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Background - mode analysis

e Instantiation modes

® perhaps the earliest static analysis of logic
programs (Mellish, Bruynooghe,... mid 1980s)

® abstract substitutions by mode substitutions
(e.g. ground, partly instantiated, free)

® abstract unification algorithm to propagate
modes

®* mostly interested in modes of call patterns,
hence goal-directed interpretation.

® derivation of modes like p(+,+,-,?) allows
compiler optimisations
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Booleans and constraints for modes

® The system TOUPIE (Corsini et al.) took a
different approach

® Mode analysis seen as a boolean constraint
solving problem.

e Given equality X=f(Y,,...,Y,) in the
program one could associate a constraint
(after unifying the terms)

e Xis ground iff Y, is ground and .... and Y,, is
ground, represented simply as X <= Y;A...AY,

* Note that this is a success mode, not a call
mode.
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Boolean constraints (continued)

e Codish and Demoen exploited a similar
idea, but using explicit values true and
false, and encoding the boolean
groundness dependencies using atomic
formulas
® e.g. X = [Y]|Z] is replaced by a formula iff(X,Y,Z)

with the definition
iff(true,true,true).
iff(false,true,false).
iff(false,false,true).
iff(false,false,false).
essentially the truth table for X <= YaZ
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Abstract programs

e After replacing equalities by iff atoms,
Codish and Demoen obtained an abstract
program.

e Computing the least model gave an
abstract success set for the program
predicates.
® E.g. for append, they obtained the model

{append(true,true,true), append(true,false,false),

append(false,true,false),append(false,false,false)}
This a a representation of the boolean dependency
append(X,Y,Z) = XAY < Z
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More boolean dependencies

e Codish and Demoen then showed that boolean
dependencies could encode other properties than
groundness.

e E.g. considering the equality X=[Y|Z] one can see
that (after successfully unifying)
® “Xis a list iff Z is a list”, represented as iff(X,Z) where

iff(true, true). iff(false,false).
® Similarly X=[] is replaced by iff(X) where iff(true).

e Compute the least model for the abstract program
for append
e {append(true,true,true), append(true, false, false)}
* which represents append(X,Y,Z) = XAY<Z
® “Zis a list iff both X and Y are lists”
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Pre-interpretations

e Boulanger, Bruynooghe and Denecker

® Consider the language of a program P. Standard
semantics is based on Herbrand pre-interpretation,
which has the Herbrand universe U, as domain as
interpretation.

® Semantics is the least model M,
® U, is the most precise domain possible

®* One can define an abstraction by defining a pre-
interpretation J over some more abstract domain D,.

¢ Then compute a model M, based on J.
® Any atom true in M, is also true in any other model.
® Hence M, represents a safe approximation of M,
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Capturing modes in a pre-interpretation

e It seems at first sight difficult to capture
modes in a “ground semantics”.

® One can regard the language as containing
extra constants {v1,v2,...} which
represent variables

¢ The minimal model contains all atomic
logical consequences (the Clark semantics)

® occurrences of v1,v2,... in the minimal Herbrand
model are isomorphic to the occurrence of
variables in true atoms.
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The groundness pre-interpretation

Consider a domain of interpretation {g,ng}
Given function symbols {[1/0, [.].1/2, a/0, v/0}
We assume that v is non-ground
Pre-interpretation is

[1—=4

a—>g

vV —= ng

[glg]l =g

[gIng] — ng

[nglg] = ng

[ng|ng] — ng

® The least model of append over this interpretation is

{append(g,9,9), append(g,ng,ng),append(ng,g,ng),
append(ng,ng,ng)}
Just the same as the boolean dependencies.
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The list pre-interpretation

Consider a domain of interpretation {list, nonlist}
Given function symbols {[]/0, [.].]1/2, a/0}
Pre-interpretation is

[1— list

a — nonlist

[list|list] — list

[nonlist|list] — list

[list|nonlist] — nonlist

[nonlist|nonlist] — nonlist
The least model of append over this interpretation
IS

{append(list,list,list), append(list,nonlist,nonlist) }
Just the same as the boolean dependencies.
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New mode analyses

¢ The elements of the pre-interpretation can be
thought of as partitioning the set of all terms.

nonvar

(¢
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The fgi pre-interpretation

e Use the three domain elements {f,g,i}
* free, ground, and partly instantiated
e Pre-interpretation over {[]/0, [.|.1/2, a/0}

[1—-g [fIf] —i Model of append
a—g [i[f] =i append(g,9,9)
[glg]l =g [gli] —i append(g,v,v)
[flg] =i [fli] =i append(g,i,i)
[ilg] —i [i]i] —i append(g,v,i)
[glf] =i append(i,g,i)
append(i,v,i)
append(i,i,i)

Note that we cannot summarise
the model as a boolean formula.
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Pre-interpretations plus abstract compilation

e Pre-interpretations were “compiled in” to a
program

e Gallagher-Boulanger-Saglam (ILPS-1995)

e Various simple mode and type analysis
shown

e Infinite pre-interpretations (e.g. size-
norms) could also be handled in this
approach.

Computer Science f
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Type Analysis (set based analysis)

Aim of set-based analysis - to find a conservative
approximation of the set of values that can appear at
a given program point (work goes back to [Reynolds, 1968])

a([1,X,X).
q([e(X1)|Y],Ace,X) <

integer(X1), q(Y,c(X1,Ace),X).
q([d(X1)|Y],Ace,X) <

integer(X1), q(Y,d(X1,Acc),X).
P(X,Y) < q(X,0,Y).

\ Sy = 0| c(Int, Sy) | d(Int, S,)

(Sy is an infinite regular set of terms)
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Set-based Analysis for Specialization

S 5,(X) < action, (X,Y), s5(Y).
S 85(X) < actiony,(X,Y), s5(Y).
2 So(X) < actiong(X,Y), sz(Y).
Problem - to get an accurate specialization of s,.
S
3 exec([call(p(N)) | Cont],Stack) <
code(p(),Pcode),
Example: When specializing (Cont,Stack, Stackl),
interpreter for procedure calls, exec(Pcode,Stackl).
approximate the stack, 31006
otherwise continuation code exec([return],Stack) <
is unknown. (Stack, ContCode,Stack1l),
exec(ContCode,Stackl).
Computer Science ; WLPE 2004, September 2004

Roskilde University

Regular Approximation of Data Structures

Stack — cons(Pcont,S;) | cons(Rcont,S,)
S, — cons(Qcont,Stack) call r;
S, — emptyStack
procr {
call p;

Stack = (Pcont Qcont)*Rcont )

procp {
In general, non-deterministic tree grammars are ife {return}

. else call q;
required to represent such structures. 3

procq {

callp; }

comPUterSCIence > WLPE 2004, September 2004
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Set-Based Analysis

e There are several approaches to set-based
analysis

® Derive set constraints from the program text
and solve the constraints [Heintze & Jaffar]

® Abstract interpretation of the program over a
domain of regular types [Jones, Dart & Zobel,
Janssens & Bruynooghe, Gallagher & de Waal, van
Hentenryck et al., ...]

* Approximate the (logic) program by a monadic
“type” program, and then transform that
program to a normal form [Frihwirth et al.].
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Non-Deterministic Finite Tree Automata
(Non-deterministic tree grammars)

Tree automata provide a means of specifying infinite sets of
trees (terms) over some signature .

A tree automaton over Y is a tuple <Q, q*, A> where
Q is a finite set of states
q* € Q is an accepting state
A is a finite set of transitions of the form
f(qla' . 'aqn) — o
where q, q;5...,9, € Q, and f'is an n-ary
function in .

Example: g* =Sy, transitions {0 — Sy, c(Int, Sy) — Sy, d(Int, Sy) — Sy}

ComputerSaence WLPE 2004, September 2004
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Non-Deterministic Finite Tree Automata (NFTAs)

A tree automaton is (top-down) non-deterministic if contains
two transitions with

the same right-hand state q, and
the same function f on the left-hand-side.

Example: {[] — As, [A|As] — As,[] — Bs, [B|Bs] — Bs,
[]—S, [A|As] — S, [B|Bs] =S, a— A, b— B}
Accepting state S represents the union of As (the set of lists of
element a), with Bs (the set of lists of element b).

{[]. [a], [a.a]...., [b],[b,b,[b,b,b],...}
The non-deterministic transitions are highlighted.
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Limited Precision of Deterministic Grammars

append([], Ys,Ys).
append([X|Xs], Ys, [X|Zs]) < append(Xs,Ys,Zs).

?- append(A,B,C). with a deterministic
j \ 9 automaton, the best we can

do is

l—A [[—B [—C

[a| A]— A [b|B]—B [D|C]—C
a—D

[a,a,....a] [b,b,....b] b—D
This is the set of lists
of a and b (mixed).
[a,a,b,a,b,b,....a]
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Increased Precision of Non-Determinism

With NFTAs, we can describe a more precise result.

[a,a,a,....,b,b,b] sequence of ‘a’ followed by sequence of ‘b’

The extra precision can be used for more accurate debugging,
specialisation, verification etc.
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Analysis For Non-Deterministic Descriptions

e Set-constraint approaches yield
descriptions

® Previous abstract interpretations used only
descriptions

e QOur aim: to achieve the precision of set-
constraints within the flexible framework of
abstract interpretation (first suggested by
Cousot & Cousot 1995).
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Determinisation of FTAs

e Any FTA can be determinised.

® There is an equivalent FTA (defining the
same sets of terms) that is bottom-up
deterministic

e In a deterministic FTA, each term is in at
most one type (state). Types are disjoint.

Computer Science ; WLPE 2004, September 2004
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Modes as Types

e Modes are also types

e Add an extra constant $VAR to the language
(which is defined to be non ground)

e Define types var, static (or ground) and dynamic.

Transitions

a — static

b — static
f(static,...,static) — static

- [static|static] — static

a — dynamic

b — dynamic

f(dynamic,..., dynamic) — dynamic
[dynamic | dynamic] — dynamic
$VAR — dynamic

$VAR — var
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Determinised modes

H H tati
e Modes static, dynamic and var

[] — static +
a — static
b — static ‘ nonvar-nonground (nvng)

[static|static] — static
f(static,...,static) — static

[var|*] = nvng

[nvng|*] — nvng
f(*,...,var,...,*) = nvng
f(*,...,nvng,...,*) = nvng

$VAR — var +

compumrsqence ' WLPE 2004, September 2004

Roskilde University

Determinisation of list/dynamic

[T — list

[list|list] — list
[nonlist|list] — list
[nonlist|nonlist] — nonlist
[list|nonlist] — nonlist

a — nonlist

b — nonlist

f(*,*,...,*) — nonlist

Writing this as “types” for list and nonlist
list = []; [nonlist]list]; [list|list]

nonlist = a; b; [nonlist|nonlist]; [list|nonlist]; f(*,...,*);...
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Abstract compilation of a pre-interpretation

1. Put each clause in normal form

® every argument of predicates (apart from =/2) is a
variable

® every equality atom is of the form f(Xy,...,X,)=X,

Example

append(U,X,X) :- []=U.

append(U,Y,V) :- append(Xs,Y,Zs), [X|Xs]=U,
[X|Zs]=V.

reverse(U,V) :- []=U, []=V.

reverse(U,V) :- reverse(Xs,W),append(W,Z,V),
[XIXs]=U, [X|X;]=Z, [1=X;.

2. Then replace = by —. The predicate — is defined
by a pre-interpretation (determinised FTA).
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Least model wrt to a pre-interpretation

® The least model of the transformed
program P is Ifp(T)

e The arguments of the predicates (apart
from —) are domain elements (types).

e E.g. using the domain {list, nonlist} and
the determinised transitions, the least
model is

reverse(list, list)
append(list, nonlist, nonlist), append(list, list, list)

Computer Science ‘ WLPE 2004, September 2004
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Mixing modes and types in BTA

¢ Binding time analysis in off-line partial
evaluation
e Static, dynamic and program-specific types

(az)

X

S
— | static
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Summary - regular-type-based analysis

=

. Define some regular types

2. Determinise the corresponding FTA,
obtaining a pre-interpretation

3. Compute the minimal model wrt to the
pre-interpretation
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Model Checking

Checking whether given program-specific
properties hold (at some program point)
Reasoning over all reachable states

For finite state systems, complete
exhaustive coverage is possible

For infinite state systems we abstract the
state space
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Even-odd

odd_even:- even(X), even(s(X)).
even(zero).

even(s(X)):- odd(X).
odd(s(X)):- even(X).

Can even_odd succeed? We have seen above two
approaches:

=

. Compute a regular approximation

2. Compute a pre-interpretation over the abstract
values {even, odd} defined by

zero — even. s(even) — odd. s(odd) — even.

Computer Science ‘ WLPE 2004, September 2004
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lists of as and bs

[]-> alist.

alalist] -> alist. . .
ralatist] show that reversing an ablist

[] -> blist. yields a balist.

[b|blist] -> blist.

[a|blist] -> ablist.
[a]ablist] -> ablist.

[blalist] -> balist.
[b|balist] -> balist.

a->a.
b -> b.
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Infinite State Model Checking

0 -> zero.
Prolog program representing operations 1->one.
on a token ring (with any number of processes) [] -> zerolist.
(example from Podelski & Charatonik). [zero|zerolist] -> zerolist.
[one| zerolist] -> goodlist.
gen([0,1]). [zero|goodlist] -> goodlist.
gen([0 | X]) < gen(X). .
trans(X,Y) < trans1(X,Y). % q3 = [dynamic]
trans([1 |X],[0|Y]) <« trans2(X,Y). %ql = [dynam?c,goodlist]
trans1([0,1|T1,[1,0 |TD. % q4 = [dynamic,one]
trans1([H|T],[H|T1]) < trans1(T,T1). % q5 = [dynamic,zero]
trans([0],[1]). % q2 = [dynamic,zerolist]
trans2([H|T],[H|T1]) < trans2(T,T1). [reachable(ql)].
reachable(X) < gen(X). [trans(ql,q1),trans(q3,93)].
reachable(X) < reachable(Y), trans(Y,X). [trans1(ql,ql),trans1(q3,q3)].
[trans2(ql,q3),trans2(q2,q1),
trans2(q3,q3)]-
ComputerSQence ; WLPE 2004, September 2004
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Cryptographic Protocol Example (Blanchet)

attacker(pencrypt(M,PK)) < attacker(M),attacker(PK).
attacker(pk(SK)) < attacker(SK).

attacker(M) < attacker(pencrypt(M,pk(SK))), attacker(SK).
attacker(sign(M,SK)) < attacker(M), attacker(SK).

attacker(M) < attacker(sign(M,SK)).

attacker(sencrypt(M,K)) < attacker(M), attacker(K).

attacker(M) < attacker(sencrypt(M,K)), attacker(XK).
attacker(pk(skA)).

attacker(pk(skB)).

attacker(a).

attacker(pencrpyt(sign(k(pk(X)),skA),pk(X))) < attacker(pk(X)).
attacker(sencrpyt(s,K1)) < attacker(pencrpyt(sign(K1,skA),pk(skB))).
unsafe < attacker(s). (unsafe state: if attacker gets the secret)

Abstraction of Denning-Sacco Protocol (by B. Blanchet)
pencrypt (M, PK) : encrypt message M with private key PK.
Pk (SK) : public key built from secret key SK.

sign (M, SK) : message M signed with secret key SK.
sencrypt (M,K) : encrypt message M with shared key K.

Computer Science
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FTAs and Model checking

FTAs (regular types) provide an expressive
notation for specifying program properties

®* how expressive? links to CTL?

FTAs can also capture properties of tuples

(tree-tuple languages) by suitable codings

A general approach has been outlined for
converting a set of given regular types into
a program analysis

Now the “only” problem is complexity!
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