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Two introductory observations

(1) At a random page in a book taken from one of my bookshelves one finds the
following [Berry 1897: I, 321]:

Θεωπουντες δε την του Πετρου παρρησιαν και Ιωαν-
But seeing the of Peter boldness and of John

νου, και καταλαβομενοι οτι ανθρωποι αγραμματοι εισιν
and having perceived that men unlettered they are

και ιδιωται, εθαυμαζον, επεγινωσκον τε αυτους οτι συν τω
and uninstructed, they wondered, and they recognized them that with

Ιησου ησαν.
Jesus they were.

Now when they saw
the boldness of Peter
and John, and per-
ceived that they were
unlearned and ignor-
ant men, they marvel-
led; and they took
knowledge of them,
that they had been
with Jesus.

The passage is Acts 4:13. The Greek is of course the established text, the right margin
presents the reader with the King James Version, and the interlinear English is, as can
be seen, a very literal de verbo ad verbum translation.

The introduction makes it clear whom the volume is meant to serve: not ordinary
believers but the minister, the “Bible-preacher and Bible-teacher”, who needs “some
knowledge of Hebrew and Greek” so as to
– “understand the critical commentaries on the scriptures”;
– “appreciate the critical discussions, now so frequent, relating to the books of the

Old and New Testaments”;
– “be certain, in a single instance, that in your sermon based on a scripture text, you

are presenting the correct teaching of that text”;
– “be an independent student, or a reliable interpreter of the word of God”
Obviously, the minister also needs to have a feeling of what this pedantic tool has to
do with his creed and the creed of his flock; therefore the King James Version in the
margin with its familiar pious reverberations.

In the present verse, there is only one (rather minor) substantial difference between
the two translations; whether ιδιωτης is to be translated “ignorant” (King James) or
“uninstructed” (Berry). Both are possible according to the dictionary (e.g., Liddell &
Scott), the former choice corresponding certainly to the opinion the erudite King James
translators would have about anybody uninstructed in classical languages, the latter
to the vicinity to αγραμματος (and to Peter’s preceding sermon, hardly evidence of
rhetorical or rabbinical training, nor however of generic “ignorance”). Elsewhere, and
in particular if other translations for pious use are taken into account, more striking
differences turn up (“young woman” versus “virgin”, “brothers” versus “relatives”).

(2) Let us then turn to the discussions among philosophers of science in the wake
of Kuhn’s Structure of Scientific Revolutions. Many early critics and many later superficial
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followers of Kuhn have taken the claim for incommensurability to imply that no
communication and no rational argumentation is possible across a paradigmatic divide.
This is evidently a wrong conclusion, built among other things on an absolutistic concept
of rationality, and it was never intended by Kuhn.1 Breakdown of communication is
partial, but communication is similar to the communication between different language
communities with non-isomorphic conceptual structures [Kuhn 1970: 202–204], which
can not be achieved by the de verbo ad verbum method.2 In this respect, the example
from the Acts is not representative.

The classical translations of Old Babylonian mathematical texts

“Higher” Babylonian mathematics (Old Babylonian as well as Seleucid3) was
cracked in the late 1920s and the earlier 1930s, at a moment when Assyriology was
about half its present age, almost two decades before the end of what Rykle Borger
[2004: I, v] characterizes as the “düstere Handbuchlose Zeitalter der Assyriologie”. The
main locus of the process was Otto Neugebauer’s newly founded Quellen und Studien
zur Geschichte der Mathematik, Astronomie und Physik (Abteilung B: Studien, as well as
Abteilung A: Quellen). It is true that François Thureau-Dangin, always interested in
metrology and surveying calculation, had published the text AO 6484 already in [1922:
pl. LXI–LXII], but stating only (and probably, given that other texts are described in
more detail, seeing only) that it contained “opérations arithmétiques”. In [1928], Carl
Frank had also published 6 mathematical texts from Strasburg, with transliteration and
tentative partial explanations. Almost at the same time, however, H. S. Schuster, a
participant in Neugebauer’s seminar in Göttingen, discovered that certain problems

1 See the postscript to the second edition of his Structure ... [Kuhn 1970: 198ff], which takes up
the problem of incommensurability and the misunderstandings to which his original statements
had led.

2 I borrow an illustration from [Høyrup 2000: 305 n. 51], namely
the relation between the conceptual clusters “knowledge/cognition” and “Wissen/Er-
kenntnis/Erkenntnisvermögen.” Cognition encompasses only little of what is covered by
Erkenntnis and most (all?) of what is meant by Erkenntnisvermögen, and knowledge corre-
spondingly more than Wissen. This is one among several linguistic reasons (non-linguistic
reasons can be found) that epistemology looks differently in English and German; still,
translations can be made that convey most of a German message to an English-speaking
public.

However, such translations, in order to be adequate, may ask for the introduction of explained
neologisms or for explanatory notes.

3 The “Old Babylonian” period covers the period 2000–1600 BCE (middle chronology); apart from
an isolated text group from Ur (ed. [Friberg 2000], cf. [Høyrup 2002: 352–354] and below), which
may date from the nineteenth century, the mathematical text belonging to this period belong
to its second half (after 1800 BCE in the north-east, after c. 1750 in the south.

The Seleucid epoch coincides roughly with the third and second century BCE.
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in AO 6484 solved something like quadratic equations,4 and very soon Neugebauer
was able to substantiate similar claims regarding the mathematical Strasburg texts, and
to explore a number of other problem types.

Once the road had been opened, Thureau-Dangin was able to participate in the
race (as he did in 1931–32), but on the whole without changing the approach. The
programmatic declaration of Quellen und Studien5 should therefore tell us much about
the perspective from which “Babylonian mathematics” was explored:

Durch den Titel “ Q u e l l e n u n d S t u d i e n ” wollen wir zum Ausdruck bringen, daß
wir in der steten Bezugnahme auf die Originalquellen die notwendige Bedingung aller ernst
zu nehmenden historischen Forschung erblicken. Es wird daher unser erstes Ziel sein,
Q u e l l e n zu erschließen, d.h., sie nach Möglichkeit in einer Form darzubieten, die sowohl
den Anforderungen der modernen Philologie genügen kann, als auch durch Übersetzung
und Kommentar den Nichtphilologen in den Stand setzt, sich selbst in jedem Augenblick
von dem Wortlaut des Originales zu überzeugen. Den berechtigten Ansprüchen b e i d e r
Gruppen, Philologen und Mathematikern, nach wirklicher Sachkenntnis Genüge zu leisten,
wird nur möglich sein, wenn es gelingt, eine enge Zusammenarbeit zwischen ihnen
herzustellen. Diese anzubahnen soll eine der wichtigsten Aufgaben unseres Unternehmens
sein.

The Quellen und Studien were to appear in two series:

Die eine, A, “ Q u e l l e n ” , soll die eigentlichen Editionen größeren Umfanges umfassen,
enthaltend den Text in der Sprache des Originales, philologischen Apparat und Kommentar
und eine möglichst getreue Übersetzung, die auch dem nichtphilologen den Inhalt des Textes
so bequem als irgend tunlich zugänglich macht. [...] Die Heften der Abteilung B, “ S t u -
d i e n ” , sollen jeweils eine Reihe von Abhandlungen zusammenfassen, die in engerem oder
weiterem Zusammenhang mit dem aus den Quellen gewonnenen Material stehen können.

Die “Quellen und Studien” sollen Beiträge zur Geschichte der Mathematik liefern. Sie
wenden sich aber nicht ausschließlich an Spezialisten der Wissenschaftsgeschichte. Sie wollen
zwar ihr Material in einer Form darbieten, die a u c h dem Spezialisten nützen kann. Sie
wenden sich aber weiter an alle jene, die fühlen, daß Mathematik und mathematisches
Denken nicht nur Sache einer Spezialwissenschaft, sondern aufs tiefste mit unserer
Gesamtkultur und ihrer geschichtlichen Entwicklung verbunden sind, daß eine Brücke
zwischen den sogenannten “Geisteswissenschaften” und den scheinbar so ahistorischen
“exakten Wissenschaften” gefunden werden kann. [...].

Apart from the absence of “historians of mathematics” as a professional category, these
ambitions could probably have been formulated today. However, if we concentrate

4 That Schuster actually made the discovery I heard from Kurt Vogel in 1985. It is confirmed
though less explicitly in a note added after proofreading to [Neugebauer 1929], according to
which the Babylonian method for solving quadratic equations had now been discovered through
analysis of AO 6484; that the essential step was due to Schuster; and that the whole analysis
was to be published later in Quellen und Studien – as indeed it was, as [Schuster 1930].

5 Signed by “Die Herausgeber”, that is, Otto Neugebauer, Julius Stenzel and Otto Toeplitz. It
seem a fair guess that Neugebauer is the main if not the sole author.
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on the Babylonian aspect, they were not easily filled out at the moment. In [1934: 204],
Neugebauer still had to point out “daß wir über die ganze Stellung der babylonischen
Mathematik im Rahmen der Gesamtkultur praktisch noch gar nichts wissen”. (It was
almost as true 40 years later.)

What little could be said about this matter had indeed been said by Schuster and
Neugebauer already in 1929–30: that the text AO 6484 carries the name of a member
of a well-known family of scholar-priests6, and that problems were constructed so as
to give neat solutions [Neugebauer 1929: 73], with the implication that they were
constructed and hence some kind of school problems. Instead of speaking of the
capabilities of “Babylonian mathematicians” and thereby postulating the existence of
such a category, Neugebauer also spoke consistently of what could be done by
“Babylonian mathematics”.

The school character of texts was a result of internal analysis, and everything else
also had to be read from the texts themselves – no meta-information was available,
that is, no texts speaking about mathematics and mathematical texts, as does for instance
the famous Egyptian “satirical letter” in Papyrus Anastasi I (known at the time in Alan
Gardiner’s edition [1911]).

Initially, extracting information from the texts was even harder than one imagines
when reading such mature source editions as Mathematische Keilschrift-Texte (MKT) from
1935–1937 or Textes mathématiques babyloniens (TMB) from 1938. Cuneiform writing is
indeed full of ambiguities, only resolved to some extent if one knows the period and
genre of a text. Working up comprehension of a new genre is thus a highly circular
hermeneutic process; it was even more so 80 years ago.

One example will suffice. The problems from AO 6484 analyzed by Schuster [1930]
aim at the determination of two magnitudes, which Schuster following Thureau-Dangin
transliterated igû and šipû. Expressed in sign-names, the words are written ŠI and ŠI.BU.Ú.
ŠI can also be IGI, which corresponds to the Akkadian reading igû. In an editorial note
on p. 196 building on an observation made by Arthur Ungnad [1917: 42], Neugebauer
pointed out that this term may stand in tables for the reciprocal of a number, but also
according to an Assurbanipal text for “division”.7 Not knowing that the genre of
mathematical texts requires the former sense, he had to leave this question open. In
the second term, all chose the reading ŠI.PU.Ú, corresponding to Akkadian šipû, and

6 Schuster [1930: 194] cites Thureau-Dangin [1922] for this observation (made in the un-paginated
Avant-propos).

7 Actually, Ungnad’s reading is mistaken, Assurbanipal boasts that he can find reciprocals. This,
however, could only be seen with hindsight after the terminology had been fully deciphered
in the 1930s. Assurbanipal boasts in parallel of mastering I.GI and A.RÁ; the latter being known
to be a term for multiplication, it was a reasonable assumption that the former represented
division, and that the accompanying verb patārum stood for the process of solving problems
(but cf. below).
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wisely abstained from translating (Neugebauer’s note suggests a possible arithmetical
meaning but characterizes it as “disputable”).

When MKT and TMB were published, most difficulties of this kind had been pushed
aside. For example, ŠI-PU-Ú had become igi-bu-ù. Neugebauer still upheld his “disput-
able” translation of the two terms (“Nenner” and “Zähler”), but only in the absence
of more adequate words; he was fully aware and explained (MKT p. 349) that they
constitute a pair of reciprocal numbers (as Schuster had already assumed though with
less material on which to base the assumption).8

This derivation of the mathematical meaning of terms from the numbers found
in the texts was almost the general rule. A few terms, it is true, were easily interpreted
from their non-technical meaning – for example, wasābum (“hinzufügen, mehren”
according to [Bezold 1926: 61], one of the dictionaries of the time) seemed likely to stand
for an addition, while nasāhum (“ausreißen, entfernen, fortnehmen” according to [Bezold
1926: 200]) could hardly be anything but a subtraction. Most terms, however, did not
appear from their non-mathematical interpretation to describe any mathematical
operation – for example, elûm (“in die höhe kommen, hinaufkommen, hinaufziehen”
according to [Bezold 1926: 29]) – or the cuneiform signs could not be interpreted as
Sumerian or Akkadian words – for example, ZUR.ZUR (now read UL.UL and interpreted
d u 7. d u 7). Here, the only way was to observe what these operations did to the numbers
surrounding them. Since “lifting up” 40 to 10 resulted in 400, while ZUR.ZUR transformed
10 into 100,9 the former operation could be a multiplication, and the latter a squaring.

As illustrated by these two examples, a few identifications of mathematical
operations had been made before the breakthrough of the outgoing 1920s (Frank did
not introduce them). Most, however, were brought forth by Neugebauer and his
collaborators and by Thureau-Dangin once he re-entered the undertaking.

The undertaking, we may say, was brought to a successful though preliminary
end in 1937/38, when Neugebauer completed MKT and Thureau-Dangin brought out
his own transcriptions and translations in TMB.10 The picture it produced now seems

8 Going one step further, Neugebauer and Sachs point out in MCT (p. 130) that the two terms
are Akkadianized forms of Sumerian i g i and i g i . b i , “igi” and “its igi”, following what Thureau-
Dangin had done in TMB (pp. 14–16 and passim).

If we want to understand why Neugebauer could use these translations, we should think
of the expression of the same number as numerator and denominator, m/1 = 1/n. Then m and n
form an i g i – i g i . b i couple.

9 Both examples are borrowed from [Frank 1928], who (not always correctly) transforms the
sexagesimal into decimal place value numbers. Though this transformation is usually problematic
when it comes to interpreting the mathematics of a text (and also contributed to preventing Frank
from understanding much of his texts), it facilitates the present point.

10 A “transcription” differs from a transliteration by interpreting logograms as phonetically written
Akkadian, thus already containing a second level of interpretation (where transliteration can
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to be unduly modernizing.11 This character of the picture was not intended by
Neugebauer and Thureau-Dangin. It came about for (at least) three reasons.

One is the use of modern numerical operations as a matrix for decipherment. In
the first instance, at least, this could not escape an identification of the Babylonian
operations with modern operations – thus to see, as mentioned above, elûm as
multiplication and ZUR.ZUR as numerical squaring. Further, the same matrix influenced
the translations in so far as it was attempted to make translations that were “substan-
tially”,12 not etymologically adequate.

It should be observed that neither Neugebauer nor Thureau-Dangin took systematic
advantage of these identifications with modern operation in their translations, translating
terms which appeared to mean the same with the same term, although exactly this
might seem “substantially adequate”.13 They both often (not always) tried to translate
different Akkadian words differently (but not to distinguish logograms from syllabic
writings when they felt sure they were equivalent). Even though they never explain

be considered the first and the translation a third level). While acknowledging that this involved
loss of information Thureau-Dangin chose the transcription because the volume contained nothing
not already published in philologically adequate form, and because his aim was to “mettre des
documents à la disposition des historiens de la pensée mathématique” (TMB, p. xl) in an
affordable volume.

Wolfram von Soden [1939:144], from whom the latter information is taken, rightly points
out that the great philologist of course could not abstain from including many observations and
much material which were rather aimed at Assyriologists.

11 I prefer to avoid the epithet “anachronistic”, which has developed into a mantra – an element
of ritual deprived of the meaning it may once have possessed. Cf. the parodic use of the term
in [Hon & Goldstein 2008] and Hardy Grant’s review of that book [2009].

It is easy, under the pretext of avoiding anachronisms, to eliminate descriptions that use
modern categories; but if we do not then describe it in terms that are not ours – which is
recommendable but much more difficult, and rarely done by those who excel in using the
mantra – we end up having no way to speak of the historical material.

12 “Sachlich” – MKT III, p. 5 n. 20. The words are found within a polemic with Thureau-Dangin,
but it characterizes the approach of both.

13 Neugebauer (MKT I, p. viii) is emphatic on this account: “Die Übersetzung ist selbstverständlich
im Prinzip eine wörtliche”. But apart from apologizing for the inconsistencies which are
inescapable in a similar undertaking (and not only, as Neugebauer modestly claims, because
of the imperfections caused by the long duration of the work), he points out that

der Sinn der Übersetzung nur darin gesehen werden kann, den sachlichen Inhalt eines Textes
in Großen und Ganzen richtig wiederzugeben, daß sie aber keineswegs als Grundlage für
Fragen der Terminologiegeschichte dienen kann und soll. Die Bedeutungsgeschichte der
Termini zu untersuchen ist noch ein Programm; es zu erleichtern habe ich in Teil II, § 3
ein ausführliches Glossar angelegt. Die Übersetzung soll aber nur ein allgemeiner Wegweiser
sein, selbstverständlich genau genug, um den Inhalt korrekt erfassen zu können, nicht aber,
um Feinheiten der Terminologie und Grammatik daran ablesen zu können.
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it they must also have been aware that terms that seem to be mathematical synonyms
cannot have been fully synonymous for the Babylonians – when repairing a broken
passage none of them ever chooses what can now be seen to be the wrong operation,
and once Neugebauer (justly) chides the compiler of a text for choosing a wrong
multiplication (MKT I, p. 180).

The next reason things came to look modern was the application of the more general
matrix of available types of mathematics – roughly spoken, numerical and Euclidean-
geometric (both with or without explicit proof). In some way (but under the general
“numerical” heading) we may also count equation algebra, either in symbolic form
or the rhetorical algebra of al-Khwārizmı̄. The latter was referred to explicitly by
Thureau-Dangin [1940: 300f], the former by Neugebauer (but only in the sense that
he claimed numerical steps to be the same – e.g., [Neugebauer 1932: 12]).

The effect of this second matrix can be seen in the discussions of both protagonists
of the problem AO 8862 no. 1, in which the difference between the length and the width
of a rectangle is added to its area. From this addition both conclude [Neugebauer 1932:
12; Thureau-Dangin 1940: 302] that the geometric terminology of problems dealing with
square and rectangular sides and areas is purely formal, and that the thinking is
numerical – tertium non datur within this matrix.

The third reason for the emergence of the modernizing interpretation must be
imputed to the users. Careful formulation is no guarantee of careful reading, and most
users were not really interested “in der Betrachtung des g e s c h i c h t l i c h e n Werden
mathematischen Denkens”, as Neugebauer had written in 1929, but in finding what
they knew as mathematics – less fully developed, of course, but none the less the same
kind – in the historical record. For this purpose they were in no need to read (and hardly
cared to read) the translations and the appurtenant explanations. The formulae
explaining why the Babylonian calculations were right (understood as “what they were
really about”) sufficed. In our initial simile, these readers felt so well in the pious
atmosphere provided by the King James (here, the formulae explaining everything in
familiar idiom) that they saw no reason to read the small interlinear print (i.e., the
careful verbal translations) – Neugebauer’s warning (MKT I, viiif) notwithstanding that

Der Kommentar bildet eine notwendige Ergänzung der Übersetzung und ist stets zu ihrer
Begründung und Verwertung heranzuziehen. Um den Umfang des ganzen nicht zu schwer
anschwellen zu lassen, habe ich mich in den Kommentaren oft ziemlich kurz gefaßt. Dem
Benutzer, der wirklich über diese Texte urteilen will, kann doch nicht erspart werden, sich
mit allen Einzelheiten genau vertraut zu machen [...].

Returning to the texts

This classical interpretation, mostly in the superficial second-hand reading, became
the orthodoxy for half a century or so. The situation is well illustrated by a 75 pages’
paper [Goetsch 1968] in Archive for History of Exact Sciences rehearsing “die Algebra
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der Babylonier”. It quotes some three terms in the original language, lists a few
metrological units, and is somewhat more generous when it comes to quotations from
Neugebauer’s translations.14 On the whole, however, everything is explained in modern
equations and in a commentary supposing this to be what “Babylonian algebra” is.
It also treats Old Babylonian and Seleucid mathematics as indistinguishable – whereas
both Neugebauer and Thureau-Dangin had been fully aware of the differences.15

Whereas Neugebauer’s and Thureau-Dangin’s editions of the texts can, grosso modo,
be compared to the Greek and interlinear texts of the initial quotation from Acts 4,
Goetsch’s presentation corresponds to the King James version, not exactly wrong but
so neatly enshrouded in the familiar style of mathematics that any challenge to
conventional institutional piety and habits is avoided.

A few decent exceptions can be mentioned – thus Kurt Vogel [1959], A. A. Vajman
[1961] and B. L. van der Waerden [1956]. The former two indeed understood the original
language, and van der Waerden at least read the translations with care. Their level of
modernizations was thus, we may say, comparable to that of Neugebauer and Thureau-
Dangin. So was on the whole that of Neugebauer’s and Sachs’ Mathematical Cuneiform
Texts [MCT] from 1945 (even though this volume is less cautious in its use of the
categories of modern mathematics than MKT). As far as I am aware, the sole
Assyriologist who expressed misgivings about the reading of the Babylonian texts as
consisting of almost-modern equations was von Soden;16 none the less, the analysis
[Gundlach & von Soden 1963] of “Einige altbabylonische Texte zur Lösung »quadrati-
scher Gleichungen«” made full use of algebraic equations – there was no other way
at the time.

14 However, not always in a way that demonstrates understanding. On p. 83, a problem
supposedly dealing with Nenner and Zähler is quoted – but without Neugebauer’s explanation
that these names are used in the absence of better alternatives and stand for a pair of reciprocals
(cf. above, text before note 8) – probably because Neugebauer’s explanation is linked to a different
problem.

15 Thus Neugebauer [1932: 5f, emphasis added],

der ganze Charakter der “babylonischen” Mathematik von Hammurapi bis gegen die Perserzeit
[ist] allen Anschein nach ein derartig stationärer, daß das Datierungsproblem für alle
geschichtlichen Fragen (wenigstens heute noch) nur eine sekundäre Rolle spielt,

and Thureau-Dangin [1940: 311]

ce texte très tardif [BM 34568, a Seleucid text] ne peut être considéré comme un témoin de
l’authentique tradition babylonienne.

16 Namely in [von Soden 1974: 28]:

Die Mathematikhistoriker setzen die babylonischen Ausrechnungen m. E. vorschnell in uns
gewohnte Gleichungen, noch dazu oft mit allgemeinen Zahlen, um und werden dadurch
der Andersartigkeit des mathematischen Denkens im alten Orient nur unzureichend gerecht.
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In 1982, as several participants in our meeting will know, I was provoked to return
to the original texts after having relied for discussions of the social embedding of
Mesopotamian mathematics on the classical translations and basically believing in
Thureau-Dangin’s reading as “rhetorical” algebra. Already when I looked more closely
at the translations they made me suspect that the apparent “mathematical synonyms”
in the Old Babylonian texts (these – and indeed solely those of them that contain
words – are the only ones I shall discuss in this section) were not seen as synonymous
at all by the authors of the texts (an homage to the translators!), and as soon as I got
hold of a dictionary and a grammar it became obvious. It turned out, for instance, that
one of two “additions” could not be used for a “quadratic completion”, and the other
not for the addition of different dimensions (lengths and areas, areas and volumes,
men and bricks, etc.).17 Even though the two terms had seemed to be “mathematical
synonyms”, they cannot have been so within the mathematical practice of the calculators
who employed them.

All in all, there turned out to be two different “additions”, two different “subtrac-
tions”, two different “halves”, and no less than four operations that had been conflated
as “multiplication”.18 Beyond their syllabic Akkadian writing, almost all of them could
be written by a standard logogram. Several operations could also be referred to by two
or more terms which must have been “mathematical synonyms” to the Babylonian
calculators, in the sense that in the same mathematical situation one text may employ
one of the terms and another text another one.

All of this was at odds with the traditional numerical interpretation – within which
“there is only one multiplication”, as Thureau-Dangin observes somewhere. Everything
turns out to fit instead an interpretation where the sides and areas of square and
rectangular figures spoken of in the “algebra” texts are really measurable sides and
areas of geometric squares and rectangles – but within a geometry which distinguishes
only “right” from “wrong” angles; in which the general angle has thus no place as a
quantifiable magnitude; in which similarity is a primary and not a derived concept;19

and in which lines may be provided with an implicit width of 1 linear unit, for which

17 Fortunately, I did not discover the two or three exceptions to the latter rule before I had a
framework within which they were explainable (cf. note 20). The former rule has no exceptions.

Those who do not know what a “quadratic completion” is should not worry; for the present
argument it is only of importance that it is a particular, easily recognizable operation (essential
for the solution of quadratic problems).

18 This, and most of what follows in this section of the paper, can be drawn from [Høyrup 2002].

19 As is the Greek concept of similar figures as figures where angles are the same and correspon-
ding linear distances are proportional – at least if we identify definition and concept, which is
of course a dubious though oft-made step.
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reason they may be added to or subtracted from areas.20 A representation of geometry,
finally, where measuring numbers are used as identifiers for entities (which are thus
really “magnitudes” in a much more direct sense than we are accustomed to).21

This “geometric” interpretation (as I shall call it, hoping that its being different
from our abstract, angle-based geometry in a Euclidean plane be not forgotten) also
makes sense of several features of the texts which Neugebauer and Thureau-Dangin
had to bypass in silence – addition and subtraction, not simply to respectively from
a number but from “the bowels of” a number/magnitude; “carrying” of a number/
magnitude to another number/magnitude before it is subtracted from it; etc. Finally,
it gives new clues to the procedures used in a number of properly geometric texts.

In principle, all of this can of course be discussed with reference to the transliterated
text. In practice, an attempt to do so would exclude all readers who do not already
know at least basic Akkadian. Moreover, an understanding of the transliterated texts
based directly on standard dictionaries which themselves presuppose the modernizing
interpretation established in the 1930s (as, with due respect, must be said about von
Soden’s Akkadisches Handwörterbuch as well as the Chicago Assyrian Dictionary when
they come to determining the meaning of terms within mathematical texts) cannot avoid
being caught in the spell of modernization. Regardless of Neugebauer’s warning about
the role of a translation (which of course remains valid, but whose limit between what
the translation can do and what it cannot do is pushed forward), a translation system
has to be devised which reflects as many of the textual details and structures as possible.

The first request is of course that the same term shall always be translated by the
same term, and no two different terms (securely established logographic/syllabic
equivalents excluded) by the same term.

This leaves the question of the actual translation terms unsolved. As we know,
however, nobody has ever tried to write a real geometry about the Hilbertian ingredients
of a Bierstube. Even in the era of formalism, it was always clear that a terminology
whose general semantics clashes with the properties of objects blocks mathematical
thinking and creativity. Babylonian terminologies, even if technical (which remains
to be ascertained), were based on the words of non-technical language, and ultimately
derived from their meaning (or one of their meanings) within this general usage –

20 For this concept of “broad lines” and their wide diffusion in pre-Modern mensuration, see
[Høyrup 1995]. As far as addition is concerned, the distinction between the two additive
operations and the trick of supplying lines explicitly with a width 1 (designated in various ways,
showing this to be a secondary development), the Babylonian calculators managed to eliminate
the “large lines”, which even they must hence have found problematic; but in subtraction they
never did anything similar.

21 One may see this sketchy characterization of Old Babylonian “geometry” as an attempt to speak
of the historical material “in terms that are not ours”, as formulated in note 11 – of course
ultimately based on our terms (we have no others) but not identifying the historical category
with a single one of ours.
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perhaps as metaphors, perhaps directly because the normal meaning could fit the
technical context. Translations must therefore be chosen so as to correspond to the
meanings of Babylonian terms in general usage.22 To a limited extent, and in cases
where it is certain that terms were really technical, they may be borrowed as loanwords;
most obviously this can be done for words which were already Sumerian loanwords
in Akkadian (i g i and i g i . g u b are the most obvious candidates – cf. below, note 38
and appurtenant text).

It could be objected that correspondence to general usage implies that one translates
technical terms as is they were not technical. Doesn’t Neugebauer’s charming translation
of “sin2α+cos2β = 1” into “viereckiger Busen von α vermehrt um den viereckigen
Mitbusen von α ist gleich eins” apply here?23 The answer is that technical meanings
should not be imported from later mathematics – they have to be discovered through
work on the texts themselves – if not through “immersion”, in the idiom of language
training, then through analysis of the text corpus at large.

The effort to keep close to general usage does not eliminate further choice. One
of the themes that always interested the historiography of Mesopotamian mathematics
was the question of historical development and legacy – within the Mesopotamian
world, and from Mesopotamia to surrounding and later cultures. The choice of
translations may mask possible connections – but a translation may also beg the question
and suggest links that are not well-established. Here care must be taken, and translations
should not be chosen that suggest more than warranted.

A list

Without trying to be exhaustive, I shall list a number of terms and operations with
my standard translations and with commentaries:

22 This principle may conflict with the principle of translating logograms in the same way as
syllabically written equivalents. One example is the couple nasāhum/z i . The former word means
“to tear out”; the latter is likely to be a shortened writing for z i . z i , marû-stem of z i , known
as a term for subtraction from a Sumerian text from the 21st century (Šulgi-Hymn B, ed.
[Castellino 1972: 32]) and probably to be understood as “take up from” (namely, from the counting
board). Since the term was used in Old Babylonian times within texts which were supposed to
be pronounced in Akkadian, it seems safe to assume that the original meaning of the Sumerian
term had disappeared from the semantics of the logogram, and that it is thus to be translated
in the same way as nasāhum.

However, it must be decided from case to case whether a logogram is really meant to be
the equivalent of an Akkadian term. Equivalence in one text or function does not necessarily
entail equivalence in other texts or functions.

23 MKT I, p. viii. Neugebauer’s jibe, we should note, was directed at a different target – namely
the expansion of compact ungrammatical logographic writing into grammatical syllabic Akkadian.
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Additive operations:

wasābum/d a h to append24 a concrete, asymmetric operation; if a is appended to B, B
conserves its identity but changes its magnitude25

kamārum/
g̃ a r . g̃ a r /UL.GAR

to heap26 a symmetric additive operation, which may concern the
measures of entities (thus allowing addition irrespective of
dimension)

kimirtum/
g̃ a r . g̃ a r /UL.GAR

the heap27 the sum by heaping

kimrātum the heaped28 plural of kimirtum; the sum by heaping, but still thought
of as the collection of constituents

Subtractive and dissolving operations:

nasāhum/z i to tear out an identity-conserving concrete removal, inverse opera-
tion of “appending” (cf. note 22)

harasum to cut off another concrete removal, preferred in a few texts (while
certain others have a tendency to “cut off” from lines
and “tear out” from areas)

tabālum to withdraw another concrete removal, used occasionally about what
can “justly” be removed

šutbum to make go away sometimes used within arguments of “false position”
about the removal of the “due” fraction

A eli B d itter/A
u g u B d d i r i g

A over B, d it goes
beyond

comparison of two different concrete magnitudes, neces-
sarily of the same kind

d i r i g the going-beyond excess by previous operation

A ana B d imti/
l a l

A to B, d it be-
comes smaller

“comparison the other way round”, used when the text
format or other considerations require it

bêrum to single out rarely occurring inverse operation of heaping, separating
the sum into constituents

“Multiplications”

a . r á steps of the term used in the tables of multiplications, that is, for
the multiplication of number by number

24 My reason for not choosing “to join (to)” is that I have reserved this translation for the term
tepûm, which is employed in Late Babylonian texts with the same function.

25 In consequence, the sum by this operation has no specific name.

26 On earlier occasions, I have used “to accumulate”.

27 Or “the accumulation”.

28 Or “the accumulated”.
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našûm/í l to raise a concrete multiplication, involving a sometimes hidden
consideration of proportionality; originally from volume
computation, “raising” the base from its standard thick-
ness 1 (k ù š ) to the real height; also used for the deter-
mination of areas and in multiplication by a reciprocal

(elûm)/n i m to lift29 a mathematical synonym of the preceding; mostly writ-
ten with the logogram

(ana n) esēpum/
t a b

to repeat (until
n)30

no genuine multiplication but a concrete repetition
(2≤n≤9), transforming for instance a triangle into a rec-
tangle

šutakūlum/
ì . g u 7.g u 7

to make (a and b
resp. c) hold31

no multiplication at all but a construction of a rectangle
with sides a and b respectively of a square with side c;
often implies a tacit determination of the area

takı̄ltum the made-hold the side which has been caused to hold a square32

d u 7.d u 7/UR.UR/
NIGIN

to make hold alternative logograms for šutakūlum; the first may actual-
ly stand for nitkupum, “to make butt each other”, the
third (two squares glued together) may be iconic rather
than linguistic.33

šutamhurum to make (a) con-
front

to make a confront itself as the side of a square

mithartum/
í b . s i 8

34
the confrontation the square configuration understood as the frame, para-

metrized by the side (that which confronts its equal)35

29 In non-technical contexts, “to be/become/make high” would be a better translation. In its
mathematical function, where it is linked to a preposition ana/“to”, this would be too clumsy.

30 The general meaning is “to be/make double, to clasp to, to duplicate”. The coupling to “until
n” makes a translation “to double” awkward.

31 The logogram ì . g u 7 . g u 7 should actually stand for the near-homophone šutākulum, “to make
eat together/eat each other”; this use of the “rebus principle” had been fundamental to the whole
development of cuneiform phonetic writing and therefore should not astonish us.

A more complete translation of šutakūlum (which is a causative-reflexive form) would be
“to make hold each other/hold together” – and since the double object may be connected by
itti, “together with”, “together” is to be preferred. Since it is anyhow obvious that the two sides
of a rectangle need to act together when holding it, I omit “together”.

It would be tempting to translate “let a and b contain [a rectangle]”. But this would suggest
(via the established English translation of Euclid’s Greek!) that the Babylonian and the Greek
expression were linked historically, for which we have no evidence at all.

32 Occasionally also a number which the calculator has been told to let his head hold, cf. below.

33 Since it could also be a logogram for lawûm or one of its derived forms (“to surround” or perhaps
“to make surround”), the iconic reading is not quite certain.

34 This logographic writing is found in the so-called “series texts” but is otherwise very rare; cf.
below on the normal use of í b . s i 8 .

35 Numerically, the mithartum thus is the length of a side and has an area – while our square
configuration, understood primary as a Euclidean “figure”, i.e., as that which is contained by
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LAGAB/NIGIN probably iconic logograms for both šutamhurum and
mithartum (the former is a single square, the latter a
doubled square)36

Q.e s í b . s i 8 by Q, s is equal this Sumerian phrase means that “close by” ( . e ) the
surface Q laid out as a square, s is the side. There is
evidence that the scribes of the 18th c. reinterpreted the
terminative-locative suffix . e as an ergative suffix (the
two coincide).37 English “by” renders this ambiguity
perfectly

í b . s i 8 (as noun) the equal some texts do not use the Sumerian term as a verb but as
a noun (at times as b a . s i 8 , or Akkadianized as basûm).
It may be the side of the square, but also of a cube (or
further generalized)

mehrum/
g a b a ( . r i )

the counterpart the counterpart of “the equal” of a square configuration,
meeting it in a corner. Outside mathematics it may inter
alia designate the duplicate of a tablet

Reciprocals, division and bisection

i g i n
( g̃ á l ( . b i ) )

i g i n designates the reciprocal of n, but mainly (not always) as
appearing in the table of reciprocals, not abstractly –
whence the use of a loan-word38

i g i n patārum/
d u 8

to detach i g i n finding the reciprocal of a number, probably imagined as
the detachment of one part from a bundle consisting of n
parts39

i g i n ( g̃ á l ) nth part the same expression may also be used to designate the
nth part of something. Since the texts take care to differen-
tiate, two different translations should be used.40

a boundary, is its area and has a side. The two concepts are different, but none is more paradoxical
than the other.

36 However, cf. note 33 (and observe that even LAGAB may be a logogram for lawûm).

37 19th-c. texts from Ur show that this is indeed a reinterpretation and not what was originally
intended, cf. [Høyrup 2002: 26 n. 42].

38 The literal meaning of this Sumerian phrase is unclear. With n = 3, 4, and 5 it goes back at
least to c. 2400 BCE, long before tables of reciprocals, which rules out the Old Babylonian folk
etymology (given as an interlinear gloss) that i g i n should be what is written “facing” (pānı̄)
the number n in the table. The most likely interpretation was proposed by Jöran Friberg (neither
he nor I remembered where last time I asked him) that it describes n dots “placed” (g á l ) in
“eye” (i g i ), i.e., in circle – the protoliterate notation for fractions (in grain measure, n = 2, 3,
4 and 5). Between evidence for one and the other notation there is a gap of some 500 years, from
which, however, no notation for fractions has survived.

That the primary meaning of the term was connected to the table in the Old Babylonian
period is clear from the name for technical constants: i g i . g u b , “fixed i g i ”. These have nothing
to do with reciprocals, but they are tabulated.

39 It is the use of this verb that shows Assurbanipal to speak of reciprocals, not of division – cf.
note 7.
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mı̄nam ana d g̃ar
šà A inaddinam Q
g̃ar

what to d shall I
posit that gives
me A? Posit Q

division question for numbers d which possess no i g i .
The expression is likely to refer to the way multipli-
cations were written on tablets for rough work

Halves and bisection

mišlum/š u . r i . a the half the half which belongs to the same category as the third
and the fourth

bāmtum41 the moiety the “natural half” which could not be otherwise; as the
radius of the diameter. The non-technical meaning may
be, e.g., one of two rib-sides or one of two opposing
mountain slopes.

muttatum the half-part mathematical synonym of the preceding. Non-technical
meanings may refer to one of two opposing body parts,
to a donkey’s half-pack, or to the literary formula “half
the kingdom”

hepûm/g a z to break the verb always going with the production of the natural
half. The non-general use is not restricted to bisection

Standard names (for unknowns and other entities)

a . š à 42 surface the area of geometric figures (including the squares and
rectangles of the “algebra”), showing them to be formally
“fields”. Problems pretending to deal with real fields
therefore have to refer to them in different words, even
though the basic meaning of eqlum/a . š à is precisely
“field” or “terrain”.

u š 43 length the long side of a geometric figure (an “algebraic” rec-
tangle, but also a right triangle, etc.). A particular tradi-
tion of catalogue texts speak of the “length” of a square

s a g̃ 44 width the short side of a geometric figure, in fixed couple with
the previous. Rarely used about the side of a square
(which is mostly a mithartum/“confrontation”)

40 Different texts use different stratagems to differentiate. The part may be expressed by the full
phrase, and the reciprocal simply as i g i n; or the latter may be “detached”, the former “torn
out”. What is shared by all texts is the effort to distinguish.

41 A small number of texts (mostly such as try to write everything except a few complements
logographically) use the fraction sign transliterated ½ logographically or š u . r i . a . That a “natural
half” is meant is then made clear by use of the verb “to break”.

42 In this function, the phonetic writing eqlum is never used; but a phonetic complement often
shows that this pronunciation is intended.

43 Except in a couple of very early texts from Eshnunna (see below), the corresponding phonetic
writing šiddum is never used in this function; nor do phonetic complements indicate this (or any
other) pronunciation.

44 Except in a couple of very early texts from Eshnunna, the corresponding phonetic writing pūtum
is never used in this function; not do phonetic complements indicate this pronunciation.
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šiddum/u š flank / distance the long side of a real structure (a field, an irrigation
channel); or a distance (e.g., a carrying distance for
bricks)

pūtum/s a g̃ front the short side of a real structure

kı̄num/g i . n a true used to distinguish between an original entity and a new
entity of the same kind (a length, a surface, etc.)45

sarrum/l u l false as previous (but characterizes the new entity). The two
terms are never used together

Logical and other structure

šumma if may serve to open the statement of a problem (as it
opens the protasis of an omen). In a sequence of analo-
gous procedures, it may also signal a variation within the
prescription (“if instead”); inside the prescription it may
also serve to introduce a smaller piece of deductive rea-
soning from already established foundations (“if [as you
have now established] ...”); finally, it may open a proof

epēšum/k ì d proceed/
proceeding

in the nominal sense, it may be used to open the pre-
scription with a phrase “you, by your proceeding”

nēpešum procedure mostly used to close the prescription (which then opens
simply “you”). In one text (Haddad 104) where variants
open šumma, the basic paradigm may start with nēpešum

inūma as used in a few texts inside the prescription to mark a
piece of deductive reasoning on already established foun-
dations

aššum since may serve as the preceding; may also be used to open
the prescription or to introduce a quotation from the
statement (“since, as it was said to you, ...”)

inanna now may serve to separate general information in a statement
from the description of the actual situation

sahārum to turn around marks subsections in the prescription; originally, it
seems, used to state that one has walked around a field
that was laid out, before giving other information

târum to turn back similar to preceding (use as well as origin)

-ma (enclitic on
verb)

: used to separate an operation from a numerical outcome
(in statement as well as prescription)

kı̄ma as much as used in statements to indicate that the numerical out-
come of one operation equals that of another operation.
kı̄ma X may also stand for “as much as (there is of)” the
entity X, that is, its coefficient

mala/a . n a so much as used as an “algebraic parenthesis” when complex quanti-
ties are constructed – “so much as a over b goes beyond”
meaning (a–b)

45 The “true length” of a triangle may also be the length which comes closest to being perpendicu-
lar to the width.
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kayamānum always used (in one text, TMS XII, cf. [Muroi 2001]) to indicate
that a particular step is independent of the particular
numerical parameters of a problem46

Asking

mı̄nûm/
e n . n a m 4 7

what asks for the value of a quantity

kı̄ masi corresponding to
what

an alternative way to ask for the value of a quantity

kiyā how much each used to ask for the values of each of several quantities
(in non-mathematical usage, no plurality seems to be
involved)

Recording, resulting

šakānum/g̃ a r to posit appears to designate various kinds of material record-
ing – “putting down” in a computational scheme, writing
a number onto a drawing, etc. Mainly used to take note
of data in the beginning of the prescription, and in the
formulation of the division problem “what may I posit
...”, cf. above48

lapātum to inscribe to lay down in writing or drawing; some texts “inscribe”
“the equal” of a square and its “counterpart”

nadûm to lay down mathematical synonym of preceding – perhaps slightly
more tending toward drawing

rēška likı̄l may your head
hold

used for the recording in memory of intermediate results
that are not written down

illiakkum comes up for you used in some texts to announce a numerical result

tammar you see used in other texts for the same purpose49

nadānum/s u m to give primarily used about numbers “given” by a table (of
reciprocals etc.); a few texts use it also about numerical
results “given” by an operation

-ma : the simplest way to announce the numerical result of an
operation (cf. above). Not rarely combined with
tammar50

46 Of interest because the term turns up in Greek and Arabic in texts that ask for the “singling
out” of magnitudes that are added in the statement (corresponding to Babylonian bêrum), cf.
[Høyrup 1997: 92f].

47 e n . n a m is a pseudo-Sumerogram apparently invented in the Old Babylonian period.

48 A single text (YBC 6504), also peculiar in other respects (e.g., using í b . s i 8 logographically
for mithartum) “posits” (i n . g̃ a r ) intermediate results

49 A couple of late Old Babylonian texts use the logogram i g i . d u 8, whereas Old Akkadian school
texts and 19th-c. texts from Ur use p à d .
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The text groups

Syllabic and logographic writings of the same operation may occur in the same text.
Mathematical synonyms for subtraction by elimination also regularly (though not often)
occur together within a text, depending on the particular situation and the general
connotations of the term. With very rare exceptions, the other mathematical synonyms
do not occur together, and the choice between such synonyms is indeed one of the
parameters that allows us to distinguish between text groups within the Old Babylonian
mathematical corpus.

As early as [1932: 6], Neugebauer suggested (from palaeography and certain
terminological particularities) a division of the corpus into two main groups. His typical
representatives for these groups (the Strasburg texts and BM 85194) can now be seen
to come, respectively, from the core area of what had once been the Ur III state
(probably Uruk, as indeed already suggested by Neugebauer) and from its northern
periphery (Sippar). In 1945, Albrecht Goetze wrote a chapter for MCT, in which mainly
orthographic (but to a limited extent also terminological) criteria led him to distinguish
6 distinct groups (thereby confirming and refining Neugebauer’s hunches).

In 1996, as the work on translations had sharpened my attention to terminological
shades, I took up the theme – adding two more groups which had been published in
the meantime, the mathematical texts from Susa and those from Eshnunna, and in
[Høyrup 2002] the 19th-c. texts from Ur and two texts from Nippur published by
Eleanor Robson in [2000].51 It turns out [Høyrup 2002: 319–358] that Goetze’s groups
correspond to outspoken terminological differences, and the split between the Ur-III
core area and the periphery becomes more obvious than ever. Moreover, the beginnings
of a history can now be outlined. In spite of what one might expect, the 19th-c. texts
from Ur seem to represent a dead-end – later text groups from the core area do not
share any of its terminological peculiarities (there are certain similarities with texts from
the periphery, but none that suggest direct descent). Instead, the characteristic type
of Old Babylonian mathematics appears to have two relatively independent starting
points – in Eshnunna, in the north-east, in the decades beginning c. 1800 BCE, and in
the south (Larsa?) around or somewhat before the mid-18th century.52

50 YBC 6504 also combines it with i n . g̃ a r – cf. note 48. In the text material presented in [Høyrup
2002], one text (Db2-146) further combines it with elûm, and one (YBC 4675) combines it once
with nadānum and once with elûm. All of these are clearly rare exceptions.

51 Misreading her paper, I also included CBS 43, CBS 154+921 and CBS 165 in this Nippur group.
These texts are not from Nippur, and Eleanor Robson does not claim that they are. She tells me
(personal communication) that they were purchased from a Baghdadi dealer in 1888. They might
be from Sippar.

52 Since the mathematical contents found in Eshnunna and the south is the same and both differ
from the kind of mathematics we find in Old Babylonian Mari (north-west of Babylonia) in the
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The terminological differences between text groups highlights one of the difficulties
in the establishment of a set of “standard translations”, as done above (some of the
problems are pointed out in the list). How can we be sure that a particular term used
in several text groups is meant to stand for the same entity or operation? One example,
mentioned above, is the use of í b . s i 8 as a logogram for mithartum in a restricted
number of texts. Thureau-Dangin, in consequence, transcribed it consistently as
mithartum in TMB, but careful analysis shows this to be a mistake; for the same reason,
the word should not be translated in the same way in its two (or rather, three)
functions.53

Text format

Mathematical texts are formulated in a particular terminology, and translation therefore
involves decisions about how to render this. But whether formulated in words,
diagrams, schemes and/or formulae, they are also arranged in a particular format.
Changing this format entails loss of information about the thought of the author.

A typical line of an Old Babylonian mathematical text (BM 13901 #12, obv. II, 29)
runs like this:

ba-ma-at 21,40 te-he-pe-ma 10,50 ù 10,50 tu-uš-ta-kal

In what I have called the “conformal translation” this becomes:54

The moiety of 21´40´́ you break: 10´50´́ and 10´50´́ you make hold.

When quoting my translations in her recent book on Mathematics in Ancient Iraq, Eleanor
Robson [2008: 277, 279] changes them so as to obtain “natural English word order”.
In the present case this would give

early 18th c. or before [Soubeyran 1984], some inspiration is likely to have been present – perhaps
after Hammurapi’s conquest of Eshnunna in 1761 BCE?

Eleanor Robson [2001: 172] points out that the tablet Plimpton 322 (famous among
mathematicians for its “Pythagorean triplets”) shares the “landscape” format that was used in
Larsa before this city fell to Hammurapi in 1762 bce. Since this format is anyhow the most fitting
for the contents of the text (a table with many columns), and since teachers who had been
accustomed to this format could well go on using it after the change of administrative regime
when it was fitting, we have no reason to date the tablet to before 1762. On the other hand, the
mathematical texts from the south are likely to antedate 1730 – statistics speaks against the
ascription of a large number of undated texts to the period of the “Sealand” state, from which
few dated documents are known.

53 To make things worse, some groups write b a . s i 8 , use “un-orthographic” (syllabo-phonetic)
Sumerian (common in Eshnunna) i b . s i , or employ an Akkadian loan-word basûm. Only precise
scrutiny of all occurrences in the single text groups allows us to decide whether the same
translation is warranted.

54 As usually, I employ Thureau-Dangin’s transcription for sexagesimal place value numbers,
´ indicating decreasing sexagesimal order of magnitude. 10´50´́ thus stands for 10/60 + 50/3600 .
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You break the moiety of 21´40´́ : you make 10´50´́ and 10´50´́ hold.

The reason for this change is that Akkadian is verb-final and English not (to which
comes the way English wraps composite verbal constructions around their object), and
in so far is seems legitimate. However, we notice that the Akkadian line (and the
conformal translation) have a particular “algorithmic structure” which takes advantage
of the verb-final structure of the language:

number1 operationA: number2 operationB

We see that a certain number (number1) is submitted to an operation (A). From this
results a new number (number2), written after a -ma (translated “:”). This resulting
number serves immediately without being repeated as the object of a new operation
(B). In the “natural” translation we see instead that the result is not indicated as such.

This chain-wise organization of the text cannot function everywhere. However,
it is the predominant way of the mathematical authors to arrange their text (in linguists’
terminology, the “unmarked” structure). Eliminating it from the translation makes the
text less algorithmic and more discursive than it should be – and it makes us miss the
rare and somehow significant occurrences of marked constructions.55

The Babylonian texts are also arranged in lines, very often (not consistently, lines
may sometimes be to short to allow it) with line breaks that correspond to textual
breaks. A faithful rendering of the texts should therefore also respect this arrangement.

Returning to the second initial observation, a translation which allows the reader to
grasp how Old Babylonian mathematical thought differs from ours not only needs to
be univocal; it also needs to establish the meaning of Babylonian mathematical terms
not by simple de verbo ad verbum translation but explaining them “conceptual network
to conceptual network” (as does the right column of the above tables). Moreover, it
must reflect the discursive format of the original texts.

Even a direct reading of the Babylonian original texts (whether as written in clay
or in transliteration) must understand their terminology in the same way, and take
note of their organization.

Translating abbacus mathematics

“Abbacus mathematics” is the type of mathematics that was practised in the
“abbacus school”, the Italian56 school for artisans’ and merchants’ sons 11–12 years

55 Eleanor Robson’s book has forced me to formulate this argument; in my [2002] it is not made
explicit.

56 More precisely, thriving between Genoa, Milan and Venice to the north and Tuscany and
Umbria to the south.
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old, existing between 1260 and c. 1600.57 The mathematical contents is close to what
I was still taught in middle school in the 1950s (though at ages 13–14): rule of three,
of partnership and of alligation; simple and composite interest; discounting; and such
things. Some treatises introduce algebra (as I was introduced to it in the same years),
even though this was not a topic of normal teaching but, as Pacioli [1494: 144r] says,
a pratica speculativa, a theoretical outgrowth of the practical-mathematical concerns.

Some years ago I undertook to translate Jacopo da Firenze’s Tractatus algorismi,
written in Montpellier in 1307 and the earliest extant Italian abbacus treatise containing
an algebra (and plausibly the first to have been written). The two earliest abbacus
treatises that we know about are from the years around 1290 (if not even later). Jacopo
thus wrote at a moment when the terminology was still in flux, at least to the limited
extent it was not determined by borrowings and loan translations from the Ibero-
Provençal source tradition.

The linguistic closeness of Jacopo’s text to the vernacular of his time; the simplicity
of the Tuscan syntax of those contemporaries of Dante who did not share his ambition
to emulate the artfulness of Latin when writing in volgare; and the substantial closeness
to a mathematical tradition that was still quite alive in schools half a century ago (and
which was an important ingredient in the shaping of the modern mathematical idiom) –
all of this contributed to making the translation task much easier than that of translating
Old Babylonian mathematical texts. There was no Kuhnian divide between the
conceptual worlds of abbacus and recent mathematics, and much less difference in
language structure between Jacopo’s text and English written at that simple level where
English is a perfect global contact language (or “born pidgin”).

Indeed, once I had decided upon a set of standard translations, much of my first
rough translation of Jacopo’s Tractatus could be made semi-automatically, as a controlled
search-and-replace procedure (the varying spellings and grammatical declinations and
conjugations of course excluded a fully automatic process). Translation of other texts
from the time required slightly more circumspection – when a vocabulary is in flux,
not everybody makes the same choices. On the whole, however, the method worked
even for them. In the model of the initial translation from the Acts, the King James
column was superfluous, and the “interlinear translation” could be arranged as naturally
sounding English and at the same time as a literal translation.

So far, the situation was wholly different from the translation of Old Babylonian
mathematics. However, if the translation is read as the secondary authors read those

57 Traditionally, it has been claimed (without any serious argument having ever been given) to
be inspired by or descend from Fibonacci’s Liber abbaci (and, as far as its geometry is concerned,
from his Pratica geometrie). In [Høyrup 2005] I explain why this cannot be true. Abbacus
mathematics certainly has roots in a wider Mediterranean mathematical culture (as generally
accepted), most directly in the Ibero-provençal area; the details of this are immaterial for the
present discussion, as is the impact of the abbacus tradition on later practical arithmetic.
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of Neugebauer and Thureau-Dangin, that is, through their further implicit or explicit
translation into symbolic operations, similarities turn up, revealing conceptual
incongruities that are easily overlooked. I shall discuss only two instances, but others
could have been pointed out.

One has to do with geometry. A favourite configuration in abbacus geometry is
the scudo or “shield”, a triangle drawn in agreement with this designation as a ∇ (and
often with dimensions so large that a real shield cannot be meant). Mostly the shield
is meant to be equilateral, and this is mostly taken to be so clear that it is not made
further explicit. At times, however, it is stated explicitly. This could of course be done
for pedagogical reasons – even if equilaterality is inherent in the concept, the reader
might need to be taught. But occasionally we find “shields” which are only approximate-
ly equilateral.58 A “substantially adequate” translation as “equilateral triangle” would
thus not fit everywhere, nor would however a translation “approximately equilateral
triangle”. The shield is “a triangle which is equilateral unless further information shows
it not to be” – not exactly a concept we would expect to encounter in a contemporary
mathematical text.59

The other concerns division. Division may be partire in and partire per, respectively
“divide in” and “divide by”. It is easy to overlook the difference and translate both
as “divide by”. At closer inspection of Jacopo’s text, however, it turns out that every
time division is made by a number which has been stated to be the partitore (“divisor”),
division is in; in particular, this holds for all proportional partitions (that is, in
applications of the partnership rule). On the other hand, when a circular diameter is
found from the perimeter, it is always through division per 3 1/7 .

Obviously, the idea behind division in n is the division into n parts, whereas
division per refers to the numerical operation. This, however, is not clear to Jacopo;
time and again he divides per so and so many parts. Nor was it clear to his fellow-
Italians; as time passed, division per ended up dominating even where early texts had
divided in. When we look at Italian texts alone, there is thus no conceptual distinction
between the two different expressions, only an ill-understood and gradually fading
habit . If we look instead at Iberian writings, we see that the difference was still
conceptual in Catalonia as late as 1482 (Francesc Santcliment, ed. [Malet 1998]). The
distinction is thus a trace of historical diffusion – and the fact that normalization of
two-term algebraic equations is a division per while three-term equations are normalized
through division in [Høyrup 2007: 177] could probably tell us something about the
immediate prehistory of Jacopo’s algebra – if only we had possessed the adequate
material from the Ibero-Provençal world, which is not the case.

58 Thus Paolo Gherardi, ed. [Arrighi 1987: 71], a shield with sides 4, 6 and 8 palms – a slightly
obtuse triangle.

59 On the other hand, it might fit into Lakatos’ “logic of mathematical discovery” [1976].
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Even when we examine a mathematical type so close to our own as abbacus
mathematics, close attention to words is thus needed if we want to be sure to
understand its concepts and if we want to trace historical trends.

A concluding remark

What was said in the preceding two sections about how translations “should” be
made was not meant as an general imperative. They stated what must be done if one
is the overcome the “Kuhnian divide” between our present mathematical thought and
that of a past culture – and therefore they do not concern the problem of translation
alone but also a dictionary-based understanding of the ancient texts themselves. In any
case, translations of this kind are meant, in the introductory simile, for the “preachers
and teachers” of the history of mathematical thought rather than for the lay users of
the history of mathematics.

Translations are indeed always mediators between a foreign text and a particular
present perspective (Peirce’s “perspective from nowhere” is a philosophers’ pipe dream);
it cannot serve all perspectives, it must forsake rendering certain aspects if it is to
represent others adequately. Rendering a sonnet as a sonnet implies that the words
must be treated rather freely; translating the words precisely implies a translation into
prose or very clumsy verse. And: When writing the economic history of Ur III it is quite
fitting to express the quantity of cloth woven in Ur in a particular year in modern
metrology; if one wants to illustrate the history of accounting, the texts have to be
rendered with the metrology they used – and if the history of tabular formats is in
focus, the organization of texts on tablets must be conserved in translation.

Similarly when mathematical texts are transposed and interpreted. Referring to
a paradigmatic discussion we may say that the questions asked by Sabetai Unguru
in [1975] were fully legitimate, and that they had to do with overcoming the Kuhnian
divide which separates us from the Greek geometers. But the questions addressed by
André Weil [1978] were also legitimate, and beyond the desire of the present-day
mathematician to recognize his own activity in the past they had to do with a very
deep and intricate question pertaining to the philosophy of mathematics60 – namely
that Eugene Wigner’s renowned “unreasonable effectiveness of mathematics” [1960]
does not respect the limits between incompatible conceptual worlds (for which reason
there must be some connection between the theorems of Elements II and those of modern
algebra). The effort of both to deny the other part the right to ask their questions, on
the other hand, is hardly legitimate.

As philosophers are turning away from the “linguistic turn”, having learned as

60 Within the horizon of each combatant one might certainly claim that the answers they give
are partially mistaken, but that is not the point here. Nor are the nasty ways in which both attacks
are formulated, worthy of a Luther or a Paracelsus.
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much from it as they could, historians of scientific knowledge should perhaps recognize
that the corresponding approach to their own field does not lead to the only truth worth
knowing. Discussions of discordant conceptual worlds and the difficulties they create
for translators have to be combined, inter alia and to the extent it can be done, with
understanding of the practice of the ancient scholars61 and related to the objects they
were knowing about.
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