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A zero-one law for l-colourable structures with a vectorspace
pregeometry

Ove Ahlman, Uppsala University

1 Introduction

Model theory is the study of abstract mathematical structures, their formal languages and their
theories. This talk is based on an article (not submitted yet) by the speaker and Koponen [1],
and will be focused on finite models and what happens with them when they get arbitrary large.
Especially we consider formulas which are satisfied in almost all structures or in almost no structures.
Glebskii et. al. [3] and Fagin [2] answered this independently of each other for sets of finite relational
structures by giving a so called 0 − 1 law for the uniform probability measure. If for each n ∈ ,
Kn is a set of L-structures of size n, we say that K = ∪∞

n=1Kn has a 0 − 1 law for the probability
measure μn defined on formulas on Kn, if for each ϕ ∈ L

lim
n→∞

μn(ϕ) = 1 or lim
n→∞

μn(ϕ) = 0.

The 0 − 1 law which Fagin [2] and Glebskii et. al. [3] proved, considered all finite structures over
a certain relational language, so researchers asked themselves how we could restrict the sets of
structures in different ways and still have a 0 − 1 law. In this talk we consider, for fixed l ≥ 2,
l−colourable structures. That is, we consider structures whose universe can be partitioned into l
parts in such a way that every relationship of the structure intersects at least two parts. Kolaitis,
Prömel and Rothschild [5] showed, as a part of their proof that Kl+1-free graphs (l ≥ 2) has a
0 − 1 law for the uniform probability measure, that a 0 − 1 law holds for l-colourable graphs. The
question may arise if such a 0 − 1 law is possible to generalise to any l-colourable structures. In
the general case we may have relation symbols of higher arity than 2 in the formal language and
then there are two natural ways of generalising l-colourings and l-colourability; the “strong” and the
“weak” versions of l-colourings.

Koponen [6] showed that both strongly and weakly l-colourable structures have a 0 − 1 law for
both the uniform probability measure and for the dimension conditional measure (defined in [6]).
A consequence is that if you have sets of L-structures Kn, n = 1, 2, 3, ... where each M ∈ Kn has
universe {1, ..., n} and a) each l-colourable L-structure with universe {1, ..., n} is in Kn and b) “al-
most all”M ∈ Kn are l−colourable (for big n), then K =

⋃∞
n=1 Kn has a 0 − 1 law. In [7], Schacht

and Person let Kn be the set of all 3−hypergraphs without Fano planes and node-set {1, ..., n}, and
show that almost all such hypergraphs are 2-colourable. Since each 2-colourable 3-hypergraph is
missing a Fano plane it follows that K in this case has a 0 − 1 law.

One of the most fundamental and important mathematical structures are vector spaces (as well
as affine and projective spaces) which in turn induce so called pregeometries. Pregeometries play an
important part in model theory. It is therefore natural to study sets Kn, n = 1, 2, ... of L-structures
(for some fixed language L) which have an underlying pregeometry, definable by L-formulas. In

1
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particular, one may consider structures with an underlying pregeometry that, in addition, have an
l−colouring which respects the pregeometry.

In this talk we explore strongly and weakly l−colourable L−structures whose underlying pre-
geometry is a vector space (of finite dimension) over a fixed finite field. We will show that both
strongly and weakly l-colourable L-structures have a 0−1 law for the “dimension conditional” prob-
ability measure, which generalises Theorem 9.1 in [6]. The dimension conditional measure has a
natural interpretation as a process where you first randomly choose an l-colouring c on each finite
dimensional vector space, then randomly choose relations on the 1-dimensional subsets, then on the
2-dimensional subsets (among those possibilities for which c is still an l-colouring) etc. for each r
such that some relation symbol has at least the arity d ≥ r. The proof idea is to define certain
“extension axioms” and to show that each such almost surely is true in an l-colourable structure with
big enough dimension. To do this we need a formula ξ(x, y), such that with probability approaching
one as the dimension tends to infinity, two elements a and b have the same colour if and only if
ξ(a, b) holds in the given structure. Moreover, it is essential that ξ(x, y) does not explicitly mention
the colours; it only speaks about the relations of the structure and the pregeometry. In the case of
strong l-colourings, this will be done in an explicit way. While when we speak of weak l-colourings,
the strong colouring method doesn’t work. Instead we seek aid in a result from Ramsey theory
and a theorem by Graham, Leeb and Rothschild [4] which is about colouring vector spaces over an
arbitrary finite field. This result shows that a formula ξ, as we said we needed above, exists but
without exactly mentioning what ξ looks like.
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Towards Abstract Interpretation of Epistemic Logic

Mai Ajspur and John P. Gallagher

CBIT, Building 43.2, Roskilde University, 4000 Roskilde, Denmark
{ajspur,jpg}@ruc.dk

Abstract. The model-checking problem is to decide, given a formula � and an interpretation
M , whether M satisfies �, written M |= �. Model-checking algorithms for temporal logics
were initially developed with finite models (such as models of hardware) in mind so that M |=
� is decidable. As interest grew in model-checking infinite systems, other approaches were
developed based on approximating the model-checking algorithm so that it still terminates
with some useful output.
In this work we present a model-checking algorithm for a multiagent epistemic logic contain-
ing operators for common and distributed knowledge. The model-checker is developed as a
function directly from the semantics of the logic, in a style that could be applied straight-
forwardly to derive model-checkers for other logics. Secondly, we consider how to abstract
the model-checker using abstract interpretation, yielding a procedure applicable to infinite
models. The abstract model-checker allows model-checking with infinite-state models. When
applied to the problem of whether M |= �, it terminates and returns the set of states in M
at which � might hold. If the set is empty, then M definitely does not satisfy �, while if the
set is non-empty then M possibly satisfies �.

1 Syntax and semantics of the logic CMAEL(CD)

We consider the logic CMAEL(CD) [1, 7] whose formulas � 2 � are defined by the following
grammar.

' ::= p | ¬' | ('1 ^ '2) | DA' | CA'.

The variable p ranges over the set AP of atomic propositions, typically denoted by p, q, r, . . .;
the variable A ranges over the set of coalitions P+(⌃), which is the set of of non-empty
subsets of ⌃, where ⌃ is a finite, non-empty set of (names for) agents, typically denoted by
a, b, . . .. The epistemic operators DA and CA are read as it is distributed knowledge among A
that . . . and it is common knowledge among A that . . . respectively. When A is a singleton
{a} we often write it as a subscript a instead of {a}, for example Da instead of D{a}.
The semantics of CMAEL(CD) is given in terms of coalitional multiagent epistemic models
(CMAEMs). A CMAEM is a tuple (⌃, S, {RD

A}A2P+(⌃), {RC
A}A2P+(⌃), L),

1. ⌃ is a finite, non-empty set of agents;
2. S 6= ; is a set of states;
3. for every A 2 P+(⌃), RD

A is an equivalence relation on S, satisfying the condition
RD

A =
T

a2ARD
a ;

4. for every A 2 P+(⌃), RC
A is the transitive closure of

S
a2ARD

a ;
5. L : S 7! P(AP) is a labelling function, assigning to every state s the set L(s) of atomic

propositions true at s.
Let S be a set. We define functions pre : ((S⇥S)⇥P(S)) ! P(S) and gpre : ((S⇥S)⇥P(S)) !
P(S).

– pre(R)(X) = {s | 9s
0 2 X : (s, s

0
) 2 R} returns the set of states having at least one of

their successors (in relation R) in the set X ✓ S;

3



p1

p2

p3

infinite set of states property-based finite partition finite set of "abstract states"

S
A

Fig. 1. Property Based Abstraction

– gpre(R)(X) = S \pre(R)(S \X) returns the set of states all of whose successors are in X.

The functions pre and gpre are defined by several authors (e.g. [6, 9]) and are also used with
other names by other authors (e.g. they are called pre9 and pre8 by Huth and Ryan [8]).

Semantic Function for CMAEL(CD). Let M be a CMAEM with states S; the following
function [[.]]M : � ! P(S) evaluates to the set of states of M where � is true.

[[p]]M = {s | p 2 L(s)} [[¬�]]M = S \ [[�]]M [[�1 ^ �2]]M = [[�1]]M \ [[�2]]M
[[DA�]]M = gpre(RD

A )([[�]]M ) [[CA�]]M = gpre(RC
A)([[�]]M )

(The set complement operator can be eliminated to avoid technical problems later when ab-
stracting the function.) This is closely related to the standard semantic relation M, s |= � (�
holds at state s in M), which can rewritten as s 2 [[�]]M . Note that given a model M and for-
mula �, the calculation of the value of [[�]]M is simple and does not involve the computational
problems associated with the proof theory of distributed and common knowledge.

1.1 Abstract Interpretation of CMAEL(CD)

What does it mean to perform “abstract model checking”? Informally, we check the satisfi-
ability of a formula in a possibly infinite model using partial knowledge of the model. The
abstract interpretation framework [5] ensures that the result of the check is safe, in that
checking returns false only when the formula is not satisfied by the model. A typical abstrac-
tion is based on a finite set of properties of interest {p1, . . . , pk} (see Figure 1), for example
those atomic propositions appearing in the formula to be checked.1 Suppose we have a model
whose set of states S is infinite and in every state in S, exactly one pi holds. Then the finite
partition A = {d1, . . . , dk} is defined such that di = {s 2 S | pi 2 L(s)}. An abstract in-
terpretation can be constructed from lattices hP(S),✓i and hP(A),✓i called the “concrete”
and “abstract” domain respectively, and a Galois connection relating them. The Galois con-
nection consists of monotonic functions ↵ : P(C) ! P(A) and � : P(A) ! P(C) such that
8c 2 P(C), a 2 P(A),↵(c) ✓ a , c ✓ �(a). In property-based abstractions, ↵ and � are
defined as ↵(X) = {di | di \ X 6= ;} and �(Y ) =

S
Y . The concrete semantic function is

[[.]]M : � ! P(S) defined above. Given these components, the framework of abstract inter-
pretation shows how to derive an abstract semantic function [[.]]]M : � ! P(A) systematically
from [[.]]M such that [[�]]M ✓ �([[�]]]M ), for all � 2 � (or equivalently, ↵([[�]]M ) ✓ [[�]]]M ).
Thus in property-based abstract interpretation, the abstract semantic function returns a set
of partitions (an element of P(A)). The union of this set of partitions is a superset of the set
of concrete states returned by the concrete semantic function. In particular, if [[�]]]M is empty
for some �, then the result of the concrete computation [[�]]M is also empty.

1 Abstract interpretation is not limited to this kind of abstraction.
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Remarks. In some approaches to abstract model checking [3, 4], a partition of the set of
states is used to induce “abstract relations” in an “abstract model”. This is not our approach,
since it cannot simultaneously approximate both a formula and its negation. By contrast, the
abstract semantic function shown below always returns an over-approximation of the set of
states where any given formula holds. Other authors have developed “dual” approximations
based on abstract relations to overcome the limitations of abstract models, but the framework
of abstract interpretation o↵ers a more direct solution, and was previously applied successfully
to abstract model checking for CTL [2].

1.2 Abstract Semantic Function

The function [[.]]]M : � ! P(A) is defined systematically from the concrete function [[�]]M :
� ! P(S) and the functions ↵ and �. We show it below. The transformation consists only of
applying ↵ to the base cases {s | p 2 L(s)} and {s | p 62 L(s)} and replacing pre(.)(.) (resp.
gpre(.)(.)) by ↵(pre(.)(�(.))) (resp. ↵(gpre(.)(�(.)))).

[[p]]]M = ↵({s | p 2 L(s)}) [[¬p]]]M = ↵({s | p 62 L(s)})

[[�1 ^ �2]]
]
M = [[�1]]

]
M \ [[�2]]

]
M [[¬(�1 ^ �2)]]

]
M = [[¬�1]]

]
M [ [[¬�2]]

]
M

[[DA�]]]M = ↵(gpre(RD
A )(�([[�]]]M ))) [[¬(DA�)]]]M = ↵(pre(RD

A )(�([[¬�]]]M )))

[[CA�]]]M = ↵(gpre(RC
A)(�([[�]]]M ))) [[¬(CA�)]]]M = ↵(pre(RC

A)(�([[¬�]]]M )))

[[¬¬�]]]M = [[�]]]M

Proposition 1. For all formulas � 2 �, and CMAEM M , [[�]]M ✓ �([[�]]]M ).

Proof. Proof is by structural induction on the formula � and uses the properties of Galois
connections and monotonic functions.
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2

1

1 ¬
^ X U

K 1

' := p | ¬' | ('1 ^ '2) | X' | ('1 U'2) | K'

p
K'

S = (S, R, R) S 6= ; R ✓ SN

R ✓ (R ⇥ N)2

M = (F, L) F L : R⇥N ! P( )
P (S) := R⇥N (r, n) 2 P (S)
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M, (r, n) � X' M, (r, n + 1) � '
M, (r, n) � ' U M, (r, i) �  i � n M, (r, j) � ' n  j < i
M, (r, n) � K' M, (r0, n0) � ' ((r, n), (r0, n0)) 2 R

' M, (r, n) � ' M
(r, n)

S = (S, R, R)

r, r0 2 R ((r, 0), (r0, 0)) 2 R
((r, n), (r0, n0)) 2 R k � n k0 � n0

((r, k), (r0, k0)) 2 R
((r, n), (r0, n0)) 2 R 0  k  n

0  k0  n0 ((r, k), (r0, k0)) 2 R
((r, n), (r0, n0)) 2 R n = n0

X 2 { , , , } M X F X ✓ { , , , }
X X

1
X

1
X

1
X 2 X 2 X 2 X

1

✓
✓ 1

1

1 ; 1 ;

1
X X 6= ; 1 ; T ✓

T ✓

� states(� )

T ✓ ✓ � T ✓ ✓
✓ ✓

� �
�

� �

7



1
X

R
1

X , 2 X , 2 X

1
X

✓
✓

� states({✓}) {�}
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✓
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What is Semantics (really) about?
Abstract for the Scandinavian Logic Symposium 2012

Sta↵an Angere
University of Bristol

This is a two-part talk. I will first make some general observations on the
practice of doing semantics of formal languages. Here, I argue that semantic
notions, such as consequence, objectual quantification, and (in)completeness,
are reducible to syntactic concepts, and that these syntactic concepts actually
give us a more enlightening view of logic than the one that is usually taught.

In the second part, I will describe how these remarks, and the picture of
semantics they indicate, can be put on a firm basis through use of the con-
cept of monoidal 2-category. In the talk, I will presuppose basic knowledge of
“plain” category theory, but no specific knowledge of monoidal categories or
2-categories.

I end with some remarks on further applications of the framework: it can,
for instance, be used to clarify the distinction between universal quantification
and conjunction, as well as the status of logical constants.

1 Some Observations on Semantics

Semantics, as it is usually taught, depends on associating mathematical struc-
tures with syntactically defined objects: in FOL, elements of a domain D with
terms, relations on D with predicates, and sets of sequences of elements of D
with formulae. Tarski’s recursive truth definition allows us to derive the third of
these associations from the two first. It is used in rigorous metalogical proofs of
standard results such as the Löwenheim-Skolem theorem and the completeness
theorem.

But what is actually going on in such a proof? Do we, when proving com-
pleteness, look into the abstract realm of mathematics, and see that for every
non-contradictory set of sentences, there is indeed a set which is its model? Cer-
tainly not—if the proof is valid, we could, in principle, have done it formally.
We could derive the existence of a certain set (the model) from the axioms of
ZFC.

Generalizing, my conjecture is that what is “really” going on when we do
semantic reasoning in logic is that we translate a piece of the object language
into a suitable metalanguage, and we then work in this metalanguage, and, if
necessary, translate back in the end. As a conjecture, it may not seem very
substantial, but I believe that, correctly interpreted, it implies many important
points:

• Objectual quantification in the object language is (really) substitutional
quantification in the metalanguage.

• Identity in the object language is (really) substitutability salva veritate in
the metalanguage.

• Logical consequence in the object language is (really) derivability in the
metalanguage.

1
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• Satisfaction is reducible to truth in the metalanguage.

To substantiate these claims, we would naturally need to carry out the re-
quired reductions in detail. It will of unfortunately be impossible to do so in
a talk, but I will sketch how it may be accomplished, using a category-based
formalism.

2 Paradigms: a Formal Semantics of Formal Languages

A 2-category is a category which, in addition to the objects and the arrows, has
a set of 2-cells for each ordered pair of arrows of the same hom-set. These 2-
cells describe transformations between arrows, and are required to fulfill certain
commutativity conditions. The classical example is the 2-category of categories,
with categories as objects, functors as arrows, and natural transformations as
2-cells.

A monoidal category is a category equipped with a binary operation ⌦ on
objects and arrows (and in the 2-category case, on 2-cells) which is bifunctorial
(roughly, functorial in both arguments). For coherence and associativity, ⌦ is
required to filfil a few conditions such as MacLane’s pentagon equation. An
example of a monidal category is any category with products, in which we may
take A ⌦ B to be any product of A and B, and f ⌦ g, where f : A ! C and
g : B ! D, to be the unique morphism from A⌦B to C ⌦D that this product
determines. Monoidal categories are also very useful in physics, where objects
are often taken to be Hilbert spaces, and ⌦ the tensor product.

We can describe a language as a monoidal 2-category with (i) types as ob-
jects, (ii) formation rules as arrows, (iii) inference rules as 2-cells, and (iv) or-
dered pairing as ⌦ . We require every language to have a type of formulae ⌦,
and a terminal type 1 (i.e. a terminal object in the category) so that we can
represent individual well-formed formulae as arrows 1 ! ⌦. A formal language
is a language which is in an appropriate sense free as such a 2-category, i.e. it
is generated from a graph, possibly together with a number of equations.

For instance, first-order logic can be usefully described as having three fun-
damental types, apart from ⌦ and 1: a type I of individual constants, a type V
of individual variables and a type P of one-place predicates. It is useful to also
have a type T = I + V , being the coproduct (direct sum) of I and V , which
we will call the type of terms. We assume a countably infinite set of arrows
1 ! V ar, and countable sets of arrows 1 ! I, and from 1 to products of P . We
assume that ⌦, when applied to terms, is just a normal categorical prouduct,
so there will be formation rules to make arbitrary sequences of terms. On the
other hand, P ⌦P will in general not be P ⇥P , since there is no canonical way
to make a 2n-predicate from an n-predicate. This is why we use a monoidal
2-category, rather than simply a 2-category with products.

We write Xn for the n-fold ⌦-product of X with itself. Important formation
rules then go from Pn ⌦ Tn to ⌦ (n-predicate application), or from ⌦ or ⌦⌦⌦
to ⌦ (connectives), or from ⌦⌦V to ⌦ (quantifiers). The well-formed formulae
are the arrows 1 ! ⌦ that are freely generated this way. Inference rules can
be defined on hom(⌦, ⌦) (or hom(⌦ ⌦ ⌦, ⌦) for ones like ^-introduction). If we
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want to, it is easy to extend with inference rules on predicates, and also, if we
are prepared to go to 3-categories, with structural rules on proofs as well.

Most important, for our puropses, are the interpretations of one language
in another. These are given by monoidal 2-functors between languages. A
semantics of L in L0 is a class of monoidal 2-functors F : L ! L0. We write
such a semantics as S(L, L0). Soundness will follow automatically from the
requirement of 2-functoriality, while completeness, when it holds, consists in
the satisfaction of certain fullness criteria. We let a paradigm be a sequence of
languages L0, L1, . . . together with semantics S(Lk, Lk+1) for all k.

An example of a paradigm with L0 as first-order logic is what we may call
the Quinean one, where all Lk are first-order languages, but Lk+1 contains more
individual constants than Lk. Another might be called Tarskian, in which the
language of Lk for all k > 0 is ZFC, plus a truth predicate and individual con-
stants for formulae of Lk�1. There are also many others available. A paradigm,
roughly speaking, can be seen as a way of doing logic, just as a topos can be
seen as a way of doing set theory.

In a paradigm, we can distinguish between syntactic and semantic inference
rules. A syntactic inference rule of Lk is, roughly, one which can be specified just
from the structure of Lk itself, while a semantic rule is one whose specification
proceeds in terms of the structure of the image of Lk in Lk+1 under the trans-
lations in S(Lk, Lk+1). For example, the conjunction rules are syntactic in this
sense, while the quantification rules are more enlighteningly seen as semantic.
In first-order logic, because of the completeness theorem, the distinction is may
not seem very important, but it becomes crucial when we move to higher-order
logics and other theories without complete proof systems.

3 Conclusions

The paradigm concept sketched in the last paragraph can be put to use in
explaining how we can do, say, the first incompleteness proof rigorously, even if
we cannot formalize it in a single language. It allows us to show how second-
order ZFC can be true in a merely countably infinite universe, and how, even in
a language with a finite domain, quantification is not reducible to conjunction
(or disjunction). We can furthermore use it to throw light on which terms in a
language Lk are logical constants based on how they are transformed under its
semantics, through the study of natural transformations between the functors
in S(Lk, Lk+1).

From a nominalistic point of view, the paradigm concept might also be
more palatable than the usual (set-theoretic) model concept. A category can
very well consist of, say, concrete objects and physical processes. A paradigm
consists of languages, and in many cases these can be taken to be finite, or
merely potentially infinite. If we can do anything we can do in model theory in
a paradigm instead, that could perhaps be used to show why logic, even in its
semantic guise, is not dependent on the actual existence of sets.

3
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Measuring the distance between modal formulas

Philippe Balbiani

Institut de recherche en informatique de Toulouse

Abstract

We propose to introduce a metric function into the canonical model of a normal
logic by means of the concept of modal equivalence and we show how it can be
used to introduce a metric function into the set of all modal formulas.

Introduction Metrics have been used in several places in the literature on the for-
mal semantics of programming languages, for example in sequential programming [1]
and in concurrent programming [2]. In trace-based models of computation, a natural
definition of a distance has been considered, namely the classical Baire metric: two
computations have a distance 2�i when the first difference between them appears af-
ter i steps. Alternative approaches based on metric methods have also appeared from
time to time in knowledge representation and reasoning, either for rationalizing voting
rules [4], or for representing preferences in constraint satisfaction [5]. The common
idea underlying many of these approaches consists in this: the distance between propo-
sitional formulas � and  is the minimal cardinality of the difference sets between
models of � and models of  . Through temporal logics and description logics, modal
logic is both concerned with problems in the semantics of programming languages and
questions in knowledge representation. Yet, none of the above approaches seems to
be fit for providing a measure of the distance between modal formulas: satisfiability of
modal formulas is not invariant under operations that preserve traces of models whereas
the cardinalities of the difference sets between models of modal formulas do not seem
to reflect the distance between them. Seeing that modal formulas correspond to sets of
maximal consistent theories, we introduce a metric function into the canonical model
of a normal logic by means of the concept of modal equivalence and we use it to intro-
duce a metric function into the set of all modal formulas. Our idea rests in this: a good
metric function into the canonical model of a normal logic must reflect the fact that
modal formulas are the only tools available when one needs to express the difference
between maximal consistent theories.

Normal logics Let BV be a finite set of Boolean variables with typical members
denoted p, q, etc. We define the set FOR(BV ) of all formulas by the rule � ::=
p | ? | ¬� | (� _  ) | 2�. The depth of �, in symbols dp(�), is inductively defined as
usual. In particular: dp(2�) = dp(�) + 1. A set L of formulas is said to be a normal
logic iff it satisfies the following conditions: L contains all propositional tautologies;
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L contains all formulas of the form 2(� !  ) ! (2� ! 2 ); L is closed under
the rule of modus ponens (given � and � !  , prove  ); L is closed under the rule of
generalization (given �, prove 2�). Let K be the least normal logic. Until the end of
this paper, L will denote a consistent normal logic. A set � of formulas is said to be an
L-theory iff it satisfies the following conditions: � contains L; � is closed under the
rule of modus ponens. The set of all L-consistent formulas will be denoted ConL. An
L-theory � is said to be maximal iff for all formulas �, either � 2 �, or ¬� 2 �. Let
WL be the set of all maximal consistent L-theories. Let [·]L: � 7! [�]L be the mapping
defined by [�]L = {�: � 2 WL is such that � 2 �} for every formula �.

Stone’s topology In his fundamental paper, “Applications of the theory of Boolean
rings to general topology”, Stone [6] has showed how to construct a topology in the set
of all maximal ideals of a Boolean ring. Within the context of WL, a topology ⌧L of a
similar nature can also be constructed, generated by a basis consisting of all sets of the
form [�]L where � 2 FOR(BV ). The following results are fundamental: (WL, ⌧L)
is Hausdorff; (WL, ⌧L) is regular; (WL, ⌧L) is second-countable. Hence, (WL, ⌧L) is
homeomorphic to a metric space.

Metric based on modal eaquivalence For all i 2 NN, let ⌘L,i be the equivalence
relation on WL defined as follows: � ⌘L,i � iff � \ {�: � 2 FOR(BV ) is such that
dp(�)  i} = � \ {�: � 2 FOR(BV ) is such that dp(�)  i}. About introducing a
metric function into WL by means of the concept of modal equivalence, we now define
a function �L: WL ⇥ WL 7! RR+ as follows: �L(�, �) = sup{2�i: i 2 NN is such that
� 6⌘L,i �}. Remark that for all �, � 2 WL, �L(�, �) < 2�i iff � ⌘L,i �. Obviously,
�L is an ultrametric function on WL. Let ⌧�L

be the topology on WL induced by �L.
One can demonstrate that: for all � 2 FOR(BV ), [�]L 2 ⌧�L

; for all � 2 WL and
for all r 2 RR+?, B�L

(�, r) 2 ⌧L. These considerations prove that the topologies ⌧L
and ⌧�L

are equal. The principal advantage in a metric such as �L consists in this: the
distance between two given maximal consistent L-theories only depends on the depth
of the simplest formulas that distinguish them.

Proposition 1 (1) (WL, �L) is complete; (2) (WL, �L) is totally bounded; (3) (WL,
⌧L) is compact; (4) (WL, ⌧L) is separable.

All nonempty closed sets in WL are �L-bounded. That is why we can introduce, be-
tween such sets, the Hausdorff metric corresponding to �L.

Distance between sets Let CL be the set of all nonempty closed sets in WL. For A, B
2 CL, define ~�L(A, B) = sup{�̇L(�, B): � 2 A} where �̇L(�, B) = inf{�L(�, �): �
2 B}. About introducing a metric function into CL, we now define the Hausdorff
function �̈L: CL ⇥ CL 7! RR+ as follows: �̈L(A, B) = max{~�L(A, B),~�L(B, A)}.
Remark that for all A, B 2 CL, �̈L(A, B) < 2�i iff for all � 2 A, there exists � 2
B such that � ⌘L,i � and for all � 2 B, there exists � 2 A such that � ⌘L,i �.
Obviously, �̈L is an ultrametric function on CL. Let ⌧̈L be the topology on CL induced
by �̈L.

2

13



Proposition 2 (1) (CL, �̈L) is complete; (2) (CL, �̈L) is totally bounded; (3) (CL, ⌧̈L)
is compact; (4) (CL, ⌧̈L) is separable.

Since [�]L 2 CL for every � 2 ConL, then we can introduce, between formulas, a
distance corresponding to �L.

Distance between formulas Let ⇠=L be the equivalence relation on ConL defined
as follows: � ⇠=L  iff [�]L = [ ]L. Let � 2 ConL. The set of all formulas in
ConL equivalent to � modulo ⇠=L, in symbols k � kL, is called the equivalence class
modulo ⇠=L with � as its representative. The set of all equivalence classes of ConL

modulo ⇠=L, in symbols ConL/ ⇠=L, is called the quotient set of ConL modulo ⇠=L.
About introducing a metric function into ConL/ ⇠=L, we now define the Hausdorff-
like function �̂L: ConL/ ⇠=L ⇥ConL/ ⇠=L 7! RR+ as follows: �̂L(k � kL, k  kL) =

�̈L([�]L, [ ]L). Remark that for all �, 2 ConL, �̂L(k � kL, k  kL) < 2�i iff for all
� 2 [�]L, there exists � 2 [ ]L such that � ⌘L,i � and for all � 2 [ ]L, there exists
� 2 [�]L such that � ⌘L,i �. Obviouly, �̂L is an ultrametric function on ConL/ ⇠=L.
Let ⌧̂L be the topology on ConL/ ⇠=L induced by �̂L.

Proposition 3 (1) (ConK/ ⇠=K , �̂K) is not complete; (2) (ConL/ ⇠=L, �̂L) is totally
bounded; (3) (ConK/ ⇠=K , ⌧̂K) is not compact; (4) (ConL/ ⇠=L, ⌧̂L) is separable.
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The Herbrand Topos

Benno van den Berg ⇤

June 22, 2012

The aim of my talk will be to introduce a new topos, which we will call the
Herbrand topos and is inspired by earlier joint work with Eyvind Briseid and
Pavol Safarik (see [1]). In [2] we hit upon a new realizability interpretation in an
attempt to find computational content in arguments performed in nonstandard
analysis. This new interpretation, which was a variant of modified realizability,
was dubbed Herbrand realizability. Although our investigations in [2] were
entirely proof-theoretic, it is also possible to explain Herbrand realizability in
semantic terms.

To develop this semantics we use topos theory (for which see [9, 6, 7]).
This choice was motivated by the fact that the notion of a topos is the most
comprehensive notion of model for a constructive system we have available, in-
corporating topological, sheaf and Kripke models, as well as various realizability
and functional interpretations. In addition, it shows that these interpretations
can be made to work for full higher-order arithmetic. The starting point for this
paper was the theory of realizability toposes (starting with [5] and surveyed in
[12]): indeed, the topos most closely related to the topos we will introduce here
is the modified realizability topos (for which, see [11, 12]).

In order to arrive at the modified realizability topos, one has to abstract
considerably from Kreisel’s original definition [8]. First of all, one fixes the
hereditarily e↵ective operations (HEO) as a model of Gödel’s T . Then a type
gets identified with a certain inhabited set of codes and a set of realizers of that
type will simply be subset of that set. The step that Grayson took in [4] was to
take as truth values any pair (A0, A1) where A0 and A1 are two sets of codes
(often called the actual realizers and the potential realizers, respectively) with
A0 ✓ A1 and A1 containing a fixed element. One can build a tripos around
such pairs and in the associated topos the finite types will be interpreted as the
hereditarily e↵ective operations.

In order to define the Herbrand topos, we make a similar move. The idea
from [2] was that in order to realize

(9n 2 N)'(n)

⇤Mathematisch Instituut, Universiteit Utrecht, PO. Box 80010, 3508 TA Utrecht, the
Netherlands. Email: B.vandenBerg1@uu.nl. Supported by the Netherlands Organisation
for Scientific Research.
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it su�ces to supply a finite list of natural numbers (n1, . . . , nk) such that '(ni)
is realized for some i  k. Abstracting away from the details, this means that
potential realizers are finite list of natural numbers, while the actual realizers are
those finite lists (n1, . . . , nk) which contain an ni which works (this is similar to
the idea of Herbrand disjunctions in proof theory; hence the name). Abstracting
even further, we say that truth values in the Herbrand topos are pairs of sets
of codes (A0, A1) such that A0 consists of finite sequences all whose elements
belong to A1 and which is closed upwards (by this we mean that it is closed
under supersets, if we regard finite sequences as representatives for their set of
components). We will show that on the basis of these pairs one can construct a
tripos, whose associated topos we will call the Herbrand topos.

The Herbrand topos turns out to have several features in common with other
realizability toposes. It has an interesting subcategory consisting of the ¬¬-
separated objects (we will call these the Herbrand assemblies) and the category
of sets is included as a subtopos via the ¬¬-topology. What is very unusual,
however, is that this inclusion functor, which we will call r, preserves and
reflects the validity of first-order logic; in fact, r preserves and reflects the
structure of a locally cartesian closed pretopos. In particular, r2 = 2 in the
Herbrand topos.

This is a striking illustration of the fact that in the Herbrand topos disjunc-
tion has essentially no constructive content. Indeed, in order for a disjunction
' _  to be realized it is su�cient that one of the two disjuncts is realized; but
a realizer for ' _  need not say which disjunct it is that is actually realized.
This fact explains many of the features of the Herbrand topos: why it believes
in the law of excluded middle for ⇧0

1-formulas, and why it does not believe in
Church’s thesis or in continuity principles.

However, arithmetic in the Herbrand topos is not classical. This is due to the
fact that existential quantifiers still have some constructive content. Admittedly,
this content is less than is usually the case, but it is still strong enough to rule
out Markov’s principle.

Finally, there are two other properties of the Herbrand topos which are
worth mentioning. First of all, because r preserves and reflects first-order
logic, rA will be a nonstandard model of arithmetic in the Herbrand topos for
any nonstandard model A (actually, it will also be a nonstandard model when
A is the standard model N). This is interesting, because realizability toposes
are unfavourable terrain for nonstandard models of arithmetic (see [10]).

A proof-theoretic feature of the Herbrand topos which is worth stressing is
that in it the Fan Theorem holds; for this it is not necessary to assume its
validity in the metatheory. The proof should look very familiar to anyone who
is aware of the bounded modified realizability interpretation and its properties
(for which, see [3]).
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INVARIANCE AND DEFINABILITY, WITH OR WITHOUT EQUALITY

DENIS BONNAY AND FREDRIK ENGSTRÖM

Invariance under permutation has been used as a logicality criterion in the context of the
semantic definition of logical consequence. By logicality criterion, we mean a characterization of
the kind of interpreted symbols that should be used as logical constants in the Tarskian definition.
In this perspective, invariance under permutation is taken as the formal output of a conceptual
analysis of logic. Thus, it has been proposed as a mathematical counterpart to the generality of
logic (by Tarski himself, [12]) and to its purely formal nature (by Sher [11] and MacFarlane [8]).
The issues we will be concerned with are the characterization of permutation invariant operations
by McGee in [9] and Feferman’s question in [3] about the characterization of homomorphism
invariant operations. The unified perspective will be based on Krasner’s much earlier work ([5],
[6]) and his so-called abstract Galois theory.

Given a fixed domain, Krasner establishes a general correspondence between classes of rela-
tions (of infinite arity) closed under definability in L∞∞ and subgroups of the permutation group.
McGee shows that the classes of relations and quantifiers which are invariant under all permu-
tations is precisely the class of relations and quantifiers which are definable in pure L∞∞. It
appears that McGee’s theorem is nothing but a special case of Krasner’s correspondence when
second-order relations, which can be thought of as quantifiers, are allowed for. Feferman shows
that an operation is definable in first-order logic without equality just in case it is definable in the
λ-calculus from homomorphism invariant monadic quantifiers and asks whether “there is a natural
characterization of the homomorphims invariant propositional operations in general, in terms of
logics extending the predicate calculus” ([3], p. 47). This suggests a further generalization of
Krasner’s correspondence to the equality-free version of L∞∞.

Krasner’s abstract Galois theory. To begin with, we shall recall the fundamentals of
Krasner’s abstract Galois theory, following in particular Poizat [10]. Consider a domain Ω, G the
full permutation group on Ω and a set R of relations on Ω; these relations may include infinite
arity relations regarded as subsets of Ωα where α is some ordinal number. We now define the
following pair of mappings:

Inv(H) = {R ⊆ Ωα | hR = R for all h ∈ H, α ≤ |Ω| }
Aut(R) = { g ∈ G | gR = R for all R ∈ R }

The logic L∞∞ is the infinitary generalization of the predicate calculus where formulas are built by
means of arbitrarily long conjunctions and disjunctions and by means of arbitrarily long universal
and existential quantifiers sequences (see e.g. [4]). The L∞∞-closure of R is the set of relations
definable in L∞∞ from relations in R. The following Theorem is essentially1 shown by Krasner
in [5]:

Theorem 1. Let Ω and G be as above, H ⊆ G any set of permutations and R any set of relations
on Ω of arities at most |Ω|.

(1) Inv(Aut(R)) is the L∞∞-closure of R.
(2) Aut(Inv(H)) is the smallest subgroup of G including H.

Thus, there is a one-to-one correspondence between the subgroups of the full permutation group
G of Ω and the sets of relations closed under definability in L∞∞.

Both authors were partially supported by the EUROCORE LogICCC LINT program and the Swedish Research
Council.

1The qualification ‘essentially’ is due to the fact that Krasner thinks directly in terms of closure under ‘logical’
operations on relations rather in terms of definability in a formal language.
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2 DENIS BONNAY AND FREDRIK ENGSTRÖM

Second-order relations, L∞∞ and Krasner’s correspondence. We shall now extend
Krasner’s correspondence to second-order operations, in order to account for quantifier extensions,
which have been the traditional focus of the debates regarding logicality and invariance. In this
subsection, we state the corresponding generalization of Theorem 1 and prove its first part.

A finite second-order relation Q of type (i1, ..., ik) on Ω is a subset of P(Ωi1)× ...×P(Ωik) for
finite k and finite i1,...,ik. A second-order structure Q on a domain Ω is a set of finite first-order
and second-order relations on Ω. A permutation g on Ω preserves a second-order relation Q of
type (i1, ..., ik) if (Ri1 , ..., Rik) ∈ Q iff (gRi1 , ..., gRik) ∈ Q where Rij , 1 ≤ j ≤ k, are first-order
relations of arities ij . The mappings Aut and Inv admit a straightforward generalization to the
present setting: Aut(Q) is the group of permutations which preserve all first-order and second-
order relations in Q, and Inv(H), for H ⊆ G, is the set of first-order and second-order relations
which are preserved by all permutations in H.

Given a second-order structure Q, L∞∞(Q) is an interpreted language in the logic L∞∞:
it is the language whose signature matches the structure Q and whose predicate and quantifier
symbols are interpreted by the relations in Q. The syntax and semantics for symbols interpreted
by second-order relations is familiar from generalized quantifier theory (see [7]).

We shall need to consider definability in L∞∞(Q) for a given Q. Without loss of generality,
let Q be a second-order relation of type (2). We say that Q is definable in L∞∞(Q) iff there is a
sentence φQ(R̄) in L∞∞(Q) expanded with a binary predicate symbol R̄ such that

Q, R ! φQ(R̄) iff R ∈ Q

where R is a binary first-order relation on Ω interpreting R̄. We can now state the generalization
of Theorem 1 to second-order structures and automorphism groups thereof:

Theorem 2. Let Ω be a domain and G the symmetric group on Ω, H ⊆ G any set of permutations
and Q a second-order structure on Ω.

(1) Q ∈ Inv(Aut(Q)) iff Q is definable in L∞∞(Q). The same holds for relations R.
(2) Aut(Inv(H)) is the smallest subgroup of G including H.

Invariance under similarities. We now turn to the case of equality free logics and invariance
under similarity relations. This was first proposed by Casanovas in [2] and [1], and also by Feferman
in [3]. In these works similarity invariance between domains is analyzed and several different
equivalences are shown for different invariance criteria of this kind. In this paper we are interested
in fixing one domain and obtaining a correspondence between invariance and definability, not very
different from the results above.

A binary relation π is a similarity relation from A to B if for all a ∈ A there is b ∈ B such that
a π b and for all b ∈ B there is a ∈ A such that a π b. In other words π ⊆ A × B is a similarity
relation iff dom(π) = A and rng(π) = B. When A = B we say that π is a similarity relation on A.

Given a similarity relation π from A to B and relations R ⊆ Ak, S ⊆ Bk we define R π S iff for
every ā π b̄ we have ā ∈ R iff b̄ ∈ S. A relation R ⊆ Ωk is invariant under the similiarity relation
π on Ω if for all ā π b̄ we have ā ∈ R iff b̄ ∈ R, in other words R is invariant under π iff R π R.

Given a quantifier Q on Ω we say that Q is invariant under π if for all relations R1, . . ., Rk,
S1, . . ., Sk on Ω such that Ri π Si we have 〈R1, . . . Rk〉 ∈ Q iff 〈S1, . . . , Sk〉 ∈ Q.

We define two mappings: ·/ ∼ and ∪ which will operate on several different domains, but in a
similar way. Let ∼ be an equivalence relation on Ω and [a] = { b | a ∼ b } be the equivalence class
of a. Given R ⊆ Ωk we define the relation R/∼ on Ω/∼ by

R/∼ = { 〈[a1], . . . , [ak]〉 | 〈a1, . . . , ak〉 ∈ R } .

If S ⊆ (Ω/∼)k then
∪S = { 〈a1, . . . , ak〉 | 〈[a1], . . . , [ak]〉 ∈ S } .

Given a quantifier Q on Ω, the quantifier Q/∼ on Ω/∼ is defined by

Q/∼ = { 〈R1, . . . , Rk〉 | 〈∪R1, . . . , ∪Rk〉 ∈ Q } ,

and given a quantifier Q on Ω/∼, the quantifier ∪Q on Ω is defined by

∪Q = { 〈∪R1, . . . , ∪Rk〉 | 〈R1, . . . , Rk〉 ∈ Q } .
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INVARIANCE AND DEFINABILITY 3

Invariance is now parametrized by the equivalence relations ∼ we are considering. We say that
R ⊆ Ωk respects ∼ if ∪(R/∼) = R. Given a similarity π, a quantifier Q is ∼-invariant under π if
for any R̄, S̄ ⊆ Ωk respecting ∼ if R̄ π S̄ then R̄ ∈ Q iff S̄ ∈ Q. A relation is ∼-invariant under π
if it is invariant under π.

A set of operations Q generates an equivalence relation ∼Q corresponding to definability in
L −

∞,∞(Q), that is a ∼Q b iff
∧

φ∈L −
∞∞(Q)

∀x̄(φ(a, x̄) ↔ φ(b, x̄)).

Also, a set of similarities Π gives us an equivalence relation by the following condition:

a ≈Π b iff for all c̄ ∈ Ωk there exists ∃π ∈ Π such that a, c̄ π b, c̄.

We need some definitions to state the main theorem of invariance under similarities.

Definition 3. Let Inv(Π) be the set of all relations R and quantifiers Q on Ω which are ≈Π-
invariant under all similarities in Π. Sim(Q) is the set of similarities π such that all relations and
quantifiers in Q are ∼Q-invariant under π.

Definition 4. • A similarity π is identity-like (with respect to Π) if π ⊆ ≈Π.
• A set Π of similarties is saturated if it includes all identity-like similarities.
• Π is a monoid with involution if it is closed under composition and taking converses.
• Π is full if it is a saturated monoid with involution closed under taking subsimilarities,

i.e., such that if π ∈ Π and π′ ⊆ π is a similarity then π′ ∈ Π.

We are now ready to state the main theorem, generalizing Theorem 2 to the case of an equality
free setup.

Theorem 5. Let Q be a set of operators and Π a set of similarites, then

(1) Q ∈ Inv(Sim(Q)) iff ∪(Q/∼Q) is definable in L −
∞∞(Q).

(2) R ∈ Inv(Sim(Q)) iff R is definable in L −
∞∞(Q).

(3) Sim(Inv(Π)) is the smallest full monoid including Π.
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We will present work dealing with proof-theoretic investigations of systems for non-
standard analysis. This involves introducing constructive and classical systems for non-
standard arithmetic and showing how variants of the functional interpretations due to
Gödel and Shoenfield can be used to rewrite proofs performed in these systems into
standard ones. There are two principal outcomes of this:

• Similarly to the case for the ordinary functional interpretation the rewriting algo-
rithm allows term extraction for suitable classes of statements.

• In particular, the functional interpretations show that our nonstandard systems
are conservative extensions of E-HA! and E-PA!, strengthening earlier results by
Moerdijk and Palmgren [7] and Avigad and Helzner [1].

A main source of inspiration for the present work comes from Nelson’s Internal
Set Theory (IST), introduced in [8]1. Nelson’s idea was to treat nonstandard analysis
syntactically by adding a new unary predicate symbol st to ZFC for “being standard”,
and further adding three new axioms which govern the use of this new unary predicate
symbol: Idealization, Standardization, and Transfer. The resulting system he called
Internal Set Theory or IST. The main logical result about IST is that it is a conservative
extension of ZFC, so any theorem provable in IST which does not involve the st-predicate
is provable in ZFC as well.

The conservativity of IST over ZFC was proved twice. In [8], Nelson gives a model-
theoretic argument (which he attributes to Powell). Later [9] he proves the same result
syntactically by providing a “reduction algorithm” (a rewriting algorithm) for convert-
ing proofs performed in IST to ordinary ZFC-proofs. There is a remarkable similarity
between his reduction algorithm and the Shoenfield interpretation [10]; this observation
was the starting point for our work.

Rather than set theory we work with systems in higher types, such as extensional
Heyting and Peano arithmetic in all finite types (E-HA! and E-PA!), because in addition
to conservation results we are interested in extracting terms from nonstandard proofs and
“proof mining”. Proof mining is an area of applied logic where one uses proof-theoretic
techniques to extract quantitative information (such as bounds on the growth rate of
certain functions) from proofs in ordinary mathematics. In addition, such techniques
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can reveal certain uniformities leading to new qualitative results as well. Functional
interpretations are one of the main tools in proof mining (for an introduction to this part
of applied proof theory, see [6]). To extract interesting bounds, however, it is important
that the mathematical arguments one analyses can be performed in su�ciently weak
systems: therefore one considers systems such as E-HA! or E-PA!, or fragments thereof,
rather than ZFC. The reason for considering systems in higher types (rather than PA,
for instance) is not just because they are more expressive, but also because higher types
are precisely what makes functional interpretations work.

We take as starting point E-HA! and proceed in a similar way as Nelson: we add a
new unary predicate st to its language (in fact, we will add unary predicates st� for every
type �) and add nonstandard axioms in the extended language. Our main result is the
existence of an algorithm which rewrites proofs in this constructive nonstandard system
to ordinary proofs performed in E-HA!. This algorithm is a functional interpretation
in the style of Gödel, with features reminiscent of the Diller-Nahm [3] and the bounded
functional interpretation [4] (the relation to the latter is especially close). Then by
combining this rewriting algorithm with negative translation one obtains a Shoenfield-
type functional interpretation for a nonstandard extension of E-PA!.

As mentioned above the existence of such a rewriting algorithm has two corollaries:
first of all, it shows that the nonstandard systems we consider are conservative extensions
of E-HA! and E-PA!, respectively. Secondly, they show how one can extract terms in
Gödel’s T (and hence computational content) from nonstandard proofs.

Ongoing work involves investigating proof-theoretically the role of saturation princi-
ples in nonstandard proofs. We have shown that constructively the countable saturation
principle

CSAT : 8stn0 9y⌧ �(n, y) ! 9f0!⌧ 8stn0 �(n, f(n))

does not add any strength, whereas classically it makes the system much stronger.
Presently, we are working on determining the exact strength over our classical nonstan-
dard system.
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1 Introduction

We demonstrate how a fairly powerful version of abductive reasoning can be expressed directly in the logic pro-
gramming language Prolog, using its extension by Constraint Handling Rules as the engine to take care of abducible
hypotheses.

Until the shift of the millennium, abduction in logic programming was realized through complex meta-interpreters
written in Prolog, which may have led to a view of abduction as being something hairy, di�cult stu↵, far too ine�cient
for any realistic applications. There is, however, a relationship between the paradigm of constraint logic programming,
which appeared in the late 1980es [6], and abduction which have not been fully recognized. The point is that constraint
predicates behave in very much the same way as abducible predicates for abduction. Now, the extension of Prolog
with Constraint Handling Rules in the 1990es [4] allows the programmer to introduce his or her own constraint
solvers in a declarative fashion. Putting these two observation together opens up for a general approach to abduction
in logic programming that we unfold in the following. The principle have been developed by the author over last
decade or so, together with di↵erent coauthors, most importantly [1] and [3].

2 Prolog versus abductive logic programming

Prolog is a language capable of answering certain queries in a deductive fashion based on a closed worlds semantics:
everything that is explicitly stated to be true is true, and so is everything that can be derived deductively from that;
everything else is false. Consider the following program.

p:- a.

p:- b.

a.

Anticipating abduction, we may talk about observations rather than queries. Assume we have observed that p is the
case, and we present this as a query ?-p to the program above; Prolog gives the successful answer yes since the fact
a is part of the program. Removing this fact and trying again, i.e., presenting the observation p to the program {p:-
a, p:- b}, Prolog returns the laconic answer no, meaning that the observation p could not sensibly have been made
from what is known.

A sort of abductive reasoning may arise when we go beyond Prolog and change the semantics for the predicates
a and b into an open world view. This means to interpret their absence as facts in a program as “perhaps true”
rather than “not true”. Then we might expect answers “yes, p is true, provided a is actually true” or, alternatively,
the same for b.

An abductive logic program P usually depends on some designated abducible predicates A, such as a and b in the
example above, plus so-called integrity constraints IC that most hold for the collection of abducible facts produced.
An example of an integrity constraint may be “a and c cannot be the case at the same time”, under which the query
?-c,p would yield only one explanation, namely b, and not a.
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We will discuss integrity constraints in more detail and how to define them later; here we give a standard
definition [7] of an abductive answer (or explanation) E to an observation Obs.

P [ E |= Obs (1)

P [ E [ IC is consistent (2)

3 Constraint logic programming as abduction

The constraints of a constraint logic program behave very much the same way as abducibles, in the sense that an
answer may consist of a collection of special atoms encountered during the execution. Consider for example this
program, in which the constraint predicate #> represents a greater-than relation between rational numbers.

p(X):- X #> 5, 10 #> X.

An answer to the query p(N) may consist of the set of constraints E = {N #> 5, 10 #> N}, as a shorthand for an
infinite set of ground answers of the form N = · · · .

We can consider such a constraint logic program as an abductive logic program, with constraint predicates viewed
as abducible and taking the (knowledge embedded in the) constraint solver as integrity constraints. Without going
into the formal details, we can argue that E (above) is an abductive answer – or explanation why ?-p(X) can hold
– as follows.

– p(X) would succeed in Prolog if the program is extended with two facts const #> 5 and 10 #> const, where
const is an arbitrary constant symbol,

– 9N (N#>5 ^ 10#>N) is consistent with a reasonable theory about #>.

We shall avoid a comparison of the standard way of defining the semantics for constraint logic programming and the
one that we have hinted with this discussion, and head to our main point, namely how an abductive logic program
can be written using Prolog plus Constraint Handling Rules.

4 Constraint Handling Rules and abducible predicates

The language of Constraint Handling Rules (CHR) was introduced as an extension to Prolog in order to provide a
white box approach to constraint solving, so that constraint solvers can be written in a declarative way. It is, for
example, a standard exercise in CHR to write a constraint solver for the #> constraint considered above.

During execution of a program, the rules of CHR serve as rewrite rules over constraint stores, such that whenever
a constraint is encountered, it is added to the constraint store, and these rules will incrementally check consistency,
and perhaps simplify, the contents of the constraint store. Consider as examples the following two rules.1

c1, c2 <=> c3, c4.

c5, c6 ==> c7.

The lefthand sides must consist of constraints (possibly parameterized by variables) and the righthand sides can
be any Prolog executable term, including fail, but here we illustrate only constraints. The first rule, a so-called
simplification rule, will replace the common occurrence of constraints c1, c2 by c3, c4. The second, a propagation
rule, adds new constraints, here c7, without removing those matched by the lefthand side. In the declarative semantics
of CHR, these rules are considered as equivalence, resp. implication, as indicated by the chosen arrow symbol.

The answer to a successful query consists (in addition to possible variable substitutions) of the resulting contents of
the constraints store. This is compatible with an open world understanding of constraint predicates: unless explicitly
stated to be false, any collection of constraints can be assumed to be true. Here is a version of the most elaborate
version of the program discussed in section 2 written in Prolog extended with CHR.

:- chr_constraint a,b,c.

a,c ==> fail.

p:- a.

p:- b.

1 CHR rules are much more than illustrated here. Most importantly, rules can have guards.

24



The first line declares our abducibles as constraint predicates, the second is a CHR rule that defines the integrity
constraint, and the remaining part consists of standard Prolog rules. Given the query ?-c,p, exactly one answer is
provided, namely the constraint b, that corresponds to the abductive explanation why the observation p can be true.

We refer to [2] for a precise formulation of the relationship between abductive logic programs and Prolog+CHR,
including a correctness theorem. In plain word, the contribution is that we can write an abductive logic program with
integrity constraints directly in Prolog+CHR in a most natural way without assuming any additional implementation
code beneath the carpet. We may summarize the approach in the following translation of linguistic terms from the
one domain to the other; no program transformation is needed.

Abductive logic programming Constraint logic programming with CHR

Abductive logic programs Prolog programs with a little bit of CHR

Abducible predicate Constraint predicate

Integrity constraints CHR Rules

Program rules Program rules

Explanation Final constraint store

It is, in fact, tempting and quite feasible, to have students to write programs in Prolog+CHR to perform task such
as diagnosis and planning (as demonstrated in [2]), and then afterwards telling them that they have committed
something as terrible as abduction. Among the additional advantages of the approach, we may list:

– due to the lack of any interpretational overhead, it appears to be the most e�cient, known implementation of
abductive logic programming,

– there is a full integration with any additional, predefined constraint solver that might be available,
– all facilities of the underlying Prolog system (including illogical ones) are available,
– it works smoothly together with Prolog’s definite clause grammars and provides, thus, an implementation of the

principle of interpretation of abduction [5].

Everything comes with a price, and the price here is the lack of negation. We may partly simulate negation by
additional constraints standing for negated ones and use integrity constraints such as a(X), not a(X) ==> fail.
Prolog’s negation as failure is of course available, but with the usual limitation that it serves as a test only, and no
information can be exported from a negated call (specifically no negated constraints).

5 Further results

In other publications, not referred here due to lack of space, we have studied probabilistic abduction based on similar
principles. The grammatical version has been applied in discourse analysis, among other things, for converting use
case texts into UML diagrams. The approach has been applied successfully in teaching for di↵erent audiences, from
computer science to linguist students.
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Abstract

We provide a brief presentation of the recent developments in the areas of Quantified Linear Pro-
gramming and Quantified Linear Implication.

I. INTRODUCTION

Quantified linear programming [1], [2] is the problem of checking whether a set of linear inequalities
over the reals, i.e., a linear system, is satisfiable with respect to a given quantifier string. In quantified
linear programming all variables are either existentially or universally quantified. Hence, it represents
a generalization of linear programming, where all variables are existentially quantified. However, the
alternation of quantifiers in the quantifier string makes deciding a Quantified Linear Program (QLP) a
much more elaborate problem. QLPs represent a rich language that is ideal for expressing schedulability
specifications in real-time scheduling [3]–[6].

By extending the quantification of variables to implications of two linear systems, we explore Quantified
Linear Implications (QLIs) [7]. That is, QLIs correspond to inclusion queries of polyhedral solution sets
of two linear systems with respect to a given quantifier string. We mention two application areas: Consider
a scenario of real-time scheduling, where the dispatcher has already obtained a schedule (solution) but
then some constraints are slightly altered. QLIs can be utilized to decide whether the dispatcher needs
to recompute a solution or can still use the current one. Moreover, QLIs can be used to model reactive
systems [8]–[10], where the values of the universally quantified variables represent the environmental
input, while the values of the existentially quantified variables represent the system’s response.

In this paper, we provide a brief presentation of the recent developments in the areas of QLP and QLI.
We discuss the computational complexities of various classes of these problems, while we also examine
the relation between QLPs and QLIs using a 2-person game perspective.

II. QUANTIFIED LINEAR PROGRAMMING

Quantified linear programming extends linear programming by admitting arbitrary quantifications. In
a QLP, variables of a linear system are either existentially or universally (with bounds) quantified:

9x1 8y1 2 [l1,u1] . . . 9xn 8yn 2 [ln,un] A · x + N · y  b (1)

where x1 . . .xn is a partition of x with, possibly, x1 empty; y1 . . .yn is a partition of y with, possibly,
yn empty; and li, ui are lower and upper bounds in < for yi, i = 1, . . . , n.

The Fourier-Motzkin existential quantifier elimination method and a universal quantifier elimination
method have been employed to provide a method for deciding QLPs [2].

Theorem 2.1: The decision problem for a QLP of the form (1) is in PSPACE.

The special case of E-QLP problems, which are of the form 9y 8x 2 [l,u] Ax+N ·y  b, are solvable
in polynomial time [2].
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Theorem 2.2: The decision problem for an E-QLP is in P.

Another special case that was characterized in [2] is the F-QLP problem, which corresponds to formulas
of the form 8y 2 [l,u] 9x A · x + N · y  b.

Theorem 2.3: The decision problem for an F-QLP is coNP-complete.

III. QUANTIFIED LINEAR IMPLICATION

Consider two linear systems P1 : A · x  b and P2 : C · x  d. We say that P1 is included
in P2 if every solution of P1 is also a solution of P2. This holds if and only if the logic formula
8x [Ax  b ! C · x  d] is true in the domain of the reals. Quantified Linear Implication extends the
notion of inclusion to arbitrary quantifiers:

9x1 8y1 . . . 9xn 8yn [A · x + N · y  b ! C · x + M · y  d] (2)

where x1 . . .xn and y1 . . .yn are partitions of x and y respectively, and where x1 and/or yn may be
empty. We say that a QLI holds if it is true as a first-order formula over the domain of the reals. The
decision problem for a QLI consists of checking whether it holds or not. The following result can be
obtained through a reduction from the generic Q3SAT problem.

Theorem 3.1: The decision problem for a QLI of the form (2) is PSPACE-hard.

Let Q(x,y) denote the quantifier string, namely 9x1 8y1 . . . 9xn 8yn in the QLI (2). A nomenclature
is introduced in [7] to represent the classes of QLIs. Consider a triple hA, Q, Ri. Let A denote the number
of quantifier alternations in the quantifier string Q(x,y) and Q the first quantifier of Q(x,y). Also, let
R be an (A+1)-character string, specifying for each quantified set of variables in Q(x,y) whether they
appear on the Left, on the Right, or on Both sides of the implication. For instance, h1, 9,LBi indicates
a problem described by: 9x 8y [A · x + N · y  b ! M · y  d].

The following theorem presents the case of k alternations of quantifiers, with k odd. This result can
be obtained through a reduction from the corresponding Q3SAT problem. Note that we write Bk+1 to
denote the string B . . .B| {z }

k+1

.

Theorem 3.2: Problem hk, 9,Bk+1i with k odd is ⌃P
k -hard.

Similarly, the following can be obtained for k being even.

Theorem 3.3: Problem hk, 8,Bk+1i with k even is ⇧P
k -hard.

Various classes of 0, 1, and 2-quantifier alternations have be examined in [7]. Here, we present QLIs
with no quantifier alternations. The next result was obtained in [11] by reducing the problem to a finite
number of linear programs, which are in P by [12].

Theorem 3.4: Problem h0, 8,Bi is in P.

The case of 0-quantifier alternation QLI starting with 9 follows trivially from Theorem 3.2 for k = 0.

Corollary 3.1: Problem h0, 9,Bi is in P.

IV. RELATION BETWEEN QLPS AND QLIS

A 2-person game semantics of QLP problems is presented in [2]. Such a game includes an existential
player X, who chooses values for the existentially quantified variables, and a universal player Y, who
chooses values for the universally quantified variables. X and Y make their choices according to the
order of the variables in the quantifier string. If, at the end, the instantiated linear system in the QLP is
true, then X wins the game (we say that X has a winning strategy). Otherwise, Y wins the game.
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A 2-person game semantics can be given for QLIs as well. It also includes an existential player X and
a universal player Y, who choose their moves according to the order of their corresponding variables
in the quantifier string. In any game of this form, the goals of the players are the following: X selects
the values of the existentially quantified variables so as to violate the constraints in the Left-Hand Side
(LHS) or to satisfy the constraints in the Right-Hand Side (RHS) of the implication. On the other hand,
Y selects the values of the universally quantified variables so as to satisfy the constraints of the LHS
and on the same time to violate the constraints of the RHS of the implication. We say that X wins the
game if at the end of the game the LHS of the instantiated QLI is false or its RHS is true. Otherwise,
we say that Y wins the game (i.e., if the LHS is satisfied and the RHS is falsified). We say that X has a
winning strategy if it is possible for X to win, i.e., if there is a sequence of moves such that X wins the
game. Otherwise, Y has a winning strategy. The QLI holds precisely when X has a winning strategy.

It is important to note that both games as described above are non-deterministic in nature, in that we
have not specified how X and Y make their moves. It can be shown that the game semantics of QLIs
are a conservative extension of the game semantics of QLPs. Consider a generic QLP as described by
System (1). Now consider the following QLI:

9x1 8y1 . . . 9xn 8yn

l1  y1  u1

. . .
ln  yn  un

9
>=
>;

! A · x + N · y  b (3)

where l1, . . . , ln and u1, . . . ,un are partitions of l and u and correspond to the lower and upper bounds
respectively on the variables in y1, . . . ,yn of y that appear in the quantifier string of System (1). The
following theorem presents the relation between the two problems.

Theorem 4.1: The existential player has a winning strategy in System (3) if and only if the existential
player has a winning strategy in System (1).
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In this talk, I will address some problems in the abstract model theory for modal languages, especially
concerning characterizations of modal languages. Here, the sort “characterization” referred to is of the same
type as Per Lindström’s famous characterization of FOL, in terms of compactness and the Löwenheim-Skolem
property [4]. Several Lindström-style characterizations of modal logics are already known. One of the most
prominent results is the following, which is due to Johan van Benthem [6], and improves on an earlier charac-
terization due to Maarten de Rijke [2]:

Theorem 1 (van Benthem, 2007). Suppose an abstract modal logic L is compact, invariant for bisimulation,
and has the relativization property. Then L is equivalent to basic modal logic.

Here, an abstract modal logic is an extension of the basic modal logic ML (for a given similarity type),
satisfying certain constraints similar to the constraints on “abstract logics” as they appear in abstract model
theory [1]. “Equivalent to ML” means that, for any L-formula � there is a corresponding ML-formula that
defines the same class of pointed models as �. The relativization property alluded to in the theorem is an
adapted version of the relativization property familiar from abstract model theory. It states that, for any �
and propositional variable p, there should be a formula Rel(�, p) such that (M, u) ✏ Rel(�, p) if and only if
(M �p, u) ✏ �, where M �p is the submodel of M generated by the set of nodes in M at which p is true.

Several variations of this result have been proved. Alexander Kurz and Yde Venema have obtained Lind-
ström theorems in the general context of coalgebraic modal logic [3]. Similar results have been proved for
modal logic with a global modality and the guarded fragment by Martin Otto and Robert Piro [5]. A Lindtröm
theorem for the binary guarded fragment had been obtained earlier by Balder ten Cate, Johan van Benthem
and Joukko Väänänen [7].

An area that still appears to be unexplored is to what extent these results remain valid for restricted classes
of models. In actual applications of modal logics, it is uncommon to work with the basic modal logic of all
Kripke models of a given similarity type. Usually, one must impose certain restrictions on the models to make
sure that they match the sort of structures one wishes to speak about. Common constraints include reflexivity,
transitivity, linearity etc. Also, in many cases, constraints are imposed to make sure that various modalities
interact properly: an important example is propositional dynamic logic, where the accessibility relations for
various programs are constrained so that the program constructors get their intended interpretation. For exam-
ple, the accessibility relation corresponding to ⇡? should equal the transitive closure of that corresponding to
⇡, the accessibility relation for ⇡1;⇡2 should be the composition for those of ⇡1,⇡2 respectively, and so forth.

To address this issue, we impose some definitions. Consider an abstract modal logic L and a class C of
pointed models of the appropriate similarity type (for simplicity I consider only similarity types with unary
modalities). We say that L is bisimilation invariant over C if any two bisimilar models in C satisfy the same
formulas of L. If an abstract modal logic is bisimilation invariant then of course it is bisimilation invariant over
a given class C, but the converse need not be true. Similarly, we say that L is compact over C if for any set of
L-formulas �, if every finite subset of � has a model in C then � has a model in C. Finally, the relativization
property in C says that, for any formula � and propositional variable p, there is a formula Rel(�, p) such that
for any model (M, u) 2 C, (M, u) ✏ Rel(�, p) iff (M � p, u) ✏ �. (For this last property to make sense, we
must make sure to consider classes of models that are closed under the submodel relation.) Finally, say that L
is equivalent to basic modal logic ML over C, written L ⌘C ML, if for any L formula �, there is a basic
modal formula  such that (M, u) ✏ � iff (M, u) ✏  whenever (M, u) 2 C.

For some classes of models C, ML will not be compact over C and therefore we cannot hope to charac-
terize ML with respect to C in terms of the properties used in van Benthem’s characterization result. While
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this poses an interesting problem, I will rather focus on those cases where ML is compact over C, so that it
becomes meaningful to ask whether a van Benthem-style characterization result can be obtained with respect
to C. As a first observation, I show that, by slight modifications of the unraveling technique, such results can
indeed be obtained for certain classes of models; two simple examples are the class of reflexive models and
the class of symmetric models of the similarity type with just one unary modality. However, for certain classes
of models the situation appears to be much less straightforward. In particular, we soon run into trouble when
we consider classes of transitive models. The root of the problem lies in the fact that van Benthem’s result
is obtained using de Rijke’s characterization result as a crucial lemma, and the latter result makes use of the
socalled finite depth property. If we consider just a single unary modality, then the finite depth property says
that for every formula � there exists a natural number n such that we have (M, u) ✏ � iff (M �n

u, u) ✏ � for
any model (M, u). Here M �n

u is the submodel of M generated by the set of nodes v such that v is reachable
from u in at most n steps, i.e. there are w1, ..., wk such that

uRw1R . . . RwkRv

and k  n � 1. For transitive models, the finite depth property becomes rather trivial, and not very useful:
if (M, u) is a transitive model, then M �n

u= M �1u for any n � 1. Furthermore, while in general the model
(M �n

u, u) may differ radically from (M, u), if M is a transitive model it will always be the case that (M, u)
and (M �n

u, u) are bisimilar. Since the crucial step in van Benthem’s result is to show that compactness +
bisimulation invariance + relativization property implies the finite depth property, and then exploit this property
as in de Rijke’s proof, it seems we must look for some other property of ML to use for characterization results
that are general enough to include the class of transitive models.

My suggestion is to follow the approach taken by Otto and Piro in their characterization of ML8, modal
logic with the global modality. In their characterization, they use three different properties of ML8: bisim-
ulation invariance (in a modified sense), compactness and, instead of relativization, the socalled Tarski union
property. An abstract modal logic L has the Tarski union property if, for every countable sequence of models
(Mi)i2! such that Mi is an L-elementary submodel of Mi+1 – that is, for every u 2 Mi and every L-formula
� we have (Mi, u) ✏ � iff (Mi+1, u) ✏ � – it holds that

S
i2! Mi is an L-elementary extension of each Mi.

Here, the union of the models Mi is defined in the obvious manner.
Using this format we can easily get a characterization of ML over the class of transitive models, and it is

quite a natural solution to the problem: there is a certain analogy between the basic modal logic of transitive
models and the logic ML8 equipped with the global modality. In ML8, we are able to quantify over the entire
universe of a model. On the other hand, in a transitive model, the standard modality ⇤ allows quantification
over the set of all nodes that are finitely reachable from the point of evaluation u. While this doesn’t in general
amount to quantification over the entire universe, it does allow us to quantify over the part of the model that
matters, so to speak, since the restriction of the model M to the “domain of quantification” for ⇤ yields a
model bisimilar with (M, u).

In general, we get the following result:

Theorem 2. Let C be a class of models based on a class of frames definable by set of universal Horn clauses,
i.e. first order sentences of the form

8~x(↵1 ^ . . . ^ ↵n ! �)

where ↵1 . . .↵n and � are all atomic formulas. Then ML is the strongest abstract modal logic over C with
compactness, bisimulation invariance and the Tarski union property over C. In other words, if L is compact
over C, bisimulation invariant over C and has the Tarski union property over C, then L ⌘C ML.

Here, the property of “having the Tarski union property over C” means that, for any L-elementary chain
within C, the union of the chain is a model in C and is an L-elementary extension of every member of the
chain. Since the class of transitive frames is deinable by the universal Horn clause

8x8y8z(xRy ^ yRz ! xRz)

this result implies the aforementioned characterization of ML over transitive models. It also yields a charac-
terization for the class of symmetric models, which is definable by the Horn clause 8x8y(xRy ! yRx), a
characterization for the class of reflexive models which is definable by the Horn clause 8x(xRx), a charac-
terization for the class of euclidean models which is definable by 8x8y8z(xRy ^ xRz ! yRz), and many
others.
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Also, in a certain sense, we get Otto and Piro’s characterization of ML8 as a special case of this theorem.
Instead of viewing ML8 as an extension of modal logic with a single box operator, we can view it, alterna-
tively, as a restriction of the basic modal logic with two operators A,⇤ to a special class of models, namely
those satisfying the constraint

8x8y(xRAy)

where RA is the accessibility relation corresponding to the operator A. Within this class of models, the operator
A is indeed interpreted as a global modality. Furthermore, the condition defining the class is a universal Horn
clause (in which the set of conjuncts in the antecedent is empty), so it is covered by the general characterization
result. Since the property of bisimulation invariance relative to this restricted class of models amounts to
exactly the notion of bisimulation invariance used in Otto and Piro’s theorem, what we get is essentially the
same characterization result as theirs.

It is natural to ask whether the general Lindström theorem for Horn clause definable model classes can
be extended to any first-order elementary class. The answer to this question, it turns out, is no. Another
interesting question is whether the general characterization result holds if we replace the Tarski union property
with relativization; this question is left open. Other open problems include extensions of the characterization
result to classes of models given by frame conditions that are not definable by universal Horn clauses. One
particularly interesting example here is the class of models with the Church-Rosser property:

8x8y8z(xRy ^ xRz ! 9s(yRs ^ zRs))

The class of frames with the Church-Rosser property is not definable by a set of universal Horn clauses, so the
characterization theorem of ML over Horn clause definable frame classes does not cover this case. A natural
next step is therefore to look for more general characterization results, with more relaxed conditions on the
formulas used to define the relevant frame classes.
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Proof search for modal logic has been deeply investigated in the literature
(see e.g. [2, 4, 9] for a review). Here we consider the modal logic S4, semantically
characterized by finite Kripke models having a reflexive and transitive acces-
sibility relation [1]. These conditions are tricky to handle from a proof search
viewpoint. Standard sequent calculi for S4 are harmful from a proof search
viewpoint, since bottom-up application of the rules give rise to non-terminating
derivations. To overcome the problem, one has to implement some mechanism
to narrow the search space. A typical approach is loop-checking: whenever the
“same” sequent occurs twice along a branch of the proof under construction,
the search is cut (see, e.g., [5]). Other solutions exploit auxiliary tools to explic-
itly represent the accessibility relation inside the calculus, see for instance the
labelled calculi [4]. Recent developments are [7, 12], where modalities are anno-
tated by special indexes with the aim to block the application of a rule which
might cause non-termination.

We present a G3-style [14] sequent calculus GS4 for S4 such that all the
rules are decreasing and enjoy the subformula property. This means that, after
a backward application of a rule to a sequent �, the obtained sequents �0 are
smaller than � and the formulas of �0 are built-up using the formulas occurring
in �. Accordingly, the calculus is terminating and proof search is feasible in fi-
nite time. Following [6, 10], we work on sequents in Mints-like normal form [8].
The accessibility relation is implicitly represented by the rules of the calculus
(see the classification [4]); to capture the semantics of some formulas (in partic-
ular, formulas ⇤(E _ ⌃F )) we introduce two new modal connectives. Sequents
are decomposed by the rules until we get cluster sequents. A cluster sequent

�,�cl
clu) �cl is a special sequent where �cl and �cl only contain classical

formulas (namely, formulas not containing modal operators), while � contains
formulas ⇤A and ⇤⌃B, with A and B classical formulas. Reasoning on cluster
sequents can be accomplished within classical logic; we treat cluster sequents as
initial sequents and we exploit some external device (for instance, a SAT-solver)
to deal with them.

Beside GS4 we introduce a refutation sequent calculus RS4 strictly related to
GS4 and having the same nice properties (decreasing rules, subformula property).
A proof of � in RS4, we call it a refutation of �, can be viewed as a “constructive
proof” of the non-provability of � in S4. Refutations calculi for modal logics
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are known since the nineties, see for instance [3, 13]; however, these calculi have
non-decreasing rules, so they are not suited for proof search.

We present an algorithm that, given a sequent � (in normal form), outputs
either a proof of � in GS4 or a refutation of � in RS4. From a refutation ⇡ of a
sequent � = � ) �, we can build a model of �, namely an S4-model such that,
at some world w, all the formulas in � are true and all the formulas in � are
false. Let us call cluster model an S4-model Mclu only containing one cluster
(i.e., for every world w, w0 of Mclu, w is a successor of w0). If a cluster sequent
�clu is not provable, one can find out a cluster model Mclu of �clu. Now, suppose
to have a refutation ⇡ of a sequent �. By definition, the initial sequents of ⇡ are
non-provable cluster sequents. Let us take, for every initial sequent �clu of ⇡, a
cluster model Mclu of �clu; then, according to the structure of ⇡, we can “glue”
the given cluster models so to obtain a model M of �.

Our approach is strictly related to [6, 10], where formulas in Mints normal
form are used. Calculi in [6, 10] us slight di↵erent normal forms. In [6], com-
pleteness is proved by syntactical techniques and models construction is not
dealt with. The calculus [10] has some non-decreasing rules, and the related de-
cision algorithm, based on model generation, exploits loop-check. The idea of
combining proofs and refutations goes back to [11], where Intuitionistic Logic is
studied; refutations are used to build up Kripke models of non-valid formulas.
We aim to extend the techniques used for S4 to other modal logics defined by
transitive models.

We have developed a prototypical Prolog implementation; cluster sequents
are decided using logic2cnf, an extension of minisat SAT-solver. Additional
material is availble at http:://homes/dsi/unimi/it/~fiorentini/gs4.
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Abstract

Given a theory T and its category of models and homomorphisms ModT, is it
possible to recover T from ModT, up to some suitable notion of equivalence
of theories, and perhaps by equipping ModT with some additional structure?
A topological and topos theoretic approach to this question is presented with
respect to certain fragments of first order logic and classical first-order logic,
leading to a first-order syntax-semantics duality. A topological characterization
of the definable subclasses of a class of models is given as an application.

The question of recovering a theory from its models was given a positive and
elegant answer by Makkai in [6] for the case of regular theories. Given a (first-
order, possibly many-sorted) signature ⌃, we take a regular formula � to be one
constructed using only the connectives >, ^, and 9; a regular sequence � `x  
to be a sequence where both � and  are regular; and a regular theory to be a
deductively closed set of regular sequents. We can represent a regular theory T
by its syntactical category CT, the objects of which are regular formulas �(x).
With T regular, CT is a regular category with the property that the category
of T-models and homomorphisms in any regular category R is equivalent to
the category of regular functors from CT to R (naturally in R). In particular,
ModT ' Reg(CT,Set), where Set is the category of sets and functions. CT
embedds in the category of set-valued functors on ModT,

CT ,! [ModT,Set]

by sending a formula �(x) to the ‘definable set’ functor which takes a model
to the extension of the formula in that model, M 7! �(M). It is shown in
[6] that the image of this embedding is, up to e↵ective completion, the full
subcategory of functors that preserve (small) products and filtered colimits.
Thus a regular theory can be recovered (in the form of its syntactic category up
to e↵ective completion) from its models as the category of set-valued functors
on models that preserve products and filtered colimits. In addition, the results
and constructions of [6] serve to establish that the subcategory of filtered colimit
preserving functors FC(ModT,Set) is the so-called classifying topos Set[T] of
T. This topos can also be constructed ‘syntactically’ by taking sheaves on CT
(equipped with a certain Grothendieck coverage), Set[T] ' Sh(CT), from which
CT can be recovered as the stably supercompact objects (again up to e↵ective
completion). Thus Makkai’s construction yields a semantic representation of
this topos in addition to the previously known syntactical one (and an additional
characterization of CT in the semantic representation).
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As an alternative construction, it is possible to recover T from ModT by
equipping the latter category with topological structure. Using a ‘logical’ topol-
ogy (similar to certain topologies used in descriptive set theory, see e.g. the
expository [3]), it can be shown that being a filtered colimit preserving functor
from ModT to Set is the ‘same thing’ as being an equivariant sheaf of ModT
considered as a topological category. That is, there is an equivalence

FC(ModT,Set) ' ShHT(MT)

where MT is a (su�ciently large) space of T-models equipped with the logical
topology, HT is the space of homomorphisms between them, and ShHT(MT)
is the topos of sheaves on MT equipped with a continuous action of HT. Thus
ShHT(MT) is (another representation of) the classifying topos Set[T], from which
we can, then, recover CT.

Although this alternative construction is clearly somewhat redundant in the
regular case, the topological approach becomes more relevant when passing to
coherent logic, by allowing also the connectives ? and _. Considering coherent
theories also means considering classical first-order theories, in so far as any
classical first-order theory can be ‘Morleyized’ to obtain a coherent theory (over
a di↵erent signature) with the same models (and the same syntactic category,
see [4]). Coherent theories cannot in general be recovered from their categories
of models and homomorphisms by considering only structure intrinsic to those
categories. Thus it becomes necessary to equip ModT with some additional
structure. Makkai’s solution in this case is to use additional structure based on
ultra-products (see [5], [7]). However, the topological approach above extends
directly to this case, yielding an equivalence

Set[T] ' ShHT(MT) (1)

also for a coherent T, with the topological category of models defined as in the
regular case. Since CT can be recovered from Set[T] up to pretopos completion
as the stably compact objects in the coherent case (see [4]), this yields a way to
recover a coherent theory from its models and homomorphisms equipped with
topological structure.

Strictly speaking, in order to use the logical topology referred to above to
obtain (1), it is necessary to restrict to coherent theories in which inequality
is definable (a class which still includes all Morleyized first-order theories). As
shown in [1] (building on results in [2]), that restriction also makes it possible to
consider only isomorphisms between theories and represent the classifying topos
of such a theory as equivariant sheaves on the topological groupoid of T-models
and isomorphisms; i.e. there is an equivalence

Set[T] ' ShIT(MT) (2)

where IT ✓ HT is the subspace of isomorphisms. This semantic representation
of the classifying topos of a coherent theory can then be used to extend Stone
duality to first-order logic by constructing a duality between coherent theories
(with definable inequality) on one side and a category of ‘semantical’ topological
groupoids on the other.

The topological approach to the question of recovering a theory from its
models springs from the dual syntax-semantics (and algebra-geometry) aspects
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of Grothendieck toposes. A further illustration of these aspects and application
of the approach is given by considering the connection between subtoposes,
quotient theories, and subgroupoids. Given a theory T consider its classifying
topos with its syntactic and semantic representations

Sh(CT) ' Set[T] ' ShIT(MT)

as sheaves on the syntactic category CT and as equivariant sheaves on the topo-
logical groupoid (IT, MT) of models and isomorphisms, respectively. On the
groupoid side, subgroupoids of (IT, MT) can be identified with subsets of MT
closed under isomorphisms, and there is a Galois connection between such sets
and subtoposes of ShIT(MT). Moreover, the subsets arising from subtoposes can
be intrinsically characterized in terms of the topological groupoid. Combining
this with the well known correspondence between subtoposes of Sh(CT) and quo-
tient theories of T, this yields a topological characterization of those subsets of
T-models that are definable by quotient theories of T.
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Dependence Logic [17] is an extension of First Order Logic which adds to its language dependence atoms
of the form =(!t1,!t2), where !t1 and !t2 are tuples of terms1, with the intended interpretation of “the value of !t2
is a function of the value of !t1.” It is a first-order logic of imperfect information, like IF Logic [11, 10, 15] or
Branching Quantifier Logic [9]; but rather than adding new possible patterns of dependence or independence
between quantifiers, as these logics do, Dependence Logic isolates the notion of dependence away from the
one of quantification and permits the examination of patterns of dependence and independence between
variables or, more in general, between tuples of terms.

This different outlook makes Dependence Logic a most suitable framework for the formal study, in a
first-order setting, of functional dependence itself; and, furthermore, this logic is readily adaptable to the
analysis of other, non-functional notions of dependence or independence [8, 5, 6].

Like other logics of imperfect information, Dependence Logic admits both a Game Theoretic Semantics,
an imperfect information variant of the one for First Order Logic, and a Team Semantics, a compositional
semantics which is a natural adaptation of Hodges’ Trump Semantics [12]. One striking peculiarity of the
current state of the art of the research in Dependence Logic and its extensions is a willingness to take
Team Semantics – and not Game Theoretic Semantics, as for the case of much IF Logic research – as
the fundamental semantic framework; and this different approach is at the root of many recent technical
developments in the field, such as, for example, the characterizations of team class definability of [14], [13]
and [6], the hierarchy results of [3], and the study of notions of generalized quantification of [5] and [4].

I will give a detailed account of a doxastic interpretation for Team Semantics, according to which formulas
are to be interpreted as assertions about beliefs and belief updates. This is not a novel idea: as a matter of
fact, it is already implicit in the equivalence proof between Trump Semantics and Game Theoretic Semantics
of [12]. However, the consequences of this insight are far from fully explored: until now, doxastic concerns
have played very little role in the development of extensions of Dependence Logic, and the doxastic meanings
of known connectives have been left largely unexamined.

In this talk, I will gradually develop a formal system – in essence, a notational variant of Jouko Väänänen’s
Team Logic [18] – and show that many of the atoms, connectives and operators of Team Semantics arise
naturally from concerns about beliefs and belief updates.
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1 Introduction

Every class of linear order types A determines a class T (A) of those trees in which the order type
of every path belongs to A. Conversely, every class of trees B gives rise to a class L(B) of those
linear order types that occur as paths in the trees in B.

Besides T (A), several naturally arising classes of trees associated with any given class of linear
order types A are identified in [3, 1]. They are defined in terms of how the paths in these trees and
the first-order theories of these trees relate to the order types in A and to their first-order theories.

The general problem of the present study is the transfer of logical properties, including expres-
siveness, axiomatizations and decidability of logical theories, from classes of linear orders to the
respective classes of trees. Such study was initiated in [2] for the case of temporal logics, and in [1]
for the case of first-order logic. The main question studied in the latter paper is how to characterize
the first-order theory of a class of trees defined in terms of a class of linear order types A, by means
of the first-order theory of A. Some partial results on that were reported in [3, 1], of which the
work reported here is a continuation.

Particularly interesting is the case when A = {α}, where α is an ordinal with α < ωω, because
the first-order theories of these ordinals are well-known [4]. The class T ({α}) then consists of all
trees of which the paths are isomorphic to α. Explicit axiomatizations of the first-order theories of
T ({α}) and the other classes of trees associated with α is not generally known yet, although the
problem is solved in [3, 1] for some cases, including finite α and α = ω. Here we present a partial
solution to the problem for the case where α is a successor ordinal with ω < α < ωω.

2 Preliminaries: Trees and A-classes of trees

A tree is a partially ordered set T = (T ;<) such that for every x ∈ T the set {y ∈ T : y < x} is
totally ordered and for all x, y ∈ T , there exists z with z ∈ T such that z ! x, y. A maximal totally
ordered subset of a tree is called a path. A maximal node in a tree is called a leaf. The set of leaves
in a tree can be defined using the formula leaf(x) := ∀y (x ! y → x = y). Given a tree T = (T ;<)
and a node a in T, define a> = {x ∈ T : x < a}, C(a) = {x ∈ T : a $! x} and Ta =

(
C(a);<"C(a)

)
.

The relativization of a sentence σ to the formula θ(u, x) = u ! x is denoted as σ!x; hence with
T!a = {x ∈ T : x ! a}, we have that T |= σ!x(a/x) if and only if

(
T!a;<"T !a

)
|= σ. The rank of

a formula is the number of distinct variables which occur in the formula. The quantifier rank of a
formula is the number of distinct variables in the formula which are bound by a quantifier. Thus
the rank of a formula is the sum of its quantifier rank and the number of distinct freely occuring

1

40



variables in the formula. Two structures A and B are called n-equivalent, denoted A ≡n B, when
A and B satisfy the same sentences of quantifier rank up to n, and elementarily equivalent, denoted
A ≡ B, when A and B are n-equivalent for every natural number n. The notation A &n B indicates
that |A| ⊆ |B| (where |A| denotes the domain of A) and, for every formula ϕ(x0, x1, . . . , xk) of rank
n and for any elements a1, . . . , ak in |A|, if B |= ∃x0 ϕ(x0, a1/x1, . . . , ak/xk) then there is an element
a0 in |A| such that B |= ϕ(a0/x0, a1/x1, . . . , ak/xk). A & B indicates that A &n B for every natural
number n.

Let A be a class of linear order types and let T = (T ;<) be a tree. A path A in T is called an
α-path when (A;<"A) is isomorphic to α. The tree T is called

(i) an A-tree when every path in T is an α-path for some α ∈ A;

(ii) a uniformly A-like tree (U-A-like tree) when T ≡ S for some A-tree S;

(iii) an A-like tree if, for every n ∈ N, there is an A-tree S such that T ≡n S;

(iv) a pathwise uniformly A-like tree (PU-A-like tree) if, for every path X in T, there exists α ∈ A
such that (X;<"X) ≡ α;

(v) a pathwise A-like tree (P-A-like tree) if, for every path X in T and for every n ∈ N, there
exists α ∈ A such that (X;<"X) ≡n α;

(vi) a definably A-tree (D-A-tree) if every parametrically definable path X in T is an α-path for
some α ∈ A dependent on X;

(vii) a definably uniformly A-like tree (DU-A-like tree) if, for every parametrically definable path
X in T, there exists α ∈ A such that (X;<"X) ≡ α;

(viii) a definably A-like tree (D-A-like tree) if, for every parametrically definable path X in T and
for every n ∈ N, there exists α ∈ A such that (X;<"X) ≡n α.

The eight classes of trees defined by these conditions are called A-classes of trees. If A = {α}
then T is simply called an α-tree, a uniformly α-like tree, etc.

The set-theoretical relationships between the A-classes of trees, and between their first-order
theories, established in [3, 1], are summarized in Figures 1 and 2.
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Figure 1: Set-theoretical relationships be-
tween A-classes of trees. Inclusions X ⊆ Y
are denoted as X → Y . Non-inclusions are
indicated by ×.
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tween the first-order theories of A-classes of
trees. Inclusions X ⊆ Y are denoted as
X → Y . Non-inclusions are indicated by ×.
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3 The first-order theory of the class of α-trees for an ordinal α

For any ordinal α with α < ωω, let Φα denote a sentence which axiomatizes the first-order theory
of α, see [4].

A tree T = (T ;<) satisfies the cover property if, for every natural number n and for any two
paths A and B in T and any increasing sequences (ai)i∈ξ , cofinal in A, and (bi)i∈ξ, cofinal in B,
such that Tai ≡n Tbi for every i with i ∈ ξ, it follows that (T;A) ≡n (T;B).

We define the following axioms:

Ir : ∀x (x $< x) (irreflexivity)

Tr : ∀x∀y∀z (x < y ∧ y < z → x < z) (transitivity)

ST : ∀x∀y∀z (y < x ∧ z < x → (y < z ∨ y = z ∨ z < y)) (subtotalness)

Co : ∀x∀y∃z (z ! x ∧ z ! y) (connectedness)

Do : ∀x∃y (leaf(y) ∧ x ! y) (every node is dominated by a leaf)

LeΦα : ∀x
(
leaf(x) → Φ!x

α

)
(every path containing a leaf is elementarily equivalent to α)

Ter : ∀x∀y (leaf(x) ∧ ∀z (z < x ↔ z < y) → leaf(y)) (every sibling of a leaf must also be a leaf)

El : El is an axiom scheme consisting of the sentences

∀z̄
(
∀x (ϕ(x, z̄) → ∃y (x < y ∧ ϕ(y, z̄))) →

∃x
(
leaf(x) ∧ ∀y

(
y < x → ∃u (y < u < x ∧ ϕ(u, z̄))

)))

for every formula ϕ(x, z̄) (including formulas ϕ(x) for which the tuple z̄ is empty).

The scheme El states that for every infinite totally ordered chain of nodes satisfying the
formula ϕ, there is a leaf b (an Elder) and a sequence of nodes, cofinal in b>, which satisfy ϕ.

Let Tα = {Ir,Tr,ST,Co,Do,LeΦα ,Ter} ∪ El.

Theorem Let α be a successor ordinal with ω < α < ωω. Let T be a well-founded tree which
satisfies the cover property and is a model of the theory Tα. For every positive integer n there
exists an α-tree S such that T &n S.

We will discuss the consequences of this result for the first-order theories of T ({α}) and the
other classes of α-trees.
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The term “pluralistic ignorance” originates in social psychology (O’Gorman, 1986) and refers to

the phenomenon where “[. . . ] no one believes, but everyone believes that everyone else believes.”

(Krech and Crutchfield, 1948, p. 388–389). Put di↵erently, pluralistic ignorance is “[...] a social

comparison error where an individual holds an opinion, but mistakenly believes that others hold

the opposite opinion.” (Halbesleben and Buckley, 2004, p. 126). Or yet di↵erently, pluralistic

ignorance is “[. . . ] a state characterized by the belief that one’s private thoughts, feelings, and

behaviors are di↵erent from those of others, even though one’s public behavior is identical.” (Miller

and McFarland, 1991, p. 287).

Examples of pluralistic ignorance are plentiful in the literature. Classic examples includes

drinking among college student, attitudes towards racial segregation, the absence of questions in

a classroom full of students, and many more. Prentice and Miller (1993) found in a study of

college students at Princeton that most students believed that the average student was much more

comfortable with alcohol than they were themselves. Fields and Schuman (1976) conducted a

study, which showed that on issues of racial and civil liberties most people perceived others to

be more conservative than they actually were and O’Gorman and Garry (1976) found a tendency

among whites to overestimate white support for racial segregation. After presenting some di�cult

material to a class of students, a teacher might experience that none of the students ask any

questions even though none of the students understood the material and the teacher explicitly

request them to ask questions if they did not understand the material. (An extensive study of this

phenomenon was done by Miller and McFarland (1987).)

The three di↵erent characterizations of pluralistic ignorance mentioned above are just a few

of those found in the literature. While they all apply to the paradigmatic cases of pluralistic

ignorance, it seems plausible that there might be situations that would be classified as pluralistic

ignorance by some of the characterizations while not by others. Focusing merely on the epistemic

states of the involved agents supports this view as well. The di↵erent characterizations also di↵ers

in what epistemic states are ascribed to the involved individuals. Using an epistemic/doxastic logic

to formalize di↵erent notions of pluralistic ignorance can help clarify exactly what the di↵erences

are.

A logic suitable for formalizing the di↵erent notions of pluralistic ignorance is the epistemic/

doxastic logic based on plausibility models, such as the logic of Baltag and Smets (2008). In such

a logic, “Ba'” formalizes that agent a believes '. The notion of pluralistic ignorance expressed

by Krech and Crutchfield (1948) can then be formalized as
^

a2A

�
¬Ba' ^ Ba

� ^

b2A\{a}
Bb'

��
. (1)
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The notion of pluralistic ignorance endorsed by Halbesleben and Buckley (2004) focuses only on

the belief state of a single agent and can therefore be formalized in line with

¬Ba' ^ Ba

� ^

b2A\{a}
Bb'

�
. (2)

Ignoring for a moment, the exact placement of the negation, what exactly ' is, and taking “opin-

ion” to be the same as belief, the relation between these two formulas should be obvious – (1)

is simply the conjunction of all the agents being in a belief state as described by (2). Now the

notion of pluralistic ignorance advocated by Miller and McFarland (1991) is actually a little more

involved, since it makes reference to behavior. As claimed by Bjerring et al. (2012) how agents

involved in pluralistic ignorance act is important to the phenomenon. Adding an action expres-

sion [a ActAs '] for every agent a expressing that “a act as if '” allows us formalize Miller and

McFarland (1991)’s notion of pluralistic ignorance as

^

a2A

�
¬Ba' ^ [a ActAs '] ^ Ba

� ^

b2A\{a}
Bb'

��
. (3)

However, how exactly to define the semantic of [a ActAs '] is not obvious.

In addition, there might be more one can say about the epistemic states of agents involved in

pluralistic ignorance, depending on how the phenomenon arose. For instance, Halbesleben et al.

(2007) mention minority influence as one possible cause of pluralistic ignorance. It is the case

when a minority of a group is believed by everybody to express the majority view. If a minority

believes ', but the entire group believes that this minority expresses the majority view of the group

it might lead to the agents forming wrong belief about what the majority of the group believes

– everyone might come to believe that everyone else believes '. The result might be a case of

pluralistic ignorance in line with (1). However, there is an additional belief among the group,

namely that there is a dependency between the agents’ beliefs; whatever the minority believes is

believed by the entire group. Taking the minority to be B ✓ A, one can formalize a situation of

this kind as ^

a2A

⇣
¬Ba' ^ Ba

�^

b2B

Bb' $
^

b2A\{a}
Bb'

�
^

^

b2B

Bb'
⌘
. (4)

Another cause for pluralistic ignorance is the fact that agents involved in the phenomenon has a

tendency to believe that everyone else is di↵erent from themselves, and based on this belief, agents

form the belief that everyone else believes something di↵erent than they do themselves. Again,

this might be interpreted as every agent believes that everyone else’s beliefs are dependent, that

is, every agent a believes that

Bb1' $ Bb2' $ . . . $ Bbn' , where A \ {a} = {b1, b2, . . . , bn}. (5)

Pluralistic ignorance can have several bad consequences and thus, it is of importance to inves-

tigate how the phenomenon can be avoided or dissolved. Depending on what kinds of epistemic

states the agents involved in pluralistic ignorance are in, di↵erent measures need to be taken to

dissolve the phenomenon. Therefore, the additional information about the agents’ belief states

based on what have caused the phenomenon, can be quite important. For instance, if pluralistic

ignorance has arisen due to minority influence and one can pick out the minority, then changing

the apparent belief of the minority might dissolve pluralistic ignorance. If pluralistic ignorance has

arisen because everyone thinks they are di↵erent from everyone else, then informing the agents
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that at least one other agent is like them might dissolve the phenomenon. On the other hand,

if nothing more is known about the agents’ belief states, other than they satisfy (1), then the

pluralistic ignorance can be extremely robust and not easy to dissolve (Hansen, 2012).

Modeling pluralistic ignorance using epistemic logic can give us many insights into the dif-

ferences between the di↵erent notions of pluralistic ignorance by focusing on the involved agents’

epistemic states. Furthermore, these di↵erences can be quite important for what it takes to dissolve

the phenomenon, which again can be clarified by a modeling in epistemic logic.
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Weak Models of Distributed Computing
and Modal Logic

Lauri Hella
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This presentation is based on the joint paper [3] with Matti Järvisalo, Antti Kuusisto,
Juhana Laurinharju, Tuomo Lempiäinen, Kerkko Luosto, Jukka Suomela, and Jonni
Virtema, that is published in Proceedings of PODC 2012.

Distributed Algorithms

We present a classification of weak models of distributed computing that are obtained by
natural restrictions on the widely-studied port-numbering model. A distributed algorithm
is best understood as a state machine A. In a distributed system, each node of an input
graph G = (V, E) is a copy of the same machine A. Computation proceeds in synchronous
steps. In each step, each machine

(1) sends messages to its neighbours,
(2) receives messages from its neighbours, and
(3) updates its state based on the messages that it received.

If the new state on node v 2 V is a stopping state sv, the machine halts. If the machine
halts on all nodes of G, the output of the algorithm is the function S : V ! Y defined by
S(v) = sv, where Y is the set of stopping states of A.

In the port-numbering model, the input ports and output ports of each node of degree
d are numbered with 1, 2, . . . , d. These numbers are given by a port numbering p of the
input graph G. A port numbering is consistent, if the input port and the output port with
same number is always connected to the same neighbour. The output of an algorithm may
depend on the port numbering.

A graph problem is a function ⇧ that associates with each undirected graph G = (V, E)
a set ⇧(G) of solutions. Each solution S 2 ⇧(G) is a mapping S : V ! Y , where Y is a
finite set. Let T be a function N ! N. We say that algorithm A solves ⇧ in time T if the
following hold for any graph G, and any port numbering p of G:

(a) Algorithm A stops in time T (|V |) in (G, p).
(b) The output of A is in ⇧(G).

Let F(�) be the class of all graphs G = (V, E) such that deg(v)  � for all v 2 V . We
say that A solves ⇧ in time T on F(�), if the conditions above hold for all G 2 F(�).

Let VVc be the class of all graph problems that can be solved in the port-numbering
model assuming consistency. We define the following subclasses of VVc:

VV: Input port i and output port i are not necessarily connected to the same neighbour.
MV: Input ports are not numbered; algorithms receive a multiset of messages.
SV: Input ports are not numbered; algorithms receive a set of messages.
VB: Output ports are not numbered; algorithms send the same message to all output

ports.
MB: Combination of MV and VB.
SB: Combination of SV and VB.

Furthermore, we let VVc(1), VV(1), MV(1), SV(1), VB(1), MB(1) and SB(1) be the
constant-time versions of these classes.
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Capturing Constant Time Classes by Modal Logics

Each of the constant time classes defined above can be characterized by a corresponding
version of modal logic, in the spirit of descriptive complexity theory. The modal logics used
in the characterization are basic modal logic ML, graded modal logic GML, multimodal
logic MML, and graded multimodal logic GMML (see [1], [2]).

There is a natural correspondence between the distributed algorithms in the port
numbering model and the logics ML, GML, MML, and GMML. For any input graph
G and port numbering p of G, the pair (G, p) can be transformed into a Kripke model
K (G, p) = (W, (R↵)↵2I , ⌧) in a canonical way. Given a local algorithm A, its execution
can then be simulated by a modal formula '. The crucial idea is that the truth condition
for a diamond formula h↵i is interpreted as communication between the nodes:

K , v |= h↵i () v receives the message “ is true”from some u s.t. (v, u) 2 R↵.

Conversely, given a modal formula ', the evaluation of its truth in the Kripke model
K (G, p) can done by a local algorithm A.

There are in fact four di↵erent versions of K (G, p), reflecting the fact that algorithms
in the lower classes do not use all the information encoded in the port numbering. Let
G = (V, E) 2 F(�), and let p be a port numbering of G. The accessibility relations used
in K1(G, p) are the following:

R(i,j) = {(u, v) 2 V ⇥ V : p maps output port j of v to port i of u)} for 1  i, j  �.

The accessibility relations in K2(G, p) and K3(G, p) are:

R(i,⇤) =
[

j2[�]

R(i,j) and R(⇤,i) =
[

j2[�]

R(j,i) for each 1  i  �.

Finally, K4(G, p) has only one accessibility relation R(⇤,⇤) =
S

1i,j� R(i,j).
For each i 2 {1, 2, 3, 4} and G 2 F(�), we denote the class of all Kripke models of

the form Ki(G, p) by Ki(�). Furthermore, we denote by K0(�) the subclass of K1(�)
consisting of the models K1(G, p), where p is a consistent port numbering of G.

Let i 2 {1, 2, 3, 4}, and let  be a modal formula. Then  defines a solution for a graph
problem ⇧ on the class Ki(�) if

– for all G 2 F(�), and all port numberings p of G, the subset k kKi(G,p) defined by
the formula  in the model Ki(G, p) is in set ⇧(G).

Furthermore,  defines a solution for ⇧ on the class K0(�), if the condition above with
i = 1 holds for all consistent port numberings p. Note that any modal formula  gives rise
to a canonical graph problem ⇧ that it solves: for each G 2 F(�), the solution set ⇧ (G)
consists of the sets k kKi(G,p) where p ranges over the (consistent) port numberings of G.

Let L be a modal logic, let i  4, and let C be a class of graph problems. We say that
L captures C on Ki(�) if the following two conditions hold:

– If  is an L-formula in the vocabulary of Ki(�), then ⇧ 2 C.

– For every graph problem ⇧ 2 C there is an L-formula  in the vocabulary of Ki(�),
which defines a solution for ⇧ on Ki(�).

Furthermore, we say that L captures C on Ki, if it captures C on Ki(�) for all � 2 N.

Theorem.
(a) MML captures VVc(1) on K0. (b) MML captures VV(1) on K1.
(c) GMML captures MV(1) on K2. (d) MML captures SV(1) on K2.
(e) MML captures VB(1) on K3. (f) GML captures MB(1) on K4.
(g) ML captures SB(1) on K4.
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Containments between the Classes

There are many trivial containment relations, such as SB ✓ MB ✓ VB ✓ VV ✓ VVc, but
it is not obvious if, e.g., either of VB ✓ SV or SV ✓ VB should hold. Nevertheless, it
turns out that we can identify a linear order on these classes. Indeed, we prove that
SB ( MB = VB ( SV = MV = VV ( VVc. The same holds for the constant-time versions
of these classes.

All the three separations between the classes can be proved by using the correspondence
to modal logics. More precisely, we use bisimulations to show that a suitable graph problem
is not definable in the modal logic corresponding to the weaker class, while it is easily seen
to be in the stronger class.

VVc

VV

MV

SV

VB

MB

SB

VVc

VV

MV

SV

VB

MB

SB

=

=

=

≠

≠

≠

(a) (b)

Figure 1: Classes of graph problems. (a) Trivial subset relations between the classes. (b) The
linear order identified in this work.
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Dynamic Condition Response Graphs - A Dynamic
Temporal Logic for Event-based Processes
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The Dynamic Condition Response Graphs (DCR Graphs) [4, 6] process logic has
been developed in the Trustworthy Pervasive Healthcare Services (TrustCare) [1] re-
search project as a declarative formal foundation for event-based, adaptable and flexi-
ble pervasive workflow processes and services. The DCR Graphs model is inspired by
our industrial partner’s declarative workflow model [5, 8] and generalizes the classical
labelled event structure model [12] to a so-called systems model, allowing for finite de-
scriptions of infinite behavior and to distinguish between may (i.e. possible) and must
(i.e. required) behavior.

A DCR Graph as defined in [4] is a directed graph described by an 8-tuple (E, M,!•
, •!,!+,!%, L, l). The nodes of the graph are given by the set E of events, labelled
by the labeling function l : E ! L. The linear time semantics of a DCR Graph is a
subset of finite and infinite sequences of events satisfying the constraints defined by the
edges of the graph. The edges are given by four relations between events: The condi-
tion (!•), response (•!), include (!+), and exclude (!%) relation respectively. A
key new ingredient of DCR Graphs is that the semantics is defined relative to a marking
M, defined as a triple of three sets of events (Ex, Re, In). The set Ex ✓ E is the events
that have happened in the past. The set Re ✓ E are events that are required to happen
or be excluded (as explained next) in the future in order for a sequence to be accepting.
Finally, the set In ✓ E is the set of (currently) included events.

The formal definition of DCR Graphs and their semantics are given in Def. 1 below.
We employ the following notation. For a set E we write P(E) for the power set of
E (i.e. set of all subsets of E), E⇤ for the set of all finite sequences of elements of
E, ! for the set of all infinite sequences of elements of E and E1 = E⇤ [ E! . We
write ✏ the empty sequence. For a binary relation !✓ E ⇥ E and a subset ⇠ ✓ E
of E we write ! ⇠ and ⇠ ! for the set {e 2 E | (9e0 2 ⇠ | e ! e0)} and the set
{e 2 E | (9e0 2 ⇠ | e0 ! e)} respectively, and abuse notation writing !e and e! for
!{e} and !{e} respectively when e 2 E.

Definition 1. A Dynamic Condition Response Graph (DCR Graph) G is a tuple (E, M,!•
, •!,!+,!%, L, l), where

(i) E is a set of events (or activities),
(ii) M = (ExG, ReG, InG) 2 P(E) ⇥ P(E) ⇥ P(E) is the marking

(iii) !•, •!,!+,!%✓ E ⇥ E is the condition, response, include and exclude rela-
tion respectively.

? This research is supported by the Danish Research Agency through the Trustworthy Pervasive
Healthcare Services project (grant #2106-07-0019, www.trustcare.eu)
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(iv) L is the set of labels and l : E ! L is a labeling function mapping events to a
label.

We define that an event e 2 E is enabled, written G ` e, if e 2 InG ^ (InG\ !•e
) ✓ ExG. We define the result on the (marking) of the graph G if an event e happen as
G�e =def

�
E, M0,!•, •!,!+,!%, L, l

�
, where M0 =

�
Ex[{e}, (Re\{e})[e•!

, (InG\e!% [e!+
�
. This is extended inductively to finite sequences � 2 E⇤ of events

by G � � = (G � e) � �0, if � = e�0 G � ✏ = G.

An event e 2 E can happen (is enabled) if it is included (e 2 InG) and all its in-
cluded conditions have happened in the past (InG\ !•e✓ ExG). The set of included
events changes dynamically according to the include and exclude relations of the DCR
Graph, which generalizes the (binary, symmetric and irreflexive) conflict relation of
event structures. If an event happens it results in a new marking of the graph, where the
included set is given by InG \ e!% [e!+, that is, the events excluded by e are first
removed from In and then the events included by e are added. The set ExG of events that
have happened in the past is simply extended with e. The set ReG of events required to
happen in the future (or be excluded) is updated by first removing the event e that just
happened, and then adding all response events for e, i.e. events required to happen in
the future whenever e happens.

The definition of when an event is enabled and the result of executing it is used to
define the set of sequences accepted by a DCR Graph G below. The first condition states
that any intermediate event must be enabled in the graph resulting from executing the
sequence of events leading to that event. The second condition captures the response
constraint and states that any intermediate, included response event must eventually
happen or be excluded.

Definition 2. We define a (finite or infinite) sequence � 2 E1 of events to be accepted
by G, written � |= G, if

1. � = �0e�00 implies G � �0 ` e and
2. � = �0�00 for �0 2 E⇤ and G0 = G��0 implies 8e 2 ReG0 \ InG0 .9�000 2 E⇤.�00 =

�000e0�0000 ^ (e0 = e _ e 62 InG0��000e0).

We refer to the set of (finite and infinite) sequences of labels that label sequences of
events accepted by G to as the language of G.

It is shown in [7] that the language of a DCR Graph can be characterized by a Büchi
automaton over L[{⌧}. Conversely, it is shown in [6] that any Büchi-automaton can be
encoded as a DCR Graph accepting the same language. Thus, the linear time semantics
of DCR Graphs characterizes exactly the !-regular languages and thus in particular all
processes that can be specified in Linear-time Temporal Logic (LTL).

Note that the definition of enabledness and execution also shows how a DCR Graph
can be used as an execution model, which is exploited by our industrial partners using
variants of DCR Graphs as both specification and execution models for workflow and
case management systems. Basically, every enabled event is offered as a possible next
activity of the workflow process, while every included response event is indicated as
an event that must be carried at some point in the future. This provides a much more
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direct correspondence between the DCR Graph as specification and its execution than
approaches based on LTL as specification language and an automata representation of
LTL as operational semantics [9–11].

In the talk we will present the DCR Graph model, its relation to event structures,
LTL and Büchi-automata, and its applications as described in [6], in particular tech-
niques for distribution by projections [2, 3] and extensions with timed constraints and
partial order semantics. The work is carried out jointly with Raghava Rao Mukkamala
and Tijs Slaats.
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Metric model theory studies structures consisting basically of a metric
space as domain and continuous functions on it. When studying these one
is often interested in mappings between the structures that are not genuine
isomorphisms but are allowed to make small errors on part of the vocabulary.
Examples include linear isomorhpisms of Banach spaces or approximations of
operators on Hilbert spaces. These can be considered a form of generalized
isomorphisms, as we would like to give them the role of isomorphisms in
classical model theory.

An essential gain from generalizing the concept of isomorphism is that
this improves the degree of stability of the class under consideration. Classes
that are non-superstable may become ω-stable when small changes are al-
lowed. Ben Yaacov first created a formalism for these changes when he
introduced his notion of perturbation systems in [BY08]. To better be able
to use this improvement in stability, Hyttinen and I [HH12] introduced an
abstract framework allowing for the built-in treatment of perturbations. The
framework is syntax-free, based on Shelah’s abstract elementary classes, and
generalizes earlier approaches to metric model theory. The generalized iso-
morphisms appear as classes of ε-isomorphisms specifying how the structures
may be perturbed. In this setting we have built splitting theory and con-
structible models with respect to the generalized isomorphisms, giving rise
to a nicely-behaved independence notion and a dominance theorem.

In the talk I will illustrate by examples what generalized isomorphisms
are and what properties are needed of them in our constructions. I will also
illustrate the main techniques used so far and shed some light on further
directions and challenges.

The talk is based on joint work with Tapani Hyttinen.
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Introduction. We present a short overview of the Theorema system and of
our research concerning the verification of programs and of proof–based algo-
rithm synthesis.

Theorema aims at supporting the logic and computational activities involved
in algorithm design, including modelling, proving, and implementing. In this
framework we study the theory of programming: On one hand we design veri-
fication condition generators for algorithms expressed as programs, and on the
other hand we develop principles and proving techniques for algorithm synthesis.

The syntax of programs is based on the logical syntax of the underlying
theory of the objects manipulated by the program. Their semantics is defined
by translation into predicate logic. The verification conditions are generated
through path sensitive symbolic execution, and the termination condition is ex-
pressed as an induction principle. We show that for programs obeying safety
verification conditions, the functional verification conditions are necessary and
su�cient for partial correctness. Furthermore we show that together with the
termination condition they ensure the logico–mathematical existence of the func-
tion implemented by the program.

For algorithm synthesis, we first prove the existence of the value of the de-
sired function, and from it we extract the terms which are necessary for the
construction of the algorithm. We synthesize several sorting algorithms by using
various induction principles and some novel proof techniques developed for the
domain of lists.

Theorema. The Theorema system (www.theorema.org) aims at supporting
all phases of the algorithmic problem solving cycle: developing mathematical
models, proving conjectures, implementing algorithms and experimenting with
computations. The system is based on the computer algebra system Mathemat-
ica, from which it makes extensive use of the rewrite–based programming style,
as well as of some of the library functions for symbolic and numeric computing.

The main characteristics of the system are: input and output of mathematical
formulae in natural (two dimensional) notation, natural style proving (similar to
human style) and the use of the same language framework (predicate logic) both
for constructing mathematical theories as well as for constructing algorithms.

The Theorema system started as a collection of provers for propositional and
for predicate logic [3] and then it was enhanced with various domain specific
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provers [2] and with a computation environment which completes its theory
exploration capabilities [1]. Over the years various specific domains have been
investigated by constructing their theories and by developing special proving
methods for them [8]. A special flavour of the system is the combination of
logical methods with techniques from computer algebra [12] and from algebraic
combinatorics [9].

Program Analysis. We approach the analysis of algorithms expressed as
programs using a specific logical foundation. As a starting principle, we assume
that the terms and the formulae occurring in programs are composed using the
signature of an object theory – the theory of the objects manipulated by the
programs.

Functional programs are assimilated with conjunctions of (conditional) equal-
ities, thus they constitute just logical formulae. Therefore a definition of program
semantics is not necessary, because it is just the semantics of predicate logic.
Every program consists in a function definition and it must be associated to a
specification (input and output conditions). We require that each program is
”coherent”: the arguments of each function call must satisfy the input condition
of that function. (This is also called ”safety” by other researchers.) For coherent
programs we show that the functional correctness conditions are necessary and
su�cient for partial correctness [10,11].

Moreover we generate a necessary and su�cient termination condition in
form of an induction principle. Using this approach we can prove that the total
correctness ensures the existence and the uniqueness of the function implemented
by the program. Thus mathematical logical correctness of function definitions
is equivalent to computational program correctness [6]. This proof is now com-
pletely formalized in Theorema, and it constitutes a very interesting exercise in
the investigation of the logical foundations of program verification. Namely, by
formalizing this proof in an automated reasoning system, one can detect what
is the minimal set of axioms and of inference rules which are necessary in order
to construct a su�ciently expressive theory of programs.

Imperative programs are expressed as meta-terms using only few constructs
for statement sequences and for elementary statements (assignments, condition-
als, return, and optionally loops). Also here we keep the previously mentioned
approach of using formulae and terms from the object theory in the program
text. The semantics is defined by translation into functional programs using
path sensitive symbolic execution [7], thus the analysis of imperative programs
reduces to the analysis of functional programs.

Algorithm Synthesis. Even more challenging is the problem of synthesizing
programs starting from their specification. We approach this problem in a proof-
based manner: using various induction principles, one proves the existence of
the output value of the specified function, and from this proof one extracts the
algorithm. The most di�cult part is the construction of the proof. We illustrate
various proof techniques for the theory of tuples (lists) which can be used for the
synthesis of sorting algorithms [4]. These techniques include: Prolog style back-
chaining, normal forms with respect to the relation of equivalence on tuples (a
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tuple is the permutation of another), and decomposition of atoms expressing
inequalities over elements and tuples. Finally we construct a systematic method
for finding a sorted list equivalent to a given list expression. A key ingredient
of our synthesis method is the cascading of inductive proofs: when an inductive
case of a proof does not succeed in first order logic because the absence of a
required function, then this function is synthesized again by another inductive
proof. The new function has the same output specification as the old one, but
the input specification is more complex, and thus the proof will be easier. For
instance, in the case of the synthesis of the merge-sort algorithm, few steps of
cascading will reduce the problem to the elementary functions on lists (head, tail
and the lisp-like cons) [5].
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Paraconsistent Computational Logic

Andreas Schmidt Jensen and Jørgen Villadsen
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Abstract. In classical logic everything follows from inconsistency and this makes classical logic
problematic in areas of computer science where contradictions seem unavoidable. We describe a
many-valued paraconsistent logic, discuss the truth tables and include a small case study.

1 Introduction — Motivation and Definitions

Often consistency cannot be assumed and a paraconsistent logic seems needed, in particular for applica-
tions of logic in computer science and artificial intelligence [1, 2]. We consider the propositional fragment
of a higher-order paraconsistent logic [4, 5]. We have the two classical determinate truth values � = {•, �}
for truth and falsity and a countably infinite set of indeterminate truth values r = {p, pp, ppp, . . .}. The only
designated truth value • yields the logical truths. The indeterminate truth values are not at all ordered
with respect to truth content. The logic is a generalization of  Lukasiewicz’s three-valued logic (originally
proposed 1920–30), with the intermediate value duplicated many times and ordered such that none of the
copies of this value imply other ones, but it di↵ers from  Lukasiewicz’s many-valued logics as well as from
logics based on bilattices [3]. The motivation for the logical operators is based on key equalities shown to
the right of the semantic clauses (we also have ', ¬¬'):

[[¬']] =

8
<
:

• if [[']] = � > , ¬?
� if [[']] = • ? , ¬>
[[']] otherwise

[[' ^  ]] =

8
>><
>>:

[[']] if [[']] = [[ ]] ' , ' ^ '
[[ ]] if [[']] = •  , >^  
[[']] if [[ ]] = • ' , ' ^ >
� otherwise

The basic semantic clause and the clause [[>]] = • are omitted. In the semantic clauses several cases may
apply if and only if they agree on the result. Note that the semantic clauses work for classical logic too.

Abbreviations:
? ⌘ ¬> ' _  ⌘ ¬(¬' ^ ¬ )

We continue with biimplication (and we then simply obtain implication and modality as abbreviations).
The semantic clauses extend the clauses for equality = which always give a determinate truth value:

[[',  ]] =

⇢
• if [[']] = [[ ]]
� otherwise

[['$  ]] =

8
>>>>>><
>>>>>>:

• if [[']] = [[ ]] > , '$ '
[[ ]] if [[']] = •  , > $  
[[']] if [[ ]] = • ' , '$ >
[[¬ ]] if [[']] = � ¬ , ? $  
[[¬']] if [[ ]] = � ¬' , '$ ?
� otherwise

Abbreviations:

')  ⌘ ' , ' ^  '!  ⌘ ' $ ' ^  2' ⌘ ' = > ⇠' ⌘ ¬2'
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2 Discussion of Truth Tables

Although we have a countably infinite set of truth value we can investigate the logic by truth tables since
the indeterminate truth values are not ordered with respect to truth content.

^ • � p pp
• • � p pp
� � � � �
p p � p �
pp pp � � pp

_ • � p pp
• • • • •
� • � p pp
p • p p •
pp • pp • pp

¬
• �
� •
p p
pp pp

, • � p pp
• • � � �
� � • � �
p � � • �
pp � � � •

) • � p pp
• • � � �
� • • • •
p • � • �
pp • � � •

2

• •
� �
p �
pp �

$ • � p pp
• • � p pp
� � • p pp
p p p • �
pp pp pp � •

! • � p pp
• • � p pp
� • • • •
p • p • p
pp • pp pp •

⇠
• �
� •
p •
pp •

The required number of indeterminacies corresponds to the number of propositions in a given formula.
This also means that the logic is weakened when additional indeterminate truth values are added.

Given an atomic formula, it is clear that r = {p} su�ces. To see this we use the fact that there exist
no ordering between indeterminate truth values. If [[P ]] = pp and we replace the truth value with p then
the truth value is still indeterminate. Now consider the tautology P ! Q $ ¬Q ! ¬P (contraposition).
Using a single indeterminacy yields no di↵erence; the formula still holds. When using two indeterminacies
we can give a counter-example:

P ! Q $ ¬ Q ! ¬ P

p p pp � pp pp pp p p

We could require r = {p, pp, ppp}, but the third indeterminacy is not needed since we already have one
unique indeterminacy for each proposition.

As an example for three propositions, we can consider the formula ¬(Q ! P ) ! (¬(¬R _ (R ! Q)) !
(P ! Q)). It is a tautology when r = ; (classical propositional logic), r = {p} and r = {p, pp}. When
r = {p, pp, ppp} it is no longer a tautology:

¬ ( Q ! P ) ! ( ¬ ( ¬ R _ ( R ! Q ) ) ! ( P ! Q ) )

p p p pp p ppp ppp ppp ppp ppp ppp p ppp pp pp p

3 Case Study

Paraconsistent logics are useful in areas where inconsistency is an acceptable feature of the systems
involved. One such area is multi-agent systems since the belief base of an agent very well could contain
contradictory beliefs and thus be inconsistent. Consider an agent with a set of beliefs (item 0) and rules:

0. P ^ Q ^ ¬R
1. P ^ Q ! R
2. R ! S
3. ¬S ! ¬R
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We can deduce R using classical logic. This leaves the agent with contradictory beliefs, namely R and ¬R.
This entails everything, so the agent might start behaving in an undesirable way. It could now believe
that ¬P , or ¬Q – or even ' for any formula '.

In our paraconsistent logic this is not the case. The following is not a tautology (the truth value of the
main connective is p):

( P ^ Q ^ ¬ R ) ^ ( P ^ Q ! R ) ! R

• p p p • � p • p p p � p �

Note that while rule 2 and 3 are classically equivalent (contraposition), it is not the case in our para-
consistent logic. This means that even if R follows, this does not necessarily mean that S follows as
well.

We do however need some kind of modus ponens in order for the agent to be able to reason. We therefore
require that rules are not allowed to be inconsistent and use the necessity operator to ensure either truth
or falsity. This makes sense; after all, the agent requires absolute knowledge about whether its rules are
applicable or not.

( P ^ Q ^ ¬ R ) ^ 2 ( P ^ Q ! R ) ) R

• p p p • � � � • p p p � • �

Note that applying the necessity operator on rules does not make the agent classical. ¬P and ¬Q still
does not follow. We let ⇤

XYZ
P mean that P follows from the agents rules X, Y and Z.

(P ^ Q ^ ¬R) ^ 2(P ^ Q ! R) ) R ⌘ ⇤
01

R

The agent can then conclude the following from its beliefs and rules:

6⇤012 ¬P 6⇤012 ¬Q 6⇤012 ¬S

⇤
012

R ⇤
012

¬R ⇤
012

S

We observe that the same follows when using rules 1 and 3, since the implication becomes classical when
necessity is applied; 2(R ! S) ⌘ 2(¬S ! ¬R). Note that using ) instead of 2 and ! would yield the
same result.

This result di↵ers from classical logic, where all the above propositions would follow from the rules and
beliefs. The paraconsistent logic allows the agent to reason using inconsistent beliefs without entailing
everything.

4 Conclusions

We have presented a paraconsistent logic defined using semantic clauses and motivated by key equalities.
Although infinite-valued only a finite number of truth values must be considered for a given formula.

A small case study has been described and we have recently also investigated applications in logical
semantics of natural language using a higher order logic extension with only propositional types [6].
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In his 1946 Princeton Bicentennial Lecture Goedel suggested the
problem of finding a notion of definability for set theory which is
“formalism free” in a sense similar to the notion of computable
function—a notion which is very robust with respect to the vari-
ous formalisms associated with it. One way to interpret this sug-
gestion is to consider standard notions of definability in set theory,
which are usually built over first order logic, and change the under-
lying logic. We show that constructibility (in the sense of Gödel’s
L) is not very sensitive to the underlying logic, and the same goes
for hereditary ordinal definability (or HOD). We suggest that under
an extensional notion of meaning for set theoretic discourse, Quine’s
Dictum “change the logic change the meaning” is only partially true.
This is joint work with Menachem Magidor and Jouko Väänänen.

1

62



'
' n n

P
L L

P L
n
[n] = {1, . . . , n}

Kn [n]
' Kn '

n K =
S1

n=1 Kn

n Kn

[n] ' Kn '
n ! 1 K =

S1
n=1 Kn

Kn

Kn

Kn

P
[n] P KP

n

KP =
S1

n=1 KP
n |KP

n |
n ! 1

H G G H
H

l � 2 H l + 1 (l + 1) P
H KP

d P d
d KP

P d
d H

H K1,s1,...,sl
l � 2 1  s1  . . .  sl K1,s1,...,sl

l + 1

H1 H2

H1 H2 H1 H2

l + 1

63



1, s1, . . . , sl

s1 = . . . = sl = 1
K1,s1,...,sl

l + 1
l � 2 1  s1  . . .  sl

K1,s1,...,sl
[n]

n ! 1
(⇤) l

s1 � 1 W
W

s1 � 1

K1,s1,...,sl

d � 0 d
(⇤)

d � 0 Gn,d G
[n] = {1, . . . , n} G d

' G 2 Gn,d ' n ! 1
d � 2

Gn,d n d � 2
d� 2

l � 2 d � 0 Pn(l, d) G
[n] [n] l G
d

l � 2 d � 0 '
G 2 Pn(l, d) ' n ! 1 d  1

H Fn(H) H [n]

l � 2 1  s1  . . .  sl

' G 2 Fn(K1,s1,...,sl
) ' n ! 1

s1  2

d � 5

d

P
L

P
'k

k 2 N {'k : k 2 N}
{'k : k 2 N}

P

64



Kl+1

l

65



Undecidable First-Order Theories

of A�ne Geometries

Antti Kuusisto⇤, Jeremy Meyers†, Jonni Virtema⇤

May 30, 2012

1 Introduction

Tarski initiated a logic-based approach to formal geometry that studies first-order structures with a ternary betweenness
relation (�) and a quaternary equidistance relation (⌘). Tarski established, inter alia, that the first-order (FO) theory
of (R2,�,⌘) is decidable. For further information on the development of Tarski’s geometry, see [11]. Aiello and van
Benthem conjectured in [1] that the FO-theory of the class of expansions of (R2,�) by unary predicates is decidable.
We refute this conjecture by showing that for all n � 2, the FO-theory of the class of monadic expansions of (Rn,�)
is ⇧1

1-hard and therefore not even arithmetical. We also define a natural and comprehensive class C of geometric
structures (T,�), where T ✓ Rn, and show that the for each structure (T,�) 2 C, the FO-theory of the class of
monadic expansions of (T,�) is undecidable. We then consider classes of expansions of structures (T,�) with restricted
unary predicates, for example finite predicates, and establish a variety of related undecidability results. In addition to
decidability questions, we briefly study the expressivity of universal MSO and weak universal MSO over expansions
of (Rn,�). While the logics are incomparable in general, over expansions of (Rn,�), formulae of weak universal MSO
translate into equivalent formulae of universal MSO.

Our results could turn out intresting in investigations concerning logical aspects of spatial databases. It turns out
that there is a canonical correspondence between (R2,�) and (R, 0, 1, ·, +, <), see [7]. See the survey [9] for further
details on logical aspects of spatial databases.

The betweenness predicate is also studied in spatial logic [3]. The recent years have witnessed a significant
increase in the research on spatially motivated logics. Several interesting systems with varying motivations have been
investigated, see the surveys [2] and [4]. Our results contribute to the understanding of spatially motivated first-order
languages, and hence they can be useful in the search for decidable (modal) spatial logics.

2 Preliminaries

Tiling methods constitute a flexible framework for establishing di↵erent degrees of undecidability of di↵erent kinds of
problems. An input to a tiling problem is a finite set of tile types, i.e., a finite set of rectangles with coloured edges.
The problem is to decide whether it is possible to tile a predetermined region of space with tiles of the given type,
under the constraint that adjacent edges of tiles have the same colour. We make use of the three following variants of
the tiling problem. The standard tiling problem asks whether a set T of tile types can tile the N⇥N grid, the recurrent
tiling problem asks whether T and some assigned tile type t 2 T can tile the N ⇥ N grid such that t occurs infinitely
many times on the leftmost column of the grid, and the torus tiling problem asks if there exists some finite torus (i.e.,
a finite grid whose borders wrap around to form a torus) such that the input set T tiles it.

Theorem 2.1. The tiling problem is ⇧0
1-complete [5], the recurrent tiling problem ⌃1

1-complete [8], and the periodic
tiling problem ⌃0

1-complete [6].

Let (Rn, d) be the n-dimensional Euclidean space with the canonical metric d. We define the ternary Euclidean
betweenness relation � such that �(s, t, u) i↵ d(s, u) = d(s, t) + d(t, u). We study geometric betweenness structures of
the type (T,�), where T ✓ Rn and where � is the restriction of the betweenness predicate of Rn to the set T .

A subset S ✓ Rn is an m-dimensional flat of Rn, where 0  m  n, if there exists a set of m linearly independent
vectors v1, . . . , vm 2 Rn and a vector h 2 Rn such that S is the h-translated span of the vectors v1, . . . , vm, in other
words S = {u 2 Rn | u = h + r1v1 + · · · + rmvm, r1, . . . , rm 2 R}.
Note that {(0, ...., 0)} is not considered to be a linearly independent set.

A set U ✓ Rn is a linearly regular m-dimensional flat, where 0  m  n, if the following conditions hold.

⇤University of Tampere, {antti.j.kuusisto, jonni.virtema}@uta.fi
†Stanford University, jjmeyers@stanford.edu
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Figure 1: Interpreting the grid in (T,�, P, Q).

1. There exists an m-dimensional flat S such that U ✓ S.

2. There does not exist any (m � 1)-dimensional flat S such that U ✓ S.

3. U is linearly complete, i.e., if L ✓ U is a line in U and L0 ◆ L the corresponding line in Rn, and if r 2 L0 is a
point and ✏ 2 R+ a positive real number, then there exists a point s 2 L such that d(s, r) < ✏. Here d is the
canonical metric of Rn.

4. U is linearly closed, i.e., if points x1, x2 2 U and x3, x4 2 U determine two lines that intersect in Rn, then the
corresponding lines in U intersect in U .

A set T ✓ Rn extends linearly in mD, where m  n, if there exists a linearly regular m-dimensional flat S, a
positive real number ✏ 2 R+ and a point x 2 S \ T such that { u 2 S | d(x, u) < ✏ } ✓ T. It is easy show that for
example the rational plane Q2 and the closed rectangle [0, 1] ⇥ [0, 1] ✓ R2 extend linearly in 2D.

3 Results

While 8WMSO 6 MSO and 8MSO 6 WMSO in general, over models embedded in (Rn,�), 8WMSO translates into
8MSO and WMSO into MSO.

Theorem 3.1 (Heine-Borel). A set S ✓ Rn is closed and bounded i↵ every open cover of S has a finite subcover.

Theorem 3.2. Let C be the class of expansions (Rn,�, P ) of (Rn,�) with a unary predicate P , and let F ✓ C be the
subclass of C where P is finite. The class F is first-order definable with respect to C.

Proof. It follows directly from the Heine-Borel theorem that a set T ✓ Rn is finite i↵ it is closed, bounded and
consists of isolated points of T . The proof of the current theorem relies on this fact. The argument is based on
encoding topological information about open balls by first-order formulae. The idea is to replace open balls by open
n-dimensional triangles.

We first define a formula parallel(x, y, u, v) stating in Rn that the lines defined by x, y and u, v are parallel. With
this formula we construct formulae basisk(x0, . . . , xk) and flatk(x0, . . . , xk, z) by simultaneous recursion. The formulae
state roughly that vectors (x0, xi) form a basis of an x0-centered k-dimensional flat, and that z is in the flat. With
these formulae we recursively define formulae opentriangle(x0, . . . , xk, z) stating that z is in the k-dimensional open
triangle defined by the points x0, . . . , xk.

The first-order theory of the class of expansions (T,�, Pi2N) of any structure (T,�) that extends linearly in 2D is
undecidable. Here Pi are monadic predicates. This is shown by interpreting the N ⇥ N grid, or some superstructure
of the grid, in the class of monadic expansions of (T,�). This is done by defining two linear sequences of points that
are stored in two predicates P and Q. The sequences correspond to linear orders that begin by a prefix of the order
type !. A superstructure of the grid is then interpreted by connecting the points of the linear sequence P to some
upper bound of the sequence Q, and vice versa. The grid points are the intersection points of the lines created in this
fashion, see the Figure 1 for an illustration.

Theorem 3.3. Let T ✓ Rn be a set that extends linearly in 2D. The monadic ⇧1
1-theory of (T,�) is ⌃0

1-hard.

Extending linearly in 1D is not a su�cient condition for undecidability of the 8MSO-theory of (T,�). This can be
seen from the fact that the 8MSO-theory of (Q, <) is decidable [10].

2
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In Rn, it is possible to define predicates P and Q such that they correspond to linear sequences of the order type !
exactly. This enables the encoding of an isomorphic copy of the N⇥N grid in expansions of structures (Rn,�), where
n � 2. With an isomorphic copy of the grid, we can interpret the recurring tiling problem in the structure created.

Theorem 3.4. Let n � 2. The monadic ⇧1
1-theory of the structure (Rn,�) is ⇧1

1-hard, and therefore not even
arithmetical.

When limiting attention to expansions of structures (T,�) with finite monadic predicates, we can use the periodic
tiling problem in order to establish undecidability of monadic expansion classes of structures (T,�).

Theorem 3.5. Let T ✓ Rn be a set that extends linearly in 2D. The weak monadic ⇧1
1-theory of (T,�) is ⇧0

1-hard.

In addition to expansions with finite predicates, the periodic tiling problem can be easily modified to yield unde-
cidability of a wide variety of natural restricted monadic expansions classes of (R2,�). These include expansions with
predicates corresponding to finite unions of closed rectangles, polygons, and other simple canonical classes of sets.

In the future we shall identify fragments of first-order logic that lead to a decidable theory of the monadic expansion
class of (R2,�).

References

[1] M. Aiello and J. van Benthem. A Modal Walk through Space. Journal of Applied Non-Classical Logics 12(3-
4):319-363, Hermes, 2002.

[2] M. Aiello, I. Pratt-Hartmann, and J. van Benthem. What is Spatial Logic. In [3].

[3] M. Aiello, I. Pratt-Hartmann and J. van Benthem. Handbook of Spatial Logics. Springer, 2007.

[4] P. Balbiani, V. Goranko, R. Kellerman and D. Vakarelov. Logical Theories for Fragments of Elementary Geometry.
In [3].

[5] R. Berger. The undecidability of the domino problem. Mem. Amer. Math. Soc., 66, 1966.

[6] Y. Gurevich and I. O. Koryakov. Remarks on Berger’s paper on the domino problem. Siberian Mathematical
Journal 13, 319-321, 1972.

[7] M. Gyssens, J. Van den Bussche and D. Van Gucht. Complete Qeometric Query Languages. J. Comput. System
Sci. 58, 483-511, 1999.

[8] D. Harel. Recurring Dominoes: Making the Highly Undecidable Highly Understandable. Annals of Discrete
Mathematics 24, 51-72, 1985.

[9] B. Kujpers and J. Van den Bussche. Logical aspects of spatial database theory. In Finite and Algorithmic Model
Theory, Cambridge University Press, 2011.

[10] M. O. Rabin. Decidability of second-order theories and automata on infinite trees. Trans. of the Amer. Math.
Soc. 141, 1-35, 1969.

[11] A. Tarski and S. Givant. Tarski’s System of Geometry. Bull. Symbolic Logic 5(2), 1999.

3

68



Stone Duality for Markov Processes
Kim Larsen

Department of Computer Science
University of Aalborg

Aalborg, Denmark

Radu Mardare
Department of Computer Science

University of Aalborg
Aalborg, Denmark

Prakash Panangaden
School of Computer Science

McGill University
Montreal, Canada

I. Introduction

The Stone representation [7] theorem is one of the recog-
nized landmarks of mathematics. The Stone representation
theorem [7] states that every (abstract) boolean algebra is iso-
morphic to a boolean algebra of sets; in modern terminology
one has an equivalence of categories between the category of
boolean algebras and the (opposite of) the category of compact
Hausdor↵ zero-dimensional spaces, or Stone spaces.

In this paper we develop exactly such a duality for continuous-
time continuous-space transitions systems where transitions
are governed by an exponentially-distributed waiting time,
essentially a continuous-time Markov chain (CTMC) with a
continuous space. The logical characterization of bisimulation
for such systems was proved a few years ago [3] using
much the same techniques as were used for labelled Markov
processes [5]. Recent work by the first two authors and
Cardelli [1], [2] have established completeness theorems and
finite model theorems for similar logics. Thus it seemed
ripe to capture these logics algebraically and explore duality
theory.

One of the critiques of logics and equivalences being used for
the treatment of probabilistic systems is that boolean logic is
not robust with respect to small perturbations of the real-valued
system parameters. Accordingly, a theory of metrics [4] was
developed and metric reasoning principles were advocated. In
conjunction with our exploration of duality theory therefore we
investigated the role of metrics and discovered a striking metric
analogue of the duality theory. This paper describes both
these theories. One can view the latter as the analogue of a
completeness theorem for metric reasoning principles.

One of the points of departure of the present work from earlier
work is the use of hemimetrics: analogues of pseudometrics
that are not symmetric. This fits in well with the order structure
of the boolean algebra. Nearly 25 years ago, Mike Smyth [6]
advocated the use of such structure to combine metric and
domain theory ideas. The interplay between the hemimetric
and the boolean algebra is somewhat delicate and had to be
carefully examined for the duality to emerge. It is a pleasant
feature that exactly these axioms relating the hemimetric and
the boolean algebra are satisfied in our examples without any
artificial fiddling.

We summarize the key results of the present work:

• a description of a new class of algebras that captures, in
algebraic form, the probabilistic modal logics used for
continuous Markov processes,

• a duality between these algebras and continuous Markov
processes

• a (hemi)metrized version of the algebras and of the
Markov processes and

• a metric analogue of the duality.

II. Definitions

Let M be a set and d : M ⇥ M ! R.
Definition 1. We say that d is a hemimetric on M if for
arbitrary x, y 2 M,

(1): d(x, x) = 0
(2): d(x, y)  d(x, z) + d(z, y)

We say that (M, d) is a hemimetric space.

Note that a hemimetric is not necessarily symmetric nor does
d(x, y) = 0 imply that x = y. A symmetric hemimetric is called
a pseudometric.
Definition 2. For a hemimetric d on M we define the Haus-
dor↵ hemimetric dH on the class of subsets of X by

dH(X,Y) = sup
x2X

inf
y2Y

d(x, y).

We also define the dual of the Hausdor↵ hemimetric dH on
the class of subsets of X by

dH(X,Y) = sup
y2Y

inf
x2X

d(x, y).

Definition 3 (Continuous Markov processes). Given a mea-
surable space (M,⌃), a continuous Markov process (CMK) is
a tuple M = (M,⌃, ✓), where ✓ 2 ~M ! �(M,⌃)�. M is the
support set of M denoted by supp(M). If m 2 M, (M,m) is
a continuous Markov process (CMP).
Definition 4 (Aumann algebra). An Aumann algebra (AA)
over the set B , ; is a structure A = (B,>,?,⇠
,t,u, {Fr,Gr}r2Q+ ,v) where B = (B,>,?,⇠,t,u,v) is a
meet-continuous boolean Algebra, for each r 2 Q+, Fr,Gr :
B! B are monadic operations and the elements of B satisfy
the axioms in Table I, for arbitrary a, b 2 B and r, s 2 Q+.
Definition 5 (Metrized Aumann algebra). A metrized Au-
mann algebra is a tuple (A, �), where A = (B,>,?,⇠
,t,u, {Fr,Gr}r2Q+ ,v) is an Aumann algebra and � : B ⇥ B!
[0, 1] is a hemimetric on B satisfying, for arbitrary a, b 2 B,
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(AA1): > v F0a
(AA2): Fr+sa v⇠ Gra, for s > 0
(AA3): ⇠ Fra v Gra
(AA4): (⇠ Fr(a u b)) u (⇠ Fs(au ⇠ b)) v⇠ Fr+sa
(AA5): (⇠ Gr(a u b)) u (⇠ Gs(au ⇠ b)) v⇠ Gr+sa
(AA6): If a v b then Fra v Frb
(AA7):

V{Frb | r < s} = Fsb
(AA8):

V{Grb | r > s} = Gsb
(AA9):

V{Frb | r > s} = ?
TABLE I

Aumann algebra

and arbitrary filtered set A ✓ B for which there exists
V

A0inB,
the axioms in Table II.

(H0): if �(a, b) = 0, then a v b
(H1): �(a, b) = �(a u (⇠ b), b)
(H2): �(b,

V
A) = inf

a2A
�(b, a)

(H3): �(
V

A, b) = sup
a2A
�(a, b)

TABLE II
Hemimetric axioms for metrized AA

III. Results

We have a duality theorem between CMPs and Aumann
Algebras.
Theorem 6 (Representation Theorem). (i) Any CMP M =

(M,⌃, ✓) is bisimilar to M(L(M)) and the bisimulation rela-
tion is given by the mapping ↵ defined, for arbitrary m 2 M,
by

m 7! ↵(m) = {� 2 L(M) | M,m |= �}.

(ii) Any Aumann algebraA = (B,>,?,⇠,t,u, {Fr,Gr}r2Q+ ,v)
is isomorphic to L(M(A)) and the isomorphism is given by
the mapping � defined, for arbitrary a 2 B, by

a 7! �(a) =
^

({� 2 L(M(A)) | 8u 2 U(B) s. t. " (a) ✓ u,M(A), u |= �}).

This extends to a duality between the hemi-metric spaces in
the following sense.
Theorem 7 (The metric duality theorem). (i) Given a
metrized CMP (M, d) with M = (M,⌃, ✓), M is bisimilar
to M(A(L(M))) by the map ↵ defined in the Representation
Theorem and, in addition, for arbitrary m, n 2 M,

d(m, n) = (dH)H(↵(m),↵(n)).

(ii) Given a metrized AA (A, �) with A = (B,>,?,⇠
,t,u, {Fr,Gr}r2Q+ ,v),A is isomorphic toA(L(M(A))) by the
map � defined in the Representation Theorem and, in addition,
for arbitrary a, b 2 B

�(a, b) = (�H)H(�(a), �(b)).
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Intuitionistic logic and partial probability functions 

François Lepage 
Université de Montréal 

 

Abstract 

The aim of the present paper is to provide a semantical analysis of propositional 

intuitionistic logic with strong negation in term of partial probability functions. The 

system is proved to be sound and complete for these interpretations.  
Our analysis is bsed on what is called ‘Adam’s assumption’, i.e. that the probability of an 

indicative conditional  A→ B is the probability of B conditional on A. In the first section, 
we make a short review of the state of the art, including Lewis’s famous triviality result: 

starting from the assumption that Pr(A→ B) = Pr(B / A) for any A and B such that 

Pr(A) ≠ 0 , he showed that there are at most two incompatible sentences in the language. 

Surprisingly, Morgan and Leblanc [6] showed that it is possible to define probabilistic 
semantic for intuitionistic logic but in their canonical model every non‐theorem has a 

zero probability. This is quite problematic since for any classical tautology A and any B 

such that  A is not an intuitionistic consequence of B, Pr(A,B) = 0 (they used Popper 

probability functions instead of absolute ones). Worst, Morgan and Mares [7] showed 

that the implicational fragment of intuitionistic logic is the weakest logic for which the 
probability of the conditional is the conditional probability. They also showed that if 

negation is added to the fragment (even a very weak one), then the semantics is trivial. 
In the second section, we present the following system for intuitionistic logic with 

Nelson’s [8] strong negation.  
 

I1 A→ (B→ A)  

I2 (A→ (B→ C))→ ((A→ B)→ (A→ C))  

I3 A∧ B→ A  

I4 A∧ B→ B  

I5 A→ A∨ B  

I6 B→ A∨ B  

I7 (A→ C)→ ((B→ C)→ (A∨ B→ C))  
I8 F→ A  

PI1   A→ A  

PI2  A→ A  

PI3 
 
 (A∧ B)→   A∨  B  

PI4 
 
 (A∨ B)→ A∧  B  

PI5  A∧  A→ F  

PI6 
 
 (A→ B)→ (A∧  B)  

PI7
 
(A∧  B)→ (A→ B)  

PI8   ¬A→ A  

PI9 
 
A→ ¬A  

PI20 
 
 A→ (A→ B)  

PI21 A→ (B→ (A∧ B))  

PI22  A∨  B  
→ (A∧ B)  

PI23
 
 A∧  B→ (A∨ B)  

where¬A (the intuitionistic negation) stand for A→ F  and MP is the only rule. 
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2 

Following Lepage and Morgan [3], we introduce the notion of partial conditional 

probability function. A partial conditional probability function is a partial function Pr  
 

Pr :L × 2
L
→ [0,1]  

 

such that the following constraints are always satisfied: 

 

P.1 If A∈Γ , then Pr(A,Γ) is defined; 

P.2 If Pr(A,Γ) is defined, then
 
Pr( A,Γ) is defined; 

P.3 If 
 
Pr( A,Γ) is defined, thenPr(A,Γ) is defined; 

P.4 If Pr(A∧ B,Γ)  is defined, thenPr(B∧ A,Γ) is defined; 

P.5 If Pr(A,Γ)  and Pr(B,Γ) are undefined Pr(A∧ B,Γ)  is undefined;  

P.6 If Pr(A,Γ) = 0 , then Pr(A∧ B,Γ) = 0 ; 

P.7 If Pr(A,Γ) = 1 , thenPr(A∨ B,Γ) = 1 ; 

P.8 If Pr(A,Γ) and Pr(B,Γ) are undefined thenPr(A∧ B,Γ)  is undefined;  

P.9 If Pr(A∧ B,Γ) is defined and Pr(A,Γ)  is undefined, then Pr(B,Γ) = 0 ; 

P.10 If Pr(A∨ B,Γ) is defined and Pr(A,Γ)  is undefined, then Pr(B,Γ) = 1 . 

 

And, following Morgan [4], [5] when all the appropriate values of Pr are defined, the 

following constraints are satisfied : 

 

NP.1 0 ≤ Pr(A,Γ)  ≤ 1; 

NP.2 If A∈Γ , then Pr(A,Γ) = 1 ; 

NP.3 Pr(A∨ B,Γ)= Pr(A,Γ)+ Pr(B,Γ)  − Pr(B∧ A,Γ) ; 

NP.4 Pr(A∧ B,Γ)  = Pr(A,Γ)× Pr(B,Γ∪ {A}) ; 

NP.5 
 
Pr( A,Γ)= 1− Pr(A,Γ) provided Γ  is Pr-normal (i.e., there is at least an A 

such that Pr(A,Γ)= 0); 

NP.6 Pr(A∧ B,Γ)= Pr(B∧ A,Γ) ; 

NP.7Pr(C,Γ∪ {A∧C}) = Pr(C,∪{A,C}) ; 

NP.8 Pr(A→ B,Γ) = Pr(B,Γ∪ {A}) . 

 

The notion of semantic consequence is introduced: 
 
A is a semantical consequence of Γ  (written Γ A ) if and only if for all partial probability 

distributions Pr, Pr(A,Γ∪Δ) = 1 for allΔ . 

 

We prove soundness of I1‐I8 and PI1‐PI‐23.  
 

For completeness, we use the notion of saturated sets Aczel [1]. 
 
A Saturated Deductively Closed Consistent Set (SDCCS) Γ  is a set which is: 

(1) Saturated, i.e. (A ∨ B) ∈ Γ  iff A ∈ Γ or B ∈ Γ ; and 

(2) Deductively closed, i.e.  A ∈ Γ  iff Γ  A; and 

(3) Consistent, i.e. there is an A such that Γ   A. 

It is a well known result that the set W of all saturated sets define a canonical Kripke 

frame [2] <W ,⊆>where ⊆ is simply inclusion between sets. 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Let Γ  be any set. We define U(Γ) = {Δ :Δ is a SDCCS and Γ ⊆ Δ} . 

 

We define a function Pr
<W ,⊆>

such that for any A 

 

Pr
<W ,⊆>

(A,Γ) =

1 iff A∈Δ for all Δ ∈U(Γ) such that Γ ⊆ Δ 

0 iff ¬A∈Δ for all Δ ∈U(Γ) such that Γ ⊆ Δ

undefined otherwise

⎧

⎨
⎪

⎩
⎪

 

We show that  
Pr

<W ,⊆>
satisfy P.1-8 and NP.1-8 

 

Furthermore, completeness is proved, because if  Γ  A , then there is a saturated setΔ

such that A∉Δ andΓ ⊆ Δ . 

 

Finally, in the last section, we discuss questions of triviality and we prove that when 

partial functions are forced to be total, then triviality is back. 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Algorithmic Intensionality in Type Theory of

Acyclic Recursion and Underspecification

Roussanka Loukanova

1 Background of L�
ar

Moschovakis [2] initiated development of a new approach to the mathematical
notion of algorithm. A potential prospect for applications of the new approach
is to computational semantics of artificial and natural languages1 (NLs). In
particular, the theory of acyclic recursion L�

ar, see Moschovakis [3], models the
concepts of meaning and synonymy in typed models. Moschovakis formal system
L�

ar is a higher-order type theory, which is a proper extension of Gallin’s TY2,
see Gallin [1], and thus, of Montague’s Intensional Logic (IL), see Montague [4].
The type theory L�

ar and its calculi extend Gallin’s TY2, at the level of the
formal language and its semantics, by using several means: (1) two kinds of
variables (recursion variables, called alternatively locations, and pure variables);
(2) by formation of an additional set of recursion terms; (3) systems of rules that
form various calculi, i.e., the reduction calculus and the calculus of referential
synonymy. In the first part of the talk, we give the formal definitions of the
syntax and denotational semantics of the language of L�

ar. Then, we introduce
the intensional semantics of L�

ar. The second part of the talk is devoted to the
necessity of extending a �-calculus, like Montague’s IL, to a system like L�

ar, for
computational semantics of NL expressions.

2 Brief introduction to the type theory L�
ar

Types of L�
ar: The set Types is the smallest set defined recursively (using a

wide-spread notation in computer science): ⌧ :⌘ e | t | s | (⌧1 ! ⌧2).

2.1 Syntax of L�
ar

The vocabulary of L�
ar consists of pairwise disjoint sets, for each type ⌧ : K⌧ =

{c0, c1, . . . , ck⌧
}, a finite set of constants of type ⌧ ; PureVars⌧ = {v0, v1, . . .},

a set of pure variables of type ⌧ ; RecVars⌧ = {p0, p1, . . .}, a set of recursion
variables, called also locations, of type ⌧ .

1Natural Language (NL) is a traditional way of address to human languages. We maintain
the view that natural languages form a broader class of languages in nature.

1
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The Terms of L�
ar: In addition to application and �-abstraction terms, L�

ar

has recursion terms that are formed by using a designated recursion operator,
which is denoted by the constant where and can be used in infix notation. The
recursive rules2 for the set of L�

ar terms can be expressed by using a notational
variant of “typed” BNF:

A :⌘ c⌧ : ⌧ | x⌧ : ⌧ | B(�!⌧)(C�) : ⌧ | �v�(B⌧ ) : (� ! ⌧)

| A�
0 where {p�1

1 := A�1
1 , . . . , p�n

n := A�n
n } : �

where {p�1
1 := A�1

1 , . . . , p�n
n := A�n

n } is a set of assignments that satisfies the
acyclicity condition defined as follows: For any terms A1 : �1, . . . , An : �n, and
locations p1 : �1, . . . , pn : �n (where n � 0, and pi 6= pj for all i, j such that
i 6= j and 1  i, j  n), the set {p1 := A1, . . . , pn := An} is an acyclic system
of assignments i↵ there is a function rank : {p1, . . . , pn} �! N such that, for all
pi, pj 2 {p1, . . . , pn}, if pj occurs free in Ai then rank(pj) < rank(pi).

Terms of the form A�
0 where {p�1

1 := A�1
1 , . . . , p�n

n := A�n
n } are called re-

cursion terms. Intuitively, a system {p1 := A1, . . . , pn := An} defines recursive
computations of the values to be assigned to the locations p1, . . . , pn. Requiring
a ranking function rank, such that rank(pj) < rank(pi), means that the value of
Ai, which is assigned to pi, may depend on the values of the location pj , as well
as on the values of the locations pk with lower rank than pj . An acyclic system
guarantees that computations close-o↵ after a finite number of steps. Omitting
the acyclicity condition gives an extended type system L�

r , which admits full
recursion.

2.2 Two kinds of semantics of L�
ar

Denotational Semantics of L�
ar: The language L�

ar has denotational seman-
tics that is given by a definition of a denotational function for any semantic
structure with typed domain frames. The denotational semantics of L�

ar follows
the structure of the L�

ar terms, in a compositional way.
Intensional Semantics of L�

ar: The notion of intension in the languages of re-
cursion covers the most essential, computational aspect of the concept of mean-
ing. The referential intension, Int(A), of a meaningful term A is the tuple of
functions (a recursor) that is defined by the denotations den(Ai) (i 2 {0, . . . n})
of the parts (i.e., the head sub-term A0 and of the terms A1, . . . , An in the sys-
tem of assignments) of its canonical form cf(A) ⌘ A0 where {p1 := A1, . . . , pn :=
An}. Intuitively, for each meaningful term A, the intension of A, Int(A), is the
algorithm for computing its denotation den(A). Two meaningful expressions are
synonymous i↵ their referential intensions are naturally isomorphic, i.e., they are
the same algorithms. Thus, the algorithmic meaning of a meaningful term (i.e.,
its sense) is the information about how to “compute” its denotation step-by-step:
a meaningful term has sense by carrying instructions within its structure, which
are revealed by its canonical form, for acquiring what they denote in a model.

2In an explicit definition of the L�
ar terms, the acyclicity condition is a proper part of the

case of recursion terms, as the above notational variant of BNF is taken.

2

75



The canonical form cf(A) of a meaningful term A encodes its intension, i.e., the
algorithm for computing its denotation, via: (1) the basic instructions (facts),
which consist of {p1 := A1, . . . , pn := An} and the head term A0, that are
needed for computing the denotation den(A), and (2) a terminating rank order
of the recursive steps that compute each den(Ai), for i 2 {0, . . . , n}, for incre-
mental computation of the denotation den(A) = den(A0). Thus, the languages
of recursion o↵er a formalisation of central computational aspects: denotation,
with (at least) two semantic “levels”: referential intensions (algorithms) and
denotations. The terms in canonical form represent the algorithmic steps for
computing semantic denotations by using all necessary basic components:

NL Syntax =) L�
ar / L�

r =) Referential Intensions (Algorithms) =) Denotations| {z }
Computational Semantics

3 Semantic Underspecification

In this part, by using linguistic motivations, we present arguments for the new
kind of recursion variables and the distinctions between �-calculus terms, re-
cursion terms, and canonical forms, subject to week �-reduction. One of the
distinctive characteristics of the algorithmic theory of L�

ar is the possibility to
formalize the concept of semantic underspecification, at the object level of the
language L�

ar. We give renderings of NL expressions into L�
ar terms that repre-

sent computational patterns with potentials for further specifications depending
on context. E.g., we present a class of terms rendering underspecified quantifier
scopes. Furthermore, the language and theory L�

ar of typed acyclic recursion
provide means for a generalized, predicative operator that is underspecified L�

ar

term. We are presenting the potential use of such an operator for computational
semantics of predicative expressions, e.g., headed by the copula verb be. The
values of the predicative operator are specified by the phrasal environments of
the copula.
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Unary generalized quantifiers are logical constructs that enable us to express car-
dinal properties of unary predicates such as “there are as many x’s satisfying . . . as
y’s satisfying . . . ”. (This particular example is the Härtig or equicardinality quanti-
fier I .) I shall review some of the latest developments in the definability theory of such
quantifiers, both from the perspective of finite and infinite structures.

Two special classes of interest are O, the class of finite ordered structures, and Oω,
the class of expansions of 〈N, ≤〉. Let us say that a generalized quantifier Q has finite
character, if it is universe-independent, its vocabulary τ is finite, and for every A ∈ KQ

we have that
⋃

R∈τ RA is finite. Then we have the following simple transfer result:
If the generalized quantifier Q has finite character and L is regular, then definability
in finite implies definability in infinite, or more formally, FO(Q) ≤ L (O) implies
FO(Q) ≤ L (Oω).

At first sight, it appears as if one could prove new undefinability theorems using the
definability transfer result above. However, there is an obstacle that seems to make
this improbable, at least as long as applications in descriptive complexity theory are
concerned: Let S ⊆ N be fixed, and consider the logic FO(CS) where the cardinality
quantifier CS expresses ”there are S-many”. Then we get the following dichotomy:
either

S is eventually periodic,
FO(CS) < FO(I) (Oω),
FO(CS)-theory of 〈N, ≤〉 is decidable,
and addition and multiplication are not definable in 〈N, ≤〉,

or

S is aperiodic,
FO(CS) ≥ FO(D) (Oω),
the corresponding theory ThFO(CS)(〈N, ≤〉) is undecidable,
and addition and multiplication are definable.

Here, D is the general divisibility quantifier.
More generally, if we consider logics FO(Q) with a unary quantifier Q instead of a

cardinality quantifier CS , we get a trichotomy with a new case falling in the middle
of the two old cases and corresponding roughly to Presburger arithmetic. The proofs
rely on quite basic combinatorics of words and the result of Krynicki and Lachlan
[KL79]that FO(I)-theory of 〈N, ≤〉 is decidable.

In comparison, the analogous results in finite model theory are rather involved.
In [Luo04], cardinality quantifiers CS such that FO(I) ≤ FO(CS) (O) were char-
acterized, and there are simple examples of quantifiers CS such that CS and I are
incomparable. Hella, Luosto and Kontinen [HKL10] give a sufficient condition for
FO(D) ≤ FO(CS) (O) to hold.

[HKL10]Lauri Hella, Juha Kontinen, and Kerkko Luosto. Regular representations
of uniform TC0. Preprint, Mittag-Leffler Institute, Djursholm, autumn 2009/2010.

[KL79]Micha#l Krynicki and Alistair H. Lachlan. On the semantics of the Henkin
quantifier. J. Symbolic Logic, 44(2):184–200, 1979.

[Luo04]Kerkko Luosto. Equicardinality on linear orders. In Proceedings of the Nine-
teenth Annual IEEE Symposium on Logic in Computer Science (LICS 2004), pages
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Natural languages have a systematic ambiguity with respect to existential
items such as disjunction, indefinite articles, possibility modals, and existential
quantification. For instance, the sentence

(1) You may leave

is ambiguous between a possibility-reading and a permission-reading [1]. Even
though ambiguities of this kind are frequently described in terms of “free choice,”
the nature of these “choices” have not been described in the context of a social
model that explicates how the parties to a conversation manage such choices.

In this abstract, I introduce a model that fills this gaps, drawing on ideas
from Hintikka’s Game Semantics [4]. The resulting system accounts for a num-
ber of ambiguities of existential items such as may, can, or, a, the, and some.

A key property of the system I present here is the fact that it allows hearers
to be more or less charitable in their interpretation of an utterance, within
limits set out by word meanings. Classical logic then falls out as a special case
where speaker and hearer have opposing interests, and the evidence standards
are minimal.

1 Polemic Multiplayer Game Semantics
In its original form, Hintikka’s Game Semantics can be seen as a road map for
how to debate an assertion: It specifies how a hearer may legitimately raise
objections against it, and how a speaker may legitimately defend it. They do
so by traversing downwards through the syntactic tree of the sentence in search
of an unanalyzable atom which supports their own case.

The system I present here is similar, but it allows the speaker and hearer to
rely on other agents as sources of evidence. This evocation of the third-person
perspective is intended to simulate certain rhetorical moves, not actual acts of
asking other people for information. Accordingly, the game includes two “ghost”
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versions of all agents: one sympathetic to the speaker, and one sympathetic to
the hearer.

The game is played over sentence from a standard first-order syntax with,
for simplicity, a single modality. I assume that duals are taken as primitive, so
that the syntax contains, e.g., both conjunction and disjunction. The game is
played within the context of a single model (with an actual world w⇤).
Definition 1. (Game elements) The game consists of the following elements:

1. A sentence '.

2. A set of players, N = {S1, S2, . . . , Sn} [ {H1, H2, . . . , Hn}. By conven-
tion, S1 is the speaker, and H2 is the hearer.

3. A set of histories, with a subset being terminal histories; both are
defined by the player function introduced below.

4. For each player, a preference relation over the terminal histories. The
preferences of Si are assumed to be the same for all i, and likewise for Hi.

5. For each player, an information partition on the set of models. Si and
Hi are assumed to have the same information partition for all i.

For simplicity, we can let the preference relations be given by two utililty
functions u1 and u2. In the polemic game, u1 + u2 = 0, and player i wins the
game in a terminal history h if and only if ui(h) > 0.

Definition 2. (Game state) A game state consists of a sentence (the claim),
a world (the current world), and two agents (the Verifer and Falsifier). I use
the notation G(w `  ) for the state in which the claim is  and the current
world is w (thus omitting, for brevity, the identity of the Verfier and Falsifier).

Definition 3. (Player function) The game starts at G(w⇤ ` ') with the
speaker as Verifier and the hearer as Falsifier. From an arbitrary state G(w `  ),
it transitions into the next state according to the following rules:

Connectives. If  = ✓_⌘ ( = ✓^⌘), then the Verifier (Falsifier) picks another
player; this player then picks one of the states G(w ` ✓) and G(w ` ⌘),
and the game transitions into that state.

Quantifiers. If  = 9x ✓ ( = 8x ✓), then the Verifier (Falsifier) picks another
player; this player then picks an individual a, and the game transitions
into the state G(w ` ✓.x/a), where ✓.x/a is the sentence one obtains by
replacing all occurrences of x in ✓ with a.

Modalities. If  = 3✓ (or  = 2✓), then Verifier (Falsifier) picks another
player; this player then picks a world w0 accessible from w, and the game
transitions into the state G(w0 ` ✓).

Negation. If  = ¬✓, then the Verfier and Falsifier swap roles, and the game
transitions into the state G(w ` ✓).

Atoms. If  is an atomic sentence, the game terminates.
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2 Applications
While I can only scratch the surface here, I want to point to some of the semantic
phenomena that this system allows us to conceptualize. Consider for instance

(2) Either we win tomorrow, or we don’t.

This sentence is defendable in a polemic context, even when the the speaker who
utters it is not reliably able to choose correctly between the two logical branches
we win tomorrow and we don’t win tomorrow. The reason is that there might be
a perfectly informed third person (“God”) which will be able to make the choice.
Handing over the initiative to this omniscient observer makes for a weaker but
still winning defense strategy.

More interesting cases occur if we assume that the two utility functions do
not sum to 0. Whe then get new ambiguities like

(3) The bald guy wanted either steak or lobster.

This can either mean that the speaker doesn’t know what the bald guy wanted
(handing him the right to choose branch) or that he bald guy has no preference
(handing the hearer the right of choice).

Similar considerations explain notoriously “illogical” cases like

(4) Every student answered some or all of the questions. [2]

(5) You may take an apple or a pear. [3]

More examples exist, many of them related to ambiguities that have tradition-
ally been treated by a number of incompatible approaches (pragmatic infer-
ence, grammatical exhaustivity operators, lexical ambiguity). A full treatment
of these issues, however, is obviously not possible in the space of this abstract.
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Abstract

The Completeness of Formal Systems is the title of the thesis that
Henkin presented at Princenton in 1947, and his director was Alonzo
Church. His renowned results on completeness for both type theory and
first order logic are part of his thesis. It is interesting to note that he
obtained the proof of completeness of first order logic readapting the ar-
gument found for the theory of types.

It is surprising that the first-order completeness proof that Henkin
explained in class was not his own but was developed by using Herbrand’s
theorem and the completeness of propositional logic.

We conclude this paper by pointing two of the many influences of his
completeness proofs, one is the completeness of basic hybrid type theory
and the other is in correspondence theory, as developed in [6].

1 The completeness of FOL in Henkin’s course

The story behind this is that of María Manzano, who during the academic year
of 1977-1978 attended his class of metamathematics for doctorate students at
Berkeley. Before each class Henkin would give us a text of some 4-5 pages that
summarised what was to be addressed in the class. The texts were printed in
purple ink, done with the old multicopiers that we called “Vietnamese copiers”
and that were so often used to (illegally) print pamphlets in our past revolu-
tionary days in Spain.

It is surprising that the first-order completeness proof that Henkin developed
in class was not his own, but it was developed by using Herbrand’s theorem and
the completeness of propositional logic.

Theorem 1 (Herbrand’s Theorem) For each first-order sentence A there
exist an (infinite) set of sentences of propositional logic  such that: ` A in

This research has been possible thanks to the research project sustained by Ministerio
de Ciencia e Innovación of Spain with reference FFI _2009 _09345MICINN.
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FOL i§ there is some H 2  such that ` H in LP (`PLmeans that we just use
sentential axioms and detachment).

The above result can be regarded as a special case of the following.

Theorem 2 Let L be a first order language: We can extend L to L0 by adjoining
a set C of individual constants, and we can e§ectively give a set  of sentences
of L0 with the following property: For any set of sentences  [ {A}  Sent(L)

 ` A i§  [ `PL A

Predicate logic: Reduction to sentential logic: Using the previous theo-
rem we e§ectively reduce the completeness problem for first order logic to that
of sentential logic. To this e§ect the following proposition was proved.

Proposition 3 Theorem 2 and completeness of PL implies completeness of
FOL.

2 His renowned proofs of completeness

The theorem of completeness establishes the correspondence between deductive
calculus and semantics. Gödel had solved it positively for first-order logic and
negatively for any logical system able to contain arithmetic. The lambda calcu-
lus for the theory of types [2], with the usual semantics over a standard hierarchy
of types, was able to express arithmetic and hence could only be incomplete.
Henkin showed that if the formulae were interpreted in a less rigid way, accept-
ing other hierarchies of types that did not necessarily have to contain all the
functions but at least the definable ones, it is easily seen that all consequences
of a set of hypotheses are provable in the calculus. The valid formulae with
this new semantics, called general semantics, are reduced to coincide with those
generated by the rules of calculus.

As it is well known, Henkin’s completeness theorem rests on the proof that
every consistent set of formulas has a model.

Curiously, he obtained the proof of completeness for first-order logic in the
second place, readapting the argument found for the theory of types. Another
interesting aspect that Henkin himself pointed out is the non-constructive nature
of the proof, despite coming from a tradition as tightly bound to proofs with a
constructive nature as those developed by Church.

3 Two results based on Henkin’s ideas

Let us highlight how Henkin’s General Models are related to Correspondence
theory. We attribute most of the ideas handled in the reduction to many-sorted
logic [6] to two articles by Henkin: “Completeness in the theory of types” from
1950, and the one from 1953, “Banishing the rule of substitution for functional
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variables”. Nevertheless, with all the foregoing we do not wish to deceive possi-
ble readers. In the article from 1950, there are no translations of formulae, and
the language and many-sorted calculus do not even appear explicitly. Regarding
higher-order logic, as far as is known many-sorted calculus appears for the first
time in the 1953 article. In it, Henkin proposes the axiom of comprehension
as an alternative to the substitution rule used in the calculuses previously pro-
posed for higher-order logic. If the axiom of comprehension is removed from this
calculus, one obtains the MSL calculus. There is also another idea (this time
from the 1953 article) that is also interesting and is as follows: If we weaken
the axiom of comprehension (for example, we restrict it to first-order formu-
lae or to translations of dynamic or modal formulae or to any other recursive
set), we obtain calculuses in between MSL and SOL. And it is easy to find
their corresponding semantics. Naturally, the class of structures corresponding
to them will be situated in between F (structures for MSL) and GS (general
structures). The new logic, let us call it XL, will also be complete. The reason
is because this class of models is axiomatizable.

In [1] a Basic Hybrid Type Theory is introduced. The goal of this paper
is to investigate whether basic hybridization also leads to simple Henkin-style
completeness proofs in the setting of (classical) higher-order modal logic (that
is, modal logics built over Church’s simple theory of types [2]), and as we show in
[1], the answer is “yes”. The crucial idea is to use @i as a rigidifier for arbitrary
types. We shall interpret @ia, where a is an expression of any type a, to be
an expression of type a that rigidly returns the value that a receives at the
i-world. As we show, this enables us to construct a description of the required
model inside a single maximal consistent set and hence to prove (generalized)
completeness for higher-order hybrid logic.
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Abstract

By the relation of identity we mean that binary relation which holds
between any object and itself, and which fails to hold between any two
distinct objects. In first order logic (FOL) it is impossible to define iden-
tity and so we are forced to introduce it as a logical primitive concept. In
second order logic (SOL) with standard semantics identity is introduced
by Leibniz’s principle, but with non-standard models this principle does
not apply. In there, we can introduce the symbol of equality defining an
equivalence relation but there is no guarantee that this relation is proto-
typical identity.

In modal logic, we should decide whether we want the ontological
relation of identity or the symbolic relation of equality between terms, or
both. We are going to focus in the powerful language of type theory, where
there are basically two sound alternatives: introducing both extensional
and intensional terms or dealing with rigids and non rigids terms.

1 Equality and Identity in Classical Logic

Why do we take identity as a logical primitive concept in first order logic1?
Is there a formula ' defining it? The answer is negative, even in the best
scenario where we only have a finite set of non-logical predicate constants. In
this situation we can express that x and y cannot be distinguished in our formal
language by defining a binary relation that obeys the usual rules for equality.
But the definition is not semantically adequate as there are models where the
relation defined by this formula is not identity. The formula is the nearest
we can come up with in first order logic to formalize Leibniz’s principle of
indiscernibles saying that two objects are identical when there is no property
able to distinguish them.

In SOL we can formulate Leibniz’s principle by

x = y $ 8X(Xx ! Xy)

⇤This research has been possible thanks to the research project sustained by Ministerio
de Ciencia e Innovación of Spain with reference FFI 2009 09345MICINN.

1See [4] for a detailed treatment of this issue, in particular in second order logic and type
theory.
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thus introducing equality for individuals. We do not need reflexivity of equal-
ity and equals substitution as primitive inference rules, since they are already
derived rules. This formula can be used to define identity for individuals as
the relation defined by it is ‘genuine’ identity in any standard second order
structure.

SOL with standard semantics has an extraordinary expressive power but
poor logical properties and when you want to retain logical properties you need
to introduce non-standard semantics. Then we are back to the situation en-
countered in first order logic. Within non-standard structures, the Leibniz’s
principle define an equivalence relation but it could be di↵erent from identity.
Therefore, if you want the prototypical identity, you should either have it as
primitive, or define as well the concept of non-standard normal structure. All
we have said should serve to warn you that the possibility of defining identity
is lost as long as there is no guarantee of having all possible sets as denotation,
specifically, all the singletons.

In general, identity for relations is neither introduced as a primitive logical
symbol nor defined using the rest of the symbols in SOL. The main reason
being that this identity established between relations is not a first order but a
proper second order relation. Can we define identity in this context? Can we
use Leibniz’s principle to introduce the identity for relations? The answer to
both questions is negative, since to follow Leibniz’s pattern we would need third
order variables.

The extensionality principle could be used to introduce equality

Xn = Y n $ 8x1...xn(Xnx1...xn $ Y nx1...xn)

Being the formal definition of the equality sign, the formula stops working
as an extensionality principle.

In type theory, the Leibniz’s principle could be added to the set of equality
axioms, as the set of instances of formulas of this form

↵ = � $ 8�(�(↵) ! �(�))

where = is of any type ha, ai, for some a, ↵ and � are of type a and � is of type
hai. As in SOL the formula defines identity only with standard semantics.

2 Identity and Equality in Modal Type Theory

In modal logic an “ontological” point of view can be taken, according to which
the relation of equality we are interested in is pure identity. In this case, we
must ensure that the calculus includes both the rule of necessity of identity (NI)

x = y ! ⇤(x = y)

and the rule of substitutivity of identicals (SI)

x = y ! ('(x) ! '(y))

and both are sound. But these rules turn out to be problematic when terms other
than variables are used. In this connection, the proposal of the authors Hughes
and Cresswell [2] of narrowing the equality relation to extensional objects solves
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the problem, while enabling constant and function symbols to be eliminated as
they can be introduced by definition. As a matter of fact, the equality relation
remains the identity one, but intensions are not taken into account. In case
we wanted to deal with intensions, the authors propose to renounce to the (NI)
principle and weaken (SI) to formulas free from modal operators. These systems
in which (NI) does not hold and (SI) is weakened are called contingent identity
systems.

In first-order modal logic, Melvin Fitting introduces a new relation between
intensional terms ⌧1 ⇡ ⌧2 —an abbreviation for h�x, y.y = xi(⌧2, ⌧1)— for which
(NI) does not hold. In fact, the formula ⌧1 ⇡ ⌧2 ! ⇤(⌧1 ⇡ ⌧2), is not valid.
Whereas x = y expresses that the objects are the same and the relation defined
by it can be taken as the identity relation; ⌧1 ⇡ ⌧2 says that the terms ⌧1 and ⌧2
designate the same object. In this sense, if we want to extend the rule (NI) for
⇡, we would be expressing a notion wider than that of simple equality, namely
it would have the characteristics of synonymy.

In modal type theory, Fitting adds equality extending Leibniz’s principle to
type theory. In this case the equality relation is not the prototypical identity
as intensional expressions are allowed. Fitting [3] develops a novel approach to
higher-order modal logic and uses it to investigate Gödel’s ontological argument
for the existence of God. Fitting’s work has proved influential. But it is his
semantic innovation which is likely to be enduring: the use of intensional models,
a mechanism which makes it possible to avoid restrictions to rigid terms.

In [1] a basic hybrid type theory is introduced, adding nominals, a ⇤, and
the @i-operators to Henkin’s original higher-order logic. Nominals are formulas
of type t, which is the type of propositions, and are regarded as forming a
distinct syntactic class. Nominals are true at a unique world in any model,
thus a nominal i names the world it is true at. Moreover, note that for any
expression ↵a of any type a the result of prefixing it with @i (where i can
be any nominal) yields an expression @i↵a which is also of type a. We shall
interpret @i↵a, where ↵a is an expression of any type a, to be an expression of
type a that rigidly returns the value that ↵a receives at the i-world. Nominals
and expressions of the form @i↵a play a central role in the completeness result:
nominals are the building blocks of our Henkin models, @i↵a expressions supply
the architectural blueprint.

In this setting substitution rules and replacement apply just for rigids, and
the same happens for the rules of Universal elimination and Beta conversion.
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Abstract

The enriched effect calculus (EEC) is variant of intuitionistic linear type the-
ory suitable for reasoning about linear usage of computational effects. EEC can be
seen as an extension of various calculi for computional effects (Moggi’s monadic
metalanguage or Levy’s call-by-push-value) with constructions from linear logic
such as a linear function space, but can also be viewed as a fragment of intuition-
istic linear logic suitable for non-commutative effects.

We give two main examples of usage of EEC as target language of translations.
The first is for the linear-use continuation passing translation, and the second is
for the linear state passing translation. In both these cases we can show that the
translations are fully complete in the sense that they induce a bijection between
terms, but moreover we can show that these arise as very natural constructions on
models. In fact, we shall see that these translations are dual in a formal sense.

This talk describes joint work with Jeff Egger, Alex Simpson and Sam Staton
previously published in [1, 2, 5].

1 Introduction
Computational effects are the non-pure aspects of computations such as side-effects
(reading and writing cells in memory), input and output, error raising, non-termination,
non-determinism, and control effects. Moggi made the observation that all these can
be described in a uniform way, by distinguishing between a type of values X and the
type of computations T (X) possibly returning an element in X , and noting that the
resulting type constructor T satisfies the monad laws of category theory. For example,
computation with side effects can be described using the monad TX = S ! S ⇥ X
(a computation takes a current state and returns an updated state along with a value),
computations with errors by the monad TX = X + E (either a computation returns or
it returns one of the possible errors in E) and control effects by the continuation monad
TX = (X ! R) ! R, where R is the type of results.

This lead to the monadic metalanguage �ML, from which we recall the important
typing rule

�, x : A ` t : TB � ` u : TA

� ` letxbe u in t : TB
(1)
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which should be given the following computational interpretation: first run u then bind
the result to x and then run t.

In this talk we are concerned with extending the monadic metalanguage with con-
structions from intutionistic linear logic. In particular we would like to add a linear
function space ( with the intuitive interpretation that TX ( TY types functions
TX ! TY that run their input exactly once.

An obvious first candidate for such an extension would be dual intutionistic/linear
lambda calculus (DILL). Recall that DILL is given by the type grammar

A ::= A ⌦ A | A ( A |!A | I

and recall the Girard encoding of intuitionitic function space A ! B =def !A (
B. Since ! acts as a monad with respect to intuitionistic function space there is an
obvious translation of �ML into DILL. Unfortunately, this translation introduces many
undesirable equations, such as the commutativity rule

let !xbe u in (let ! y be s in t) = let ! y be s in (let !xbe u in t)

which states that the monad ! is commutative. Most monads considered in computer
science are not commutative, because the order of execution of computations matters.

2 The enriched effect calculus (EEC)
The enriched effect calculus [1] solves this problem by restricting DILL to a fragment
corresponding to non-commutative effects. The motivation for the fragment comes
from the following theorem.

Theorem 2.1 Let T be a commutative monad on Set, and let SetT denote the Eilenberg-
Moore category of T and let F a U : SetT ! Set be the Eilenberg-Moore resolution
of T as an adjunction. Then (SetT , FU) is a model of DILL.

We review a few aspects of the model. A type A of DILL is interpreted as an object
of SetT , i.e., as an algebra ⇠A : T [[A]] ! [[A]] for the monad T , [[! A]] = FU [[A]] and
[[A ( B]] is the set of algebra homomorphisms from [[A]] to [[B]], which carries an
algebra structure because T is assumed commutative.

If T is not commutative, the collection of homomorphisms between two algebras
does not carry an algebra structure and so if we are to generalise the above model
construction, we are forced to consider two collections of types: computation types (to
be modelled as algebras), and value types (to be modelled as sets). The enriched effect
calculus has the following grammar of types:

A ::= ↵ | ↵ | 1 | A ⇥ B | A ! B | !A | A ( B |!A⌦B | 0 | A � B

A ::= ↵ | 1 | A ⇥ B | A ! B | !A | !A⌦B | 0 | A � B .

where we use the convention of underlining metavariables for computation types. We
refer to [1] for full details on term judgements and the equational theory of EEC.

There is a translation of �ML into EEC translating all types as value types and
translating T as ! . The translation is fully complete, i.e., it adds no new equations and
no terms to types in the image of the translation.
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3 Linear continuation passing and linear state
EEC is intended as a language for reasoning about linear usage of resources in compu-
tation. The two main applications studied so far are linear usage of state [5] and linear
usage of continuations [2].

The usual monad used for stateful computation TX = S ! S ⇥ X has the defect
that it allows for operations such as the ’snapback’ operation TA ! TA which takes a
computations, runs it, and then reinstates the state as it was before the computation ran.
Real computations treat their state linearly. We have proved that the translation from
�ML to EEC corresponding to the linear state monad S (!A⌦S is fully complete [5].

This result derives from the following sequence of type isomorphisms known from
linear type theory and also valid in EEC

!A ⇠= 1 ! !A ⇠= ! 1 ( !A ⇠= ! 1 ( ! (A ⇥ 1) ⇠= ! 1 ( !A⌦ ! 1

Taking S to be ! 1 we see that !A ⇠= S (!A⌦S. That is, in EEC any monad is a linear
state monad.

The CPS translation arises from the continuation monad TA = (A ! R) ! R.
It is well-known that this translation is not fully complete. In fact, the translation is
often used to introduce control effects via e.g. the call/cc operator (which, under the
Curry-Howard isomorphism corresponds to Peirce’s law). Interestingly, the image of
the translation can be described as those terms that use their continuation linearly, i.e.,
those that can be typed using the linear-use state monad TA = (A ! R) ( R. This
result was proved for the resulting translation into DILL by Hasegawa [3], but when
considered as a translation into EEC the result arises in a surprising way: we have
proved that linear CPS translation from �ML to EEC extends along the inclusion of
�ML to EEC to a translation from EEC to itself. Moreover, this extension is involutive,
i.e., is its own inverse!

Semantically, the linear-use cps translation from EEC to EEC arises as a dual model
construction related to Lawvere’s dual monad construction [4]. The involutivity of the
translation can be derived from involutivity of the dual monad construction.
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New Logical Systems Based on Natural Language

Lawrence S. Moss

abstract for consideration by the Scandinavian Logic Society

The past Logic is one of the oldest subjects in the western intellectual tradition, initiated by
Aristotle and serving as a component of the medieval trivium. Around 1900, the field of logic
became heavily mathematical, and indeed today there are whole fields of mathematics which
are o↵shoots of logic. However, in this talk I am not so concerned with the interaction of logic
and mathematics but rather with the more primary connection of logic and language.

The present I have been constructing logical systems which allow us to represent logical
arguments in natural language, or something approximating it, directly, without translation
to first-order logic. Indeed, the goal is to work as close to the “surface” forms as possible
and to have decidable and complete logical systems. The chart on the next page is a map of
the prominent systems. Listed a number of tiny pieces of English with names like S, R, etc.
The line marked “Aristotle” separates the logical systems above the line, systems which can
be profitably studied on their own terms without devices like variables over individuals, from
those which cannot. For example, the system S is Aristotle’s syllogistic; it contains sentences
such as All men are mortals and Some woman is a senator. The system R extends this to a
bigger fragment containing verbs. (“R” stands for relation.) So R would contain Some dogs
chase no cats. The yet larger system RC would contain All who love all animals love all cats.
To see that logic in this system is not exactly trivial, verify that in the most natural semantics

All insects are animals |= All who fear all who love all insects fear all who love all animals

The languages in the chart with the dagger such as S† and R† are further enrichments which
allow subject nouns to be negated. This is rather un-natural in standard speech, but it would
be exemplified in sentences like Every non-dog runs. The point: the dagger fragments are
beyond the Aristotle boundary in the sense that they cannot be treated by the relatively simpler
syllogistic logics. The only known logical systems for them use variables in a key way. For
example, here is a derivation in RC†(trans):

[9(sweet, bigger)(x)]3

[bigger(x, y)]2
[kumquat(z)]1

[sweet(y)]2 8(sweet,8(kumquat, bigger))

8(kumquat, bigger)(y)
8E

bigger(y, z)
8E

bigger(x, z)
trans

8(kumquat, bigger)(x)
8I1

8(kumquat, bigger)(x)
9E2

8(9(sweet, bigger),8(kumquat, bigger))
8I3
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S� S� adds “at least as many as”
R

RC

RC(tr)
RC(tr, con)

R†

RC†

RC†(tr)

RC†(tr, con)

FOL

FO2 + trans

FO2

first-order logic

FO2 + “R is transitive”

FO2 is 2 variable first-order logic

† adds full noun-negation

RC = R + relative clauses

R is the relational syllogistic

RC + comparative adjectives
RC(tr) + opposites

S + full noun-negation

S: all/some/no p are q

It corresponds to an inference: assuming that all sweet fruit are bigger than all kumquats,
everything which is bigger than some sweet fruit is bigger than all kumquats. The logical
system for this language is a natural deduction system. It comes from [6]; an early paper in
this direction is Fitch [1].

The biggest language in the chart is RC†(tr, con). It has transitive verbs, relative clauses,
comparative adjective phrases (like bigger than) and their converses (smaller than). This is
already a fairly big fragment. From a logical perspective, one interesting fact about it is that it
does not lie in FO2, the 2-variable fragment of first-order logic. However, the validity problem
for it and all other the systems below the “Church-Turing” boundary are all decidable.

The web site http://logicforlanguage.blogspot.com/ contains more on the topic of
natural logic, including a set of lecture notes and accompanying pdf files of slides from a course.
One can also see the reference mentioned at the end of this submission.

Specific contribution The talk at SLS will include a discussion of Ivanov and Vakarelov’s
paper [3]. This paper presents a logical system which goes beyond RC†(con) in having a full
relational repertoire, including boolean combinations of binary relations, and also a primitive
construct for the converse of a relation. In their language, one can directly represent inferences
such as

There is some dog who chased every cat ` Every cat was chased and bit by some dog

with the second sentence interpreted using the subject wide scope. Their system is not a
natural deduction system with individual variables, but it uses a method coming from modal
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logic; specifically, from the region-based theory of space. My contribution is to re-work their
logic along the lines of my earlier paper [6]. There are reasons for doing this re-working.
In addition, I will treat comparative adjectives interpreted by transitive relations, as in the
“kumquat” example above. The importance of the resulting logic is that it is the largest known
decidable logic for representing linguistic inference.

The talk (and the area of natural logic) makes connections to algebraic logic (the proof
techniques for completeness borrow from it), computational complexity theory (see [7]), proof
theory [2], modal logic (via translation to boolean modal logics), the history of logic, and
linguistic semantics. The overall point that linguistic inference should be captured in decidable
logics is a controversial one that never fails to stimulate a discussion.

Future This talk presents natural logic as a developer of new systems of logic with an eye
towards natural language. In a sense, the project goes back to Aristotle’s syllogisms. However,
we have in mind a much broader and deeper set of research questions: whereas syllogistic
reasoning only applies to arguments in very restricted forms, we would eventually like to study
reasoning as close to “surface forms” (real sentences) as possible. Instead of limiting attention to
categorical (yes/no) reasoning, we eventually hope to develop connections to default reasoning
and reasoning under uncertainty. Indeed, we feel that natural logic should be connected to
the field of textual inference, where one attempts to automatically infer the meaning of texts
and to answer questions. In a sense, natural logic would like to present a version of natural
language semantics based on computational linguistics, rather than the tools coming from the
logical exploration of mathematics. These topics, however, are for the future.

References

[1] Frederic B. Fitch. Natural Deduction Rules for English. Philosophical Studies, 24:2 (1973),
89–104.

[2] Nissim Francez and Roy Dyckho↵. Proof-Theoretic Semantics for a Natural Language
Fragment. To appear in the Journal of Logic, Language, and Information.

[3] Nikolay Ivanov and Dimiter Vakarelov. A System of Relational Syllogistic Incorporating
Full Boolean Reasoning, ms. 2011.

[4] Lawrence S. Moss. Completeness Theorems for Syllogistic Fragments. In F. Hamm and
S. Kepser (eds.) Logics for Linguistic Structures, Mouton de Gruyter, 2008, 143–173.

[5] Lawrence S. Moss. Syllogistic Logics with Verbs, Journal of Logic and Computation, special
issue on papers from Order, Algebra and Logics, Vol. 20, No. 4, 2010, 947–967.

[6] Lawrence S. Moss. Logics for Two Fragments Beyond the Syllogistic Boundary, in Fields
of Logic and Computation: Essays Dedicated to Yuri Gurevich on the Occasion of His 70th
Birthday, A. Blass, N. Dershowitz, and W. Reisig (eds.), LNCS, vol. 6300, Springer-Verlag,
2010, 538–563.

[7] Ian Pratt-Hartmann and Lawrence S. Moss. Logics for the Relational Syllogistic. Review
of Symbolic Logic Vol. 2, No. 3, 2009, 647–683.

3

92



A.N. Prior’s Contributions to the Rise of Temporal Logic  

in the 1950s and 1960s:  

New Insights Based on the Study of Prior’s Nachlass 

Abstract 

 

Peter Øhrstrøm 

Aalborg University 

E-mail: poe@hum.aau.dk 

 

Arthur Norman Prior (1914-69) must be said to be the founder of modern tense-logic. He revived 

the medieval attempt at formulating a temporal logic for natural language. Therefore his work also 

established a paradigm applicable to the exact study of the logic of natural language. Prior held that 

logic should be related as closely as possible to intuitions embodied in everyday discourse, and his 

tense logic can indeed account for a large number of linguistic inferences. In the 1950s and 1960s 

he laid out the foundation of tense-logic and showed that this important discipline was intimately 

connected with modal logic. Prior also argued that temporal logic is fundamental for understanding 

and describing the world in which we live. He regarded tense and modal logic as particularly 

relevant to a number of important existential and theological problems. Using his temporal logic, 

Prior analysed the fundamental question of determinism versus freedom of choice. 

A.N. Prior wife, Mary Prior, has described the first occurrence of this idea of temporal: "I 

remember his waking me one night, coming and sitting on my bed, and reading a footnote from 

John Findlay's article on Time, and saying he thought one could make a formalised tense logic." 

This must have been some time in 1953. Findlay's considerations on the relation between time and 

logic in this footnote were not very elaborated, but it gave Prior the idea of developing a formal 

calculus which would capture this relation in detail. For this reason Prior called Findlay "the 

founding father of modern tense logic". But there are, in our opinion, certainly not sufficient 

reasons for viewing Findlay as the founder of tense logic. The honour of being the founder must 

without doubt be attributed to Prior himself. With his many articles and books on questions in tense 

logic he presented a very extensive and thorough corpus, which still forms the basis of tense logic 

as a discipline. Findlay's major merit in tense logic is to have had the luck of inspiring Prior to 

initiate the development of formal tense logic. 

During the 1940s and the 1950s Prior often worked on questions in the history of logic. From 1952 

to 1955 he had seven articles on the history of logic published. In particular, he became very 

interested in the Master Argument of Diodorus Kronos and the so-called Diodorean logic, primarily 

Diodorus' definition of implication. Prior seemed to realise that it might be possible to relate 
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Diodorus' ideas to contemporary works on modality by developing a calculus which included 

temporal operators analogous to the operators of modal logic. 

A.N. Prior spent 1956 in Oxford, where he had been invited to give the ‘John Locke lectures’ of 

that year. These lectures formed the basis of Prior's book Time and Modality (published in 1957), 

the first work in which Prior’s logic of time and modality was presented systematically.  

The reactions on Time and Modality led to the development of the branching time models, first 

suggested by Saul Kripke. Prior later developed the idea further taking Ockhamistic and Peircean 

ideas into account. 

The Handbook of the History of Logic, vol. 7 [Gabbay and Woods 2006] includes a chapter on 

“A.N. Prior’s logic” [Øhrstrøm and Hasle 2006a] as well as a chapter entitled “Modern Temporal 

Logic: The Philosophical Background” [Øhrstrøm and Hasle 2006 b]. These chapters offer a 

general account of the rise of temporal logic. However, further studies of the sources have led to 

significant new insights regarding the development of temporal logic. In particular, the systematic 

study of Prior’s Nachlass (including is correspondence) kept at the Bodleian Library in Oxford has 

led to a deeper understanding of how and why temporal logic was developed. 

In this paper I shall concentrate on the following topic: 

• The early studies of Diodorean logic 

• Prior’s preparation for the ‘John Locke lectures’ 

• The early discussions on the idea of branching time 
• Prior’s further development of branching time models using Ockhamistic and Peircean ideas 

It will be argued that the study of Prior’a Nachlass can provide new insights regarding these topics. 
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Mathematics and Logic

Ulf Persson
professor of mathematics at
Chalmers University of Technology
Göteborg, Sweden

Mathematical Platonism is intellectually indefensible and psychologically inescapable
according to the Russian mathematician Yuri Manin ([5]). The issue is of course metaphys-
ical and can only be approached in a philosophical vein. There is of course a large body of
work addressing the subject, and it is not my aim to give a survey, instead I would like to
present a personal and idiosyncratic view by virtue of my profession as a mathematician,
especially when it comes to the relation between mathematics and logic, where my views
resonate with those of C.S.Peirce ([6]).

Platonism is nowadays disparaged as a hopelessly outmoded view, but in my opinion,
the arguments against it, especially if phrased in some formal way, as with Benacerraf ([1])
strike me as silly. Obviously you are as unable to argue against Platonism in a strict math-
ematical way, as you are unable to argue for it by deductive mathematical arguments. It is
a matter of faith, and thus to many a source of comfort that many influential mathemati-
cians have supported it ([7]). Although it is assumed that mathematicians are Platonists
when doing mathematics, they tend to be divided when it comes to a public stand, as
illustrated by a recent debate ([2]).

In mathematical philosophy Platonism is often contrasted against intuitionism, for-
malism and nominalism. There are of course other modern approaches based on evolution
and thus in practical terms on psychology (something that scandalized Frege ([3])). To
me this bespeaks a confusion of categories, obviously those approaches are very differ-
ent in character and have a high degree of overlap. This has made me question whether
mathematical philosophers are qualified to expound philosophically on mathematics.

To a mathematician what may shake his or her belief in the timeless Platonic character
of mathematics are the higher hierarchies of cardinals, which never enter into serious
mathematics. Could it be that set-theory is merely a language for mathematics and that
it by itself contains few, if any, serious mathematical problems?([4])

There are of course many variants of Platonism, and the debate is somewhat muddled
because it is not always made clear that there is a distinction between the human practice
of mathematics and mathematics itself, although I admit that proposing that distinction,
by itself presupposes some platonistic persuasions.

I hope that my talk will be somewhat provocative.
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Two-valued semantics for �ukasiewicz’s 3-valued
logic �3

Gemma Robles

�ukasiewicz’s three-valued logic �3 was defined in a two pages paper in 1920
(cf. [6]). The philosophical motivation of the proposed logic and the interpreta-
tion of the third truth value are clearly stated: “The indeterministic philosophy
[...] is the metaphysical substratum of the new logic” ([6], p. 88). “The third
logical value may be interpreted as “possibility”” ([6], p.87). �3, understood
as the set of all three valued formulas, was first axiomatized by M. Wajsberg
in 1931 (see [14]). Since then, di�erent axiomatizations of the finite-valued
�q-logics have been proposed. Among those in a Hilbert-style form, the ones
by Tokarz and Tuziak are to be remarked (see [10], [11]). Tokarz axiomatizes
�q by adding one-variable axioms to �$ as axiomatized by Wajsberg. Tuziak,
on the other hand, presents particular axiomatic systems for each q by gen-
eralizing a completeness theorem by Pogorzelski and Wojtilak. Concerning the
axiomatization of �3, Avron provides a simple one which is, in addition, a “well-
axiomatization” (cf. [1]). We, on our part, will define a simple axiomatization
of �3 by extending with independent axioms Routley and Meyer’s basic positive
logic B+ (cf. [8]). On �ukasiewicz logics and many-valued logic in general, cf.,
e.g., [7], [11].
Now, let us precisely state what “�ukasiewicz’s three-valued logic �3” refers

to in this paper.
As it is well known, a logic is, according to the Polish logical tradition,

equivalent to a consequence relation of some kind, provided it fulfills Tarski’s
standard conditions. As Wojcicki puts it: “a logic is defined by its derivability
relation rather than by its sets of theorems” ([15], p. 202). In this sense,
there are essentially (but not exclusively), two ways of defining a (semantical)
consequence relation given a set of truth-values (i.e., a set with an ordering
relation �) and a set of functions I from the set of w�s to y:

1. For any set of w�s [ and w� D, [ ² D i� for all i 5 I , if i([) 5 G,
then i(D) 5 G (G is the set of designated values).

2. For any set of w�s [ and w� D, [ ² D i� for all i 5 I , i([) � i(D)
[i([) = inf {i(E) : E 5 [].

It is commonly understood that �ukasiewcz logics are those determined
by the relation defined in (1). But, as Wojcicki remarks, ([16], §13), the
�ukasiewicz logics determined by the relation defined in (2) also deserve to
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be called �ukasiewicz logics ([16], p.42). Actually, the referred author con-
cludes that there are at least two kind of �ukasiewicz logics: truth-preserving
�ukasiewicz logics (determined by the relation defined in (1)) and well-determined
�ukasiewicz logics (determined by the relation defined in (2)). Consequently,
�ukasiewicz’s three-valued logic �3 is here understood in three di�erent senses:

i. As the set of three-valued valid formulas according to the matrices M�3
defined by �ukasiewicz.

ii. As truth-preserving three-valued �3 (determined by the relation (1) in
M�3).

iii. As well-determined three-valued �3 (determined by the relation (2) in
M�3).

The aim of this paper is to provide a two-valued semantics for the three
versions of �3 recorded above with (equivalently) under-determined or over-
determined interpretations. An under-determined interpretation is a function
from sentences to the proper subsets of the set {W> I}; and an over-determined
interpretation is a function from sentences to a non-empty subset of {W> I} (W
and I represent truth and falsity in the classical sense). Thus, under-determined
interpretations assign W , I or neither to sentences; and over-determined inter-
pretations assign W , I or both. It will be shown that �3 (in the sense (i)) can
be dually interpreted either by under-determined or else over-determined inter-
pretations. Then, consequence relations equivalent to those defined in (1) and
in (2) (referred, of course, to the matrices M�3) will be defined by under(over)-
determined interpretations. A consequence of these results is that �ukasiewicz’s
third-value can legitimately be thought of as equivalently representing either in-
definiteness or else contradictoriness.
The two-valued semantics with either “gaps” or “gluts” here defined is based

on Dunn’s semantics for first degree entailments (see [4], [5]), that goes back to
Dunn’s doctoral dissertation (see [3]). As noted by Dunn himself ([4], p.150)
essentially equivalent semantics are defined in [9] and [13].
On the other hand, �3 is axiomatized as an extension of B+ following Brady’s

strategy for axiomatizing many-valued logics by employing two-valued under-
determined and/or over-determined interpretations (cf. [2]).
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Dynamic Consequences for Soft Information
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This paper studies the so-called dynamic conse-
quence relation generated by lexicographic updates in
dynamic epistemic logic (DEL). Our goal is to provide
a sound and complete sequent calculus for this con-
sequence relation, to study its proof-theoretic prop-
erties, and to relate it to known sub-structural proof
systems.

This extended abstract presents the main ideas
behind this project, and states some of the prelim-
inary results already obtained. The main questions
remain open, though. Our goal is to present and
discuss them with the audience of the Scandinavian
Logic Symposium.

Dynamics of Soft Information

Dynamic epistemic logic (DEL) is a general logical
framework to study dynamic information changes in
social situations—see [15] and [11] for an introduc-
tion. In its most common form, the gist of DEL is to
enrich propositional modal languages with “dynamic
operators” that describe the e↵ects or consequences
of certain “epistemic actions” in a given situation.
Epistemic actions are events that only a↵ect the in-
formation available in a given situation, for instance
observing certain states of a↵airs or learning about
them from a truthful and trusted source.1

Here we are interested in the dynamics of so-called
soft informational attitudes. These are attitudes, like
beliefs, which are revisable, might be mistaken, and
might not be fully introspective. Our starting point
is thus a static modal language expressive enough to
encode conditional beliefs, i.e. modalities of the form

B�
i  , to be read “conditional on �, agent i believes

that  .” Mainly for technical reasons, we work in
the following language LS , in which conditional be-
liefs are definable [2].2

� := p | ¬� | � ^ � | [⇠]i� | []i�

Formulas of the form [⇠]i� and []i� should be read,
respectively, as “agent i knows that �” and “agent i
safely believes that �.” We write h⇠ii� for ¬[⇠]i¬�
and hii� for ¬[]i¬�. Conditional beliefs B�

i  are
then defined as follows:

B�
i  ,df h⇠ii�! h⇠ii(� ^ []i(�!  ))

This language is interpreted in epistemic-
plausibility models, which are Kripke structures [4]
equipped with a collection of partial pre-orders i

and a valuation V assigning to each state w 2
W a subset of a given set of atomic propositions.
The truth conditions for the modalities then run as
follows—see again [2] for details:

• M, w |= []i� i↵ M, w |= � for all w0 i w.

• M, w |= [⇠]i� i↵ M, w |= � for all w0 such that
either w0 i w or w i w0.

Just like attitudes, epistemic action can also be
“soft”. These are informational events that are re-
versible, not necessarily public nor truthful. A num-
ber of such soft epistemic actions have been studied
in the literature, for instance the so-called radical and
conservative upgrade mechanisms—see e.g. [11].

Here we work in an extension of general dynamic
epistemic logic developed in [2], where soft epistemic

1Epistemic actions are usually distinguished from “ontic events”, i.e. events, like turning on the lights, that change some
non-informational facts. Ontic events have also been studied in DEL, c.f. [12], but we bracket them here.

2All along we assume a finite set N of agents and denote its elements i, j, etc.
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actions are encoded in so-called event models and up-
date with such actions are computed using a lexico-
graphic update rule. Roughly, an event model is a
Kripke structure equipped with a collection of pre-
orders, where that the elements of its domain are
thought of as basic events or programs3 and instead
of the standard valuation each event e gets assigned
a pre-condition, written pre(e), described by a for-
mula of the static language defined above. The lexi-
cographic update rule then takes pairs of epistemic-
plausibility and event models M, w and E , e and re-
turn the updated model M ⌦ E where the domain is
the set of pairs (w, e) such that M, w satisfies the pre-
condition of e, written M, w |= pre(e) and the valu-
ation is taken directly from M, i.e V 0(w, e) = V (w).
The adjective “lexicographic” comes from the update
rule for the pre-orders i, which gives priority to the
events:

(w0, e0) 0
i (w, e) i↵ either e0 <i e or e ⇠=i e0 and

w0 i w.

With this in hand the static language LS is usually
extended with modalities of the form [E , e]�, to be
interpreted as follows:

• M, w |= [E , e]� i↵ if M, w |= pre(e) then
M ⌦ E , (w, e) |= �.

This dynamic language has been shown in [2] to be
expressive enough to capture all soft update opera-
tions that have been so far studied in the DEL liter-
ature.

Dynamic Consequence: Idea and Moti-
vations

Peter Gärdenfors once said that belief change and
(nonmonotonic) reasoning are “two sides of the same
coin” [6]. This idea, by now widely accepted in de-
fault logic, also underlies the notion of dynamic con-
sequence. Information changes, soft or hard, are seen
as licensing specific kinds of inferences, that is in-
ducing a specific consequence relation. For DEL this
idea has been first proposed by van Benthem [10] in
the context of public announcement logic. The idea
is this. Public announcement logic contains formula
[!�] , to be read “ holds after the announcement
of �”. One can use these formulas to define a conse-
quence relation as follows:

�1, ...,�n |=dyn  i↵ M, w |= [!�1]...[!�n] for all
pointed models M, w.

The study of such dynamic consequence relations has
been taken up by a number of authors. Cordón-
Franco et al. [5], investigate a generalization of the
above in which the class of models where the an-
nouncements are made is restricted by a certain set
of background formulas �, and Aucher [1] provides
a sounds and complete axiomatization of a dynamic
consequence relation defined not only for public an-
nouncements, but for the general operation of “prod-
uct update” in full dynamic epistemic logic. [15]

Dynamic consequence relations are interesting for
a number of reasons. Frist, dynamic consequence re-
lations unveil a deep connection between logics for in-
formation dynamics and sub-structural logic [8]. In-
deed, from a proof-theoretic point of view dynamic
consequences are highly sub-structural.

Fact (van Benthem [10]). All classical structural rules
[contraction, weakening, uniform substitution, etc]
fail for |=dyn.

In the same paper van Benthem shows that |=dyn

can nevertheless be completely axiomatized by a
number of inference rules reminiscent of rules for non-
monotonic reasoning. These rules, however, are not
valid for the generalizations investigated by Cordón-
Franco et al., and the sound and complete proof sys-
tem devised by Aucher indeed lacks all the classical
structural rules.

Dynamic consequence relations are also interest-
ing for dynamic epistemic logic itself. By now the
standard technique to axiomatize DEL-validities is to
use so-called reduction axioms, which essentially show
how to analyze, compositionally, the e↵ects of epis-
temic action in terms of static conditions in the un-
derlying static (and event) model(s).4 This method-
ology, however, says very little about the logical oper-
ations on the epistemic actions themselves, except for
certain forms of contractions. Valid and invalid struc-
tural rules in dynamic consequences, on the other
hand, do make explicit logical operations on the epis-
temic actions. The study of dynamic consequence
thus unveil logical principles governing the dynamic
of information that were up to now implicit by the re-
duction axiom methodology. Furthermore, the study
of dynamic consequence relations puts DEL in histor-
ical perspective. As noted in Cordón-Franco et al., it

3This domain is usually assumed to be finite.
4Of course, not all DEL-like systems are prone to this reduction technique. Well-known examples are public announcements

in S5 + Common knowledge [3] and the logic of “epistemic protocols” [13].
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constitutes a return to the original motivation behind
dynamic semantics [9, 16], arguably at the source of
DEL.

Dynamic Consequence for Soft Infor-
mation

In this paper we take up the task of extending and/or
adapting the results in Aucher [1] to dynamics of soft
information. More precisely, our goal is, first to pro-
vide a sound a complete axiomatization of the dy-
namic consequence relation defined as follows:

�1,�2 ` �3 i↵ M ⌦ E , (w, e) |= �3 for any
epistemic-plausibility model M, w and event models

E , e such that M, w |= �1 ^ pre(e) and E , e |= �2.

The formulas �1 and �3 in a sequent �1,�2 ` �3 are
formulas of LS , and the updated model M⌦E is ob-
tained by lexicographic update. �2 is a formula of
a new language LE , whose syntax extends LS with
a modality [<]i that describes the strict version of
[]i.

5 This language is interpreted directly on event
models. This two-language re-description of standard
DEL6 comes from Aucher [1], and is natural given our
goal of capturing the logical operations on epistemic
actions that are allowed by such sequents.

Fact. The set of axioms and rules in Table 1 is sound
for the dynamic consequence relation `.

The axioms and rules R2 and R3 are imported di-
rectly from Aucher’s calculus. Dynamic consequence
for soft information exhibits the same sub-structural
phenomena than its correspondent for product up-
date. The rules R4, R5 and R6 capture the case dis-
tinction built-in the lexicographic update. It should
be noted, furthermore, that read bottom-up these
rules also encode a reduction from complex to sim-
pler sequent, echoing the reduction methodology in
standard DEL while keeping explicit how these oper-
ations also bear epistemic actions.

We conjecture this set of axiom and rule is also
complete, but at the moment of submitting this ab-
stract we are still working on the proof. Incidentally,
this proof also makes heavy use of so-called “Fine
formulas” developed for co-algebraic views on modal
logics [7, 17], which are of independent interest.
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?,�2 ` �3 A1 �1,? ` �3 A2
�1,�2 ` > A3 p,�2 ` p A4
¬p,�2 ` ¬p A5 ¬Pre(p), p ` ? A6

�1 ^  1,�2 ` �3 ¬ 1,�2 ` �3
R2:

�1,�2 ` �3

�1,�2 ^  2 ` �3 �1, ¬ 2 ` �3
R3:

�1,�2 ` �3

>,�2 ` �3 �1,�4 ` �3
R4:

[]i�1, [<]Ei �2 ^ []Ei �4 ` []i�3

>,�2 ` �3
R5: h⇠iipre(p), h<iEi (�2 ^ p) ` hii�3

�1,�2 ` �3
R6: hii(�1 ^ pre(p)), hiEi (�2 ^ p) ` hii�3

Table 1: A sound set of axioms and rules for dynamic consequences for soft information.
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Deep relevant logics not included in relevant
logic R

F. Salto*, G. Robles**, J. M. Méndez***

As it is well known, according to Anderson and Belnap, the following is a
necessary property of any relevant logic S (see [1]):

Definition 1 (Variable-sharing property –vsp) If D $ E is a theorem
of S, then D and E share at least a propositional variable.

In [2], Brady strengthens the vsp as follows.

Definition 2 (Depth relevance property –drc) If D$ E is a theorem of
S, then D and E share at least a propositional variable at the same depth.

The depth of an occurrence of a subformula E in a formula D “is roughly
the number of nested ‘$”s required to reach the occurrence of E in D” ([2], p.
63). And logics with the drc are named “deep relevant logics”.
The definition of the drc is motivated as a necessary condition for strong

paraconsistent logics. And in the cited paper [2], Brady’s strategy is to restrict
with the dcr the class of logics with the vsp verified by Meyer’s Crystal Matrix
CL. The matrix CL is axiomatized by adding to relevant logic R (see [1]) the
following axioms (see [4], pp 85, �):

CL1. (¬D aE)$ [(¬D$ D) b (D$ E]

CL2. D b (D$ E)

Brady chooses the logic DR (presumably an abbreviation for “Depth Rele-
vance”) as the preferred one among those definable from CL as indicated. The
logic DR is the result of adding to Routley and Meyer’s basic logic B (cf., e. g.,
[5]) the following axioms, rule and metarule (see [2], [3]):

DR1. [(D$ E) a (E $ F)]$ (D$ F)

DR2. D b ¬D
DR3. D, ¬(D$ ¬D)
DR4. D, E , (F bD)$ (F bE)

Now, CL1 and CL2, which are, obviously, acceptable from the vsp point
of view, are not admissible from the drc one. Consequently, it is reasonable to
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think that all deep relevant logics definable form CL are included in relevant
logic R.
The aim of this paper is to generalize Brady’s strategy by showing how to

define a class of deep relevant logics from each weak relevant matrix. “Weak
relevant matrices” are defined in [6] and are characterized as matrices verifying
only logics with vsp. It will be proved that there are deep relevant logics not
included in R. Actually, not included in R-mingle, which, as it is known, is a
logic lacking the vsp axiomatizable by adding to R the axiom “mingle” (see [1]):

RM1. D$ (D$ D)

That is, it will be shown that there are deep relevant logics well far o� the
spectrum of standard relevant logics.
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DYNAMIC MODALITIES
Extended abstract

Dimiter Vakarelov, Sofia University
e-mail: dvak@fmi.uni-sofia.bg

Introduction.
In this paper we introduce a new modal logic called LDM (Logic with

Dynamic Modalities). It contains four modalities of dynamic nature with
the following informal readings:

– §8 – always necessary, necessary in all situations,
– §9 – sometimes necessary, necessary in some situations,

and their duals:
– ß8 – always possible, possible in all situations, and
– ß9 – sometimes possible, possible in some situations.

Let us note that such modalities are frequently used in ordinary language.
For instance, when the doctor prescribes some medicines, for some of them he
says that they should be taken every day (”always necessary”) and for others,
that they should be taken only if some special symptoms occur (”sometimes
necessary”). Of course some other names for these modalities are possible,
for instance §8 – ”absolute necessity”, ”strong necessity”, and §9 – ”weak
necessity” and similar names for their duals. We call such modalities ”dy-
namic” because they are characteristics of changing necessity and possibility,
so in this sense LDM is related to propositional dynamic logic (PDL), but at
the same time it is quite diÆerent from it. Temporal logics with modalities
having similar informal interpretation but with diÆerent formal semantics,
have been studied semantically by Vladimir Rybakov [1]. The full version of
this paper is [2].

Syntax and semantics.
The language of LDM is an extension of the language of propositional

logic with four unary modalities §8,§9,ß8,ß9 with the standard definition
of a formula. We consider standard notations for propositional connectives:
¬,^,_,),,,?,>.

The semantics is based on the so called dynamic frames, which are struc-
tures in the following form: (W, {Ri : i 2 S}), where W 6= ?, S 6= ? and
for each i 2 S, Ri is a binary relation in W . The elements of W are called,
as usual, possible worlds, and the elements of S are considered as situations.
So, for each situation i 2 S we associate a binary relation Ri µ W 2 which
describes the local necessity and possibility related to i. Note that we do not
have in the language formal operators corresponding to these relations sim-

1

110



ply because we allow their number (finite or infinite) to change from frame
to frame.

A mapping v(x, p) which assigns to each propositional variable p and
x 2 W the values 0 (falsity) and 1 (truth) is called a valuation and M =
(W, {Ri : i 2 S}, v) is called a model. The extension of v to arbitrary formulas
is by induction on the complexity of formulas. The truth conditions of non-
modal connectives in a model M are as in the ordinary Kripke semantics and
for the modal connectives they are as follows:

v(x,§8A) = 1 iÆ (8i 2 S)(8y 2 W )(xRiy ! v(y, A) = 1),

v(x,§9A) = 1 iÆ (9i 2 S)(8y 2 W )(xRiy ! v(y, A) = 1),

and dually for ß8 and ß9:

v(x,ß8A) = 1 iÆ (8i 2 S)(9y 2 W )(xRiy and v(y, A) = 1),

v(x,ß9A) = 1 iÆ (9i 2 S)(9y 2 W )(xRiy and v(y, A) = 1).

We adopt the standard definitions of a formula to be true in a model, in
a frame, and in a class of frames.

The formal semantics shows that we may take the pair §8,§9 as prim-
itives and the other two to be defined: ß9A =def ¬§8¬A, and ß8A =def

¬§9¬A, or vice versa.

Axiomatization.
We propose the following axiom system for LDM:

Axiom schemes for LDM.

(I) Axiom schemes for classical propositional logic.

(II) Axiom schemes for §8 and §9:

(K§8) §8(A ) B) ) (§8A ) §8B),

(Mono§9) §8(A ) B) ) (§9A ) §9B),

(§8 ! §9) §8A ! §9A.

Rules of inference: Modus ponens (MP): A,A)B
B

,

Necessitation for §8 (N): A
§8A

.
Lemma 1.(i) The following rules are provable in LDM:

(ia) (MONO §8) A)B
§8A)§8B

, (MONO §9) A)B
§9A)§9B

,

(ib) The rule of replacement of equivalents.

(ii) Examples of theorems and non-theorems

(iia) The formula A = §9(p ) q) ) (§9p ) §9q) is not theorem of
LDM (and hence §9 is not normal modality).

(iib) The formulas §9> and §8A^§9B ) §9(A^B) are theorems of
LDM.
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Note that it follows from the axiomatization of LDM and Lemma 1 that
§8 is a normal modality, while §9 is a non-normal monotonic modality.

Completeness and decidability.
Theorem 1. [Completeness theorem for LDM]. Let ß be a set of formulas
and A be a formula. Then:

(i) (Strong form) ß is consistent √! ß has a model.

(ii) (Weak form) A is a theorem √! A is true in all frames.

Idea of the proof.The proof goes through a canonical construction. The
fact that §8 is a normal modality makes possible to use its canonical model
construction and to divide in a suitable way the canonical relation R§8 into
a set {Ri : i 2 S} of binary relations, and to use them for defining the
canonical model for the logic.

Theorem 2.[Decidability of LDM] The logic LDM possesses the final model
property and hence is decidable.

Idea of the proof. The proof goes trough a suitable modification of the
classical filtration method simulating the construction of completeness proof.

Concluding remarks.
LDM is the minimal logic corresponding to the class of all dynamic frames.

One can consider diÆerent classes of dynamic frames and the corresponding
logics. So all standard questions for a given class of logics, like definability,
completeness, complexity, possible relations to known classes of logics, are
open. Applications to some concrete applied domains and systems for prac-
tical reasoning and knowledge representation are also possible and are in our
plans for the future.

Thanks. This work was partially supported by the contract No176/2012
with Sofia University. Thanks are due to the anonymous referee for pointing
out some misprints.
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Remarks on Proof-Theoretic Semantics
of Intensional Transitive Verbs

Bartosz WiÍckowski
bartosz.wieckowski@uni-greifswald.de

Universität Greifswald, Germany

Abstract

Sentences which contain intensional transitive verbs (e.g., ‘seek’, ‘owe’) give rise to an ambiguity as they
allow for both a specific and an unspecific reading. Consider

(1) John seeks a baby-sitter.

On the specific reading John is looking for a particular baby-sitter, whereas on the unspecific reading he is
looking for a baby-sitter but not for a particular one. My project for the presentation will be to contribute
to the clarification of the semantics and the logical behavior of intensional transitive verbs by means of
an MLTT-formalism [6] which integrates subatomic derivation [5]. This abstract outlines the main ideas
concerning the analysis of intensional transitives and presents simple examples. For the details of the
formalisms the reader is referred to [5; 6].

1. Subatomic derivation. In Prawitz-style proof-theoretic semantics the meaning of an atomic sentence
is determined by a set of derivations in an atomic system which contain that sentence as a conclusion
[2; 3]. These systems perform a role analogous to that of models in model-theoretic semantics in that
they determine the valid atomic sentences. Subatomic systems [5] perform this role as well, but they do
so by means of normalizing subatomic introduction and elimination rules for atomic sentences. Roughly,
the introduction rule determines when an atomic sentence can be inferred from the term assumptions
associated with the terms (i.e., individual (or nominal) constants and atomic predicates) from which it is
composed. The term assumptions for a term are, in eÄect, sets of atomic sentences which contain that
term. The elimination rule, by contrast, determines how term assumptions can be inferred from atomic
sentences. In view of a simple subatomic normal form theorem, these systems admit a proof-theoretic
account of the semantic behavior of first-order atomic sentences and their components.

2. Subatomic MLTT-formalism. In [6] a proof-theoretic semantics for a fragment of English within a type-
theoretical formalism is developed that combines subatomic systems for natural deduction with MLTT by
stating rules for the formation, introduction, elimination and equality of atomic propositions understood
as types (or sets) of subatomic proof-objects. The formalism is extended with dependent types in order
to allow for an interpretation of non-atomic sentences. In this formalism subatomic systems replace de-
notational model-theoretic bases which are traditionally used by MLTT-approaches to natural language
(see, e.g., [4]). The basic idea is to explain atomic propositions as constructive sets of tuples of association
functions which in a subatomic system serve to assign term assumptions to nominal constants and atomic
predicates of a first-order language. In this way atomic sentences and other subatomically sensitive natu-
ral language constructions receive a type-theoretical interpretation which does not appeal to denotational
bases (possibly accompanied by an epistemology of direct, e.g., visual, verification of atomic sentences),
but rests on derivations. In contrast to currently available proof-theoretic semantic frameworks for natural
language (e.g., [1], [4]), the formalism developed in [6] for (a fragment of) English allows to explain atomic
constructions in a compositional manner which in contrast to [1]) is “bottom-up”. Moreover, it is in a
position to interpret a wide range of natural language constructions (e.g., sentences containing internally
nested proper names, identity sentences, donkey sentences), in a rather fine-grained way. This granularity
can be exploited for the interpretation of intensional transitives.

3. Intensional transitives and subatomic natural deduction. In subatomically extended natural deduction
[5] the specific/unspecific distinction can be made precise in terms of the term assumptions for nominal
constants which are used in the derivations of the symbolizations of the ambiguous sentence. A nominal
constant will be said to be unspecific in case the term assumptions for it contain exactly the atomic
sentences which are composed from the elementary predicates which occur in the first-order symbolization
of the ambiguous sentence, otherwise it will be said to be specific. We may allow the special case in which
the term assumptions for a specific constant are only as specific as those for an unspecific one. In such
cases the distinction collapses.

Illustration: Let (9x)(Bx & Sjx) be the first-order symbolization of (1). In subatomic natural deduction
the unspecific reading of (1) can be represented by derivation (1u) and the specific reading by (1s):

1

113



(1u):

B{..., Bc, ...} c{Bc, Sjc}
atI

Bc

S{..., Sjc, ...} j{..., Sjc, ...} c{Bc, Sjc}
atI

Sjc
&I

Bc & Sjc
9I

(9x)(Bx & Sjx)

(1s):

B{..., Ba,...} a{..., Ba,Sja,...}
atI

Ba

S{..., Sja,...} j{..., Sja,...} a{..., Ba,Sja,...}
atI

Sja
&I

Ba & Sja
9I

(9x)(Bx & Sjx)

The derivations diÄer in that, first, the unspecific case (1u) contains the nominal constant c wherever the
specific case (1s) contains the constant a and, second, the term assumptions for c in (1u) are confined
to exactly the atomic sentences which are composed from the predicates which figure in the conclusion,
whereas the term assumptions for a contain more than these two atomic sentences.

4. Intensional transitives and subatomic MLTT. The type-theoretic meaning of (1), on the unspecific
reading, can be given by the following derivation which is subject to the provisio stated below it:

b1 2 b1 x 2 x
afI

hb1, xi 2 b1 · x
s2 2 s2 j 2 j r1(hb1, xi) 2 r1(hb1,xi)

afI
hs2, j, r1(hb1, xi)i 2 s2 · j · r1(hb1,xi)

⌃aI
(hb1, xi, hs2, j, r1(hb1, xi)i) 2 (⌃y 2 b1 · x)s2 · j · r1(y)

Provisio: x is such that, in addition to the usual conditions for (afI) (these conditions are omitted here),
the following condition is satisfied: x(x) = c and c(c) = {Bc, Sjc}. For the specific reading of (1) the
provisio diÄers in that x is such that: x(x) = a and {Ba, Sja} ⇢ a(a).

Inference (2) is an instance of the upward monotonicity inference pattern for search-verbs where both
premiss and conclusion are understood in the unspecific sense. This pattern is validated on the present
type-theoretical account.

(2)
John seeks a female baby-sitter

John seeks a baby-sitter

This instance corresponds to the type-theoretical derivation in Fig. 1.

In the presentation these ideas will be explained in detail, further applications to intensional transitives
will be discussed, and attention will be paid to the proof-theoretic approach to the semantics of intensional
transitives sketched in [1].
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