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Abstract
As I have argued elsewhere, Fibonacci is an early exponent of a burgeoning
abbacus culture, more likely to flourish in his time in other areas around the
Mediterranean (including the Catalan-Provençal area) than in Italy. It is obvious,
however, that the Liber abbaci is much more than a normal abbacus book as we
know it from later Italy. Indeed, analysis of the appearances of the notions of
ratio and proportion in the book shows how these, not present in “proto-abbacus”
culture, are applied to abbacus material, in principle thus seeing abbacus
mathematics in the perspective of “magisterial” mathematics but without
changing it fundamentally. This conclusion can also be drawn regarding the
modest integration of ratio and proportion in algebra. The only exception is
chapter 15, section 1, whose main part explores the ancient theory of means
(geometric, harmonic, their sub-contraries, etc. – without Fibonacci knowing so),
showing how to find either the mean or one of the extremes from the other two
numbers.
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Preliminaries

Before taking up the substance of my topic, I shall make three preliminary
remarks: one on terminology, one on notation, and one on delimitation.

Terminology first. As his contemporaries, Fibonacci speaks of a ratio/λογος
(understood as a relation between two integers, not as a single number) as
proportio/proportione. He uses the same word where we would speak of a
proportion and the Greek mathematicians of αναλογια, that is, an affirmation
that two ratios are “the same” or “similar”. In the case of numbers being in
continued proportion (ειης αναλογον), he sometimes speak of continua proportione,
sometimes however he uses the word proportionalitas. An attempt to enforce a
modern terminology would either divide the field in a way which does not
correspond to the thought of our author, or it would force us to speak of
“numbers in continued ratio” – which certainly makes sense, but is not modern
terminology. It would also bow to the modern conceptual confusion, which uses
“ratio” both in the historically proper sense, about the relation between two
numbers, and about their quotient, a single number. I shall therefore translate
proportio as “proportion”, etc. – while still speaking in modern ways of ratio and
proportion outside direct and indirect quotations when the relation between two
numbers respectively the “similitude” between two such relations is meant; the
single-number “ratio” I shall refer to as the “quotient”.

Second, notation. When designating explicitly a proportion, our texts mostly
say that “the first number is to the second, as the third to the fourth”,1 or use
some equivalent expression. For typographical convenience, I shall use the
notation : , which should be read as representing the framea

b

c

d

corresponding to what is found regularly in the margin in the Liber abbaci (p.
170 and passim). The two notations – as well as the line diagram used both in

1 Thus in the Liber abbaci (Scritti di Leonardo Pisano matematico del secolo decimoterzo.
I. Il Liber abbaci, ed. Baldassare Boncompagni, Roma, Tipografia delle Scienze Matematiche
e Fisiche, 1857, here p. 170); all further references to the Liber abbaci refer to the pagination
of this edition.

Here as everywhere in the following, translations with no identified translator are
mine.
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the Liber abbaci (e.g., p. 395) and by Campanus2

are equally fit to serve the visualization and automation of the various operations
that can be performed on the proportion:3

e contrario: :b

a

d

c

permutata: :a

c

b

d

conjuncta: :a b

b

c d

d

disjuncta: :a–b

b

c–d

d

conversa: :a

a b

c

c d

eversa: :a

a–b

c

c–d

aequa: :a

b

a c

b d

and also of the equality of the products a d = b c (to which I shall refer in the
following as the “product rule”). The typographically convenient notation thus
involves no serious anachronism – a:b::c:d, while agreeing with the phrase “the
first to the second, as the third to the fourth”, corresponds less well to the
diagrams on which the medieval authors based their operational thinking. In
order to distinguish, I shall write fractions (including “ratios” understood as
quotients) as a/b . Ratios (not understood as quotients, and not constituents of
a proportion) I shall denote a:b, and numbers in continued proportion will stand
as a:b:c:….

Third, delimitation. Any applied arithmetic which goes beyond the simplest
accounting runs into problems of proportionality – say, of the type “for a [coins],
b [units], for c [coins], how much? In Near Eastern and Greek Antiquity, this
would normally be solved in an intuitively transparent way: For a [coins], b
[units], for 1 [coin] therefore b/a [units] , and for c therefore c b/a [units]. Some
Arabic reckoners4 would prefer the argument “by nisbah [“ratio”]”, for a [coins],
b [units], for c therefore c/a as much, that is, ( c/a ) b [units]. From India, however,

2 Campanus of Novara and Euclid’s Elements, ed. Hubert L. L. Busard. 2 vols. (Boethius,
51,1–2). Stuttgart, Franz Steiner, 2005; p. 161 and passim.

3 This way to present them is taken from the Campanus Elements (see note 2), p. 171f.

4 Thus Ibn Thabāt (Die Reichtümer der Rechner (Ġunyat al-Hussāb) von Ahmad b. _Tabāt (gest.
631/1234). Die Araber – Vorläufer der Rechenkunst, ed., trans. Ulrich Rebstock. (Beiträge
zur Sprach- und Kulturgeschichte des Orients, 32). Walldorf-Hessen, Verlag für
Orientkunde Dr. H. Vorndran; here p. 43–45), and al-Karajı̄ (Kâfî fîl Hisâb (Genügendes
über Arithmetik) des Abu Bekr Muhammed ben Alhusein Alkarkhi, ed., trad. Adolph
Hochheim. 3 vols. Halle, Louis Nebert, 1878; here II, p. 17].
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probably via the trade routes and possibly with ultimate roots in China, Arabic
merchants and after them theoretically inclined Arabic mathematicians from al-
Khwārizmı̄ onward adopted the rule of three, stating that c must yield (b c)/a.5

Indian practical reckoners appear to have used a formulation in the style
“multiply the thing [whose counterpart] you want to know by that which is not
similar [to it in kind] and divide by that which is similar”. This is not the main
formulation of the learned Sanskrit writers (Āryabhata, Brahmagupta, Mahāvı̄ra,
etc.), but the formulations of the latter two betray that they know it. Even in
the Arabic world, it appears to have been the formulation of merchants. The
theoretically trained Arabic mathematicians soon saw that the whole matter can
be based on the proportion theory of Elements VII – if only we forget about the
numbers being concrete and indeed being of two different kinds (for instance,
dinars and cloth), and not abstract. None the less, many of the Arabic
mathematicians betray familiarity with the traditional formulation, in spite of
its conflict with the Euclidean approach (which requires ratios to be between
quantities of the same kind, e.g., abstract numbers6).

In the European (that is, Italian and Ibero-Provençal) abbacus environment,
the rule also arrived in “non-Euclidean” interpretation (in Italy and perhaps in
Provence in the traditional “non-similar/similar” formulation, in Spain (as we
shall see) apparently in a different shape; even in the Christian world, however,
theoretically trained writers interacting with the abbacus environment, from
Fibonacci to Chuquet, made use of the Euclidean formulation. This, however,
I shall not discuss in any depth – not because it is not interesting but because
it is a separate topic, and treated at best together with other aspects of the
approach to the rule of three.

5 This, and the remains of the paragraph, builds on Jens Høyrup, “Further questions to
the historiography of Arabic (but not only Arabic) mathematics from the perspective of
Romance abbacus mathematics”. Contribution to the “9ième Colloque Maghrébin sur
l’Histoire des Mathématiques Arabes”, Tipaza, 12–13–14 mai 2007, p. 1–8. Until appearance
of the proceedings available at the address http://www.akira.ruc.dk/~jensh/
Work%20in%20progress/FurtherQuestions.pdf.

6 Of course, the Euclidean approach is saved if only we use the equivalent proportion
: . However, the sources never bother to perform this transformation.a

c

b

d
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Fibonacci’s Liber abbaci

I have argued on other occasions7 that Fibonacci is not the founding father
of abbacus culture but rather an early (towering) exponent of a culture which
already flourished in his time, if not in Italy (which seems unlikely) then in
Provence, Catalonia and the Maghreb and al-Andalus, perhaps even in Egypt,
Syria and Byzantium, and which was connected to a culture of commercial
arithmetic ranging at least as far as Iran and India; on the present occasion I shall
refer to this as the “proto-abbacus culture”.

That should not be taken to imply that the Liber abbaci is just an early abbacus
book. Fibonacci writes in a mathematically educated perspective about the kind of
mathematics thriving in the environment in question; but his scope is much
larger, encompassing not only what he encountered on business travels to Egypt,
Syria, Constantinople, Sicily and Provence (p. 1) but also topics which almost
certainly fell outside the horizon of the proto-abbacus culture.8 Much of his
treatment of proportions (if not all of it) falls in that category.

Touching on proportions

The first time numbers in proportion turn up in the Liber abbaci in the
explanation of the algorithm for the multiplication of multi-digit numbers (p.
15). Here it is pointed out that if three numbers are proportional, then the product
of the first and the third equals the product of the second by itself; and if four,
then the product of the first and the fourth equals that of the second and the
third; for these product rules, Fibonacci gives a generic reference to Euclid. They
are combined with the observation that the “degrees” or decimal levels form
an infinite continued proportion, which leads to the conclusion that multiplication
of the first degree by the third gives as much as that of the second degree by
itself, while the second by the third gives as much as the first by the fourth, etc.

This argument may have been devised by Fibonacci himself; I do not

7 See, for instance, Jens Høyrup, “Leonardo Fibonacci and Abbaco Culture: a Proposal to
Invert the Roles”. Revue d’Histoire des Mathématiques, XI (2005), p. 23–56.

8 Though regarding the Liber abbaci as the archetype for abbacus books, Margherita
Bartolozi & Raffaella Franci (“La teoria delle proporzioni nella matematica dell’abaco
da Leonardo Pisano a Luca Pacioli”, Bollettino di Storia delle Scienze Matematiche, X (1990),
p. 3–28, here p. 5) align it more adequately with fifteenth-century encyclopediae like
Benedetto da Firenze’s Praticha d’arismetricha and the anonymous MS Florence, Palatino
573.
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remember having seen it in any earlier source, not even in hints.9 Nice though
it is, it also seems to have been a historical dead end, not to be repeated by any
later writer.

A next passing reference (p. 82) to (four) numbers in proportion and to the
equality of products turns up in the explanation of the decomposition of a
fraction – once more with the generic reference to Euclid. This is followed closely
by the presentation of the rule of three in simple and composite shape, which
I shall not treat in depth.10 I shall merely observe
– that Fibonacci does not use what was to become the standard formulation

of the abbacus school (the one which refers to the non-similar and the
similar) – his formulations (pp. 83f) have a certain family likeness with what
can be found in Arabic authors (al-Khwārizmı̄, al-Karajı̄, etc.), but their actual
shape is likely to be Fibonacci’s own;

– that Fibonacci employs the rectangular frame mentioned above, leaving the
position for the unknown number empty and indicating the cross-
multiplication by a diagonal;

– that the treatment of the non-composite rule is argued from the product rule
“which has been proved in the arithmetical [books of the Elements] and in
the geometry”;

– that the composite rule (used in barter problems) is presented with a
reference to figura cata, scilicet sectoris [Menelaos’ theorem] “which Ptolemy
teaches in the Almagest”;

– that the name proportio proportionum is introduced (p. 131) for multiply
composite ratios – wholly unconnected, of course, to Oresme’s later notion
of proportio proportionum.

Whereas barter problems employ the rule of three “sequentially”, partnership
problems use it “in parallel”; in this case (pp. 114f, 135–143), however, Fibonacci
does not refer explicitly to “proportions” or proportionality – nor indeed to the
rule of three itself, but since in general he has no name for that rule this is not
astonishing. However, in connection with a problem about the alloying of three

9 If Fibonacci’s own invention, it could have been inspired by analogous reasoning about
the sequence of algebraic powers. The parallel between the powers of the algebraic thing
and the powers of ten was pointed out by al-Karajı̄ [Franz Woepcke, Extrait du Fakhrî,
traité d’algèbre par Aboû Bekr Mohammed ben Alhaçan Alkarkhî; précédé d’un mémoire
sur l’algèbre indéterminé chez les Arabes. Paris, L’Imprimerie Impériale, 1853, p. 48]; it may
have been common lore among Arabic writers 200 years later.

10 See, however, Bartolozzi & Franci, op. cit. (note 8), p. 5–7.
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monies (pp. 149f), the first and the second in ratio 2:3, the second and the third
in ratio 4:5, he speaks of “proportional alloying” and teaches how to harmonize
these as easily composable ratios by means of multiplication. The idea of
“proportional alloying” also turns up repeatedly in the following pages (but with
even less theoretical effect).

Closer attention to ratios and proportions in “abbacus” context

Proper interest in our topic only returns in Chapter 12, Part 2 (pp. 169–173).
It starts by explaining equal, major and minor ratios, and gives the examples
3:3, 8:4, 9:3, 16:5, 4:8, 3:9 and 5:16 – providing them with names which are not
in the Boethian tradition but come close to the “denomination” (although this
word does not occur). For instance, 16:5 is a “triple proportion and a fifth”. It
goes on with the problem of finding the number to which 6 has the same
“proportion” as 3 to 5, giving first the numerical solution (5 6)/3 and saying
then that this question is stated “in our vernacular” (ex usu nostri vulgaris11)
in the phrase “if 3 were 5, what would then 6 be?”. Similarly, it asks for the
number to which 11 has the same ratio as 5 to 9, and gives it the vernacular
formulation “if 5 were 9, what would 11 be?”.

This formulation is remarkable.12 Only one Italian abbacus treatise I know
of identifies the rule of three by means of the same phrase, namely the Columbia
Algorism13 – also untypical in other respects, almost certainly dated no later
than 129014 and thereby probably the earliest extant abbacus text (though known
only from a fourteenth-century copy). Admittedly, counterfactual questions –

11 A complete survey of the references to modus vulgaris and its cognates in the Liber abbaci
shows that the genuine meaning is not the generic spoken vernacular but with one
exception the simple ways of practical reckoners (the exception (p. 111) is the information
that an alloy of silver and tin is called “false silver vulgariter”). Simple, stepwise calculation
is meant in four places (pp. 115, 127, 204, 364). In the last place, the modus vulgaris is
confronted explicitly with how one procedes magistraliter.

12 For full documentation, see Jens Høyrup, Jacopo da Firenze’s Tractatus Algorismi and Early
Italian Abbacus Culture. (Science Networks. Historical Studies, 34). Basel etc., Birkhäuser,
2007, p. 64–67.

13 Ein italienisches Rechenbuch aus dem 14. Jahrhundert (Columbia X 511 A13), ed. Kurt Vogel.
(Veröffentlichungen des Deutschen Museums für die Geschichte der Wissenschaften und
der Technik. Reihe C, Quellentexte und Übersetzungen, Nr. 33). München, Deutsches
Museum, 1977.

14 See Høyrup, Jacopo da Firenze’s Tractatus Algorismi ... (above, note 12), p. 31 n. 70.
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and even “counterfactual calculations” in the style “if 7 were the half of 12, what
would the half of 10 be?” (p. 10) – are not absent from the Italian abbacus record,
but they invariably turn up long after the rule of three is explained, or as
secondary examples (the primary examples confronting either different currencies
or goods and their monetary value). In all Ibero-Provençal treatises from before
1500 which I have inspected,15 on the other hand, the rule of three is introduced
first by counterfactual or abstract-number questions, “If 3 were 4, what would
5 be?” or “if 4 1/2 are worth 7 2/3 , what are 13 3/4 worth?”. The Provençal specimens
also know the formulation in terms of the non-similar and the similar, and so
does Santcliment’s Catalan Summa.16 Besides that, however, Santcliment informs
us that this is spoken of “in our vernacular” (en nostre vulgar) by the phrase “if
so much is worth so much, how much is so much worth” (si tant val tant: que
valra tant). The same phrase (sy tanto faze tanto, ¿qué sería tanto?) is also used in
the Castilian Libro de arismética que es dicho alguarismo.17 Wherever Fibonacci
encountered the vernacular tradition he refers to, it left no appreciable traces

15 In chronological order
– the Castilian Libro de arismética que es dicho alguarismo (in El arte del alguarismo. Un

libro castellano de aritmética comercial y de ensayo de moneda del siglo XIV. (Ms.
46 de la Real Colegiato de San Isidoro de León, ed. Betsabé Caunedo del Potro &
Ricardo Córdoba de la Llave. Salamanca, Junta de Castilla y León, Consejeria de
Educación y Cultura, 2000);

– the “Pamiers Algorism” (partial ed. in Jacques Sesiano, “Une arithmétique médiévale
en langue provençale”. Centaurus XXVII (1984), p. 26–75).

– the mid–fifteenth-century Franco-Provençal Traicté de la praticque d’algorisme (I used
the transcription in Stéphane Lamassé’s unpublished dissertation, for access to which
I am grateful).

– Barthélemy de Romans’ Provençal Compendy de la praticque des nombres (Une
arithmétique commerciale du XVe siècle. Le Compendy de la praticque des nombres de
Barthélemy de Romans, ed. Maryvonne Spiesser. (De Diversis artibus, 70) Turnhout,
Brepols, 2003).

– Francesc Santcliment’s Summa de l’art d’aritmètica (ed. Antoni Malet. Vic, Eumo
Editorial, 1998);

– Francés Pellos’s Compendion de l’abaco (ed. Robert Lafont & Guy Tournerie.
Montpellier, Édition de la Revue des Langues Romanes, 1967).

I also looked at Chuquet’s Triparty en la science des nombres (ed. Aristide Marre. Bullettino
di Bibliografia e di Storia delle Scienze Matematiche e Fisiche XIII (1880), p. 593–659, 693–814)
which is not strictly Provençal but integrated in and thus a lateral witness of the Provencal
tradition.

16 Op. cit. (note 15), p. 163.

17 Caunedo del Potro & Córdoba de la Llave, op. cit. (note 15), p. 147].
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in Italy, but many in the Ibero-Provençal orbit, most clearly in its Iberian section.
Next, Fibonacci presents the counterfactual calculation that was just quoted

(“if 7 were the half of 12, what would the half of 10 be?”), and another
counterfactual simple question. He goes on with procedures for finding four
and six integers in proportion if the first two of them are given; shows how to
divide 10 into four unequal parts in proportion – namely by scaling an arbitrary
proportion : by the factor 10/(a+b+c+d) ; explains how to construct a continueda

b

c

d
proportion with an arbitrary number of terms (explaining the appurtenant
product rules); and finally demonstrates how to find two or three numbers so
that 1/p n1 = 1/q n2 (and, in the case of three numbers, 1/r n2 = 1/s n3) – in a different
formulation, not used by Fibonacci but common in later Italian abbacus algebra,

: (and : ).
n1

n2

p

q

n2

n3

r

s
On the whole, what Fibonacci does in this chapter is thus to connect

procedures and problem types belonging to the “vernacular” proto-abbacus
tradition(s) he had encountered with the notion of “proportions”. The theoretical
field itself is not explored in any way.

Chapter 15 part 1: exploring the theory of means

Theoretical exploration of a kind comes in Chapter 15, Part 1 (pp. 387–397),
claims to treat of “the proportions of three and four quantities, to which the
solution of many questions belonging to geometry are reduced” (p. 387). Actually
it deals with problems about numbers in proportion, and (as we shall see) its
results are not used in the following “geometry”-section when they would be
pertinent. These numbers are spoken of as “the first/second/third/fourth
number” (or, in the case of three numbers, often “minor/middle/major”). In
most cases, they are represented by letter-carrying line segments drawn in the
margin – for brevity, since we are not going to follow the arguments in detail,
we may designate them P, Q, R and (when needed) S. At first proportions
involving three numbers are presented, afterwards (much fewer) questions
involving four numbers are dealt with. By means of conjunction, disjunction,
permutation etc., the given proportion is transformed in such a way that the
numbers can be found from the product rules by means of addition or subtraction
or, more often, Elements II.5–6 (II.6 being sometimes preferred even in cases where
II.5 would seem the obvious choice). Strikingly, Fibonacci never refers to Euclid
here, which he is otherwise fond of doing.18 In the appendix I give a complete

18 Menso Folkerts, The Development of Mathematics in Medieval Europe: The Arabs, Euclid,
Regiomontanus. (Variorum Collected Studies Series, CS811). Aldershot, Ashgate, 2006; article
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list, indicating for each case the initial transformations and the strategy used
to complete the solution.

As stated, Fibonacci starts by considering questions involving three numbers.
In the questions (1)–(3), these are in continued proportion, P:Q:R. One of the
numbers is given together with the sum of the other two. The naming of
segments presupposes the alphabetic order a, b, c, ….

The sequence (4)–(38) still treats of three numbers, but now differences
between the numbers are among the given magnitudes. The alphabetic order
underlying naming changes to a, b, g, d, ….

(39)–(50) consider four numbers in proportion, : . The underlyingP

Q

R

S
alphabetic order is still a, b, g, d, ... . At first, the e contrario and permutata
transformations are set out, and it is explained how any one of the numbers can
be found from the three others via the product rule. Then follow problems where
two of the numbers are given together with the sum of ((40)–(45)) respectively
the difference between ((46)–(49)) the two others; finally, in (50), two numbers
and the sum of the squares of the remaining two is given.

The most interesting group is (4)–(38). The change of alphabetic sequence
seems to imply that this sequence as well as the one which follows build on (or
copy from) a different source, Arabic or possibly Greek. However, since the letter
c turns up in the manipulations leading to the solution in (4)–(5); since these
two and the observation (6) but none of the following ones designate one of the
segments by a single letter; since the continued proportion is treated again in
(27)–(29); and since finally (7) is preceded by the heading modus alius proportionis
inter tres numeros, (4)–(5) may have been inserted by Fibonacci in continuation
of the topic of (1)–(3) but in emulation of the sequence which follows. The
borrowed sequence should thus presumably be restricted to (7)–(38).

All of these except (26) (on which imminently) and the observations (19) and
(33) deal with the 10 non-arithmetical means between two numbers discussed
in ancient Greek mathematics.19 More precisely, they show how to find the
various means (Q) if the extremes P and R are given, or any of the extremes if
the other extreme and a mean are given. The following scheme relates Fibonacci’s
problems with Pappos’s and Nicomachos’s presentations and numbering of

IX.

19 Cf. Thomas L. Heath, A History of Greek Mathematics. 2 vols. Oxford, The Clarendon
Press, 1921; here vol. II, p. 85–88.
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these:20

Pappos Nicomachos Liber abbaci

: (arithmet.)
R–Q

Q–P

R

R
P1 N1

: or :
R–Q

Q–P

R

Q
R–Q

Q–P

Q

P
P2 N2 27–29

:R–Q

Q–P

R

P
P3 N3 7–9

:R–Q

Q–P

P

R
P4 N4 (but inverted) 10–12 (inverted)

:R–Q

Q–P

P

Q
P5 N5 (but inverted) 34–36 (inverted)

:R–Q

Q–P

Q

R
P6 N6 (but inverted) 20–22 (inverted)

:R–P

Q–P

R

P
absent N7 16–18

:R–P

R–Q

R

P
P9 N8 13–15

:R–P

Q–P

Q

P
P10 N9 30–32

:R–P

R–Q

Q

P
P7 N10 37–38

:R–P

R–Q

R

Q
P8 absent 23–25

As we see, Fibonacci agrees with Nicomachos and Boethius and not with Pappos
in the cases 4–6, having : instead of : , etc. However, it is not onlyR

P

Q–P

R–Q

R–Q

Q–P

P

R
the change of alphabetic order that seems to rule out that Fibonacci himself has
produced a piece of theory inspired by Boethius. Firstly, he deals with the case
P8 which is absent from Nicomachos’s list, and his order is wholly different from
both Greek authors as soon as we get beyond P4=N4, the subcontrary to the
harmonic mean. Secondly, where these speak of R–P directly as the difference
between the extremes, Fibonacci identifies it repeatedly as the sum of the first

20 Pappi Alexandrini Collectionis quae supersunt, ed. Friedrich Hultsch, 3 vols. Berlin,
Weidmann, 1876, 1877, 1878, vol. I, p. 70–73, 84–87; Nicomachi Geraseni Pythagorei
Introductionis arithmeticae libri II, ed. Richard Hoche. Leipzig, Teubner, 1886, p. 124–144].

Since Boethius (De institutione arithmetica libri duo. De institutiune musica libri quinque.
Accedit Geometria quae fertur Boetii, ed. Gottfried Friedlein. Leipzig, Teubner, 1867, p.
140–169) agrees exactly with Nicomachos in all relevant respects, there is no reason to
insert his translation in the table.
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and the second difference. Thirdly, Fibonacci does not seem to have recognized
the link to the ancient theory of medietates (which he is likely to have known
from Boethius), nor to have seen that (27)–(29) deals with the geometric
proportion which is already treated in (4)–(5) (even though he reduces (4) to
(28) and ponts out the inverse equality in (19). All of this confirms that Fibonacci
uses an Arabic (or possibly Greek) source which was ultimately inspired by (e.g.)
Nicomachos (who was well known among Arabic mathematicians) but which
had gone through a thorough refashioning (involving insertion of missing cases,
P8 as well as Fibonacci’s (26) and omission of the initial arithmetical mean – and,
if Nicomachos is really the inspiration, by transforming the list of definitions
into a sequence of problems with solutions).21

One may of course ask whether this seeming refashioning is not evidence
that the link to the theory of means is spurious and the coincidence accidental.
This cannot be excluded. However, the continual supposition that P<Q<R and
the fact that anybody in the Greek or Arabic world who produced Fibonacci’s
model can be assumed to have known the theory of means suggests that this
theory was indeed the inspiration.

In (39)–(50), single-letter naming og segments and the reappearance of the
letter c in the manipulations suggest that this sequence may come from
Fibonacci’s own pen, or (less likely, I would say) from a different source.

“Questions concerning geometry”

Chapter 15, Part 2 is claimed to deal with “questions concerning geometry”.
Actually, a number of its problems have nothing to do with geometry, apart from
using line diagrams for their solution; several of these – all dealing with
composite gain – involve proportions.

The first of them (p. 399) is very simple. Somebody goes to one place of trade
with 100 £ and earns, and afterwards earns proportionally in another place, and
then has a total of 200 £. A continued proportion (represented by lettered line

21 Our medieval author is not the only one to have noticed its absence. Heath (op. cit. note
19, vol. II, p. 87) also sees it, and then observes that this mean is “illusory” since it only
exists if the extremes coincide; for Fibonacci and his source, who have given up speaking
of means, the problem is fully valid, and to be treated.

Theon of Smyrna (Exposition des connaissances mathématiques utiles pour la lecture de
Platon, ed., trans. Jean Dupuis. Paris, Hachette, 1892, p. 175) also arrives at twelve means
without specifying them completely; but he arrives at this number by adding to the 6
basic ones their subcontraries, overlooking that the arithmetical mean is its own
subcontrary.
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segments) shows the possession after the first travel to be √(100 200) ≈ £ 141,
s. 8, d. 5 1/8 .

The next case (p. 399) is somewhat more tricky. The initial capital is still 100
£, but after the first travel a partner invests 100 £ in the enterprise, and after the
second travel the total amounts to 299 £. This gives the proportion (represented
by lines) : . The product rule and Elements II.6 (still not identified) lead100

Q

Q 100

299
to the solution Q = 130 £. Interchange of left and right would reduce this to case
(49) above, but Fibonacci does not establish the link.

Then follows (pp. 399f) an example with three travels (beginning with 100
£ and ending with 200 £) and no extra investments, which leads to a continued
proportion with four terms and thus, with reference to Euclid (namely Elements
VII.12), a solution expressible in cube roots. This gives rise to a digression
discussing numbers allowing an exact solution (24 and 81) and the notions of
duplicate and triplicate proportion. From here Fibonacci goes on to the case of
four travels, involving five numbers in continued proportion and a quadruplicate
proportion; and to the concepts of quintuple and sextuple proportion. These are
given the names “cube of squares (or square of cubes)” and “cube of cubes”;
as can be seen from numerical examples, however, Fibonacci is not deceived
by these names, ultimately inspired by Arabic algebraic terminology.

A final problem about composite gain (p. 401) deals with two travels with
initial capital P, final total R and intermediate possession Q = 80 £, with : .P

R

52

92

Fibonacci calculates 5 9 = 45 and claims without explanation that : , : .45

80

25

P

45

80

81

R
The trick is of course that : , while : ; a scaling with the factor 45/80

25

45

45

81

P

80

80

R
conserves the ratio between the extreme terms and adjusts the value of the
middle term. Finally, Fibonacci explains it to be an equivalent problem to find
two numbers p and q (namely, p = √P, q = √Q) so that 1/5 p = 1/9 q, p q = 80.22

This is solved via a single false position, p’ = 5, q’ = 9, and subsequent scaling
by the factor √ 80/5 9 .

The notion of “proportion” or proportionality turns up in two further places
in this “geometric” section. In none of them, anything profound is meant.

First, a rule is given (p. 401) for producing “two integer roots whose squares
together make the square of a number” – that is, for finding Pythagorean triples
(triangles are not spoken of). The solution (that of Elements X, 29, lemma 1) given
is to choose two square numbers or numbers having the “proportion” of squares
(say, p2 and q2), both even or both odd. The solution given is p q, (q2–p2)/2 – the
third member of the triple being (q2+p2)/2. This is proved by means of Elements

22 We recognize the structure 1/p n1 = 1/q n2, dealt with already in Chapter 12, Part 2.
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II.5 (unidentified).
Second, in the last problem of the section (pp. 405f), three numbers (say, a,

b and c) are asked for, so that 1/2 a = 1/3 b, 1/4 b = 1/5 c, abc = a+b+c. Once again, this
is solved by a single false position, a’ = 8, b’ = 12, c’ = 15, with consecutive
proportional scaling. Similarly to what he did in the last travel problem, Fibonacci
goes on to discuss what to do when there are four, five and six numbers, using
once again the notions of double, triple, quadruple and quintuple proportion.23

“Proportions” and algebra

The third and final (and most famous) part of Chapter 15 (pp. 406–459) deals
with “certain problems according to the method of algebra and almuchabala,
that is, by proportion and restoration”.24 This identification of algebra with
“proportion” and almuchabala with “restoration” appears to be Fibonacci’s own
invention.

Concerning “restoration” we may observe that Fibonacci knows the term
from Gherardo of Cremona’s translation of al-Khwārizmı̄ (with which he was
familiar, as shown by Miura Nobuo25) and also uses it himself quite often about
the cancellation of a subtractive term by addition to both sides of an equation26

(alternatively he employs a mere “add”); but Gherardo will not have helped him

23 Most remarkable in this problem is presumably the use of tetragonus in the sense of
a numerical square: everywhere else in the work this is spoken of as quadratus, while
tetragonus invariably refers to a geometric square (often, (pp. 175f, 368, 408f, 421, 426f,
453)) or cube (once, (p. 403)). It is difficult not to believe Fibonacci to have used a source
written in Greek without bothering to adjust its style.

24 [...] pars tertia de solutione quarumdam questionum secundum modum algebre et almuchabale,
scilicet ad proportionem et restaurationem.

25 MIURA Nobuo, “The Algebra in the Liber abaci of Leonardo Pisano”. Historia Scientiarum
XXI (1981), p. 57–65, here p. 60.

26 The “equation” as a mathematical object is of course our concept and thus strictly
speaking an anachronism. Fibonacci only has the action of equating – the isolated
appearance of equatio (p. 407) is to be understood as a corresponding verbal noun, pace
Barnabas Hughes (Fibonacci’ De practica geometrie, New York, Springer, 2008, p. xxix, 361),
who is seduced by Boncompagni’s mistaken punctuation (reddigi ad equationem. Vnius
(sic) census per diuisionem [...] should be simply reddigi ad equationem unius census per
diuisionem [...]).

- 13 -



discover that it translates al-jabr.27 On the other hand, the term used by Gherardo
to translate al-muqābalah and the corresponding verb qabila – that is, oppositio/oppo-
nere – only occurs thrice in Fibonacci’s algebra chapter (p. 429, 436, 457), every
time in the sense of confronting the two sides of an equation (in all probability
the original function of the term, but not Gherardo’s normal interpretation28 –
and thus perhaps a coincidence).

This explains that there was space for Fibonacci’s mistaken guess – he had
two slots for only one technical operation. It does not explain why he used the
other slot for “proportion”, but at least this choice suggests him to have seen
proportions as an important tool in the field. Why?

One hypothesis can be rejected straightaway. It has nothing to do with the
proportional reduction of all coefficients when an equation is normalized. For
this, Fibonacci uses redigere (as quoted in note 26), reintegrare (p. 420), or just
normalizes without naming the operation; neither “proportion” nor
“proportional” ever occurs in this context.29

Instead, we may observe that Fibonacci sometimes inserts pieces of reasoning
based on proportion theory within algebraic or other calculations, and sometimes
solves problems by means of proportion theory instead of algebra.

A relatively simple example of the first type is found in the solution of the
problem, to divide 60 denarii first among a number (say, r) of men and then

27 That Fibonacci does not discover on his own should downplay Fibonacci’s Arabic skills,
pace Barnabas Hughes, Fibonacci’ De practica geometrie (above, note 26), p. xix].

28 There is one exception – “Gerard of Cremona’s Translation of al-Khwārizmı̄’s Al-Jabr:
A Critical Edition”, ed. Barnabas B. Hughes. Mediaeval Studies, XLVIII (1986), p. 211–263,
here p. 255.

29 Also to be rejected as it stands is Barnabas Hughes suggestion (Barnabas B. Hughes,
“Fibonacci, Teacher of Algebra. An Analysis of Chapter 15.3 of Liber Abbaci”. Mediaeval
Studies LXVI (2004), p. 313–361, here p. 324 n. 43] that Fibonacci understood “proportio
as a kind of operation” because “the two verbs proportionari and equari [...] are
synonymous” in the Latin tanslation of Abū Kāmil’s algebra. Hughes overlooks that the
verb equari is used as an editorial explanation by Jacques Sesiano (“La version latine
médiévale de l’Algèbre d’Abū Kāmil”, ed. Jacques Sesiano in M. Folkerts & J. P. Hogendijk
(eds), Vestigia Mathematica. Studies in Medieval and Early Modern Mathematics in Honour
of H. L. L. Busard. Amsterdam & Atlanta, Rodopi, 1003, p. 315–452, here p. 325). What
is relevant is that the fourteenth-century translator uses the verb proportionari is the sense
of “giving/having comparable size” a single time, in agreement with possible Italian usage
(of proporzionare) of the late Middle Ages. It is not totally excluded – though quite
improbable, given that there are no other traces of this meaning in Fibonacci’s text – that
Fibonacci did so too.
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among r+2 men, by which the share of each man decreases by 2 1/2 denarii. Al-
Khwārizmı̄30 solves an analogous problem via (implicit) subtraction of fractions
containing algebraic expressions in the denominator; Abū Kāmil31 makes use
of subtraction of areas within a geometric diagram; Fibonacci (p. 413) replaces
this “geometric arithmetic” by operations on a proportion.

A more advanced instance of the first type deals with the gains of a complex
partnership: Somebody invests 12 £, and has a certain gain after 3 months. Then
somebody else invests 11 £, and after another 12 months with gain at the same
monthly rate, the total gain for the two is 9 £. This is expressed in line diagrams
and treated inter alia by operations on proportions, which in the end allow the
establishment of an algebraic equation.

A simple instance of the second type is an alternative solution to the problem
to find two numbers with difference 6 and quotient 1/3 . The primary solution
goes via algebra: the smaller number is posited as a thing, the larger is thus a
thing plus 6, etc. Alternatively, the larger is a segment ab, the smaller the partial
segment ac, whence bc = 6, : , and disjunctim : , etc. For somebody asab

ac

3

1

bc

ac

2

1
familiar with proportion techniques as Fibonacci, this may indeed have been
as easy as the primary solution, and for those not yet familiar with algebra it
may have been easier.

Another alternative (pp. 423f), this time to an algebraic method which is
mentioned but not presented, asks for a number which, when 1/3 of it and 6 are
removed and the remainder multiplied by itself, yields twice the original
number – in symbols,

(x– 1/3 x–6)2 = 2x .
In a line diagram, Fibonacci transforms this into a proportion which in symbols
becomes

.

2

3
x

x– 1

3
x–6

x– 1

3
x–6

3

30 “Gerard of Cremona’s Translation ...” (above, note 28), p. 255; Al-Khwārizmı̄, Le
Commencement de l’algèbre, ed., trans. Roshdi Rashed. (Collections Sciences dans l’histoire).
Paris, Blanchard, 2007, p. 190–193.

31 The Algebra of Abū Kāmil, Kitāb fı̄ al-jābr (sic) wa’l-muqābala, in a Commentary by
Mordechai Finzi. Hebrew Text, Translation, and Commentary with Special Reference to
the Arabic Text, ed. Martin Levey. Madison etc, University of Wisconsin Press, 1966, p.
106; Die Algebra, Kitab al-Gabr wal-muqabala des Aby Kamil Soga ibn Aslam, ed., trans.
Sami Chalhoub. (Quellen und Studien über die Geschichte der Arabischen Mathematik,
7). Aleppo, University of Aleppo, Institute for the History of Arabic Science, 2004, p. 76–78,
197; “La version latine médiévale de l’Algèbre d’Abū Kāmil” (above, note 29), p. 370f .
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Disjunctim, this allows him to apply Elements II.6 (unidentified once again). This
time, one should have understood very little of the algebra that precedes in order
to prefer the alternative. If we observe that the underlying alphabetic order is
a, b, g, d (which it rarely is in this section) and that the problem belongs to a
family which was widespread in the “supra-utilitarian” stratum of proto-abbacus
arithmetic inside as well as outside algebra32 we may speculate whether
Fibonacci found it in a source written in Greek and presented it for the sake of
completeness (which would correspond to a general practice of his).

All in all, we may conclude that “proportions” had nothing to do with algebra
as Fibonacci encountered it. He writes, however, as if he thought they should
have. He certainly has no persuasion that existing algebra should be illegitimate
because it was Arabic, nor any consistent program to replace it with something
legitimately belonging within the realm of Greek mathematics33 – but his global
view of mathematics, coloured by his understanding of the Elements, and his
possession of a level that enabled him to merge different approaches in a not
fully eclectic manner, still made him go part of the way taken eventually with
greater resolve by some Renaissance writers on algebra.

This conclusion holds beyond Fibonacci’s treatment of algebra. As from
algebra, the language of proportions was absent from (proto-)abbacus
mathematics in general. However, Fibonacci, when writing his monumental book
exactly about abbacus (mathematics), implied by using it occasionally that it
should have a place – not replacing anything but bringing to perfection. In a non-
mathematical analogia and with hindsight we notice that “vulgar” abbacus
mathematics corresponds to nature in St Thomas’ famous dictum,34 and
proportions (and thereby “magisterial”, Greek-style mathematics) to Grace.
Alternatively, since even St Thomas expresses himself in a veiled analogia,35

32 See Høyrup, Jacopo da Firenze’s Tractatus Algorismi ... (above, note 12), p. 131–133.

33 That is, nothing like the ideal which shines through in Jordanus’s De numeris datis and
to which Regiomontanus, Viète and others paid lip service through references to
Diophantos and analysis – see Jens Høyrup, “A New Art in Ancient Clothes. Itineraries
Chosen between Scholasticism and Baroque in Order to Make Algebra Appear Legitimate,
and Their Impact on the Substance of the Discipline”. Physis, n.s., XXXV (1998), p. 11–50.

34 “Grace does not abolish nature but brings it to perfection” (Summa theologiae I, question
1, article 1, ad 2). http://www.corpusthomisticum.org/ (accessed 29.1.2006).

35 Matt. 5:17, “Think not that I am come to destroy the law, or the prophets: I am not come
to destroy, but to fulfil”

- 16 -



abbacus mathematics corresponds to (Old Testament) Law and the Prophets,
and magisterial mathematics to the Gospel – namely, once again with hindsight,
to the gospel which late Renaissance mathematicians set out to implement.
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Appendix: The problems of chapter 15 part 1

In most cases, the numbers entering the proportions are represented by letter-
carrying line segments drawn in the margin – for brevity, since I do not follow
the arguments in detail, I designate them P, Q, R and (when needed) S. For each
section I indicate the initial transformations and the strategy used to complete
the solution; I also indicate in superscript the page number for each page shift
in the Boncompagni edition. The numbering of sections is mine; Fibonacci’s
headings are indicated as ---heading---, divisions ------ to simple paragraph
divisions in the Boncompagni edition.

(1)–(3) deal with three numbers in continued proportion, P:Q:R, of which one and the
sum of the other two are given. The naming of segments presupposes the alphabetic order
a, b, c, …:

---Incipit pars prima---
(1)(387) P+Q = 10, R = 9. : , whence Elements II.6 can be applied toP Q

Q

Q R

R
Q (Q+9) = 90.

(2) P = 4, Q+R = 15. Analogous.
(3) Q = 6, P+R = 13. The product rule gives P R = 36, which is transformed

so as to permit use of Elements II.6 (direct use of II.5 seems obvious).
------

(4)–(38) still treat of three numbers, but now differences between the numbers are among
the given magnitudes. Now the alphabetic order underlying naming is a, b, g, d, ….:

(4)(388) P:Q:R, Q–P = 2, R = 9. Disjunctim : . Solved by means of ElementsR

Q

R–Q

Q–P
II.5.

(5) P:Q:R, R–P = 5, Q = 6. The product rule gives P R = 36, which allows
use of Elements II.6.

(6) A passage explaining that : entails that the squares of the numbersa

b

c

d
are also in proportion – a proportion which can then be transformed
conjunctim, e converso etc. Further, that the same holds for the cubes. This
is an aside, no consequence of what precedes nor a preparation for what
follows immediately; when it is eventually used in (50) there is no
backward reference. Fibonacci, though knowing his Euclid, is not
particularly interested in corollaries or lemmas.

---Modus alius proportionis inter tres numeros---
(7)(389) : , Q unknown. This means that R–P is split into two parts havingR–Q

Q–P

R

P
the ratio R:P, which is solved as a partnership problem.

(8) Same proportion, R unknown. Permutatim : , a first-degreeR

R–Q

P

Q–P
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problem.
(9) Same proportion, P unknown, solved similarly.

---Modus alius proportionis inter tres numeros---
(10) : , Q unknown. : , a first-degree problem.Q–P

R–Q

R

P

(Q–P ) (R–Q)

R–Q

R P

P
(11)(390) Same proportion, R unknown. Product rule, and Elements II.6.
(12) Same proportion, P unknown. Analogously.

---Modus alius proportionis in tribus numeris---
(13) : , Q unknown. Since (R–Q)+(Q–P) = R–P, this is as simpleR

P

(R–Q) (Q–P )

R–Q
first-degree problem.

(14) Same proportion, R unknown. : . From the product rule followsR–P

P

Q–P

R–Q
that the product of R–P and R–Q as well as their difference are known,
which allows the application of Elements II.6.

(15)(391) Same proportion, P unknown. Product rule and Elements II.5.
---Modus alius proportionis---

(16) : , Q unknown. : , a linear problem.R

P

(R–Q) (Q–P )

Q–P

R

P

R–P

Q–P

(17) Same proportion, R unknown.36 : , whence permutatimR–P

P

(R–P)–(Q–P )

Q–P
: , a linear problem.R–P

R–Q

P

Q–P
(18) Same proportion, P unknown. Eversim (although Fibonacci writes “you

permutate”) : . The product rule gives R–P, whence P.R

R–P

R–P

R–Q
---Incipit diferentia tercia in proportione trium numerorum---

(19) No question but the observation that if : , then P, Q and R are inR

Q

R–Q

Q–P
continued proportion – namely because Q must be the same part of R
as P of Q.

(20)(392) : , Q unknown. : , whence : . The product rule andR

Q

Q–P

R–Q

Q

R

R–Q

Q–P

Q R

R

R–P

Q–P
an addition allows the use of Elements II.6 (direct use of II.5 seems easier).

(21) Same proportion, R unknown. The product rule and Elements II.6 give
R.

(22) Same proportion, P unknown. The product rule gives Q–P.
---Modus proportionis in tribus numeris---

(23) : , Q unknown. Permutatim and conjunctim : . FromR

Q

(R–Q ) (Q–P )

R–Q

R (R–P )

R–P

R

R–Q
the product rule follows R–Q.

(24) Same proportion, R unknown. The argument is corrupt, claiming that
the proportion can be transformed into : . The product rule andQ

R

R

Q–P
Elements II.5 would have led directly to a correct solution.

(25)(393) Same proportion, P unknown. R–P follows from the product rule.

36 By error, the text has minor numerus .a.d., but the calculation proceeds from the premise
major numerus .a.b., corresponding to R.
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---Modus alius proportionibus in tribus numeris---
(26) : , Q unknown. Disjunctim : . Since P is a number (i.e.,R

Q

R–P

Q–P

R–Q

Q

R–Q

Q–P
not 0), R must equal Q. Alternatively, the proportion is transformed
permutatim into : , and R is posited to be 8, P to be 2, from whichR

R–P

Q

Q–P
is derived that Q must equal R. Finally it is observed that even with this
transformation the numerical position is superfluous.

---Modus alius proportionis in tribus numeris---
(27) : , Q unknown.37 Instead of transforming ex aequa : , i.e.,Q

P

R–Q

Q–P

Q

P

Q (R–Q )

P (Q–P )

: , Fibonacci prefers to combine transformations permutatimQ

P

R

Q

( : ) and conjunctim ( : , that is, producing the same outcome).R–Q

Q

Q–P

P

Q

P

R

Q
From the product rule, Q is found as √(PR).

(28) Same proportion, R unknown. Fibonacci uses the transformed proportion
from (27) to find R as Q2/P.

(29) Same proportion. It is pointed out that if Q is known (the example being
Q = 12), then either of the others can be chosen freely, the third number
following (via : ) from division.Q

P

R

Q
---Modus alius proportionis in tribus numeris---

(30)(394) : , Q unknown. The product rule allows application of ElementsQ

P

R–P

Q–P
II.6.

(31) Same proportion, R unknown, R–P = .(Q [Q–P]) /P
(32) Same proportion, P unknown. Eversim : . The product rule allowsQ

Q–P

R–P

R–Q
application of Elements II.6.

(33) It is then asserted that if one of the numbers is known in this proportion,
the others can be found. What is actually shown (and obviously meant)
is that if one is known, another one can be chosen ad libitum, and a third
determined so as to fit.

---Modus alius proportionis in tribus numeris---
(34) : , Q unknown. Conjunctim : , which (via a trick necessitatedQ

P

Q–P

R–Q

Q P

P

R–P

R–Q
by the line representation) allows application of Elements II.5.

(35) Same proportion, R unknown. R–Q = .P (Q–P)

Q
(36)(395) Same proportion, P unknown. The product rule allows application of

Elements II.5.
(37) : . Since eversim : , i.e., : , this is only possibleQ

P

R–P

R–Q

Q

Q–P

R–P

(R–P )–(R–Q )

Q

Q–P

R–P

Q–P
if Q = R–P – or, as Fibonacci prefers, P = R–Q. From this, any one of the
numbers can be found if the other two are known.

37 The text says ingnotus primus numerus .a.g., but ag is actually the second, that is, Q.
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---Modus ultimus proportionis in tribus numeris---
(38) Same proportion, P+Q+R given. For three numbers p, q and r fulfilling

the condition, multiply each of them by P+Q+R/p+q+r (a scaling trick we have
already encountered in Chapter 12, Part 2).

(39)–(50) consider four numbers in proportion, : . The underlying alphabetic orderP

Q

R

S
is still a, b, g, d, ….

---Incipit de proportione quattuor numerorum---
(39) From : follows : and : . From the product rule PS = QR,P

Q

R

S

Q

P

S

R

R

P

S

Q
any one of the numbers can be found from the others.

(40) P+Q, R and S known. : , whence Q.P Q

Q

R S

S
(41) R+S, P and Q are known. Similarly
(42) P+R, Q and S known. : , whence R.Q S

S

P R

R
(43) Q+S, P and R are known. Similarly

-------
(44)(396) Q+R, P and S known. The product rule allows application of Elements

II.5.
(45) Similarly if P+S, Q and R are known. Illustrated by an example involving

rotuli (a weight unit) and bizantii and their sum.
------

(46) P–Q, R and S known. : , whence Q.P–Q

Q

R–S

R
(47) R–S, P and Q known. Similarly : , whence R.P–Q

P–Q

R–S

R

(48) P–R, Q and S known. : , : , whence R.P

R

Q

S

P–R

R

Q–S

S
(49) P–S, Q and R known. The product rule allows application of Elements

II.6.
------

(50)(397) P2+Q2, R and S known. Jumps directly (in a numerical example) to the
proportion : .P 2 Q 2

Q 2

R 2 S 2

S 2
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