
Roskilde
University

Towards Abstract Interpretation of Epistemic Logic

Ajspur, Mai; Gallagher, John Patrick

Publication date:
2012

Document Version
Early version, also known as pre-print

Citation for published version (APA):
Ajspur, M., & Gallagher, J. P. (2012). Towards Abstract Interpretation of Epistemic Logic. Abstract from 8th
Scandinavian Logic Symposium, Roskilde, Denmark.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 14. Jul. 2025

Towards Abstract Interpretation of Epistemic Logic

Mai Ajspur and John P. Gallagher

CBIT, Building 43.2, Roskilde University, 4000 Roskilde, Denmark
{ajspur,jpg}@ruc.dk

Abstract. The model-checking problem is to decide, given a formula φ and an interpretation
M , whether M satisfies φ, written M |= φ. Model-checking algorithms for temporal logics
were initially developed with finite models (such as models of hardware) in mind so that M |=
φ is decidable. As interest grew in model-checking infinite systems, other approaches were
developed based on approximating the model-checking algorithm so that it still terminates
with some useful output.
In this work we present a model-checking algorithm for a multiagent epistemic logic contain-
ing operators for common and distributed knowledge. The model-checker is developed as a
function directly from the semantics of the logic, in a style that could be applied straight-
forwardly to derive model-checkers for other logics. Secondly, we consider how to abstract
the model-checker using abstract interpretation, yielding a procedure applicable to infinite
models. The abstract model-checker allows model-checking with infinite-state models. When
applied to the problem of whether M |= φ, it terminates and returns the set of states in M
at which φ might hold. If the set is empty, then M definitely does not satisfy φ, while if the
set is non-empty then M possibly satisfies φ.

1 Syntax and semantics of the logic CMAEL(CD)

We consider the logic CMAEL(CD) [1, 7] whose formulas φ ∈ Φ are defined by the following
grammar.

ϕ ::= p | ¬ϕ | (ϕ1 ∧ ϕ2) | DAϕ | CAϕ.

The variable p ranges over the set AP of atomic propositions, typically denoted by p, q, r, . . .;
the variable A ranges over the set of coalitions P+(Σ), which is the set of of non-empty
subsets of Σ, where Σ is a finite, non-empty set of (names for) agents, typically denoted by
a, b, The epistemic operators DA and CA are read as it is distributed knowledge among A
that . . . and it is common knowledge among A that . . . respectively. When A is a singleton
{a} we often write it as a subscript a instead of {a}, for example Da instead of D{a}.
The semantics of CMAEL(CD) is given in terms of coalitional multiagent epistemic models
(CMAEMs). A CMAEM is a tuple (Σ,S, {RDA}A∈P+(Σ), {RCA}A∈P+(Σ), L),
1. Σ is a finite, non-empty set of agents;
2. S 6= ∅ is a set of states;
3. for every A ∈ P+(Σ), RDA is an equivalence relation on S, satisfying the condition
RDA =

⋂
a∈ARDa ;

4. for every A ∈ P+(Σ), RCA is the transitive closure of
⋃

a∈ARDa ;
5. L : S 7→ P(AP) is a labelling function, assigning to every state s the set L(s) of atomic

propositions true at s.
Let S be a set. We define functions pre : ((S×S)×P(S))→ P(S) and p̃re : ((S×S)×P(S))→
P(S).

– pre(R)(X) = {s | ∃s
′
∈ X : (s, s

′
) ∈ R} returns the set of states having at least one of

their successors (in relation R) in the set X ⊆ S;

p1

p2

p3

infinite set of states property-based finite partition finite set of "abstract states"

S
A

Fig. 1. Property Based Abstraction

– p̃re(R)(X) = S \ pre(R)(S \ X) returns the set of states all of whose successors are in
the set X ⊆ S.

The functions pre and p̃re are defined by several authors (e.g. [6, 9]) and are also used with
other names by other authors (e.g. they are called pre∃ and pre∀ by Huth and Ryan [8]).

Semantic Function for CMAEL(CD). Let M be a CMAEM with states S; the following
function [[.]]M : Φ→ P(S) evaluates to the set of states of M where φ is true.

[[p]]M = {s | p ∈ L(s)}
[[¬φ]]M = S \ [[φ]]M [[φ1 ∧ φ2]]M = [[φ1]]M ∩ [[φ2]]M
[[DAφ]]M = p̃re(RDA)([[φ]]M) [[CAφ]]M = p̃re(RCA)([[φ]]M)

This is closely related to the standard semantic relation M, s |= φ (φ holds at state s in M),
which can be expressed as s ∈ [[φ]]M . (We will transform the function above to eliminate the
set complement operator, to avoid technical problems later when abstracting the function.)

1.1 Abstract Interpretation of CMAEL(CD)

What does it mean to perform “abstract model checking”? Informally, we check the satisfia-
bility of a formula in a (possibly infinite) model using partial information about the model.
The abstract interpretation framework [5] ensures that the result of the check is safe, in the
sense that abstract checking returns false only when the formula is not satisfied by the model.
A typical abstraction is based on a finite set of properties of interest {p1, . . . , pk} (see Figure
1), for example those atomic propositions appearing in the formula to be checked.1 Suppose
we have a model in which the set of states is infinite and in every state in S, exactly one pi
holds. Then the finite partition A = {d1, . . . , dk} is defined such that di = {s ∈ S | pi ∈ L(s)}.
In a property-based abstraction such as this, an abstract interpretation is constructed from
two lattices 〈P(S),⊆〉 and 〈P(A),⊆〉 called the “concrete” and “abstract” domain respec-
tively, and a Galois connection relating them. The Galois connection consists of monotonic
functions α : P(C) → P(A) and γ : P(A) → P(C) such that ∀c ∈ P(C), a ∈ P(A), α(c) ⊆
a⇔ c ⊆ γ(a). In property-based abstractions, α and γ are defined as α(X) = {di | di∩X 6= ∅}
and γ(Y) =

⋃
Y . The concrete semantic function is [[.]]M : Φ → P(S) defined above. Given

these components, the framework of abstract interpretation assists us in systematically deriv-
ing an abstract semantic function [[.]]]M : Φ→ P(A) systematically from the concrete semantic
function such that [[φ]]M ⊆ γ([[φ]]]M), for all φ ∈ Φ (or equivalently, α([[φ]]M) ⊆ [[φ]]]M).
Thus in property-based abstract interpretation, the abstract semantic function returns a set
of partitions (an element of P(A)). The union of this set of partitions is a superset of the set
of concrete states returned by the concrete semantic function. In particular, if [[φ]]]M is empty
for some φ, then the result of the concrete computation [[φ]]M is also empty.

1 Abstract interpretation is not limited to this kind of abstraction.

No Abstract Transition Relations In some approaches to abstract model checking
[3, 4], a partition of the set of states is used to induce “abstract relations” in an “abstract
model”. This is not our approach, since it cannot simultaneously approximate both a formula
and its negation. By contrast, the abstract semantic function derived below always returns
an over-approximation of the set of states where any given formula holds. Other authors have
developed “dual” approximations based on abstract relations to overcome the limitations of
abstract models, but the framework of abstract interpretation offers a more direct solution,
and was previously applied successfully to abstract model checking for CTL [2].

1.2 Abstract Semantic Function

The function [[.]]]M : Φ → P(A) is defined systematically from the concrete function [[φ]]M :
Φ→ P(S) and the functions α and γ. We show it below. The transformation consists only of
applying α to the base cases {s | p ∈ L(s)} and {s | p 6∈ L(s)} and replacing pre(.)(.) (resp.
p̃re(.)(.)) by α(pre(.)(γ(.))) (resp. α(p̃re(.)(γ(.)))).

[[p]]]M = α({s | p ∈ L(s)}) [[¬p]]]M = α({s | p 6∈ L(s)})
[[φ1 ∧ φ2]]]M = [[φ1]]]M ∩ [[φ2]]]M [[¬(φ1 ∧ φ2)]]]M = [[¬φ1]]]M ∪ [[¬φ2]]]M
[[DAφ]]]M = α(p̃re(RDA)(γ([[φ]]]M))) [[¬(DAφ)]]]M = α(pre(RDA)(γ([[¬φ]]]M)))

[[CAφ]]]M = α(p̃re(RCA)(γ([[φ]]]M))) [[¬(CAφ)]]]M = α(pre(RCA)(γ([[¬φ]]]M)))

[[¬¬φ]]]M = [[φ]]]M

Proposition 1. For all formulas φ ∈ Φ, and CMAEM M , [[φ]]M ⊆ γ([[φ]]]M).

Proof. Proof is by structural induction on the formula φ and uses the properties of Galois
connections and monotonic functions.

References

1. M. Ajspur, V. Goranko, and D. Shkatov. Tableau-based decision procedure. CoRR,
abs/1201.5346, 2012.

2. G. Banda and J. P. Gallagher. Constraint-based abstract semantics for temporal logic:
A direct approach to design and implementation. In E. M. Clarke and A. Voronkov,
editors, Logic for Programming, Artificial Intelligence, and Reasoning - 16th International
Conference, LPAR-16, Dakar, Senegal, April 25-May 1, 2010, Revised Selected Papers,
volume 6355 of Lecture Notes in Computer Science, pages 27–45. Springer, 2010.

3. E. M. Clarke, O. Grumberg, and D. E. Long. Model checking and abstraction. In Confer-
ence Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Albuquerque, New Mexico, USA, pages 342–354, 1992.

4. E. M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 2000.
5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis

of programs by construction or approximation of fixpoints. In Proceedings of the 4th ACM
Symposium on Principles of Programming Languages, Los Angeles, pages 238–252, 1977.

6. P. Cousot and R. Cousot. Temporal abstract interpretation. In Proceedings of the 27th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, January
19 - 21 2000, Boston, Mass. USA, pages 12–25, 2000.

7. V. Goranko and D. Shkatov. Tableau-based procedure for deciding satisfiability in the full
coalitional multiagent epistemic logic. CoRR, abs/0902.2125, 2009.

8. M. R. A. Huth and M. D. Ryan. Logic in Computer Science: Modelling and reasoning
about systems. Cambridge University Press, 2000.

9. P. Kelb. Model checking and abstraction: A framework preserving both truth and fail-
ure information. Technical report, Carl yon Ossietzky Univ. of Oldenburg, Oldenburg,
Germany, 1994.

