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Abstract

Until recently, Old Babylonian *“algebra” (mostly identified simply as
“Babylonian) either looked very much like recent equation algebra in presenta-
tions of the history of mathematics, or it was characterized as “empirical”, a
collection of rules found by trial and error or other (unidentified) methods not
based on reasoning. In the former case, the implicit message was a confirmation
of the status of our present type of mathematics as mathematics itself. The message
inherent in the second portrait is not very different: if mathematics is not of the
type we know, and whose roots we customarily trace to the Greeks, it is just
a collection of mindless recipes (a type we also know, indeed, from teaching of
those social classes that are not supposed to possess or exercise reason) — tertium
non datur!

More precise analysis of Old Babylonian mathematical texts — primarily the
so-called algebraic texts, the only ones extensive enough to allow such analysis —
shows that both traditional views are wrong. The prescriptions turn out to be
neither renderings of algebraic computations as we know them nor mindless
rules (or algorithms) to be followed blindly; they describe a particular type of
geometric manipulation, which like modern equation algebra is analytical in
character, and which displays the correctness of its procedures without being
explicitly demonstrative.

The paper explains this, adding substance, shades and qualifications to the
picture, and then takes up the implications for our global understanding of the
possible types of mathematics — in particular the question whether the notion
of an “algorithmic” type offers relevant insights.
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Three readers of “Babylonian algebra”

In many general expositions of the history of mathematics one finds a
treatment of “Babylonian mathematics”, mostly presented without chronological
distinction between the “Old Babylonian” epoch (2000 to 1600 BCE according
to the “middle chronology’’) and the Seleucid period (third and second century
BCE) — the only periods from which these expositions know about mathematical
texts.

As a matter of fact, the texts from the two periods are rather different in
character, and in what follows | shall only speak about the mathematics of the
former period — omitting except for a brief remark even the nineteenth-century
(?) texts from Ur, which constitute a historical dead-end.

The so-called “algebra” is indeed best known from texts written between
1800 and 1600 BCE. Being the earliest example of what can be considered
“advanced mathematics”, this mathematical genre is treated sometimes briefly,
sometimes extensively in many historical presentations. The authors of these,
being unable to read the original texts, depend on what they have found in the
commentaries in the text editions of Otto Neugebauer, Francois Thureau-Dangin
and (after 1961) Evert M. Bruins, and furthermore read selectively through their
own understanding of mathematics. We may look at three examples.

In [1953], J. E. Hofmann published the first of three volumes of an utterly
condensed Geschichte der Mathematik. Borrowing an observation from Neugebauer
(sharpening it unduly and locating it wrongly as can happen when one does
not fully understand the background for an observation) he states on p. 11 that

the particular ideographic writing causes the prescriptions for the solution of practical
problems to be almost untranslatable into language, showing thus a certain kinship
with the representation through algebraic formulae®

after which follows this formula for the truncated pyramid:

"“Infolge der eigenartigen ideographischen Bezeichnungen sind die zur Behandlung
praktischer Aufgaben gegebenen Anweisungen sprachlich beinahe untbersetzbar und
zeigen daher gewisse Verwandtschaft mit der formelmalfiigen algebraischen Wiedergabe™.
My translation, as all translations in the following when nothing else is stated.

Neugebauer’s observation concerns the so-called series texts, which contain no
prescriptions but only list problem statements, and they are as far from anything practical
as Babylonian texts can be.
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More significant is perhaps what follows on p. 14:

On other occasions, linear equations with several unknowns are solved diligently,
and further equations of the form ax+by = C, xy = D and those that can be reduced
too it, where the transformation (x+y)? = (x-y)?+4xy is constantly made use of.’

Possibly, Hofmann is aware that his “linear equations with several unknowns”
are (e.g.) word problems dealing with fields of different area and different rent
per area unit — problems whose translation into algebraic equations (Viete’s
zetetics) presupposes choices and therefore is not unambiguous; but he gives his
readers no possibility to discover, what he speaks about is exclusively the result
of blunt mapping onto the conceptual grid of present-day mathematics.

Carl Boyer’s A History of Mathematics from [1968] is not very different on
this account. He states (p. 33) that

in an Old Babylonian text we find two simultaneous linear equations in two unknown
guantities, called respectively the “first silver ring” and the “second silver ring”

and goes on to explain that “if we call these x and y in our notation, the equations
are x/7+y/11 = 1 and 6x/7 = 10y/11”; again, the problem seems to be born as
an equation, not as a description of a situation whose translation into an equation
already involves choices.

On pp. 34f we are told that

quadratic equations in ancient and Medieval times — and even in the early modern
period — were classified under three types:

1) X*+pX = g

) X* = px+q

(3) X*+q = px
All three types are found in Old Babylonian texts of some 4000 years ago. The first
two types are illustrated by the problems given above; the third appears frequently
in problem texts, where it is treated as equivalent to the simultaneous system x+y =

P, Xy = Q.
Of Boyer’s two “problems given above”, the first is said (adequately) to call “for
the side of a square if the area less the side is 14,30 and then to be equivalent
to solving x>~x =870 (NB, not to x* = x+870 as type (2) would dictate); the second

2«Bei anderer Gelegenheit werden lineare Gleichungen mit mehreren Unbekanntgen
geschickt geldst, auflerdem Gleichungen der Form ax+by = C, xy = D und darauf
zurUckfuhrbare, wobei fortwahrend die Umformung (x+y)? = (x-y)?+4xy herangezogen
wird”,



is referred to simply as “the equation 11x*+7x = 6;15”. What is said about the
classification of equation types cannot come from any inspection of sources
preceding al-Khwarizmi, even in translation (I wonder whether the inspiration
might be an utterly sloppy reading of [Gandz 1937]). No Babylonian text ever
adds a number and either a length or an area, which rules out the presence of
(2) and (3) as such in Babylonian texts. There is one line in one text which
corresponds to a transformed shape of (3), stating the excess of the square side
over the area (in Boyer’s symbols, px-x* = q),% but since Bruins does not even
comment upon this single line* Boyer will not have known it. So this type is
not “treated as equivalent to the simultaneous system x+y = p, Xy = q” — what
hides behind these words is that the texts contain problems where the sum of
the sides and the area of a rectangle are known, which in symbolic translation
coincides with the “simultaneous system”.

In one respect, even Morris Kline’s Mathematical Thought from Ancient to
Modern Times from [1972] is not very different. Kline also speaks of algebra (etc.),
and translates Babylonian results into modern symbolic formulae. About a
problem which he translates (p. 9)

| have multiplied Length and Breadth and the Area is 10. | have multiplied the Length
by itself and obtained an Area. The excess of Length over Breadth | have multiplied
and this result by 9. And this Area is Area obtained by multiplying the Length by
itself. What are the Length and Breadth?

he says without explaining why that it is “obvious here that the words Length,
Breadth and Area are merely convenient terms for two unknowns and their
product, respectively”, and further that today

we would write this problem as
xy =10
9(x-y)? = X°.
The solution, incidentally, leads to a fourth-degree equation in x, with the x and x°
terms missing so that it can be and was solved as a quadratic in x%

10 in the first line should be interpreted as 10, i.e., 600.> What is meant by the

TMS V, 111.15, see [Bruins & Rutten 1961: 47, 48].

* Perhaps because he forgot to do so when preparing the edition, but perhaps instead,
as he claimed in a letter to me, because he wanted to demonstrate the incompetence of
colleagues whom he (justly, as it turned out) expected to overlook the line if there was
no commentary.

® The mathematical texts write numbers in a sexagesimal floating point place value system.
Fixing the sexagesimal point in his translations, Otto Neugebauer would write a number
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claim that the problem was solved as a quadratic in x* is not clear. The actual
method, if translated into symbols, finds that 3(x-y) = x, whence x = 3z, y = 2z,
and in consequence 6z° = 600 (see below, p. 11). But whether anything is really
meant is doubtful. Ina summary “evaluation of Babylonian mathematics”, Kline
observes (p. 14) that the Babylonians

did solve by correct procedures rather complicated equations involving unknowns.
However, they gave verbal instructions only on the steps to be made and offered
no justification of the steps. Almost surely, the arithmetic and algebraic processes
and the geometrical rules were the end result of physical evidence, trial and error,
and insight. That the methods worked was sufficient justification to the Babylonians
for their continued use.

The final period removes any substance one might believe to be implied by the
term “insight”. Since

The concept of proof, the notion of logical structure based on principles warranting
acceptance on one ground or another, and the consideration of such questions as
under what conditions solutions to problems can exist, are not found in Babylonian
mathematics

Babylonian calculators obviously did not base their mathematics on understand-
ing. As seen by Kline, Babylonian mathematics was thus not really mathematics
at all — in complete agreement with his claim (p. 3) that

mathematics as an organized, independent and reasoned discipline did not exist
before the classical Greeks of the period from 600 to 300 B.C. entered upon the scene.

So, while Hofmann and Boyer find our kind of mathematics in the Babylonian
texts, Kline finds something different — but so different that it does not really
count as mathematics. The implied message (probably resulting because it is
the implicit starting point for all) is the same: there is only one kind of mathemat-
ics: ours.

like a-60°+b-60+c+d-60"+e-60 (where a, b, ¢, d and e are integers between 0 and 59)
asa,b,c;d,e. This notation is used by Boyer in the above. Frangois Thureau-Dangin, instead,
would write a“b’c°d’e”, an extension of our usual degree-minute-second-system (which
indeed descends from the Mesopotamian place value system) which | am going to use.
" can thus be pronounced “minute”, ” “second”, ™ “third”, etc. For " | shall suggestgal,
Sumerian for “great” and used exactly about enlargement by a factor 60.
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Interpretations

Hofmann, Boyer and Kline all depended on the translations and interpreta-
tions made by Neugebauer, Thureau-Dangin and Bruins, and on more popular
expositions like Neugebauer’s Vorgriechische Mathematik [1934] and Exact Sciences
in Antiquity [1957] and B. L. Van der Waerden’s Erwachende Wissenschaft [1956].
Neugebauer and Thureau-Dangin made their translations at a moment when
the technical terminology had yet to be cracked (the late 1920s and the 1930s),
and apart from a few terms whose mathematical meaning could be guessed from
their general interpretation, the only way to do so was to start from the numbers.
An operation which produces 30 from 5 and 6 was thus supposed to be a
multiplication. The first approximation to the meaning of the texts — and hence
the early translations — thereby came to presuppose a purely arithmetical reading.

In the early 1980s | started looking more closely at the mathematical
terminology, taking inspiration from the study of literature — namely from the
principles of close reading and structural analysis; the first thorough presentation
of my results is in [Hagyrup 1990], while [Hgyrup 2002a] can be considered the
final outcome of the project. It turned out that two different (not synonymous)
operations had been interpreted as addition; similarly, there were two different
“subtractions” (only one of which is the inverse of one of the “additions”), two
different “halves”, and no less than four distinct “multiplications”. This did not
fit the arithmetical interpretation, within which there is space for only one of
each class (“there is only one multiplication”, as Thureau-Dangin observes
somewhere as a reason to consider the various multiplicative terms as mere
synonyms).

In my presentation of the results, | have used the principle of “conformal
translation’”: apart from well-established logographic equivalence,® different terms

® Our texts are written in cuneiform, in the Babylonian dialect of the Akkadian language.
Words may either be rendered in phonetic writing, where each sign stands for a syllable,
or by means of logograms, signs standing each for a whole word (usually without
indication of grammatical form, even though grammatical or phonetic complements may
provide this information). The same signs have both functions, and the same sign may
have several logographic interpretations (mostly however used in different contexts or
periods), and also stand for whole groups of related sound values, where sounds
belonging to the same group (e.g., bal, pal) may occur in the same text while the different
groups normally belong to different contexts or periods.
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are always translated differently, and the same term (unless the word is
unambiguously used in distinct functions) is always translated in the same way.
The translations are chosen so as to correspond to the general meaning of the
original terms.” Moreover, words order is conserved in as far as possible, since
it structures the architecture of the argument.

All of this may make reading rather awkward, but one can get accustomed
to this conformal translation. I shall use it in the following.

The two additions are:

— toappend (wasabum/DAH), an asymmetric operation where one entity is joined
to another one, which conserves its identity — as a capital conserves its
identity when interest (in Babylonian “the appended”) is added. It is by
necessity concrete;

— toaccumulate® (kamarum/GAR.GAR). This is a symmetric operation, collecting
into one sum two magnitudes or their measuring numbers. In the latter case,
the operation need not be concrete, and magnitudes of different kinds
(lengths and areas — areas and volumes —workers, bricks and working days)
can be collected.

The two subtractions are:

— totear out (nasahum/z1), with synonym cutting off (harasum) and various near-
synonyms used in particular situations;® it is the inverse of appending, a
concrete removal of an entity from another quantity of which it is a part;

— comparison, the observation that one quantity goes so and so much beyond another

The phonetic and logographic writings of the same word are logographic equivalents.
However, equivalence within one text group or in one function need not extend to other
text groups or functions.

Phonetic writing and phonetic representation of Babylonian words are rendered in
italics. Logograms are rendered as SMALL CAPS, giving either the supposed pronunciation
of the corresponding (mostly Sumerian) word or the “sign name”, a possible Sumerian
value.

"1 have met the objection that technical terms have to be translated as and hence by
technical terms, but the point is that the technical meaning of the Babylonian terms has
to be learned from their use, not imported from a different conceptual structure — who
would get the idea to translate chemical texts from the early eighteenth century using
terms like oxygen, hydrogen etc.?

1 would now have chosen “to heap”, but | stick to the choices of [Hayrup 2002a] for
the ease of comparison.

*[Heoyrup 1993] contains a detailed discussion of these.
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one (eli ... watarum/UGU ... DIRIG). Even this operation is concrete, it made
no more sense to the Babylonians than to us to claim that a length exceeds
or falls short of an area.
The inverse of accumulating is no subtraction but a splitting into constituent parts
(bérum, sapahum, apparently synonyms). This operation occurs in only a couple
of texts.

The four operations originally interpreted as multiplications are:

— steps of (A.RA), the term used in tables of multiplication, “5 steps of 6” being
30. It is thus a multiplication of pure number by pure number;

— to raise (naSum/iL), originally used in volume calculation, where the base
Is “raised” from the default height of one cubit to the real height, and then
transferred metaphorically to other calculations of concrete magnitudes by
multiplication;*

— to make [two segments] hold, namely “hold” a rectangle (Sutakulum/Gu,.Gus,,
with a variety of synonyms). This is thus no genuine multiplication but a
construction, mostly implying, however, the determination of the resulting
area;

— to repeat or repeat until n (esepum/TAB), a concrete doubling (e.g., of a right
triangle into a rectangle) or n-doubling (n being sufficiently small to be
intuitively graspable, 2<n<09).

The construction of a square can be described as “making the side hold”.
However, there is also the possibility to make it confront itself (Sutamhurum). The
square configuration itself is called a confrontation (mithartum, more precisely
designating a situation characterized by the confrontation of equals). It refers
to the square frame rather than to the area it contains — whereas our square is
(say) 4 m? and has a side 2 m, a “confrontation” is 2 m and has an area 4 m?.
However, finding the side s of an area Q laid out as a square is expressed in
a Sumerian phrase: by Q, s is equal (Q.E s iB.Slg). The ambiguity of “by” corre-
sponds to historical development and to a Sumerian ambiguity. Originally, it
meant that s was equal (viz, to the other sides) close by the square area Q (thus
still in texts from nineteenth-century (?) Ur). Other Old Babylonian scribes,
however, understood that s was made equal (that is, made a square-side) by Q.

' Always implying some kind of proportionality, even where we do not notice it. For
instance, the calculation of an area can be understood as an expansion of a “broad line”
(see below, p. 24) from the standard width of one length unit to the real width.

We may remember that the Euclidean definition of multiplication (Elements VII, def.
15) is based on the same principle.



In certain text groups, iB.Sly is used as a noun, in which case | shall translate it
“the equalside”. When one side is found, the other side which it meets in a corner
may be spoken of as its counterpart (mehrum/GABA), the name also used (e.g.)
about the exact copy of a tablet.

It is an oft-repeated claim that the Babylonians did not know division. This
statement is ambiguous and only partly true. Of course they knew the division
problem “What shall | raise to b which gives me A”, and many mathematical texts
formulate that question. However, division was no operation for them. Here, if
possible, they used multiplication by the reciprocal of the divisor — more
precisely, by its 1GI, the reciprocal as listed in a table. Finding the 1GI (probably
from the table memorized in school) was spoken of as “detaching” it, probably
thought of as detaching 1 from a bundle of n parts.

In practical calculation, it was always possible to find the IGI: technical
constants were chosen to be “regular” numbers, numbers whose reciprocal was
a finite sexagesimal number. In the mathematical school texts, on the other hand,
division by irregular numbers turns up time and again. Here, the text asks exactly
the division question “What shall | ...”, and states the answer immediately.
Indeed, since the problems where it happens were always constructed backwards
from known results, the quotient would always exist — and always be known
by the author of the problem.*

Halves, as stated, were two. One is the “normal’ half, a fraction belonging
to the same family as %, 7,, etc. It can be a number (30") or the half of something,
found then via multiplication by 30". But a half (then only the half of something)
can also be a “natural” or “necessary” half, as the radius of a circle is the
necessary half of the diameter: it has a role quite different from that of, say,
7, of the diameter. This natural half | shall designate a moiety (bamtum); the
operation producing it is called to break (hepdm/GAZz).

Old Babylonian “algebra” deals with squares and rectangles and their sides.
These were taken in the first interpretation to be mere names (cf. Kline as quoted
above; but on this account he is not alone). Actually, this was a mistake, as we

"We know from three texts from the third millennium and from a couple of Old
Babylonian tables of reciprocals of irregular numbers (probably prepared as exercises,
not for practical use) that the Mesopotamian calculators did possess techniques for
dividing by irregular divisors. The third-millennium texts suggest that the techniques
were created ad hoc according to convenience in the single case. The situation may of
course have been different in the second millennium.
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shall see. In any case, the essential terminology is geometrical, and comprises

the following:

— the length (uS) of a rectangle;

— the width (SAG) of a rectangle (“front” would have been a better choice, but
once again | stick to my original translation for the ease of comparison);

— the confrontation, the square configuration numerically parametrized by the
side, cf. above;

— and the surface (eglum/A.SA), the area of a rectangle or square (or any other
figure), designated by a word which in general usage means “field” (as did
“area” originally, but since we normally do not think of this Latin etymology;,
“surface” is a more adequate translation).

As already follows from this list of essential terms, the geometry in question

is of a particular kind: it is a geometry of measurable segments and the areas

they contain, so to say within a square grid.



Some texts

We are now prepared to look at some texts. We may start by reconsidering
the problem referred to by Kline (VAT 8390 #1):*

VAT 8390 #1"

Obw. |
1. [Length and width] | have made hold: 10" the surface.
2. [The length t]o itself I have made hold:
3. [a surface] | have built.
4. [So] much as the length over the width went beyond
5. I have made hold, to 9 | have repeated:
6. as much as that surface which the length by itself
7. was [ma]de hold.
8. The length and the width what?
9. 10" the surface posit,

10.  and 9 (to) which he'* has repeated posit:

11. The equalside of 9 (to) which he has repeated what? 3.

12. 3 to the length posit

13. 3 t[o the w]idth posit.

14. Since “so [much as the length] over the width went beyond

15. I have made hold”, he has said
16. 1 from 3 which tJo the width you have posited
17. tea[r out:] 2 you leave.

18. 2 which yo[u have l]eft to the width posit.

19. 3 which to the length you have posited

20. to 2 which (to) the width you have posited raise, 6.
21. Igi 6 detach: 10°".

22. 10" to 10" the surface raise, 1°40.

12 Cuneiform tablets are written in lines, numbered in the editions, mostly on the obverse
as well as the reverse of the tablet, and often in columns (indicated by Roman numerals).
Mostly, they are identified by their museum numbers (in the present case, Berlin,
Vorderasiatische Texte, tablet no. 8390).

Damages on the tablet are indicated in square brackets. Because the texts are heavily
repetitive, damaged passages can often be reconstructed. What corresponds to parts of
words omitted during writing stands in pointed brackets, while explanatory words are
added in round brackets.

B First published in [Neugebauer 1935: |, 335f]. Here following [Hgyrup 2002a: 61-63].
Y“This “he” in the reference to the statement shows that the voice which explains the

procedure is supposed to differ from the one which states the problem.
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23. The equalside of 1°40 what? 10.

Obv. Il
1. 10 to 3 wh[ich to the length you have posited] =R
2. raise, 30 the length.
3. 10 to 2 which to the width you have po[sited] R R 2
4. raise, 20 the width. I
5. If 30 the length, 20 the width,
6. the surface what?
7. 30 the length to 20 the width raise, 10" the su\rface. Figure 1. The
8. 30 the length together with 30 make hold: 15°. configuration
9. 30 the length over 20 the width what goes beyond? 10 it dealt with in

goes beyond. VAT 8390 #1
10. 10 together with [10 ma]ke hold: 1°40. '

11. 1740 to 9 repeat: 15" the surface.
12. 15" the surface, as much as 15" the surface which the length
13. by itself was made hold.

As we see, the text starts by constructing a rectangle. The sides are unknown,
but the area is given. In the next step, the square on the length is constructed,
and since its area is so far unknown, it is only stated that a surface results. Then
a square is constructed on the excess of the length over the width (indicated by
the standard expression “So much as” (mala), functioning as an algebraic
parenthesis) and “repeated until 97, which is “as much as” (kima) the square
on the length. The length and width are then asked for.

This already shows us what a Babylonian “equation” is: a statement that
(the measure) of a (mostly composite) entity is so and so much, or that (the
measure of) one entity is “as much as” (the measure of) another entity.™ This
is no different from the equations of any applied algebra; the difference, as we
shall see, is that the Babylonians did not operate on their equations.

At first (lines 1.9-10) the given numbers are “posited”, that is, taken note
of materially (if only memorized, they would have to be “held in your head”).
Then (lines 12-13), since the square on the excess is “repeated until” 9 and then
becomes a square, the “equalside” of 9 is found to be 3, a number which is
posited to length as well as width (see Figure 1). The following step is argued
with a quotation from the statement “since ... he has said” (a standard phrase
for this): the small square, of which the large square contains 3x3 copies, is the
square on the excess of length over width. When removing (“tearing out”) 1 of
these from the width, 2 are left, which must correspond to the width of the
rectangle. Therefore, the number 2 is posited to the width. In total, the rectangle

 The excess of one over the other is also a possibility.
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therefore contains 2-3 = 6 small squares (found by “raising”, the rectangle being
already there; line 20).

Lines 21-22 now perform an igi-division of 10" (identified as the rectangle
surface) by 6, finding the area of the single small square to be 1°40; line 23 then
finds that its side is 10. Finally (lines 11.1-4) the sides are found by raising the
numbers “posited to” the length and the width to this side. Lines I1.5-13 contain
a proof, that is, a control of the correctness of the result.

This is what Kline characterized as “a fourth-degree equation in x [that] was
solved as a quadratic in x*”. As we see there are two equations, not one. Before
they can be transformed into one equation, the passage 1.11-20 — the passage
where everything tricky is found — has to be worked through. One may suspect
that Kline never read Neugebauer’s translation but only his mathematical
commentary [1935: 1, 339f], in which the problem is first stated (as two equations
in x and y) and then reduced. However, Neugebauer has the introductory clause
that “one would have to proceed more or less as follows” — not exactly a claim
that this is what the Babylonians did! And indeed, if we look at the text without
prejudice it is difficult to find anything in it which looks like an algebraic
transformation.

One observation should be added: it looks as if the numbers 3 and 2 that
are posited to the width are posited to the same width. Presumably, the diagram
to which the text refers should be understood as nothing but a rough rectangular
structure diagram which could serve for the square as well as the rectangle. Since
the diagrams serving the solution are never drawn on the tablet (only diagrams
supporting the statement are found on these'), they were probably made in
dust or sand (as were the working diagrams of Ancient Greek geometers), which
allowed that lines that had been drawn or numbers that had been written could
be erased and replaced by other lines or numbers.

BM 13901 #1"

This problem is the first and the simplest from a tablet containing in total
24 “algebraic” problems about one or several squares; translated into modern
algebraic symbols, it also becomes the simplest of all mixed second-degree
problems, xX*+x = o (o = %,)).

' Actually, there is one exception to this rule, the tablet YBC 8633, see [Hoyrup 2002a:
254]. However, this is definitely not an “algebraic” text in even the most general sense.

" First published by Thureau-Dangin [1936: 31], then (translation and transliteration only)
in [Neugebauer 1935 : 11, 1, 5f]. Here following [Heyrup 2002a: 50-52].
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Obw. |
1. The surfa[ce] and my confrontation |
have accu[mulated]: 45" is it. 1, the
projection,

2. you posit. The moiety of 1 you break,
[3]0" and 30" you make hold.

3. 15" to 45" you append: by] 1, 1 is
equal. 30" which you have made hold

4, in the inside of 1 you tear out: 30" the
confrontation.

Initially, we are told that the sum of (the
measures of) a square area and the side (the
“confrontation”) is 45 (= ¥,). In order to make
this sum concretely meaningful, the side is
provided with a “projection” —in Babylonian
wasitum, meaning something which sticks out
or projects, e.g. (in architecture) from a build-
ing. Thereby the side is transformed into a
rectangle, which can meaningfully be glued
onto the area — see Figure 2. This “projection”
is bisected and the outer part (together with
the appurtenant part of the rectangle) is
moved so as to form a gnomon. The two
halves are now caused to “hold” a supple-

1
c A
|
1
c B
|
!
|
TC
|
| ]
!
k [
| |

Figure 2. The procedure of
BM 13901 #1, in slightly
distorted proportions.

mentary square, which is “appended” to the gnomon. The surface of the resulting
square is 1, close by which “1 is equal” —that is, its side is 1. Removing (“tearing
out”) from “the inside” of this side® that half of the projection which was
moved, we are left with the original side, which must hence be 1-30" = 30".
We may compare with the procedure by which we solve the corresponding
modern equation (disregarding negative numbers, which the Babylonians did

not have):

K rLx=Y, e o L (1) =7, + (1)
e X+l x+(1)2=¥%+7=1

o (x+ 4)=1

8 Literally “from the heart” or “from the bowels”. This word was always omitted from
the early translations, as it made no sense in the arithmetical interpretation.
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& x+¥%=41=1

o x=1-4=19.
We observe that the sequence of numbers occurring in the Babylonian text
coincides with what we find here. Moreover, the Babylonian method is analytical
in the same (classical) sense as the solution by equation: we suppose that the
object sought after (the “confrontation” respectively the number represented by
X) exists; we take note of what we know about it, treat it as a normal entity, thus
transforming what we know about it until we have disentangled it.

Finally, both methods are “naive”. we do not argue explicitly for their
correctness, but we “see” immediately that they are correct. We could undertake
a Kantian critique, investigating in which sense and to which extent our procedure
is justified™ — but even we mostly do not feel the need for that.

There are thus much better reasons to consider this an algebraic text than
the mere possibility to translate its presumed “mathematical substance” into
equation transformations. Whether the reasons are sufficient is a different matter.

TMS XVI #1%

Our next examples shows that the Babylonians did argue in some way for the
correctness of their procedures — not deductively, as did Euclid and as does
modern theoretical mathematics, but by imparting conceptual understanding
of what goes on. At first we shall look at the transformation of a first-degree
equation.

1. [The 4th of the width, from] the length and the width to tear out, 45". You,
45

2. [to 4 raise, 3 you] see. 3, what is that? 4 and 1 posit,

3. [50” and] 5, to tear out, 'posit. 5" to 4 raise, 1 width. 20" to 4 raise,

4 1°20" you (see), 4 widths. 30" to 4 raise, 2 you (see), 4 lengths. 20", 1 width,
to tear out,

5. from 1°20°, 4 widths, tear out, 1 you see. 2, the lengths, and 1, 3 widths,

1n the case of the equations by using the Euclidean axioms (or an updated version):
“when equals are added to equals, the wholes are equal”, etc. In the Babylonian case,
for instance by emulating the proof of Elements 11.6.

In a sense, analysis is always “naive”, assuming the existence and properties of the
objects it deals with without having proved either; if we end up with a contradiction,
as is possible, we have an indirect proof that the initial naive assumption is impossible.
Synthesis is the corresponding critique. However, the two solutions under discussion
are naive also in other respects.

2 First published in [Bruins & Rutten 1961: 91f], where the commentary is unfortunately
almost as mistaken as can be. | follow the presentation in [Hgyrup 2002a: 85-89].
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accumulate, 3 you see.
6. :gi 4 r?Ie[ta]ch, 15" you see. 15" to 2, lengths, raise, [3]0" you (see), 30" the
ength.
15" to 1 raise, [1]5" the contribution of the width. 30" and 15" hold.
8. Since “The 4th of the width, to tear out”, it is said to you, from 4, 1 tear out,
3 you see.
9. Igi 4 de(tach), 15" you see, 15" to 3 raise, 45" you (see), 45" as much as (there
is) of [widths].
10. 1 as much as (there is) of lengths posit. 20, the true width take, 20 to 1
raise, 20 you see.
11. 20" to 45  raise, 15" you see. 15" from 3015- [tear out],
12. 30" you see, 30" the length.

~

As we see, the equation deals with the length and width of a rectangle; however,
already in line 1 these are added with a mere “and”, an ellipsis for “accumu-
lation”. If one had been “appended” to the other, we would still be bound to
the rectangle; as things actually are the rectangle is left behind from the very
beginning —its only role is to place its sides at disposal. Apart from its conflation
of the two additions, a translation into a symbolic equation seems adequate (in
particular if we notice that all multiplications occurring in the transformation
are “raisings”):

(I+w)-Zw = 45" .

In any case we notice that the subtraction here is a “tearing-out”. One fourth
of the width is indeed part of the accumulation of length and width.

The text starts by raising 45" — the right-hand side of the equation — to 4,
from which results 3, and then asks for an explanation of this number. This
explanation is given in lines 2-5. In line 3 we see that the two “unknowns’ are
already known; the transformation is thus explained on the basis of a figure with
known dimensions. Each of the contributions 5°, 20"and 30" is “raised” to 4, and
the resulting numbers 207, 1°20" and 2 are identified, respectively, with w, 4w
and 44. Tearing out 20" = w from 1°20" = 4w yields 1 = 3w - in total thus 3, as
was to be explained:

4¢+3w = 3.

Next, the texts goes back, dividing this new equation by 4, that is, raising to 1GI
4 =15". This gives the contributions of length and width in the original equation,
30" respectively 15" (“held” in memory in line 7), and “how much there is” of
each, that is, the coefficients, respectively 1 and 45°. A final control shows that
multiplication of length and width with these coefficients and removal of 45'w
from the sum (already written in a way that corresponds to the numbers
memorized in line 7) leaves the (contribution of the) length.
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The occurrence of a “true width” which is apparently indistinguishable from
the width without epithet (line 10) is unique in the corpus (the notion of a “true”
entity is not, cf. below, p. 26). Probably, the “true” length and width were 30
NINDAN and 20 NINDAN, the NINDAN or “rod” (the standard unit of horizontal
distance) being c. 6 m. Evidently, a rectangle of 120 m x 180 m would not fit
in the school yard; so, the standard “school extensions” were reduced by an order
of magnitude, resulting in a rectangle 2 m x 3 m, which fits nicely within the
yards of Babylonian houses.

In line 8 we observe once more a quotation from the statement used as
argument for at particular step.

This is certainly no deductive proof of anything. It is a nice didactical
explanations of concepts relevant to the understanding of the equations and of
what goes on in their transformation. Already Neugebauer argued that many
Babylonian problems were so complex that solutions could never have been
found without good understanding, and supposed that such explanations were
imparted orally. The present text is from Susa, a peripheral area (in a valley in
the Zagros), which may explain that an oral tradition of this kind had to be put
into writing. However, once we recognize the style, we can find traces elsewhere
in the corpus of similar though more rudimentary expositions, combined with
problem solutions.

TMS IX*

The next text we shall look at, also from Susa, contains precisely this combination
of (certainly not rudimentary) didactical explanation and problem solution.

The surface and 1 length accumulated, 4[0". <30, the length,” 20" the width.]
As 1 length to 10" the surface, has been appended,]

or 1 (as) base to 20", [the width, has been appended,]

ohr };20] [¢is posited’] to the width which 40" together lwith the length
tholds’

or 1°20" toge(ther) with 30" the length hol[ds], 40" (is) [its] name.

Since so, to 20” the width, which is said to you,

1 is appended: 1°20" you see. Out from here

you ask. 40" the surface, 1°20" the width, the length what?

[30" the length. T]hus the procedure.

b

©CoNo O

21 First published in [Bruins & Rutten 1961: 63f], once again with a misleading commentary
(which has been largely accepted in the literature). Here after [Hayrup 2002a: 89-95].
The tablet is damaged and the text sometimes without parallel, for which reasons the
wording of some restitutions (marked ¢...”) is uncertain.
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#2

#3

10.
11.

12.
13.
14.
15.
16.
17.
18.

19.

20.
21.
22.
23.
24.
25.
26.
28.

29.
30.
31.
32.
33.
34.
35.
36.
37.
38.
39.

40.
41.
42.
43.
44,
45.
46.
47.
48.
49.
50.
51.

[Surface, length, and width accu]lmulated, 1. By the Akkadian (method).
[1 to the length append.] 1 to the width append. Since 1 to the length is
appended,

[1 to the width is app]ended, 1 and 1 make hold, 1 you see.

[1 to the accumulation of length,] width and surface append, 2 you see.
[To 20" the width, 1 appe]nd, 1°20". To 30" the length, 1 append, 1°30".
[¢Since’ a surflace, that of 1°20" the width, that of 1°30” the length,

[‘the length together with® the wi]dth, are made hold, what is its name?
2 the surface.

Thus the Akkadian (method).

Surface, length, and width accumulated, 1 the surface. 3 lengths, 4 widths
accumulated,

its [17]th to the width appended, 30°.
[You], 30" to 17 go: 8°30" [yo]u see.
[To 17 widths] 4 widths append, 21 you see.
[21 as] much as of widths posit. 3, of three lengths,
[3, as] much as lengths posit. 8°30", what is its name?
[3] lengths and 2[1 wid]ths accumulated.
8°30" you see
LSiInotl:e 1 to] the length is appended [and 1 t]o the width is appended, make
old:
1 to the accumulation of surface, length, and width append, 2 you see,
[2 the sur]face. Since the length and the width of 2 the surface,
[1°307, the length, toge]ther with 1°20°, the width, are made hold,
[1 the appe]nded of the length and 1 the appended of the width,
[make hold ¢1 you see’ 1 and 1,] the various (things), accumulate, 2 you see.
[3 .., 21 .., and 8°30" accumulate,] 32°30" you see;
[s]o you ask.
[...] of widths, to 21, that accumulation:
[...] to 3, lengths, raise,
[1°3 you see. 1'3 t]o 2, the surface, raise:
EZ‘G)you see, ¢2°6 the surface’.] 32°30" the accumulation break, 16°15” you
see).
{...}. 16°15" the counterpart posit, make hold,
4°24°3°45” you see. 2°6 [erasure’]
from 4°[2]4°3°45” tear out, 2°18°3°45” you see.
What is equal? 11°45" is equal, 11°45" to 16°15" append,
28 you see. From the 2nd tear out, 4°30” you see.
Igi 3, of the lengths, detach, 20" you see. 20" to 4°[30]
{...} raise: 1°30" you see,
1°30" the length of 2 the sur[face. What] to 21, the widths, [may | posit]
which 28 give[s me? 1°20" po]sit, 1°20" the width
of 2 the surface. Turn back. 1 from 1°[30" tear out,]
30" you see. 1 from 1°20" tear [out,]
20" you see.

The text consists of three sections, #1 and #2 of which are didactical explanations,
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while #3 is an application of the methods explained in TMS XVI ¢—30—b
# 1 a n d i n # 2 20"
of the present text. F

All three sections are based on the usual rectangle ==(20",30").
#1 has the task to explain the geometric interpretation of the 1
equation that the accumulation of the area and 1 length is 40".
It explains that appending 1 length to the area is equivalent to
appending a “base” of 1 to the width* — cf. Figure 3. Together  Figure 3. The
with the length, this extended width holds a rectangle  configuration
==3(1°207,30") with surface 40°. In the end it is shown how one ?ﬁﬂsér'l?(e;f_n
may find the length from the surface and the extended width.

As we observe, the “base” of the present text is equivalent to the “projection”
of BM 13901 #1.

#2 accumulates both sides and the surface. It applies the same stratagem in
order to make this addition concretely meaningful, but in the first instance this
only brings about a quasi-gnomon, a rectangle from which a square [J(1) is lacking
in a corner — cf. Figure 4. In order to get a useful configuration this square has
to be appended, which gives a total surface 1+1 = 2 (line 13). And indeed, the

rectangle —=(1°20",1°30") has the surface 2 (line 17).
The trick to be used is announced in line 10 to

4 T - " be “the Akkadian [method]”, and referred to as such
23 again in line 18. Since the only innovation with
T respect to #1 is the quadratic completion (though
an aberrant variant), this trick must then be what
1 is known as “Akkadian”.
#3 combines the equation that was examined in
v #2 with an equation of the type that was dealt with
Figure 4. The configuration in TMS XVI #1 - in short:
of TMS IX #2.

ca(w)+o+w =1, 7, (3/+4w)+w = 30" .

At first, the linear equation is multiplied by the denominator 17; the operation
is described as “going”, conceptually related to “steps of” but in Akkadian
syllabic writing and only found in some Susa texts, either indicating multiplica-
tion or repeated “appending” (both indeed iterative procedures). Thereby this
equation becomes

2 The logogram K1.GUB.GUB is not known from elsewhere, but seems to indicate something
which stands erected permanently on the ground. “Base” seems an adequate translation.
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30+(17+4)w = 8°30° .

We observe that the term for a coefficient turns up again.

Next, the trick from #2 is repeated (lines 28-33). The length and width “of
2 the surface” are introduced — we may call them A = /+1 and ® = w+1, where
thus ==(A,w) = 2. Moreover (the damages prevent us from knowing the exact
formulation) it is found that

3A+21m = 32°30° .
If A designates 3\ and Q stands for 21w (no particular name for these entities
occur in the text, we should notice!), we thus have (lines 34-39) that*
A+Q = 32°30, =3(A,Q) =(3-21)-2=26.

This is a standard problem, the Q A<y 1615 —

companion piece to BM 13901 #1 | _ | o I | B
reformulated as a rectangle prob- o E J ‘ §
lem (a rectangle of which the A A

. £11°45 7> 11'457 <€
area and the difference between

the sides is known — Figure 2A Figure 5. The transformed system of TMS IX #3.
shows the equivalence), and it is
solved by a different but kindred cut-and-paste procedure — see Figure 5:

That linear extension which is known —here A+Q =32°30 —is “broken”. The
resulting half 16°15" is “made hold” together with its “counterpart”. This
produces a square [1(16°15) = 4°24°3°45”, and inside it the parts of the rectangle
corresponding to the broken line form a gnomon with area equal to —=(A,Q) =
2'6. The area of the completing square must therefore be 424°3°45"-2°6 =
2°18°3°45”, and its “equalside” 11°45". Addition and subtraction then gives us
A and Q, and in two further steps Zand w.

We observe that the “name” of an entity (Sumum) may as well be the
explanation of its composition (line 25) as its numerical value (lines 5, 16). As
also reflected in the notions of length/width “of 2 the surface”, numerical values
may indeed be used to identify entities. In some texts such numerical names
are even used for magnitudes whose numerical value is so far unknown.
However, the calculators knew perfectly well to distinguish between such values
as were given and such as were merely known. What looks like overdetermination
simply reflects the need to give names to entities if the procedure is to be

2 A simpler variant of the same trick is used to solve non-normalized problems about
squares and sides, transforming a problem a(c)+Bc = 6 into O(awc)+B(ac) = aod. Cf. below,
p. 31.
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explained; the value of the merely known quantities are never used in the
calculation.

A text like this one should bury any belief that Old Babylonian mathematics
was merely “empirical” and based on trial-and-error.

YBC 6967

In a way — but only in a way - this simple text presents us with the rectangle
version of BM 13901 #1:

Obv. «—igiblm —> .
1. [The igib]am over the igdm, 7 it goes beyond | IS
2. [iglm] and igibm what? } o
3. Yo[u], 7 which the igibim R
4. over the igm goes beyond oo
5. to two break: 3°30";
6. 3°30" together with 3°30°
7. make hold: 12°15", SU
8.  To 12°15 which comes up for you 12%
9. [1° the surf]ace append: 1°12°15". N3k e L s
10. [The equalside of 1]12°15" what? 8°30". 2
11. [8°30" and] 8°30", its counterpart, lay down. 5 T
Rev. t =
1. 3°30", the made-hold, ? l
2. from one tear out, 12
3. to one append. .
4. The first is 12, the second is 5. Figure 6. The proce-
5. 12 is the igibdm, 5 is the igam. dure of YBC 6967.

Indeed, its topic is not geometrical at all but a couple of numbers from the 1GI-
table, igm and igibim, Akkadianized versions of IGI and IGI.BI, “the 1GI” and
“its IGI”. However, the reference to the product of the two as a “surface” in obv.
9 shows that these numbers are represented by the sides of a rectangle (just as
we represent geometrical magnitudes by pure numbers when treating geometrical
objects and relations algebraically).

The product is not 1°, as we might expect, but 1° — perhaps a reflection of
the historical origin of the sexagesimal I1GI, which at first were apparently meant
as fractions of 60, not of 1 [Steinkeller 1979: 187]. In any case, the value is possible
because of the floating-point nature of the place-value system.

**First published in [Neugebauer & Sachs 1945: 129]. Here following [Hayrup 2002a:
55-58].
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With this in mind, we can easily follow the text and see that it describes the
transformations of Figure 6. (The “made-hold”/takiltum of line is a verbal noun,
equivalent to the relative clause “which you have made hold” of BM 13901, line
3.) We observe that this time it is the gnomon which is “appended” to the
completing square, not vice versa. Since both remain in place, this is possible;
in contrast, no text ever “appends” en entity which stays in place in this
geometric reading to something which is moved around.

Lines rev. 2-3 are interesting. Normally, the Babylonians would let addition
precede subtraction, just as we do. Here, however, the subtractive process comes
first. The explanation is that it is the same piece which is “torn out” and
“appended”, and before it can be appended it must of course be at disposal. In
TMS IX, lines 43—-44, in contrast, “appending” comes first. Here, indeed, it is not
the same piece that is involved.

This “norm of concreteness”, first observed by Aisik A. Vajman [1961: 100],
is not respected in all texts. In the texts IM 53965, IM 54559, and Db,-146, all
three quite early (initial eighteenth century BCE), we just find the prescription
“to 1 append, from 1 tear out”. The norm appears to be a secondary development,
introduced by school teachers insisting that operations should be meaningful

AO 8862%

This text is written on a square clay prism. For palaeographic reasons, both
Thureau-Dangin and Neugebauer considered it one of the oldest mathematical
texts known by then (which should mean 1750 or before). In the meantime, a
number of texts have been found in Eshnunna in the north-eastern periphery
which date from around 1775. However, the present text may still be one of the

1 shall not elaborate on the origin of Old Babylonian “algebra”, only state that there
are good reasons to assume that its starting point was a collection of geometrical riddles
circulating among Akkadian-speaking, non-scribal practical surveyors — but see [Hayrup
2002a: 362-387].

The name given to the quadratic completion, “the Akkadian method” (above, p. 18),
of course fits into the picture.

% First partially published by Thureau-Dangin and Neugebauer in several publications,
then completely in [Thureau-Dangin 1932] and [Neugebauer 1935: I, 108-111; II, pl. 36;
I11, 53]. Here following [Hegyrup 2002a: 162-174].
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#1

oldest from the core area; much in its terminology and certain procedures support
this dating.?’

In total, the text contains 7 problems. | give the translation of the first four,
dealing with rectangular fields and their sides:

I
edge  Nisaba

Length, width. Length and width | have made hold:
A surface | have built.

| turned around (it). As much as length over width
went beyond,

to inside the surface | have appended:

3'3. | turned back. Length and width

I have accumulated: 27. Length, width, and surface w[h]at?
You, by your proceeding,

27, the things accumulated, length and width,

10. to inside [3°3] append:

11. 3°30. 2 to 27 append:

12. 29. Its moiety, that of 29, you break:

13. 14°30" steps of 14°30", 3°30°15".

14, From inside 3°30°15

15. 3730 you tear out:

16. 15" the remainder. By 157, 30" is equ[al.]

17. 30" to one 14°30°

18. append: 15 the length.

19. 30" [frlom the second 14°30°

20. you cut off: 14 the width.

21. 2 which to 27 you have appended,

22. from 14, the width, you tear out:

23. 12 the true width.

24. 15, the length, and 12, the width, | have made hold:
25. 15 steps of 12, 3° the surface.

26. 15, the length, over 12, the width,

217. what goes beyond?

28. 3 it goes beyond. 3 to inside 3" the surface append,

CoNoaR~WNE

" have a hypothesis, so far (and perhaps forever) supported only by indirect evidence
but to my knowledge contradicted by neither direct nor indirect evidence: that the
characteristic complex of Old Babylonian mathematics emerged in Eshnunna and was
then brought to the south after Hammurapi’s conquest of the Eshnunna state in 1761.
There is indeed nothing in the mathematical texts from nineteenth-century (?) Ur
(published in [Friberg 2000], cf. [Hayrup 2002a: 352-354] which points forwards to what
develops in the south in the eighteenth century but some affinities with the Eshnunna
texts. Similarly, the texts from pre-conquest Mari (i.e., pre-1758, maybe decades older)
on the north-western periphery do not point forward to what was to come, nor to
contemporary developments in Eshnunna.
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29.

#2

30.
31.
32.
33.
34.
35.
36.

CoNoOR~LNE

373 the surface.

Length, width. Length and width

I have made hold: A surface | have built.

| turned around (it). The half of the length
and the third of the width

to the inside of my surface

[I have] appended: 15.

[I tu]rned back. Length and width

[I have ac]cumulated: 7.

Length and width what?

You, by your proceeding,

[2 (as) in]scr[i]ption of the half

[and] 3 (as) inscription

of the [th]ird you ins[cr]ibe:

Igi 2, 307, you detach:

30" steps of 7, 3°30"; to 7,

the things accumulated, length and width,
| bring:

3°30" from 15, my things accu[mul]lated,
cut off:

11°30" the remainder.

Do n[ot] go beyond. 2 and 3 make hold:
3 steps of 2, 6.

Igi 6, 10" it gives you.

10" from 7, your things accumulated,
length and width, | tear out:

6°50" the remainder.

It[s] moiety, that of 6°50", | break:

3°25" it gives you.

3°25" until twice

you inscribe; 3°25” steps of 3°25,
11°40°[257]; from the inside

11°30° | tear out:

10°25” the remainder. (By 107257, 25" is equal).
To the first 3°25°

25" you append: 3°50°,

and (that) which from the things accumulated of
length and width | ha[ve] torn out

to 3°50" you append:

4 the length. From the second 3°25°

25" | tear out: 3 the width.

7 the things accumulated.

4, the length
3, the width 12, the surface

Length, width. Length and width
I have made hold:
A surface | have built.

-23-



#4

i

| turned around (it). So much as length over width
goes beyon[d], together with the things accumulated,
my length and [width], | have made hold:
To the in[si]de of my surface

I have app[end]ed:
1713°20. | [tu]rned back. Length and width

I have accumul[ated:] 1°40.
1°40 171320 the things accumulated
1" the length
40 the width

8. You, by your proceeding,

9. 1,40 the things accumulated, length and width,
10. 1740 steps of 1°40, 2746°40.
11. From 2°46°40, 1713°20 the surface
12. you tear out: 1733°20.
13. Do not go beyond. The moiety, that of 140,
14. you break: 50 steps of 50,
15. 41740 to 1733720 you append.
16. By 27157, 1°30 is equal.
17. 1°40 over 1°30 what goes beyond?
18. 10 it goes beyond. 10 to 50 append,
19. 1" the length. 10 from 50 cut off,
20. 40 the width.

40 sag

NoakownpE

40" the surface

21. Length, width. Length and width
22. {...} I have made hold: A surface | have built.

23. | turned back. Length and width | have accumulated:
24, together with the surface, they confront each other (as equals).
25. Length, width, and surface | have accumulated:

26. 9. Length, width, and surface what?

Nisaba is the goddess of justice and of the scribal arts. The initial invocation is
the closest any Old Babylonian mathematical text comes to religion or esoteric
matters. Old Babylonian mathematics was no priestly endeavour.

There are two striking deviations from normal usage. One is that linear
magnitudes are repeatedly “appended” directly to a surface, without being
provided with a “projection” or a “base”. The very existence of several names
for the same thing suggests that their introduction was a secondary development,
once more introduced by school teachers insisting that operations should be
meaningful: like Plato (Laws 819D-820B) they may have disliked the widespread
habit of practical geometers to make use of “broad lines” - i.e., lines carrying
a default breadth of one length unit, which allows one to measure areas and
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lengths in the same units.?® The present text, however, has no qualms — which
is one of the substantial reasons to consider it early.

The other deviation is that the operation of “breaking” is not followed by
a construction (the two moieties being “made hold”) but by the numerical
calculation. Whereas other texts specify the construction and leave the calculation
implicit, this text does the opposite (1.12-13; 11.19-22;* 111.13-15), However, when
there is no preceding “breaking” operation (11.13-14), that of “making hold” is
explicit. So it is when the surface is “built” in the beginning of each statement.

The methods used are interesting not only in themselves but also as
alternatives to possibilities which the calculator knew about.

Terminologically we may observe that “turning around” and “turning back”,
in later texts used just as demarcations within the text of the beginning of new
sections, seem here really to speak of the surveyor walking around while laying
out a field. Even the dimensions of the fields are not the “school dimensions”
discussed above (p. 16).

The text has a tendency to “tear out” from surfaces but to “cut off” from
lines, thus choosing among synonyms according to general-language connotations.
“Cutting off” possessing no Sumerographic equivalent, it is likely to have been
borrowed from a “lay” (i.e., non-scribal) surveyor’s environment.

#1

In this first problem, it is given that
ca(4w)+(&w) =33, /+w = 27 .
“Appending” /+w to ca(4w)+(£w), we get
ca(4w)+24= 330,
which is the situation analyzed in TMS IX #1. The present text follows the same
procedure (see Figure 7), thus transforming the system into
co(4w+2) = 3°30, /+(w+2) = 29

% For this notion of the “broad line” and its widespread appearance, see [Hayrup 1995].

One may observe that the “broad lines” were never quite suppressed. When asking
for the elimination of a side from a square, the texts request it to be “torn out”; no
subtractive equivalent of “accumulation” being at hand (the addition which might concern
measuring numbers), there was no alternative.

»There is a slight doubt in this case. The double “inscription” could refer to the drawing
of lines with these lengths. It is more likely, however, that what is spoken of is the
customary inscription of the number twice on a tablet for rough work - see, e.g.,
specimens in [Robson 2000: 24f].

- 25 -



1 | —the standard problem type we encoun-

T tered in TMS IX #3, and solved by the
W Lo same procedure.
l We notice the distinction between
“the width” (w+2) and the “true width”
| (w).
Figure 7. The situation and #2

procedure of AO 8862 #1. )
In #2, half of the length and one third of

the width are “appended to the inside” of the surface of a rectangle, with out-
come 15. Moreover, “accumulation” of length and width gives 7:
co(W)+ 40+ /w =15, /+w =7,
This could have been solved by the trick of TMS IX #3, by 1 1<
introducing A = /+%;, ® =w+%, and adding a supplemen-
tary rectangle ==(%,,7,). However, the text chooses a
reduction to a situation similar to that of TMS IX #1 (if
only 7 (¢+w) had been torn out, the analogy with TMS ) 3
#1 and #1 of the present text had been perfect). It halves IR VAN
¢+w and then “brings” 7, /+7,w to the place where it can
be “torn out” from =a(4w)+7%, ¢+ /4w — see Figure 8. This
eliminates 7,4 but more than Zw.
How much more is found by an only
halfway explicit geometric argument to be
7, =10 (lines 11.13-15, see Figure 9). That
T the difference is not just found as 30"-20"
° seems astonishing; maybe the method reflects what was done in
i the non-scribal environment inspiring the problem. In any case,
: we now know that c=(#10",w) = 15-3°30" = 11°30"; we further
Figure 9. The ) ) )
geometrical find that (#10")+w = 7-10" = 6°50". Then everything goes as in
determination  #1, with the only difference that £10" is not spoken of as a
of /o= s “length”, for which reason there is no reason to speak of Zitself
as the “true” length.

—x—— > i—s——

Figure 8. The configu-

“— s —>
s ration of AO 8862 #2.

#3

In symbolic writing, #3 has as givens that

co(4w)+oo(4+w,w) = 1713720, /+w = 1740 .
This might once more have been reduced to a form where the TMS IX #1 would
serve. Indeed, using the second equation we may rewrite the first equation as
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ca(4w)+1°40-(&#w) = 1713°20 .
Adding 1'40-(¢+w) to the left and 140-1°40 = 2746 40 to the right (the trick used
in #1), we would know that ==(4w)+3°20-/ = ca(4w +3°20).

However, the text proceeds differently — see Figure 10. It finds O(/+w) =
2°46°40, and tears out ==(4w)+=a(/+w,4w) = 1713°20. What is left can be
identified as O(w)+1"40w, which equals 2746 '40-1"1320 =1733°20. The equation

C(w)+1'40w = 1733720
can be solved according to the standard SN R e v
model of BM 13901 #1, and does indeed
follow its pattern until the point where

!
T i

0+w
2

something happens which shows how
fundamental the average (a) and deviation (d) Figure 10. The configuration and pro-
between two magnitudes was in Old cedure of AO 8862 #3.
Babylonian mathematical thought (here, ¢ =

a+d, w = a-d). Since 1’30 =w+ " = w+a while 1°40 = 2a, d must be 1'40-1°30 =

2

W +

is seen to be 1°30. Then, however,

e i
(]
=

10. This is appended to and cut off from a = 50, which gives us Zand w. As we
see, the “norm of concreteness” is not observed, which fits an early date for the
text.

#4

In the last rectangle problem, the area of the rectangle is stated to equal the sum
of the sides, and the sum of all three to be 9 :
ca(4w) = /+w, ca(4w)+i+w =9 .
The procedure is not indicated, but an easy way would be to change the system
into
ca(4w) = 4°30° , /+w = 4°30" .

#o—1

Problems #5-7 of the text (not translated above) are brickwork calculations, and
refer to a technical constant determining a work norm. #5-6 are first-degree
problems about proportional sharing between workers. #7 is of the second degree,
adding men, days, and bricks produced (the number of which is proportional
to the number of man-days), and thus of a kind related in mathematical structure
to #1-4 and to TMS IX, #2-3. It thereby presents us with a second instance of
a phenomenon we have already encountered in YBC 6967 : algebraic representa-
tion, the use of the geometry of measurable segments and areas in a square grid —
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the fundamental representation — to represent entities of other kinds ; such
representation is also the very foundation of modern applied algebra (though
with an arithmetical fundamental representation). In the present case, workers
and working days will have to be represented by line segments, the bricks they
produce by an area.

BM 13901 #12%

Representation of a different but no less sophisticated kind in involved in
this problem, coming from the catalogue of problems about one or more squares
which was already mentioned above (p. 12).*

Obv. 1l
217. The surfaces of my two confrontations | have accumulated: 21°40”.
28. My confrontations | have made hold: 10".
29. The moiety of 21°40” you break: 10°'50” and 10°'50” you make hold,
31. inside 1'57721{+25}740™ you tear out: by 17721{+25}740™", 4°10” is

equal.

32. 4°10” to one 10'50” you append: by 157, 30" is equal.
33. 30" the first confrontation.
34. 4°10” inside the second 10°50” you tear out: by 6°40”, 20" is equal.
35. 20" the second confrontation.

As we see, the problem deals with two squares [J(c,) and OJ(c,), about which we
know the sum of their areas and the area of the rectangle contained by their sides,
O(c)+O(c,) = 21°40" , =3(c,,c,) =107 .

From this it could be easily derived, on the basis of a diagram used elsewhere

on the same tablet, that
O(ci+c;) = O(c)+B(cy)+2=3(cy,¢,) = 417407,
whence
c,+c, = 50",
which together with the second initial condition would be a standard problem.
The text, however, chooses a different path, transforming the problem into a
problem concerning a different rectangle about which we know the area and

* First published by Thureau-Dangin [1936: 38], then (translation and transliteration only)
in [Neugebauer 1935: 111, 3, 7]. Here following [Hegyrup 2002a: 71-73].

%1 There is a miscalculation in line 30, due to a repeated insertion of an intermediate
product on the calculation board [Hgyrup 2002b: 2-3]. It is carried over to the following
lines, but disappears when the “equalside” is found — obviously because this was not
calculated but taken from the known end result.
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the sum of the sides — the problem type to which, for
instance, TMS IX #3 was reduced.

The sides of this rectangle are the areas of the two
squares. Their sum, we remember, has to be bisected, and
the two moieties caused to contain a square. This happens
in lines 29-30. Then the area of the rectangle has to be
“torn out” — but this presupposes that it be known, and
this magnitude is indeed calculated in line 30. In the end,
the sides of the rectangle are found together with their 107 s?
“equalsides”, which are the sides of the original squares.

2

The calculator was thus fully aware that a rectangle g
contained by two squares equals the square on the rec- Figure 11. The pro-
tangle, cedure of BM 13901

=3(0(cy),0(c,) = O(==(cy).0))) - #12.

We may be tempted to see in this a proof that the geometry of Old Babylonian
“algebra” was merely a disguise for underlying arithmetical thinking — but the
fallacious reason is that our thinking, and our fundamental representation for
such relations, is arithmetical. But the present procedure illustrates that our very
categories of “arithmetic” and *“geometry” are inadequate: the “geometry” of
Old Babylonian *“algebra” was not only a geometry of measurable segments in
a square grid, it also made possible extensions like the present one.* Disregard-
ing the difference of mathematical level, nineteenth-century experiments with
imaginary geometry come to mind.

BM 13901 #14%

Our last example comes from the same tablet as the previous one. Its mathematics
is more intricate but its ontology more straightforward - the only “representa-
tion” it offers having the character of a “change of variable”. But it is interesting
for a different reason.

¥ A much more sophisticated example of such representation is found in the problem
TMS XIX #2 [Hegyrup 2002a: 197-200], where the area of a rectangle —=(4w) is given
together with the area of the rectangle ==(d,(1(9) contained by the diagonal and the cube
on the length. This leads to a bi-biquadratic equation, which is solved correctly — once
again apart from an error made on the calculation board..

% First published by Thureau-Dangin [1936: 40], then (translation and transliteration only)
in [Neugebauer 1935 : 111, 3, 8]. Here following [Hagyrup 2002a: 73-77].

The present part of the tablet is heavily damaged, but the parallel in #24 of the same
tablet (dealing with three squares, and thus more complicated) allows safe reconstruction.
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Obv. 11

The surfaces of my two confrontations | have accumulated: [257725”.
The confrontation, two-thirds of the confrontation [and 5", nind]an.
1 and 40" and 5" [over-going 4]0" you inscribe.

5 and 5" [you make hold, 25" inside 2525 you tear out:]

Py,
o A bADd
< Noos

[25" you inscribe. 1 and 1 you make hold, 1. 40" and 40" you make hold,]
[26740” to 1 you append: 1°26°40” to 25" you raise:]

[36"6740” you inscribe. 5" to 4]0” yo[u raise: 3'207]

[and 3720 you make hold, 1176740™"] to [367]6740™ [you append:]
[by 36"17746740™, 46°40” is equal. 3]20” which you have made hold
[inside 46°40” you tear out]: 43"20” you inscrib[e].

[igi 1°26°40” is not det]ached. What to 1°2[6°4]0”

[may | posit which 43720” g]ives me? 30" its band(m.*

[30" to 1 you raise: 307] the first confrontation.

[30" to 40" you raise: 207], and 5° you append:

[257] the second [confrontat]ion

PO ~NOoOORWNE

= e

The problem, as we see, deals with two “confrontations” ¢, and c,. The sum of
their surfaces is (c,)+(c,) = 25725, and ¢, = Z,¢,+5". The “inscriptions” in line
I1.46 corresponds to the expression of ¢, and ¢, in terms of a new “confrontation”
C,

¢, =1, c,=40"-c+5" .

That a new entity is meant is con- 1s %5 54
firmed by lines 111.9-11, where c, .
and ¢, are found in parallel from 7 |(40%20) o(s) §
c. O(c,) can then be developed as u (1x1) o(s) ®
p-0(c)+2q-c+(57), where p and g are Sxa0 5 |oam
to be determined later. At first, line -

11.47 determines 1(5") = 25" and “tears
it out” from O(c,)+O(c,), leaving 25".
Next it is found that O(c,) = O(1)-0(c)*, and through a similar calculation that

Figure 12. The squares of BM 13901 #14.

% A Sumerian loanword. Its mathematical function is obvious, the number which (in the
present case) should be “raised” to 1°16°40” in order to give 43°20” (functionally thus
simply a quotient). The etymological meaning of the term is unclear, but it might be “that
which is to be given together with”. Though rare in the extant text material, the term
must have been quite important: in the early part of the first millennium BCE, a calculator
was termed a “scribe of the bandim”.

% We may notice that the principle of this transformation is close to the one used in the
previous problem, ==(O(c,),d(c,)) = O(==(c,),c,)); we only need to replace 1-c by =5(1,c).
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pisJ(407) =26°40". In total, the number of squares [J(c) contained in CI(c,)+(c,)
is thus 1°26°40”. In consequence we have that
1°26°40"O(c)+2q-c = 25" .

The trick routinely used to normalize such non-normalized equations was
mentioned in note 23: the equation is “raised” to 1°26°40”, thus becoming

[0(1°26°407¢)+2q-(1°26°407¢c) = 1°26°407-25" = 366740 ,
a problem of the same type as BM 13901 #1, just with the coefficient 1 replaced
by 29 and a different right-hand side, and grosso modo solved in the same way.
One difference is noteworthy, however: line 3 does not find 2q but only g, because
2q would anyhow have to be “broken” in the next step. We may think of the
joke about the difference between the mathematician and the physicist:

A physicist and a mathematician are put in front of a cooker with two gas-rings,
a match-box and an empty kettle standing on the left gas-ring. Asked how to cook
water for tea they both tell that you fill the kettle with water and put it back; you
turn on the gas, and then you use a match to light the gas. Asked what is to be done
if the kettle is to the right, the physicist says “Act correspondingly”. The mathema-
tician has a different solution: You move the kettle to the left, reducing thus the
situation to the previous case.

The thought of the mathematician of the joke is algorithmic: once a subroutine
has been constructed, it can be embedded within larger prescriptions and need
no further thought. That of our Babylonian “mathematician” is not: he sees the

procedure as a whole, and if a step from the embedding part is reversed by a
step within the embedded subroutine he eliminates both.
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A general characterization

The examples discussed so far do not show all aspects of Old Babylonian
“algebra”, and even less all aspects of Old Babylonian mathematics. However,
they already allow us to make some generalizations.

It is obvious that anything like deductive chains is absent from all texts.
Moreover, the absence of all traces even from such didactic texts as TMS XVI
and TMS IX and the sometimes rather circular character of their exposition —
a feature which goes against the very gist of deductivity —allows us to conclude
that their authors had no familiarity with the possibility of deductive presenta-
tion. In so far Kline is right that

The concept of proof, the notion of logical structure based on principles warranting
acceptance on one ground or another [...] are not found in Babylonian mathematics.

He is mistaken, however, when he concludes from this that Babylonian
mathematics was not reasoned and thus not really mathematics — unless he would
also exile the whole history of analysis before Cauchy (or before Weierstral3?)
to the pre-history of mathematics.

Old Babylonian “algebra” was certainly “naive” — but so was infinitesimal
analysis during the epoch where faith was promised by d’Alembert to come from
practising. So was even European algebra until the early nineteenth century —
the attempts to make it rigorous by basing it on Euclidean geometry failed as
soon as theoretical developments went beyond the second degree (and already
when it operated with negative numbers).

This naive character of essential branches of Early and not so early Modern
mathematics did not prevent the appearance of criticism — criticism is a project
and hardly ever a totally stabilized outcome. But even Old Babylonian “algebra”
presents us with such attempts at criticism. The “norm of concreteness” can be
considered such an attempt, and the abolition of the “broad lines” as another
one. Both were apparently introduced as the algebraic discipline became the
object of institutionalized teaching in or in the vicinity of the scribe school.*

%1t should perhaps be stressed that we have no external, independent evidence for the
existence of such an institutionalized teaching of sophisticated mathematics. However,
the standardized format of the texts leaves no doubt that institutionalization had taken
place. What we cannot know for certain is the precise relation of this kind of teaching
to the normal scribe school (similarly known from the evidence presented by a highly
standardized syllabus, not from independent external testimonials).
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Both did indeed give a guarantee of consistency and possible existence by linking
the “algebraic’ technique to a domain of which one could feel sure, eliminating
thus the risk that the entities dealt with had “no existence, if not that on paper”,
in Georg Cantor’s vicious words [1895: 501] about Veronese’s infinite numbers.
Much in the same vein, modern metamathematics ascertains the consistency of
a mathematical domain by linking it to the integers, about whose consistency
we do feel confident.

Induction based on only a couple of examples is a daring leap. None the
less, the Old Babylonian example taken together with “our” mathematics and
its Greek, Arabic and Early Modern European ancestor types suggests that
mathematics going beyond a very elementary level cannot avoid being rea-
soned.”

An algebra?

Much ink, and much ire, have been disbursed in order to disprove that
various pre-Cartesian mathematical theories and techniques can justly be
considered “algebraic”. Taking these arguments to their full consequence we
easily end up in the position once formulated by my friend and colleague
Bernhelm BooR-Bavnbek: there was no algebra before Emmy Noether! Leo Corry
[2004: 397], finding the question about the essence of algebra “ill-posed”, suggests
instead to “ask ‘What is the algebra of Fermat, Descartes and Viéete?’ or ‘What
is van der Waerden’s algebra?’, or even, ‘What was the algebra of the Greeks?"”
and then discuss whether “the Greeks were, or were not, doing algebra like it
was later done in the seventeenth century, or like it is done in the twentieth
century”. Similarly, let us resume the characteristics of Old Babylonian “algebra’:

Firstly, what we know about was a technique, no mathematical theory. Insights
of a quasi-theoretical kind may have been necessary in order to see, e.g., that
a problem like TMS XIX #2 could be solved (see note 32), but they have left no
written trace, and we can only guess at their nature.

Its “fundamental representation” was a geometry of measurable segments
and squares and rectangles in a square grid. However, it could be applied to
entities of other sorts whose mutual relations were analogous to those of the

¥ Other mathematical traditions could be certainly included in the induction, strengthening
its validity; I abstain from mentioning them, not having worked enough on them myself.
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fundamental representation — numbers, workers and their working days, areas
instead of segments, etc.*®

It was formulated in words, in a very standardized but not always unambi-
guous language.* However, in contrast to rhetorical algebra of al-Khwarizmi”’s
type, its operations were not made within language. Even though it seems
justified to speak of the verbal statements as *“equations”, there is thus the
fundamental difference that the Babylonian calculators did not operate on their
equations, as did al-Khwarizmi and as does modern symbolic equation algebra.
The Babylonian prescriptions describe what is done in the geometric representa-
tion, just as we may describe in words what we are doing to the equation - “then
we halve the coefficient of x and square it and add it to both sides of the
equation”, etc., in the example on p. 13.

As already discussed, Old Babylonian *“algebra” was “naive”, though with
attempts at criticism. So, as a last characteristic we shall recall that it was
analytical, as is modern equation algebra: it presupposed the existence and the
properties of the objects it was looking for.

Whether all of this is sufficient to include the Old Babylonian technique in
an extended family of “algebras” is a matter of taste and epistemological
convenience. However, whether we include it or we exclude it we should remain
aware of the precise criteria used to delimit this family and which Old Babylonian

*¥1t is noteworthy, but says more about the kind of real-world problems encountered
by Babylonian calculators than about their mathematical technique that all problems of
the second or higher degrees which we find in the texts are artificial. Not a single one
of them corresponds to a task a scribe might encounter in his working practice — unless
his work was to teach mathematics!

¥ Pretending that a language one only understands approximately is ambiguous is always
risky. In the present case, however, there is no doubt. In BM 13901, for instance, we find
exactly the same phrase mi-it-ha-ra-ti-ia us-ta-ki-il.--ma, “my confrontations | have made
hold”, with two different meanings. In obv. 11.28 (#12, cf. above), however, it is followed
by a single number, showing that the two “confrontations” are meant to be sides of a
single rectangle; in rev. 1.50 (#19), it is followed by the statement that “the surface | have
accumulated”, showing that (at least) two figures are involved, and thus that each
“confrontation” holds its own square.

The very compact “series text” (containing only statements and sometimes results
but no description of the procedure) are much worse in this respect. There, ambiguity
often is not eliminated by immediate context as here but only (if at all) by the sequence
of surrounding problems - see, e.g, the copious examples in YBC 4714 [Hgyrup 2002a:
112-137]. Their heavy use of logographic abbreviations and their lack of interest in the
rules of natural grammar do not imply that they are approaching symbolism (cf. note
1 and preceding text): they are stenographic.
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“algebra” fulfils or fails to fulfil. To assert that it was an algebra merely because
its procedures can be described in modern equations, or to declare that it was
not because it did not itself write such equations is perhaps a bit superficial.
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An algorithmic type of mathematics?

In recent decades, the concept of “algorithms” has been widely used in
examinations of various branches of early mathematics. Often, reference is made
to a paper by Donald Knuth from [1972] on “Ancient Babylonian Algorithms”.
In contrast to many others inspired by him, Knuth did not see “algorithms” as
an alternative to the algebraic interpretation but as a specification. He states
indeed (p. 622) that

Babylonian mathematicians [...] were adept at solving many types of algebraic
equations. But they did not have an algebraic notation that is quite as transparent
as ours; they represented each formula by a step-by-step list of rules for its evaluation,
i.e. by an algorithm for computing that formula. In effect, they worked with a
“machine language” representation of formulas instead of a symbolic language.

The reference to a “machine language” was built on the translations that were
current at the time, which saw the texts as dealing with pure numbers. The
identifications within the texts (e.g., “30" which you have made hold” in BM
13901) could then be seen (although Knuth does not explain that) as “comment
fields”, external to the algorithms.

On this level, Knuth can thus be claimed to be mistaken, misled by the
translations he used. However, the passage contains another point, namely the
definition of an “algorithm” as “a step-by-step list of rules”. This remains
adequate, and seems to correspond well to the words which open the prescription
in many Old Babylonian problem texts: “You, by your proceeding” (others close
by the phrase “the procedure”). However, it corresponds just as well to, say,
the prescription of how to construct an equilateral triangle in Elements I.1. Here,
the ensuing proof takes the place of the “comment field”.

It must be noticed that Knuth only finds “straight-line calculations, without
any branching or decision-making involved. In order to construct algorithms
that are really non-trivial from a computer-scientist’s point of view, we need
to have some operations that affect the flow of control”. The constructional
algorithm of Elements 1.1 has the same “trivial” character. We may legitimately
ask if we are not breaking a butterfly on the wheel when applying the modern
algorithm concept, created to describe non-trivial procedures, to the ancient linear
prescriptions. But we should be aware that no definitive answer can be given
unless we specify the question.

One aspect of the question is whether an algorithmic notation can be a useful
analytic tool. Here, the answer appears to be affirmative. As an example | shall
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take one of my own translations of a Late Babylonian procedure [Hgyrup 2002a:
393] into a formula

Yo-([d +0]*-w?)
d-+0 '
This translation is only unambigous because d+¢ is a given number. If it had
been calculated, the formula, even when read strictly, would not tell whether
this magnitude was calculated twice, or once and then saved and retrieved. An
algorithmic formalism able to grasp the structure and details of complicated
calculations for analysis was proposed by Jim Ritter [2004]* and used in adapted
shape by Annette Imhausen first in [2002] and next in her dissertation [2003].

Another aspect is how well the notion of “algorithm” corresponds to the
thought of the ancients themselves. This question is of course too broad to be
answered, “the ancients” being as badly defined as a category as (say) “non-
Western” or (my favourite polemical example) “non-yellow colours”. Mathemat-
ical cultures where it was current to formulate first an abstract rule and to
illustrate it afterwards by one or several paradigmatic examples (India, China)
may be adequately described by the (trivial) algorithms concept, but they are
not my topic.*

The terms “proceeding” (epeSum) and “procedure” (nepeSum) appear not to
be used about any procedure of more general validity than the single paradig-
matic example (except in one Eshnunna text, Tell Haddad 104 [al-Rawi & Roaf
1984], where the latter term may precede several variants and thus several
different “algorithms”). Hence none of them corresponds to a notion of an
algorithm or rule of general validity (as, say, the “rule of three”); they must be
regarded as irrelevant for our question.

Also a possibility to be considered, and also irrelevant at closer inspection,
are the few methods which were given a particular name. One is the “Akkadian

“ The paper circulated for long before this date of publication. | read it myself in 1997;
a preprint appeared in [1998].

“ There are a couple Old Babylonian texts containing such rules. One is an oblique
guotation of the “Pythagorean rule” in the proof in Db,-146, the other a very opaque rule
formulated in AO 6770 #1 — see [Hayrup 2002a: 257-261, 179-181]. Both texts are early,
and the absence of traces of similar rules from all later texts shows that such rules
formulated in abstract terms, though originally known, were deliberately discarded by
the school. Abstractly formulated rules reappear in texts from the Late Babylonian period
(now in less opaque formulation), as mathematics was once more adopted by the scholar-
scribes from an environment of lay calculators [Hgyrup 2002a: 389].
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(method)” of TMS IX #2. As we saw, it referred there to a very atypical quadratic
completion, but it almost certainly also referred to the standard completion of
a square gnomon (there would be no reason to have a name for the atypical
variant only). The other one is “bundling” (maksarum), which may refer both
to the division of a surface (in the actual case, a triangle) and of a volume (in
the actual case, a cube) into a “bundle” of smaller surfaces or volumes of the
same shape [Hayrup 2002a: 66, 254]. Once again, no specific algorithm but an
idea that may be varied.

Jim Ritter [2004] points out that the technique to solve a normalized second-
degree problem may be seen as a subroutine, embedded towards the end of the
solution of more complex problems, and thus finds a not quite trivial algorithmic
structure. We have indeed seen this embedding several times above. Ritter uses
as his example the text Str. 368,* which however presents us with exactly the
phenomenon that was discussed above in connection with BM 13901 #14: the
“breaking” is eliminated from the subroutine together with a doubling in the
embedding text. The algorithm concept is still a valid tool for us when we want
to explain what goes on, and to compare this to the standard procedure; but
evidently the author of the text was able to understand from a higher vantage
point the structure of the calculation. His thinking was not algorithmic.” That
training (beyond the training of basic skills and elementary routines) was not
thought of in terms we may call algorithmic is also illustrated for example by
AO 8862. Instead of solving #3 as #1, with the minimal variation that 100 times
&w is added to the area instead of ~w, a wholly different road is chosen (and

“ Transliteration and translation in [Neugebauer 1935: 1, 311f].

8 Jim Ritter is obviously not blind to this. His notion of an algorithm is much broader
than Knuth’s “step-by-step list of rules”. He introduces “another, more general level of
the algorithm, more general than that of the calculational techniques or that of the
arithmetical operations, the level of method of solution, the choice of strategy of solution”.
As an example he gives the method of a single false position, which can be seen to
underlie several of his examples. In this way, the carriers’ higher-level understanding
is integrated into the “algorithm”. The disadvantage is that the algorithm concept is
dissolved by the inclusion of a level which is not linked to the steps of the algorithm
(as are the “comments”, Babylonian as well as Euclidean) and which is furthermore
common to many algorithms consisting of different steps. As | have observed on another
occasion [Hegyrup 2008: 268],
Instead of seeing the algorithms used in weather prediction as encompassing the
physical theories and differential equations on which they are based, it seems to me
to leave more room for analysis to separate the physical and mathematical theories
from their implementation in computer algorithms.
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instead of a reduction of #2 to the situation of #1, a slight variation is selected).
The message seems to be that many methods are available, and that one should
choose intelligently and flexibly.

All in all, Old Babylonian mathematics seems to me to be no more
“algorithmic” in essence than any other mathematics generating and applying
methods of more or less general validity.

Moreover, | should add, | see a danger that those who are located outside
the field of professional history of mathematics (or, like Kline, only know about
Greek and post-Renaissance European mathematics) will merely learn once more
from the description of Babylonian, Egyptian, Indian and Chinese mathematics
as specifically “algorithmic” that “Western” mathematics is reasoned while the
“non-Western” types of mathematics are based on rules without proof nor reason.
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