Sustainable wood use, decarbonisation of energetic metabolism and forest development

Czeskleba-Dupont, Rolf

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (APA):

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain.
• You may freely distribute the URL identifying the publication in the public portal.

Take down policy
If you believe that this document breaches copyright please contact rucforsk@ruc.dk providing details, and we will remove access to the work immediately and investigate your claim.
Sustainable wood use, decarbonisation of energetic metabolism and forest development

Rolf Czeskleba-Dupont, Ph.D., M.Sc., Roskilde University, Denmark, e-mail: nest@ruc.dk
Department of Environmental, Social and Spatial Change (ENSPAC)

RESEARCH AIMS
- IDENTIFY COMMON MECHANISMS OF TOXIC POLLUTION FROM ATMOSPHERIC BURNERS, COLLECTIVE AND INDIVIDUAL
- QUESTION THE SUSTAINABILITY OF CO2-CREDITS FOR BURNING STEM WOOD PRODUCTS
- SENSITISE FOR CHOICES AHEAD IN FOREST MANAGEMENT
- ENVISION COMPREHENSIVE DE-CARBONISATION OF ENERGETIC METABOLISM

AIR POLLUTION IN DENMARK
Wood stove emissions cause local health hazards being a mixture of:
- 90% of national total of PAH (carcinogenic)
- 60% of primary particles (PM2.5)
- 50% of dioxins (activate carcinogens)

For diluting 1 m3 contaminated air to urban background
7 x 106 m3 fresh air needed re. PAH
5 x 106 m3 re. PM 2.5
- impossible with low chimneys in dense neighbourhoods
- end-of-pipe-solution: particle FILTERS
they are, however, NOT designed for dioxins

Dioxins (PCDD/PCDF) emissions:
Limit value for high rise (!) chimneys: 0,1 ng pr. m3

CO2-INDULGENCE versus POPs CONVENTION

"Total emissions could be reduced with a ban on burning biomass in small installations without flue gas purification ... YE1: ...such an initiative could have undesirable effects in the context of the goals to reduce total CO2 emissions."
The Ministry, thus, accepts 50% of Danish dioxin emissions giving climate indulgence for substituting fossil fuels by tree.

In reality, substituting wood e.g. for natural gas means CO2-emissions GO UP 79%!

CO2-INDULGENCE versus POPs CONVENTION

DANISH LAW on CO2-quotas:
"Biomass: Fuels, which according to Annex 1 have a CO2-emission factor of ZERO"
Annex 1 shows figures with DELETED emission factors for ALL biomass fuels:

<table>
<thead>
<tr>
<th>Biomass Fuel</th>
<th>CO2 Emission Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wood</td>
<td>0</td>
</tr>
<tr>
<td>Coal</td>
<td>74</td>
</tr>
<tr>
<td>Natural gas</td>
<td>95</td>
</tr>
</tbody>
</table>

Only by fast rotation in agriculture, however, the amount of CO2 emitted is re-bound in a time certain (from year to year)

LAND AND WOOD USE PROPORTIONS

1990 to 2005: Energetic use of harvested wood products doubled in Denmark
Planned: another doubling to 2030!

The political aim of doubling forest area in a tree generation (as against 1990), is, however, out of sight. Only 11-12% of land area are today covered by forests

So, Denmark increasingly imports tree for use in domestic heating (40% of Russia's woods are not registered in Kyoto process)

CONCLUSIONS
Defining CO2-neutral biomass:
Exclude tree species with rotation periods longer than a couple of years;
Carbon dioxide emitted from burning non-fossil plant matter must also be accounted for nationally (full carbon accounting)

Priority be given for implementing the Stockholm Convention on out-phasing persistent organic pollutants (POPs) over promoting wood burning
Wood burning should, rather, be substituted by low- and non-carbon energy procurement e.g. in a hydrogen economy (Sørensen 2003)

WOOD STOVE CHIMNEYS ACT AS DIOXIN REACTORS

Experimental measurements of dioxin 5 kW wood stove
pure, dry wood: birch and beech
6 l burning test with 2 modes of loading
(a) 5 portions 1.9 kg (normal)
(b) 1 portion 5.5 kg (‘night’ firing)

Results: (a) emissions of PCDD/PCDF 1 - 8 times EU limit value for waste incinerators
(2) Against expectations, night firing (b) shows lesser emissions of dioxin than normal firing (a)
(Source: Schleicher et al. 2003, p.38)

Same anomaly as in waste incinerators (Fig. from Commoner 1987)

NO CLIMATE-NEUTRALITY FOR STEM WOOD BURNING

Physicist Bent Sørensen:
="...the time lag for trees may be decades or centuries, and in such case the temporary carbon dioxide imbalance may contribute to climatic alterations" (RENEWABLE ENERGY, 3rd ed., 2004, 483)

When burning stem wood
a) count the year’s rings
b) calculate, how many trees You have to plant, if the emitted amount of many years’ CO2 binding shall be re-bound within a few years from now!
Are You sure You will be part of the solution – and NOT of the problem?

ENERGETIC OVERUSE versus FOREST SUSTAINABILITY

POTENTIALS OF CONTINUOUS COVER FORESTRY
"The high C stock in semi-natural forests...suggests that more C could be stored by conversion from the traditional forest management system based on clear-cutting and replanting to continuous cover forestry with focus on the maintenance of the dead wood component" (Vesterdal et al. 2007)

2-3 times as much C might be stored by intensified near-natural forest management (Vesterdal in Danish radio)

If forest management is to maximise CO2-sink functions of forest ecosystems, it should expand strategies of near natural forestry. These were part of the Danish National Forest Programme of 2002, but are today put into question politically

OVEREXPLOITING FORESTS AS ENERGY SUPPLY

Research results from Austria:
Pre-industrial society threatened forest sustainability by "intensive, multi-functional use"
Fossil energy based industrialisation, especially of agriculture, led to higher C densities and larger forest areas (Erb et al. 2008)

To 2020: "Increases in wood harvest could lead to a reduction of the functioning of forest ecosystems as carbon sinks" (Habel et al. 2003, based upon high quality data)

Promoting the energetic use of stem wood products (e.g. as CO2-neutral) is, after all, incompatible with prudent climate mitigation by forest management

REFERENCES
Habel, H. et al. 2003: Land-use change and socio-economic metabolism in Austria, Part II: land-use scenario for 2020
Schleicher, O. et al. 2003: Milling of dissenninated fly ash subslips adhering kiln dust. MILL PROJECT 395, Danish EPA
Vesterdal, L. et al. 2007: The Carbon pools in a Danish semi-natural forest. ECOLOGICAL BULLETIN, vol. 52, 113-21

Promoting the energetic use of stem wood products (e.g. as CO2-neutral) is, after all, incompatible with prudent climate mitigation by forest management