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Abstract. We apply constraints and global optimization to the problem
of restricting overlapping of gene predictions for prokaryotic genomes.
We investigate existing heuristic methods and show how they may be
expressed using Constraint Handling Rules. Furthermore, we integrate
existing methods in a global optimization procedure expressed as proba-
bilistic model in the PRISM language. This approach yields an optimal
(highest scoring) subset of predictions that satisfy the constraints. Exper-
imental results indicate accuracy comparable to the heuristic approaches.

1 Introduction

Traditionally, gene finding has been considered as a classification task which
could be performed without much context [6]. This ignores the problem of the
constraints between the set of predicted genes and their placement in the genome.
A common problem occurs with overlapping genes. Overlapping genes are rare
in prokaryotic genomes, but they do occur [12, 8].

The traditional intrinsic gene finding methods have a tendency to predict too
many overlapping genes (particularly in GC rich genomes) because the feature
patterns of a gene predicted in one reading frame give rise to similar feature
patterns in other reading frames. This effect is known as shadow genes.

Several gene finders deal with the problem of overlapping genes by discarding
some of the overlapping predictions in a post-processing step. In this paper we
consider and compare such post-processing techniques and give unified presenta-
tion using Constraint Handling Rules [7]. We demonstrate how such rules can be
formulated as constraints and integrated with a global optimization procedure
implemented as a constrained Markov chain in the PRISM system [13].

We adopt a divide and conquer approach to gene finding, which can be seen
as composed of two steps:

1. A gene finder supplies a set of candidate predictions p1 . . . pn, called the
initial set.

2. The initial set is pruned according to certain rules or constraints. We call
the pruned set the final set.
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The present paper is concerned with methods for the second step. The pur-
pose of this step is to repair effects of flawed assumptions in the first step, i.e.
leading to over-prediction of overlapping genes, and more specifically to improve
accuracy by pruning false predictions. We consider this step as a Constraint
Satisfaction Problem (CSP).

Definition 1. A Constraint Satisfaction Problem is a triplet 〈X, D, C〉. X is a
set of n variables, X = x1, . . . , xn, with domains D = D(x1), . . . , D(xn). The
constraints C impose restrictions on possible assignments for sets of variables.
A solution is an assignment of a value v ∈ D(xi) to each variable xi ∈ X,
consistent with C.

We introduce variables X = xi . . . xn corresponding to each prediction p1 . . . pn

in the initial set. All variables have boolean domains, ∀xi ∈ X, D(xi) = {true, false}
and xi = true ⇒ pi ∈ final set.

If there are multiple solutions, then we are usually interested in the “best”
one. We interpret “best” as meaning a solution that contains as many real genes
as possible and as few incorrect predictions as possible. We do not know in
advance which predictions are correct, but optimize the probability (or a sim-
ilar measure) that the predictions are correct. This extends the problem as a
constraint optimization problem.

Definition 2. A Constraint Optimization Problem (COP) is a CSP where each
solution is associated with a cost and the goal is to find a solution with minimal
cost1.

2 Local heuristic methods

An approach taken by many gene finders is to employ local heuristic pruning
rules to post-process a set of gene predictions. These rules make pruning decisions
based on the context of only a subset of the predictions. Typically, the rules
consider overlapping predictions on a case by case basis and deletes inconsistent
predictions based on various criteria. The rules essentially work as propagators
that reduce the domains of variables, e.g. a deletion corresponds to reducing the
boolean domain of the corresponding variable to false. The drawback is that
the rules are generally not guaranteed to yield a globally optimal solution and
that they may produce different solutions depending on the order in which they
are applied.

These types of rules are conveniently expressed as simplification rules in the
Constraint Handling Rules (CHR) language. Such rules work on a constraint
store, which starts out as the initial set. The simplification rules remove predic-
tions from the constraint store, until no more rules apply. Then, the constraint
store represents the final set.

As example, consider the post-processing procedure of the Genemark frame-
by-frame gene finder [11] expressed as a single rule in CHR:

1 Or equivalently, a solution with maximal negative cost (utility).
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prediction(Left1,Right1), prediction(Left2,Right2) <=>
Left1 =< Left2, Right1 >= Right2
| prediction(Left1,Right1).

The head of the rule — the part before <=> — matches two predictions in
the constraint store. The rule replaces both predictions with the first prediction
if the first prediction completely overlaps the second prediction. This condition
is expressed in the guard of the rule – the part between the head and the | char-
acter. The rule is applied for all predictions matching the head and the guard,
effectively removing all predictions which are completely overlapped by another
prediction. With this rule it does not matter in which order the predictions are
processed – the final set will be same. This is a consequence since the program
consisting of the unique rule presented is confluent [1], i.e. it is not sensitive to
the order of execution.

As an example of non-confluent rules, consider the scheme used in the ECO-
PARSE gene finder [9] which addresses partial overlaps and the score of the
predictions:

prediction(Left1,Right1,Score1), prediction(Left2,Right2,Score2) <=>
overlap_length((Left1,Right1),(Left2,Right2),OverlapLength),
length_ratio((Left1,Right1),(Left2,Right2),Ratio),
length(Left1,Right1,Length1), length(Left2,Right2,Length2),
OverlapLength > 15, Score1 > Score2
((Length1 > 400, Length2 > 400) ; Ratio > 0.5),
| prediction(Left1,Right1,Score1).

prediction(Left1,Right1,Score1), prediction(Left2,Right2,Score2) <=>
overlap_length((Left1,Right1),(Left2,Right2),OverlapLength),
length_ratio((Left1,Right1),(Left2,Right2),Ratio),
length(Left1,Right1,Length1), length(Left2,Right2,Length2),
OverlapLength > 15, Ratio =< 0.5, Length1 =< Length2
| prediction(Left1,Right1,Score1).

If two predictions overlap by more than 15 bases, then one of them is removed.
If the ratio between the longest and shortest of the predictions is more than
0.5, then the lowest scoring is removed (first rule) otherwise the shortest one is
removed (second rule). Note how this may lead to different effects depending on
the order in which predictions are considered, as illustrated in figure 1.

There are other approaches which employ more complex local heuristics. An
example is heuristics of the RescueNet gene finder [10] which has rules consider-
ing scores, percent overlaps and local overlaps between up to three predictions.
These heuristics can be implemented with nine CHR rules (not shown), but the
resulting program is not confluent.

It is a general theme for the heuristics to be based on two central character-
istics of overlapping predictions – the score of the predictions and the (relative)
lengths of the predictions and the overlap.
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P1: score=0.3, length=500

P3: score=0.25, length=480

P2: score=0.6, length=220

Fig. 1. ECOGENE post processing: We have two predictions P1 and P2 that overlap
each end of a third prediction P3 by more than 15 bases. If P1 and P3 is are considered
before P2 and P3 then P3 will be removed by the first rule. Consequently P2 does not
overlap and is kept. If they are considered in opposite order, however, then P2 will be
removed by the second rule and subsequently P3 is removed by the first rule.

3 Global optimization

We would like the final set to reflect the relative confidence scores in the pre-
dictions assigned by the gene finder and at the same time be consistent with
the overlap constraints. To accomplish this we reformulate the problem as a
constraint optimization problem.

Let the scores of p1 . . . pn be s1 . . . sn and si ∈ R+. The scores are the con-
fidence scores given by the underlying gene finder, i.e. they reflect the supposed
probability that a prediction constitutes a real gene. Such scores are commonly
expressed as probabilities, but need not be.

We would like to maximize the sum of the scores
∑n

i=1
si since it is directly

related to the criteria of the model that produced the initial set. With this crite-
ria, the inclination to prune a prediction in the final set is inversely proportional
to the score which is expected to reflect the underlying models belief that the
prediction is a real gene.

To perform global optimization with a set of constraints, we propose to use a
constrained first-order Markov chain. We assume that a gene finder has produced
initial set of predictions, p1 . . . pn, and further require these to be sorted by
the position of their left-most base, such that ∀pi, pj, i < j ⇒ left-most(pi) ≤
left-most(pj). The variables x1 . . . xn of the CSP are given the same ordering.

The Markov chain has a begin state, an end state and two states for each
variable xi corresponding to its boolean domain D(xi). The state corresponding
to D(xi) = true is denoted αi and the state corresponding to D(xi) = false is
denoted βi. In this model, a path from the begin state to the end state corre-
sponds to a potential solution of the CSP. The Markov model is illustrated in
figure 2. The begin state has transitions to α1 with probability P (α1|begin) = σ1

and β1 with probability P (β1|begin) = 1 − σ1. The last two prediction states,
αn, βn can only transit to the end state, i.e. P (end|αn) = P (end|βn) = 1. For
all other states, we have the transition probabilities,

P (αi|αi−1) = P (αi|βi−1) = σi and P (βi|αi−1) = P (βi|βi−1) = 1 − σi

We normalize the scores to the interval (0.5, 1], yielding the normalized prob-
ability scores σ1 . . . σn, in the following way,
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Fig. 2. Illustration of the Markov chain used. The transitions are marked with their
corresponding probabilities. Only the first few and the last states are included - the
dotted transition arrows symbolize the omitted α3 . . . αn−1 and β3 . . . βn−1 states and
their transitions, which follows the same principle as the previous.

σi = 0.5 + λ +
(0.5 − λ) × (si − min(s1 . . . sn))

max(s1 . . . sn) − min(s1 . . . sn)

λ is a small pseudo-count to ensure that all σ scores are above 0.5. Since α
probabilities are always larger than 0.5, the model prefers α states over their
corresponding β states. Hence, a most probable path from the begin state to
the end state will not include any β states. The predictions that maximize the
product of the σ scores will also maximize the sum of the original scores, since the
normalized σ scores are monotonic to the original scores, σi ≥ σj ⇐⇒ si ≥ sj .

For inference with the model we use the Viterbi algorithm [16], which returns
a most probable state sequence {begin, S1, S2 . . . Sn, end}|Si ∈ {αi, βi}.

Constraints are defined on states that are not allowed to occur together in
a path. These constraints force the Viterbi algorithm to choose a most prob-
able path, consistent with the imposed constraints, i.e. this path may include
β states. The constraints are formulated as CHR rules similar to those of the
local heuristics, but instead of removing predictions they define conditions for
inconsistency. We call these inconsistency rules. Inconsistency rules match pre-
dictions corresponding to α and β states in the head of the rule. The guard of
the rule ensures that the additional criteria for rule application are met and the
implication of the rules is always failure. Note that such rules are necessarily
confluent.

As example, version 3 of the Glimmer gene finder [5] use a similar approach
with a constraint that enforce a maximal length of overlaps (110 for E.coli). In
our system, this constraint is formulated as,

alpha(Left1,Right1), alpha(Left2,Right2) <=>
overlap_length((Left1,Right1),(Left2,Right2),OverlapLength),
OverlapLength > 110
| fail.

The Genemark heuristic rule is represented as two inconsistency rules,
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alpha(Left1,Right1), alpha(Left2,Right2) <=>
Left1 =< Left2, Right1 >= Right2 | fail.

beta(Left1,Right1), alpha(Left2,Right2) <=>
Left1 =< Left2, Right1 >= Right2 | fail.

The first rule states that one prediction may not completely overlap another
and the second says that we cannot include a prediction if a pruned prediction
completely overlaps it. Since the heuristic is confluent it may also be applied to
the initial set as a filtering algorithm before the process of global optimization.
We can reformulate the two ECOGENE rules in the same fashion (guard is
omitted, but it is the same as in the heuristic rules),

alpha(Left1,Right1), alpha(Left2,Right2) <=> ... | fail.
beta(Left1,Right1), alpha(Left2,Right2) <=> ... | fail.

Note that the Score arguments have been removed. They are now implicitly
integrated in the optimization algorithm. The confluence issue is resolved due
to the optimization procedure. In effect, the execution strategy that maximizes
the score is applied.

3.1 Implementation in PRISM

A PRISM program that implements the constrained Markov chain is created
from the initial set of predictions and constraints expressed as CHR rules. PRISM
is an extension of Prolog with special goals representing random variables. A
derivation of the PRISM program corresponds to a path through the Markov
chain. The Markov chain is implemented as a recursive predicate, such that in
the i′th recursive call, the (random) variable xi is assigned a value corresponding
to a Markov chain state; αi or βi. After each recursion — an attempted transition
in the Markov model — the constraints are checked.

Relevant recent states As part of a derivation we maintain a list of recent
states (mi) sorted by the right-most position of the corresponding predictions.
Constraints are only checked for predictions corresponding to elements of mi.
In step i, we construct mi as the maximal prefix of xi + mi−1, such that
xj ∈ mi ⇐⇒ right-most(pj) ≥ left-most(pi). If the constraints propagate
fail, then the PRISM derivation fails and the (partial) path it represents is
pruned from the solution space.

The most probable consistent path is found using PRISMs generic adaptation
of the Viterbi algorithm for PRISM programs [14].

4 Evaluation

In lack of a true golden standard, we use an accepted reference set to define
the set of ”correct” genes. A slight complication of this approach is that the
reference set itself may have incorrect and missing annotations. True positives
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are gene predictions in the final set which are included (exactly) in the reference
set and false positives are those predictions that are not.

Traditionally, in gene finding, accuracy is measured in terms sensitivity and
specificity. Sensitivity measures the fraction of reference genes exactly predicted
by the approach and specificity measures the fraction of predicted genes that are
correct. Since the starting point is the initial set of predictions (which may omit
some potential genes) we cannot improve on sensitivity. The goal of a pruning
approach is then to improve on specificity with minimal impact to sensitivity.

We consider a pruning approach successful wrt. to an initial set when it
prunes false positives at a higher rate than it prune true positives. This is re-
flected by the difference in sensitivity and specificity of the final set compared
to the initial set.

We consider constraints safe when the constraints prune only false positives.
Neither of the examined constraints are safe with respect the RefSeq annotation
of E.coli, NC 000913. Three of the reference genes are completely overlapped
by another reference gene. These would be removed by the genemark heuristic
and hence it is not safe, although the negative impact of sensitivity would neg-
ligible. Similarly with the Glimmer constraint – the reference annotation have
four overlaps longer than 110 bases which would be removed by this constraint.
There are 93 overlaps longer than 15 bases. All of these would be removed by
the ECOGENE constraints, which is therefore expected to have a noticeable
negative sensitivity impact.

4.1 Experimental validation

We compare the different approaches using the predictions from a very simple
codon preference based gene finder – the simplest model described in [4]. The
gene finder has been trained on E.coli NC 000913 and applied to predict genes
in the same genome. It overpredicts quite a lot – a total of 10799 predictions for
the genome, which has 4145 known genes.

We ran the constrained Markov chain using the gene finder predictions as
initial set, applying our adaptations of the both the Genemark constraint, the
ECOGENE constraint and the Glimmer3 constraint. We also tested the local
heuristic versions of the Genemark and ECOGENE constraints. The results are
summarized in table 1.

Both the Genemark and ECOGENE heuristics achieve quite impressive im-
provement compared to the initial set. Our global optimization achieves better
sensitivity than ECOGENE and better specificity than Genemark, but seen as
a combination of the measures, the result is not significantly better.

Note that the optimal or highest scoring set of predictions subject to the
constraints is not necessarily the most successful, but it is the one that most
faithfully reflects the confidence scores assigned by the gene finder.

The purely declarative CHR implementations of genemark or ECOGENE
rules are quite slow (hours), e.g. it essentially considers each pair of constraints
resulting in O(n2) complexity, n being the number of predictions in the initial
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Method #predictions Sensitivity Specificity Time (seconds)
initial set 10799 0.7625 0.2926 na

Genemark rules 5823 0.7558 0.5379 1.4
ECOGENE rules 4981 0.7148 0.5947 1.7

global optimization 5222 0.7201 0.5714 75
Table 1. Accuracy of predictions using different overlap resolution approaches. Note
that the results for the ECOGENE heuristic may vary depending on execution strategy
- in case of above results, predictions with lower left position are considered first.

set. However, with proper control in place (using the relevant recent states opti-
mization described in section 3.1), they can be made to run very fast (less than
two seconds). The running time for the global optimization is slower – it takes
a little more than one minute. This is still acceptable.

5 Conclusions

We presented a novel way to post-process gene prediction results based on con-
strained global optimization. Contrary to the heuristic approaches our approach
provides an optimality guarantee – the final set of prediction will be the max-
imally scoring set that satisfies the imposed constraints. We have incorporated
existing heuristic methods with the optimization procedure using inconsistency
rules implemented in CHR. Currently, the approach has similar accuracy to the
heuristic methods. The results indicate that maximizing the sum of scores have
the effect of including more short predictions. This could be addressed weight-
ing the scores by prediction length. We also plan to experiment with different
constraints to achieve better accuracy. Our approach is limited to local overlap
constraints and is not well-suited for global or long-distance constraints.

We are not the first to use dynamic programming based approaches to post-
processing of gene predictions. Version 3 of Glimmer [5] use a custom dynamic
programming algorithm which is similar to the present approach, but incorpo-
rates only the maximal overlap constraint. Another difference is that our ap-
proach is expressed as a declarative PRISM program and can therefore utilize
the generalized Viterbi algorithm. Our approach is similar to constrained HMMs
in PRISM, which has previously be applied to other biological sequence analysis
tasks [2, 3]. A main difference is that we express constraints with CHR rules.

CHRiSM[15] already combines CHR and PRISM and is to our knowledge
the first system to do so. CHRiSM assigns probabilistic semantics to CHR rules,
which are interpreted as chance rules – e.g. even if a rule head is matched the
rule is only applied with a certain probability. The main difference with our
approach is that we use ordinary CHR rules in conjunction with a PRISM pro-
gram, although ordinary CHR rules may be seen as a special case of CHRiSM
rules, where the probability of invocation is one. Additionally, the form of the
CHR rules we use is restricted (inconsistency rules) and they are only used in
the constraint checking part of the PRISM program. It would be interesting to
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use CHRiSM as a method of incorporating soft constraints with our approach,
e.g. redefining the inconsistency rules as CHRiSM chance rules.
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analysis of biological sequence data” funded by the NABIIT program under the
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References

[1] S. Abdennadher, T. Fruehwirth, and H. Meuss. On confluence of constraint han-
dling rules. Lecture Notes in Computer Science, 1118:1–15, 1996.

[2] Henning Christiansen, Christian Theil Have, Ole Torp Lassen, and Matthieu Pe-
tit. A constraint model for constrained hidden markov models: a first biological
application. In Proc. of the International Workshop on Constraint Based Methods
for Bioinformatics, pages 19–26, Lisbon, Portugal, September 2009.

[3] Henning Christiansen, Christian Theil Have, Ole Torp Lassen, and Matthieu Petit.
Inference with constrained hidden markov models in PRISM. TPLP, 10(4-6):449–
464, 2010.

[4] Henning Christiansen, Christian Theil Have, Ole Torp Lassen, and Matthieu Petit.
Bayesian Annotation Networks for Complex Sequence Analysis. In John Gallagher
and Michael Gelfond, editors, Technical Communications of the 27th International
Conference on Logic Programming (ICLP’11), volume 11 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 220–230, Dagstuhl, Germany, 2011.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[5] Arthur L. Delcher, Kirsten A. Bratke, Edwin C. Powers, and Steven L. Salzberg.
Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformat-
ics, 23:673–679, 2007.

[6] James W. Fickett and Chang-Shung Tung. Assessment of protein coding mea-
sures. Nucl. Acids Res., 20(24):6441–6450, 1992.
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