing the support constructions. A lower-
ing of more than δcrit required demolition and rebuilding. Similarly, even the most
carefully calculated and clinically tested diagnoses and therapies will require sup-
plement by the most crazy mathematical imagination of what could go wrong and
might show up only after years of treatment and where and how to find or build
an emergency exit in the cell.

An additional disturbing aspect of science-integrated medical technology de-
velopment is the danger of losing transparency. Medical doctors are trained to
understand the elements of mechanics and chemical reactions, i.e., purely locally
in cellular terms. Not all of them are prepared to grasp global cellular phenomena
like magnetic flux density and the geometry and dynamics of long-distance ampli-
fication processes within cells. Therefore, it will be very unfortunate when medical
doctors shall ordinate a treatment they do not really understand.

2.4. Explain phenomena. The noblest role of mathematical concepts in cell
physiology is to explain phenomena. Einstein did it in physics when reducing the
heat conduction to molecular diffusion, starting from the formal analogy of Fick’s
Law with the cross section of Brownian motion. He did it also when generalizing
the Newtonian mechanics into the special relativity of constant light velocity and
again when unifying forces and curvature in general relativity.

One may hope that new mathematical models can serve biomedicine by reduc-
ing new phenomena to established physical principles; and as heuristic devices for
suitable generalizations and extensions.

Physics history has not always attributed the best credentials to explaining
phenomena by abstract constructions. It has discarded the concept of a ghost for
perfect explanation of midnight noise in old castles; the concept of ether for explain-
ing the finite light velocity; the phlogiston for burning and reduction processes; the
Ptolemaic epicycles for planetary motion. It will be interesting to see in the years
to come whether some of the common explanations in cell physiology will suffer the
same fate.

2.5. Theory development. Finally, what will be the role of mathematical
concepts and mathematical beauty for the very theory development in cell phys-
iology? Not every mathematical, theoretical and empirical accumulation leads to
theory development. Immediately after discovering the high-speed rotation of the
Earth around its own axis, a spindle shape of the Earth was suggested and an
infinitesimal tapering towards the North pole confirmed in geodetic measurements
around Paris. Afterwards, careful control measurements of the gravitation at the
North Cape and at the Equator suggested the opposite, namely an ellipsoid shape
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with flattened poles. Ingenious mathematical mechanics provided a rigorous reason
for that. Gauss and his collaborator Listing, however, found something different
in their control. They called the shape gleichsam wellenförmig and dropped the
idea of a theoretically satisfactory description. Since then we speak of a Geoid.

Similarly, when analyzing intracellular geometries and dynamics we may meet
events which have their own phylogenetic history, dating back to more than 0.6 bil-
lion of years in the case of β-cells, and which may possibly have lost their relevance
since then. With high probability, many of the phenomena we observe are inherited,
meaningless relics of the past hundreds of millions of species’ development, compa-
rable to the mysteries of the non-coding (junk) 90% of our DNA. Neglecting these
remnant aspects of our existence and pressing the rubble into a slick mathematical
model may be quite misleading.

3. Non-Invasive Control of Magnetic Nanoparticles

3.1. Emerging Radically New Research Agenda. Addressing the intra-
cellular geometry and dynamics of the cell has many levels and many scales. To
give an example, I shall describe an evolving — focussed — systems biology of
regulated exocytosis in pancreatic β-cells, mostly based on [Bo11]. These cells are
responsible for the appropriate insulin secretion. Insufficient mass or function of
these cells characterize Type 1 and Type 2 diabetes mellitus (DT1, DT2). Similar
secretion processes happen in nerve cells. However, characteristic times for insulin
secretion are between 5 and 30 minutes, while the secretion of neurotransmitters is
in the millisecond range. Moreover, the length of a β-cell is hardly exceeding 4000
nanometres (nm), while nerve cells have characteristic lengths in the cm and meter
range. So, processes in β-cells are easier to observe than processes in nerve cells,
but they are basically comparable.

It seems that comprehensive research on β-cell function and mass has been
seriously hampered for 80 years because of the high efficiency of the symptomatic
treatment of DT1 and DT2 by insulin injection. Recent advances — and promises
— of noninvasive control of nanoparticles suggest the following radically new re-
search agenda, to be executed first on cell lines, then on cell tissue of selected
rodents, finally on living human cells:

3.1.1. Optical Tracking of Forced Movement of Magnetic Nanoparticles. Syn-
thesize magneto-luminescent nanoparticles; develop a precisely working electric de-
vice, which is able to generate a properly behaving electromagnetic field; measure
cytoskeletal viscosity and detect the interaction with organelles and actin filaments
by optical tracking of the forced movement of the nanoparticles. Difficulties to
overcome: protect against protein adsorption by suitable coating of the particles
and determine the field strength necessary to distinguish the forced movement from
the underlying Brownian motion.

3.1.2. Optical Tracking of the Intracellular Dynamics of Insulin Granules. Syn-
thesize luminescent nanoparticles with afterglow property (extended duration of lu-
minescence and separation of excitation and light emission); dope the nanoparticles
with suitable antigens and attach them to selected organelles to track intra-cellular
dynamics of the insulin granules.

3.1.3. Precise Chronical Order of Relevant (Electrical) Secretion Events. Apply
a multipurpose sensor chip and measure all electric phenomena, in particular vary-
ing potentials over the plasma membrane, the bursts of Ca2+ ion oscillations, and



GEOMETRY AND DYNAMICS ON NANO SCALE 155

changing impedances on the surface of the plasma membrane for precise chronical
order of relevant secretion events.

3.1.4. Geometry and Dynamics of Lipid-Bilayer Membrane-Granule Fusion.
Describe the details of the bilayer membrane-granule fusion event (with the counter-
intuitive inward dimple forming and hard numerical problems of the mesoscale,
largely exceeding the well-functioning scales of molecular dynamics).

3.1.5. Connecting Dynamics and Geometry with Genetic Data. Connect the
preceding dynamic and geometric data with reaction-diffusion data and, finally,
with genetic data.

3.1.6. Health Applications. Develop clinical and pharmaceutical applications:

• Quality control of transplants for DT1 patients.
• Testing drug components for β-cell repair.
• Testing nanotoxicity and drug components for various cell types.
• Early in-vivo diagnosis by enhanced gastroscopy.
• Develop mild forms of gene therapy for patients with over-expressed ma-
jor type 2-diabetes gene TCF7L2 by targeting short interfering RNA se-
quences (siRNAs) to the β-cells, leading to degradation of excess mRNA
transcript. (This strategy may be difficult to implement, due to the degra-
dation of free RNA in the blood and the risk of off-target effects.)

In the following, we shall not deal with the envisaged true health applications.
Only briefly shall we comment upon the mathematical challenges of the non-invasive
control of magnetic nanoparticles, the intricacies of the related transport equa-
tions, compartment models, electromagnetic field equations, free boundary theory,
reaction-diffusion equations, data analysis, etc.

3.2. Gentle Insertion by Rolling on Cell Surface. The good news is the
newly developed Dynamic Marker technique, see [Ko]: Based on well-established
electrical power engineering know-how, arrays of conventional coils are arranged in
small engines to generate precisely directed dynamic magnetic field waves of low
magnetic flux density (mTesla range) and low frequency (1-40 Hz). The use of
dynamic and directed magnetic field waves makes the beads roll on the cell surface
to rapidly meet willing receptors.

This technology has shown a much better insertion performance in experiments
than conventional diffusion or static magnetic fields: With less than 10 minutes
characteristic dynamic marking is much faster than waiting for 12-24 hours on
diffusion of the nanoparticles across the plasma membrane and reduces dramatically
the inflammation risks during waiting. Contrary to the conventional use of static
magnetic fields (e.g., by applying MRI machines) for transfection the cell’s nucleus
will not be “bombed” and the associated high lysis (= break down) of cells under the
process is avoided. Applied to highly sensitive β-cells, however, this new method of
bead insertion has only been a success for magnetic nanoparticles with a diameter
≤ 100 nm. The insertion of larger beads corrupts the β-cell function. Moreover,
the success seems to depend heavily on the correct tuning of magnetic field density
and frequency. The guiding transport equations seem not fully understood yet. To
generate much higher magnetic field densities of field waves for in vivo and clinical
application, portable superconductive coils at relatively high temperature (90o K)
are expected to be developed in the future.
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3.3. Viscosity in Newtonian and Non-Newtonian Cytosol. Like many
other biomedical quantities, the viscosity of the cytosol cannot be measured directly.
Let us look at the eight to twelve thousand densely packed insulin vesicles in a single
β-cell. They all must reach the plasma membrane within a maximum of 30 minutes
after stimulation, to pour out their contents. Let us ignore the biochemistry of
Figure 1 and the many processes taking place simultaneously in the cell and consider
only the basic physical parameter for transport in liquids, namely the viscosity of
the cell cytosol. From measurements of the tissue (consisting of dead cells) we know
the magnitude of viscosity of the protoplasma, namely about 1 milli-Pascal-seconds
(mPa s), i.e., it is of the same magnitude as water at room temperature. But now
we want to measure the viscosity in living cells: before and after stimulation; deep
in the cell’s interior and near the plasma membrane; for healthy and stressed cells.

It serves no purpose to kill the cells and then extract their cytosol. We must
carry out the investigation in vivo and in loco: by living cells and preferably in
the organ where they are located. The medical question is clear. So is the appro-
priate technological approach with noninvasive control of magnetic nanoparticles,
explained in Section 3.2 above. These particles are primed with appropriate anti-
gens and with a selected color protein, so that their movements within the cell can
be observed with a confocal multi-beam laser microscope which can produce up
to 40 frames per second. The periods of observations can become relatively short,
down to 8-10 minutes — before these particles are captured by cell endosomes and
delivered to the cells’ lysosomes for destruction and consumption of their color
proteins (see also below Section 3.6).

3.3.1. Newtonian Idealization. Assuming (wrongly, see below) that the cytosol
is a Newtonian liquid, we get from A. Einstein [Ein] and M. von Smolu-

chowski [Smo] precise recipes how to determine the viscosity from a few snap-
shots of the Brownian motion or the forced movement of suspended particles.
Roughly speaking, Einstein discovered the scale independence (self-similarity =
fractal structure) of the Brownian motion. It permits one to derive the character-
istic diffusion coefficients of the almost continuously happening jumps from sample
geometries of positions at observable, realistic huge time intervals (huge compared
to the characteristic time of the process, i.e., the sequence of thermal fluctuations).
Smoluchowski worked out a smart observation scheme in the case of the presence
of many particles which can no longer be traced individually by then (and now)
existing equipment.

More precisely, the simplest mathematical method to determine its viscosity
in vivo would be just to pull the magnetized particles with their fairly well-defined
radius a with constant velocity v through the liquid and measure the applied electro-
magnetic force F . Then the viscosity η is obtained from Stokes’ Law F = 6πaηv.
The force and the speed must be small so as not to pull the particles out of the cell
before the speed is measured and kept constant. Collisions with insulin vesicles and
other organelles must be avoided. It can only be realized with a low-frequency alter-
nating field. But then Stokes’ Law must be rewritten for variable speed, and the
mathematics begins to be advanced. In addition, at low-velocity we must correct
for the spontaneous Brownian motion of particles. Everything can be done mathe-
matically: writing the associated stochastic Langevin equations down and solving
them analytically, or approximating the solutions by Monte Carlo simulation, like
in [Lea, Schw]. However, we rapidly approach the equipment limitations, both
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regarding the laser microscope’s resolution and the lowest achievable frequency of
the field generator.

So we might as well turn off the field generator and be content with intermit-
tently recording the pure Brownian motion x(t) ∈ R

3 of a single nanoparticle in
the cytosol! As shown in the cited two famous 1905/06 papers by Einstein, the
motion’s variance (the mean square displacement over a time interval of length τ )
σ2 = 〈x2〉 = E(|x(t0 + τ ) − x(t0)|2) of a particle dissolved in a liquid of viscosity
η is given by σ2 = 2Dτ , where D = kBT/(6πaη) denotes the diffusion coefficient
with Boltzmann constant kB , absolute temperature T and particle radius a. In
statistical mechanics, one expects 1020 collisions per second between a single colloid
of 1μm diameter and the molecules of a liquid. For nanoparticles with a diameter
of perhaps only 30 nm, we may expect only about 1017 collisions per second, still
a figure large enough to preclude registration. There is simply no physical observ-
able quantity 〈x2〉 at the time scale τ = 10−17 seconds. But since the Brownian
motion is a Wiener process with self-similarity we get approximately the same
diffusion coefficient and viscosity estimate, if we, e.g., simply register 40 positions
per second. A few measurements per second are enough. Enough is enough, we
can explain to the experimentalist, if he/she constantly demands better and more
expensive apparatus.

Note that σ2 also can be estimated by the corresponding two-dimensional
Wiener process of variance 3/2σ2, consisting of the 2-dimensional projections
of the 3-dimensional orbits, as the experimental equipment also will do.

Now you can hardly bring just a single nanoparticle into a cell. There will
always be many simultaneously. Thus it may be difficult or impossible to follow
a single particle’s zigzag path in a cloud of particles by intermittent observation.
Also here, rigorous mathematical considerations may help, namely the estimation
of the viscosity by a periodic counting of all particles in a specified window. As
mentioned above, the necessary statistics was done already in [Smo].

3.3.2. Non-Newtonian Reality. Beautiful, but it is still insufficient for labora-
tory use: There we also must take into account the non-Newtonian character of
the cytosol of β-cells. These cells are, as mentioned, densely packed with insulin
vesicles and various organelles and structures. Since the electric charge of iron oxide
particles is neutral, we can as a first approximation assume a purely elastic impact
between particles and obstacles. It does not change the variance in special cases, as
figured out for strong rejection of particles by reflection at an infinite plane wall in
[Smo]. But how to incorporate the discrete geometry and the guiding role of the
microtubules into our equations of motion? Here also computer simulations have
their place to explore the impact of different repulsion and attraction mechanisms
on the variance.

3.3.3. Continuum Mechanics, Revisited. It is an open question whether clas-
sical continuum mechanics is capable of describing fluid dynamics on these length
scales. While the Navier-Stokes equations are a good approximation for macro-
scopic systems, coupling phenomena between the hydrodynamic flow and the molec-
ular spin angular velocity should possibly not be disregarded on the nanoscale. The
need of a corresponding extension of the Navier-Stokes equations was pointed
out by Max Born in [Bor] and elaborated in the recent [HDDTB, Equations
(1a) and (1b)].
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3.4. Sensing Microfilaments, Tracing Insulin-Granule Motility, Dis-
playing the Genetic Variety of the Diabetes Umbrella. Up to now, it is not
clear what geometry or geometries are underlying the secretion dynamics.

3.4.1. Pressing Need for Geometric Invariants. Soon we may be able to sense
and map the extended geometry of the microtubules and their smoothing before
secretion; soon we may be able to sense and map the extended geometry of the
actin filaments and their dissolution just before secretion. However, we shall need
numbers or other mathematical objects to characterize observed geometries and
dynamics in order to relate observations of well-functioning secretion and dysfunc-
tion to the effect of selected genes. Epidemiological studies in large populations (see
[LyGr, PaGl]) have found more than 20 gene deviations which show up in families
with high expression of DT1 or DT2. From that we learned that DT1 and DT2
are not two single diseases (distinguished by simple symptomatic classification) but
umbrellas of quite different dysfunctions leading to the same or similar symptoms.
To give these patients a cure, we need to know more precisely what is going wrong
on the cell level. Proteomic analysis, in particular the disclosure of the proteins
a certain gene is coding for, is a very promising approach. However, it will only
lead to success if we become able to supplement it by precise description of related
deviations in geometry and dynamics.

3.4.2. First Steps via Compartment Models and Transition Rates. Just as in en-
gineering, economics or anywhere else, also in cell physiology the daily mathematical
exercise consists of the estimation of some parameters; testing the significance of
some hypotheses; and designing compartment models for the dynamics of coupled
quantitative variables. A first step towards integrating spatial geometry and tem-
poral dynamics is the Compartment Models of regulated exocytosis, first introduced
by Grodsky [Gro] in 1972. He assumed that there are two compartments (pools)
of insulin granules, docked granules ready for secretion and reserve granules, see
Figure 3a. By assuming suitable flow rates for outflow from the docked pool and
resupply from the reserve pool to the docked pool, the established biphasic secre-
tion process of healthy β-cells (depicted in Figure 2) could be modeled qualitatively
correct. By extending the number of pools from two to an array of six (Figure 3b)
and properly calibrating all flow rates, Chen, Wang and Sherman in [CWS]
obtained a striking quantitative coincidence with the observed biphasic process, see
also Toffolo, Pedersen, and Cobelli [TPC]. Such compartment models in-
vite the experimentalists (both in imaging and in proteomics) and the theoretician
(both in geometry and in mathematical physics) to verify the distinction of all the
hypothetical compartments in cell reality and to assign global geometrical and bio-
physical values to the until now only tuned flow rates. A geometer who is familiar
with mathematical physics may, for instance, look for small inhomogeneities in the
cell which could drive the global dynamics.

A self-imposed limitation is the low spatial resolution of the aggregated com-
partments, which does not allow one to investigate the local geometry and the
energy balance of the secretion process.

3.5. Electrodynamic Insulin Secretion “Pacemaker”. In the preceding
sections I briefly described the common phenomenological approaches to regulated
exocytosis: the focus on the variable discrete geometry of the microfilaments; the
numerical treatment of the molecular dynamics visualizing the singularity of lipid-
bilayer fusion events; the analytic power of compartment models to reproduce



GEOMETRY AND DYNAMICS ON NANO SCALE 159

(R) (P) (D) (C) (F) (E)Refilling Priming Domain
Binding

Ca
Binding Fusion

Pore
Expan-
sion

Insulin
Release

200 25 15

Figure 3. a) Up:Basic total two-pool model for exocytosis of
Grodsky. Reproduced with permission, from Ohara-Imaizumi

M, Nishiwaki C, Kikuta T, Nagai S, Nakamichi Y, Naga-

matsu S, Biochem. J. 2004 Jul 1; 381(Pt 1):13–18. c© the Bio-
chemical Society. Adapted to make a representation of Grodsky’s
model by courtesy of A. Sherman, Bethesda.
b) Down:Extended local six-pool compartment model, incorporat-
ing Ca-binding, of Chen, Wang and Sherman, [CWS], drawn
by H. Larsen, Roskilde

biphasic secretion. The phenomenological approaches relate the various data by
visible evidence and statistically more or less well supported ad-hoc assumptions
about the regulation. They focus on the dominant and visible structures (like the
filaments) and measurable local states in the neighborhood of the fusion event, ne-
glecting long-distance phenomena like electromagnetic waves across the cell. One
may deplore that and also the “enormous gap between the sophistication of the
models and the success of the numerical approaches used in practice and, on the
other hand, the state of the art of their rigorous understanding” (Le Bris [Leb]
in his 2006 report to the International Congress of Mathematicians).

In [Apu], my collaborators and I advocate for supplementing the phenomeno-
logical approach by a theoretical approach based on first principles, following
Yu. Manin’s famous pronouncement: The visible must be explained in terms of
the invisible, [Ma, p. 116 and elsewhere]. We explain how a combination of rig-
orous geometrical and stochastic methods and electrodynamical theory naturally
draws the attention to fault-tolerant signalling, self-regulation and amplification
(in M. Gromov’s terminology). We consider the making of the fusion pore, pre-
ceding the lipid-bilayer membrane-vesicle fusion of regulated exocytosis, as a free
boundary problem and show that one of the applied forces is generated by glucose
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stimulated intra-cellular Ca2+ ions oscillations (discussed in [FrPh]) resulting in
a low-frequent electromagnetic field wave. We suggest that the field wave is ef-
fectively closed via the weekly magnetic plasma membrane (containing iron in the
channel enzymes). Unfortunately, textbook electrodynamics mostly deals with ge-
ometrically simple configurations where the beauty and strength of the Maxwell

equations best come out, but is less informative for treating peculiar geometries.
This was also noted by Gelfand:

... images play an increasingly important role in modern life, and
so geometry should play a bigger role in mathematics and in edu-
cation. In physics this means that we should go back to the geo-
metrical intuition of Faraday (based on an adequate geometrical
language) rather than to the calculus used by Maxwell. People
were impressed by Maxwell because he used calculus, the most
advanced language of his time. ([Glf, p.xx])

The recent experimental evidence of the bio-compatibility and bio-efficiency of
low-frequent electromagnetic fields (addressed above in Section 3.2) gives a hint to
the presence of global fields controlling local events in the cell and supports a vision
of a possible future electrodynamic pacemaker to stimulate regulated exocytosis in
tired, dysfunctional β-cells.

3.6. Induced Apoptosis-Chain Reaction in Cancer Cells. The contin-
uing almost total lack of understanding of the global aspects of cell physiology can
also lead to happy surprises: In the course of the insertion experiments described
above in Section 3.2, it was discovered that the inserted iron oxide nanoparticles
of diameter < 50 nm (with special antibody-conjugated surfaces) were immobi-
lized in less than 10 minutes within the lysosomes (organelles for digestion and
destruction). However, continuing the action of the low frequency electromagnetic
oscillations tore the membranes of these lysosomes, purely mechanically.

That was bad news for exploring the intracellular geometry and dynamics by
nanoparticle transducers, because the observation window is consequently short,
only 10 minutes if we come to use the “wrong” antibodies. It was good news
for cancer research: Destroying the lysosomes in a probe of cancer cells leads to
release of the digestive enzymes and initiates a destructive chain reaction in the
neighboring tissue without overheating the tissue and which stops automatically
when healthy tissue (with neutral pH) is reached. The range (in time and space) of
the obtainable chain reactions has not yet been fully determined. Nanotoxicity for
healthy tissue, however, will be excluded conclusively. Testing of the field generator
is under preparation for curing skin cancer on model tissue, on model animals and
for justifying the relevant concepts.

4. Conclusions

Down there, in the nano-world of regulated exocytosis in pancreatic β-cells,
a plethora of geometrical and dynamical information is waiting to be interrelated.
Encouragement and, perhaps, inspiration may be gained from the visionary [CaGr]
(though restricted to molecular biology). Every mathematician’s conviction is the
inseparability of geometry and dynamics. That’s what we teach the students in
algebra classes with the concepts of orbits and ideals; in ordinary differential equa-
tions classes with the Poincaré-Bendixson Theorem and the significance of the
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multiplicity and sign of eigenvalues for global behavior and the geometry of bifurca-
tions; and most emphatically in spectral geometry classes with our focus on spectral
invariants that characterize both shape and change at the same time.

For the evolving medical biology of highly differentiated cells like the pancreatic
β-cells it remains to hope that tendencies to futile overspecialization and excessive
reductionism can be overcome. Clearly, the basis of all future advances must be the
precise, controlled single observations. But a real hope for diabetes patients can
only come from the integration of the already established local facts into a global
geometric and dynamic perception.
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