
Roskilde
University

Proceedings of the International Workshop on Logic in Databases (LID 2009)

Bertossi, Leopoldo; Christiansen, Henning

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Bertossi, L., & Christiansen, H. (Eds.) (2009). Proceedings of the International Workshop on Logic in Databases
(LID 2009). Roskilde Universitet. Datalogiske Skrifter No. 127

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain.
 • You may freely distribute the URL identifying the publication in the public portal.
Take down policy
If you believe that this document breaches copyright please contact rucforsk@kb.dk providing details, and we will remove access to the work
immediately and investigate your claim.

Download date: 02. Jul. 2025

Proceedings of the International Workshop on

Logic in Databases (LID 2009)

Leopoldo Bertossi
Henning Christiansen

(Editors)

OCTOBER 2009 ROSKILDE UNIVERSITY COMPUTER SCIENCE RESEARCH REPORT #127

Copyright c© 2009

Leopoldo Bertossi, Henning Christiansen, and the individual authors

Computer Science
Roskilde University
P. O. Box 260
DK–4000 Roskilde
Denmark

Telephone: +45 4674 3839
Telefax: +45 4674 3072
Internet: http://www.ruc.dk/dat en/
E-mail: datalogi@ruc.dk

All rights reserved

Permission to copy, print, or redistribute all or part of this work is
granted for educational or research use on condition that this copy-
right notice is included in any copy.

ISSN 0109–9779

Research reports are available electronically from:

http://www.ruc.dk/dat en/research/reports/

Proceedings of

LID 2009

International Workshop on

Logic in Databases

Roskilde University, Denmark, October 29, 2009

Edited by

Leopoldo Bertossi & Henning Christiansen

Preface

The International Workshop on Logic in Databases, LID 2009, is a forum for
bringing together researchers and practitioners in academia and industry from
around the world who are focusing on all logical aspects of data management.
The present LID workshop series started with LID 2008 in Rome as the con-
fluence of three successful events series which had a strong overlap in interests.

– LID’96, an international workshop on Logic in Databases, from which LID
2008 and 2009 has derived its name; July 1-2, 1996, San Miniato, Italy.

– LAAIC’05 and LAAIC’06, international workshops on Logical Aspects
and Applications of Integrity Constraints; Copenhagen, Denmark, August
26, 2005, associated with DEXA 2005, and Krakow, Poland, September 8,
2006, associated with DEAX 2006.

– IIDB’06, an international workshop on Inconsistency and Incompleteness
in Databases; March 26, 2006, Munich, Germany, associated with EDBT
2006.

Mathematical logic is inevitably coupled to databases in both practice and re-
search. A database schema together with its integrity constraints is a logical
specification of properties of the data, determining both internal storage struc-
ture and the semantics of data in relation to the real world. Databases are the
only widespread application of information technology whose inherent logic and
algebraic nature is apparent to developers at all levels.

Reasoning about databases is central for research in new database models
as well as for the development of particular applications. The appearance of the
relational model in the 1970ies was a giant step for the recognition of declara-
tive specifications which, influenced by the even earlier use of logic in artificial
intelligence and knowledge representation, lead to deductive databases and re-
lated models. This, in turn, has lead to powerful reasoning methods for relational
databases as they can be considered as special cases of deductive databases.

This edition of LID has two invited presentations plus presentations of seven
accepted papers that have been selected by an international programme com-
mittee. At request of the authors, one accepted paper is not included in the
proceedings, but is presented at the workshop, Sebastian Lehrack, Ingo Schmitt
and Sascha Saretz : CQQL: A Quantum Logic-Based Extension of the Relation
Domain Calculus.

We are grateful to all people who contributed to LID 2009 in different ways,
including all authors who submitted papers, to our invited speakers, Andrea Cal̀ı
and Dan Olteanu, the programme and steering committees, reviewers, and to
Roskilde University, the research group for Programming, Logic and Intelligent
System and the CBIT department, for hosting the workshop.

October 2009
Leopoldo Bertossi & Henning Christiansen

Workshop Organization

Programme Chairs

Leopoldo Bertossi
Henning Christiansen

Programme Committee

Foto Afrati
Pablo Barceló
Alexander Borgida
Loreto Bravo
Marc Denecker
Wenfei Fan
Floris Geerts
Bart Kuijpers
Georg Lausen
Sebastian Link
Maarten Marx
Riccardo Rosati
Marie-Christine Rousset
Francesco Scarcello
Dan Suciu
Val Tannen
David Toman
Jef Wijsen
Peter Wood

External Reviewers

Matthew Damigos

Local Organization

Henning Christiansen

LID Steering Committee

Andrea Cal̀ı
Jan Chomicki
Henning Christiansen
Laks V.S. Lakshmanan
Davide Martinenghi
Dino Pedreschi
Jef Wijsen
Carlo Zaniolo

Workshop Website

http://lid2009.ruc.dk/

Copyright Notice

The copyright of each individual paper
in this volume belongs to the authors,
whereas the copyright for the collection
as a whole belongs to the editors.

Table of Contents

Invited Contributions

Tractable Query Answering over Conceptual Schemata 1
Andrea Cal̀ı, Georg Gottlob, Andreas Pieris

A Toolbox of Query Evaluation Techniques for Probabilistic Databases . . 13
Dan Olteanu

Accepted Papers

Full Satisfiability of UML Class Diagrams (Extended Abstract) 15
Alessandro Artale, Diego Calvanese, Angelica Ibáñez-Garćıa

A Classification Scheme for Update Propagation Methods in Deductive
Databases . 27

Andreas Behrend

Towards Automatic Schema Mapping Verification Through Reasoning . . . 43
Paolo Cappellari, Denilson Barbosa

Optimal Reflection of Bidirectional View Updates using Information-
Based Distance Measures . 57

Stephen Hegner

Data Dependencies for Access Control Policies . 71
Romuald Thion, Stéphane Coulondre

Comparing Availability in Controlled Query Evaluation Using
Unordered Query Evaluation for Known Potential Secrets 85

George Voutsadakis

Tractable Query Answering

over Conceptual Schemata⋆

Andrea Cal̀ı2,1, Georg Gottlob1,2, and Andreas Pieris1

1Computing Laboratory, University of Oxford
2Oxford-Man Institute of Quantitative Finance, University of Oxford

{andrea.cali, georg.gottlob, andreas.pieris}@comlab.ox.ac.uk

Abstract. We address the problem of answering conjunctive queries
(CQs) over extended Entity-Relationship schemata, which we call EER
(Extended ER) schemata, with is-a among entities and relationships, and
cardinality constraints. This is a common setting in conceptual data mod-
elling, where reasoning over incomplete data with respect to a knowledge
base is required. We adopt a semantics for EER schemata based on their
relational representation. We identify a wide class of EER schemata for
which query answering is tractable in data complexity; the crucial con-
dition for tractability is the separability between maximum-cardinality
constraints (represented as key constraints in relational form) and the
other constraints. We provide, by means of a graph-based representa-
tion, a syntactic condition for separability: we show that our conditions
is not only sufficient, but also necessary, thus precisely identifying the
class of separable schemata. We show how tractable query answering (in
ac0 in data complexity) can be achieved by employing query rewriting
techniques. We show that further negative constraints can be added to
the EER formalism, while still keeping query answering tractable. We
show that our formalism is general enough to properly generalise the
most widely adopted knowledge representation languages.

1 Introduction

Since Chen’s original Entity-Relationship formalism [15], conceptual modelling
has been playing a prominent role in database design. More recently, logic-based
formalisms have been employed for conceptual data modelling, in particular De-
scription Logics [14]. Such formalisms have relevant applications especially in
data exchange, information integration, semantic web, and web information sys-
tems, where the data, coming from different, heterogeneous sources, are in gen-
eral incomplete/inconsistent w.r.t. constraints imposed by a conceptual schema.
In such a setting, answering queries posed on the schema requires reasoning un-
der a knowledge base constituted by the conceptual schema [6]. A relevant issue
in query answering is tractability; in particular, what is commonly considered
relevant here is the data complexity of query answering, i.e., the complexity in the

⋆ This paper is a short version of [10].

1

case both the schema (plus, possibly, additional constraints) and the query are
fixed, and the complexity is calculated considering the data as the only input pa-
rameter; this is natural, since the data size is normally much larger than the size
of the schema and of the query. An important class of languages that guarantees
tractable data complexity is the DL-Lite family [7, 23]. In particular, answering
conjunctive queries (a.k.a. select-project-join queries) under DL-Lite knowledge
bases is polynomial in data complexity; it is actually better than polynomial,
more precisely, it is in ac0 in data complexity, where ac0 is the complexity of
recognizing words in languages defined by constant-depth Boolean circuits with
an (unlimited fan-in) AND and OR gates.

In this paper we consider an extended Entity-Relationship formalism, that
we call EER1, that comprises is-a among entities and relationships, manda-
tory and functional participation of entities to relationships, mandatory and
functional attributes. The EER formalism is flexible and expressive, and at the
same time well understood by database practitioners, differently from, for in-
stance, Description Logics. We first illustrate, as in [6, 3, 4], a semantics of the
EER formalism, by showing a translation of EER schemata into relational ones
with a class of constraints (a.k.a. dependencies) called conceptual dependencies
(CDs) [3]; in particular, CDs are key dependencies (KDs) and tuple-generating
dependencies (TGDs) (more precisely, the TGDs in a set of CDs are inclusion
dependencies). We then address the problem of answering conjunctive queries
over EER schemata, that is, under CDs. Our contribution is the following. We
identify a class of EER schemata, defined through a syntactic condition on the
corresponding CDs, that guarantees separation, i.e., the absence of interaction
between KDs and TGDs. We call such CDs non-conflicting CDs (NCCDs). An-
swers to queries under NCCDs can be computed, if the data are consistent with
the schema, considering TGDs only. The answers to queries posed on an EER
schema represented with NCCDs, given an instance for that schema, can be
computed by evaluating a rewriting of the original query on the original data,
provided that the data are consistent with the schema. The existence of a query
rewriting algorithm allows for tractable query answering. In particular, in our
case, the computational complexity is ac0 in data complexity (i.e., w.r.t. the
data only). It is important to mention that the version of our algorithm that
we present here is tailored for this particular, interesting case. The more general
version [11] is capable of dealing with more expressive classes of constraints. We
enrich the EER formalism by adding negative constraints, which serve to repre-
sent the fact that the data are inconsistent with respect to the schema, as well
as further constraints enforcing, for example, (pairwise) disjointness between en-
tities and relationships, and non-participation of an entity to a relationship. We
show that adding negative constraints to CDs does not alter the computational
complexity of conjunctive query answering.

The conceptual schemata for which we are able to compute query answering
in a tractable way is general enough to comprise most practical cases.

1 While we use the same name adopted in [21], our formalism is not the same as the
one in this paper.

2

2 Preliminaries

2.1 Relational Model and Constraints, Queries, and Chase

We define the following pairwise disjoint (infinite) sets of symbols: (i) a set Γ of
constants; constitute the “normal” domain of a database, and (ii) a set Γf of
labeled nulls, used as placeholders for unknown values, and that can be also seen
as variables. A lexicographic order is defined on Γ and Γf , such that every value
in Γf follows all those in Γ . A relational schema R (or simply schema) is a set
of relational symbols or predicates, each with its associated arity. We write r/n
to denote that the predicate r has arity n. A position r[i] (in a schema R) is
identified by a predicate r ∈ R and its i-th argument (or attribute). A term t is
a constant, null, or variable. An atomic formula (or simply atom) has the form
r(t1, . . . , tn), where r/n is a relation, and t1, . . . , tn are terms. For an atom α, we
denote as dom(α) the set of terms occurring in α; this notation naturally extends
to sets and conjunctions of atoms. A relational instance (or simply instance) D
for a schema R is a (possibly infinite) set of atoms of the form r(t) (a.k.a. facts),
where r/n ∈ R and t ∈ (Γ ∪Γf)n. We denote as r(D) the set {t | r(t) ∈ D}. We
will sometimes use the term database for a finite instance.

A substitution is a function h : S1 → S2 defined as follows: (i) ∅ is a sub-
stitution (empty substitution); (ii) if h is a substitution then h ∪ {X → Y } is a
substitution, where X ∈ S1 and Y ∈ S2, and h does not already contain some
X → Z with Y 6= Z. If X → Y ∈ h we write h(X) = Y . A homomorphism
from a set of atoms A1 to a set of atoms A2, both over the same schema R, is a
substitution h : dom(A1) → dom(A2) such that: (i) if t ∈ Γ then h(t) = t, and
(ii) if r(t1, . . . , tn) is in A1 then h(r(t1, . . . , tn)) = r(h(t1), . . . , h(tn)) is in A2. If
there are homomorhisms from A1 to A2 and vice-versa, we say that A1 and A2

are homomorphically equivalent.
A conjunctive query (CQ) q of arity n over a schema R, written as q/n,

is a formula of the form q(X) ← ϕ(X,Y), where ϕ(X,Y) is a conjunction of
atoms over R, where X and Y are sequences of variables or constants in Γ , and
|X| = n. The atom q(X) is the head of q, denoted as head(q), and ϕ(X,Y) is
the body of q, denoted as body(q). A union of conjunctive queries (UCQ) of arity
n over R is a set Q of CQs over R, written as Q/n, where each q ∈ Q has the
same arity n, and uses the same symbol in the head. The answer to a CQ q/n
of the form q(X) ← ϕ(X,Y) over a database D, denoted as q(D), is the set of
all n-tuples t ∈ Γn for which there exists a homomorphism h : X∪Y → Γ ∪ Γf

such that h(ϕ(X,Y)) ⊆ D, and h(X) = t. The answer to a UCQ Q over D,
denoted as Q(D), is defined as the set {t | ∃ q ∈ Q such that t ∈ q(D)}.

Given a schema R, a tuple-generating dependency (TGD) σ over R is a first-
order formula of the form ∀X∀Yϕ(X,Y) → ∃Zψ(X,Z), where ϕ(X,Y) and
ψ(X,Z) are conjunctions of atoms over R, called the body and the head of σ,
denoted as body(σ) and head(σ), respectively. Henceforth, to avoid notational
clutter, we will omit the universal quantifiers in TGDs. A key dependency (KD)
over R is an assertion of the form key(r) = A, where r ∈ R, and A is a set
of attributes of r. A TGD of the form ϕ(X,Y) → ∃Zψ(X,Z) is satisfied by a

3

databaseD iff, whenever there exists a homomorphism h such that h(ϕ(X,Y)) ⊆
D, there exists an extension h′ of h (i.e., h′ ⊇ h) such that h′(ψ(X,Z)) ⊆ D.
A KD of the form key(r) = A is satisfied by a database D iff, for each pair of
distinct tuples t1, t2 ∈ r(D), t1[A] 6= t2[A], where t[A] is the projection of tuple
t over A.

We now define the notion of query answering under dependencies. Given a
set Σ of dependencies over R, and a database D for R, the models of D w.r.t.
Σ, denoted as mods(D,Σ), is the set of all databases B such that B satisfies
all the dependencies in Σ, and B ⊇ D. The answer to a CQ q w.r.t. Σ and
D, denoted as ans(q,Σ,D), is the set {t | t ∈ q(B) for each B ∈ mods(D,Σ)}.
The decision problem associated to query answering under dependencies is the
following: given a set Σ of dependencies over R, a database D for R, a CQ q/n
over R, and an n-tuple t ∈ Γn, decide whether t ∈ ans(q,Σ,D).

The chase procedure (or simply chase) is a fundamental algorithmic tool
introduced for checking implication of dependencies [20], and later for checking
query containment [18]. Informally, the chase is a process of repairing a database
w.r.t. a set of dependencies so that the resulted database satisfies the dependen-
cies. The chase works on an instance through the so-called TGD and KD chase
rules. We shall use the term chase interchangeably for both the procedure and
its result. The TGD chase rule comes in two different, equivalent fashions: obliv-
ious and restricted [8], where the restricted one repairs TGDs only when they
are not satisfied. In this paper we focus on the oblivious one for better technical
clarity. The chase of a database D w.r.t. a set ΣT of TGDs and a set ΣK of KDs,
denoted chase(D,Σ), where Σ = ΣT ∪ ΣK , is the (possibly infinite) instance
constructed by iteratively applying (i) the TGD chase rule once, and (ii) the
KD chase rule as long as it is applicable (i.e., until a fixpoint is reached). The
chase rules follow.

TGD Chase Rule. Consider a database D for a schema R, and a TGD σ =
ϕ(X,Y) → ∃Zψ(X,Z) over R. If σ is applicable to D, i.e., there exists a ho-
momorphism h such that h(ϕ(X,Y)) ⊆ D then: (i) define h′ ⊇ h such that
h′(Zi) = zi for each Zi ∈ Z, where zi ∈ Γf is a “fresh” labeled null not intro-
duced before and following lexicographically all those introduced so far, and (ii)
add to D the set of atoms in h′(ψ(X,Z)) if not already in D.

KD Chase Rule. Consider an instance D for a schema R, and a KD η of the
form key(r) = A over R. If η is applicable to D, i.e., there are two (distinct)
tuples t1, t2 ∈ r(D) such that t1[A] = t2[A], then for each attribute B of r
s.t. B /∈ A: (i) if t1[B] and t2[B] are both constants of Γ , then there is a hard
violation of η and the chase fails; in this case mods(D,Σ) = ∅ and we say that
D is inconsistent with Σ; (ii) if t1[B] (resp., t2[B]) is a constant of Γ and t2[B]
(resp., t1[B]) is a labeled null of Γf , then replace each occurrence of t2[B] (resp.,
t1[B]) in D with t1[B] (resp., t2[B]), and (iii) if t1[B] and t2[B] are both labeled
nulls of Γf , then either replace each occurrence of t1[B] in D with t2[B] if the
former follows lexicographically the latter, or vice-versa otherwise.

It is well-known that chase(D,Σ) is a universal instance ofD w.r.t.Σ, i.e., for
each database B ∈ mods(D,Σ), there exists a homomorphism from chase(D,Σ)

4

Works in
1 2

Group

1 2
Leads

Member

memb name

stud gpa

gr name

Phd student Professor

(1, 1)

(1, 1)

(1, N)

since

(0, 1)

(1, 1)

Fig. 1. EER Schema for Example 1.

to B [17]. Using this fact, it can be shown that the answers ans(q,Σ,D) to CQ
q/n under a set Σ of TGDs and KDs, in the case where the chase does not fail,
can be obtained by evaluating q over chase(D,Σ) (which is possibly infinite)
and discarding tuples containing at least one null [17]. In case the chase fails,
ans(q,Σ,D) contains all tuples in Γn.

We say that a set Σ of constraints (not necessarily TGDs and KDs) is first-
order rewritable (or FO-rewritable) [9, 23] iff, for every database D and for every
CQ q, there exists a first-order query qFO such that qFO(D) = ans(q,Σ,D).

2.2 The Conceptual Model

In this section we present the conceptual model we adopt in this paper, and we
define it in terms of relational schemata with constraints. Our model incorpo-
rates the basic features of the ER model [15] and OO models, including subset (or
is-a) constraints on both entities and relationships. We call our model Extended
Entity-Relationship (EER) model. An EER schema consists of a collection of
entity, relationship, and attribute definitions over an alphabet of symbols, par-
titioned into entity, relationship and attribute symbols. The model is similar as,
e.g., the one in [3], and it can be summarised as follows: (i) entities and rela-
tionships can have attributes; an attribute can be mandatory (instances have at
least one value for it), and functional (instances have at most one value for it);
(ii) entities can participate in relationships; a participation of an entity E in a
relationship R can be mandatory (instances of E participate at least once), and
functional (instances of E participate at most once); (iii) is-a relations can hold
between entities and between relationships. For further details see [3].

Example 1. The schema in Figure 1, based on the usual ER graphic notation,
describes members of a university department working in research groups. The
is-a constraints specify that Ph.D. students and professors are members, and
that each professor works in the same group that (s)he leads. The cardinality
constraint (1, N) on the participation of Group in Works in, for instance, speci-
fies that each group has at least 1 member and no maximum number of members
(symbol N). The participating entities to each relationship are numbered (each
number identifies a component). ⊓⊔

The semantics of an EER schema C is defined by associating a relational
schema RC to it, and then specifying when a database for RC satisfies all the

5

EER Construct Relational Constraint

attribute A for an entity E a(X, Y) → e(X)

attribute A for a relationship R a(X1, . . . , Xn, Y) → r(X1, . . . , Xn)

rel. R with entity E as i-th component r(X1, . . . , Xn) → e(Xi)

mandatory attribute A of entity E e(X) → ∃Y a(X, Y)

mandatory attribute A of relationship R r(X1, . . . , Xn) → ∃Y a(X1, . . . , Xn, Y)

functional attribute A of an entity key(a) = {1} (a has arity 1)

functional attribute A of a relationship key(a) = {1, . . . , n} (a has arity n + 1)

is-a between entities E1 and E2 e1(X) → e2(X)

is-a between relationships R1 and R2 r1(X1, . . . , Xn) → r2(X1, . . . , Xn)

mandatory part. of E in R (i-th comp.) e(X) → r(X1, . . . , Xi−1, X, Xi+1, . . . , Xn)

functional part. of E in R (i-th comp.) key(r) = {i}
Table 1. Derivation of relation constraints from an EER schema.

constraints imposed by the constructs of C. We first define the relational schema
that represents the so-called concepts, i.e., entities, relationships and attributes,
of an EER schema C as follows: (i) each entity E in C has an associated predicate
e/1; (ii) each attribute A of an entity E in C has an associated predicate a/2;
(iii) each relationship R of arity n in C has an associated predicate r/n, and (iv)
each attribute A of a relationship R of arity n in C has an associated predicate
a/(n+1). Intuitively, e(c) asserts that c is an instance of entity E. a(c, d) asserts
that d is the value of attribute A (of some entity E) associated to c, where c is an
instance of E. r(c1, . . . , cn) asserts that (c1, . . . , cn) is an instance of relationship
R (among entities E1, . . . , En), where c1, . . . , cn are instances of E1, . . . , En,
respectively. Finally, a(c1, . . . , cn, d) asserts that d is the value of attribute A (of
some relationship R of arity n) associated to the instance (c1, . . . , cn) of R.

Queries are formulated using the relations in the relational schema we obtain
from the EER schema as described above.

Example 2. Consider again the EER schema shown in Figure 1. The schema
RC associated to C consists of member/1, phd student/1, professor/1, group/1,
works in/2, leads/2, memb name/2, stud gpa/2, memb name/2 and since/3.
Suppose that we want to know the names of the students who work in the DB
group since 2006. The corresponding CQ is

q(B)← phd student(A),memb name(A,B),works in(A,C), since(A,C, 2006),
memb name(C, db). ⊓⊔

We now define the semantics of the EER constructs. This is done by specify-
ing, using the dependencies introduced in Section 2.1, what databases over RC
satisfy the constraints imposed by the constructs of C. We do that by making use
of relational database dependencies, as shown in Table 1 (where we assume that
the relationships are of arity n). Notice that, slightly differently from [3], we do
not allow permutations of components in is-a between relationships; for example,
we can never derive a TGD of the form r1(X1, X2, X3) → r2(X3, X1, X2). The
dependencies we obtain are called conceptual dependencies (CDs) [3]. Observe

6

that the constraints in a set of CDs are key and inclusion dependencies [1], where
the latter are a special case of TGDs.

3 Separability

In this section we introduce a novel class of CDs, namely, the non-conflicting
CDs (NCCDs). In a set of NCCDs, the TGDs and the KDs do not interact, so
that answers to queries over an EER schema can be computed by considering
the TGDs only, and ignoring the KDs, once it is known that the initial data are
consistent with respect to the schema, i.e., the chase does not fail. This semantic
property, whose definition is given below, is usually known as separability [9, 5].
Henceforth, when using the term TGD, we shall refer to TGDs that are part of
a set of CDs (the results of this paper do not hold in case of general TGDs).

Definition 1. Consider a set Σ = ΣT ∪ ΣK of CDs over a schema R, where
ΣT are TGDs and ΣK are KDs. Σ is said to be separable if for every in-
stance D for R, and for every CQ q/n, we have that either chase(D,Σ) fails,
or ans(q,Σ,D) = ans(q,ΣT , D).

Before syntactically defining NCCDs, we need the notion of CD-graph.

Definition 2. Consider a set Σ of CDs over a schema R. The CD-graph for R
and Σ is defined as follows: (i) the set of nodes is the set of positions in R; (ii)
if there is a TGD σ in Σ such that the same variable appears in a position pb in
the body and in a position ph in the head, then there is an arc from pb to ph.

A node corresponding to a position derived from an entity (resp., a relationship)
is called an e-node (resp., an r-node). Moreover, an r-node corresponding to a
position which is a unary key in a relationship is called a k-node. We are now
ready to give the notion of NCCDs.

Definition 3. Consider a set Σ of CDs over a schema R, and let G be the
CD-graph for R and Σ. Σ is said to be non-conflicting if the following condition
is satisfied: for each path vy

1 vy

2 . . .y vm in G, where m > 3, such that: (i) v1 is
an e-node, (ii) v2, . . . , vm−1 are r-nodes, and (iii) vm is a k-node, there exists a
path in G of only r-nodes from vm to v2.

Example 3. Let us consider the schema in Example 1, ignoring the attributes for
simplicity. The CD-graph for the CDs associated to the EER schema are depicted
in Fig. 2. The k-nodes are works in[1], leads[1], and leads[2]. It is immediate to
see that the CDs are NCCDs. ⊓⊔

The following example shows that the KD chase rule can be applied during
the chase procedure with respect to a set of NCCDs.

Example 4. Let us consider the EER schema in Example 3, which we call C. We
omit for space reasons the CDs ΣC associated to C. Take D = {professor(p),

7

member [1]

phd student [1] professor [1] leads[1] leads[2]

works in[2]works in[1] group[1]

Fig. 2. CD-graph for Example 3. K-nodes are shaded.

leads(p, g)}. In the computation of chase(D,ΣC), we add the atoms member(p),
works in(p, g) and works in(p, z1), where z1 ∈ Γf . Since ΣC contains the KD
key(works in) = {1}, we apply the KD chase rule and replace all occurrences of
z1 with g. ⊓⊔

We now establish the main result if this section, i.e., NCCDs are separable.

Theorem 1. Consider a set Σ = ΣT ∪ΣK of CDs over a schema R, where ΣT

are TGDs and ΣK are KDs. If Σ is non-conflicting, then it is separable.

Proof (sketch). Let D be a database for R such that chase(D,Σ) does not fail.
By induction on the number of applications of the chase rule in the construction
of chase(D,Σ), it is possible to show that there exists homomorphism h such that
h(chase(D,Σ)) ⊆ chase(D,ΣT). Moreover, since chase(D,Σ) ∈ mods(D,Σ) ⊆
mods(D,ΣT), and chase(D,ΣT) is a universal instance of D w.r.t. ΣT , we get
that there exists homomorphism µ such that µ(chase(D,ΣT)) ⊆ chase(D,Σ).
Therefore, chase(D,Σ) and chase(D,ΣT) are homomorphically equivalent. The
claim follows straightforwardly. ⊓⊔

We continue to show that the property of being non-conflicting is not only
sufficient for separability, but also necessary. This way, we precisely characterise
the class of separable EER schemata by means of a syntactic condition.

Theorem 2. Consider a set Σ = ΣT ∪ΣK of CDs over a schema R, where ΣT

are TGDs and ΣK are KDs. We have that if Σ is not non-conflicting, then it is
not separable.

Proof (sketch). We prove this result by exhibiting a database D for R, and a
Boolean2 CQ q such that chase(D,Σ) does not fail, and 〈〉 ∈ ans(q,Σ,D) but
〈〉 /∈ ans(q,ΣT , D). ⊓⊔

It is important to mention that results analogous to Theorems 1 and 2 hold for
EER schemata with binary relationships only, and with is-a among relationships
that allow for the swapping of the components (e.g., represented by a TGD of
the form r1(X,Y) → r2(Y,X)). The proofs, which we omit for space reasons,
are analogous to those above. This result is important because with this variant
of the EER formalism we are able to represent DL-Lite schemata.

Before moving to the next section, where we show that NCCDs are FO-
rewritable, we prove here that CDs are in general not FO-rewritable.

2 A Boolean CQ has no variables in the head, and has only the empty tuple 〈〉 as
possible answer, in which case it is said that the query has positive answer.

8

Theorem 3. General CDs are not FO-rewritable.

Proof (sketch). We establish this result by giving a counterexample schema and
a query such that no first-order rewriting exists for the query. ⊓⊔

4 Query Answering by Rewriting

In this section we address the problem of query answering under NCCDs by
adopting query rewriting techniques. From the previous section, given a set Σ
of CDs, once we know that the chase does not fail, we can concentrate only
on the set ΣT of TGDs that are in Σ. We adopt a query rewriting algorithm
that allows us to answer CQs under TGDs by reformulating a given CQ q into a
UCQ Qr, that encodes the information about the given TGDs, and then evaluate
Qr over a given database to obtain the correct answers to q. The algorithm,
which we omit here, is presented in detail in [10], and it can be considered
as a variant of the rewriting algorithm in [12], which is designed to cope with
inclusion dependencies. Our algorithm is an adapted and restricted version of
a more general one, for which we refer the reader to [11], which is capable of
dealing with a more general class of TGDs, with multiple atoms in the body.

5 Negative Constraints

In this section we show how the EER model can be extended, in the same fashion
as in [9], with negative constraints.

A negative constraint on a schema R is a FO formula of the form ∀Xϕ(X)→
⊥, where ϕ(X) is a conjunction of atoms over R, and ⊥ is the truth constant
“false”; for simplicity, we will omit the universal quantifiers. Such a constraint is
satisfied by a databaseD iff there is no homomorphism h such that h(ϕ(X)) ⊆ D.

We first show how to express the failure of the chase with negative constraints.
Given an instance D, for each pair c1, c2 of distinct constants of Γ in dom(D),
we add to D the fact neq(c1, c2), where neq is an auxiliary predicate. For every
key constraint key(r) = {1, . . . ,m}, for a predicate r/n with m < n (w.l.o.g., we
assume the first m attributes to form the key; in particular, m can be only 1 or
n− 1), we add the following negative constraints, for all j ∈ {m+ 1, . . . , n}:

r(X1, . . . , Xm, Ym+1, . . . , Yn), r(X1, . . . , Xm, Zm+1, . . . , Zn),neq(Yj , Zj)→ ⊥.

As observed in [9], a constraint ϕ(X) → ⊥ is satisfied by a database D iff the
answer to the CQ q()← ϕ(X) over D is the empty set. Therefore, we can check
the failure of the chase by answering such CQs, which has the same complexity
as answering CQs under NCCDs. This implies FO-rewritability of NCCDs: we
can answer a query q, given D and Σ = ΣT ∪ΣK , by evaluating over D the FO
query obtained by taking the logical disjunction of the CQs associated to the
negative constraints Σ⊥, expressive the chase failure as above, and of the output
of rewrite(R, ΣT , q) as in Section 4. We immediately get the following result.

9

Theorem 4. Query answering on EER schemata represented by NCCDs is in
ac0 in data complexity.

Negative constraints can be used to express several relevant constructs in
EER schemata, for instance disjunction between entities and relationships, and
non-participation of entities to relationships, but also more general ones.

Example 5. Consider an EER schema C obtained from the one in Example 1
(see Figure 1) by adding an entity PensionScheme and a relationship Enrolled
between PensionScheme and Member , with no cardinality constraints; for space
reasons, we do not show the new diagram. To express that students and pro-
fessors are disjoint sets, we state phd student(X), professor(X) → ⊥ (entity
disjunction). We can also express that a student cannot be enrolled in a pension
scheme (i.e., it does not participate to Enrolled) with the negative constraint
phd student(X), enrolled(X,Y)→ ⊥ (non-participation). ⊓⊔

Consider a schema R, a set of CDs Σ on R, and a set of negative constraints
Σ⊥ on R. The question remaining open so far is whether the fact that the CDs
in Σ are NCCDs is necessary and sufficient to ensure separability of Σ ∪ Σ⊥.
It is not difficult to show that for general negative constraints the property is
not necessary; however, in particular cases it is. For example, we claim that if
we restrict to negative constraints expressing entity and relationship disjunction
plus non-participation, and to strongly consistent EER schemata [2], having
NCCDs is necessary and sufficient for separability.

6 Discussion

Related work. The well-known Entity-Relationship model was introduced by
the milestone paper of Chen [15]. A work giving a logic-based semantics is [16],
which also provides an inference algorithm; [19] investigates cardinality con-
straints in the ER formalism. An investigation on reasoning tasks on differ-
ent variants of ER schemata is found in [2]. Query answering is tightly related
to query containment under constraints, a fundamental topic in database the-
ory [13, 18, 3]. Data integration under ER schemata, strictly less expressive than
EER schemata, is considered in [6]. [22] adopts a formalism which is more ex-
pressive than ours, thus not achieving similar tractability results. [13] considers
query containment in a formalism similar to the EER model with less expres-
sive negative constraints, focusing on decidability and combined complexity (i.e.,
the complexity w.r.t. the data, the schema and the query). No results on data
complexity, nor a practical algorithm, are provided. A query rewriting algo-
rithm for IDs and so-called non-conflicting KDs is presented in [12]. The works
on DL-Lite [7, 23] exhibit tractable query answering algorithm (in ac0 in data
complexity) for different languages in the DL-Lite family. Recent works [8, 9]
deal with expressive rules (TGDs) that consitute the languages of the Data-
log± family, which are capable of capturing the EER formalism presented here,
if we consider TGDs only. The languages in the Datalog± family are more ex-
pressive (and less tractable) than ours except for Linear Datalog±, that allows

10

for query answering in ac0 in data complexity. However, the class of NCCDs
is not expressible in Linear Datalog± (plus the class of KDs presented in [9]),
and moreover the FO-rewriting algorithm in [9], unlike ours, is not very well-
suited for practical implementations. Finally, the works [3, 4] deal with general
(not non-conflicting) CDs: ptime data complexity of answering is obtained by
paying a high price in combined complexity.

Conclusions and future work. In this paper we have identified, by means
of a graph-based representation, a class of extended Entity-Relationship schemata
for which query answering is tractable, and more precisely in ac0 in data com-
plexity. The tractability of answering in our setting hinges on the notion of
separability, for which we have provided a precise characterisation in terms of a
necessary and sufficient syntactic condition. We have shown that it is possible
to answer queries on EER schemata, by means of a query rewriting. Our algo-
rithm is an adapted version of a more general algorithm which can deal with
much more expressive TGDs, and it can be considered to be a variant of the
one in [12]. We have also shown that negative constraints can be added to EER
schemata, without increasing the data complexity of query answering. The class
of EER schemata we deal with is general enough to include most conceptual
modelling and knowledge representation formalisms; in particular, it is strictly
more expressive than the languages in the DL-Lite family.

We plan to extend our results by studying the combined complexity of query
answering problem under NCCDs, and employing variants of our general rewrit-
ing algorithm to deal with even more expressive constraints. It is also our inten-
tion to run experiments with the techniques presented here.

Acknowledgments. The authors acknowledge support by the EPSRC project
“Schema Mappings and Automated Services for Data Integration and Exchange”
(EP/E010865/1). Georg Gottlob’s work was also supported by a Royal Society
Wolfson Research Merit Award.

References

1. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

2. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. Rea-
soning over extended ER models. In Proc. ER 2007, pp. 277–292, 2007.

3. A. Cal̀ı. Containment of conjunctive queries over conceptual schemata. In Proc. of
DASFAA 2006, pp. 628–643, 2006.

4. A. Cal̀ı. Querying incomplete data with logic programs: ER strikes back. In Proc. of
ER 2007, pp. 245–260, 2007.

5. A. Cal̀ı, D. Lembo, and R. Rosati. On the decidability and complexity of query an-
swering over incosistent and incomplete databases. In Proc. of PODS 2003, pp. 260–
271, 2003.

6. A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Accessing data integration
systems through conceptual schemas. In Proc. of ER 2001, pp. 270–284, 2001.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable
reasoning and efficient query answering in description logics: the DL-Lite family. J.
Autom. Reasoning, 39(3):385–429, 2007.

11

8. A. Cal̀ı, G. Gottlob, and M. Kifer. Taming the infinite chase: query answering under
expressive relational constraints. In Proc. of KR 2008, pp. 70–80, 2008. Revised
version available at http://benner.dbai.tuwien.ac.at/staff/gottlob/CGK.pdf.

9. A. Cal̀ı, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for
tractable query answering over ontologies. In Proc. of PODS 2009, to appear, 2009.

10. A. Cal̀ı, G. Gottlob, and A. Pieris. Tractable query answering over conceptual
schemata. Proc. of ER 2009, 2009. To appear.

11. A. Cal̀ı, G. Gottlob, and A. Pieris. Tractable query answering over conceptual
schemata. Unpublished technical report, available from the authors, 2009.

12. A. Cal̀ı, D. Lembo, and R. Rosati. Query rewriting and answering under constraints
in data integration systems. In Proc. of IJCAI 2003, pp. 16–21, 2003.

13. D. Calvanese, G. De Giacomo, and M. Lenzerini. On the decidability of query
containment under constraints. In Proc. PODS 1998, pp. 149–158, 1998.

14. D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data
modeling. Logics for Databases and Information Systems, pp. 229–263, 1998.

15. P. P. Chen. The entity-relationship model: towards a unified view of data. ACM
TODS, 1(1):124–131, 1995.

16. G. Di Battista, and M. Lenzerini. A deductive method for entity-relationship
modeling. In Proc. of VLDB 1989, pp. 13–21, 1989.

17. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. TCS, 336(1):89-124, 2005.

18. D. S. Johnson, and A. C. Klug. Testing containment of conjunctive queries under
functional and inclusion dependencies. JCSS, 28(1):167–189, 1984.

19. M. Lenzerini, and G. Santucci. Cardinality constraints in the entity-relationship
model. In Proc. of ER 1983, pp. 529–549, 1983.

20. D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data dependen-
cies. ACM TODS, 4(4):455–469, 1979.

21. V. M. Markowitz, and J. A. Makowsky. Identifying extended entity-relationship
object structures in relational schemas. IEEE Trans. Software Eng., 16(8):777–790,
1990.

22. M. Ortiz, D. Calvanese, and T. Eiter. Characterizing data complexity for con-
junctive query answering in expressive description logics. In Proc. of AAAI 2006,
pp. 2006.

23. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati.
Linking data to ontologies. J. Data Semantics, 10:133–173, 2008.

12

A Toolbox of Query Evaluation Techniques for
Probabilistic Databases

Dan Olteanu

Oxford University Computing Laboratory

We study the problem of query evaluation in probabilistic databases and sur-
vey some of the most promising existing techniques recently proposed by the
database community. Although this problem is subsumed by general probabilis-
tic inference, we argue that two fundamental aspects of databases, that is, (i)
the separation of (very large) data and (small and fixed) query, and (ii) the use
of mature relational query engines, can lead to more scalable techniques.

We survey both exact and approximate query evaluation techniques. In case
of exact evaluation, we discuss syntactical restrictions of the language of con-
junctive queries with inequalities, under which the queries become tractable [2,
6] (in general, the problem is #P-hard [1]). For these queries, we also show how
relational query plans extended with efficient aggregation operators can be suc-
cessfully used to evaluate them [1, 7]. At their core, these aggregations compute
and combine, in a few scans over the query answers, probabilities of fragments
of binary decision diagrams encoding the uncertainty in the query answer [5]. In
case of intractable queries, we sketch an exact technique that first decomposes
the data-query instance into a tractable subinstance, which is solved as before,
and a (usually much smaller) intractable subinstance that can be solved either
approximately or by employing AI inference techniques based on graph-theoretic
properties of the instance, such as treewidth [3]. Alternatively, intractable queries
can be evaluated using (deterministic or randomized) approximation techniques
with error guarantees [4, 8].

References

1. Dalvi and Suciu. “Efficient Query Evaluation on Probabilistic Databases”. In
VLDBJ, 2007.

2. Dalvi and Suciu. “The Dichotomy of Conjunctive Queries on Probabilistic Struc-
tures”. In PODS, 2007.

3. Jha, Olteanu, and Suciu. “Bridging the Gap Between Intensional and Extensional
Query Evaluation in Probabilistic Databases”. submitted, 2009.

4. Karp, Luby, and Madras. “Monte-Carlo Approximation Algorithms for Enumera-
tion Problems”. In J. Algorithms, 1989.

5. Olteanu and Huang. “Using OBDDs for Efficient Query Evaluation on Probabilistic
Databases”. In SUM, 2008.

6. Olteanu and Huang. “Secondary-Storage Confidence Computation for Conjunctive
Queries with Inequalities”. In SIGMOD, 2009.

7. Olteanu, Huang, and Koch. “SPROUT: Lazy vs. Eager Query Plans for Tuple-
Independent Probabilistic Databases”. In IEEE ICDE, 2009.

8. Olteanu, Huang, and Koch. “Approximate Confidence Computation in Probabilis-
tic Databases”. In IEEE ICDE, 2010.

13

14

Full Satisfiability of UML Class Diagrams
(Extended Abstract)

Alessandro Artale, Diego Calvanese, and Angelica Ibáñez-Garćıa

KRDB Research Centre, Free University of Bozen-Bolzano, Italy
{artale,calvanese}@inf.unibz.it yibanez@gmail.com

Abstract. Class diagrams are one of the most important components
of UML, the de-facto standard formalism for the analysis and design of
software. The semantics of UML class diagrams is by now well estab-
lished, and one can exploit automated reasoning tools that are based on
the languages underlying their formalization to detect relevant proper-
ties, such as class satisfiability and subsumption. Among the reasoning
tasks of interest, the basic one is detecting full satisfiability of a diagram,
i.e., whether all classes and associations of the diagram can be simultane-
ously populated without violating any constraints of the diagram. While
the complexity of class satisfiability has been studied extensively, full sat-
isfiability received less attention. In this paper we address this problem,
and establish tight upper and lower bounds for full satisfiability of UML
class diagrams. Our results confirm the intuition that full satisfiability
has the same computational complexity as class satisfiability.

1 Introduction

UML (Unified Modeling Language)1 is the de-facto standard formalism for the
analysis and design of software. One of the most important components of UML
are class diagrams (UCDs), which model the information on the domain of in-
terest in terms of objects organized in classes and associations between them
(representing relations between class instances). The semantics of UCDs is by
now well established, and several works propose to represent it using various
kinds of formal systems, e.g., [12,11,13,4]. Hence, one can in principle reason
on a UCD and formally prove properties about it. The properties that one is
interested in are, e.g., subsumption between two classes, i.e., the fact that each
instance of one class is necessarily also an instance of another class, satisfiability
of a specific class or association in the diagram, i.e., the fact that the informa-
tion encoding it in the diagram is not contradictory, and full satisfiability of the
diagram [15], i.e., the fact that all classes and associations in the diagram are si-
multaneously satisfiable. The latter property is of importance since the presence
of some unsatisfiable class or association actually means either that the diagram
contains unnecessary information that should be removed, or that there is some
modeling error that lead to the loss of satisfiability. In fact, it can be considered
as the most fundamental property that should be satisfied by a UCD.
1 http://www.omg.org/spec/UML/

15

The proposed formalizations of UCDs indicate that one can resort to the
powerful automated inference mechanisms provided by the adopted models to
verify the above mentioned properties. Such a reasoning support [9] is of im-
portance for various tasks related to the design, maintenance, evolution, and
integration of UCDs. For example, the formalization in terms of expressive De-
scription Logics (DLs) [3] provided in [4] is well suited for this purpose. DLs are
decidable logics that are specifically designed for the conceptual representation
of an application domain in terms of classes and relationships between them.
Representing conceptual data models by means of DLs has gathered consensus
over the years, cf. [5,6,2,9,10,7,4], and allows one to exploit state-of-the-art DL
reasoners [17] for inference in such models.

However, to avoid possible performance bottlenecks that could result from us-
ing a too powerful inference mechanism, and to be able to select the appropriate
one to use for the above mentioned tasks, a fundamental question that needed
to be addressed was that of the intrinsic complexity of reasoning on UCDs (in-
dependently of the formal tool adopted for describing them). This problem was
addressed first in [4], where, somewhat surprisingly, it was shown that the simul-
taneous presence of multiplicity constraints and of completeness constraints on
class and association hierarchies leads to ExpTime-hardness of class satisfiabil-
ity. This result was then strengthened in [1] to UCDs2 with simple ISA between
associations (and completeness constraints on class hierarchies only).

However, no work had addressed explicitly the complexity of full satisfiability
of UCDs3. In this paper, we fill this gap, by showing that the complexity of full
satisfiability coincides with that of classical satisfiability. Our results build on
the formalization of UML CDs in terms of DLs given in [4]. In fact, the upper
bound is an almost direct consequence of the corresponding upper bound for
UCDs derived from the DL formalization. Instead, our lower bound is more
involved, as it requires a careful analysis of the corresponding proof for class
satisfiability.

The rest of the paper is organized as follows. In Section 2, we briefly introduce
the DL ALC, on which we base our results, and show that full satisfiability in
ALC is ExpTime-complete. In Section 3, we recall the formalization of UCDs.
In Section 4, we provide our main results on full satisfiability of UCDs. Finally,
in Section 5, we draw some conclusions.

2 Full Satisfiability in the Description Logic ALC

We start by studying full satisfiability for the DL ALC, one of the basic variants
of DLs [3]. The basic elements of ALC are atomic concepts and roles, denoted
by A and P , respectively. Complex concepts C, D are defined by the following

2 The results in [1] are formulated in terms of the Entity-Relationship model, but they
carry directly over also to UML class diagrams.

3 An exception is [15], which provides a PSpace upper bound for full satisfiability.
However, our results here show that the algorithm of [15] must be incomplete.

16

rules:
C,D ::= A | ¬C | C uD | ∃P.C

The semantics of ALC, as usual in DLs, is specified in terms of an interpre-
tation. An interpretation I = (∆I , ·I), with a non empty domain ∆I and an
interpretation function ·I , assigns to each concept C a subset of ∆I , and to each
role name P a binary relation in ∆I ×∆I such that the following conditions are
satisfied:

AI ⊆ ∆I ,
(¬C)I = ∆I \ CI ,

(C uD)I = CI ∩DI ,
(∃P.C)I = {a ∈ ∆I | ∃b. (a, b) ∈ P I ∧ b ∈ CI} .

We use the standard abbreviations C1 t C2 := ¬(¬C1 u ¬C2), and ∀P.C :=
¬∃P.C, with the corresponding semantics.

An ALC terminological box (TBox) T is a finite set of concept inclusion
axioms of the form C v D. An interpretation I satisfies an axiom of the form
C v D iff CI ⊆ DI . A TBox T is satisfiable if there is an interpretation I
that satisfies every axiom in T (such an interpretation is called a model of T).
A concept C is satisfiable w.r.t. a TBox T if there is a model I of T such that
CI 6= ∅. It can be shown that TBox satisfiability and concept satisfiability w.r.t.
a TBox are reducible to each other (in polynomial time). Moreover, reasoning
w.r.t ALC TBoxes is ExpTime-complete (see e.g., [3]).

We now define the notion of full satisfiability of a TBox and show that for
ALC it has the same complexity as classical satisfiability.

Definition 1 (TBox Full Satisfiability). Let T be an ALC TBox. T is said
to be fully satisfiable if there exists a model I of T such that AI 6= ∅, for every
atomic concept A in T .

Lemma 2. Concept satisfiability w.r.t. ALC TBoxes can be linearly reduced to
full satisfiability of ALC TBoxes.

Proof. Let T be an ALC TBox and C an ALC concept. As pointed out in [8],
C is satisfiable w.r.t. T if and only if C u AT is satisfiable w.r.t. the TBox T1

consisting of the single assertion

AT v
l

C1vC2∈T

(¬C1 t C2) u
l

1≤i≤n

∀Pi. AT

where AT is a fresh new atomic concept and P1, . . . , Pn are all the atomic roles
in T and C. In order to reduce the problem to full satisfiability, we extend T1 to
T2 = T1 ∪{AC v C uAT }, with AC a fresh new atomic concept, and prove that

C uAT is satisfiable w.r.t. T1 iff T2 is fully satisfiable

17

(⇒) Let I be a model of T1 such that (C u AT)I 6= ∅. Construct a model of T2,
J = (∆I ∪ {dtop}, ·J), with dtop 6∈ ∆I , such that:

AJT = AIT , AJC = (C uAT)I ,

AJ = AI ∪ {dtop} for all atomic concepts A in T and C,

PJ = P I for all atomic roles,

Obviously, the extension of every atomic concept is non empty in J . Next,
we show that J is indeed a model of T2, relying on the fact (easily proved
by structural induction) that DI ⊆ DJ , for each subconcept D of concepts
in T1. Then, it is easy to show that J satisfies every assertion in T2:

AJT = AIT ⊆ (
l

C1vC2∈T

(¬C1 t C2) u
l

1≤i≤n

∀Pi.AT)I ⊆

⊆ (
l

C1vC2∈T

(¬C1 t C2) u
l

1≤i≤n

∀Pi. AT)J

AJC = (C uAT)I ⊆ (C uAT)J

(⇐) Conversely, every full model J of T2 is also a model of T1 with (CuAT)J 6= ∅,
as AJC ⊆ (C uAT)J . ut

Theorem 3. Full satisfiability of ALC TBoxes is ExpTime-complete.

Proof. The ExpTime membership is straightforward, as deciding full satisfiabil-
ity of an ALC TBox T can be reduced to deciding satisfiability of the TBox

T ∪
⋃

1≤i≤n

{> v ∃P ′. Ai},

where A1, . . . , An are all the atomic concepts in T , and P ′ is a fresh new atomic
role. The ExpTime-hardness follows from Lemma 2. ut

We now modify the reduction of Lemma 2 so that it applies also to primitive
ALC− TBoxes, i.e., TBoxes that contain only axioms of the form:

A v B, A v ¬B, A v B tB′, A v ∀P.B, A v ∃P.B,

where A, B, B′ are atomic concepts, and P is an atomic role.

Theorem 4. Full satisfiability of primitive ALC− TBoxes is ExpTime-
complete.

Proof. The ExpTime membership follows from Theorem 3. For proving the
ExpTime-hardness, we use a result in [4] showing that concept satisfiability
in ALC can be reduced to atomic concept satisfiability w.r.t. primitive ALC−
TBoxes. Let T − = {Aj v Dj | 1 ≤ j ≤ m} be a primitive ALC− TBox, and A0

18

an atomic concept. By Lemma 2, we have that A0 is satisfiable w.r.t. T − if and
only if the TBox T ′2 containing the axioms

AT − v
l

AjvDj∈T −
(¬Aj tDj) u

l

1≤i≤n

∀Pi. AT − , A′0 v A0 uAT − .

is fully satisfiable, with AT − , A′0 fresh new atomic concepts. T ′2 is not a primitive
ALC− TBox, but it is equivalent to the TBox containing the assertions:

A′0 v AT −

A′0 v A0

AT − v ¬A1 tD1

...
AT − v ¬Am tDm

AT − v ∀P1. AT −
...

AT − v ∀Pn. AT − ,

Finally, to get a primitive ALC− TBox, T −2 , we replace each axiom of the form
AT − v ¬Aj t Dj by AT − v B1

j t B2
j , B1

j v ¬Aj , and B2
j v Dj , with B1

j , B
2
j

fresh new atomic concepts, for j = 1, . . . ,m.
We show now that T ′2 is fully satisfiable iff T −2 is fully satisfiable:

(⇒) Let I = (∆I , ·I) be a full model of T ′2 . We extend I into a full model J
of T −2 . Let ∆J = ∆I ∪ {d+, d−}, with {d+, d−} ∩∆I = ∅, and define ·J as
follows:

AJT − = AIT − , (A′0)J = (A′0)I ,

AJ = AI ∪ {d+}, for every other atomic concept in T ′2 ,
(B1

j)J = (¬A)J , and (B2
j)J = (Dj)J , for each AT − v B1

j tB2
j ∈ T −2 ,

PJ = P I ∪ {(d+, d+)}, for every atomic role P in T −2 .

It is easy to see now, that J fully satisfies T −2 .
(⇐) Trivial. Every model of T −2 is a model of T ′2 . ut

3 Formalizing UML Class Diagrams

In this section, we briefly describe UCDs and provide their semantics in terms
of First Order Logic (the formalization adopted here is based on previous pre-
sentations in [4,10]).

A class in a UCD denotes a set of objects with common features. Formally,
a class C corresponds to a unary predicate C. An association represents a rela-
tion between instances of two or more classes. Names of associations (as names
of classes) are unique in a UCD. A binary association between two classes C1

and C2 is graphically rendered as in Fig. 1. The multiplicity constraint nl..nu

written on one end of the binary association specifies that each instance of
the class C1 participates at least nl times and at most nu times in the asso-
ciation R, and the multiplicity constraint ml..mu specifies an analogous con-
straint for each instance of the class C2. When a multiplicity constraint is omit-
ted, it is intended to be 0..∗. Formally, an association R between the classes

19

 ml..mu nl..nu

R
C1 C2

Fig. 1. Binary association

ml..mu nl..nuC1 C2

CR

Fig. 2. Binary assoc. with related class

C1, C2 is captured by a binary predicate R that satisfies the FOL assertion
∀x1, x2. (R(x1, x2) → C1(x1) ∧ C2(x2)), while multiplicities are formalized by
the following FOL assertions:

∀x. (C1(x)→ ∃≥nl
y.R(x, y) ∧ ∃≤nu

y.R(x, y))
∀y. (C2(y)→ ∃≥ml

x.R(x, y) ∧ ∃≤mu
x.R(x, y)),

where we use counting quantifiers to abbreviate the FOL formula encoding the
multiplicity constraints.

An association class describes properties of the association, such as at-
tributes, operations, etc. (see Fig. 2). A binary association with a related as-
sociation class CR is formalized in FOL by reifying the association into a unary
predicate CR with two binary predicates P1, P2, one for each component of the
association. We enforce the following semantics for i = 1, 2:

∀x.(CR(x)→ ∃y. Pi(x, y)),
∀x, y.(CR(x) ∧ Pi(x, y)→ Ci(y)),

∀x, y, y′.(CR(x) ∧ Pi(x, y) ∧ Pi(x, y′)→ y = y′),
∀y1, y2, x, x

′.(CR(x) ∧ CR(x′) ∧ (
∧

i∈{1,2} Pi(x, yi) ∧ Pi(x′, yi))→ x = x′).

For associations with a related class, the multiplicity constraints are formal-
ized by the following FOL assertions:

∀y1.(C1(y1)→ ∃≥nl
x. (CR(x) ∧ P1(x, y1)) ∧ ∃≤nux. (CR(x) ∧ P1(x, y1))) ,

∀y2.(C2(y2)→ ∃≥ml
x. (CR(x) ∧ P2(x, y2)) ∧ ∃≤mu

x. (CR(x) ∧ P2(x, y2))) .

Generalizations (called also ISA constraints) between two classes C1 and C
specify that each instance of C1 is also an instance of C. Several generaliza-
tions can be grouped together to form a class hierarchy, as shown in Fig. 3.
Disjointness and completeness constraints can also be enforced on a class hi-
erarchy, by adding suitable labels to the diagram. The class hierarchy shown
in Fig. 3 is formally captured by means of the assertion ∀x.Ci(x) → C(x)
for i = 1, . . . , n. Disjointness among the classes C1, . . . , Cn is expressed by
∀x.Ci(x) →

∧n
j=i+1 ¬Cj(x) for i = 1, . . . , n − 1. Finally, the completeness

constraint expressing that each instance of C is an instance of at least one of
C1, . . . , Cn is given by ∀x.C(x)→

∨n
i=1 Ci(x).

We can also have generalization between associations and between association
classes with the obvious subset semantics as for generalization between classes.
Finally, we do also allow for attributes associated to classes. Since the addition
of attributes does not change the complexity of the satisfiability problem we do
not present here attributes and their semantics.

20

{complete, disjoint}

. . .

C

C1 C2 Cn

Fig. 3. A class hierarchy in UML

4 Full Satisfiability of UML Class Diagrams

Formally, three notions of UCD satisfiability have been proposed in the litera-
ture [16,4,15,14] First, diagram satisfiability of an UML diagram refers to the
existence of a model of the diagram. Such model does not need to satisfy (popu-
late) any class or association per se. The only condition is that all constraints are
satisfied by the given model. Second, class satisfiability refers to the existence
of a model of the diagram that satisfies (populates) a given class. Third, we can
check whether there is a model of an UML diagram that satisfies all classes and
all associations in a diagram. This last notion of satisfiability, referred here as
full satisfiability and introduced in [15] is thus stronger than diagram satisfia-
bility as a model of a diagram that satisfies all classes is, by definition, also a
model of that diagram.

Definition 5 (UML Full Satisfiability). A UCD D is fully satisfiable if there
is an FOL interpretation I that satisfies all the constraints expressed in D and
such that CI 6= ∅ for every class C in D, and RI 6= ∅ for every association R
in D. We say that I is a full model of D.

We now address the complexity of full satisfiability for UCDs. We use the
results presented in Section 2 and reduce full satisfiability of primitive ALC−
TBoxes to full satisfiability of UCDs. This reduction is based on the ones used
in [4,1] for determining the lower complexity bound of schema satisfiability in
the extended Entity-Relationship model.

Given a primitive ALC− TBox T , construct an UCD Σ(T) as follows: for
each atomic concept A in T , introduce a class A in Σ(T). Additionally, introduce
a class O that generalizes (possibly indirectly) all the classes in Σ(T) that encode
an atomic concept in T . For each atomic role P , introduce a class CP , which
reifies the binary relation P . Further, introduce two functional associations P1,
and P2 that represent the first and second components of P . The assertions in
T are encoded as follows:

1. For each assertion of the form A v B, introduce a generalization between
the classes A and B.

2. For each assertion of the form A v ¬B, construct the hierarchy shown in
Fig. 4.

3. For each assertion of the form A v B1 tB2, introduce an auxiliary class B,
and construct the diagram in Fig. 5.

21

{disjoint}

O

A B

Fig. 4. Encoding of A v ¬B

{complete}

A B

B1 B2

Fig. 5. Encoding of A v B1 tB2

{disjoint}

{complete}

1..1

P1

1..1

P2

1..1

PA+1

PĀ

1..1

PA+2

1..1

O

B

A A+ Ā

CPA+ CPĀ

CP

Fig. 6. Encoding of A v ∀P.B

1..1

PAB2

1..1

1..*

PAB1 P1P2

1..1 1..1O

B A

CP

CPAB

Fig. 7. Encoding of A v ∃P.B

4. For each assertion of the form A v ∀P.B, add the auxiliary classes CPA+ and
CPĀ, and the associations PĀ, PA+1 and PA+2 , and construct the diagram
shown in Fig. 6.

5. For each assertion of the form A v ∃P.B, add the auxiliary class CPAB
, and

construct the diagram shown in Fig. 7.

Lemma 6. A primitive ALC− TBox T is fully satisfiable iff the UCD Σ(T),
constructed as above, is fully satisfiable.

Proof. (⇐) Let J = (∆J , ·J) be a full model of Σ(T). We construct a full
model I = (∆I , ·I) of T by taking ∆I = ∆J . Further, we define AI = AJ and
P I = (P−1 ◦ P2)J for every concept name A and for every atomic role P in T ,
respectively. Let us show that I satisfies every assertion in T .

1. For assertions of the form A v B, A v ¬B, and A v B1 tB2, the statement
easily follows from the construction of I.

2. For each assertion of the form A v ∀P.B, let o ∈ AI = AJ and o′ ∈
∆I = ∆J , such that (o, o′) ∈ P I . Since P I = (P−1 ◦ P2)J , there is o′′ ∈ ∆J
such that (o, o′′) ∈ (P−1)J , and (o′′, o′) ∈ P2

J . Then, o′′ ∈ CJP , and by the
completeness constraint, o′′ ∈ CJPA+

∪ CJ
PĀ

. We claim that o′′ ∈ CJPA+
. Sup-

pose otherwise, then there is a unique a ∈ ∆J , such that (o′′, a) ∈ PJ
Ā

and
a ∈ ĀJ . It follows from PJ

Ā
⊆ PJ1 and by the multiplicity constraint over

CP , that a = o. This rises a contradiction, because o ∈ AJ ⊆ AJ+ and, AJ+
and ĀJ are disjoint. Then o′′ ∈ CJPA+

. Further, there is a unique b ∈ ∆J

22

with (o′′, b) ∈ PJA+2
and b ∈ BJ . From PJA+2

⊆ PJ2 and the multiplicity
constraint on CP , it follows that b = o′. Thus, we have that o′ ∈ BJ = BI ,
and therefore, o ∈ (∀P.B)I .

3. For each assertion of the form A v ∃P.B in T , let o ∈ AI = AJ . Then, there
is o′ ∈ ∆J such that (o′, o) ∈ PJAB1 and o′ ∈ CJPAB

. Since o′ ∈ CJPAB
, there

is o′′ ∈ ∆J with (o′, o′′) ∈ PJAB2 and o′′ ∈ BJ = BI . Then, as PJAB2 ⊆ PJ2 ,
PJAB1 ⊆ PJ1 and P I = (P−1 ◦ P2)J , we can conclude that (o, o′′) ∈ P I and
therefore, that o ∈ (∃P.B)I .

(⇒) Let I = (∆I , ·I) be a full model of T , and role(T) be the set of role names
in T . Extend I to a legal instantiation J = (∆J , ·J) of Σ(T), by assigning
suitable extensions for the auxiliary classes and associations in Σ(T). Let ∆J =
∆I ∪ Γ ∪ Λ, where: Λ =

⊎
Av∀P.B∈T {aA+ , aĀ}, such that ∆I ∩ Λ = ∅, and

Γ =
⊎

P∈role(T)∆P , with:

∆P = {(o, o′) ∈ ∆I ×∆I | (o, o′) ∈ P I} ∪
⋃

Av∀P.B∈T

{(aA+ , b), (aĀ, ō)}

with b an arbitrary instance of B, and ō an arbitrary element of ∆I . We set
OJ = ∆I ∪ Λ, AJ = AI for each class A corresponding to an atomic concept
in T , and CJP = ∆P for each P ∈ role(T). Additionally, the extensions of the
associations P1 and P2 are defined as follows:

PJ1 = {((o, o′), o) | (o, o′) ∈ CJP }, PJ2 = {((o, o′), o′) | (o, o′) ∈ CJP }.

We now show that J is a full model for Σ(T).

1. For the portions of Σ(T) due to TBox axioms of the form A v B, A v ¬B,
and A v B1 tB2, the statement follows from the construction of J .

2. For each TBox axiom in T of the form A v ∀P.B, let us define

AJ+ = AI ∪ {aA+}, ĀJ = OJ \AJ+ ,
CJPA+

= {(o, o′) ∈ CJP | o ∈ A
J
+}, CJ

PĀ
= {(o, o′) ∈ CJP | o ∈ ĀJ },

PJA+1
= {((o, o′), o) ∈ PJ1 | o ∈ AJ+}, PJ

Ā
= {((o, o′), o) ∈ PJ1 | o ∈ ĀJ },

PJA+2
= {((o, o′), o′) ∈ PJ2 | o ∈ AJ+} .

It is not difficult to see that J satisfies the fragment of Σ(T) as the one
in Fig. 6. It remains to show that each class and each association have a
non empty extension. This is clearly the case for classes that encode atomic
concepts in T . For the classes A+, Ā, CPA+ , and CPĀ we have that

aA+ ∈ AJ+ , aĀ ∈ ĀJ , (aA+ , b) ∈ CJPA+
, (aĀ, ō) ∈ CJPĀ

.

For the associations P1, P2, PA+1 , PA+2 and PĀ we have that

((aA+ , b), aA+) ∈ PJA+1
⊆ PJ1 , ((aĀ, ō), aĀ) ∈ PJ

Ā
,

((aA+ , b), b) ∈ PJA+2
⊆ PJ2 .

23

. . .C2 Cn

Ctop

C1 Ctop Ci1..*Ri

 Ci

CP
i

CjCtop

1..*

1..*

P

P ′RP

Fig. 8. Reducing UML full satisfiability to class satisfiability

3. For each TBox axiom in T of the form A v ∃P.B, let us define the extensions
for the auxiliary classes and associations as follows:

CJPAB
= {(o, o′) ∈ ∆P | o ∈ AI and o′ ∈ BI},

PJAB1 = {((o, o′), o) ∈ PJ1 | (o, o′) ∈ CJPAB
},

PJAB2 = {((o, o′), o′) ∈ PJ2 | (o, o′) ∈ CJPAB
} .

We have that CJPAB
6= ∅ as there exists a pair (a, b) ∈ ∆P with a ∈ AI , and

b ∈ BI . Since CJPAB
6= ∅, we have that PJAB1 6= ∅ and PJAB2 6= ∅. ut

Theorem 7. Full satisfiability of UCDs is ExpTime-complete.

Proof. The upper complexity bound can be established by reducing full consis-
tency of UCDs to class consistency on UCDs, which is known to be ExpTime-
complete [4]. Given a UCD D, with classes C1, . . . , Cn, we construct the UCD
D′ by adding to D a new class Ctop and a new association Ri for i ∈ {1, . . . , n}.
Besides, in order to ensure that every association is also populated, we consider
each association P between the classes Ci and Cj such that neither Ci nor Cj

is constrained to participate at least once in P . We add two new associations,
RP and P ′ and a new class CP

i . Finally, we add the constraints shown in Fig. 8.
Clearly, we have that D is fully satisfiable if and only if the class Ctop is satisfi-
able.

The ExpTime-hardness follows from Lemma 6 and Theorem 4. ut

5 Conclusions

This paper investigates the problem of full satisfiability in the context of UML
class diagrams, i.e., whether all classes and associations of the diagram can be
simultaneously populated without violating any constraints of the diagram. We
show that the complexity of checking full satisfiability is ExpTime-complete,

24

thus matching the complexity of the classical schema satisfiability check. We
show a similar result also for the problem of checking the full satisfiability of a
TBox expressed in the description logic ALC.

As a future work, we plan to extend the above results to UML class diagrams
containing ad hoc subsets of the full sets of constructors. Furthermore, we intend
to investigate the problem under the finite model assumption.

References

1. A. Artale, D. Calvanese, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev.
Reasoning over extended ER models. In Proc. of ER 2007, volume 4801 of LNCS,
pages 277–292. Springer, 2007.

2. A. Artale, F. Cesarini, and G. Soda. Describing database objects in a concept lan-
guage environment. IEEE Trans. on Knowledge and Data Engineering, 8(2):345–
351, 1996.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, 2003.

4. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artificial Intelligence, 168(1–2):70–118, 2005.

5. S. Bergamaschi and C. Sartori. On taxonomic reasoning in conceptual design.
ACM Trans. on Database Systems, 17(3):385–422, 1992.

6. A. Borgida. Description logics in data management. IEEE Trans. on Knowledge
and Data Engineering, 7(5):671–682, 1995.

7. A. Borgida and R. J. Brachman. Conceptual modeling with description logics. In
Baader et al. [3], chapter 10, pages 349–372.

8. M. Buchheit, F. M. Donini, and A. Schaerf. Decidable reasoning in terminological
knowledge representation systems. J. of Artificial Intelligence Research, 1:109–138,
1993.

9. D. Calvanese, M. Lenzerini, and D. Nardi. Description logics for conceptual data
modeling. In J. Chomicki and G. Saake, editors, Logics for Databases and Infor-
mation Systems, pages 229–264. Kluwer Academic Publishers, 1998.

10. D. Calvanese, M. Lenzerini, and D. Nardi. Unifying class-based representation
formalisms. J. of Artificial Intelligence Research, 11:199–240, 1999.

11. T. Clark and A. S. Evans. Foundations of the Unified Modeling Language. In
D. Duke and A. Evans, editors, Proc. of the 2nd Northern Formal Methods Work-
shop. Springer, 1997.

12. A. Evans, R. France, K. Lano, and B. Rumpe. Meta-modelling semantics of UML.
In H. Kilov, editor, Behavioural Specifications for Businesses and Systems, chap-
ter 2. Kluwer Academic Publishers, 1999.

13. D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and all that stuff.
Technical Report MCS00-16, The Weizmann Institute of Science, Rehovot, Israel,
2000.

14. M. Jarrar and S. Heymans. Towards pattern-based reasoning for friendly ontology
debugging. Int. J. on Artificial Intelligence Tools, 17(4):607–634, 2008.

15. K. Kaneiwa and K. Satoh. Consistency checking algorithms for restricted UML
class diagrams. In Proc. of FoIKS 2006, pages 219–239, 2006.

16. M. Lenzerini and P. Nobili. On the satisfiability of dependency constraints in
entity-relationship schemata. Information Systems, 15(4):453–461, 1990.

25

17. R. Möller and V. Haarslev. Description logic systems. In Baader et al. [3], chapter 8,
pages 282–305.

26

A Classification Scheme for Update Propagation
Methods in Deductive Databases

Andreas Behrend

University of Bonn,
Institute of Computer Science III, D-53117 Bonn

behrend@cs.uni-bonn.de

Abstract. Incremental view recomputation is a well-established research
topic in deductive databases and plenty of update propagation methods
have been proposed within the last two decades. All these approaches
essentially apply the same propagation technique but differ in the way
they are realized, the focus they provide to the induced changes and the
granularity of the computed induced updates. In this paper we provide a
general framework for update propagation with regards to these aspects.
This allows for comparing strengths and weaknesses of different propa-
gation methods and helps to identify potential for further refinements.
As an example, we will investigate Oracle’s current approach to the in-
cremental evaluation of continuous queries and suggest possibilities for
its improvement.

1 Introduction

Update Propagation (UP) has been intensively studied for many years mainly
in the context of integrity checking and materialized view maintenance, e.g. [6,
8, 10, 12, 13, 15, 16, 18, 19, 21, 24, 25]. Nowadays, UP plays an important role in
the context of the view-based analysis of data streams [2, 9] and forms the basis
for the incremental evaluation of continuous queries (e.g. in Oracle [22]). The
aim of UP is the computation of implicit changes of derived relations result-
ing from explicitly performed updates of the extensional fact base. As in most
cases an update will affect only a small portion of the database, it is rarely
reasonable to compute the induced changes by comparing the entire old and
new database state. Instead, the implicit modifications should be iteratively
computed by propagating the individual updates through the possibly affected
views and computing their consequences.

Although all incremental methods basically employ the same propagation
technique there are differences in the way they are implemented, the focus they
provide to the induced updates and the granularity of the computed changes.
With respect to implementation, the authors either propose propagation algo-
rithms of their own or the application of deductive or active propagation rules.
The focus of a propagation method basically describes the way how often ex-
plicit and implicit modifications are employed during the propagation process.

27

While a strong focus implies the application of all base and derived updates dur-
ing the computation, a small focus leads to the application of a certain subset
of induced changes only, allowing to reduce the complexity of the propagation
process. The different granularities can be roughly classified into true, safe, and
general updates [10]. True updates correspond to the real changes whereas safe
updates may as well be redundant, and general updates may even be false. The
different granularities result from methods for integrity checking or materialized
view maintenance where the propagation process may be simplified.

The main contribution of this paper is to provide a common framework for
transformation-based approaches to set-oriented update propagation. To this
end, we develop deductive propagation rules in Datalog allowing for the compu-
tation of induced updates with variable focus and in an arbitrarily chosen gran-
ularity. Every transformation-based method for update propagation is reflected
in the structure of our deductive propagation rules, thus allowing a compari-
son of the strengths and weaknesses of the different proposals. In addition, it
is possible to identify possible improvements of the proposed method, e.g., by
providing a better focus on the induced updates. As an example consider the
current proposal for specifying a continuous query in Oracle [22]. Given a view
definition for defining relation dest

dest(~u)← r1(~x), r2(~y), r3(~z)

Oracle internally employs (the union of) the following specialized rules for in-
crementally computing the induced insertions dest+ of dest

dest+(~u)← r+
1 (~x), rold2 (~y), rold3 (~z)

dest+(~u)← rnew1 (~x), r+
2 (~y), rold3 (~z)

dest+(~u)← rnew1 (~x), rnew2 (~y), r+
3 (~z)

where r+
i denotes the induced insertions with respect to relation ri, roldi the old

state of ri before and rnewi the new state of ri after the update has been ap-
plied, respectively. Unfortunately, the authors in [22] don’t give any hint how this
approach is related to other well-known proposals to update propagation. Addi-
tionally, the question whether there are possible improvements of this approach
remains vaguely answered. Our framework will show that this method corre-
sponds to the computation of true updates with a small focus. Thus, a possible
improvement could be to provide a stronger focus on the induced changes, e.g.,
by using more than one delta table r+

i within a FROM part. For an optimized
evaluation of the new and old state references the Magic Sets method could be
used as proposed in [1]. Additionally, other granularities than true updates could
be provided by Oracle in order to indicate very fast critical constellations within
the data stream which will potentially satisfy a given monitoring condition.

This paper is organized as follows: After recalling basic concepts, the theo-
retical framework for update propagation is provided in Section 3 by formally
classifying the various kinds of update classes. Section 4 then deals with the
generation of deductive propagation rules for each update class while Section 5
is concerned with the variation of the focus provided by the propagation rules.
Section 6 concludes the paper.

28

2 Basic concepts

We assume the reader to be familiar with the notions Datalog, deductive databases
and stratification. A Datalog rule is a function-free clause of the form H ←
L1 ∧ · · · ∧ Lm with m ≥ 1, where H is an atom denoting the rule’s head, and
L1, . . . , Lm are literals. If A ≡ p(t1, . . . , tn) with n ≥ 0 is a literal, we use pred(A)
to refer to the predicate symbol p of A. If A is the head of a given rule R, we
use pred(R) to refer to the set containing the predicate symbol of A. For a set
of rules R, pred(R) is defined as ∪r∈Rpred(r). A deductive database D is a
tuple 〈F ,R〉 where F is a finite set of facts and R a finite set of rules such that
pred(F) ∩ pred(R) = Ø. Within a deductive database D = 〈F ,R〉, a predicate
symbol p is called derived (view predicate), if p ∈ pred(R). The predicate p is
called extensional (or base predicate), if p ∈ pred(F).

The semantics of a deductive database D is defined by its well-founded model
MD. In general, the well-founded model is three-valued and includes undefined
atoms. In case of a stratifiable database D, however, the set of undefined atoms
is empty and the set of negative conclusions is just given by the complement of
the set of true conclusions with respect to the Herbrand base HD of D. Thus, the
semantics of a stratifiable database may also be represented by the set of true
atoms, only. This model-based semantics is not well-suited for computing the im-
plicit state of a given database as it defines the semantics in a non-constructive
way. Therefore, various constructive methods for computing well-founded mod-
els have been proposed in the literature which can be roughly classified into
bottom-up and top-down approaches. For our framework, however, the underly-
ing rule evaluation technique is irrelevant and we tacitly assume the respective
well-founded models to be computed somehow. For illustrating the introduced
notations, consider the following stratifiable deductive database D = 〈F ,R〉:

R: one way(X, Y) ← path(X, Y) ∧ ¬path(Y, X) F : edge(1, 2)
path(X, Y) ← edge(X, Y) edge(2, 1)
path(X, Y) ← edge(X, Z) ∧ path(Z, Y) edge(2, 3)

Relation path represents the transitive closure of relation edge while relation
one way selects all path(X, Y)-facts where Y is reachable from X but not vice
versa. A stratification induces (in this case) the unique partition P = P1 ∪· P2

with P1 comprising the two path-rules while P2 includes the one way-rule. The
semantics of D is given by its total well-founded model MD = F ∪ {path(1, 2),
path(2, 1), path(2, 3), path(1, 1), path(2, 2), path(1, 3)} ∪ {one way(1, 3),
one way(2, 3)}. Note that in the following definitions the notation D will always
be used to denote a stratifiable deductive database with D = 〈F ,R〉.

3 Induced Updates

In this section we introduce the syntax and semantics of modifications on exten-
sional as well as intensional relations of a given deductive database. We refrain

29

from presenting a concrete update language but rather concentrate on the re-
sulting sets of update primitives specifying insertions and deletions of individual
facts. We will use the notion of performed update to denote the ’true’ changes of
base relations caused by a transaction only; that is, we restrict the set of facts to
be updated to the minimal set of updates where compensation effects (given by
an insertion and deletion of the same fact or the insertion of facts which already
exist in the database) are already considered. Therefore, performed updates may
be seen as the effect of an applied transaction.

Definition 1 (Performed Update). A performed update uD is a pair 〈u+
D, u

−
D〉

where u+
D and u−D are sets of base facts with pred(u+

D∪u
−
D) ⊆ pred(F), u+

D∩u
−
D =

Ø, u+
D ∩ F = Ø and u−D ⊆ F . The atoms u+

D represent facts to be inserted into
D, whereas u−D contains the facts to be deleted from D.

We will use the notion of induced update to refer to the entire set of facts in
which the new state of the database differs from the old state after an update of
base tables has been applied. The performed updates solely refer to base relations
while the induced updates additionally include their implicit consequences to the
derived relations. Note that we do not consider view update requests.

Definition 2 (Induced Update). Let D be a deductive database and uD a
performed update of D resulting in the new (updated) database D′. Then uD leads
to an induced update uD→D′ from D to D′ which is a pair 〈u+

D→D′ , u
−
D→D′〉 of

sets of ground atoms such that u+
D→D′ = MD′\MD and u−D→D′ = MD\MD′ .

The atoms u+
D→D′ represent the induced insertions, whereas u−D→D′ consists of

the induced deletions.

The task of update propagation is to provide a description of the overall oc-
curred modifications. Technically, such a description is given by a set of ground
dynamic literals entirely including the induced update. However, it is not gen-
erally required that such a description exactly represents the sets in uD→D′ but
may additionally contain further ground literals. In the following we will call
such descriptions, characterizing an induced update more or less accurately, a
transition portrait. Many approaches to update propagation have been developed
estimating the induced update with a variable degree of accuracy. This is mainly
motivated by integrity checking problems where the exact difference of the two
consecutive database states is not always necessary. Instead, an overestimation
of the induced changes could be used which is given by a transition portrait.

Definition 3 (Transition Portrait). Let uD be a performed update and uD→D′
the resulting induced update from D to D′. Any pair of sets of facts 〈∆+, ∆−〉
overestimating 〈u+

D→D′ , u
−
D→D′〉, i.e., u+

D→D′ ⊆ ∆+ and u−D→D′ ⊆ ∆−, is called
transition portrait.

1. A transition portrait is called safe iff the conditions ∆+ ⊆ MD′ and ∆− ⊆
HD∪D′\MD′ hold.

2. A transition portrait is called true iff the conditions ∆+ = u+
D→D′ and ∆− =

u−D→D′ hold (i.e., it just coincides with the given induced update).
30

The classification of the different forms of transition portraits is helpful as it is
often not necessary to compute true changes. For instance, materialized relations
can be correctly maintained on the basis of safe transition portraits. Determining
true induced updates is obviously more expensive than computing safe ones, as
safe updates need to be verified on the new state only whereas true updates
require evaluations on both, the new and old state. In contrast to this, the
number of true changes is usually smaller than that of computed safe updates.
Thus, there is a trade-off between the number of determined changes and the
efficiency of their computation. In the following section we develop deductive
propagation rules for deriving true, safe, and general transition portraits.

4 Propagation Rules

Calculating induced updates in different granularities has been already discussed
in [17] and [10]. While [17] deals with positive databases only, Griefahn already
proposes in [10] a framework to the propagation of insertions and deletions of
base facts in stratifiable databases. In contrast to these frameworks, however,
we develop new propagation rules with a different focus on individual induced
updates (i.e. the number of delta literals referenced). These rules can be further
refined by the so-called merging process which will be introduced later in Sec-
tion 5 and allows to systematically derive new approaches to update propagation
such as the one used in Oracle.

In general, update propagation methods analyze the deductive rules of a given
database in order to systematically determine so-called delta relations which
provide a focus on the specific changes of relations after a performed update has
been applied. Thus, delta relations can be considered the practical counterpart of
transition portraits. Delta relations reflect the original database schema in such
a way that the performed updates are represented by extensional delta relations
while derived updates (i.e. induced updates which are not performed ones) are
described by rule-defined ones. For efficiency reasons we allow to reference delta
relations in the body of propagation rules as well such that their evaluation
is restricted to already computed induced updates. In order to abstract from
negative and positive occurrences of atoms in rule bodies, we use the superscripts
”+” and ”−” for indicating what kind of delta relation is to be used. For a positive
literal A ≡ p(t1, . . . , tn) we define A+ ≡ p+(t1, . . . , tn) and A− ≡ p−(t1, . . . , tn).
For a negative literal L ≡ ¬A, we use L+ := A− and L− := A+. For computing
the derived delta relations, the explicit changes caused by a performed update
have to be represented by the extensional delta relations. Thus, we generate a
set of delta facts called propagation seeds for a performed update.

Definition 4 (Propagation Seeds). Let uD = 〈u+
D, u

−
D〉 be a performed up-

date. The set of propagation seeds prop seeds(uD) with respect to uD is

prop seeds(uD) := { Aπ | A ∈ uπD and π ∈ {+,−}}.

Assuming a bottom-up evaluation, the propagation seeds represent the starting
point from which induced updates can be computed using propagation rules.

31

Within these propagation rules references to both the old and new database
state are necessary. We will use corresponding superscripts old and new for
referring to the respective state of a given relation.

In [12] it is assumed that all views are materialized which simplifies the
state evaluation process but seems to be unrealistic in practice. Therefore, the
possibility has been investigated of dropping the explicit references to one of the
states by deriving it from the other one and the given performed updates. The
benefit of such a state simulation is that the database system is not required
to store both states explicitly but may work on one state only. Rules for state
simulation have been called transition rules in [18] and various optimizations
have been proposed for their evaluation. As an example, transition rules could
be incrementally defined or Magic Sets could be used for specializing them with
respect to already computed induced updates as proposed in [1]. However, we
refrain from discussing state simulation because of space limitations and assume
the correct state determination by the database.

4.1 Propagation Rules for True Updates

A first naive construction of propagation rules for true updates can be directly
derived from the definition of the true transition portrait yielding two propaga-
tion rules for each derived relation:

A+ ← Anew ∧ ¬Aold A− ← Aold ∧ ¬Anew

The propagation rules are called naive as they do not take the actually performed
update into account. Nevertheless, they already point out the general structure
inherent in any propagation rule:

1. The derivability test (Anew|Aold) is performed in order to determine whether
A is derivable in the new or old state, respectively. In fact, it is responsible
for calculating general updates.

2. The effectiveness test1 (¬Aold|¬Anew) checks whether the fact obtained by
the derivability test is not derivable in the opposite state. Hence, it checks
whether the general updates obtained by the derivability test are effective.

Semantically, however, two other tasks can be identified depending on the data-
base state a literal refers to. The safeness test (new-derivations) takes care that
only updates of a safe transition portrait are derived while the trueness test
(old-derivations) takes care that only updates of the true transition portrait are
propagated. As already mentioned above, the disadvantage of the naive propa-
gation rules is that the actually performed update as well as already computed
induced updates are not employed in their rule bodies. For incrementally prop-
agating true updates the derivability test ought to include references to delta
relations, too. Before defining corresponding specialized propagation rules we
still need to introduce a notation for so-called preserved elements AO (according

1 The effectiveness test is called redundancy test in [13].

32

to the naming in [15]). The set AO comprises all tuples from the old state Aold

of A which are not deleted, i.e., AO := Aold \A−.

Definition 5 (Propagation Rules for True Updates). Let R be a stratifi-
able deductive rule set. The set of propagation rules for true updates with respect
to R is denoted ϕt(R) and is defined as follows: For each rule A← L1∧. . .∧Ln ∈
R and each body literal Li (i = 1, . . . , n) two propagation rules of the form

A+ ← L+
i ∧ Lν

1

1 ∧ . . . ∧ Lν
i−1

i−1 ∧ Lν
i+1

i+1 ∧ . . . ∧ Lν
n

n ∧ ¬Aold

A− ← L−i ∧ Lo
1

1 ∧ . . . ∧ Lo
i−1

i−1 ∧ Lo
i+1

i+1 ∧ . . . ∧ Lo
n

n ∧ ¬Anew

with νi ∈ {+, O} and oi ∈ {−, old} are in ϕt(R). The literals Lν
j

j and Lo
j

j are
called side literals of Li

The propagation rules still perform a comparison of the old and new database
state but provide the strongest focus on individual updates by applying as many
delta literals Lπi with π ∈ {+,−} as possible. Specializing the derivability test in
this way has been proposed in [3] but leads to the generation of 2n−1 propagation
rules (if n is the number of body literals). We use the strongest focus, however,
in order to provide a starting point from which propagation rules of concrete
proposals can be systematically derived. To this end, we propose a merging
process in Section 5 which reduces the focus on delta relations leading to a
smaller number of propagation rules.

The obtained propagation rules and seeds can be added to the original
database yielding a safe and stratifiable database which is called augmented
database in the following according to the naming in [18]. The safeness of propa-
gation rules immediately follows from the safeness of the original rules. Further-
more, the propagation rules cannot jeopardize stratifiability, as delta relations
are always positively referenced and hence cannot participate in any cycle involv-
ing negation. As an example, consider again the rules from Section 2 for defining
the derived relation one way. The corresponding propagation rules for true in-
sertions are as follows (In the sequel, the relation symbols will be abbreviated
by their first letter.):

o+(X, Y)← p+(X, Y) ∧ p−(Y, X) ∧ ¬oold(X, Y)
o+(X, Y)← p+(X, Y) ∧ ¬pO(Y, X) ∧ ¬oold(X, Y)
o+(X, Y)← pO(X, Y) ∧ p−(Y, X) ∧ ¬oold(X, Y)

Note that the exponents of the delta literals for p are inverted, as p is negatively
referenced in the original rule. The following proposition shows the correctness
of our propagation rules and more importantly, indicates the conditions to be
satisfied for the respective proof.

Proposition 1 (Correctness of Propagation Rules). Let D = 〈F ,R〉 be a
stratifiable database, uD a performed update and uD→D′ = 〈u+

D→D′ , u
−
D→D′〉 the

corresponding induced update from D to D′. Let Dp = 〈F ∪ prop seeds(uD),
R ∪ ϕt(R)〉 be the augmented deductive database of D. Then the delta relations

33

correctly represent the induced update uD→D′ and for each relation p ∈ pred(D)
the following conditions hold:

p+(~t) ∈MDp ⇐⇒ p(~t) ∈ u+
D→D′

p−(~t) ∈MDp ⇐⇒ p(~t) ∈ u−D→D′ . �

We omit the proof of this and the following propositions because of space limi-
tations. However, the proposition can be easily shown by induction on the depth
of proof trees with respect to D′.

4.2 Propagation Rules for Safe Updates

An update is called safe if it is reflected in the new database state, i.e., an in-
serted atom is present whereas a deleted atom is absent regardless whether it
was included in the old state or not. Thus, propagation rules for safe updates
must include a safeness test in any case but may refrain from applying a true-
ness test. For positive propagation this implies that the effectiveness test can
be dropped. In case of negative propagation the trueness test which coincides
with the derivability test cannot be completely given up as it is responsible for
computing a general update. However, it may be restricted to any subset of ’side’
literals which maintains the safeness of the resulting propagation rule.

Definition 6 (Propagation Rules for Safe Updates). Let R be a stratifiable
deductive rule set. The set of propagation rules for safe updates with respect to R
is denoted ϕs(R) and is defined as follows: For each rule A← L1 ∧ . . .∧Ln ∈ R
and each body literal Li (i = 1, . . . , n) two propagation rules of the form

A+ ← L+
i ∧ Lν

1

1 ∧ . . . ∧ Lν
i−1

i−1 ∧ Lν
i+1

i+1 ∧ . . . ∧ Lν
n

n

A− ← L−i ∧ Side(L−i) ∧ ¬Anew

are in ϕs(R) where νi ∈ {+, O} and Side(L−i) ⊆ {Lo11 ∧ . . . ∧ Lo
i−1

i−1 ∧ Lo
i+1

i+1 ∧
. . . ∧ Lo

n

n } is a subset of body literals of the rule with oi ∈ {−, old} such that
the effectiveness test ¬Anew remains safe.

From this definition follows that the propagation rules for safe updates are range-
restricted (or safe) and do not introduce any stratification problems. The prop-
agation rules for safely updating our sample relation one way would look as
follows:

o+(X, Y)← p+(X, Y) ∧ p−(Y, X) o−(X, Y)← p−(X, Y) ∧ ¬onew(X, Y)
o+(X, Y)← p+(X, Y) ∧ ¬pO(Y, X) o−(X, Y)← p+(Y, X) ∧ ¬onew(X, Y)
o+(X, Y)← pO(X, Y) ∧ p−(Y, X)

In case of positive propagation no effectiveness test is performed whereas in case
of negative propagation all side literals are dropped. Note that the first nega-
tive propagation rule actually results from two negative rules with the common
delta relation p−(X, Y) and the dropped side literals p+(Y, X) and ¬pold(Y, X),
respectively.

34

Proposition 2 (Correctness of Safe Propagation Rules). Let D = 〈F ,R〉
be a stratifiable database, uD a performed update, uD→D′ = 〈u+

D→D′ , u
−
D→D′〉

the corresponding induced update from D to D′ and ϕs(R) a set of propaga-
tion rules for safe updates. Let Dp = 〈F ∪ prop seeds(uD), R ∪ ϕs(R)〉 be the
augmented deductive database of D. Then the delta relations correctly represent
a safe transition portrait ∆ of uD→D′ and for each relation p ∈ pred(D) the
following conditions hold:

p(~t) ∈ ∆+ ⇒ p+(~t) ∈MDp and p+(~t) ∈MDp ⇒ p(~t) ∈MD′
p(~t) ∈ ∆− ⇒ p−(~t) ∈MDp and p−(~t) ∈MDp ⇒ p(~t) ∈MD′ �

4.3 Propagation Rules for Induced Updates in the General Case

For propagating general updates, which may be neither safe or true, the truth
value of the updated facts neither in the old nor in the new state is essential.
Many approaches to update propagation have been introduced which completely
refrain from evaluating side literals and effectiveness tests, e.g. [5, 11, 13, 14, 27].
Consequently, propagation becomes very cheap as it mostly relies on extensional
or derived delta relations, only. [27] even considers the propagation of general
updates with built-in predicates as the latter can be evaluated without access-
ing the database. However, simply omitting all side literals may lead to unsafe
propagation rules. The methods mentioned above cope with this problem by
providing special propagation algorithms, e.g. [5, 11, 14], by dropping the safe-
ness requirement, e.g. [13], or by encoding unsafe variables with special ground
terms such as NULL, e.g. [27].

In order to avoid the generation of non-ground facts we propose to drop all
variables indicated as unbound during the evaluation. To this end, an adornment
phase is used quite similar to the one employed during the Magic Sets rewriting.
Within an adorned rule set each derived predicate is associated with an adorn-
ment, which is a string consisting of the symbols ?b? and ?f? representing bound
and free argument positions [20] when the predicate is evaluated. The adorned
rule set is derived from the original database starting from the bindings provided
by extensional delta relations and using a choice of sideways information passing
(sip) strategy [20]. A SIP strategy determines for each rule the order in which
the body literals are to be evaluated and what bindings are passed on. As an
example, consider the unsafe propagation rule p+(X, Y)← e+(X, Z) which can be
adorned as follows:

p+
bf(X, Y)← e+(X, Z) p+

ff(X, Y)← e+(X, Z)

Relation p+ is specialized into two relations p+
bf and p+

ff representing the two
possible ways of passing bindings in this case. Given a literal L and its adornment
ad, the encoded literal of L with respect to ad is denoted bdad(L) and represents
the adorned version of L where all variables indicated as unbound are dropped.
Encoding the adorned literals of the above example yields the following rules
p+
bf(X)← e+(X, Z) and p+

ff ← e+(X, Z) which are safe now. The derivation of a
35

fact, say p+
bf(c) indicates that all ground facts p+

bf(c, c′) of the Herbrand base
HD∪D′ matching with c in their first argument are considered to be an insertion.
Note that the proposed encoding is not faithful (cf. [4]), since distinct non-ground
facts like e+(X, Y, c) and e+(X, X, c) are equally represented by e+

ffb(c) such that
the information provided by the repeated variables will get lost. However, in the
context of general updates a faithful encoding is not necessary for preserving
correctness.

Definition 7 (Propagation Rules for General Updates). Let R be a strati-
fiable deductive rule set. The set of propagation rules for general updates with
respect to R is denoted ϕp(R) and is defined as follows: For each adorned rule
A← L1 ∧ . . . ∧ Ln ∈ R, each body literal Li (i = 1, . . . , n) and each adornment
string a,a’,b,b’ two propagation rules of the form

bda′(A)+ ← bda(Li)+ ∧ Side(L+
i)

bdb′(A)− ← bdb(Li)− ∧ Side(L−i)

are in ϕs(R) where νi ∈ {+, O}, Side(L+
i) ⊆ {Lν1

1 ∧. . .∧ Lν
i−1

i−1 ∧ Lν
i+1

i+1 ∧. . .∧ Lν
n

n }
and oi ∈ {−, old}, Side(L−i) ⊆ {Lo11 ∧ . . . ∧ Lo

i−1

i−1 ∧ Lo
i+1

i+1 ∧ . . . ∧ Lo
n

n } such
that the adorned head literals bda′(A) and bdb′(A) remain safe.

Before showing the correctness of the propagation rules for general updates let
us consider the rules of our running example again. In order to propagate general
updates we may use the following rules:

o+
bf(X)← p+

bf(X) o−fb(Y)← p−bf(Y)
p+
bf(X)← e+(X, Y) p−bf(X)← e−(X, Y)
p+
bf(X)← p+

bf(Z) ∧ eO(X, Z) p−bf(X)← p−bf(Z) ∧ eold(X, Z)

The employed SIP strategy passes the fist argument bindings of relation e and
p such that only the side literal eold(X, Z) remains within the rules. The corresp.
two old state references are needed for preserving safeness of the respective rules.

Proposition 3 (Correctness of Prop. Rules for General Updates). Let
D = 〈F ,R〉 be a stratifiable database, uD a performed update, uD→D′ = 〈u+

D→D′ ,
u−D→D′〉 the corresponding induced update from D to D′ and ϕp(R) a set of
propagation rules for general updates. Let Dp = 〈F∪prop seeds(uD), R∪ϕp(R)〉
be the augmented deductive database of D. Then the delta relations correctly
represent a general transition portrait ∆ of uD→D′ and for each relation p ∈
pred(D) the following conditions hold:

p(~t) ∈ ∆+ ⇒ it exists an adornment a of p such that bd(p+
a (~t)) ∈MDp

p(~t) ∈ ∆− ⇒ it exists an adornment a of p such that bd(p−a (~t)) ∈MDp

�
36

Method Insertions Deletions

Griefahn [10] true true

Olivé [18] true true

Ceri/Widom [6] true safe

Gupta/Mumick [12] true safe

Sadri et al. [23] general safe

Das et al. [7] safe general

Këchenhoff [13] safe general/true

Vieille et al. [26] safe general/safe

Griefahn et al.[11] general general

Lloyd et al. [14] general general

Fig. 1. Accuracy of transition portraits obtained in the literature

4.4 Discussion

As stated before, there is a trade-off between the granularity of induced updates,
their number, and the complexity of their evaluation. Therefore, it would be
useful to separately decide the granularity of induced updates for each relation.
Actually, many approaches to update propagation compute transition portraits
of variable granularity. However, the distinction is rarely made for individual
relations but for deletions and insertions in general. For instance, the approach
in [23] determines general insertions and true deletions while [7] computes safe
insertions and general deletions. The derivation of safe insertions and general
deletions is proposed in [13, 26] as well. However, in [26] a general deletion has
to additionally pass the safeness test, if it is further propagated through a ne-
gative literal. In this case [13] even checks trueness. Our framework can be
easily extended such that the updates of each individual relation is described
at an arbitrary granularity. However, we refrain from showing how propagation
rules of different update classes can be mixed for individual relations due to
space limitations. The table in Figure 1 classifies some approaches from above
according to the accuracy of computed induced updates.

5 Merging Propagation Rules

In this section the possibility of merging propagation rules is discussed for re-
ducing the number of rules for computing induced updates. A smaller number
of propagation rules implies computational advantages but has to be paid by a
lower focus as the number of delta literals within the propagation rule’ bodies is
reduced. Let us consider the rule p(v̄)← a(x̄) ∧ b(ȳ) ∧ c(z̄) and its correspond-
ing propagation rules (with omitted effectiveness tests for simplicity reasons) for
propagating true insertions:

(1) p+(v̄)← a+(x̄) ∧ b+(ȳ) ∧ c+(z̄) (5) p+(v̄)← aO(x̄) ∧ b+(ȳ) ∧ c+(z̄)
37

(2) p+(v̄)← a+(x̄) ∧ b+(ȳ) ∧ cO(z̄) (6) p+(v̄)← aO(x̄) ∧ b+(ȳ) ∧ cO(z̄)
(3) p+(v̄)← a+(x̄) ∧ bO(ȳ) ∧ c+(z̄) (7) p+(v̄)← aO(x̄) ∧ bO(ȳ) ∧ c+(z̄)
(4) p+(v̄)← a+(x̄) ∧ bO(ȳ) ∧ cO(z̄)

All combinations of delta literals and old state references are considered, leading
to an exponential number of propagation rules. This number can be reduced by
introducing a new state reference for a body relation p instead of its old state
or its delta relation using the property pnew ⊇ pO ∪ p+. For instance, overesti-
mating c+(z̄) in rule 1 and 2 by using cnew(z̄) instead would lead to the single
rule p+(v̄)← a+(x̄) ∧ b+(ȳ) ∧ cnew(z̄) (denoted (1,2) in the following) which sub-
sumes the former rules 1 and 2. Since new state references are needed anyway,
e.g., within the effectiveness tests of propagation rules for induced deletions,
its introduction may cause only a small computational overhead. The latter re-
sults from the smaller number of delta relations within the remaining rules such
that the focus on the delta facts is reduced during the computation of induced
updates. On the other hand, proceeding this way ultimately leads to the genera-
tion of the single propagation rule p+(v̄)← anew(x̄) ∧ bnew(ȳ) ∧ cnew(z̄) ∧ ¬pold(v̄)
which subsumes all other rules but provides no focus anymore.

Thus, there is a trade-off between the number of employed propagation rules
and the focus they provide. Starting from a strong focus as provided by the
definitions of propagation rules, various degrees of focus can be achieved by
iteratively overestimating old state and delta literals. The degree of focus could
be measured by the number of referenced delta literals within the remaining set
of propagation rules. For instance, twelve delta literals occur within the above
example of propagation rules for true insertions with a strong focus whereas the
application of the merged rule (1,2), subsuming rule 1 and 2, reduces the number
of delta literals by three.

The merging process itself depends on a chosen selection function which
determines the next delta or old state literal to be overestimated. Note that
merging is also applicable to propagation rules for safe or even general updates.
Generally, a propagation rule of the form A+ ← L1 ∧ . . . ∧ Lνi ∧ . . . ∧ Ln
with ν ∈ {+, O} specifying induced insertions with an arbitrary granularity can
be overestimated by a new propagation rule in which the selected literal Lνi is
replaced by Lnewi . This new rule subsumes the former one which doesn’t have to
be considered during the propagation process anymore. As an example, consider
again the specialized continuous query in Oracle SQL as presented in Section 1.
The adjusted focus can be obtained by overestimating all bν(ȳ) and cν(ȳ) literals
in the rules from 1 to 4 and by overestimating cν(ȳ) in the rules 5 and 6. The
resulting merged rules represent a complete set of propagation rules for true
updates with a small focus as only three delta literals remain in contrast to
twelve before.

Obviously, propagation rules for induced insertions can also be merged but
this time the property pold ⊇ p− is employed. Generally, a propagation rule of
the form A− ← L1 ∧ . . . ∧ L−i ∧ . . . ∧ Ln specifying induced insertions with an
arbitrary granularity can be overestimated by a new propagation rule in which
the selected literal L−i is replaced by Loldi . This new rule subsumes the former

38

one again. In case of propagation rules for true deletions, proceeding this way
ultimately leads to the single rule A− ← Lold1 ∧. . .∧ Loldi ∧. . .∧ Loldm ∧¬Anew which
subsumes all other rules for induced deletions but provides no focus anymore.
As already mentioned above, the specialized views as proposed for continuous
queries in Oracle [22] can be obtained by merging propagation rules for true
updates in a certain way. Although not stated in [22], the corresp. propagation
rules of the form

A+ ← L+
1 ∧ Lold2 ∧ Lold3 ∧ . . . ∧ Loldn

A+ ← Lnew1 ∧ L+
2 ∧ Lold3 ∧ . . . ∧ Loldn

...
A+ ← Lnew1 ∧ Lnew2 ∧ Lnew3 ∧ . . . ∧ L+

n

have been already proposed in [12] for reducing the number of propagation rules.
These rules provide only a small focus but represent disjoint alternatives. In fact,
using a further overestimation Lnewi for any old state reference Loldi would induce
new but redundant derivations already provided by the rule which contains the
literal L+

i in its body. A possible deficiency of Oracle’s propagation rules is that
for every relation the old as well as new state reference is employed. If the new
state computation of a literal - say Lnew1 is quite expensive, its evaluation can
be avoided by using the ’former’ L+

1 and LO
1 instead. On the other hand, if the

new image of relation L1 was materialized but not the old one, it would be
advantageous to overestimate every occurrence of Lold1 by Lnew1 and thus, get rid
off all old state references of the respective relation. In [10, 15] the overestimation
of every old state reference has been proposed for specifying induced insertions:

A+ ← L+
1 ∧ Lnew2 ∧ Lnew3 ∧ . . . ∧ Lnewn

A+ ← Lnew1 ∧ L+
2 ∧ Lnew3 ∧ . . . ∧ Lnewn

...
A+ ← Lnew1 ∧ Lnew2 ∧ Lnew3 ∧ . . . ∧ L+

n

No old state reference except from the effectiveness test (if needed) is used but the
resulting rules do not represent disjoint cases anymore. Other selection strategies
for the merging process can be used to obtain an arbitrary combination of old
and new state references allowing to minimize costly state simulations. This is
especially important in append-only stream applications where deletions are not
considered. Consequently certain state references do not occur and shouldn’t be
additionally introduced by propagation rules for induced insertions.

6 Conclusion

In this paper we presented a formal framework allowing to classify set-oriented
approaches to update propagation which have been mainly developed in the logic
programming context. This allows for comparing advantages and shortcomings
of different propagation methods. In particular we discussed Oracle’s current
proposal to evaluating continuous queries and motivated its extension to safe or
general updates. Additionally, it has been shown how the focus of the applied
propagation rules can be varied by rule merging.

39

References

1. Behrend A., Manthey R.: Update Propagation in Deductive Databases Using
Soft Stratification. ADBIS 2004: 22-36

2. Behrend A., Dorau C., Manthey R., and Schüller G.: Incremental View-
Based Analysis of Stock Market Data Streams. IDEAS, 2008: 269-275.

3. Blakeley J.A., Larson P., and Tompa F.W.: Efficiently Updating Materialized
Views. SIGMOD: 61-71, 1986.

4. Bry F.: Query evaluation in deductive databases: Bottom-up and top-down recon-
ciled. Data and Knowledge Engineering (5): 289-312, 1990.

5. Bry F., Decker H., Manthey R.: A Uniform Approach to Constraint Satisfac-
tion and Constraint Satisfiability in Deductive Databases. EDBT: 488-505, 1988.

6. Ceri S. and Widom J. Deriving Incremental Production Rules for Deductive
Data. Information Systems 19(6): 467–490, 1994.

7. Das S. K. and Williams M. H. A Path Finding Method for Constraint Checking
in Deductive Databases. DKE (4): 223–244, 1989.

8. Decker H. Integrity Enforcement on Deductive Databases. Expert Database
Conference 1986: 381-395.

9. Ghanem T. M. et al. Incremental Evaluation of Sliding-Window Queries over
Data Streams. IEEE TKDE, Volumne 19(1): 57–72, 2007.

10. Griefahn U. Reactive Model Computation–A Uniform Approach to the Imple-
mentation of Deductive Databases. PhD Thesis, University of Bonn, 1997.

11. Griefahn U. and Lüttringhaus S. Top-down Integrity constraint Checking in
Deductive Databases. ICLP 1990: 130-143.

12. Gupta A., Mumick I. S., and Subrahmanian V. S. Maintaining Views Incre-
mentally. SIGMOD 1993, pages 157–166.

13. Küchenhoff V. On the Efficient Computation of the Difference Between Con-
secutive Database States. DOOD 1991, pages 478–502.

14. Lloyd J. W., Sonnenberg E. A., and Topor R. W. Integrity Constraint
Checking in Stratified Databases. JLP (4): 331-343 (1987).

15. Manthey R. Reflections on Some Fundamental Issues of Rule-Based Incre-
mental Update Propagation. DAISD 1994: 255-276, September 19-21, Universitat
Politècnica de Catalunya.

16. Martens B. and Bruynooghe M. Integrity Constraint Checking in Deductive
Databases Using a Rule/Goal Graph. EDS 1988, pages 567–601.

17. Moerkotte G. and Karl S. Efficient Consistency Control in Deductive
Databases. ICDT 1988, pages 118–128.

18. Olivé A. Integrity Constraints Checking in Deductive Databases. VLDB 1991,
pages 513–523.

19. Qian X. and Wiederhold G. Incremental Recomputation of Active Relational
Expressions. IEEE TKDE 3: 337–341 (1991).

20. Ramakrishnan, R.: Magic Templates: A Spellbinding Approach to Logic Pro-
grams. JLP 11(3&4): 189-216 (1991).

21. Salem K., Beyer K., Lindsay B., and Cochrane R. How To Roll a Join:
Asynchronous Incremental View Maintenance. SIGMOD 2000: 129-140.

22. Subramanian S. et al. Continuous Queries in Oracle. VLDB 2007, pages 1173-
1184.

23. Sadri F. and Kowalski R. A. A Theorem Proving Approach to Database In-
tegrity. Foundations of Deductive Databases and Logic Programs, pages 313–362,
M. Kaufmann, 1988.

40

24. Sköld M. and Risch T. Using Partial Differencing for Efficient Monitoring of
Deferred Complex Rule Conditions. ICDE 1996: 392–401.

25. Urṕı T. and Olivé A. A Method for Change Computation in Deductive
Databases. VLDB 1992, August 23–27, Vancouver, pages 225–237.

26. Vieille L., Bayer P., and Küchenhoff V.: Integrity Checking and Materialized
View Handling by Update Propagation in the EKS-V1 System. Technical Report
TR-KB-35, ECRC (1991).

27. Wüthrich B.: Detecting Inconsistencies in Deductive Databases. Technical Report
123, ETH Zürich (1990).

41

42

Towards Automatic Schema Mapping
Verification Through Reasoning?

Paolo Cappellari and Denilson Barbosa

Department of Computing Science
University of Alberta

Edmonton, AB, Canada
{cappellari,denilson}@cs.ualberta.ca

Abstract. We consider the problem of determining whether a schema
mapping produces data that is compatible with the semantics of the tar-
get database schema. We propose a lightweight framework based anno-
tating the schemas with conceptual meta-data expressed formally. Based
on this framework, we propose a formalization of the problem, and pro-
vide algorithms that automatically verify the compatibility of mappings.
Also, we discuss a strategy for automatically deriving the required se-
mantic annotations. Finally, we discuss how our framework may lead to
practical tools to help in the verification of schema mappings.

1 Introduction

Exchanging and integrating data from disparate sources are challenging and
active research problems. The state-of-the-art relies on precise schema mappings
which fully specify the relationships between elements of a source schema S and
a target schema T [14], from which executable queries (or mapping programs)
are derived. Tools for designing schema mappings fall in three categories: schema
matchers [17, 18], mapping generators [8, 15], and mapping verifiers [9]. Schema
matchers discover correspondences between pairs of individual elements of S
and T . These tools are approximate in nature, often relying in the analysis of
sample data. Mapping generators use the correspondences obtained by a matcher
to produce the actual mappings. Finally, mapping verifiers help the designer
check if the resulting schema mapping translates the data as intended. Despite
the help provided by such sophisticated tools (e.g., IBM’s Clio and Microsoft’s
BizTalk), designing mappings remains costly: some estimates suggest it takes 3
man-months to design a single mapping [19].

State-of-the-art mapping design algorithms produce mappings logically equiv-
alent to unions of source-to-target tuple-generating-dependencies (ST-TGDs) [13].
Initially, they identify all so-called maximal “logical entities” in each schema; in
practical terms, a logical entity is either a relation or a conjunctive query whose
joins are defined over primary-key and foreign-key constraints. The TGDs are
? This work was supported in part by grants from the Natural Sciences and Engineer-

ing Research Council of Canada, and the Alberta Ingenuity Fund.

43

Employee
Name
Contact

Project
Site
Manager
Leader

Program
Supervisor
Email
Location

S T

v1

v2

v3

(a) Schemas and correspondences.

µ1 : S:Employee(n, c), S:Project(s, n,)

→ T:Program(n, c, s)

µ2 : S:Employee(n, c), S:Project(s, , n)

→ T:Program(n, c, s)

µ3 : S:Employee(n, c), S:Project(s, n,)

→ T:Program(n, c, s)

S:Employee(n, c), S:Project(s, , n)

→ T:Program(n, c, s)

(b) Plausible mappings.

Fig. 1: Designing a mapping between schemas S and T . Dashed lines indicate
correspondences between schema elements, while solid lines indicate foreign-key
constraints; primary keys are underlined.

arrived at by pairing together logical entities from S and T that are connected
through schema correspondences. If columns c1 in S and c2 in T are connected
through a correspondence, the same variable is used (in the positions of c1 and
c2 in the respective goals) in both the LHS and RHS of the TGD . On the other
hand, if a column in T has no counterpart in S, a new existentially quantified
variable is introduced in the RHS of the TGD (meaning that a new null value
must be used). If there are columns corresponding to primary or foreign keys in
T without corresponding columns in S, the same existentially quantified variable
is used to ensure the consistency of the mapped data.

As typical large organizations have hundreds of databases, and the potentially
catastrophic consequences of mapping the wrong data or incorrectly mapping
the right data, the practical relevance of finding verifiably compatible schema
mappings is paramount.

Example 1. Our running example is inspired by scenarios described in [3, 9, 16].
Figure 1(a) shows schemas S, T , some correspondences between their elements,
as well as local constraints within them. For the sake of the argument, assume
that the leader of a project is always an engineer and that a manager is always
an administrator, and no employee is allowed to fill both roles. Further, assume
instances of T stores only the technical leaders of projects. There are two maxi-
mal logical entities in S (corresponding to the two possible joins of S:Employee
and S:Project) and one logical entity in T (T:Program). Figure 1(b) shows three
plausible mappings that can be derived through the process outlined above. We
use the standard Datalog convention of replacing variables that are not used
by “don’t care” symbols (). The semantics of the mappings are as follows: µ1

maps projects from S with their managers; µ2 maps projects with their leaders;
finally, µ3 maps both managers and leaders. Thus, only µ2 is compatible with
the semantics of T .

44

Mapping Verification. The problem consists of determining whether a schema
mapping µ : S → T produces data that is compatible with the semantics of T .
Returning to our example, the problem consists of determining which mappings
in Figure 1(b) are such that only technical leaders are mapped into T:Program.

Current tools delegate the verification step to the user. Once all plausible
candidate mappings are generated, the user is asked which one(s) to apply. To
help in the process, these tools show examples of the target databases resulting
from the application of the candidate mappings on sample data. Clearly, this
does not scale: to determine the compatibility of a mapping, the designer must
be an expert on both S and T or analyze many different samples of mapped
data.

A step towards automatic verification is Spicy [9]. Given samples instances IS

and IT , Spicy applies each plausible mapping to IS and compares (statistically
speaking) the resulting instances to IT . The candidate mapping whose output is
closest to IT is chosen. Observe, however, that besides the difficulties associated
with sampling, this approach relies on the problematic assumption that the
semantics of a schema can be inferred from statistical correlations between data
values. In our example, the compatibility of a mapping will be determined based
on the correlation between names and email addresses (which are the data from
S:Person that are mapped) with a person’s career path (managerial vs. technical).
While this assumption might hold in some cases (e.g., projects with high budget
vs. projects with low budget), it clearly is not general.

Contributions. We propose a generic and lightweight framework in which to for-
mulate and solve the mapping verification problem (Section 2). In our vision,
both S and T are loosely annotated with semantic information prior to, and
independently of, any mappings are designed. We verify the compatibility of a
schema mapping by translating each of its ST-TGDs into a statement relating
the conceptual description associated with relations in S and T . The verifica-
tion problem is reduced to the satisfiability of the resulting statements. We rely
on Description Logics [6] and the associated reasoners in our approach. Also,
we explore the possibility of automatically deriving the semantic annotations
necessary for our framework (Section 3).

2 The Mapping Verification Problem

Recall that our goal is determining, given two schemas S and T , whether a
mapping µ : S → T produces data that is compatible with the semantics of T .
As stated, the definition of the problem is appealing, but also too broad. We
now make it more precise.

It is worth distinguishing, however, the different aspects of the problem, some
of which are partially addressed by mapping design tools. Semantic heterogeneity
is a long-standing obstacle to automating data exchange and integration which
is inevitable due to the subjective way in which humans abstract the real world
when designing computer applications and the databases they use [1]. A correct
schema mapping must resolve:

45

Person v ∃hasName.String u ∃hasEmail.String

Woman ≡ Person u ¬Man
Man ≡ Person u ¬Woman

Employee v Person
Engineer v Employee u ¬Administrator

Administrator v Employee u ¬Engineer
Manager ≡ Administrator u ∃manages.Project

Leader ≡ Engineer u ∃leads.Project
Project v ∃hasLocation.String

SeniorLeader v Leader u ≥3 leads

Fig. 2: Simple conceptual model describing persons and career paths.

(1) discrepancies in data representations across schemas (e.g., salaries expressed
in Euros versus Canadian Dollars);

(2) discrepancies in schematic representations of the domain (e.g., the project’s
manager’s email stored in the project table versus the employee table);

(3) semantic discrepancies across schemas (e.g., whether a manager can fill the
role of a technical leader of a project).

While all three aspects above are part of the mapping verification problem, it
is worth noting that current schema matchers and mapping design tools substan-
tially address most of syntactic aspects (point 1) and schematic discrepancies
(point 2). The semantic discrepancies, on the other hand, are not properly ad-
dressed in the state-of-the-art and are the main focus of our work.

We follow the Description Logic syntax and terminology of [6].

2.1 Semantic Annotations

For the sake of completeness, we revisit basic necessary notions of relational
databases [2] and ontologies in Description Logics [6]. A relational schema is a
set of relation schemes; each relation (scheme) r(a), where a = a1, . . . , an is a
list of attributes, and each ai is associated with domain di, i ≤ i ≤ n. We say ai
is the attribute of r at position i. An ontology O = {T ,R} is a finite set T of
terms denoting concepts and a finite set R of binary relationships among terms.

Definition 1. Let r(a), a = a1, . . . , an be a relation, and O = {T ,R} and
ontology. A semantic annotation mapping for r is a partial function

αr : {1, . . . , n} → T .
46

αS:Employee : {1→ Employee, 2→ Employee}

αS:Project : {1→ Project, 2→ Manager, 3→ Leader}

αT:Program : {1→ Leader, 2→ Leader, 3→ Project}

Fig. 3: Semantic annotations for the schemas in Figure 1 using the conceptual
model in Figure 2 as reference.

By defining αr to be partial, we do not require that every attribute be an-
notated in our framework. Also, note we define αr to assign a concept to each
attribute in r, ignoring properties (especially data properties which naturally
correspond to attributes of relations). This simplification is possible because, as
mentioned above, state-of-the-art schema matchers and mapping design tools
already take into account data type compatibility; thus, we choose to assume
there is no need to reason at the property level.

Definition 2. Let S = {r1, . . . , rk} be a relational schema with k relations, such
that each ri is accompanied by a semantic annotation mapping αi. We call a set
αS = {αr1 , . . . , αrk

} a semantic annotation for S.

For simplicity, we assume O contains a universal concept, denoted > which
subsumes every other concept inO (this corresponds to the concept often referred
to as “Thing” in the knowledge representation terminology).

Example 2. Returning to our running example, consider the simple ontology in
Figure 2 describing concepts related to persons (which can be either Man or
Woman), and their career paths: employees (each of which is also a Person)
can follow either the administrative career path (possibly becoming a Manager
of a project) or the engineering career path (possibly becoming a Leader of a
project). For simplicity, we model a Person as an entity that has a name and
an email address (these being the data properties of an entity Person), and a
Project as an entity that has a location.

The semantic annotations in Figure 3 describe the intended semantics as
described in our motivating example (recall Example 1). In particular, note
that while instances of S may store both managers and engineers, T allows for
engineers only.

2.2 Representing Schema Mappings

Recall that a tuple-generating-dependency (TGD) over a relational schema S
is an expression of the form (∀x)(qS(x) → (∃y)qT (x,y)), where qS(x) is a
conjunction of atoms over the set of variables x, every variable in x appears in
qS(x), and qT (x,y) is a conjunction of atoms over x,y. An atom is an expression
of the form r(t), where r is a relation symbol from S and t is a tuple of variables.

47

As mentioned earlier, state-of-the-art schema mappings tools produce map-
pings logically equivalent to source-to-target TGDs (ST-TGDs) as defined in [13,
14], which involve schemas S and T and in which qS(x) is a conjunctive query
(CQ) using relations from S only and qT (x,y) is a CQ T . For simplicity, we will
use the conventional Datalog notation to express conjunctive queries henceforth,
and leave the quantifiers implicit.

Examples of schema mappings are given in Figure 1(b).

2.3 Assigning Semantics to Variables

Let S be a relational schema and αS its semantic annotation into an ontology
O. We interpret S as a representation of (the properties of) objects modelled
by αS and O. For instance, Figure 3 describes S:Employee as a relation storing
two properties of objects of class Employee (as defined in O). Similarly, S:Project
is described as a relation in which each triplet it contains has properties of a
Project, a Manager and a Leader, in this order. For a mapping µ to be compatible
with the semantics of T , it must be the case that if an ST-TGD τ ∈ µ maps
the i-th attribute of relation rs ∈ S into the j-th attribute of rt ∈ T then the
associated concepts must also be compatible.

Note that for a very simple TGD , in which the LHS and RHS consist of a
single sub-goal (i.e., relation), we must simply check that αrs

(i) is compatible
with αrt

(j). However, for mappings involving conjunctive queries the situation is
different. Consider mapping µ1 in Figure 1(b), and note that it is incompatible
with the semantics of T because it attempts to map managers into T:Program,
where only technical leaders are expected. The fact that managers are mapped
follows from the join between S:Employee and S:Project on variable n (the em-
ployee’s name). The incompatibility follows because the variable n is associated
with a manager in the LHS of the TGD while it is associated with a technical
leader in the RHS of the TGD . In the jargon of mapping design: in the “logical
entity” defined in the LHS of the rule, n is associated with a concept that is
incompatible with its counterpart in the “logical entity” defined in the RHS.

In the remainder of the section we show how to obtain the concept in O
associated with variable v in CQ q, which we will denote by Γq(v).

Using Functional Dependencies. In the discussion about µ1 above, it is evident
that n (the employee’s name) in the LHS of the mapping refers to the name of
a manager. This follows from using n in the join. Note that this implies that
variable c in the mapping rule refers to the contact information of a manager,
instead of an arbitrary employee (as indicated by the semantic annotations).
This is the case because of the functional dependency Name→ Contact defined
in S:Employee (recall Name is the primary key of the relation).

For convenience, we will represent every functional dependencies in terms
of the positions of the attributes involved in them. Without loss of generality,
we only consider functional dependencies of the from a1, . . . , an → b, where
b /∈ {a1, . . . , an}.

48

Definition 3. Let r(a), a = a1, . . . , an, be a relation and ai1 , . . . , aik → aj be
a functional dependency over a. The dependency set of position j in r, denoted
δr(j) is the set {i1, . . . , ik}.

We consider also the dependencies among variables appearing in the same
predicate of a CQ:

Definition 4. Let q be a conjunctive query, and r(v), v = v1, . . . , vn, a predicate
in q. Let v be a variable in q that appears in position i in r(v). The dependency
set of v in r, ∆r(v) is the set of variables u1, . . . , uk such that

– uj is a variable in q that appears at position j in r(v);
– j ∈ δr(i)

In the example of µ1 in Figure 1(a), we have that ∆S:Employee(c) = {n}.
The next two definitions associate concepts with variables in a predicate of

a CQ as well as the entire CQ, allowing for multiple occurrences of the same
variable. First, we define the concept of a variable within a single predicate of
the CQ, considering only the semantic annotations for the schema:

Definition 5. Let r(a), a = a1, . . . , an, be a predicate in a CQ, in which vari-
able v appears; the concept of v in r at position j is defined as

γr(v, j) =

{
αr(j) if αr(j) is defined,
> otherwise

Now let j1, . . . , jk be all positions of r where v appears; the concept of v in r is:

γr(v) =

{
γr(v, j1) u . . . u γr(v, jk) if v appears in r

> otherwise

We extend to CQs, taking into account dependencies among variables:

Definition 6. Let q = r1(a1), . . . , rk(ak) be a CQ in which variable v appears.
The concept of v in q, Γq(v) is defined as

Γq(v) = γ′r1(v) u . . . u γ′rk
(v),

where γ′ri
(v) = γri(v) u

d

u∈∆ri
(v)

Γq(u)

Returning to our running example and µ1 in Figure 1(b), Definition 6 gives
us the following:

ΓqS
(n) =Employee uManager ΓqT

(n) = Leader
ΓqS

(c) =Employee uManager ΓqT
(c) = Leader

ΓqS
(s) => u Project ΓqT

(s) = Project

Note that Definition 6 is recursive, and, thus, makes sense only when there
are no cyclic dependencies among variables.

Definition 7. Let q = r1(v1), . . . , rk(vk) be a CQ in which distinct variables
v, u appear; q is cycle-free if there are no subgoals ri, rj in q such that u ∈ ∆ri

(v)
and v ∈ ∆rj

(u).

49

Input: variable v, CQ q over S, annotation αS = {αr1 , . . . , αrn}
Output: Γq(v)
Let γ = >;1

foreach subgoal ri(vi) in q do2

if ∆ri(v) 6= ∅ then3

foreach u ∈ ∆ri(v) do4

γ = γ u Γq(u)5

end6

end7

Let j1, . . . , jk be the positions where v appears in ri(ai);8

foreach j in j1, . . . , jk do9

γ = γ u αri(j)10

end11

end12

return γ13

Algorithm 1: Algorithm for computing Γq(v).

2.4 Semantic Compatibility of Mappings

We can now formally state the problem of semantic verification of mappings:
let S, T be relational schemas, αS , αT be their respective semantic annotations
w.r.t. O, and µ = {τ1, . . . , τn} be a schema mapping. We say that:

Definition 8. ST-TGD τi ∈ µ = (qS(x) → qT (x,y)) is compatible with the
semantics of T iff, for every v ∈ x in q we have that

O |= ΓqS
(v) v ΓqT

(v).

In other words, an ST-TGD in a mapping is compatible with the semantics
of T if it maps concepts (by sharing variables in it LHS and RHS) in a way that
does not contradict the shared conceptual model O.

The semantic verification problem of a schema mapping µ between schemas
S and T , given semantic annotations to the same conceptual model consists of
checking whether each ST-TGD in µ is compatible with the semantics of T :

Definition 9. A schema mapping µ : S → T = {τ1, . . . , τn} is compatible with
the semantics of T is every τi ∈ µ is compatible with the semantics of T .

2.5 Algorithms

Algorithm 1 computes Γq(v), for a given CQ q over S annotated with αS .

Proposition 1. If q is cycle-free, Algorithm 1 always terminates.

In the sequel, we consider mappings with ST-TGDs containing cycle-free
CQs only.

50

Assuming that α and ∆ri
(v) are given (note that ∆ri

(v) can be computed in
polynomial time on the number of attributes in ri and the number of functional
dependencies defined over ri) and also that they can be accessed in constant
time, we have the following:

Proposition 2. Algorithm 1 computes Γq(v) in time O(l2 |q|), where |q| is the
number of predicates in q, l is the maximum number of variables in any such
predicate.

A straightforward algorithm for checking semantic compatibility of a map-
ping µ : S → T given annotations αS and αT into a common conceptual model O
is as follows. For every ST-TGD τi ∈ µ of the form τi = (qS(x)→ qT (x,y)), and
for every variable v ∈ x produce a verification statement στi,v = ΓqS

(v) v ΓqT
(v)

and check whether O |= στi,v.

Example 3. Returning to our first example of Figure 1 using the annotations in
Figure 3, we have that to verify mapping µ1 the following verification statements
are produced:

Variable n : Employee uManager v Leader (1)

Variable c : Employee uManager v Leader (2)

Variable s : Project u > v Project (3)

Similarly, the following statements need to be tested when verifying µ2:

Variable n : Employee u Leader v Leader (4)

Variable c : Employee u Leader v Leader (5)

Variable s : Project u > v Project (6)

Thus, because µ3 contains µ1 (and some verification statements of mu1 do not
entail from O), only µ2 is deemed compatible with the semantics of T .

Next, we discuss some aspects of the computational complexity of checking
the compatibility of a schema mapping.

Proposition 3. Checking the compatibility of mapping µ : S → T requires ver-
ifying O(m |µ|) statements, where |µ| is the number of ST-TGDs in µ and m is
the maximum number of variables in any such ST-TGD.

The following is a Corollary of Proposition 2:

Corollary 1. When checking the compatibility of mapping µ : S → T , the max-
imum number of terms in a verification statement is polynomial in the maximum
number of predicates among ST-TGDs in µ, and the highest number of variables
among them.

While both the number of verification statements and their length are bounded
by polynomials in the size of the input, the full computational of checking the
compatibility of schema mappings depends on the cost of checking the entail-
ment of the verification statements against O. Of course, this depends on several

51

factors: (a) the number of statements generated (b) the complexity of such state-
ments (in terms of constructs that are used); and (c) the expressiveness of the
language used to express O. Indeed, the problem is decidable only for fragments
of first-order logic for which entailment is decidable.

We advocate the use of expressive, yet practical families of Description Logics,
such as SHOIN (D) (which subsumes the standard OWL-DL1), or SHOIQ (the
conceptual model used in our running example—Figure 2—is an example of an
ontology in this dialect). While checking entailment in such DLs is hard (concept
satisfiability is know to be NEXPTIME-complete for them [21, 22]), substantial
efforts have been put into developing efficient reasoning algorithms that work
well in practice. Two known fast reasoners that have been used as the basis for
practical implementations on large ontologies are Fact++ [23] and Pellet [20].
The latter, in fact, is aimed at Semantic Web [7] applications and to deal with
ontologies in the OWL-DL standard.

3 Obtaining Semantic Annotations

The framework discussed in the previous section provides an automatic way of
checking the semantic compatibility of schema mappings given semantic anno-
tations for the schemas involved. The approach has even more practical utility
if one can minimize or fully eliminate the human involvement in obtaining such
annotations. We exploit this possibility next.

One prominent alternative in automatically deriving annotations is to rely
on schema alignments, as proposed by, for instance, [4]. Such alignments are
mappings between the relational schema and the conceptual model, and have
been shown to help in obtaining more descriptive “logical entities” (recall the
discussion in Section 1), yielding better schema mappings (in the sense that
users in a case study preferred the mappings produced by their tool compared
to those produced by Clio). Most importantly, considerable progress has been
made in providing effective semi-automatic tools for discovering such alignments
and expressing them formally [5], which is encouraging for the development of
practical tools based on our framework.

In [4], the alignments are given as “local-as-view” (LAV) mappings of the
form r(x) → ∃yφ(x,y) where r is a relation over x; y is a set of variables and
and φ is a conjunctive formula over O. Each mapping annotates a single table
in the database schema with conceptual information from the domain ontology,
to guide the schema mapping algorithm in search of a better mapping.

Example 4. To express the semantics of the target schema T , which was intended
for storing data about projects and their technical leaders, using the ontology
in Figure 2 and the notation of [4] one could use the statements in Figure 4(a).
Similarly, one could express the semantics of the source schema S, leading to the
two logical entities described as in Figure 4(b).

1 http://www.w3.org/TR/owl-guide/.

52

T:Program(x, y, z) → ∃l, pO:Leader(l),O:Project(p),O: leads(l, p),

O:hasName(l, x),O:hasEmail(l, y),O:hasLocation(p, z)

(a) Alignment of T .

S:Employee(x, y) → ∃eO:Employee(e),O:hasName(e, x),O:hasEmail(e, y)

S:Project(x, y, z) → ∃p, l,mO:Project(p),O:Leader(l),O:Manager(m)

O:hasLocation(p, x),O:hasName(m, y),O:hasName(l, z)

(b) Alignment of S.

Fig. 4: LAV alignments of schemas in Figure 1(a) into O.

Input: alignment r(x) → ∃yφ(x,y)
Output: αr

foreach i : 1 . . . n do1

Let vi ∈ x be the variable at position i in r(x);2

Let γ = >;3

foreach predicate O:C(vi) in φ do4

γ = γ u O:C5

end6

foreach predicate O:p(u, vi) in φ do7

foreach predicate O:C(u) do8

γ = γ u O:C9

end10

end11

αr(i) = γ;12

end13

return αr14

Algorithm 2: Algorithm for computing αr from a LAV alignment.

In this work, we assume that there is at most one annotation alignment for
each relation in S or T .

Deriving Annotations from LAV Alignments. Deriving semantic annotations
from LAV alignments consists of parsing the mapping statements as in Algo-
rithm 2. For each column in the relation schema, we identify the variable in the
LHS of the LAV alignment rule and parse the RHS to find the concept associated
with it. For instance, Applying Algorithm 2 on the LAV alignments in Figure 4
produces the annotations in Figure 3.

Proposition 4. Algorithm 2 computes αr in O(|r| |φ|) time, where |r| is the
number of attributes in r and |φ| is the number terms in φ.

Uninterpreted Attributes. So far we have considered schemas S, T in which every
attribute corresponds to a property of an object (e.g., the name of an employee).
We call such attributes interpreted as their meaning is defined by O. When all
attributes are interpreted, we have that in every alignment statement r(x) →

53

Employee
ID
Name

Project
Site
Manager
Leader

Program
Supervisor
Email
Location

S T

v1

v2

v3

Contact

µ4 : S:Employee(i, n, c), S:Project(s, , i)

→ T:Program(n, c, s)

(a) Schema mapping.

S:Employee(x, y, z) → O:Employee(x),

O:hasName(x, y),

O:hasEmail(x, z)

S:Project(x, y, z) → ∃pO:Project(p),

O:Manager(y)

O:SeniorLeader(z),

O:Woman(z),

O:hasLocation(p, x)

(b) Alignment.

Fig. 5: Schema mapping and alignment using uninterpreted attributes.

∃yφ(x,y), every variable v used in a predicate of the form O:C (v) in φ, where
C is a concept, appears in y.

Often, database administrators introduce artificial primary keys that effec-
tively serve as tuple identifiers, for performance reasons. We call such attributes
uninterpreted as they have not intrinsic meaning. Without loss of generality, as-
sume that the values of the uninterpreted attributes are defined in a way that
uniquely identifies the entities they belong to within the database instance (i.e.,
an uninterpreted attribute that identifies an employee is never used to identify a
project). Now the variable in the LHS of the LAV alignment associated with the
uninterpreted attribute can be used as object identifier in the RHS of the map-
ping, without the need for existentially quantified variables as before. Figure 5,
in which the artificial key ID is defined in S:Employee, illustrates this.

Lines 4–6 in Algorithm 2 handle such cases.

Example 5. Consider the schema mapping µ4 at the bottom of Figure 5(a),
which has a similar effect to that of µ2: to copy the name and email (variables n
and c) of technical leaders of projects. The LAV alignments in Figure 5(b) now
restrict leaders of projects to be female and experienced (i.e., leading at least
three projects). The resulting verification statements produced by our framework
to check the compatibility of µ4 are:

Variable n : Employee uWoman u SeniorLeader v Leader (7)

Variable c : Employee uWoman u SeniorLeader v Leader (8)

Variable s : Project u > v Project (9)

Thus, µ4 is deemed compatible with the semantics of T .

4 Conclusion

We believe the framework described here holds promise as the basis for a practi-
cal tool to help in the verification of schema mappings. The main benefits of our

54

approach are as follows. First, unlike the manual verification of mappings, our
method does not require the designer to be an expert on both the source and the
target schemas. Second, our notion of semantic compatibility does not depend
on problematic statistical assumptions as in other methods. Third, unlike with
previous methods, our verification algorithm does not require data and does not
rely on sampling. Fourth, considerable efforts have been made towards automat-
ically identifying alignments, from which the annotations required in our method
can be derived. We also posit that even if user intervention is necessary in this
step, overall our approach is superior to the state-of-the-art, as providing an
alignment from a specific schema into a general conceptual model should be eas-
ier than providing a mapping between two specific database schemas. The final
advantage is economical: the efforts put into annotating a schema are amortized
as the schema is integrated over and over again subsequently.

Related Work. Conceptual models have been used for many years as a means
to allow database designers to convey the semantics of their schemas. Among
the many formalisms proposed with this goal in mind, the family of Description
Logics [6] stand out as a powerful and practical tool for describing conceptual
models [6, Chapters 5 and 16]. The annotation of relational databases with
conceptual descriptions has found renewed interest in many areas; e.g., providing
better query interfaces through natural language processing [12]. Leveraging
semantics for data integration is an active area of research [5, 4].

The semi-automatic verification of mappings has gained in importance re-
cently. Besides Spicy [9], other tools have been proposed to help the schema
mapping designer. Yan et al. [24] describe an approach to help users in under-
standing and refining schema mappings based on sampling. MUSE [3] helps users
in resolving the interpretation of semantically ambiguous mappings. In [11], a
schema mapping debugger is proposed to help the user understand the map-
pings with the aid of visual cues. Nevertheless, in all approaches above, the user
is ultimately responsible for deciding the compatibility of the mappings.

Future Work. We see two immediate opportunities to extend this work. First,
more expressive forms of schema alignments have been proposed, based on
views [10] instead of relations, as considered here. Accommodating such align-
ments requires extending our notion of schema annotations and the way in which
concepts are assigned to variables within a CQ as well. Also, it seems plausible to
exploit the proof trees derived when checking the compatibility of mappings to
(1) suggest ways of rectifying incompatible mappings or (2) ranking compatible
mappings based on some notion of semantic distance.

References

1. Abiteboul et al. The lowell database research self-assessment. Commun. ACM,
48(5):111–118, 2005.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

55

3. B. Alexe, L. Chiticariu, R. J. Miller, and W. C. Tan. MUSE: Mapping understand-
ing and design by example. In ICDE, 2008.

4. Y. An, A. Borgida, R. Miller, and J. Mylopoulos. A semantic approach to discov-
ering schema mapping expressions. In ICDE 2007, 2007.

5. Y. An, J. Mylopoulos, and A. Borgida. Building semantic mappings from databases
to ontologies. In AAAI, 2006.

6. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2nd edition, 2007.

7. T. Berners-Lee, J. Handler, and O. Lassila. The Semantic Web. Scientific Ameri-
can, 284(5):34–43, May 2001.

8. P. Bohannon, E. Elnahrawy, W. Fan, and M. Flaster. Putting context into schema
matching. In VLDB, 2006.

9. A. Bonifati, G. Mecca, A. Pappalardo, S. Raunich, and G. Summa. Schema map-
ping verification: the spicy way. In EDBT, 2008.

10. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, R. Rosati, and
M. Ruzzi. Data Integration through DL-LiteA Ontologies. In Revised Selected Pa-
pers of the 3rd Int. Workshop on Semantics in Data and Knowledge Bases (SDKB
2008), volume 4925 of Lecture Notes in Computer Science. Springer, 2008.

11. L. Chiticariu and W. C. Tan. Debugging schema mappings with routes. In VLDB,
2006.

12. P. Cimiano, P. Haase, J. Heizmann, M. Mantel, and R. Studer. Towards portable
natural language interfaces to knowledge bases - the case of the Orakel system.
Data Knowl. Eng., 65(2):325–354, 2008.

13. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: semantics and
query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

14. G. D. Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. On reconciling data
exchange, data integration, and peer data management. In PODS, 2007.

15. R. J. Miller, M. A. Hernández, L. M. Haas, L.-L. Yan, C. T. H. Ho, R. Fagin, and
L. Popa. The Clio project: Managing heterogeneity. SIGMOD Record, 30(1):78–83,
2001.

16. L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernández, and R. Fagin. Translating
web data. In VLDB, 2002.

17. E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema match-
ing. VLDB J., 10(4):334–350, 2001.

18. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. J.
Data Semantics IV, 3730:146–171, 2005.

19. V. Sikka. Next generation data management in enterprise application platforms.
In VLDB, 2006.

20. E. Sirin, B. Parsia, B. C. Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical
owl-dl reasoner. J. Web Sem., 5(2):51–53, 2007.

21. S. Tobies. The complexity of reasoning with cardinality restrictions and nominals
in expressive description logics. J. Artif. Intell. Res., 12:199–217, 2000.

22. S. Tobies. Complexity results and practical algorithms for logics in knowledge
representation. CoRR, cs.LO/0106031, 2001.

23. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In IJCAR, 2006.

24. L.-L. Yan, R. J. Miller, L. M. Haas, and R. Fagin. Data-driven understanding and
refinement of schema mappings. In SIGMOD, 2001.

56

Optimal Reflection of Bidirectional View
Updates using Information-Based Distance

Measures

Stephen J. Hegner

Ume̊a University, Department of Computing Science
SE-901 87 Ume̊a, Sweden

hegner@cs.umu.se http://www.cs.umu.se/~hegner

Abstract. When a database view is to be updated, there are generally
many choices for the new state of the main schema. One way of charac-
terizing the best such choice is to minimize the distance between the old
state of the main schema and the new one. In recent work, a means of
representing such distance based upon semantics was forwarded in which
the distance between two states is measured by the the difference of in-
formation between the two, with the information of a state defined as
the set of sentences from a particular set which hold on that state. This
approach proved to be highly useful in identifying optimal reflections of
insertions and to a lesser extent deletions, provided that the reflections
were themselves insertions or deletions. In this work, that investigation
is extended to bidirectional view updates – those which involve both
insertion and deletion. It is shown that the definition of distance must
be crafted more carefully in such situations. Upon so doing, a result is
obtained which provides update reflections which are information opti-
mal for insertion and deletion optimal with respect to tuples but not
necessarily information.

1 Introduction

The problem of supporting updates to databases through views has long been
one which has challenged researchers. Roughly speaking, the approaches may be
considered to lie in one of three groups. The first, as represented by [7, 20, 21,
4], focus upon using the relational algebra, together with null values, to identify
optimal or at least acceptable solutions. These approaches often handle certain
cases very well but lack the thread of a unifying theory. The second group has
focused upon the constant-complement approach, first forwarded by Bancilhon
and Spyratos [3] and subsequently developed in [14, 15, 22]. The approach pro-
vides an elegant theory within a limited scope, but the conservative nature of
constant-complement-based strategies leaves uncovered many important situa-
tions. The third approach, developed largely within the logic-programming com-
munity, is based upon using distance measures to find solutions which change the
database as little as possible [2, 12, 13]. The core idea behind these approaches
is to minimize the “distance” between the old state of the main schema and

57

the new state which reflects the view update. Despite using logic as the tool for
modelling, the distance is typically measured in a rather syntactic fashion, by
minimizing the set of atoms, or even the number of atoms, which differ in the two
databases. Such counting arguments fail to recapture that tuples are more than
propositional atoms. For example, it is natural to expect the tuples R(a1,b1, c1)
and R(a1,b1, c2) to be closer to each other than either is to R(a3,b3, c3), but a
measure which does not consider the inner structure of tuples cannot recapture
this. To address this issue, more sophisticated measures of distance have been
proposed [1] which are based upon (pseudo-)distance measures such as those
proposed in [19] and [24]. These may then be extended to sets of tuples (i.e.,
databases) using aggregated measures, such as that of Eiter and Mannila [8].
Despite their obvious positive aspects, these measures nevertheless maintain a
largely syntactic flavor.

In [17]1 and [16], an alternative approach is forwarded, in which a semantic
notion of distance is employed, based upon the truth value of certain sentences
rather than any syntactic characteristics of the atoms. The idea is to characterize
a database state M by its information content Info〈M,Σ〉, the set of sentences
in a set Σ which are true in M , and then to represent the distance between
M and M ′ as the set of sentences in Σ whose truth values differ for the two
states. The key issue is to choose Σ appropriately. It turns out that the most
appropriate choice is WFS(D,∃∧+,K), the set of all existential, positive, and
conjunctive sentences in the logic of the database schema D whose constant
symbols are those of the set K consisting of all such symbols which occur in any
of the current base state, the current view state, or the new view state. These
sentences are just Boolean conjunctive queries [5]; i.e., conjunctive queries with-
out free variables. A short example, adapted from that of [16, 1.3], will help
illustrate the key ideas. For a more detailed presentation the reader is referred
to that paper. Let E0 be the relational schema with relations R[ABC] and
S[CD], constrained by the functional dependency (FD) B → C on R[ABC]
and the unary inclusion dependency (UIND) R[C] ⊆ S[C], and let M00 =
{R(a0,b0, c0), R(a1,b1, c1), S(c0,d0), S(c1,d1), S(c4,d4)} be a database repre-
sented by ground atoms. Let ΠE0

R[AB] = (R′[AB], πE0
R[AB]) be the view of E0

which projects R[ABC] onto R′[AB], dropping S[A] entirely. Take M00 to be
the initial state of schema E0; the corresponding view state is then N00 =
{R′(a0,b0), R′(a1,b1)}. Now, suppose that the view update to insert R′(a2,b2)
is requested, so that the new view state will be N01 = N00 ∪ {R′(a2,b2)}. The
set of sentences over which information is measured is WFS(E0,∃∧+,K00), with
K00 = {a0, a1, a2,b0,b1,b2, c0, c1,d0,d1, c4,d4} Any realization of this update
must add ϕ01 = (∃x)(∃y)(R(a2,b2, x)∧S(x, y)) to the information content of
M00. A specific realization of this update must Skolemize the existentially quan-
tified variables and add tuples such as those in X1 = {(R(a2,b2, c̄2), S(c̄2, d̄2)}
or X2 = {(R(a2,b2, c̄3), S(c̄3, d̄3)}, but since K00 does not contain any of the
members of {c̄2, d̄2, c̄3, d̄3}, ϕ01 cannot distinguish between the solution which

1 [17] contains some technical errors which have been corrected in the expanded version
[16]. The reader is therefore referred to the latter paper.

58

adds X1 from that which adds X2. Thus, adding ϕ01 and its consequences in
M00 to Info〈M00,WFS(E0,∃∧+,K00)〉 characterizes the least added information
necessary to realize the update, and so the distance from M00 to any Skolemized
model of M00 ∪ {ϕ01} must be least amongst all possibilities. Put another way,
both M00 ∪ X1 and M00 ∪ X2 each have least distance from M00; they differ
only in the instantiation of variable by Skolem constants, and the logic cannot
differentiate these instantiations. They are in a sense isomorphic solutions.

In [16], the focus is entirely upon unidirectional realizations of unidirectional
update requests; that is, only view updates which are insertions and deletions
are considered, and the reflection to the main schema must be of the same
type as that of the request; insertions must reflected as insertions and deletions
reflected as deletions. Suppose, now, that this restriction is dropped. The above
solution is no longer optimal according to the definitions proposed. Indeed, the
sentence ϕ02 = ϕ01∧S(c4,d4) is also added to Info〈M00,WFS(E0,∃∧+,K00)〉
after the update, as are many others. This added information may be blocked
by deleting S(c4,d4), but that solution is not optimal either, since it deletes more
information that the insert-only version. The addition of the sentence S(c4,d4)
to the inserted information is called a collateral change, because it is not part
of the central update but rather a side effect of the way in which information
change is measured. On the other hand, the sentence ϕ01 is essential to the
update, and is called a primary change.

With an insertion which is to be reflected as an insertion, there is no problem
with collateral changes. If ϕ01 is to be added, and S(c4,d4) is already true, then
it will still be true after the update. A similar observation applies to deletions.
Of course, when the view update is an insertion, it is natural to require that it be
reflected to the main schema as an insertion, and likewise for deletions. However,
the problem of collateral change still remains for the class of view updates which
involve both insertion and deletion.

The focus of this paper is to develop a formal framework for the representa-
tion of primary change which excludes collateral change, and to apply it to the
characterization of the information-based distance between reflections, particu-
larly in settings in which the update request involves both insertion and deletion.
Notions of optimality based upon this measure are also developed.

2 The Underlying Context and Base Results

The underlying formalism for this paper is based heavily upon that which is
developed in [16]. In this section, the essential terminology is reviewed, and a
few useful extensions are presented.

Definition 2.1 (The relational model). All schemata are based upon a
common relational context D which contains the attribute names and the con-
stant names. Each domain has an infinite number of constants, but domains
are allowed to overlap. Furthermore, there is a fixed constant interpretation I
which enforces the unique name condition and which ensures that each domain

59

value is bound to a constant. A relational schema D consists of a set of re-
lation symbols, each with an arity, together with a set Constr(D) of integrity
constraints. WFF(D) denotes the set of all well-formed formulas in the language
of D with equality, while WFF(D,∃∧+,K) denotes the subset of WFF(D) con-
sisting of those formulas which are existential (no universal quantifiers), positive
(no negation), and conjunctive (no disjunction), and which involve only those
constant symbols in the set K. If K consists of all constants, this will be short-
ened to WFF(D,∃∧+). WFS(D), WFS(D,∃∧+), and WFS(D,∃∧+,K) denote
the corresponding sets of sentences (with no free variables). Integrity constraints
are special sentences in WFS(D); see Definition 2.5 below.

Databases are modelled as finite sets of ground atoms. DB(D) denotes the
set of all databases of D without regard to constraints, while LDB(D), the legal
databases of D, consists of those which satisfy Constr(D). For Φ ⊆ WFS(D),
AtModI(Φ) denotes the set of all “models” of ϕ — the set of databases M which
satisfy ϕ in the sense that M ∪{¬ϕ | ϕ ∈ Φ} is not satisfiable. For ϕ ∈WFS(D),
AtModI(ϕ) is shorthand for AtModI({ϕ}). |=D denotes semantic entailment
within D; Φ |=D ϕ holds iff AtModI(Φ ∪ Constr(D)) ⊆ AtModI(ϕ).

A database mapping f : D1 → D2 is represented as a logical interpretation;
i.e., in the relational calculus. Thus, for each relation symbol R of D2, there is
a formula fR in the language of D1 with free variables corresponding exactly
to the attributes of R. It is of class ∃∧+ if each of its defining formulas is in
WFF(D2,∃∧+). Projection, selection, join, and intersection are all of class ∃∧+,
while union and difference are not. For t an atom, the substitution of t into
f is the result of mapping t to a formula in WFS(D1). For example, if f is
the view mapping πE0

R[AB] of the example of Section 1, and t is R′(a1,b1), then

fR
′

= (∃xC)(R(xA, xB , xC)), and Subst(f, t) = (∃xC)(R(a1,b1, xC)).
A view of the schema D is a pair Γ = (V, γ) in which V is the view schema

and γ : D → V is a database mapping which is surjective on the underlying
databases. The view Γ is of class ∃∧+ iff its mapping γ has this property.

Notation 2.2 (ΥD and ΥD

K). Because they occur so frequently, especially as
arguments in even larger formulas, the sets WFS(D,∃∧+) and WFS(D,∃∧+,K)
will often be abbreviated to ΥD and ΥD

K , respectively.

Definition 2.3 (Information content). Let D be a database schema, let
K ⊆ ConstSym(D), and let M ∈ DB(D). The information content of M relative
to ΥD

K is the set of all sentences in ΥD

K which are true for M . In other words,
Info〈M,ΥD

K 〉 = {ϕ ∈ ΥD

K | M ∈ AtModI(ϕ)}. Each ϕ ∈ ΥD

K defines a Boolean
conjunctive query on M ; the information content consists of just those queries
which are true. Note that information content is monotone; if M1 ⊆ M2, then
Info〈M1, Υ

D

K 〉 ⊆ Info〈M2, Υ
D

K 〉.

Definition 2.4 (Armstrong models over WFS(D,∃∧+,K)). Let Φ ⊆ Ψ ⊆
ΥD

K for some set finite K of constant symbols. The closure of Φ in Ψ , denoted
Closure〈Φ, Ψ〉, is {ϕ ∈ Ψ | Φ |= ϕ}. An Armstrong model for Φ relative to Ψ is a
model which satisfies the constraints of Closure〈Φ, Ψ〉 but no other constraints of

60

Ψ . Armstrong models have been studied extensively for database dependencies;
see, for example, [9] and [11]. The construction within ΥD

K is much simpler. For
a finite set Φ, (almost) all that need be done is to rename variables so that all
are distinct, remove the quantifiers, break the conjuncts into atoms, and then
replace each variable with a distinct constant not occurring in K. For example,
if Ξ = {R(a1, a2), R(a2, a3), (∃x1)(∃x2)(∃x3)(R(x1, x2)∧R(x2, a3)∧R(a3, x3))}.
then MΞ = {R(a1, a2), R(a2, a3), R(ā1, ā2), R(ā2, a3), R(a3, ā3)} is an Armstrong
model of Ξ in ΥD

K , with K = {a1, a2, a3}.
In this work, the need is for canonical Armstrong models which are reduced

in the sense that they contain no redundancies. MΞ is not reduced; indeed,
MΞ = {R(a1, a2), R(a2, a3), R(a3, ā3)} is also an Armstrong model of Ξ which is
canonical because it contains no redundancies. For details of the construction,
including an elaboration of this example, see see [16, 3.3-3.10]. As a notational
convenience, Skolem constants, that is, constants which replace variables in the
construction of Armstrong models, will always be written with a bar above the
name to distinguish them from constant symbols which appear in the source
formulas.

Definition 2.5 (Generalized Horn dependencies and canonical mod-
els). In this work, the constraints of database schemata will always be gen-
eralized Horn dependencies (GHDs), as described in [16, 3.15]. They are very
similar to, but a bit more general than, the database dependencies of [9]. They
are of the form below, but are not required to be typed, may involve constant
symbols, and allow trivial left-hand sides.

(∀x1)(∀x2) . . . (∀xm)((A1∧A2∧ . . . ∧An)⇒ (∃y1)(∃y2) . . . (∃yr)(B1∧B2∧ . . . ∧Bs))

They include all traditional dependencies, such as functional dependencies (FDs)
and inclusion dependencies (IDs). They are further partitioned into equality-
generating (EGHDs) and tuple-generating (TGHDs). Every ϕ ∈ WFS(D,∃∧+)
is a GHD in which the left-hand side of the rule is trivially true.

Let D be a database schema, K a finite subset of Constr(D), and Φ ⊆ ΥD

K .
Define the extended information of Φ with respect to ΥD

K to be XInfoD〈Φ, ΥD

K 〉 =
{ϕ ∈ ΥD

K | Φ |=D ϕ} if Φ ∪ Constr(D) is consistent, it is precisely the set of
sentences which every legal database which also satisfies Φ must satisfy. Typ-
ically, Φ will be of the form M1 ∪ Ψ , with M1 the current database state and
Ψ the set of sentences which are to be inserted to effect the update. Using an
approach similar to the traditional chase procedure [23, 8.6-8.8], it can be shown
that if XInfoD〈Φ, ΥD

K 〉 is consistent, then it will always admit a model with least
information provided the chase terminates [16, 3.20]. To ensure termination, it
is sufficient that Constr(D) be weakly acyclic [10, Thm. 3.9]. Thus, under these
conditions, an insertion to M1 defined by a set Φ ⊆ WFS(D,∃∧+,K) reflected
from the view will always have a canonical least realization. Note that if Φ admits
no model which is consistent with Constr(D), then XInfoD〈Φ, ΥD

K 〉 = ΥD

K .
For Γ = (V, γ) a view of D of class ∃∧+ and N ∈ DB(D), InfoLift〈N,Γ 〉 =

{Substf〈γ, t〉 | t ∈ N}, the lifting of N to D along Γ . XInfoD〈InfoLift〈N,Γ 〉, ΥD〉
is the least information which must hold in every M ∈ LDB(D) with N ⊆ γ(M).

61

3 Update Requests and Generators

Notation 3.1. For the rest of this paper, unless stated explicitly to the contrary,
D will be taken to be a relational schema with Constr(D) a set of GHDs whose
TGHDs are weakly acyclic, and Γ = (V, γ) will be taken to be a view of D which
is of class ∃∧+. Recall also that ΥD and ΥD

K are shorthand for WFS(D,∃∧+)
and WFS(D,∃∧+,K), respectively.

Definition 3.2 (Updates, update requests, and realizations). An update
on D is a pair µ = (M1,M2) ∈ LDB(D) × LDB(D). M1 is the current state,
and M2 the new state. If M1 ⊆ M2, µ is called an insertion, and, dually, if
M2 ⊆M1, µ is called a deletion. Collectively, insertions and deletions are termed
unidirectional updates. An update which is not unidirectional; i.e., which includes
both the insertion and the deletion of tuples, is called bidirectional.

Let (N1, N2) be an update on the schema V of Γ . A reflection (or translation)
of (N1, N2) along Γ is an update (M1,M2) on D with Mi = γ(Ni) for i ∈ {1, 2}.
In the view update problem, the current state M1 of the main schema is known,
as is the view update (N1, N2); it is the new state M2 of the main schema which
is to be determined. Thus, as an economy of notation, define an update request
from Γ to D as a pair u = (M1, N2) in which M1 ∈ LDB(D) (the old state of
the main schema) and N2 ∈ LDB(V) (the new state of the view schema). The
pair u is called an insertion request (resp. a deletion request, resp. a bidirectional
request) precisely in the case that (N1, N2) has that property. A realization of
(M1, N2) along Γ is a reflection (M1,M2) of (N1, N2).

The set Cu consists of all constant symbols which occur in any of M1, N1, N2,
Constr(D), and the formulas of the view mapping γ. The information content of
the result M2 of a realization will usually be measured in ΥD

Cu
. This accounts for

all constant symbols in the source databases, as well as in the constraints, but
ignores any new constants introduced by Skolemization in the construction of a
canonical Armstrong model.

The view Γ reflects insertions (resp. reflects deletions) if every insertion
request (resp. deletion request) has a realization which is also an insertion (resp.
deletion). Γ is strongly monotonic if it reflects both insertions and deletions. See
[16, Sec. 5] for a discussion of these concepts and conditions which guarantee
that they hold.

Definition 3.3 (Full update difference). It is important to recall the defi-
nition of update difference which was forwarded in [16], and which works well for
unidirectional updates but not for bidirectional ones. The positive (∆+), nega-
tive (∆−), and total (∆) full update differences of µ = (M1,M2) ∈ LDB(D) ×
LDB(D) with respect to ΥD

K are defined as ∆+〈µ, ΥD

K 〉 = Info〈M2, Υ
D

K 〉 \
Info〈M1, Υ

D

K 〉, ∆−〈µ, Υ
D

K 〉 = Info〈M1, Υ
D

K 〉 \ Info〈M2, Υ
D

K 〉, and ∆〈µ, ΥD

K 〉 =
∆+〈µ, ΥD

K 〉∪∆−〈µ, Υ
D

K 〉, respectively. Note that, given ϕ ∈ ∆〈µ, ΥD

K 〉, it is always
possible to determine whether ϕ ∈ ∆+〈µ, ΥD〉 or ϕ ∈ ∆−〈µ, ΥD〉 by checking
whether or not M1 ∈ AtModI(ϕ).

As noted in the introduction, the problem with this definition for bidirec-
tional updates is that the sets ∆+〈µ, ΥD〉 and ∆−〈µ, ΥD〉 contain compound

62

information, so that by adding elements to one, elements may be removed to
the other. In the case of unidirectional updates, this is not an issue, since one
of these sets will be empty. However, for bidirectional updates, both may be
nonempty and this interference renders the measure less than completely useful.

Definition 3.4 (The semilattice ΥD/≡D). There is a natural order and a
natural equivalence induced by Constr(D) on ΥD . To illustrate via example, in
the schema E0 of Section 1, the inclusion dependency R[C] ⊆ S[C] guarantees
that whenever (∃x)(∃y)(R(x, y, c0) is true in an arbitrary M ∈ LDB(E0), so too
is (∃z)(S(c0, z)). This is written as (∃x)(∃y)(R(x, y, c0) vE0 (∃z)(S(a0, z)). Sim-
ilarly, the sentences (∃x)(∃y)(R(x, y, c0) and (∃x)(∃y)(R(x, y, c0)∧(∃z)(S(a0, z))
have identical truth values on all members of LDB(E0); this is written as
(∃x)(∃y)(R(x, y, c0) ≡E0 (∃x)(∃y)(R(x, y, c0)∧(∃z)(S(a0, z)).

Formally, for the schema D, define the preorder vD on ΥD by ϕ1 vD ϕ2

iff ϕ2 |=D ϕ1. In other words, ϕ1 vD ϕ2 iff ϕ2 is stronger than ϕ1 on legal
databases. Define the equivalence relation ≡D on ΥD by ϕ1 ≡D ϕ2 iff ϕ1 vD

ϕ2 vD ϕ1. Thus, ≡D identifies sentences which have identical truth values on
all M ∈ LDB(D). The equivalence class of ϕ under ≡D is denoted by [ϕ]≡D

or
just [ϕ], and the set of all such equivalence classes is ΥD/≡D . Upon grouping
equivalent elements, a partial order is obtained. Specifically, define [ϕ1] vD [ϕ2]
to hold iff ϕ1 vD ϕ2. It is easy to see that the partial order vD on ΥD/≡D

defines a join-semilattice structure [6, Exer. 7.6] on vD with the join operation
tD given by [ϕ1] tD [ϕ2] = [ϕ1∧ϕ2].

Definition 3.5 (Ideals of ΥD/≡D). Sets of sentences which occur in this work,
such as those of the form Info〈M,ΥD

K 〉, are closed under implication within the
context of the schema D. The algebraic notion of an ideal of ΥD/≡D provides a
suitable form for the representation of such sets in a compact fashion. Specifically,
an ideal [6, Exer. 7.6] of ΥD/≡D is a subset which is closed downwards and under
finite joins. More precisely, J is an ideal if (i) whenever [ϕ1] ∈ J and [ϕ2] vD [ϕ1],
then [ϕ2] ∈ J ; and, (ii) whenever [ϕ1], [ϕ2] ∈ J , then [ϕ1] tD [ϕ2] ∈ J . Thus,
ideals of ΥD/≡D are closed under |=D and conjunction. The set of all ideals of
ΥD/≡D is denoted Ideals(ΥD/≡D).

Ideals may be described compactly by the elements which generate them.
Specifically, for Φ ⊆ ΥD , IdealD(Φ) is the smallest ideal of ΥD/≡D containing
{[ϕ] | ϕ ∈ Φ}. Formally, it is the intersection of all such ideals. It is useful
to have a notation for extracting the underlying sentences from an ideal. For
J ⊆ ΥD/≡D , define ‖J‖ = {ϕ | [ϕ] ∈ J}.

Definition 3.6 (Specification of information change via ideals). To
avoid the problem of collateral information change described in Section 1, the
approach is to characterize (∆+〈µ, ΥD

Cu
〉, ∆−〈µ, ΥD

Cu
〉) as a pair of ideals. For-

mally, an information-change specification over D is given by an ordered pair
〈G+, G6−〉 ∈ Ideals(ΥD/≡D) × Ideals(ΥD/≡D). G+ is the generator for the added
information, and G6− is the generator for the information which is preserved.

To identify the information change associated with such a specification, let
M ∈ LDB(D) and let 〈G+, G6−〉 be an information-change specification. The

63

new-state information for M induced by 〈G+, G6−〉 relative to K is

NewInfoD〈M, 〈G+, G6−〉, Υ
D

K 〉 = XInfoD〈‖G+‖ ∪ ‖G 6−‖, Υ
D

K 〉

Thus, the new information is just the sentences of G+ and G6−, closed up under
the constraints of D. The set K of constants is determined from the update
realization and not by 〈G+, G6−〉 alone.

With this definition, it is possible to identify precisely the update which is
induced by 〈G+, G6−〉. Let u = (M1, N2) be an update request from Γ to D,
and let µ = (M1,M2) be a realization of u. The pair 〈G+, G6−〉 generates the
realization µ for u if the following three conditions are satisfied.
(i) G+ ⊆ IdealD(∆+〈µ, ΥD

Cu
〉).

(ii) G6− = IdealD(Info〈M1, Υ
D〉 \∆−〈µ, ΥD

Cu
〉).

(iii) NewInfoD〈M1, 〈G+, G6−〉, Υ
D

Cu
〉 = Info〈M2, Υ

D

Cu
〉

There is no need for a subset representation in (ii) since collateral changes are
limited to insertions. (Disjunction in the representation of information would be
necessary for collateral changes in the deleted information to occur.)

This representation is similar in some ways to the (Insert,Retract) formalism
of [2]. However, there are key differences. First, in [2] the elements of the update
representation are ground atoms, whereas in the formalism of this paper they are
sentences in ΥD

Cu
. Second, note that the generation of the deletion/retraction is

given in complementary form — the set of sentences which are to be preserved,
rather than the set of those which are to be deleted, is given. This a matter
of convenience; it is much easier to represent the preserved information as an
ideal than the deleted information as a filter, the dual of an ideal. Furthermore,
special forms of updates, such as deletion optimality for tuples as presented in
Definition 3.7 below, are much more succinctly specified via preservation.

Definition 3.7 (Optimality). The definitions of optimality are based upon
subsumption in Ideals(ΥD/≡D). Let u = (M1, N2) be an update request from Γ
to D, and let 〈G+, G6−〉 ∈ Ideals(ΥD/≡D)× Ideals(ΥD/≡D) generate a realization
for u. The ideal G+ is insertion optimal for u if for any other 〈G′+ , G′6−〉 which
defines a realization for u, G+ vD G′+ . Dually, G6− is deletion optimal for u if
for any other 〈G′+ , G′6−〉 which defines a realization for u, G′6− vD G6−. Note the
reversal of the inclusion for deletion optimality; a larger ideal preserves more
and thus is to be preferred. Putting these together, 〈G+, G6−〉 is (fully) optimal
for u if both G+ is insertion optimal and G6− is deletion optimal for u.

Unfortunately, many update requests do not admit fully optimal solutions.
There is, however, a restricted case which is often realizable. Define the tuple ide-
als of ΥD/≡D to be Ideals(DB(D)) = {IdealD(M) |M ∈ DB(D)}. Thus, the tuple
ideals are those which are generated by ground atoms; no quantifiers are allowed
in the formulas. Call G6− deletion optimal for tuples if G6− ∈ Ideals(DB(D))
and for any other 〈G′+ , G′6−〉 which defines a realization for u and for which
G′6− ∈ Ideals(DB(D)), G′6− vD G6−.

Examples 3.8. A few simple examples will help clarify these ideas. Let
〈E0, Π

E1
R[AB]〉 be the schema and view introduced in Section 1, with the current

64

state of the main schema M00 = {R(a0,b0, c0), R(a1,b1, c1), S(c0,d0), S(c1,d1),
S(c4,d4)} and the current state of the view N00 = {R′(a0,b0), R′(a1,b1)}. Sup-
pose that the desired new state of the view is N02 = {R′(a0,b0), R′(a2,b2)}, so
that the update request is u00 = (M00, N02)

Consider the two generators 〈G01
+ , G

01
6− 〉 and 〈G02

+ , G
02
6− 〉 for u00, with G01

+ =
IdealE0({(∃z)(R(a2,b2, z))}), G02

+ = IdealE0({(R(a2,b2, c1))}), G01
6− =

IdealE02(M00 \ {R(a1,b1, c1)}), and G02
6− = IdealE0(Info〈M00, Υ

E0〉 \
Info〈{(∃z)(R(a1,b1, z))}, ΥE0〉). The pair 〈G01

+ , G
01
6− 〉 generates the update of M00

to M01 = {R(a0,b0, c0), R(a2,b2, c̄2), S(c0,d0), S(c1,d1), S(c̄2, d̄2), S(c4,d4)},
while 〈G02

+ , G
02
6− 〉 generates M02 = {R(a0,b0, c0), R(a2,b2, c1), S(c0,d0),

S(c1,d1), S(c4,d4)}. Roughly, 〈G01
+ , G

01
6− 〉 corresponds to deleting R′(a0,b0) and

inserting R′(a2,b2), while 〈G02
+ , G

02
6− 〉 corresponds to the replacements a1 7→ a2

and b1 7→ b2 in R′(a1,b1). The pair 〈G01
+ , G

01
6− 〉 is insertion optimal; this will

be proven more generally in Proposition 4.3, but in this case that fact is eas-
ily seen by inspection. It is also deletion optimal for tuples, as will be estab-
lished more generally in Theorem 4.6. However, it is not deletion optimal in
general, since 〈G02

+ , G
02
6− 〉 deletes less information. More specifically, the sentence

(∃x)(∃y)(R(x, y, c1)∧S(c1, c1)) is preserved with 〈G02
+ , G

02
6− 〉 but not 〈G01

+ , G
01
6− 〉.

On the other hand, more information is inserted with 〈G02
+ , G

02
6− 〉 as well, since

R(a2,b2, c1) |=E0(∃z)(R(a2,b2, z)), but not conversely. It is easy to see by inspec-
tion that 〈G02

+ , G
02
6− 〉 is deletion optimal. Since 〈G01

+ , G
01
6− 〉 is insertion optimal, no

solution which is both insertion and deletion optimal can exist. In Theorem 4.6,
it will be shown that under conditions satisfied by 〈E0, Π

E0
R[AB]〉, generators such

as 〈G01
+ , G

01
6− 〉 which are insertion optimal without restriction as well as deletion

optimal for tuples always exist.
It is not always the case that deletion-optimal generators exist. For example,

define N03 = {R′(a2,b2)}, with the update request u03 = (M00, N03). There is an
insertion-optimal generator 〈G03

+ , G
03
6− 〉, given by G03

+ =
IdealE0({(∃z)(R(a2,b2, z))}) and G03

6− = IdealE0(M03 \ {R(a0,b0, c0),
R(a1,b1, c1)}) with the resulting state of the form M03 = {R(a2,b2, c̄2),
S(c0,d0), S(c1,d1), S(c̄2, d̄2), S(c4,d4)}. However, there is no deletion-optimal
generator. Indeed, consider the two states M03 = {R(a2,b2, c0), S(c0,d0),
S(c1,d1), S(c2,d2), S(c4,d4)} and M ′03 = {R(a2,b2, c1), S(c0,d0), S(c1,d1),
S(c2,d2), S(c4,d4)}, which are generated by 〈G04

+ , G
04
6− 〉 and 〈G04

+
′
, G04
6−
′〉 respec-

tively, with G04
+ = IdealE0({R(a2,b2, c0)}), G04

+
′ = IdealE0({R(a2,b2, c1))}),

G04
6− = IdealE0(Info〈M03, Υ

E0〉 \ Info〈{(∃z)(R(a0,b0, z)), R(a1,b1, c1)}, ΥE0〉) and
G04
6−
′ = IdealE0(Info〈M03, Υ

E0〉 \ Info〈{(∃z)(R(a1,b1, z)), R(a0,b0, c0)}, ΥE0〉).
There is no way to include both (∃x)(∃y)(R(x, y,b0)) and (∃x)(∃y)(R(x, y,b1))
in a solution without violating the FD B → C, since y must be bound b2 in
every R-tuple of a solution.

Example 3.9 (Full optimality). Optimal solutions do exist in certain sit-
uations, and it is instructive to illustrate one of them. Let E1 have the single
relational symbol R[ABC], constrained by the join dependency 1 [AB,BC].

65

Define the view ΠE1
R[AB] = (R′[AB], πE1

R[AB]) to be that which projects R[ABC]
onto R′[AB]. Let M10 = {R(a0,b0, c0), R(a1,b1, c1)} ∈ LDB(E1); the corre-
sponding view state is then N10 = {R′(a0,b0), R′(a1,b1)}. Consider the update
request u10 = (M10, N11) with N11 = {R′(a0,b0), R′(a2,b1)} and the solution
(M10,M11) with M11 = {R(a0,b0, c0), R(a2,b1, c1)}. This solution is optimal;
indeed, it is generated by 〈G10

+ , G
10
6− 〉 with G10

+ = {(∃z)(R(a2,b1, z))} and G10
6− =

IdealE0(Info〈M10, Υ
E1〉\ Info〈{(∃z)(R(a1,b1, z))}, ΥE1〉), and it is easy to see that

every solution must insert (∃z)(R(a2,b1, z)) and delete (∃z)(R(a1,b1, z)). This
is an example of constant-complement update [3], [16], addressed further in
Discussion 4.7.

4 Optimal Realization of Bi-Directional Update Requests

Example 4.1 (Motivating example). For any schema D satisfying the con-
ditions spelled out in Notation 3.1, and any update request u = (M1, N2),
a sure way to obtain an insertion-optimal solution is to forget entirely what
is M1 and just use a canonical Armstrong model of InfoLift〈N2, Γ 〉. This is
best illustrated by example; consider again the pair 〈E0, Π

E1
R[AB]〉 and the view

state N02 = {R′(a0,b0), R′(a2,b2)} of Examples 3.8. InfoLift〈N02, Π
E0
R′[AB]〉 =

{(∃z)(R(a0,b0, z)), (∃z)(R(a2,b2, z))}, whose canonical Armstrong models in E0

are of the form M02 = {R(a0,b0, c̄0), R(a2,b2, c̄2)}. To make sure that the
constant symbols c̄0 and c̄2 are not in Cu, with u = (M,N02), it is neces-
sary to know what the constant symbols of M are, but the construction of
InfoLift〈N02, Π

E0
R′[AB]〉 itself does not depend upon M or its constant symbols.

The generating pair may be written as G04 = 〈G04
+ , G

04
6− 〉 =

〈IdealE0({(∃z)(R(a0,b0, z)), (∃z)(R(a2,b2, z))}), ∅〉, but this need not be an opti-
mal representation. For example, if the initial state is M00 =
{R(a0,b0, c0), R(a1,b1, c1), S(c0,d0), S(c1,d1), S(c4,d4)}, then G04

6− specifies the
deletion of (∃z)(R(a0,b0, x)) while G04

+ then mandates its reinsertion. The opti-
mal generator G′04 = 〈G04

+
′
, G04
6−
′〉 = 〈IdealE0({(∃z)(R(a2,b2, z))}),

IdealE0(XInfoE0〈M00, Υ
E0〉\XInfoE0〈{(∃z)(R(a0,b0, z))}, ΥE0〉)〉 avoids this prob-

lem. Returning to the general situation of u = (M1, N2) on Γ and a realization
G = 〈G+, G6−〉, the information in Info〈M1, Υ

D〉 which is also in InfoLift〈N2, Γ 〉
should be specified in G6−, not in G+. The formalization of these ideas follows.

Definition 4.2. Let u = (M1, N2) be an update request from Γ to D. Define
the least insertion-optimal realization G〈u+〉 = 〈Gu+

+ , Gu+
6− 〉 of u as

G
〈u+〉
+ = IdealD(InfoLift〈N2, Γ 〉 \ Info〈M1, Υ

D〉)

G
〈u+〉
6− = IdealD(Info〈M1, Υ

D〉 ∩ InfoLift〈N2, Γ 〉)

Proposition 4.3. Let u = (M1, N2) be an update request from Γ to D. Assume
further that Γ reflects deletions. Then G〈u+〉 generates an insertion-optimal re-
alization µ = (M1,M2) for u, with M2 any canonical Armstrong model for

66

InfoLift〈N2, Γ 〉. The update µ has the further property that for any other re-
alization µ′ = (M1,M

′
2), Info〈M2, Υ

D〉 ⊆ Info〈M ′2, ΥD〉.
Proof. It is clear that the construction produces the least information which a
state M2 ∈ LDB(D) for which γ(M2) = N2 must possess. The only concern is
that γ(M2) may contain phantom tuples; that is, tuples which involve constant
symbols resulting from the process of Skolemizing existentially quantified vari-
ables in the conversion from the information set to a canonical Armstrong model.
The condition that Γ reflect deletions ensures that such tuples are impossible.
For a discussion of this phenomenon, with examples, and a proof of the result
that reflection of deletions prevents phantom tuples, consult [16, 4.8-4.11]. 2

Definition 4.4 (Unit-head pairs). Tuple generating dependencies with more
than one atom on the left-hand side create problems for deletions. If a rule of
the form A1∧A2 ⇒ B holds, and B is to be deleted, then there is a choice of
whether to delete A1 or A2, and so no least deletion exists. To obtain useful
optimization results in the context of deletions, a restricted form of schema-view
pair called a unit-head pair [16, 6.10] is appropriate. Since the database mapping
γ of the view Γ also introduces constraints, it is first necessary to construct the
combined schema CombSch〈D, Γ 〉, in which the main schema is augmented with
the relation symbols of the view. For E0 introduced in Section 1, the relation
symbol R′[AB], as well as the constraint (∀x)(∀y)(R′(x, y) ⇔ (∃z)(R(x, y, z)))
are added to the main schema. This constraint decomposes into the TGHDs
(∀x)(∀y)(R′(x, y) ⇒ (∃z)(R(x, y, z))) and (∀x)(∀y)(∀z)(R(x, y, z) ⇒ R′(x, y)).
Now, call the pair 〈D, Γ 〉 unit head if each of the TGHDs of CombSch〈D, Γ 〉 is
unit head ; i.e., has at most one atom on the left-hand side. EGHDs are allowed
without restriction, as are elements of ΥD and so-called mutual-exclusion depen-
dencies of the form A1∧ . . . ∧Ak ⇒ ⊥. The pair 〈E0, Π

E0
R[AB]〉 of Section 1 and

Examples 3.8 is unit head, while the pair 〈E1, Π
E1
R[AB]〉 of Example 3.9 is not.

Definition 4.5 (Reflection of general-source insertions). The notions of
reflecting insertions and reflecting deletions play a central rôle in the characteri-
zation of views which support the reflection of unidirectional update requests in
an optimal fashion. For bidirectional updates, a stronger version of insertion re-
flection is necessary, in which the source need not be a legal database but rather
only a database which may be extended to a legal one. Formally, a general-source
insertion specification is a pair u = (M1, N2) ∈ DB(D)×LDB(V) with the prop-
erty that (i) γ(M1) ⊆ N2 and (ii) there is some M ′1 ∈ LDB(D) with M1 ⊆ M ′1.
A realization of u is a pair (M1,M2) ∈ DB(D) × LDB(D) with the property
that M1 ⊆M2 and γ(M2) = N2. Say that Γ reflects general-source insertions if
every general-source insertion specification admits a realization.

It is not known (at least not to the author) whether this condition is strictly
stronger than insertion reflection [16, 4.13], which requires in addition that
M1 ∈ LDB(D) in the above. However, it is a simple exercise to show that it
is satisfied by schemata which are constrained by FDs and UINDs (unary in-
clusion dependencies) with Γ is both FD-complete and UIND-complete. For a
more complete presentation, see [16, Sec. 5].

67

Theorem 4.6. Let 〈D, Γ 〉 be a unit-head pair which reflects deletions and
general-source insertions, and let u = (M1, N2) be an update request from Γ

to D. Define P = {t ∈ M1 | γ({t}) ⊆ N2}. Then 〈G〈u+〉
+ , IdealD(P)〉 is both

insertion optimal without restriction and deletion optimal for tuples for u.

Proof. First note that because 〈D, Γ 〉 is unit-head, every interpretation formula
γR of the view morphism γ consists of a single atom. Thus, γ is defined entirely
by its action upon tuples; i.e., γ(M) = {γ({t}) | t ∈M}. Therefore, P as defined
above is clearly the largest subset of M with the property that γ(P) ⊆ N2; no
larger subset P ′ ⊆ M can possibly have the property that 〈G〈u+〉

+ , IdealD(P ′)〉
generates a realization for u. On the other hand, since Γ reflects general-source
deletions and γ(P) ⊆ N2, there must be an M ′2 ∈ LDB(D) such that P ⊆ M ′2
and γ(M ′2) = N2. Since XInfoD〈P ∪ InfoLift〈N2, Γ 〉, ΥD〉 is the least information
which any M ∈ LDB(D) which both contains P and satisfies InfoLift〈N2, Γ 〉
must have, XInfoD〈P ∪ InfoLift〈N2, Γ 〉, ΥD〉 ⊆ Info〈M ′2, Υ

D

Cu
〉. Thus, XInfoD〈P ∪

InfoLift〈N2, Γ 〉, ΥD〉 is consistent and so admits a canonical Armstrong model
M2. This model must furthermore have the property that γ(M2) = N2. Indeed,
if γ(M2) were to contain tuples not in N2, they could be deleted using the update
specification (M2, N2) and the fact that Γ reflects deletions. See [16, 4.10] for
details surrounding this argument. That 〈G〈u+〉

+ , IdealD(P)〉 is insertion optimal
follows from Proposition 4.3. 2

See Examples 3.8 for examples of the above construction.

Discussion 4.7 (The optimality of constant-complement solutions).
In [18], constant-complement update strategies ([3], [14]) are investigated the
context of information-based distance measures, with the main result [18, 4.23]
establishing that all such strategies based upon so-called semantically bijective
decompositions are optimal. While this result is valid, the proof is in error in
that it fails to take into account collateral information changes and works implic-
itly with the assumption that minimization of the size of a generator suffices.
Fortunately, using the framework of the current paper, this use of generators
may easily be made explicit and the repair of the proof of [18, 4.23] is almost
trivial. The correct proof will appear in a revised version. Thus, broadly stated,
constant-complement update strategies are fully optimal.

Example 4.8 (The limitations of semantic distance measures). Let E2

be the schema with two unary relation symbols R[A] and S[A], with no con-
straints, and let ΠE2

R[A] = (R[A], πE2
R[A]) be the view of E2 which retains R[A]

entirely while discarding S[A] completely. It is clear that any view update should
keep S[A] fixed; this is a simple example of the constant-complement strategy.
Now, let E3 be identical to E2 save that a new relation symbol T [A] is introduced
with the constraint (∀x)(R(x)∧S(x) ⇔ T (x)). The view ΠE3

R[A] = (R[A], πE3
R[A])

is the same as ΠE2
R[A]. The two schemata E2 and E3 are logically equivalent,

since T [A] is defined completely in terms of R[A] and S[A]. The isomorphism
connecting them is even of class ∃∧+. Yet it is not clear that the optimal update

68

strategies should be the same. If the state of E3 is M31 = {R(a0), S(a1)}, and
the desired new view state is N32 = {R(a0), R(a1)}, then the optimal strategy,
as defined by the theory of this paper, is to insert R(a1) and keep S[A] con-
stant, which thus triggers an insertion of T (a1). However, by deleting S(a1), this
insertion into T [A] could be avoided.

In light of this example, one might argue that perhaps G+ of an update
generator 〈G+, G6−〉 should only insert things which are not covered by infer-
ence; that is, to define NewInfoD〈M, 〈G+, G6−〉, Υ

D

K 〉 = XInfoD〈‖G+‖, Υ
D

K 〉 ∪
XInfoD〈‖G6−‖, Υ

D

K 〉; then {R(a1), R(a2), S(a2), T (a2)} would no longer be pre-
ferred to {R(a1), R(a2)} as a solution. Unfortunately, this strategy breaks the
optimality of a constant-complement update defined by a join, such as in E1

of Example 3.9. Additional research is necessary to identify ways to retain the
semantic nature of the proposed distance measures while respecting the kind of
syntactic constructions illustrated in E3.

5 Conclusions and Further Directions

An approach to characterizing the distance between database states when both
insertion and deletion are involved has been presented. In contrast to syntax-
based approaches, it attempts to quantify the difference in meaning and thus
adds a dimension which other distance measures lack.

On the other hand, as illustrated in Example 4.8, a semantics-based approach
can sometimes produce questionable results (as can a syntax-based approach,
of course). Therefore, an important next step in this research is to investigate
ways to integrate both syntactic- and semantic-based measures to retain the best
aspects of each. Methods for computing the distance between two states, at least
for restricted classes of schemata, are also essential if this type of approach is to
achieve practical utility.

References

1. O. Arieli, M. Denecker, and M. Bruynooghe. Distance semantics for database
repair. Ann. Math. Artif. Intell., 50(3-4):389–415, 2007.

2. O. Arieli, M. Denecker, B. V. Nuffelen, and M. Bruynooghe. Computational meth-
ods for database repair by signed formulae. Ann. Math. Artif. Intell., 46(1-2):4–37,
2006.

3. F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans.
Database Systems, 6:557–575, 1981.

4. F. Bentayeb and D. Laurent. Inversion de l’algèbre relationnelle et mises à jour.
Technical Report 97-9, Université d’Orléans, LIFO, 1997.

5. A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proceedings of the Ninth Annual ACM Symposium on
Theory of Computing, 2-4 May 1977, Boulder, Colorado, pages 77–90, 1977.

6. B. A. Davey and H. A. Priestly. Introduction to Lattices and Order. Cambridge
University Press, second edition, 2002.

69

7. U. Dayal and P. A. Bernstein. On the correct translation of update operations on
relational views. ACM Trans. Database Systems, 8(3):381–416, 1982.

8. T. Eiter and H. Mannila. Distance measures for point sets and their computation.
Acta Inf., 34(2):109–133, 1997.

9. R. Fagin. Horn clauses and database dependencies. J. Assoc. Comp. Mach.,
29(4):952–985, 1982.

10. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and
query answering. Theoret. Comput. Sci., 336:89–124, 2005.

11. R. Fagin and M. Y. Vardi. Armstrong databases for functional and inclusion
dependencies. Info. Process. Lett., 16:13–19, 1983.

12. J. A. Fernández, J. Grant, and J. Minker. Model theoretic approach to view
updates in deductive databases. J. Automated Reasoning, 17(2):171–197, 1996.

13. S. Greco, C. Sirangelo, I. Trubitsyna, and E. Zumpano. Preferred repairs for
inconsistent databases. In 7th International Database Engineering and Applications
Symposium (IDEAS 2003), 16-18 July 2003, Hong Kong, China, pages 202–211.
IEEE Computer Society, 2003.

14. S. J. Hegner. An order-based theory of updates for closed database views. Ann.
Math. Art. Intell., 40:63–125, 2004.

15. S. J. Hegner. The complexity of embedded axiomatization for a class of closed
database views. Ann. Math. Art. Intell., 46:38–97, 2006.

16. S. J. Hegner. Information-based distance measures and the canonical reflection of
view updates. Technical Report 0805, Institut für Informatik, Christian-Albrechts-
Universität zu Kiel, October 2008. Also available on the web site of the author.

17. S. J. Hegner. Information-optimal reflections of view updates on relational database
schemata. In S. Hartmann and G. Kern-Isberner, editors, Foundations of Informa-
tion and Knowledge Systems: Fifth International Symposium, FoIKS 2008, Pisa,
Italy, February 11-15, 2008, Proceedings, volume 4932 of Lecture Notes in Com-
puter Science, pages 112–131. Springer-Verlag, 2008.

18. S. J. Hegner. Semantic bijectivity and the uniqueness of constant-complement
updates in the relatiional context. In K.-D. Schewe and B. Thalheim, editors,
International Workshop on Semantics in Data and Knowledge Bases, SDKB 2008,
Nantes, France, March 29, 2008, Proceedings, volume 4925 of Lecture Notes in
Computer Science, pages 172–191. Springer-Verlag, 2008.

19. A. Hutchinson. Metrics on terms and clauses. In M. van Someren and G. Wid-
mer, editors, Machine Learning: ECML-97, 9th European Conference on Machine
Learning, Prague, Czech Republic, April 23-25, 1997, Proceedings, volume 1224 of
Lecture Notes in Computer Science, pages 138–145, 1997.

20. A. M. Keller. Updating Relational Databases through Views. PhD thesis, Stanford
University, 1985.

21. R. Langerak. View updates in relational databases with an independent scheme.
ACM Trans. Database Systems, 15(1):40–66, 1990.

22. J. Lechtenbörger. The impact of the constant complement approach towards view
updating. In Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, San Diego, California, June 09-11,
2003, pages 49–55, 2003.

23. D. Maier. The Theory of Relational Databases. Computer Science Press, 1983.
24. S.-H. Nienhuys-Cheng. Distance between Herbrand interpretations: A measure

for approximations to a target concept. In Inductive Logic Programming, 7th In-
ternational Workshop, ILP-97, Prague, Czech Republic, September 17-20, 1997,
Proceedings, volume 1297 of Lecture Notes in Computer Science, pages 213–226.
Springer, 1997.

70

Data Dependencies for Access Control Policies

Romuald Thion1 and Stéphane Coulondre2

1 INRIA Grenoble – Rhône-Alpes, France
655 Av. de l’Europe, Montbonnot
38334 Saint Ismier Cedex, France

2 University of Lyon, LIRIS, France
Bât. Blaise Pascal (501), 20, Av. A. Einstein

F-69621 Villeurbanne, France

Abstract. Access control policies are set of facts and rules that deter-
mine whether an access request should be granted or denied. Policies
must satisfy a set of constraints to reflect some high level organization
requirements. First-order logic has been advocated for some time as a
suitable formal framework for access control policies. However, though
formally expressed, constraints are not defined in a unified language that
could lead to some well-founded and generic enforcement procedures.
Therefore, we directly start by proposing to express access control con-
straints in an unified and generic way by mean of data dependencies.
We show how to use well-founded procedures dedicated to dependencies
(chases) to enforce and reason on constrainted policies. Without requir-
ing any rewriting previous to the inference process, our approach provide
clean and intuitive debugging traces for security officers and is generic
enough to capture expressive access control policies.

1 Introduction

Security policies are sets of laws and rules governing the security of organizations.
Access Control (ac) (or authorization) policies are specialized forms of security
policies, dedicated to logical right management. Since the Rbac initiative [1],
several models have been proposed to organize rights in an intuitive manner.
Some capture contextual conditions (e.g. Generalized-Temporal -Rbac [2] or Ge-
ographical -Rbac [3]), others have introduced new concepts to organize right
and to stick with organization (e.g. Workflow-Rbac [4], Organization-Bac [5]).
Throughout these propositions, fragments of First-Order Logic (Fol) has been
advocated as a general framework suitable to formalize ac.

In addition to innovative concepts and relations to organize rights, ac models
have integrated constraints to reflect some high level organization requirements
that must be enforced within policies. The most prominent one is the mutual
exclusion. For instance, the definition of roles clerk and manager as mutually
exclusive in an Rbac policy means that no user should be assigned to both
clerk and manager.

With the development of ac models, several kinds of constraints have been
defined: variations of mutual exclusion, prerequisite constraints or constraints

71

over hierarchies [6]. All of these different classes of constraints share a common
objective: to restrict the set of policies expressible over a model to the set of
consistent ones. Unfortunately, constraints are thought for specific models and
not considered as first class citizen of ac in a generic way.

In order to express contraints in an homogeneous way, a formal language able
to deal with broad classes of constraints is necessary. Such a language should
be integrated in a model that is flexible enough to express general ac policies.
It should allow the definition of new classes of constraints and should be able
to capture general integrity requirements of ac models. This language must
have clear semantics, and provide well-founded automated proof procedures for
checking consistency of policies, in order to ensure global consistency.

To address these issues, we propose a generic logical framework for con-
straints. ac policies are formally defined in a general logical setting grounded on
database theory (section 2). The formal framework is able to cope with common
models and extensions found in the literature which are formalized in fragments
of Fol (e.g. Datalog, Horn clauses). We make use of relational data dependen-
cies to model ac constraints. Dependencies are able to capture complex integrity
requirements and constraints of ac policies in an homogeneous way (section 3).

We define a set of well-founded operations that can be used to help ac models
designers and policy administrators in making constraints design and adminis-
tration easier. These operation are based upon chases for data dependencies
(section 4). We have implemented the framework and validated our approach
with automated formal proofs of some previous results from the literature that
had been manually proved. Moreover, the proofs obtained are quite readable
as no prior rewriting is performed (such as clausal form), for it may obfuscate
human analysis (section 5).

2 Access control models

First of all, without lack of generality, we operate a distinction between models
and policies: ac models defines structures and ac policies are instances of these
structures. Policies are logical models (in the model-theoretic sense) of a theory
defined by an ac model. The wordmodel is indeed prone to confusion. We use the
term (ac) model to refer to the structure that describes how rights are organized
and granted (i.e. the meaning of model in the ac literature). We use the term
logical model to refer to a model-theoretic interpretation which satisfies a set of
closed Fol formulae.

2.1 Access control background

An ac model relies on vocabulary : a set of sorts and relations between sorts.
Sorts are the main concepts used to organize rights (e.g. users, roles, resource
. . .). Relations define how sorts are related (e.g. assignments between users and
roles). A subject is the sort that represents a (physical) user in the system and
that acts on his behalf.

72

Sorts partition the set of constants used in a policy. This property is tied
to the many-sorted Fol framework. It is shown that many-sorted Fol can be
reduced to one-sorted Fol (i.e. classical Fol) by assigning a specific unary pred-
icate symbol DS called domain predicate symbols to each sort S [7, chapter 10,
p. 460]. In our framework, we implicitly operate this transformation by assigning
a unique unary predicate symbol to each sort.

Definition 1. Access control vocabulary. The vocabulary of an ac model is the
union of a set Sorts of unary predicate symbols called sorts and a set Rel of
n-ary predicate symbols called relations.

The sorts of users (User), subjects (Subject), actions (Action) and objects
(Object) must be defined in any ac vocabulary.

The vocabulary is partitioned into two sets edb, called core vocabulary, and
idb, its intensive vocabulary: idb ∩ edb = ∅ and idb ∪ edb = V oc.

Fig. 1. The core vocabulary edb of Rbac.

Figure 1 illustrates the core vocabulary of Rbac models. This vocabulary is
composed of five sorts (drawn by rectangles in figure 1): User, Subject, Role,
Action and Object. Moreover, four relations are defined (drawn by diamonds in
figure 1): URA betwen User and Role, PRA between Role, Action and Object,
SU between Subject and User and SR between Subject and Role.

The state of an ac model is a set of facts defined over the core vocabulary
edb. The state can practically be stored in a Relational Database Management
System (rdbms). Following traditional axioms of logical interpretation of rela-
tional databases, we assume that constants are distinct and that states are finite.
In the context of Rbac, the term ac state (a.k.a. Rbac database) has first been
coined in [8].

Definition 2. Access control state. To each sort S ∈ edb is associated a set of
constants S called its domain. Domains are pairwise disjoint. To each relation
R ∈ edb of arity n between sorts S1 . . . Sn, is associated the set R = S1×. . .×Sn.

An access control state I on an ac vocabulary V oc is a mapping from each
sort S ∈ edb to a subset of S, called its active domain, and from each relation
R ∈ edb to a subset of R.

73

For instance, a state over edb shown in figure 1 contains user-role, permission-
role, session-user and session-role assignements, e.g. respectively URA(Bob, r1),
PRA(r1, r, file2), SU(S2, Bob) and SR(S2, r1).

Rules expressed over the vovabulary describes how effective rights (Bob is
granted r on file2 because he endorses the role r1) are derived from the state.
Several fragments of Fol have been used as formal languages to capture ac rules.
Datalog-based models are considered expressive enough to capture complex ac
policies [5, 9–12], thus, we restrict ourselves to Datalog.

Definition 3. Access control rules and policy. The rules of an ac model is a
set P of Datalog sentences.

Given an ac state I of a model AC = (V oc, P), an access control policy
I′ over a given state I is the minimal logical model of P : I′ |= P with I ⊆ I′.
Computationally, I′ is a fixpoint of P considered as a (Datalog) program [13,
theorem 12.5.2, p. 301].

2.2 Main relations of access control

An ac request is a triple subject, action, and object: (s, a, o) ∈ Subject×Action×
Object. A reference monitor enforces ac policy, it takes a boolean decision upon
an ac request. In our setting we deal only with positive permissions and supposes
the closed world hypothesis: any access which is not explicitly granted is denied.

Definition 4. Decision triples. Access ⊆ Subject × Action × Object is set of
ac permissions granted to subjects. Access is computed from P and I. An access
control request (s, a, o) ∈ Subject × Action × Object is granted iff (s, a, o) ∈
Access.

Hierarchies been introduced in ac to reduce the number of assignments in
policy. For instance, in Rbac roles are given a preorder (reflexive, transitive) 4
modelling an is a relationship. Relation r1 4 r2 means that every permissions
granted to role r1 are granted to r2 and that each user who is member of role
r2 is also member of r1. For example, the hierarchy employee 4 accountant 4
manager may be defined in a financial organization.

Definition 5. Inheritance. A sort S ∈ edb of an ac model is given an in-
heritance relationship SeniorS ⊆ S × S if a dominance relation (its skeleton)
SeniorDS ⊆ S ×S is defined in edb and if SeniorS is defined by means of P as
the reflexive and transitive closure of SeniorDS.

Another important feature introduced in the ac literature is mutual exclu-
sion. Mutual exclusion is a technical mean to enforce separation of duties. As
it is the case for hierarchies, mutual exclusion needs two relations: an extensive
one and an intensive one which is its symmetric closure. Moreover, when both
an exclusion and an inheritance relation have been defined on the same sort,
an additional rule must be settled P , stating that exclusion is propagated via
inheritance [8].

74

Definition 6. Mutual exclusion. A sort S ∈ edb is given a mutual exclusion
relationship MutualC ⊆ S × S if a core separation relation MutualDC ⊆ S × S
is defined in edb and if MutualC is defined by means of P as the symmetric
closure of SeniorDS.

If an inheritance relation SeniorS is also set on sort S, then the following
rule must be defined:

MutualS(S, S′) ∧ SeniorS(S′′, S) ⇒MutualS(S, S′′)

3 Constraints in access control policies

Among the formal tools developed by the database community, data dependen-
cies (a.k.a integrity constraints) have been defined to capture integrity contraints
over relational data. In a unification attempt, they have been defined as Fol sen-
tences [13, Chapter 10]. The best known classes are functional (fd), inclusion
(ind) and multivalued (mvd) dependencies.

Constrained Tuple-Generating (ctgd) [14] and Disjunctive-ctgd (dctgd)
dependencies [15] are among more recent classes introduced. These classes have
been developed to express complex statements on relational data: they can model
semantic relationships in spatial, temporal or multimedia databases. We benefits
their increased expressivity by modelling complex and subtle ac constraints.

In one of their general form (ctgd), dependencies are Fol sentences having
the following syntax (we use standard conventions of logic applied to relational
databases, where Ri and Qi are relation symbols, ψ and φ are conjunction of
constraints):

∀X̃ R1(X1) ∧ . . . ∧Rn(Xn) ∧ ψ(X̃) ⇒
∃Z̃ Q1(Y1) ∧ . . . ∧Qm(Ym) ∧ φ(Ỹ)

where Z̃ does not designate the whole set of variables in the head but only
those which are not already bound by a universal quantifier (Z̃ = Ỹ − X̃). We
use ⊥ as a logical antilogy (e.g. 0 = 1).

Dependencies can be used either to restrict authorized values in a policy (e.g.
fd), or to impose presence of tuples if some other ones are already present in
the policy (e.g. ind, mvd): they express conditions that must hold in the policy.

In our framework, the set of constraints over an ac model is denoted as
Σ. This set is generic enough to capture desirable properties which cannot be
expressed in P . From the logical perspective P ∪Σ is a logical theory, i.e. a set of
closed Fol formulae. Depending on the expressivity of Σ, increasingly complex
types of ac constraints can be captured.

Definition 7. Access control model. An access control model is a triple AC =
(V oc, P,Σ), where Σ is a set of constraints expressed as data dependencies.

The semantic of constraints is given by the standard Fol model-theoretic
interpretation of dependencies. An access control policy I′ built from a state I is
consistent iff I′ |= Σ.

75

(1) SR(S,R) ⇒ ∃U SU(S,U)
(2) SU(S,U) ∧ SU(S,U ′) ⇒ U = U ′

(3) SU(S,U) ∧ SR(S,R) ⇒ URA(U,R)
(4) SR(U,R) ∧ SR(U,R′) ⇒ R = R′

Table 1. Integrity statements for subject sort in Rbac.

The next subsections describe how dependencies are used to express various
security requirements of models in an homogeneous way: integrity of states, alge-
braic properties that cannot be captured by rules, semantic of mutual exclusion,
constraints on authorizations and administrative prerequisites.

3.1 Integrity constraints on states

Integrity constraints on states ensure that the extensive part of an ac policy
is consistent according to a set of basic constraints expressed over edb. It leads
to the definition of well-founded state. Theses constraints ensure generalized
primary key and foreign key constraints on core concepts of ac models.

Definition 8. Well-founded state. Let Λ be a set of constraints Λ ⊆ Σ involving
only symbols of edb. Let I be a state. Then I is well-founded iff I |= Λ.

For instance, in the Rbac standard it is defined that each subject have to be
assigned to a unique user (expressions (1) for existence and (2) for uniqueness
in table 1) and that a role can be used by a subject only if the role is assigned
to the user who owns the subject (expr. (3)). Moreover, it has been argued that
“The (Rbac) standard should accommodate Rbac systems that allow only one
role to be activated in a session” [16] (expr. (4)).

3.2 Algebraic constraints of relations

ac models hierarchies are commonly defined as partial orders to avoid cycles.
Moreover, a mutual exclusion is defined as irreflexive in order to prevent a sort
from being mutually exclusive with itself. Antisymmetry and irreflexivity can
be expressed by dependencies by Constraint-Generating Dependencies (cgd)
(expressions (1) and (2) of table 2).

Moreover, some additional constraints can be set over an inheritance rela-
tionship. Some models specialize hierachies over sorts to be trees (expr. (3)),
inverted trees (expr. (4)) or lattices (expr. (5) and (6)) using algebraic proper-
ties of SeniorS and SeniorDS relations.

3.3 Semantics of mutual exclusion

Dependencies can capture the semantics of mutual exclusion. Nullity-Generating
Dependencies (ngd) (a.k.a implication constraints) are of special interest for this

76

(1) SeniorR(R,R′) ∧ SeniorR(R′, R) ⇒ R = R′

(2) MutualR(R,R) ⇒ ⊥

(3) SeniorDS(S, S′), SeniorDS(S, S′′) ⇒ S′ = S′′

(4) SeniorDS(S′, S), SeniorDC(S′′, S) ⇒ S′ = S′′

(5) Sort(S′), Sort(S′′) ⇒ ∃S⊥ SeniorS(S′, S⊥), SeniorS(S′′, S⊥)
(6) Sort(S′), Sort(S′′) ⇒ ∃S> SeniorS(S>, S

′), SeniorS(S>, S
′′)

Table 2. Common algebraic properties of relations.

purpose. Several interpretations of mutual exclusion exist. For instance, in Rbac
policy, to set that r and r′ are mutually exclusive may have up to four different
meaning [6]:

– no user could be both assigned roles r and r′ (expression (1) of table 3),
– no subject could be both assigned r and r′ (expr. (2)),
– no common permission could be granted to both r and r′ (expr. (3)),
– no action on a common object could be granted to both r and r′ (expr. (4)).

3.4 Constraints on decision triples

Tuples-generating dependencies can express restrictions on decision triples. The
Rbac model imposes that any authorization must be granted via a role [1]:

Property 3.2: “A subject s can perform an operation op on object
o only if there exists a role r that is included in the subject’s active role
set and there exists an permission that is assigned to r such that the
permission authorizes the performance of op on o”.

Defining intermediate sorts between users and permissions is a way to sim-
plify administration tasks. Bypassing these sorts is error-prone and may lead to
ambiguities within policies. To the best of our knowledge, this property is neither
captured in logic-based modelling attempts of Rbac, nor in extended models.

Definition 9. Property of decision triples. If there is a rule in P of the form
ψ ⇒ Access, then there is a corresponding dependency in Σ of the form Access⇒
ψ that makes the rule an if and only if condition.

(1) MutualR(R,R′) ∧ URA(U,R) ∧ URA(U,R′) ⇒ ⊥
(2) MutualR(R,R′) ∧ SR(S,R) ∧ SR(S,R′) ⇒ ⊥
(3) MutualR(R,R) ∧ PRA(R,A,O) ∧ PRA(R′, A,O) ⇒ ⊥
(4) MutualR(R,R′) ∧ PRA(R,A,O) ∧ PRA(R′, A′, O) ⇒ ⊥
Table 3. Constraints related to mutual exclusion in Rbac.

77

For instance, if the rule SR(S,R)∧PRA(R,A,O)⇒ Access(S,A,O) defines
Access, then transposition of property (3.2) is Access(S,A,O)⇒ ∃R SR(S,R)∧
PRA(R,A,O).

Note that these constraints do not prevent an administrator from defining
discrete authorizations. However, they enforce that only redundant authoriza-
tions, which can be derived from I and P , can be set.

3.5 Administrative prerequisite

An administrative prerequisite enforce the presence of tuples before allowing ad-
ministrative operations [1]. Administrative operations consist in updates, inser-
tions and deletions of tuples within the state I. If any administrative prerequisite,
is violated, the transaction initiated by the administrator will not be committed.
We model prerequisite constraints, with a relation RequiredSort ⊆ Sort× Sort.
Informally, RequiredSort(a, b) means that a an b cannot exists without a a.

Definition 10. Administrative prerequisite. An administrative prerequisite con-
straint imposes the presence of tuples in I or I′. A transitive prerequisite relation
RequiredR ∈ idb over a relation R is defined as the transitive closure of a rela-
tion RequiredDR ∈ edb.

Prerequisite constraints are modelled as (constrained) tgd in Σ by an aux-
iliary relation RequiredDR of the following form:

∀X̃ R(XR) ∧ . . . ∧RequiredR(X) ∧ φ(X̃) ⇒ ∃Z̃ R(X ′
R) ∧ . . . ∧ φ(Ỹ)

For instance, in the Rbac models, administrative prerequisites are used to
prevent administrators from assigning roles to users if some role has not already
been defined (e.g. no assistant manager without a manager). This is an example
of a prerequisite over roles. The following sentences express these statements
by means of the URA relation. Defining RequiredD(assistant, manager) in I
imposes that whenever a user is an assistant manager, then there must be at
least one user who is a manager.

RequiredDRole(R,R
′), RequiredRole(R

′, R′′) ⇒ RequiredRole(R,R
′′)

URA(U,R), RequiredRole(R,R
′) ⇒ ∃U ′ URA(U ′, R′)

4 Constraint verification

The task of defining V oc, P andΣ is dedicated to the ac model designer. Security
officers define the state I, and I′ = P (I) is computed from I and P . The policy
is consistent if and only if I′ |= Σ. Thus, from an abstract perspective, there are
only a few differences between P and Σ which can be considered as a whole as
a logical theory T = P ∪Σ.

As it is case in the relational paradigm, the main difference between P and
Σ lays in their usage: P is used to compute the policy from the state, whereas
Σ is used to impose restrictions on authorized instances of I′.

In this section we rely on two theoretical problems over logical theories:
78

– the satisfaction problem. Answering whether a policy I′ satisfies a given
Fol sentence σ: I′ |= σ. This problem is central for computing I′ from I,
for answering queries and for checking whether a policy satisfies the set of
constraints for a given model.

– the logical implication problem. Answering whether a set of closed formulae
T logically implies a closed formula σ: T |= σ or, in other words, deciding if
any policy is also a model of the single sentence σ. This problem is central
for simplifying logical theory P ∪Σ or for checking model consistency from
an abstract perspective, without considering any state.

We have implemented the proof procedures for several rich classes of depen-
dencies to validate our approach. As shown in section 5, our prototype allows
automatizing the consistency checking of Rbac policies and furnishing proof of
previous results proposed in the ac literature [8].

4.1 Satisfaction problem

One of the features expected from an access control model implementation is
the administrative review. In the present framework, administrative reviews are
simple conjunctive queries over I′. Therefore the requirements of the standard
definition are met [1, 11]. Example of an adminsitrative review is the query
{(u, a, o) | ∃r URA(u, r)∧PRA(r, a, o)}, returning the set of permissions granted
to users through their roles.

Definition 11. Administrative reviews. An administrative review is any con-
junctive query (from the standard database sense) built upon V oc.

The validity of an ac policy is checked by verifying, given a model AC =
(V oc, P,Σ), whether I′ |= Σ. Unsatisfaction of a set of constraints by a policy
can fall into two categories:

– the policy is inconsistent : some constraints-generating dependencies are not
satisfied. For instance, a policy is said to be inconsistent if antisymmetry,
irreflexivity or exclusion relations are not satisfied,

– the instance is incomplete: some tuples-generating dependencies are not sat-
isfied. For instance, a policy is said to be incomplete if some properties of
authorization relations or administrative prerequisites are not satisfied.

If a policy is inconsistent or incomplete, administrators have to correct the
state. Whenever a policy is inconsistent, deletion of existing facts or value up-
dates should be favoured. Whenever a policy is incomplete, addition of facts
should be privileged.

4.2 Logical implication problem

Whereas previous subsection have been devoted to policy checking, this section
considers ac models from an abstract perspective, without reference to any par-
ticular state. The main problem we address is simplification of ac models. In

79

the case of a new tailored ac model, where many collaborative designers from
different sites might be involved, the associated logical theory may become quite
large. Thus, for practical purposes, it is necessary to reduce the size of the theory.

Definition 12. Redundancy in an ac model. Let be T = P ∪ Σ the logical
theory of an ac model. Let be σ ∈ T , if T\{σ} |= σ then the dependency σ is
said redundant, moreover T\{σ} and T have the same models.

The authors of [14] give two bottom-up chase procedures for solving the
implication problem of ctgd: given a set of ctgd Σ, and a single ctgd σ (of
the form l⇒ r), determine whether in every policy where Σ is satisfied, σ is also
satisfied, stated briefly as Σ |= σ. The operational nature of proof procedures
for ctgd is based on the concept of tuple (a grounded atom, with no variables).
They keep the same strategy as the original chase of [17] extended to deal with
constraints.

The ctgd implication problem is semi-decidable: the procedures may run
forever. However, there are some interesting decidability results holding in var-
ious subclasses of ctgd. For example, the chase is decidable for tgd having
no existentially quantified variable [17]. For implementation purposes though,
bounding up the number of closure operator applications we be wanted, but this
is still uncertain.

5 Application

σ1 URA(User,Role1), URA(User,Role2),Mutual(Role1, Role2) ⇒ ⊥
σ2 Mutual(Role,Role) ⇒ ⊥
σ3 Mutual(Role1, Role2) ⇒Mutual(Role2, Role1)
σ4 Senior(Role1, Role2),Mutual(Role1, Role2) ⇒ ⊥
σ5 Mutual(Role1, Role2), Senior(Senior,Role1), Senior(Senior,Role2) ⇒ ⊥
σ6 Senior(Senior,Role1),Mutual(Role1, Role2) ⇒Mutual(Senior,Role2).

Table 4. Logical characterization of Rbac constraints, adapted from [8]

We have written a prototype C++ toolkit library (LibDependencies) for
inference on dependencies. It can handles the ctgd as well as its subclasses.
Four different chases have been implemented [14, 17, 18] in the toolkit.

The authors of [8] have defined a set of integrity properties for Rbac models.
These integrity requirements are captured by dependencies in table 4. The au-
thors have manually proved that the set of properties of the table can be reduced
to a smaller set.

Let examplify a run of the LibDependencies that uncover results from [8].
Initially, the LibDependencies is loaded with dependencies σ1 through and σ6

of table 4. The goal is to prove that {σ2, σ3, σ6} |= σ5: the following trace is a
formal proof of this entailment which is obtained using LibDependencies:

80

1. let be Mutual(r1, r2), Senior(r0, r1) and Senior(r0, r2) tuples,
2. by σ3, derive Mutual(r2, r1),
3. by σ6 twice, derive Mutual(r0, r2) and Mutual(r0, r1),
4. by σ3 twice, derive Mutual(r2, r0) and Mutual(r1, r0)
5. by σ6, derive Mutual(r0, r0) (there are two ways),
6. finally, by σ2 derive ⊥.

Thus, the chase procedure proved that {σ2, σ3, σ6} |= σ5. The prototype
LibDependencies can be used to derive other sample theorem from the de-
pendencies of table 4. Let be Σ the six dependencies show in this table. The
chase procedures can prove that Σ\{σ4} |= σ4, Σ\{σ5} |= σ5 or even that
Σ\{σ4, σ5} |= σ4, σ5. Such a result is ac model independent and can be applied
for any right management system built as AC = (V oc, P,Σ).

This example illustrates the utility of our approach. Given an ac model
AC = (V oc, P,Σ), automated proof of non-trivial properties can be provided.
Besides the above obtained theoremsfrom [8], we have been able to derive the
following results:

– read and write access over an objet in Mandatory Access Control (Mac) are
granted to a subject iff the subject’s clearance level is equal to the object’s
confidentiality level,

– a root role which inherits all other ones cannot exist in an Rbac policy where
two roles are mutually exlusive from [19],

– dynamic authorizations are a subset of static authorizations in Rbac policies
from [1].

6 Related work

The authors of [10, 12] have used respectively C-Datalog (which introduce
object-oriented concepts), and DatalogC . The basic components of this pa-
per reuse and extend some their formal models of ac. The authors of [9, 20, 21]
have extended Datalog with specific constructs which are reduced into stan-
dard Datalog formulae. However, we have not used rewriting procedures which
may obfuscate the debugging steps thus puzzle administrators.

The authors of [11, 22] describe Fol programs to deal with ac. They address
the problems arising of hybrid policies in which both authorizations and denial
can defined.

These frameworks allow a permissive use of negation in formal sentences,
whereas we have chosen to favour existential quantifiers. This choice enables
modeling of complex integrity requirements considered as fundamental in Rbac,
which are not expressible in other frameworks.

Constraints have received lots of attention in ac models. However, most of
attention is dedicated to separation of duties and related constraints [8, 6]. The
algebra of [23] consider separation of duties constraints as high-level organiza-
tion requirements. Our approach is quite different: constraints first-class citizien

81

Symbol Database Access control
AC = (V oc, P,Σ) deductive database access control model

P Datalog rules principles of model

Σ data dependencies constraints

I extensive database state
I′ intensive database policy

Table 5. Relations between databases and access control.

of ac models. Thus we can capture intrinsic properties (e.g. constraints on de-
cision triples, prerequisites) as well as general integrity requirements (e.g. states
well-foundedness, algebraic properties of relations) which are usually taken into
account separately.

Our main inovation is the fruitful use of data dependencies as a unifying
logical framework which encompasses both traditional ac rules and integrity
constraints. Thus, constraints are expressed in the very same model, and not
expressed in an independent and different framework. As constraints are integrity
requirements of policies, we argue that their integration as soon and as tightly
as possible in the model is a step towards ensuring ac robustness. Moreover,
our framework is clearly grounded on foundation of databases and makes a clear
distinction between policies and models. This separation, advocated in [16], is
not explicit in related work.

We rely on some known results for data dependencies, in order to provide
well-founded tools for reasoning on policies. An interesting feature of these proof
procedures is that they do not require any prior translation of Fol formulae of
P and Σ (e.g. by means of Skolemization or rewriting rules). This property
leads to native clear traces of automated proofs, as given in section 5. This
greatly enhances the readability of inference results, for design and maintenance
purposes. Finally, by mean of the LibDependencies, we have been able to
re-prove in an automated way some interesting results found in the literature.

7 Discussion and conclusion

We have presented a framework for ac policies which relies on logical aspects of
databases. The key idea is not to deploy ac policies in databases, but to express
and handle ac policies by mean of database theory. Our approach provides an
homogeneous way for defining both ac rules and integrity requirements within
the very same logic background. The relations between logic in databases and
ac are summarized by table 5.

The logical fragment of Fol we used to define P and Σ is quite restrictive:
negation, disjunction and function symbols are not allowed. The main argument
is that we obtain a unique and computable model of P . Computability is neces-
sary because the reference monitor has to answer each access request.

82

Furthermore, we chose to have a more expressive framework for constraints
than for rules, by favouring existential quantification over negation. The main
goal is to be able to model some of the most important constraints commonly
identified for ac models, which cannot be expressed in Datalog models. Even
with a quite simple ac model (for instance, with a few sorts, relations and prin-
ciples), most of the properties given in section 3 require existentially quantified
variables (e.g. sessions integrity properties, restricted hierarchies, authorizations
properties and administrative prerequisites). We are currently investigating ex-
tensions of our proposal:

– extension of the language of P and Σ, to capture new model properties (e.g.
spatio-temporal based authorization usually needs arithmetic constraints in
hypothesis of rules). However, algorithms decidablity and tractability should
be taken into account. As an example, it may be interesting to use some de-
cidable subclass of tgd by imposing some restrictions on existential quan-
tification,

– exploring databases automated maintenance [24], and data integration [25]
to fix non-consistent policies. Data integration may be a fruitful perspective
for composition of policies expressed in different models [26],

– another emerging topic is usage control and privacy protection. The basic
components and definitions we presented can be used to define next gener-
ation ac models and policies, as it has been done with Rbac models [27].

Acknowledgement : this work was supported by Région Rhône-Alpes.

References

1. Ferraiolo, D.F., Kuhn, R.D., Chandramouli, R.: Role-Based Access Control. Artech
House Publishers (2003)

2. Joshi, J., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based
access control model. IEEE Transactions on Knowledge & Data Engineering 17(1)
(2005) 4–23

3. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC: A spatially
aware rbac. ACM Transactions on Information & System Security 10(1) (2007)

4. Wainer, J., Kumar, A., Barthelmess, P.: DW-RBAC: A formal security model of
delegation and revocation in workflow systems. Information Systems 32(3) (2007)
365–384

5. Miège, A.: Dénition d’un environnement formel d’expression de politiques de sécu-
rité : modèle Or-BAC et extensions. PhD thesis, Ecole Nationale Supérieure des
Télécommunications,Paris (2005)

6. Crampton, J.: Specifying and enforcing constraints in role-based access control. In:
SACMAT’03: 8th ACM Symposium on Access Control Models and Technologies,
ACM Press (2003) 43–50

7. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic
Theorem Proving. Revised on-line version 2003. Harper & Row (1986)
http://www.cis.upenn.edu/ jean/gbooks/logic.html.

83

8. Gavrila, S.I., Barkley, J.F.: Formal specification for role based access control
user/role and role/role relationship management. In: RBAC’98: 3rd ACM work-
shop on Role-based access control. (1998) 81–90

9. Jim, T.: SD3: A trust management system with certified evaluation. In: IEEE
Symposium on Security and Privacy. (2001) 106–115

10. Bertino, E., Catania, B., Ferrari, E., Perlasca, P.: A logical framework for reasoning
about access control models. ACM Transactions on Information & System Security
6(1) (2003) 71–127

11. Barker, S., Stuckey, P.J.: Flexible access control policy specification with constraint
logic programming. ACM Transactions on Information & System Security 6(4)
(2003) 501–546

12. Li, N., Mitchell, J.C.: DATALOG with constraints: A foundation for trust man-
agement languages. In Dahl, V., Wadler, P., eds.: PADL’03: 5th International
Symposium on Practical Aspects of Declarative Languages, New Orleans. Volume
2562 of Lecture Notes in Computer Science., Springer-Verlag (2003) 58–73

13. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Boston (1995)

14. Maher, M.J., Srivastava, D.: Chasing constrained tuple-generating dependencies.
In Hull, R., ed.: PODS’96: 15th ACM SIGACT-SIGMOD-SIGART Symposium on
Principles of Database Systems, Montreal, Canada, ACM Press (1996) 128–138

15. Wang, J.: Exploiting Constraints for Query Processing. PhD thesis, Griffith Uni-
versity, Brisbane, Queensland, Australia (2002)

16. Li, N., Byun, J.W., Bertino, E.: A critique of the ANSI standard on role-based
access control. IEEE Security and Privacy 5(6) (2007) 41–49

17. Beeri, C., Vardi, M.Y.: A proof procedure for data dependencies. Journal of the
ACM 31(4) (1984) 718–741

18. Coulondre, S.: A top-down proof procedure for generalized data dependencies.
Acta Informatica 39(1) (2003) 1–29

19. Benantar, M., ed.: Access Control Systems - Security, Identity Management and
Trust Models. Springer-Verlag (2006)

20. Li, N., Grosof, B.N., Feigenbaum, J.: Delegation logic: A logic-based approach to
distributed authorization. ACM Transactions on Information & System Security
6(1) (2003) 128–171

21. DeTreville, J.: Binder, a logic-based security language. In: SP’02: IEEE Symposium
on Security and Privacy, Washington, IEEE Computer Society (2002) 105

22. Halpern, J.Y., Weissman, V.: Using first-order logic to reason about policies. In:
CSFW’03: 16th IEEE Computer Security Foundations Workshop, Pacific Grove,
California, IEEE Computer Society (2003) 187–201

23. Li, N., Wang, Q.: Beyond separation of duty: An algebra for specifying high-level
security policies. J. ACM 55(3) (2008)

24. Chomicki, J., Marcinkowski, J.: Minimal-change integrity maintenance using tuple
deletions. Information & Computation 197(1-2) (2005) 90–121

25. Fagin, R.: Inverting schema mappings. In Vansummeren, S., ed.: PODS’06: 25th
ACM SIGACT-SIGMOD-SIGART Symposiumon Principles of Database Systems,
Chicago, Illinois, ACM Press (2006) 50–59

26. Li, N., Wang, Q., Qardaji, W., Bertino, E., Rao, P., Lobo, J., Lin, D.: Access
control policy combining: theory meets practice. In: SACMAT ’09: Proceedings of
the 14th ACM symposium on Access control models and technologies, ACM (2009)
135–144

27. Ni, Q., Bertino, E., Lobo, J.: Privacy-aware RBAC - leveraging RBAC for privacy.
IEEE Security and Privacy to appear (2009)

84

Comparing Availability in Controlled Query

Evaluation Using Unordered Query Evaluation

for Known Potential Secrets

George Voutsadakis1,2

1 Department of Computer Science, Iowa State University, Ames, IA, USA
2 Department of Mathematics and Computer Science, Lake Superior State

University, Sault Ste. Marie, MI, USA

Abstract. Controlled Query Evaluation (CQE) is an inference control
mechanism used to dynamically preserve confidentiality in secure infor-
mation systems. In this note we introduce the notion of unordered query
evaluation as a vehicle for comparing availability of various CQE meth-
ods, a recurring theme in the CQE literature. Moreover, we show that
the various procedural approaches introduced thus far in the literature
for imposing the declarative requirements of CQE lead to maximally
available mechanisms. Finally, we characterize maximally available un-
ordered query evaluation for various enforcement methods for known
potential secrets as the unordered query evaluation resulting from CQE
mechanisms for some suitably chosen ordering of the queries.

1 Introduction

Preserving confidentiality in information systems that contain both classified and
public data is one of the major goals in data security. Two general categories
of methods have been considered in the literature: access control and informa-
tion flow control, that are characterized by their static and dynamic nature,
respectively. In using access control, one of the major challenges is the inference
problem, i.e., the potential inference of secret information by the user, based
on revealed public information. Some pointers to the literature on the inference
problem in access control are [11, 13, 19] (see [12] for a review). This problem is
addressed in Controlled Query Evaluation (CQE), an inference control mecha-
nism used to dynamically preserve confidentiality [14]. In CQE, the knowledge
base administrator specifies the information that is to be kept confidential. When
a query is posed against the knowledge base, its true answer is computed and,
before an answer is issued to the user, a censor is used, aided by a log maintained
to represent the user’s assumed information, to detect potential security risks.
If the correct answer jeopardizes confidentiality of sensitive information, then,
instead of the correct answer, either a lie or a refusal is returned.

CQE methods come in various types and forms depending on the value of
three parameters used to specify the semantics of the confidentiality policies,
the user awareness and the enforcement policies [4, 5]. Confidentiality policies

85

include secrecies and potential secrets. Roughly speaking, when a method is
devised to protect secrecies, then the truth value of a secret may not be revealed
or inferred. On the other hand, when a method protects potential secrets, one of
the two possible truth values is designated as secret, and the method is charged
with not revealing that value or allowing the user to infer that value. Its negation,
however, is not protected. User awareness is the parameter that specifies whether
or not the user is aware of the information whose truth value the knowledge base
is trying to conceal. Finally, the enforcement policies that might be employed to
ensure preservation of confidentiality are lying, refusal or a combination of lying
and refusal.

CQE was first introduced by Sicherman et al. [14] for the method of refusal
for protecting known and unknown secrecies. Bonatti et al. [9] discuss the case
of lying for known potential secrets. Lying and refusal for known and unknown
secrecies is taken up in [2]. Lying and refusal for known potential secrets is
studied in [3]. Finally, Biskup and Bonatti explore a combination of refusal and
lying for known secrecies and known potential secrets in [6]. Related later works
include the creation of a SAT-based algorithm to pre-process information to
create an inference-proof database that can be queried statically [10], as well as
using constraint satisfaction for the construction of a secure database that also
allows static querying without disclosing sensitive information [7]. It is worth
noting that, recently, Biskup and Weibert have extended aspects of CQE to the
setting of incomplete databases [8].

In controlled query evaluation, a central theme is the tradeoff between confi-
dentiality of secret information and availability of information (see, e.g., the in-
troduction in [10]). In fact, a recurring issue in all aforementioned works on CQE
is a comparison of the various enforcement methods with respect to availability.
Many take the forms of “honeymoon lemmas” comparing answers provided to
initial segments of incoming query sequences [6]. Others are based on rearranging
the incoming query sequence to achieve comparability (see, also, [6]). It seems
that order, which is indispensable in an algorithmic treatment of security in in-
formation management, is presenting a hinderance when trying to compare at
a theoretical level the various enforcement methods with respect to availability.
In this paper, we make an attempt at a cleaner approach to this issue, based on
an unordered view of confidentiality preserving query evaluation.

Our contribution is two-fold. First, we provide the definition of unordered
query evaluation. Controlled query evaluation is usually presented in two levels
of abstraction. In the higher level, a declarative framework is introduced, where
a description of the method and its confidentiality requirements are given. In
the lower level of abstraction, a detailed algorithmic procedure is provided for
enforcing the confidentiality goals specified at the declarative level. We view
unordered query evaluation as a third (the highest) level of abstraction, which
“forgets” the order in which the queries are handled and considers only the
association with each query of the corresponding response returned to the user.
In this setting the two lower levels are viewed as describing a specific possible
“order-dependent” implementation strategy for unordered query evaluation. We

86

use the unordered query evaluation framework to provide a setting in which to
estimate the relative availability of confidentiality preserving query answering.
By associating an unordered query evaluation companion to each given CQE
method, we carry the applicability of this comparison framework to CQE. We
use a comparison result of Biskup and Bonatti [6] to illustrate how our definition
may be used to accommodate results of similar kind presented previously in the
literature.

The second contribution of the paper is the theoretical characterization of
the maximally available unordered query evaluation methods. This result also
relies on the construction of an unordered query evaluation related to a given
CQE. We show that an unordered query evaluation is maximally available iff, for
every knowledge base and confidential information, there exists an appropriate
ordering of all possible queries, such that the given unordered query evaluation
provides identical answers with a CQE processing the queries in the devised
order.

The paper is organized as follows. In Section 2 we review the basic definitions
and the formalism pertaining to the confidentiality requirements of CQE. In Sec-
tion 3, we introduce unordered query evaluation and present its confidentiality
requirements. Unordered query evaluation is more abstract than CQE, lacking
the algorithmic flavor of CQE that results from dealing with the queries in the
order in which they are posed to the system. In Section 4, we introduce a relative
measure of availability in unordered query evaluation. Moreover, we formalize a
way in which an unordered query evaluation may be canonically associated with
a CQE and a given ordering of all queries. By using this unordered companion
to the CQE and the availability comparison framework for the unordered case,
we obtain a relative measure of availability for CQE. In Section 5 we present
an availability comparison result of Biskup and Bonatti for various enforcement
policies in the case of known potential secrets, placing it in the framework of
the present paper as an illustration of the applicability of our general defini-
tions. Finally, in Section 6 we provide a characterization of maximally available
unordered query evaluation in terms of the known algorithms for the various
enforcement policies in CQE. We concentrate on known potential secrets, but
our method is general enough to encompass unknown potential secrets as well
as known and unknown secrecies.

2 Controlled Query Evaluation

2.1 Basic Definitions

An information system [4, 5] consists of two pieces of data: First, a schema DS,
which captures the universe of discourse of an intended application and which,
for the purposes of this note, will be a finite set of propositional variables. Second,
an instance db, which, in general, is a structure interpreting the symbols in DS
and, which, for the purposes of this note, will be an assignment of truth values
(true (t) or false (f)) to the propositional variables in DS. A query Φ against
DS is a sentence in classical propositional logic with variables in DS. A query

87

evaluation eval(Φ) determines the truth value of a query Φ against the schema
DS for the current instance db as follows:

eval(Φ) : DS → {t, f} with eval(Φ)(db) = db model of Φ,

where model of is the boolean operator returning t iff db is a model of Φ in the
ordinary sense. As is customary, we also use another version eval∗, that returns
either the query sentence or its negation:

eval∗(Φ) : DS → {Φ,¬Φ}, with

eval∗(Φ)(db) =

{

Φ, if db model of Φ
¬Φ, otherwise

.

Let Q = 〈Φ1, Φ2, . . . , Φi, . . .〉 be a (possibly infinite) query sequence and log0

be an initial user log, which represents the explicit part of the user’s assumed
knowledge. We define a controlled query evaluation as a family of partial functions
control eval(Q, log0), each of which has as parameters the query sequence Q
and the initial user log log0. The inputs are “admissible” pairs (db, policy),
where db is an instance of the information system and policy an instance of a
confidentiality policy, which can be a set of secrecies or a set of potential secrets,
as in [4, 5]. Admissibility of (db, policy) is determined by some formally defined
precondition precond associated with the function.

For any specific CQE function, the choices with respect to model of pol-
icy (secrecies or potential secrets), user awareness (unknown or known pol-
icy) and enforcement method (lying, refusal or combined) are indicated by at-
taching the superscripts p, a, e, with p ∈ {sec, ps}, a ∈ {unknown, known} and
e ∈ {L(ying), R(efusal), C(ombined)}. In specifying such a function, it is as-
sumed that, given a query, the correct answer to the query according to the
current database instance is judged by some censor, which decides whether the
correct answer may be disclosed or whether a modificator must be applied. The
censor is assisted by a user log log, which represents the explicit part of the user’s
assumed knowledge, much like log0 represents the explicit part of the user’s ini-
tial assumed knowledge. The log is updated every time an answer is returned.
Therefore, the function is given by

control evalp,a,e(Q, log0)(db, policy) = 〈(ans1, log1), . . . , (ansi, logi), . . .〉,

where logi =

{

logi−1, if ansi = mum

logi−1 ∪ {ansi}, otherwise
, mum signifying refusal to answer.

2.2 Confidentiality Requirements

Depending on whether the model of confidentiality policy is that of secrecies or
of potential secrets, we have appropriately adjusted instances of the policy. For
the model of secrecies, we have a finite set secr = {{Ψ1,¬Ψ1}, . . . , {Ψk,¬Ψk}} of
complementary pairs of sentences, each called a secrecy. On the other hand, for

88

potential secrets, we have a finite set pot sec = {Ψ1, . . . , Ψk} of sentences, called
potential secrets. The semantics for a secrecy {Ψ,¬Ψ} requires that a user should
not be able to distinguish, based on initial knowledge and answers returned by
the system, whether Ψ or ¬Ψ is true in the actual instance of the information
system. For a potential secret Ψ , a user should not be able to exclude that ¬Ψ
is true in the actual instance of the information system. More formally, we have
the following definition for preservation of confidentiality for a given controlled
query evaluation function (see Definition 1 of [4]):

Definition 1. Let control evalp,a,e(Q, log0) be a specific controlled query evalu-
ation with precond as its associated precondition and policy1 a policy instance.

1. control evalp,a,e(Q, log0) is said to preserve confidentiality with respect to
policy1 iff, for all finite prefixes Q′ of Q, all instances db1 of the information
system, such that (db1, policy1) satisfies precond and all Θ ∈ policy1, there
exists db2 and policy2, such that (db2, policy2) satisfies precond and the
following conditions hold:
(a) [Same Answers]

control evalp,a,e(Q′, log0)(db1, policy1) = control evalp,a,e(Q′, log0)(db2,
policy2)

(b) [Different Secrets/False Potential Secrets] If p = sec, i.e., Θ = {Ψ,¬Ψ}
a secrecy, {eval∗(Ψ)(db1), eval∗(Ψ)(db2)} = {Ψ,¬Ψ} and, if p = ps, i.e.,
Θ = Ψ is a potential secret, then eval∗(Ψ)(db2) = ¬Ψ

(c) [Awareness] if a = known, then policy1 = policy2.
2. control evalp,a,e(Q, log0) is said to preserve confidentiality if it preserves con-

fidentiality with respect to all admissible policy instances.

3 Unordered Query Evaluation

In this section, we introduce unordered query evaluation, which is a modification
of controlled query evaluation in which the ordering of the queries does not
play a role. It is closer in spirit to alternative treatments of secrecy preserving
reasoning that have been introduced in the literature, namely those by Studder
[16] (see also [15, 17]) and Bao et al. [1]. The reason for defining unordered
query evaluation is that it provides a more elegant way to compare methods
of dynamic enforcement of controlled query evaluation with respect to their
availability, which is the main topic of this paper. The way this can be achieved
will be illustrated in Sections 5 and 6. In this section we give the definition and
the relevant confidentiality requirements.

We adopt the same notion of information system that was used in Section
2 and the same notion of query and query evaluation. An unordered query
evaluation is a family of partial functions unord eval(log0), each of which has
as a parameter the initial user log log0. The inputs are “admissible” pairs
(db, policy), where db is an instance of the information system and policy an
instance of a confidentiality policy, which, as before, can be a set of secrecies or
a set of potential secrets. A precondition precond determines the admissibility of

89

(db, policy). The superscripts p, a, e, with p ∈ {sec, ps}, a ∈ {unknown, known}
and e ∈ {L(ying), R(efusal), C(ombined)}, are used, as before, to indicate model
of policy, user awareness and method of enforcement, respectively.

unord evalp,a,e(log0)(db, policy) is a total function from the set of queries Q
to the set of possible answers, i.e., for all Φ ∈ Q,

unord evalp,a,e(log0)(db, policy)(Φ) ∈ {Φ,¬Φ, mum}.

The following definition for preservation of confidentiality for a given un-
ordered query evaluation function adapts the corresponding one for controlled
query evaluation (Definition 1):

Definition 2. Let unord evalp,a,e(log0) be a specific unordered query evaluation
with precond as its associated precondition and policy1 a policy instance.

1. unord evalp,a,e(log0) is said to preserve confidentiality with respect to policy1

iff, for every finite Q′ ⊆ Q, all instances db1 of the information system, such
that (db1, policy1) satisfies precond and all Θ ∈ policy1, there exists db2 and
policy2, such that (db2, policy2) satisfies precond and the following condi-
tions hold:
(a) [Same Answers] for all Φ ∈ log0 ∪Q

′, unord evalp,a,e(log0)(db1, policy1)
(Φ) = unord evalp,a,e(log0)(db2, policy2)(Φ)

(b) [Different Secrets/False Potential Secrets] If p = sec, i.e., Θ = {Ψ,¬Ψ}
a secrecy, {eval∗(Ψ)(db1), eval∗(Ψ)(db2)} = {Ψ,¬Ψ} and, if p = ps, i.e.,
Θ = Ψ is a potential secret, then eval∗(Ψ)(db2) = ¬Ψ

(c) [Awareness] if a = known, then policy1 = policy2.
2. unord evalp,a,e(log0) is said to preserve confidentiality if it preserves confi-

dentiality with respect to all admissible policy instances.

4 Availability

4.1 Availability in Unordered Query Evaluation

In many instances in previous work on controlled query evaluation, there has
been explicit reference to the important tradeoff between confidentiality of se-
cret information and availability of information (see, e.g., [10]). In general, in
the framework of CQE, one way that has been employed for comparisons of
difference enforcement methods with respect to availability has been via the so-
called “Honeymoon Lemmas” and, also, via some query reordering-style lemmas
[6]. In this subsection, we provide a general definition for comparing the avail-
ability of two unordered query evaluations. In the following subsection, we will
show how a controlled query evaluation gives rise to an unordered query evalu-
ation companion (essentially by forgetting the order of the queries) and we will
use this associated unordered query evaluation together with the comparison
framework of this subsection to provide a setting for comparing controlled query
evaluations with respect to availability. Finally, in Section 5 we show how a com-
parison lemma of Biskup and Bonatti can be seen as a particular comparison
result on availability in the sense of the present section.

90

Given a database instance db and a query Φ, we define a partial ordering
≤db on the set {Φ,¬Φ, mum} of the three possible answers of a controlled query
evaluation on Φ by setting

mum ≤db eval∗(Φ)(db), ¬eval∗(Φ)(db) ≤db eval∗(Φ)(db).

Let unord evalp,a,e1

1 (log0) and unord evalp,a,e2

2 (log0) be unordered query evalu-
ations, with associated preconditions precond1 and precond2, respectively, and
(db, policy) an admissible pair according to both precond1 and precond2. Then

unord evalp,a,e1

1 (log0)(db, policy) ≤ unord evalp,a,e2

2 (log0)(db, policy)

signifies that, for all Φ ∈ Q (the set of all queries),

unord evalp,a,e1

1 (log0)(db, policy)(Φ) ≤db unord evalp,a,e2

2 (log0)(db, policy)(Φ).

Definition 3. Let unord evalp,a,e1

1 and unord evalp,a,e2

2 be unordered query eval-
uations with preconditions precond1 and precond2, respectively.

1. unord evalp,a,e1

1 is said to be more available than unord evalp,a,e2

2 with re-
spect to assumed knowledge log0 and confidentiality policy policy if, for every
database instance db, such that (db, policy) is admissible according to both
precond1 and precond2, we have that

unord evalp,a,e1

1 (log0)(db, policy) ≥ unord evalp,a,e2

2 (log0)(db, policy);

2. unord evalp,a,e1

1 is said to be maximally available with respect to assumed
knowledge log0 and confidentiality policy policy if, for every unordered query
evaluation unord evalp,a,e1

2 , all database instances db, such that (db, policy)
is admissible according to both precond1 and precond2, we have that

unord evalp,a,e1

1 (log0)(db, policy) 6< unord evalp,a,e1

2 (log0)(db, policy).

4.2 From Controlled to Unordered Query Evaluation

In this subsection we show how to construct, given a controlled query evaluation,
an associated unordered query evaluation, called its unordered query evaluation
companion. We use the construction for the purpose of rigorously comparing
controlled query evaluations with respect to availability.

Suppose that control evalp,a,e is a controlled query evaluation, log0 a user’s
initial assumed knowledge and Q an infinite sequence, which is surjective on Q,
i.e., whose range includes all possible queries against the schema DS. Define the
unordered query evaluation companion unord evalp,a,e(log0) of control evalp,a,e

relative to log0 and Q as follows:
The precondition precond of the unordered query evaluation includes all pairs

(db, policy) that are included in the precondition for control evalp,a,e(Q, log0).
Moreover, for all pairs (db, policy) ∈ precond and all Φ ∈ Q, we define

unord evalp,a,e(log0)(db, policy)(Φ) = ansi,

91

where

control evalp,a,e(Q, log0)(db, policy) = 〈(ans1, log1), . . . , (ansi, logi), . . .〉

and i is the first occurrence of Φ in the sequence Q = 〈Φ1, Φ2, . . . , Φi, . . .〉.

Proposition 1. If a controlled query evaluation control evalp,a,e(Q, log0) pre-
serves confidentiality with respect to policy, then its unordered query evaluation
companion unord evalp,a,e(log0) relative to log0 and Q also preserves confiden-
tiality with respect to policy.

Proof. (Sketch) Suppose control evalp,a,e(Q, log0), with precondition precond
and policy1 a policy instance, is a CQE, that preserves confidentiality with re-
spect to policy1. Let unord evalp,a,e(log0) be its unordered query evaluation
companion relative to log0 and Q. Consider finite Q′ ⊆ Q and a database
instance db1, such that (db1, policy1) ∈ precond, and Θ ∈ policy1. Let Q′

be a finite prefix of Q, whose range includes Q′. Since precond is a common
precondition for both control evalp,a,e(Q, log0) and unord evalp,a,e(log0), and
(db1, policy1) ∈ precond, there exists, by preservation of confidentiality for
the CQE, (db2, policy2) ∈ precond, such that all three conditions of Defini-
tion 1 are satisfied. Now it is straightforward to check that all three corre-
sponding conditions of Definition 2 hold for unord evalp,a,e(log0) and, therefore,
unord evalp,a,e(log0) also preserves confidentiality.

The definitions for comparing availability for unordered query evaluations
may now be applied to the case of controlled query evaluations using their un-
ordered query evaluation companions.

Definition 4. Let control evalp,a,e1

1 and control evalp,a,e2

2 be controlled query
evaluations with preconditions precond1 and precond2, respectively, log0 a user’s
initial assumed knowledge and Q1, Q2 infinite sequences, which are surjective on
Q.

1. control evalp,a,e1

1 (Q1, log0) is said to be more available than control evalp,a,e2

2

(Q2, log0) with respect to confidentiality policy policy if unord evalp,a,e1

1 is
more available than unord evalp,a,e2

2 with respect to assumed knowledge log0

and confidentiality policy policy, where

unord evalp,a,e1

1 (log0) and unord evalp,a,e2

2 (log0)

are the unordered query evaluation companions of control evalp,a,e1

1 (Q1, log0)
and control evalp,a,e2

2 (Q2, log0), respectively.
2. control evalp,a,e1

1 (Q1, log0) is said to be maximally available with respect to
confidentiality policy policy if unord evalp,a,e1

1 is maximally available with
respect to assumed knowledge log0 and confidentiality policy policy.

It is worth noting that in Definition 4 we chose to define maximal availability for
controlled query evaluations to mean that the corresponding unordered query
evaluation is the “best” among all other unordered query evaluations having the
same enforcement policy.

92

5 A Comparison Result of Biskup and Bonatti

In this section, we revisit a result formulated and proven by Biskup and Bonatti
in [6] on comparing the uniform with the hybrid methods in the case of known
potential secrets in order to illustrate how this and other results of similar flavor
may be accommodated in the general comparison framework that was presented
in the previous section.

5.1 Uniform Refusal and Lying for Known Potential Secrets

We start by briefly reviewing the definition of the refusal censor and the resulting
controlled query evaluation procedure in the case of known potential secrets. The
requirement is that the censor refuse the answer to a query if the correct answer
or its negation together with the current log imply a potential secret:

censorRps(Φ, log, db, pot sec) = (∃Ψ)[Ψ ∈ pot sec and (log ∪ {eval∗(Φ)(db)} |= Ψ
or log ∪ {¬eval∗(Φ)(db)} |= Ψ)].

Now, control evalRps(Q, log0)(db, pot sec) is defined by

ansi =

{

mum, if censorRps(Φi, logi−1, db, pot sec)
eval∗(Φi)(db), otherwise

logi =

{

logi−1, if ansi = mum

logi−1 ∪ {ansi}, otherwise

In the case of refusal the appropriate precondition for applying the algorithm is
(db, policy) ∈ precond iff db model of log0.

We next review the definition of the lying censor and the resulting controlled
query evaluation procedure in the case of known potential secrets. The require-
ment is that the censor refuse the answer to a query if the correct answer together
with the current log imply the disjunction of all potential secrets:

censorLps(Φ, log, db, pot sec) = log ∪ {eval∗(Φ)(db)} |= pot sec disj

where pot sec disj =
∨

Ψ∈pot sec Ψ.

Now, control evalLps(Q, log0)(db, pot sec) is defined by

ansi =

{

¬eval∗(Φi)(db), if censorLps(Φi, logi−1, db, pot sec)

eval∗(Φi)(db), otherwise

logi = logi−1 ∪ {ansi}.

In the case of lying the appropriate precondition for applying the algorithm is
that for all Ψ ∈ pot sec, log0 6|= Ψ .

93

5.2 Combined Method for Known Potential Secrets

Biskup and Bonatti [6], realizing that both uniform controlled query evaluation
methods (Refusal and Lying) have disadvantages, introduced the combined lying
and refusal method for known potential secrets. In this method, when a query Φ
is posed, the database could refuse, lie or provide the correct answer. Refusal
occurs when the current log and the correct answer imply a potential secret and,
in addition, the current log and the false answer also imply a potential secret.
Lying occurs when the current log and the correct answer imply a potential secret
but the current log and the false answer do not. Finally, the correct answer
is provided in case the current log and the correct answer do not imply any
potential secrets.

Thus, the controlled query evaluation method by combining refusal and lying
for known potential secrets, control evalCps(Q, log0)(db, pot sec), with

control evalCps(Q, log0)(db, pot sec) = 〈(ans1, log1), . . . , (ansi, logi), . . .〉,

is defined by

ansi =

mum, if (∃Ψ1, Ψ2 ∈ pot sec)(logi−1 ∪ {eval∗(Φi)(db)} |= Ψ1

and logi−1 ∪ {¬eval∗(Φi)(db)} |= Ψ2)
¬eval∗(Φi)(db), if (∃Ψ1 ∈ pot sec)(logi−1 ∪ {eval∗(Φi)(db)} |= Ψ1)

and (6 ∃Ψ2 ∈ pot sec)(logi−1 ∪ {¬eval∗(Φi)(db)} |= Ψ2)
eval∗(Φi)(db), otherwise

logi =

{

logi−1, if ansi = mum

logi−1 ∪ {ansi}, otherwise
.

In the case of the combined method the appropriate precondition for applying
the algorithm is, for all Ψ ∈ pot sec, log0 6|= Ψ . In Theorem 1 of [6], it is shown
that the combined method is secure according to the general Definition 1.

5.3 Comparison Result

In Theorem 2 of [6], Biskup and Bonatti prove that the combined method is
“more cooperative” than any of the uniform methods for known potential secrets.
In Section 5 of [6], they also point out that the same holds for the case of known
secrecies. In this section, after revisiting their result, we see that the informal
notion of “more cooperative” is accurately captured by our formal notion of
“more available”, as detailed in Definition 4.

Theorem 1 (Biskup and Bonatti). Let M denote either refusal (R) or lying
(L) and log0, (db, pot sec) appropriate parameters. Then, for all query sequences
QM for uniform M, there exists a query sequence QC for the combined method,
such that:

1. control evalCps(Q
C , log0)(db, pot sec) delivers all the answers that are cor-

rect under control evalMps(Q
M , log0)(db, pot sec) and possibly more correct

answers.

94

2. QC is defined by a reordering that shifts correctly answered queries towards
the beginning of the query sequence.

Using the terminology introduced in the present paper, Theorem 1 may be
rephrased as follows:

Theorem 2. Let M denote either refusal (R) or lying (L) and log0, (db, pot sec)
appropriate parameters. Then, for all query sequences QM for uniform M, that
are surjective on Q, there exists a query sequence QC for the combined method,
also surjective on Q, such that control evalCps(Q

C , log0) is more available with

respect to pot sec than control evalMps(Q
M , log0)

Theorem 2 is a direct consequence of Theorem 1 and Definition 4.

6 Maximal Availability for Known Potential Secrets

Since, in Definition 4 of maximal availability for a controlled query evaluation,
its corresponding unordered query evaluation is compared with other unordered
query evaluations having the same enforcement policy, Theorem 2 does not have
any impact on maximality, since it is a comparison between controlled query
evaluations with different enforcement policies. In this section, we undertake the
task of showing that all three enforcement policies for known potential secrets
are maximally available. We also present a result connecting maximally available
unordered query evaluation with CQE. This result is related to the reordering
of query sequences that has been a recurring theme in the studies of controlled
query evaluation for various enforcement policies by Biskup and Bonatti (see,
e.g., Lemma 2 of [6]), as well as with the, so-called, order-induced secrecy pre-
serving reasoners studied in [18].

Theorem 3. Let M denote refusal (R), lying (L) or the combined (C) enforce-
ment method, log0, (db, pot sec) appropriate parameters and Q = 〈Φ1, Φ2, . . . ,
Φi, . . .〉 a query sequence that is surjective on Q. Then, control evalMps(Q, log0) is
maximally available with respect to pot sec.

Proof. Let unord evalMps(log0)(db, pot sec) be the unordered query evaluation

companion of control evalMps(Q, log0). Suppose, for the sake of obtaining a con-

tradiction, that control evalMps(Q, log0) is not maximally available with respect

to pot sec. Thus, there exists unord eval′Mps(log0)(db, pot sec) and db′, such that

(db′, pot sec) is admissible for both unordered query evaluations and such that
unord evalMps (log0)(db′, pot sec) < unord eval′Mps (log0)(db′, pot sec). This means
that there exists i ≥ 1, such that

unord evalMps(log0)(db′, pot sec)(Φi) <db′ unord eval′Mps(log0)(db′, pot sec)(Φi).

Consider the smallest such i. Then, we must have, for all j < i,

unord evalMps(log0)(db′, pot sec)(Φj) = unord eval′Mps(log0)(db′, pot sec)(Φj)

95

and unord eval′Mps(log0)(db′, pot sec)(Φi) <db′ eval∗(Φi)(db′). But, then, using

the definition of unord evalMps(log0)(db′, pot sec) together with the description

of control evalMps(Q, log0), we conclude that unord eval′Mps(log0) does not preserve

confidentiality, which is a contradiction. Thus, control evalMps(Q, log0) is maxi-
mally available.

Theorem 4. Let M denote refusal (R), lying (L) or the combined (C) enforcement
method and log0, (db, pot sec) appropriate parameters for a maximally available
unordered query evaluation unord evalMps(log0). Then, there exists a query se-
quence Q = 〈Φ1, Φ2, . . . , Φi, . . .〉, that is surjective on Q, such that the controlled
query evaluation control evalMps(Q, log0), with precondition precond, satisfies

1. (db, pot sec) ∈ precond and
2. control evalMps(Q, log0)(db, pot sec) = 〈(ans1, log1), . . . , (ansi, logi), . . .〉, with

ansi = unord evalMps(log0)(db, pot sec)(Φi), for all i ≥ 1.

Proof. We present the proof for M = L, i.e., for the uniform lying enforcement
policy. The proofs for the other two cases are similar.

Let unord evalLps(log0) be a maximally available unordered query evaluation,
(db, pot sec) appropriate parameters, Acc = {Γ1, Γ2, . . .} be the set of all accu-
rate answers, i.e., such that unord evalLps(log0)(db, pot sec)(Γi) = eval∗(Γi)(db),
for all i, and Alt = {∆1, ∆2, . . .} the set of all altered answers, i.e., such that
unord evalLps(log0)(db, pot sec)(∆i) = ¬eval∗(∆i)(db), for all i. To shorten nota-
tion, we write Γ ∗

i = eval∗(Γi)(db) and, similarly for ∆∗
i . We also set Acc∗ = {Γ ∗ :

Γ ∈ Acc} and similarly for Alt∗. We will exhibit a sequence Q = 〈Φ1, Φ2, . . .〉,
surjective on the set of all possible queries Q, such that the controlled query
evaluation control evalLps(Q, log0) satisfies the conditions of the statement.

The difficulty in constructing such a sequence lies in the fact that Acc may
be countably infinite. If not, i.e., if Acc = {Γ1, Γ2, . . . , Γn} is finite, then the
sequence Γ1, . . . , Γn, ∆1, ∆2, . . . accomplishes our goal. In the case of countably
infinite Acc, consider the sequence

Γ1, Γ2, Γ3, (1)

Since unord evalLps(log0) preserves confidentiality, we must have that log0 ∪
Acc∗ 6|= Ψ , for every potential secret Ψ . On the other hand, the maximal availabil-
ity of unord evalLps(log0)(db, pot sec) implies that, for every i = 1, 2, . . ., there
exists a potential secret Ψ , such that log0 ∪ Acc∗ ∪ {∆∗

i } |= Ψ . To place the
elements ∆1, ∆2, . . . in the List (1), we work by induction on the index i as
follows:

Since ∆1 is such that log0 ∪ Acc∗ ∪ {∆∗
1} |= Ψ1, for some potential secret

Ψ1, there exist finitely many Γi1
1

, Γi1
2

, . . . , Γi1
m1

∈ Acc, i11 < i12 < · · · < i1m1
,

such that log0 ∪ {Γ
∗

i1
1

, . . . , Γ ∗

i1
m1

} ∪ {∆∗
1} |= Ψ1. Let l = max{i : Γ ∗

i ∈ log0} and

n1 = max{l, i1m1
}. Insert ∆1 immediately after Γn1

in the List (1).
Suppose, next that ∆1, ∆2, . . . , ∆k−1 have all been placed in appropriate

positions in the List (1). We work to place ∆k. Since ∆k is such that log0 ∪
Acc∗ ∪ {∆∗

k} |= Ψk, for some potential secret Ψk, there exist Γik

1

, Γik

2

, . . . , Γik
m

k

∈

96

Acc, ik1 < ik2 < · · · < ikmk
, such that log0 ∪ {Γ ∗

ik

1

, . . . , Γ ∗

ik
m

k

} ∪ {∆∗

k} |= Ψk. Let

nk = max{l, i1m1
, . . . , ikmk

, nk−1 +1}. Insert ∆k immediately after Γnk
in the List

(1).
We will show by induction on the index i that, for all i = 1, 2, . . ., if Φi = Γj ,

then ansi = Γ ∗
j and, if Φi = ∆j , then ansi = ¬∆∗

j , where control evalLps(Q, log0)
(db, pot sec) = 〈(ans1, log1), . . . , (ansi, logi), . . .〉.

For the basis of the induction, let i = 1 and consider two cases:
– If Φ1 = Γ1, then, by preservation of confidentiality, for all Ψ ∈ pot sec, log0∪
{Γ ∗

1 } 6|= Ψ . Thus, by the algorithm for lying, ans1 = Γ ∗
1 = unord evalLps(log0)

(db, pot sec)(Γ1).
– If Φ1 = ∆1, then, by the construction, exists Ψ1 ∈ pot sec, ∆∗

1 |= Ψ1. Thus,
a fortiori, log0 ∪ {∆∗

1} |= Ψ1. Therefore, ans1 = ¬∆∗
1 = unord evalLps(log0)

(db, pot sec)(∆1).

Assume, now, that for all i = 1, . . . , k−1, we have that ansi = unord evalLps(log0)
(db, pot sec)(Φi). If Φk = Γj , for some j, then by preservation of confidentiality
and the induction hypothesis, for all Ψ ∈ pot sec, log0 ∪ {ans1, . . . , ansk−1} ∪
{unord evalLps(log0)(db, pot sec)(Γj)} 6|= Ψ . Thus, for all Ψ ∈ pot sec, logk−1 ∪

{Γ ∗
j } 6|= Ψ . Therefore, ansk = Γ ∗

j = unord evalLps(log0)(db, pot sec)(Γj). The
case where Φi = ∆j , for some j, may be handled similarly.

7 Summary
In this paper, we defined unordered query evaluation as a way to study the
relative availability of various controlled query evaluation enforcement methods.
We first compare availability of unordered query evaluation in a straightforward
way and, then, by associating an unordered query evaluation companion to each
given CQE method, we carry the applicability of this comparison framework
to CQE. We used a comparison result of Biskup and Bonatti [6] to illustrate
how our definition may be used to accommodate availability comparison results
considered in the literature.

We also theoretically connected maximally available unordered query eva-
luation methods with CQE. We showed that an unordered query evaluation is
maximally available only if, for every input instance, there exists an appropriate
ordering of all possible queries, such that the given unordered query evaluation
provides identical answers with a CQE that is based on the ordering.

In the results of the previous section, concerning maximal availability, we
focused on the policy method of known potential secrets. We believe, however,
that the same techniques should allow us to prove corresponding results for all
four combinations of policy methods and user awareness, i.e., unknown potential
secrets and both known and unknown secrecies, and for all enforcement policies
for which existing methods of controlled query evaluation are applicable.

References

1. Bao, J., Slutzki, G., and Honavar, V., Privacy-Preserving Reasoning on the Seman-
tic Web, 2007 IEEE/WIC/ACM International Conference on Web Intelligence, WI
2007, pp. 791-797

97

2. Biskup, J., For Unknown Secrecies Refusal is Better Than Lying, Data and Knowl-
edge Engineering, Vol. 33 (2000), pp. 1-23

3. Biskup, J., and Bonatti, P.A., Lying Versus Refusal for Known Potential Secrets,
Data and Knowledge Engineering, Vol. 38 (2001), pp. 199-222

4. Biskup, J., and Bonatti, P.A., Confidentiality Policies and their Enforcement for
Controlled Query Evaluation, Proceedings of the 7th European Symposium on Re-
search in Computer Security, ESORICS 2002, Lecture Notes in Computer Science,
Vol. 2502, pp. 39-54

5. Biskup, J., and Bonatti, P., Controlled Query Evaluation for Enforcing Confi-
dentiality in Complete Information Systems, International Journal of Information
Security, Vol. 3 (2004), pp. 14-27

6. Biskup, J., and Bonatti, P.A., Controlled Query Evaluation for Known Policies by
Combining Lying and Refusal, Annals of Mathematics and Artificial Intelligence,
Vol. 40 (2004), pp. 37-62

7. Biskup, J., Burgard, D.M., Weibert, T., and Wiese, L., Inference Control in Logic
Databases as a Constraint Satisfaction Problem, Proceedings of the 3rd Interna-
tional Conference on Information Systems Security, ICISS 2007, pp. 128-142

8. Biskup, J., and Weibert, T., Keeping Secrets in Incomplete Databases, Interna-
tional Journal of Information Security, Vol. 7 (2008), pp. 199-217

9. Bonatti, P.A., Kraus, S., and Subrahmanian, V.S., Foundations of Secure Deduc-
tive Databases, IEEE Transactions of Knowledge and Data Engineering, Vol. 7,
No. 3 (1995), pp. 406-422

10. Biskup, J., and Wiese, L., On Finding an Inference-Proof Complete Database for
Controlled Query Evaluation, Proceedings of the 20th Annual IFIP WG 11.3 Work-
ing Conference on Data and Applications Security, Data and Applications Security
XX (2006), pp. 30-43

11. Chang, L.W., and Moskowitz, I.S., A Study of Inference Problems in Distributed
Databases, Proceedings of the 16th Annual IFIP WG 11.3 Conference on Data and
Applications Security, Data and Applications Security XVI (2002), pp. 191-204

12. Farkas, C., and Jajodia, S., The Inference Problem: A Survey, ACM SIGKDD
Explorations Newsletter, Vol. 4, No. 2 (2002), pp. 6-11

13. Hale, J., and Shenoi, S., Analyzing FD Inference in Relational Databases, Data
and Knowledge Engineering, Vol. 18 (1996), pp. 167-183

14. Sicherman, G.L., de Jonge, W., and van de Riet, R.P., Answering Queries Without
Revealing Secrets, ACM Transactions on Database Systems, Vol. 8, No. 1 (1983),
pp. 41-59

15. Stoffel, K., and Studer, T., Provable Data Privacy, Database and Expert Systems
Applications, DEXA 2005, pp. 324-332

16. Stouppa, P., and Studer, T., A Formal Model of Data Privacy, 6th International
Andrei Ershov Memorial Conference, Perspectives of Systems Informatics, PSI
2006, pp. 400-408

17. Stouppa, P., and Studer, T., Data Privacy for ALC Knowledge Bases, Logical
Foundations of Computer Science, LFCS 2009, pp. 409-421

18. Voutsadakis, G., Slutzki, G., and Honavar, V., Secrecy Preserving Reasoning Over
Entailment Systems Theory and Applications, Technical Report, Department of
Computer Science, Iowa State University

19. Yang, X., and Li, C., Secure XML Publishing Without Information Leakage in
the Presence of Data Inference, Proceedings of the 30th Very Large Data Base
Conference, VLDB 2004, pp. 96-107

98

R
U

/C
S

/R
R

#127
B

E
R

TO
S

S
I&

C
H

R
IS

TIA
N

S
E

N
(E

D
S

.):
LO

G
IC

IN
D

ATA
B

A
S

E
S

(LID
2009)

1

RECENT RESEARCH REPORTS

#126 Thomas Vestskov Terney. The Combined Usage of Ontologies and Corpus
Statistics in Information Retrieval. PhD thesis, Roskilde, Denmark, August
2009.

#125 Jan Midtgaard and David Van Horn. Subcubic control flow analysis algo-
rithms. 32 pp. May 2009, Roskilde University, Roskilde, Denmark.

#124 Torben Braüner. Hybrid logic and its proof-theory. 318 pp. March 2009,
Roskilde University, Roskilde, Denmark.

#123 Magnus Nilsson. Arbejdet i hjemmeplejen: Et etnometodologisk studie
af IT-støttet samarbejde i den københavnske hjemmepleje. PhD thesis,
Roskilde, Denmark, August 2008.

#122 Jørgen Villadsen and Henning Christiansen, editors. Proceedings of the 5th
International Workshop on Constraints and Language Processing (CSLP
2008), Roskilde, Denmark, May 2008.

#121 Ben Schouten and Niels Christian Juul, editors. Proceedings of the
First European Workshop on Biometrics and Identity Management (BIOID
2008), Roskilde, Denmark, April 2008.

#120 Peter Danholt. Interacting Bodies: Posthuman Enactments of the Prob-
lem of Diabetes Relating Science, Technology and Society-studies, User-
Centered Design and Diabetes Practices. PhD thesis, Roskilde, Denmark,
February 2008.

#119 Alexandre Alapetite. On speech recognition during anaesthesia. PhD the-
sis, Roskilde, Denmark, November 2007.

#118 Paolo Bouquet, editor. CONTEXT’07 Doctoral Consortium Proceedings,
Roskilde, Denmark, October 2007.

#117 Kim S. Henriksen. A Logic Programming Based Approach to Applying Ab-
stract Interpretation to Embedded Software. PhD thesis, Roskilde, Den-
mark, October 2007.

#116 Marco Baroni, Alessandro Lenci, and Magnus Sahlgren, editors. Proceed-
ings of the 2007 Workshop on Contextual Information in Semantic Space
Models: Beyond Words and Documents, Roskilde, Denmark, August 2007.

#115 Paolo Bouquet, Jérôme Euzenat, Chiara Ghidini, Deborah L. McGuinness,
Valeria de Paiva, Luciano Serafini, Pavel Shvaiko, and Holger Wache, edi-
tors. Proceedings of the 2007 workshop on Contexts and Ontologies Rep-
resentation and Reasoning (C&O:RR-2007), Roskilde, Denmark, August
2007.

