
Computer Science, building 42.1
Roskilde University

Universitetsvej 1
P.O. Box 260

DK-4000 Roskilde
Denmark

Phone: +45 4674 2000
Fax: +45 4674 3072

www.dat.ruc.dk

Regular Types, Modes, and Model
Checking

John Gallagher
University of Roskilde, Denmark

Collaborators
Kim Henriksen, Roskilde

Framework 5 IST ASAP project partners
Univ. Politécnica de Madrid

Southampton Univ.
Bristol Univ.

WLPE 2004, September 2004

Background - mode analysis

• Instantiation modes

• perhaps the earliest static analysis of logic
programs (Mellish, Bruynooghe,... mid 1980s)

• abstract substitutions by mode substitutions
(e.g. ground, partly instantiated, free)

• abstract unification algorithm to propagate
modes

• mostly interested in modes of call patterns,
hence goal-directed interpretation.

• derivation of modes like p(+,+,-,?) allows
compiler optimisations

WLPE 2004, September 2004

Booleans and constraints for modes

• The system TOUPIE (Corsini et al.) took a

different approach

• Mode analysis seen as a boolean constraint

solving problem.

• Given equality X=f(Y1,...,Yn) in the

program one could associate a constraint

(after unifying the terms)

• X is ground iff Y1 is ground and and Yn is
ground, represented simply as X ! Y1"..."Yn

• Note that this is a success mode, not a call
mode.

WLPE 2004, September 2004

Boolean constraints (continued)

• Codish and Demoen exploited a similar

idea, but using explicit values true and

false, and encoding the boolean
groundness dependencies using atomic

formulas

• e.g. X = [Y|Z] is replaced by a formula iff(X,Y,Z)
with the definition

iff(true,true,true).

iff(false,true,false).

iff(false,false,true).

iff(false,false,false).

essentially the truth table for X ! Y"Z

WLPE 2004, September 2004

Abstract programs

• After replacing equalities by iff atoms,

Codish and Demoen obtained an abstract

program.

• Computing the least model gave an

abstract success set for the program
predicates.

• E.g. for append, they obtained the model

{append(true,true,true), append(true,false,false),

append(false,true,false),append(false,false,false)}

This a a representation of the boolean dependency

append(X,Y,Z) = X " Y ! Z

WLPE 2004, September 2004

More boolean dependencies

• Codish and Demoen then showed that boolean
dependencies could encode other properties than
groundness.

• E.g. considering the equality X=[Y|Z] one can see
that (after successfully unifying)

• “X is a list iff Z is a list”, represented as iff(X,Z) where

iff(true, true). iff(false,false).

• Similarly X=[] is replaced by iff(X) where iff(true).

• Compute the least model for the abstract program
for append

• {append(true,true,true), append(true, false, false)}

• which represents append(X,Y,Z) = X"Y!Z

• “Z is a list iff both X and Y are lists”

WLPE 2004, September 2004

Pre-interpretations

• Boulanger, Bruynooghe and Denecker

• Consider the language of a program P. Standard
semantics is based on Herbrand pre-interpretation,

which has the Herbrand universe UP as domain as
interpretation.

• Semantics is the least model MP.

• UP is the most precise domain possible

• One can define an abstraction by defining a pre-

interpretation J over some more abstract domain DJ.

• Then compute a model MJ based on J.

• Any atom true in MP is also true in any other model.

• Hence MJ represents a safe approximation of MP.

WLPE 2004, September 2004

Capturing modes in a pre-interpretation

• It seems at first sight difficult to capture

modes in a “ground semantics”.

• One can regard the language as containing

extra constants {v1,v2,...} which

represent variables

• The minimal model contains all atomic

logical consequences (the Clark semantics)

• occurrences of v1,v2,... in the minimal Herbrand
model are isomorphic to the occurrence of
variables in true atoms.

WLPE 2004, September 2004

The groundness pre-interpretation

• Consider a domain of interpretation {g,ng}

• Given function symbols {[]/0, [.|.]/2, a/0, v/0}

• We assume that v is non-ground

• Pre-interpretation is
[] # g

a # g

v # ng

[g|g] # g

[g|ng] # ng

[ng|g] # ng

[ng|ng] # ng

• The least model of append over this interpretation is

{append(g,g,g), append(g,ng,ng),append(ng,g,ng),
append(ng,ng,ng)}

Just the same as the boolean dependencies.

WLPE 2004, September 2004

The list pre-interpretation

• Consider a domain of interpretation {list, nonlist}

• Given function symbols {[]/0, [.|.]/2, a/0}

• Pre-interpretation is
[] # list

a # nonlist

[list|list] # list

[nonlist|list] # list

[list|nonlist] # nonlist

[nonlist|nonlist] # nonlist

• The least model of append over this interpretation
is

{append(list,list,list), append(list,nonlist,nonlist)}

Just the same as the boolean dependencies.

WLPE 2004, September 2004

New mode analyses

• The elements of the pre-interpretation can be
thought of as partitioning the set of all terms.

• Other mode partitions can be introduced

nonground

ground

nonlist

list

nonvar

ground

variable
nonvar

var

WLPE 2004, September 2004

The fgi pre-interpretation

• Use the three domain elements {f,g,i}

• free, ground, and partly instantiated

• Pre-interpretation over {[]/0, [.|.]/2, a/0}

[] # g

a # g

[g|g] # g

[f|g] # i

[i|g] # i

[g|f] # i

[f|f] # i

[i|f] # i

[g|i] # i

[f|i] # i

[i|i] # i

Model of append

append(g,g,g)

append(g,v,v)

append(g,i,i)

append(g,v,i)

append(i,g,i)

append(i,v,i)

append(i,i,i)
Note that we cannot summarise

the model as a boolean formula.

WLPE 2004, September 2004

Pre-interpretations plus abstract compilation

• Pre-interpretations were “compiled in” to a

program

• Gallagher-Boulanger-Saglam (ILPS-1995)

• Various simple mode and type analysis

shown

• Infinite pre-interpretations (e.g. size-

norms) could also be handled in this

approach.

WLPE 2004, September 2004

Type Analysis (set based analysis)

q([],X,X).
q([c(X1)|Y],Acc,X) $

integer(X1), q(Y,c(X1,Acc),X).
q([d(X1)|Y],Acc,X) $

 integer(X1), q(Y,d(X1,Acc),X).
p(X,Y) $ q(X,0,Y).

Aim of set-based analysis - to find a conservative
approximation of the set of values that can appear at
a given program point (work goes back to [Reynolds, 1968])

SY ::= 0 | c(Int, SY) | d(Int, SY)

(SY is an infinite regular set of terms)

WLPE 2004, September 2004

Set-based Analysis for Specialization

S1

S2

S3

s1(X) $ action1(X,Y), s2(Y).
s2(X) $ action2(X,Y), s2(Y).
s2(X) $ action3(X,Y), s3(Y).

exec([call(p(N))|Cont],Stack) $
 code(p(N),Pcode),
 push(Cont,Stack, Stack1),
 exec(Pcode,Stack1).
. . . .
exec([return],Stack) $
 pop(Stack, ContCode,Stack1),
 exec(ContCode,Stack1).

Problem - to get an accurate specialization of s3.

Example: When specializing

interpreter for procedure calls,

approximate the stack,

otherwise continuation code

is unknown.

WLPE 2004, September 2004

Regular Approximation of Data Structures

Stack # cons(Pcont,S1) | cons(Rcont,S2)
S1 # cons(Qcont,Stack)
S2 # emptyStack

. . .
call r;
. . .

proc r {
 . . .
 call p;
 . . . }

proc p {
 if e {return}
 else call q;
 . . . }

proc q {
 . . .
 call p; }

Stack = (Pcont Qcont)*Rcont

In general, non-deterministic tree grammars are

required to represent such structures.

WLPE 2004, September 2004

Set-Based Analysis

• There are several approaches to set-based

analysis

• Derive set constraints from the program text
and solve the constraints [Heintze & Jaffar]

• Abstract interpretation of the program over a
domain of regular types [Jones, Dart & Zobel,

Janssens & Bruynooghe, Gallagher & de Waal, van
Hentenryck et al., …]

• Approximate the (logic) program by a monadic
“type” program, and then transform that
program to a normal form [Frühwirth et al.].

WLPE 2004, September 2004

Non-Deterministic Finite Tree Automata
(Non-deterministic tree grammars)

Tree automata provide a means of specifying infinite sets of
trees (terms) over some signature %.

A tree automaton over % is a tuple <Q, q*, &> where

Q is a finite set of states
q* ' Q is an accepting state

& is a finite set of transitions of the form

f(q1,…,qn) # q0,

where q0, q1,…,qn ' Q, and f is an n-ary

function in %.

Example: q* = SY, transitions {0 # SY, c(Int, SY) # SY, d(Int, SY) # SY}

WLPE 2004, September 2004

Non-Deterministic Finite Tree Automata (NFTAs)

A tree automaton is (top-down) non-deterministic if contains

two transitions with

the same right-hand state q0, and

the same function f on the left-hand-side.

Example: {[] # As, [A|As] # As, [] # Bs, [B|Bs] # Bs,

 [] # S, [A|As] # S, [B|Bs] # S, a # A, b # B}

Accepting state S represents the union of As (the set of lists of

element a), with Bs (the set of lists of element b).

{[], [a], [a,a],…, [b],[b,b],[b,b,b],…}

The non-deterministic transitions are highlighted.

WLPE 2004, September 2004

Limited Precision of Deterministic Grammars

append([], Ys,Ys).
append([X|Xs], Ys, [X|Zs]) $ append(Xs,Ys,Zs).

?- append(A,B,C).

[] # A

[a | A] # A

[a,a,….a]

[] # B

[b | B] # B

[b,b,….b]

?

with a deterministic

automaton, the best we can

do is
[] # C

[D | C] # C

a # D

b # D

This is the set of lists

of a and b (mixed).

[a,a,b,a,b,b,….a]

WLPE 2004, September 2004

Increased Precision of Non-Determinism

With NFTAs, we can describe a more precise result.

[] # C

[a | C] # C

[b | B] # C

[] # B

[b | B] # B

[a,a,a,….,b,b,b] sequence of ‘a’ followed by sequence of ‘b’

The extra precision can be used for more accurate debugging,

specialisation, verification etc.

WLPE 2004, September 2004

Analysis For Non-Deterministic Descriptions

• Set-constraint approaches yield non-

deterministic descriptions

• Previous abstract interpretations used only
deterministic descriptions

• Our aim: to achieve the precision of set-

constraints within the flexible framework of

abstract interpretation (first suggested by
Cousot & Cousot 1995).

WLPE 2004, September 2004

Determinisation of FTAs

• Any FTA can be determinised.

• There is an equivalent FTA (defining the

same sets of terms) that is bottom-up

deterministic

• In a deterministic FTA, each term is in at

most one type (state). Types are disjoint.

list

dynamic nonlist

list+

WLPE 2004, September 2004

Modes as Types

• Modes are also types

• Add an extra constant $VAR to the language
(which is defined to be non ground)

• Define types var, static (or ground) and dynamic.

Transitions
a # static
b # static
f(static,...,static) # static
[static|static] # static
. . .
a # dynamic
b # dynamic
f(dynamic,..., dynamic) # dynamic
[dynamic | dynamic] # dynamic
$VAR # dynamic
. . .
$VAR # var

static

var

dynamic

WLPE 2004, September 2004

Determinised modes

• Modes static, dynamic and var
[] # static

a # static

b # static

[static|static] # static

f(static,...,static) # static

. . .

[var|*] # nvng

[nvng|*] # nvng

f(*,...,var,...,*) # nvng

f(*,...,nvng,...,*) # nvng

. . .

$VAR # var

var

static

nonvar-nonground (nvng)

+

+

WLPE 2004, September 2004

Determinisation of list/dynamic

[] # list

[list|list] # list

[nonlist|list] # list

[nonlist|nonlist] # nonlist

[list|nonlist] # nonlist

a # nonlist

b # nonlist

f(*,*,...,*) # nonlist

. . .

Writing this as “types” for list and nonlist

list = []; [nonlist|list]; [list|list]

nonlist = a; b; [nonlist|nonlist]; [list|nonlist]; f(*,...,*);...

WLPE 2004, September 2004

Abstract compilation of a pre-interpretation

1. Put each clause in normal form

• every argument of predicates (apart from =/2) is a
variable

• every equality atom is of the form f(X1,...,Xn)=X0

Example

append(U,X,X) :- []=U.

append(U,Y,V) :- append(Xs,Y,Zs), [X|Xs]=U,
[X|Zs]=V.

reverse(U,V) :- []=U, []=V.

reverse(U,V) :- reverse(Xs,W),append(W,Z,V),
[X|Xs]=U, [X|X1]=Z, []=X1.

2. Then replace = by #. The predicate # is defined
by a pre-interpretation (determinised FTA).

WLPE 2004, September 2004

Least model wrt to a pre-interpretation

• The least model of the transformed

program P is lfp(TP)

• The arguments of the predicates (apart
from #) are domain elements (types).

• E.g. using the domain {list, nonlist} and
the determinised transitions, the least

model is

reverse(list, list)

append(list, nonlist, nonlist), append(list, list, list)

WLPE 2004, September 2004

Mixing modes and types in BTA

• Binding time analysis in off-line partial

evaluation

• Static, dynamic and program-specific types

matrix row

dynamic

static

q1

q2

q3

q4

q5

q6

WLPE 2004, September 2004

Summary - regular-type-based analysis

1. Define some regular types

2. Determinise the corresponding FTA,
obtaining a pre-interpretation

3. Compute the minimal model wrt to the

pre-interpretation

WLPE 2004, September 2004

Model Checking

• Checking whether given program-specific

properties hold (at some program point)

• Reasoning over all reachable states

• For finite state systems, complete

exhaustive coverage is possible

• For infinite state systems we abstract the

state space

WLPE 2004, September 2004

Even-odd

odd_even:- even(X), even(s(X)).

even(zero).

even(s(X)):- odd(X).

odd(s(X)):- even(X).

Can even_odd succeed? We have seen above two
approaches:

1. Compute a regular approximation

2. Compute a pre-interpretation over the abstract
values {even, odd} defined by
zero # even. s(even) # odd. s(odd) # even.

WLPE 2004, September 2004

lists of as and bs

[] -> alist.

[a|alist] -> alist.

[] -> blist.

[b|blist] -> blist.

[a|blist] -> ablist.

[a|ablist] -> ablist.

[b|alist] -> balist.

[b|balist] -> balist.

a -> a.

b -> b.

show that reversing an ablist

yields a balist.

WLPE 2004, September 2004

Infinite State Model Checking

Prolog program representing operations

on a token ring (with any number of processes)

(example from Podelski & Charatonik).

gen([0,1]).
gen([0 | X]) $ gen(X).
trans(X,Y) $ trans1(X,Y).
trans([1 |X],[0|Y]) $ trans2(X,Y).
trans1([0,1|T],[1,0 |T]).
trans1([H|T],[H|T1]) $ trans1(T,T1).
trans2([0],[1]).
trans2([H|T],[H|T1]) $ trans2(T,T1).
reachable(X) $ gen(X).
reachable(X) $ reachable(Y), trans(Y,X).

0 -> zero.
1 -> one.
[] -> zerolist.
[zero|zerolist] -> zerolist.
[one|zerolist] -> goodlist.
[zero|goodlist] -> goodlist.

% q3 = [dynamic]

% q1 = [dynamic,goodlist]

% q4 = [dynamic,one]

% q5 = [dynamic,zero]

% q2 = [dynamic,zerolist]

[reachable(q1)].

[trans(q1,q1),trans(q3,q3)].

[trans1(q1,q1),trans1(q3,q3)].

[trans2(q1,q3),trans2(q2,q1),

 trans2(q3,q3)].

WLPE 2004, September 2004

Cryptographic Protocol Example (Blanchet)

attacker(pencrypt(M,PK)) $ attacker(M),attacker(PK).
attacker(pk(SK)) $ attacker(SK).
attacker(M) $ attacker(pencrypt(M,pk(SK))), attacker(SK).
attacker(sign(M,SK)) $ attacker(M), attacker(SK).
attacker(M) $ attacker(sign(M,SK)).
attacker(sencrypt(M,K)) $ attacker(M), attacker(K).
attacker(M) $ attacker(sencrypt(M,K)), attacker(K).
attacker(pk(skA)).
attacker(pk(skB)).
attacker(a).
attacker(pencrpyt(sign(k(pk(X)),skA),pk(X))) $ attacker(pk(X)).
attacker(sencrpyt(s,K1)) $ attacker(pencrpyt(sign(K1,skA),pk(skB))).
unsafe $ attacker(s). (unsafe state: if attacker gets the secret)

Abstraction of Denning-Sacco Protocol (by B. Blanchet)

pencrypt(M,PK): encrypt message M with private key PK.

pk(SK): public key built from secret key SK.

sign(M,SK): message M signed with secret key SK.

sencrypt(M,K): encrypt message M with shared key K.

WLPE 2004, September 2004

FTAs and Model checking

• FTAs (regular types) provide an expressive

notation for specifying program properties

• how expressive? links to CTL?

• FTAs can also capture properties of tuples

(tree-tuple languages) by suitable codings

• A general approach has been outlined for

converting a set of given regular types into

a program analysis

• Now the “only” problem is complexity!

