Regular Types, Modes, and Model
Checking

John Gallagher
University of Roskilde, Denmark

Collaborators
Kim Henriksen, Roskilde
Framework 5 IST ASAP project partners
Univ. Politécnica de Madrid
Southampton Univ.

Bristol Univ.
Computer Science, building 42.1
Roskilde University
Universitetsvej 1
P.O. Box 260

DK-4000 Roskilde

Denmark

. Phone: +45 4674 2000

Computer Science Fax: +45 4674 3072
Roskilde University www.dat.ruc.dk

Background - mode analysis

e Instantiation modes

® perhaps the earliest static analysis of logic
programs (Mellish, Bruynooghe,... mid 1980s)

® abstract substitutions by mode substitutions
(e.g. ground, partly instantiated, free)

® abstract unification algorithm to propagate
modes

®* mostly interested in modes of call patterns,
hence goal-directed interpretation.

® derivation of modes like p(+,+,-,?) allows
compiler optimisations

ComputerSaence s WLPE 2004, September 2004

Roskilde University

Booleans and constraints for modes

® The system TOUPIE (Corsini et al.) took a
different approach

® Mode analysis seen as a boolean constraint
solving problem.

e Given equality X=f(Y,,...,Y,) in the
program one could associate a constraint
(after unifying the terms)

e Xis ground iff Y, is ground and and Y,, is
ground, represented simply as X <= Y;A...AY,

* Note that this is a success mode, not a call
mode.

Computer Science ; WLPE 2004, September 2004

Roskilde University

Boolean constraints (continued)

e Codish and Demoen exploited a similar
idea, but using explicit values true and
false, and encoding the boolean
groundness dependencies using atomic
formulas
® e.g. X = [Y]|Z] is replaced by a formula iff(X,Y,Z)

with the definition
iff(true,true,true).
iff(false,true,false).
iff(false,false,true).
iff(false,false,false).
essentially the truth table for X <= YaZ

Computer Science ’ WLPE 2004, September 2004

Roskilde University

Abstract programs

e After replacing equalities by iff atoms,
Codish and Demoen obtained an abstract
program.

e Computing the least model gave an
abstract success set for the program
predicates.
® E.g. for append, they obtained the model

{append(true,true,true), append(true,false,false),

append(false,true,false),append(false,false,false)}
This a a representation of the boolean dependency
append(X,Y,Z) = XAY < Z

ComputerSaence ‘ WLPE 2004, September 2004

Roskilde University

More boolean dependencies

e Codish and Demoen then showed that boolean
dependencies could encode other properties than
groundness.

e E.g. considering the equality X=[Y|Z] one can see
that (after successfully unifying)
® “Xis a list iff Z is a list”, represented as iff(X,Z) where

iff(true, true). iff(false,false).
® Similarly X=[] is replaced by iff(X) where iff(true).

e Compute the least model for the abstract program
for append
e {append(true,true,true), append(true, false, false)}
* which represents append(X,Y,Z) = XAY<Z
® “Zis a list iff both X and Y are lists”

ComputerSaence s WLPE 2004, September 2004

Roskilde University

Pre-interpretations

e Boulanger, Bruynooghe and Denecker

® Consider the language of a program P. Standard
semantics is based on Herbrand pre-interpretation,
which has the Herbrand universe U, as domain as
interpretation.

® Semantics is the least model M,
® U, is the most precise domain possible

®* One can define an abstraction by defining a pre-
interpretation J over some more abstract domain D,.

¢ Then compute a model M, based on J.
® Any atom true in M, is also true in any other model.
® Hence M, represents a safe approximation of M,

Computer Science ; WLPE 2004, September 2004

Roskilde University

Capturing modes in a pre-interpretation

e It seems at first sight difficult to capture
modes in a “ground semantics”.

® One can regard the language as containing
extra constants {v1,v2,...} which
represent variables

¢ The minimal model contains all atomic
logical consequences (the Clark semantics)

® occurrences of v1,v2,... in the minimal Herbrand
model are isomorphic to the occurrence of
variables in true atoms.

Computer Science ’ WLPE 2004, September 2004

Roskilde University

The groundness pre-interpretation

Consider a domain of interpretation {g,ng}
Given function symbols {[1/0, [.].1/2, a/0, v/0}
We assume that v is non-ground
Pre-interpretation is

[1—=4

a—>g

vV —= ng

[glg]l =g

[gIng] — ng

[nglg] = ng

[ng|ng] — ng

® The least model of append over this interpretation is

{append(g,9,9), append(g,ng,ng),append(ng,g,ng),
append(ng,ng,ng)}
Just the same as the boolean dependencies.

Computer Science ;

Roskilde University

WLPE 2004, September 2004

The list pre-interpretation

Consider a domain of interpretation {list, nonlist}
Given function symbols {[]/0, [.].]1/2, a/0}
Pre-interpretation is

[1— list

a — nonlist

[list|list] — list

[nonlist|list] — list

[list|nonlist] — nonlist

[nonlist|nonlist] — nonlist
The least model of append over this interpretation
IS

{append(list,list,list), append(list,nonlist,nonlist) }
Just the same as the boolean dependencies.

Computer Science ;

Roskilde University

WLPE 2004, September 2004

New mode analyses

¢ The elements of the pre-interpretation can be
thought of as partitioning the set of all terms.

nonvar

(¢

Computer Science ;

Roskilde University WLPE 2004, September 2004

The fgi pre-interpretation

e Use the three domain elements {f,g,i}
* free, ground, and partly instantiated
e Pre-interpretation over {[]/0, [.|.1/2, a/0}

[1—-g [fIf] —i Model of append
a—g [i[f] =i append(g,9,9)
[glg]l =g [gli] —i append(g,v,v)
[flg] =i [fli] =i append(g,i,i)
[ilg] —i [i]i] —i append(g,v,i)
[glf] =i append(i,g,i)
append(i,v,i)
append(i,i,i)

Note that we cannot summarise
the model as a boolean formula.

Computer Science ’

Roskilde University WLPE 2004, September 2004

Pre-interpretations plus abstract compilation

e Pre-interpretations were “compiled in” to a
program

e Gallagher-Boulanger-Saglam (ILPS-1995)

e Various simple mode and type analysis
shown

e Infinite pre-interpretations (e.g. size-
norms) could also be handled in this
approach.

Computer Science f

Roskilde University WLPE 2004, September 2004

Type Analysis (set based analysis)

Aim of set-based analysis - to find a conservative
approximation of the set of values that can appear at
a given program point (work goes back to [Reynolds, 1968])

a([1,X,X).
q([e(X1)|Y],Ace,X) <

integer(X1), q(Y,c(X1,Ace),X).
q([d(X1)|Y],Ace,X) <

integer(X1), q(Y,d(X1,Acc),X).
P(X,Y) < q(X,0,Y).

\ Sy = 0| c(Int, Sy) | d(Int, S,)

(Sy is an infinite regular set of terms)

ComputerSaence S WLPE 2004, September 2004

Roskilde University

Set-based Analysis for Specialization

S 5,(X) < action, (X,Y), s5(Y).
S 85(X) < actiony,(X,Y), s5(Y).
2 So(X) < actiong(X,Y), sz(Y).
Problem - to get an accurate specialization of s,.
S
3 exec([call(p(N)) | Cont],Stack) <
code(p(),Pcode),
Example: When specializing (Cont,Stack, Stackl),
interpreter for procedure calls, exec(Pcode,Stackl).
approximate the stack, 31006
otherwise continuation code exec([return],Stack) <
is unknown. (Stack, ContCode,Stack1l),
exec(ContCode,Stackl).
Computer Science ; WLPE 2004, September 2004

Roskilde University

Regular Approximation of Data Structures

Stack — cons(Pcont,S;) | cons(Rcont,S,)
S, — cons(Qcont,Stack) call r;
S, — emptyStack
procr {
call p;

Stack = (Pcont Qcont)*Rcont)

procp {
In general, non-deterministic tree grammars are ife {return}

. else call q;
required to represent such structures. 3

procq {

callp; }

comPUterSCIence > WLPE 2004, September 2004
Roskilde University

Set-Based Analysis

e There are several approaches to set-based
analysis

® Derive set constraints from the program text
and solve the constraints [Heintze & Jaffar]

® Abstract interpretation of the program over a
domain of regular types [Jones, Dart & Zobel,
Janssens & Bruynooghe, Gallagher & de Waal, van
Hentenryck et al., ...]

* Approximate the (logic) program by a monadic
“type” program, and then transform that
program to a normal form [Frihwirth et al.].

ComputerSaenr.e # WLPE 2004, September 2004

Roskilde University

Non-Deterministic Finite Tree Automata
(Non-deterministic tree grammars)

Tree automata provide a means of specifying infinite sets of
trees (terms) over some signature .

A tree automaton over Y is a tuple <Q, q*, A> where
Q is a finite set of states
q* € Q is an accepting state
A is a finite set of transitions of the form
f(qla' . 'aqn) — o
where q, q;5...,9, € Q, and f'is an n-ary
function in .

Example: g* =Sy, transitions {0 — Sy, c(Int, Sy) — Sy, d(Int, Sy) — Sy}

ComputerSaence WLPE 2004, September 2004
Roskilde University

Non-Deterministic Finite Tree Automata (NFTAs)

A tree automaton is (top-down) non-deterministic if contains
two transitions with

the same right-hand state q, and
the same function f on the left-hand-side.

Example: {[] — As, [A|As] — As,[] — Bs, [B|Bs] — Bs,
[]—S, [A|As] — S, [B|Bs] =S, a— A, b— B}
Accepting state S represents the union of As (the set of lists of
element a), with Bs (the set of lists of element b).

{[]. [a], [a.a]...., [b],[b,b,[b,b,b],...}
The non-deterministic transitions are highlighted.

Computer Science ; WLPE 2004, September 2004

Roskilde University

Limited Precision of Deterministic Grammars

append([], Ys,Ys).
append([X|Xs], Ys, [X|Zs]) < append(Xs,Ys,Zs).

?- append(A,B,C). with a deterministic
j \ 9 automaton, the best we can

do is

l—A [[—B [—C

[a| A]— A [b|B]—B [D|C]—C
a—D

[a,a,....a] [b,b,....b] b—D
This is the set of lists
of a and b (mixed).
[a,a,b,a,b,b,....a]

comPUterSCience ; WLPE 2004, September 2004

Roskilde University

Increased Precision of Non-Determinism

With NFTAs, we can describe a more precise result.

[a,a,a,....,b,b,b] sequence of ‘a’ followed by sequence of ‘b’

The extra precision can be used for more accurate debugging,
specialisation, verification etc.

ComputerSaence ‘ WLPE 2004, September 2004

Roskilde University

Analysis For Non-Deterministic Descriptions

e Set-constraint approaches yield
descriptions

® Previous abstract interpretations used only
descriptions

e QOur aim: to achieve the precision of set-
constraints within the flexible framework of
abstract interpretation (first suggested by
Cousot & Cousot 1995).

ComputerSCIence S WLPE 2004, September 2004

Roskilde University

Determinisation of FTAs

e Any FTA can be determinised.

® There is an equivalent FTA (defining the
same sets of terms) that is bottom-up
deterministic

e In a deterministic FTA, each term is in at
most one type (state). Types are disjoint.

Computer Science ; WLPE 2004, September 2004

Roskilde University

Modes as Types

e Modes are also types

e Add an extra constant $VAR to the language
(which is defined to be non ground)

e Define types var, static (or ground) and dynamic.

Transitions

a — static

b — static
f(static,...,static) — static

- [static|static] — static

a — dynamic

b — dynamic

f(dynamic,..., dynamic) — dynamic
[dynamic | dynamic] — dynamic
$VAR — dynamic

$VAR — var

Computer Science ; WLPE 2004, September 2004

Roskilde University

Determinised modes

H H tati
e Modes static, dynamic and var

[] — static +
a — static
b — static ‘ nonvar-nonground (nvng)

[static|static] — static
f(static,...,static) — static

[var|*] = nvng

[nvng|*] — nvng
f(*,...,var,...,*) = nvng
f(*,...,nvng,...,*) = nvng

$VAR — var +

compumrsqence ' WLPE 2004, September 2004

Roskilde University

Determinisation of list/dynamic

[T — list

[list|list] — list
[nonlist|list] — list
[nonlist|nonlist] — nonlist
[list|nonlist] — nonlist

a — nonlist

b — nonlist

f(*,*,...,*) — nonlist

Writing this as “types” for list and nonlist
list = []; [nonlist]list]; [list|list]

nonlist = a; b; [nonlist|nonlist]; [list|nonlist]; f(*,...,*);...

ComputerSaence ' WLPE 2004, September 2004

Roskilde University

Abstract compilation of a pre-interpretation

1. Put each clause in normal form

® every argument of predicates (apart from =/2) is a
variable

® every equality atom is of the form f(Xy,...,X,)=X,

Example

append(U,X,X) :- []=U.

append(U,Y,V) :- append(Xs,Y,Zs), [X|Xs]=U,
[X|Zs]=V.

reverse(U,V) :- []=U, []=V.

reverse(U,V) :- reverse(Xs,W),append(W,Z,V),
[XIXs]=U, [X|X;]=Z, [1=X;.

2. Then replace = by —. The predicate — is defined
by a pre-interpretation (determinised FTA).

Computer Science ‘ WLPE 2004, September 2004

Roskilde University

Least model wrt to a pre-interpretation

® The least model of the transformed
program P is Ifp(T)

e The arguments of the predicates (apart
from —) are domain elements (types).

e E.g. using the domain {list, nonlist} and
the determinised transitions, the least
model is

reverse(list, list)
append(list, nonlist, nonlist), append(list, list, list)

Computer Science ‘ WLPE 2004, September 2004

Roskilde University

Mixing modes and types in BTA

¢ Binding time analysis in off-line partial
evaluation
e Static, dynamic and program-specific types

(az)

X

S
— | static

ComputerSuence ' WLPE 2004, September 2004

Roskilde University

Summary - regular-type-based analysis

=

. Define some regular types

2. Determinise the corresponding FTA,
obtaining a pre-interpretation

3. Compute the minimal model wrt to the
pre-interpretation

ComputerSaence | WLPE 2004, September 2004

Roskilde University

Model Checking

Checking whether given program-specific
properties hold (at some program point)
Reasoning over all reachable states

For finite state systems, complete
exhaustive coverage is possible

For infinite state systems we abstract the
state space

Computer Science ‘ WLPE 2004, September 2004

Roskilde University

Even-odd

odd_even:- even(X), even(s(X)).
even(zero).

even(s(X)):- odd(X).
odd(s(X)):- even(X).

Can even_odd succeed? We have seen above two
approaches:

=

. Compute a regular approximation

2. Compute a pre-interpretation over the abstract
values {even, odd} defined by

zero — even. s(even) — odd. s(odd) — even.

Computer Science ‘ WLPE 2004, September 2004

Roskilde University

lists of as and bs

[]-> alist.

alalist] -> alist. . .
ralatist] show that reversing an ablist

[] -> blist. yields a balist.

[b|blist] -> blist.

[a|blist] -> ablist.
[a]ablist] -> ablist.

[blalist] -> balist.
[b|balist] -> balist.

a->a.
b -> b.

ComputerSaence # WLPE 2004, September 2004

Roskilde University

Infinite State Model Checking

0 -> zero.
Prolog program representing operations 1->one.
on a token ring (with any number of processes) [] -> zerolist.
(example from Podelski & Charatonik). [zero|zerolist] -> zerolist.
[one| zerolist] -> goodlist.
gen([0,1]). [zero|goodlist] -> goodlist.
gen([0 | X]) < gen(X). .
trans(X,Y) < trans1(X,Y). % q3 = [dynamic]
trans([1 |X],[0|Y]) <« trans2(X,Y). %ql = [dynam?c,goodlist]
trans1([0,1|T1,[1,0 |TD. % q4 = [dynamic,one]
trans1([H|T],[H|T1]) < trans1(T,T1). % q5 = [dynamic,zero]
trans([0],[1]). % q2 = [dynamic,zerolist]
trans2([H|T],[H|T1]) < trans2(T,T1). [reachable(ql)].
reachable(X) < gen(X). [trans(ql,q1),trans(q3,93)].
reachable(X) < reachable(Y), trans(Y,X). [trans1(ql,ql),trans1(q3,q3)].
[trans2(ql,q3),trans2(q2,q1),
trans2(q3,q3)]-
ComputerSQence ; WLPE 2004, September 2004

Roskilde University

Cryptographic Protocol Example (Blanchet)

attacker(pencrypt(M,PK)) < attacker(M),attacker(PK).
attacker(pk(SK)) < attacker(SK).

attacker(M) < attacker(pencrypt(M,pk(SK))), attacker(SK).
attacker(sign(M,SK)) < attacker(M), attacker(SK).

attacker(M) < attacker(sign(M,SK)).

attacker(sencrypt(M,K)) < attacker(M), attacker(K).

attacker(M) < attacker(sencrypt(M,K)), attacker(XK).
attacker(pk(skA)).

attacker(pk(skB)).

attacker(a).

attacker(pencrpyt(sign(k(pk(X)),skA),pk(X))) < attacker(pk(X)).
attacker(sencrpyt(s,K1)) < attacker(pencrpyt(sign(K1,skA),pk(skB))).
unsafe < attacker(s). (unsafe state: if attacker gets the secret)

Abstraction of Denning-Sacco Protocol (by B. Blanchet)
pencrypt (M, PK) : encrypt message M with private key PK.
Pk (SK) : public key built from secret key SK.

sign (M, SK) : message M signed with secret key SK.
sencrypt (M,K) : encrypt message M with shared key K.

Computer Science

Roskilde University WLPE 2004, September 2004

FTAs and Model checking

FTAs (regular types) provide an expressive
notation for specifying program properties

®* how expressive? links to CTL?

FTAs can also capture properties of tuples

(tree-tuple languages) by suitable codings

A general approach has been outlined for
converting a set of given regular types into
a program analysis

Now the “only” problem is complexity!

Computer Science ; WLPE 2004, September 2004

Roskilde University

