Environmental Metabolism of Pyrene and 1-Methylpyrene by Nereis diversicolor

Malmquist, Linus Mattias Valdemar; Christensen, Jan Henning; Selck, Henriette

Publication date:
2011

Document Version
Peer reviewed version

Citation for published version (APA):
Introduction

- Assessments of Polycyclic Aromatic Hydrocarbon (PAH) contaminations are often limited to consider only the “USEPA 16 priority PAHs”, all non alkylated PAHs.
- Oil from spills contains however magnitudes higher proportions of alkylated PAHs relative to non alkylated.
- Despite this, fate and effects of alkylated PAHs has to our knowledge, never been examined with respect to ecotoxicology.
- The fate of an alkylated PAH, 1-Methylpyrene, in marine environments is studied through degradation by the benthic invertebrate Nereis diversicolor.
- 1-Methylpyrene degradation is compared to degradation of Pyrene, a non-alkylated PAH.

Experimental

Setup:
100 g dry aliquots of 500µm sieved, frozen and thawed sediment and 500 ml 17 % sterile filtered seawater. Exposure at 17°C in the dark, continuously aerated.

Exposure:
5 replicates of each exposure:
- Pyrene, 1-Methylpyrene, 1mPyrene-No toxicant
- Worms, Worms-No toxicant

Chemical analyses:
- Parent compounds: UPLC-F/QToF and GC/MS
- Phase I compounds: UNIC-ViQToF and GC/MS

Analyte Qualifications

Analyte Qualifications

Fate of 1-Methylpyrene

1-Methylpyrene Analysis

Pyrene Analysis

Conclusions and Perspectives

- Pyrene is degraded primarily to phase II compounds (>80%), but only with an efficiency of 15%.
- 1-Methylpyrene is readily degraded with an efficiency of more than 60%.
- 1COOH-Pyrene represents more than 90% of the 1-Methylpyrene metabolites.
- Three isomers of glucoronide conjugates were determined as major phase II products of 1-Methylpyrene metabolism.

This work describes the environmental metabolism of an alkylated PAH – 1-Methylpyrene. The study shows that 1-Methylpyrene is effectively transformed to the highly water soluble pyrene-1-carboxylic acid (1COOH-Pyrene). The ecotoxicological effects of this metabolite, including the high bioavailability, environmentally relevant exposure concentrations and further fate of the compound, e.g. decarboxylation processes or other degradation routes still remains to be analyzed.

1Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark (lmvm@ruc.dk); 2Department of Basic Sciences and Environment, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark