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ABSTRACT

anarguing inductively from‘experiment a simple picture of
atomic motion in viscous liquids is arrived at, according to
which the lﬁ%u1d flows by sudden cooperative rearrangements of
atoms in a "region; of the liquid. A region is a thermodynamic
system, i. e. has a density of sfates n(E)=exp(S(E)) with Qﬁ;o
and g:fﬂ), where by a state is meant a potential energy minimum.
A master equation describing the region energy fluctuations is
defived.by assuming a region forgets which state it came from,
once it is excited into the transition state. The master
equation allows é detailed discussion of linear and non-linear
relaxation phenomena and of the glass transition. For linear
relaxation in the equilibrium liquid, it is shown that the loss
peak is simply related to the entropy function S(E) . Non-
linear relaxation is studied by solving the master equation for a
sudden change of temperature from thermal equilibrium to a lower
temperature, and also to a higher temperature. In the first
case, the energy probability distribution adjusts continuously
towards equilibrium, whereas in the second case the states
“evaporate" in the course of the relaxation and thermalise
immediately thereafter. There are two different kinds of glass
transition according to the model, depending on the coeling rate
and on the region specific heat at '@ . A slow glass transition
freezes-in the equilibrium gaussian energy distribution. In the
case of a fast glass transition, relaxation phenomena at T3 are
important and the resulting frozen-in energy distribution is an‘
exponential. Finally, it is pointed out that a glass may also be
prepared by a gquench, an "infinitély“ fast cooling, which should

be distinguished from a glass transition where there is a gradual
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1. INTRODUCTION

The glass transitio akes blace when a liquid upon cooling
becomes more and more viscous and finally solidifies to a glassy
solid [1-17]. Most, or perhaps all, liquids are able to form
glasses when cooled sufficiently fast to avoid crystallisation.
Examples of glasses include the classical oxide glasses, metallic
glasses, ionic glasses, polymers,; and glasses made by cooling

organic liquids to low temperatures. Even simple liquids such as

argon have been found able of glass formation in computer

" experiments; so the glass transition seems to be a universal

phenomenon. It has been studied for maﬁy years but is still not
well-understood. The only thing universélly agreed upon is the
kinetic nature of the glass transition. Though thermodynamically
similar to'a‘second order phase transition. the glass transition
is not a phase transition in the ordinary sense. This is
evidenced by several facts: The transition is not sharp, the
transition temperature E depends on the cooliﬁg rate, and the
transition is irreversible and has various:hysteresis phenomena
associated with {ﬁ. The kinetic nature of 'the glass transition
complicates the problem since a pfoper model must be based on a
detailed picture of the dynamics involved. To make things even
worse, the viscous liquid itself is usually not in true
thérmodynamic equilibrium, because, below the melting
temperature, the crystal phase has lower free energy. A first
prificiples statistical mechanical calculatibn thus inevitably
briﬁgs one to the crystalline phase without any sign of glass
formation, a fact which seems to favour a more phenomenological

approach. It is the purpose of this paper to present a simple

: ¢
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phenomenologic;l,bicture of viscous liquids and the glass
transition, based mainly on plausibility arguments.

-In many discussionsof the glass transition prominent roles
are played by fhé Kauzmann paradox [2) and the Vogel-Fulcher law
(18]1. The Kauzmann paradox,; which was actually first discussed
by Simon*[l]; is the fact that the super-cooled liquid entropy,
when extrapolated beyond E s falls below the crystal entropy ag
a temperature Tk)O . Usually, TK lies only about 50 K below E
[12,19]. The purely vibrational entropy of the liquid is close
to the crystal entropy as evidenced by similar sound velocities
in the glassy and'érystalline phases. Therefore, either the
equilibrium liquid cannot exist below Tk or the extrapolation
is incorrect; this is the paradox. The Vogel-Fulcher law is the
following expression for the average relaxation time of a viscous

liquid

—[:IOQ . (1)

The average relaxation time can be determined e. g. as the
inverse dielectric or mechanical loss peak frequency, or it may

be calculated from the viscosity Q' by means of

Q’ (2)

Goo

T =

where 6 is the infinite frequency shear modulus. These

oo
definitions do not give exactly identical T ’s but the
difference is insignificant for the present discussion. The
Vogel-Fulcher law gives a good fit to many experiments with the

characteristic temperature T, often quite close to the Kauzmann

temperature [20,21]. From this one may argue that there is a
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genuine phase transition of the equilibrium viscohs liquid at T=T,
to an "ideal" glassy solid with zero configurational entropy, a
state of matter which can however only be reached by infinitely

is the basic idea of the entropy theory of

slow cooling. Thid
Gibbs and Co—worke;; {19,221.  ‘Another phase transition theory is
the free volume model [23]. Ideas of a phase transition
underlying the glass transition have also gained support from
calculations applying the sophisticated technigques of modern
liquid theory [24,25,26]1, and from the the theory of spin glasses
[271. '

Though attractive, we feel there is no compelling evidence
for the idea of an underlying phase transition. The original
theoretical arguments for it has more recently been shown to be
incorrect (28], and as regards éxperimental evidence the Kauzmann
paradox does not have to be a paradox. It is possible that the
extrapolation of ?he liquid entropy beyond '@ simply iS,
incorrect. As pointed out by Angell and Rao, even the simplest
conceivaple statistical mechanical system, that with only two
energy levels, has an entropy which, if only known at high
temperatures, exfrapolates to zero at a positive temperature
[(201. Their model does not fit all ereriments, but the excess
entropy data may be reproduced in models with a finite number of
énergy levels and thus without any phase transition [291. —--
While .the Kauzmann paradox remains intriguing, the Vogel-Fulcher
law simply does not apply in the whole temperature range of
intergst. This has been known for many years [30-33] but is
still not generally appreciated. Deviations from eq. (1) occur
for large viscosities where the data are always less temperature
dependent than predicted. This is exactly where eq. (1) becomes

most interesting, thus questioning an important argument for



phasewtransitionitheorieé. fnstead of eé. (1), the data may be
fitted by letting T, vary with temperature [301, or by an
expression of the form T x,exp(A/T"Z where n>l [34])]. The
case n=2 is particularly interesting; it fits many data and has
some-xheorettcal justification being derivable from the
assumption of a gaussian distribution of activation energies
[353.

Glasses are formed from viscous liquids so a better
understanding of glasses and the glass transition must derive
from a better understanding of viscous liquids [36,37]. The
necessity of focusing on viscous liquids has been emphasised in
particular by Goldstein. In his view, the problem of the glass
transition is just an aspect of the problem of the liquid state
and a theory af the glass transition and the glassy state will be
a by-product of a theory of liquid viscosity [29:361. Thus,
initially one should focus on understanding viscous liquids in
thermal equilibrium and forget about the glass transition,
although this is the subject of real interest. The problem of
describing equilibrium viscous liquids also must be much easier
than to describe glasses, since a full knowledge of the state of
a glass requires a specification of its entire thermal history
after reaching E while a liquid is characterised by just
temperature and pressure.

The simplest approach to the viscous liquid problem is to
extrapolate the theory of simple liquids to low temperatures.
This was done in 1984 by Leutheusser [24] and by Bengtzelius,
Gotze and Sjolander [25]1. They showed from mode-coupling theory
that the viscosity diverges at a finite temperature thus implying
higher and higher viscosities upon cooling which eventually

leads to glass formation. However, the theory predicts a power-
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-approximations neededvtofcalculate the viscbsity ffom the

law divergence of the viscosity which does not fit experiment

(381, and itéﬁas now been shown that the approximation scheme

-used in refs. [24%25] breaks down:in the region of high viscosity

£392,401]. %
Since the visgosity of glass forming liquids is 16" or more
times larger than that of simple liquids, it is likely that the
Héhilfonian ére.compleéely different from thdse.appropriate for
siﬁple liquid§ £361]. Accordihg to this point 6f view, viscous
liquids are qualitatively different from simple liquids
(36,41,42]1. There is actually experimental evidence for this.
For instance, Brillouin linewidths, ultrasound absorption, and
magnetié resonance in highly viscoué liquids behave in a way
which cannot be adequately explained by hydrodynamics [431.
Another 1indication of a qualitative shift going from the less

viscous to the highly viscous regime has been investigated by

Torell. For measurements on ionic liquids, she found at high

temperatures and corresponding low viscosity an Arrhenius

temperature dependent viscosity and simple exponential

'relaxatian, which is lost in the same temperature range where the

viscosity become§ non-Arrhenius (4413, Similar results have been
reported for 81Q3 £431].

The present'paper starts with a discussion of the nature of
viscous flow in Highly viscous (henceforth.just: viscous)
lidgids. A pict&re is advanced where flowstakes place via sudden
cooperative rearﬁangements of the liquid a#oms (the basic
constituents of %iquids will be referred to as atoms though they
may.be as well ions or molecules). Next follows a discussion of
the temperature dependence of the activation energy AE for

the "flow events". It is shown that the naive way of evaluating



AE: from experimental data most likely is wrong. By assuming
the simplest possible collective dynamics;, a master equation for
the energy fluctuations is arrived at. This equation forms the
basis for discussing linear and non-linear relaxation phenomena.
It also allows a detailed discussion of the glass transition, a
short report of which has been published elsewhere (46]. It
turns out that there are two different kinds of glass transition,
depending on the cooling rate. As a consequence; in general it
is not correct to regard a glass just as a frozen liquid with the
structure of the equilibrium liquid at ng . The final section
summarises and discusses the model. It is shown that there are
serious diécrepancies between theory and experiment; at present
the theory is incomplete and further work is needed to make it
realistic. However, the model does reproduce a number of
characteristic features of viscous liquids and the glass
transition, including the correlation between the width of the
relaxation time distribution, the non-Arrhenius temperature
dependence of the average relaxation time, and the excess
gpecific heat of the supercooled liquid relative to the crystal
[121. Also, the model gives a simple picture of glassy
relaxation.

The model of viscous liquids proposed here is inspired by
Brawer’s work [13,471. He discussed neither linear relaxation
nor the glass transition, however, and there are important
differences in the roles played by activation energy and by
activation entropy in the two models. In these respects the
present work is closer to ideas put forward by Goldstein in 1972

[29]1 which were never developed further.




2. VISCOUS LIQUIDS IN THERMAL EQUILIBRIUM

The basic problem infviscous liquid theory is to identify
the mechanism of viscous flow. Bélow, a phenomenological
approach is adopted by limiting the discussion to the much
simpler question: How do atoms in viscous liquids move at all?

A simple picfure of atomic motion is arrived at by arguing
indu;tively from experiment, whicﬁ is done to ensure only the
minimum of assumptions are made.

As evidenced e. g. by dielectric relaxation experiments, the
average relaxation time T 1is a direct measure of the time
needed for atomic rearrangements. Typical values of T for glass
fdrming liquids lie in the millisecond, second or even hour
range, which is to-be compared with the average vibration time
of order one picosecond. It is hard to model this without
assuming the atoms are caught in deep potential‘energy minima
where they vibrate millions and millions times before, by thermal
activation, suddenly rearranging into another potential energy
minimum. Such a "flow event" does not involve the entire liquid,
of course, but is highly localised. The idea of viscous flow
occurring via flow events is old [8,13,19,36,41,48, 49).
Describing the dynamics by transition state theory [41,501, the
heat bath is provided by the fast degrees of freedom. These are
the momentum coordinates and also the vibrational contribution to
the potential energy, where the potential energy is imagined to
be separated into vibrational! and configurational contributions.
Note that this is a phenomenological distinction which does not
correspond to a separagion of the Hamiltonian into two terms.

A potential energy minimum is henceforth referred to as a state,

and by the energy of a state is meant the configurational part of




the;potential energy, -i. e. the Qaluerat the minimum.

As mentioned in the introduction, the average relaxation
time usually ‘has a non-Arrhenius temperature dependence. To look
closer into this one plots In(T) as function of the inverse
temperature, as shown in fig. 1. This plot is useful because it
yields a straight line if T is simply activated. Typical
data above and below Tg are shown, the latter derived from long
time studies of glassy relaxation. The naive interpretation of
the observations is the following (fig. la). It is assumed that T
has a temperature dependent activation energy AEC(T) which is
given by the slope of the tangent at f4 (Boltzmann’s constant
is put equal to unity). The intercept of the tangent with the y-
axis is also temperature dependent. This must be due to a
temperature dependent activation entropy if the usual expression,

~-AS Af
T =71, € e /T (3)

where T, is of order 1 picosecond, is assumed to apply. The
activation energy increases as T approaches Tj from above,
while right at Tb there is a discontinuous change in activation
energy to a lower, constant value. This is interpreted as being
due to the fact that below 'g relaxation takes place in an
essentially fixed structure, while above 13 the activation
energy has an additional contribution from structural changes.
The fact that AS is large for the liquid close to Ty is
taken as evidence of a cooperative nature of atomic motion in
viscous liquids, while glassy relaxation must be less
cooperative.

There are serious problems, however, with this picture.

Given eg. (3), there is no reason AE(T) should equal the slope
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of the tangent which is given by

dnt =, = daL  dAS
d_T_‘ = AE(I)**‘T olT" dT-l (4)

For the last two terms to cancel AS must be a function of AE
while in general 7S may vary independently of AE . Thus AE
is geﬁerally différent from the slope which should rather be
réferred to as the "apparent activétion energy" [13,50].
Bégically, the problem is that it is not‘possiblé to determine
the two functions AE(T) and AS(T) just from T(T) . Some
assumption must be made before useful information may be

extracted from T(TY) . We here assume that

AS=0. s

The activation energy is then the slope of the secant drawn
between (0, In(T,)) and. (Td, In(tT)) , as illustrated in fig.
1b. Just as in the naive picture, AE increases as T
approaches TS from the liquid side. But glassy felaxation is
now interpreted differently. What happens at tg is not a
discontinuous chénge in activation energy,xbut that the
activation energy stops changing with temperature. In support of
this picture based on eq. (5)4'we note tﬁat glassy relaxation
iﬁdeed has often:a preexponential of Drder  1 picosecond
(si,52,531]. :

AReferring to:the part of'khe liquid wﬁere a flow event takes
place as a regioh, we now argue that a region must contain many
atoms, implying a flow event is a cooperative process. If the
energy maximum to be overcome:is assumed to be temperature

independent and équal to E, » one has AE(T) = EO_EMSJT) where

2
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Epmia(T)  is the ehérgy at thé minimum.  As T approaches Ty
from above, AE increases 56 Enn(T) decreases. From the
definition of T -in terms of the dielectric loss peak maximum,
it is clear that E,;(T) is the most likely region energy. For
it to be an increasing function of temperature,7thebregion:must

be a thermodynamic system; i. e. have a density of states, n(E) ,

obeying

S(E) as 2%
n(E): € _B‘E—>0/ O E? 0. (&)

The most probable energy in a thermodynamic system is close to
the average energys T . Thuss, the average relaxation time

activation energy is given by
AE(T)= E,- E(7),

i. e. it is just the average activation energy as one might
naively have guessed. But the requirement of eq. (6) is highly
non-trivial. For instance, a two-level system or any system with
equally spaced energy levels is not thermodynamic. The prototype
of a thermodynamic system is one where the energy is a sum of
several independent terms. Thus, for a region to be
thermodynamic it must be larger than the "correlation length" for
potential energy. This implies the dynamics of viscous liquids
is cooperative. Many workers in the field have assumed
cooperativeness of flow events, but based on different arguments
(8,13,19,29:36,47,49,54,551. As a simple example of a
cooperative model, suppose a region consists of several
subsystems with each only two energy levels, where, however, the

dynamics involves exciting all subsystems simultaneously
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{47,56]1. This may be terméd the gaussian model since the density
*

of siates for a\region is a gaussian. If E, lies in the middle
of the gaussian, it is easy to show that ih(exp(A/Ti) . The
gaussian model extends the simple thermodynamic model of Angell
and Rao [20] to include dynamics in a way that fits many
exper iments [35]. |

In the naive picture of fig. la , the so-called
preexponential of T is exp(-49) where A4S 1is the activation
entropy. In the approach advanced here AS=0 and the
preexponential is instead éxp(—c) where c¢ is the region

specific heat. This follows from eq; (7) which implies the slope

of the tangent is given by

dtmj = d_, T_'AE(T))-: AE(T)+TC(T). (8)
d dT |

Note that only when c¢=0 does a straight line in the Arrhenius

plot correspond té a simply activated process. In general, a

straight line signals a constant specific heat and the slope of

the line is not the activation energy but E, , the zero

temperature activation energy{assuming E(7=0)=0).

Goldstein has suggested the transition state is the high-
tempéréture, more—fluid liquid where thelatoms are no longer
trapped in a potential energy minimum [(29]. Excitations to this
state may be thought of as a local melting process, although this
is not consistent with eq. (5). Brawer imagines the flow event
to take place when a density fluctuation t(ansforms a region to a
state of small density where the atoms shuffle about for a short
time before settling in a new potential energy minimum [47]. No
matter what is the exact nature of the transition state, however,

given the cooperative nature of flow events it seems reasonable



to:assuwe that, ?nce excited into the transition state, a region
has forgotten where it came from and may end up in any other
state. There is actually direct experimental evidence for this,
coming from a comparison of dielectric and Kerr-effect
measurements on a number of viscous liquids [49,571. These
experiments show thaf dipole reorientation occurs by sudden jumps
to random new orientétions and does not take place by rotafional
diffusion.

From the assumption that that an excited region jumps into a
randomly chosen state, it is straightforwgrd to derive the
equation governing the dynamics. The only relevant degree of
freedom is the region energy E . If the region energy is
assumed to vary between zero and E, s the equation for the time

evolution of the energy probability densitys P(E,t) ;5 is

’ E
PR - PER O PlELY .o
&H: = ——_—T(E) +h(E) Wﬁw (9

where I(E) is given by

T(E) =L, & T (10)

and n(E) is the normalised density of states. The first term
on the right hand side of eq. (9) is the exponential decay of the
probability due to jumps away from energy E . The second term
reflects the fact that the probability of an excited region
jumping into a state of energy E is proportional to the number
of such states. The constant of proportionality is determined by
requiring conservation of probability. An equation similar to
eq. (9) has been used for describing the thermalisation of photo-

excited charge carriers in amorphous semiconductors [58,59]. In
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" this case, n(E) is the density of trapping levels in the band gap
and E, is the mob&i;ty ed99‘6f the conduction band. |
Equation (9) j% almost the simplest conceivable for
describing cooperati;e dynamicé. Still, the physics contained in
it is far frbm trivial. The equilibrium solution of eq. (9) is
F}q(E)d' n(E) T (E) which is tﬁe ;anonical ensemble solution
required by statistical mechanics. It comes about in the
following way. From the assumption of jumping into random
states, it is clear that on the average all states are visited
equally often. The time spent in each state is proportional to
the Boltzmann féctor (eq.(lO)), fhus giving the correct
weighting. Consider now the éctual fluctuation in time of the
fegion energy. Since n(E) 1is exponentially increasiﬁg, it is
almost certain that, once a region has juhped, it ends up in a
state with energy close to E, . But if close to E, it will
spend only very little time in that state before jumping again.
After a lot of similar "noisy" jumps close to E, ,the region
eventually jumps:to a low ehergy state where much longer time is
spent. In this way ghe canonical ensembleﬁis realised in time,
determining at each temperature the most probable"energy which is

i

almost the same as the average enerqgy BT .




3. LINEAR RELAXATION PHENOMENA

In this section linear relaxation is discussed based on eq.
(9. The example considered is dielectric relaxation but a
similar treatment applies for e. g. mechanical relaxation.

Indeed the present model implies all linear relaxation phenomena
have identical response functions. This is not true in reality
but is a consequence of the-simplicity of the model.

According to the fluctuation-dissipation theorem, the linear
response to an external field is determined by fluctuations in
thermal equilibrium. The frequency—qependent dielectric
constant, XhJ, is the Laplace transfofm of j% <P(o)P(t)>
evaluated in s=—iw s where <P(O)P(t)> 1is the thermal
equilibrium dipole moment autocorrelation function [60]. Since a
region forgets where it came from once it jumps, <P(O)P(t)> is
proportional to <exp(-t/T')> where the average is over the ‘
distribution of relaxation times p(<T') . When substituted into

the Kubo formula for Xlw) , this yields the well-known expression

()= Xle) (~—— o

where, however, the relaxation time has here a definite physical

interpretation as the lifetime of a region in a state. The
average in eq. (11) is dominated by contributions from t‘=uf'.
Being mainly interested in the dielectric loss, XWWL this may be
rationalised by replacing wt/ﬂ*(‘”'ﬂ by ',‘_'&(NI'—I) when the

distribution of relaxation times is broad. Thus

N'(w)= L XL w'px), t'=w G2
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The dielectric loss may be related to thermodynamics by

expressing p(1") in terms of aq(E) » the equilibrium energy

distribution::

e | .
e /TI" ol V\(E), E=E,-Tl(t/), (13)

\ E
F(T E ’Pe‘,(E) Ed—t‘—oc h(E)
Substituting this into eq. (12) we get

b X'w) = S(E) = bn(wro)+ const. | E=Eo+ T Wi <Ey) (14

where eg. (6) has been used. In eq. (13) to each frequency.
corresponds an energy, and the loss peak frequency, Wwm
corresponds to the avérage energy (T . This is physically
obvious, and it follows from eg. (14) and the definition of
temperature:

L ‘

l - = (135)

E\E=E(T) .

In terms of Wh, » Q. (14) may be rewritten as

I 'X"(w) = S<E(T)+TL"(“’/WH))?["(W/@“)+ const. (16)

Thus, measuring the dielectric loss is equiQalent to measuring
the function S(E) which determines the thermodynamics. As
illustrated in fig. 2 » when plotted in a log-log plot X%ﬂis
almost identical to S(E) .

A measurement of T (T) via eq. (7) yields E(T) which, by
means of eqs. (13) and (16), determines the dielectric !oss.
S(E) - quite generally determines the linear response, but only if

p(Th) is broad does the simple expression given in eq. (16)
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apply. ForrFoméieteness, we an dérivé thg ggnerally:valid
expression for Xw) , assuming the high energy cut-off at E, is
irrelevant for therquynamic properties. The’partition function
is then given by

R -
-_— b _ -
Z(pl= [ wiae e | g7
o TPE
Introducing a dimensionless measure of the frequency by w=wi &' ,

the response function may be expressed in terms of the partition

J:(E) f (—L?u’ e"{”':)j dE

function as

00
7((‘”)= X((’)J m(E)e—pEAE _ (G

Z(F) | +iwelt T Zp s Y
o0 ] (18)
(U 8) (-1%)?
2P T ; 2(jp i)

This may be rewritten as a complex curve integral in the

following way

= _Kd 1 Z(Sﬁ)(i?v’)s (19)
X“ﬂ ZG) 075 SLM(SWO dS !

where the contour encircles the positive integers.
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4. NON-LINEAR RELAXATION

Ed

In thisﬁéecfion we study non—-linear relaxation, i. e.
relaxation towards thermal equiligrium from é state which is more
than infinitesimally removed from equilibrium. This is a subject
of great current interest [13,15,17,53,61,62] since it is
important for applications of e. g. polymers, metallic glasses,
or optical fibres, but also because it is a fascinating problem
on its own to try to understand very slow relaxation of
macroscopic properties in terms of motion on the atomic scale.
The simplest models assume relaxation is due to a spectrum of
activation energies for ihdepende%t processes [353,611. These:
‘models have considerable sucéess. Basically, relaxation
described by eq. (9) ;s also due to a distribution of activation
energies but for processes which are interrelated by the
requirement 6f conservation of probabiiity. |

-The master equation has a unique stationary solution at any.
temperature, the canonical distribution, and af any given time
the solution of ﬁhe equation approaches the canonical
distribution. This is true also if the temperature chahges with
time, as during ﬁpe glass transition thch is studied in the next
section. Here we. are concerned with the simpler case of
relaxation at a constant temperature,v Then the master equation
may be solved by Laplace transformation in the following way.

0
Defining as usual P(E,s) = JP(E,t)exp(-st)dt eq. (9) implies
(-]

| :
S ’ﬁ(Eg s)- P(E,0) = —X(E)?(E, ) + H(E)J X(E") P‘/E', s)d g’ (20)
- 0

where P(E,0) iszthe energy distribution at t=0 and Y(E)= Y7(g)
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haé beeb introduced for cqnvenience., Equation (20) implies

P‘E/o)
¥[E) + 5

()= g vierrieue s
P( 5} = X(E)‘rs ¥IE)PlE)S)
Multiplying both-sides by.-- ¥(E9 and integrating allows a-
determination of _IQGE’)scE’,S)dE’ . When substituted into eq.

(4
(21) this gives

E, '
J yE')PIE, 0) AE

~c y. _ h(E) o ¥IE+s PE.0
P(E 5)- n + (22)
/ YIE)+5 ijo n (E') e Y(E)+s
b YlE')+s

where use has been made aof the fact that n(E) is normalised.

P(E, t) is now calculated from ﬁ(E.s) as the inverse Laplace

transform:
+L00 :
| ~ st
P(E,t)= 217 L S P (515}8 0(5, (23)
-Lco

The evaluation of eq. (23) is discussed in the appendix.

Formally, the result is

Eo
J' _Y[E')PLE0) 9 4 "H:
P(E = Req (E) + ¥(E')-wle") nlg) -l

w(E") j _n(e)dE'
(3(E)-w(e")

where Peq(E) o n(EYexp(-E/T) 1is the normalised equilibrium
solution, and W(E’’) lies infinitely close to Y(E’’)
obeying o

ko
J n(e') de' = 0. (25)
Y(E')-w (")

o
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The solution of the master equation allows one to discuss
energy relaxation in detail; other quantities relax similarly if
they are functions of energy. As an example we consider é sudden
quench at t=0 from thermal equilibrium at temperature T to a
lower temperature T . The time evolution of P(E) is monitored
in fég. 3a where four snapshots of the thermalisation are shown.
To get a better understénding of what happens it is convenient to

introduce a characteristic energy, Eg, given by
Eo{ =E,~-T Lﬁ(*/?ﬂ (26)

Ed is the so-called demarcation enefgy which wés introduced in
the theory of thermalisation of Bﬁoto—excited charge carriers in
amorphous semiconductors [S58,59]; a related quantity is used in
relaxation theories based on a spectrum of activation energies
£{53,61,63,641. The demarcation energy separates the low energy
states, which have not jumped since t=0 , from the higher energy
states. P(E,t) may change below Ed. only by increasing due to
states arriving from above Eg . However, since the density of
states is exponentially increasing, most jumps that arrive below
Eg arrive just below E4 . So for all practical purposes one
may think of P(E,t) as unchanged belaow Ejy. Some time after
the quench E4. reaches the t=0 energy probability distribu;iun
which is an approximate gaussian. Ey then slides along the
diétribution until the equilibrium diétribution is reached, where
the distribution stops while Eg continues towards lower
energies. According to eq. (26), the average energy relaxes
logarithmically with time when the gaussian is slided along.
Deviations from this is predicted for both short and long times

where there is little change in energy. This kind of relaxation
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behaviéur is oftgh found iﬁ experimeﬁf [53,61.b5] and is referred
to as In(t)-kinetics. It expresses fhe fact that the rate of
glassy relaxation slows down as time goes bys aicharacter;stic
property of glassy relaxation. This fact is often rationalised
by expressing the relaxation rate not only as a function of
temperature; but also as a function of the so-called fictive
temperature 'k £64,5,15,66,67]. By'definition} the fictive
temperature of a glass is the temperature where the equilibrium
liquid has the same structure as the glass. In the present model

T} may be defined by

Eo
E'(Tf) =J E ’P(Erf)dE . (27)

(8]

though there is no guaranty that P(E,t) is identical to the
equilibrium distribution at Tg . The relaxation rate is a
function of T§ in the present model simply because T§
determines the average activation energy for jumps. In the
course of the relaxation process T? decreasess implying the
activation enerqgy for jumps increases, which slows down the
relaxation rate. Note that the straight line in figs. 1la and 1b
illustrating glassy relaxation below Tg refers only to the
initial stage of glassy relaxation, i. e. when 'k=ﬂ3. In many
cases; depending on the annealing temperature, one only observes
this initial stage of the relaxation process,; which in fig. 3a
cofresponds to the upper subfigure.

The relaxation in fig. 3a corresponds to the usual case of a
glass relaxing below T, . As another, more exotic example of
relaxation we consider the opposite case, starting at thermal
equilibrium at a the temperature T and then suddenly changing

the temperature to T > Ts . This case is illustrated in fig.
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3b. There.is noggradual sliding of the energy probability

}

1

distribution towéqu the equilibrium distribution. Instead,

: y

nothing happens ag long as E; 1is to the right of Ps (E) , the
.starting energy distribution, since all states are still frozen.
‘When finally E4 reaches PS(E) s the regions "evaporate" and
‘“thermalise almost immediately without visiting the states in
between Pg(E) and P¢q(E5 . This complex non—local behaviour
reflects the fact that the master equation is not a differential
equation. If the model is correct one may produce “dyhamically
generated" phase separafion in a'glass by annealing it for a long

time, rising the temperature and then quenching it to low

temperatures after just the right period of time.

IR

Re

AR S TR
BERALELY




2%

S. THE GLASS TRANSITION

"Solving the master equation for time-dependent temperature
allows a étudy of the glass transition. In this case the
equation is very complicated and cannot be solved by analytic
methods. The same kind of problem is encountered in quantum-
ﬁechanicé when the Hamiltonian is time-dependent. The only 7
methods of solution is to ;tep ahead in time with small
incremenés, using a Hamiltonian which is &hanged for-each;time
step. In oﬁr cases this may be done either by brute force
stepping ahead in time At=T7, , or by taking larger time steps
using the Laplace transform solution of sec. 4 . Tﬁe brute force
method is not applicable for realistic laboratory time scales
where the latter method is superior, but for purpose of
illustration it works excellent. As an example we show in fig. &
the specific heat c(t) calculated by brute force during cooling
and subsequent reheating through the glass transition, where

ci{t) 1is defined by

.
m

(28)

()= 2

ﬁﬁsL 9.,
~ |o+

Fig. 4 is similar to experimental results which, however, also
include a roughly temperature independgnt vibrational

contribution to c(t) . The figure sfpws the well-known

hysteresis effect. On reheating, tﬁéA%pecific heat becomes

negative for a while; this reflects a temporary decrease in
energy due to relaxation from high energy states frozen—in during
the cooling.

To study the glass transition more closely it is convenient

to focus on the demarcation energy EJ which separates frozen
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from non-frozen states. Ejy has here a slightly different
meaning than in sec. 3 : Suppose we cool the liquid at a
- constant rate to zero temperature in time t, , from a state at
high temperature where the average relaxation time is much
smaller than ¢t, . The demarcation energy separates states that

are frozen from now on from non—-frozen states; it is given by %i=

Eo-T(t)In(t, /x,) where ¢t = t,-t is the time left till zero

‘temperature is reached. In realistic cases the glass transition
takes place for t, of the same order of magnitude as t,>>7,
and t, may be replaced by t, in the expression for Eisince it

enters only via a logarithm. We thus have
E d = Eo - T(f) ZM(tO/zo). §=23)

Note that E, increases as time ﬁésses, while in sec. 4 it
decreased. In thermal equilibfium the energy probabi1i£y
distribution is approximately a gaussién centred about E(T) .

As the temperature is lowered, the gaussian is displaced towards
lower energies while Ej increasés. When the gaussian meets Ed
the glass transition takes place. This happens when E’=Ed. For
a system of constant specific heat , ¢ , this condition implies

_ E,

| 4 = :
3 C + Ln (‘to /Ta) (307

A linear relationship between lfB and the logarithm of the
cooling rate is indeed often observed [9,4&8].

In a recent paper by the autﬁor the glass transition was
studied by solving the master equation by brute force for systems
with constant specific heat [(46]. One finds two different kinds

of glass transitions, depending on the rate of change with




26

tewbera#ure of E; and of E . The case wheﬁ Egjchanges much
faster than E was referred to as a slow glass transition since
it requires long cooling times: In(t,/ T,)>>c. In this case the
equilibrium gaussian almost doesn’t move at all when E, passes
it and freezes—in the regions. The frozen-in energy

distribution, P,(E) , is just that corresponding to thermal

equilibrium at T=TS :

(E-t:},)2

P, (E) 5(2”7'(@5)27’/1) Q.XF[— 2{U4e> | - (31)

Here §9=CE and <(4E)l>=CT; . Since the width of the gaussian
is JE E ’ tHe width of the glass transition, determined from AEA

=fE Tﬂ sy is given by

__A_LL = ___\,:-C;___ (32)
Tﬂ hﬂ(to/:o) )

A fast glass transition is the opposite limit, i. e. when

In(t, /)<<c . The demarcation energy then moves only very slowly

‘compared to the gaussian, and E_j is almost constant during the

glass transition. To determine P,(E) we consider the energy
fluctuations of a single region. As long as its energy is above
Eq it jumps many times between the high energy states (remember
n(E) is exponentially increasing). Sooner or later,; however,
the region ends up in a state below Eg , or just above EJ

being subsequently frozen when Ej  passes. As all other jumps,
the last jump hits an energy with probability n(E) . Around E3
n{E) is proportional to exp(E/Tg) y so P,(E) is roughly given

by
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T; QXFBE-Ej)/Tﬁ] | E < Eg

0 ' ) E > Eﬂ

(33)

P, [E) =

The predicted exponential increase of P, (E) below E_9 was
confirmed in the numerical solution of the master equation of
‘ref. [46]1, However, above E3 Po (E) does not drop
.discontinuously to zero but seems rather to foliow a gaussian
‘decay. We have not been abie to prove this analyfiéally.
Neither have we been able to calculate the temperature width of
the fast glass transition.

An important thing to be learnt from this study of the glass
transition is that, in general, one cannot expect a glass merely
to have the structure of thé equilibrium liquid at T=T9 .
Certainly, the average frozen-—-in energy is equal to the average
energy of the equilibrium liquid at TS y but the gigggigggigg
of energies in the glass may be different from that corresponding
to the equilibrium liquid at 13 . This haé important
consequences for glass properties affecting e. g. glassy
relaxation. Any physical property which is a function of E
will, if it depends linearly on E for.the relevant energies,
also be distributed according to a gaussian or an exponential,
depending on the cooling rate through the élass transition. For
instance, amorphéus semiconductors prepared by a fast glass
transition are likely to have exponential band tails of localised
stétez [46,69]. Note that, since the cooling rate must be
compared to the.region specific heat at the glass transition
which depends on the size of a region, there is no absolute
measure on the cooling rate determining the kind of glass
tramsition. \

The usual way of producing glasses is by cooling the liquid
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at a more orrlessrconstant rate from a high témperature where the
viscosity is low, corresponding to an average relaxation time
much shorter than the cooling time. This process is usually
referred to as a glass transition. However, glassés may also be
prepared:in another way, namely by a sudden cooling of the liquid
from a state of thermal equilibrium at a temperature where the
average relaxation time is large compared to the cooling time.
This may be referred to as a "quench" since the regions are
frozen-in instantaneously and do not have time to jump. Glasses
produced by a quench obviously have an energy distribution equal
to that of the liquid at the "freezing" temperature. Thus, a
quench and a slow glass transition yields a gaussian distributioﬁ
of frozen—-in energies in the glass, while a fast glass
transition, though corresponding to cooling rates in between that

of a quench and of a slow glass transition, results in an

exponential distribution of region energies.
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6. SUMMARY AND DISCUSSION

Like most preceding models, the present model of viscous
liquids is based on the idea that viscous flow takes place via
sudden flow events, rather than in a continuous manner. A flow
event is localised to a group of atoms referred to as a region,
and the liquid is then regarded as an ensemble of non-interacting
regions. This assumption is not easily justified. A region is
small, perhaps 10-20 A in linear dimension (701, and therefore it
has large surface energy which is likely to depend on the states
of the surrounding regions. Furthermore, the liquid is not
literally divided into regions,; so the picture certainly is
oversimplified. The assumption of non—intéracting regions also
rules out an explanation of the mechanism of viscous fle which
must involve interaction between the régions. Despite all this
it is hoped that the picture pfoposed here, ﬁy focusing on the
flow event activation energy, does cétch the essential physics qf
viscous liquids and the glass transition.

Most glass forming liquids have a strikingly non—-Arrhenius
temperature dependence of the viscosity. The simplest
explanation for this is to assume the activation energy of the
viscosity is temperature dependent. The curvature in the
Arrhenius plot implies AE increases as T decreases. Writing
AE=EO—§ this is easily understandable in the region picture
since the average region energy E must decrease as . T
decreases. This ide;. which has ﬁere,been somewhat
oversimplified, is the basis of the theory pfoposed in the
present paper; it goes back to Goldstein [29]). A similar line of
thought has also been made use of by Morito and Egami in a

discussion of mechanical relaxation in metallic glasses [711].
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Theridea allowé,a Qeryrsimﬁle explanation of glassy relaxation as
havings; in its initial stage (which is often the only
accessible); a constant temperature independent activation energy
equal to E,-E(Ty) . | |

Experiments on the pressure dependence of the liquid average
relaxation time are consistent with the region picture. One
finds that 1In(T1 ) 1is not a linear function of pressure.

Instead it curves in way which.implies the activation volumes AV,
increases as the pressure increases [(72]; which is easy to
understand in the region picture. Writing AV=M,—U sy 1t implies
the average region volume decreases as the pressure increases, as
is required by thermodynamics.

The very small preexponentials for T , which are observed
close to the glass transition, have always been a matter of
concern. The preexponential is often of order IJS; or even ldwz
which, according to the conventional interpretation, indicates a
large entropy of activation. As shown in sec. 2 this
interpretation is problematic: If T is expressed in terms of
AE(T) and AS(T) by eq. (3), AE(T) 1is generally not the slope
in the Arrhenius plot and thus the preexponential is not
exp(-45). In the present theory AS=0 is assumed, and the
preexponential is exp(-c(T)) where c(T) is the region
specific heat. The fact that large «c’s are needed to fit
experiment is consistent with the basic idea that a region is a
thérmodynamic system, i. e. has many degrees of freedom. The
curvature in the Arrhenius plot implies c(T) increases as T
decreases tawards 13. This is indeed often the case in
measurements of the excess specific heat of the liquid relative

to the crystal [20]. According to the model, ¢ goes to zero as

" T approaches the melting temperature. This is not seen in
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thermodynamic measurements and is probably due to a gradual

breakdown of the whole approach as the less viscous regime is

entered. |
5

A straight line in the Arrhenius plot is usually thought of
as indicating thermal activation with a single activation energy.
In the model proposed here, however, this is only true if c¢=0 .
Generally, a straight line indicates a constant region specific
heat. The slope of the 1ine is nof the activation energy but the
>zero temperature activation energy, and the preexponential is
exp(—-c) . This suggests an alternative explanation for thev
anomalously large attack frequencies sometimes found in rate
processes, e. g. in diffusion [(73]. While usually interpreted as
indicating large activation entropies, these anomalous
preexponentials may instead be.due to processes involving the
excitement of a system with many degrees of freedom.

Brawer bas proposed a detailed model for flow events based
on'inéights gained from computer simulations [(13,47]. In his
model a region is composed of k‘ volume elements, each of which
can take two possible densities. The region energy is a function
of the number of low density volume elements, n , such that large
n implies large energy. A flow event occurs when a region is
excited to energy E, ;5 this energy corresponds to a state with
N>n low density volume elements. The number of ways such a
state may be reached depends on the value of n , and entropy
effects are thus important in the'theory. For instance, the
curvature of 1n(t) in the Arrhenius plot is due to the fact
that, as the temperature increases, there are fewer and fewer
différent ways to excite a region to the critical N , resulting
in a weaker temperature dependence of T (131. Similarly, the

smali preexponentials arise from the large entropy of activation
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inherent in the cooperative nature of the flow event [131].
Brawer’s model differs from the one proposed here which
focuses entirely on the activation energy. The assumption AS=0
is here made to simplify the theory. This assumption is hard to

justify if the transition state is a non-vibrational state
corresponding to the less viscous liquid, as has been proposed by
Goldstein [29]. A constant activation entropy seems more likely.
This corresponds simply to a change of T, 5 and may easily be
incorporated into the model. The model then does not apply in
the whole liquid temperature range, and the begirnning of the
curvature in the Arrhenius plot must be regarded as signaling a
transition from the low viscosity liquid described by standard
liquid theory to the really viscous liquid where the present
theory applies,

The dynamics governing the fluctuations of region energy is
given by the master equation eq. (9). It was derived assuming
that, once excited into the transition state, a region has
completely forgotten where it came from. Actually; this must be
true if one assumes there is only one transition state. The
master equation allows a detailed study of linear and non-linear
relaxation phenomena, as well as of the glass transition. This
follows Goldstein’s program according to which the glass
transition and the glassy states are easily understood once a
theory of viscous liquids is arrived at [29,361.

From his picture of flow events, Brawer derived a kinetic
equation for the region energy fluctuations. The equation
reflects the fact that in his model there are many transition
states. An excited region has not entirely forgotten where it
came from and may not end up in any other state: A transition

state is a state with N out of K wvolume elements being low
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density volume elements. From such a sfate it is not possible
directly to reach any state with nd<N low density volume
elements. Thus, Brawer’s equation is not equivalent to eq. (9),
in contrast to what was previously stated [(46]1. Equation (9) is
more related to Goldstein’é brief 1972 discussion of the kinetics
of flow events [29]. He never developed this further, however,
peing more concerned with explaining ﬁ'—relaxation, which, 1f to
be expléined by the same hechanism as the dominantd-relaxation,
is inconsisteﬁt with a thermodynamic density of states.

At any temperature there is a spread in region energies
which gives rise to a distribution of activation energies and
thereby a distribution of relaxat}on times. It is a very old
idea to explain distributions of relaxation times by aséuming a
spectrum of activation energies, but usually this is assumed for
unspecified indépendent processes. Here, the spectrum of
activation energies arise for processes which are not
independent, being related by the reduirement of conservation of
probaSility: at any time a region must be in somé state.

A measurement of T(T) allows a determination of the
density of states n(E) , which is essentially the only input to
the master equation, and from which it is thus possible to
predict all linear and non-linear relaxation phenohena.

According to the theory, a true Arrhenius ;T(T5 (i. e. with a
preexponential of order 1 picosecond) impliera single relaxation
time, while deviations from true Arrhenius behaviour imply‘a
distribution of relaxation times. This i1s in agreement with
experiment [12,74), though there are exceptions to the general
tendency (731]. If the size of the regibns is assumed to be
independent of the liquid, we furthermore predict the excess

specific heat per unit volume to correlate to the non-Arrhenius
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behavion. This af%q agrees Qith experi@ent f{123. Things looks.
worse when it comes to a quantitative comparison of theory and
experiment. The observed very small preexponentials,imply a
large region specific heat, typically between 20 and 200 .

From eq. (14) it is easy to show that the half-width of the loss
peak is 2J|2c/1In(10) ' decades which gives half—widths between S
and 17 decades. The actual half width of the m—péak, however,
is always between &2 and 3 decades {49,721, and this is a
serious discrepancy. We know of no likely explanation for it nor
of any extension of the theory to account for it. It must be
concluded that at present the theory is incomplete.

By solving the master equation, non—-linear relaxation may be
monitored in time. One finds an asymmetry between relaxation
from high to low energies which is continuous (fig. 3a), and the
converse process which is almost discontinuous (fig. 3b).

I1f the theory is correct the latter process may be applied to

produce "dynamically generated" phase separation in glasses by

interrupting the relaxation at just the right time via a quench

to low temperature.

In the study of glassy relaxation it has always been a
mystery that the relaxation takes place much faster than expected
from an extrapolation of the equilibrium relaxation rate. In the
present model, this is because glassy relaxation proceeds with
activation energy AE=E°4E(T3) which is lower than AE for the
equilibrium liquid below Ty - This is true for the initial stage
of glassy relaxation. In his model Brawer explains sub-T,
relaxation as the occurrence of flow events only in the highly
excited states [(133. 1In a sense this is true also for the
present model, but the point is that all regions of the glass are

highly excited compared to the equilibrium liquid and that all
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regions may participate in the rglaxation, it still havirng the
same low actgbation energy;

The theory predicts there are two different kinds of glass
fransitiohffslow and fast. A slpw glass transition freezes-in
the.equilibrium energy probability diétribution at ~T3 . Things
aré more complicated in the case of a fast glasé transition where
relaxat;on phenomena at Tg become important. The lowest lying
states freeze whiie the higher lfing étates have time to relax,
and the resulting frozen—iﬁ energy distribution is quite
different from the equilibrium distribution. It is usually
assumed a glass has just the structure.of the equilibrium liquid
at Tg y but the model shows that this does not have to be so.
After all, glassy rela#ationAhas been known for years and since
relaxation right at T4 ‘is much fastef, it cannot be ruled out a
priory that this might affect the structure of a glass. -— A
~third wéy to produce glasses from liquids is via a quench, an
"infinitely" fast cooling which really has little in common with
avglass transition. Like a slow glass fransition, a quench
results in a gaussian distribution of frozen-in energies in the
glass (or of any other quahtity linearly related to E ), while a
fast glass transition results in an exponential distribution of
frozen—-in energies, as shown in sec. 5. and fef. fa6].

According to the model, the glass transition is a purely
kinetic phenomenon which is not due to an underlying phase
transition. This does not mean, however; that the behaviour of
An(T ) above TS is expected to extrapolate to low
temperatures. Since a region contains only“e finite number of
states, one has c(T)- 0 as T—Db » the analogue of the Nernst
thegrem. Thus,s eventually the preexpopential for ‘t of the

equilibrium liquid must return to ane picosecond on cooling,




i. e. a change of sign is predicted for the second derivative of

ln(INTq) « And this must actually happen not very far below TS

if the Kauzmann paradox is to be avoided.: We know of no

experiments indicating this, but it is to be noted that for many

solids the preexponential stops decreasing and becomes almost
constant close to Ts—. Similarly, we predict a change of sign
of the second derivative of In{x)}{(p) due to the fact that V>0 .

This may be easier to check experimentally by choosing a suitable

temperature for the experiment.
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APPENDIX: SOLVING THE MASTER EQUATION

HWe here derive eq. (24) and discuss briefly thow to calculate
the solution numeri;ally. The master equation is solved for
constant temperature; if the temperature varies in time the
solution given below may bg iterated by stepping ahead small time
rsteps for a constant tempefature, The discrete version of the
master equation is considered. Writing E{=(i/N)E, (i=15..5N),

the master equation is

dPi-:_X‘-_PL-}-VI;Z XJPJ (A1)

where P;=P(E;), X:=Y(E;)y and n; is the density of states at

A

N
E{ normalised so that :En;=1 . The solution of eq. (Al) is
is)

(compare egs. (22) and (23))

+L00
| t
P. () = T J ‘ﬁ’;(s)es 0(5’ (A2)
—~ {00
where

N
ji: X, P;lo

p.(s)= hi o %t + p: () (A3)

t s(¥;+s) ﬁ n; X. +s

L Xi+s
J=!

The integration contour in eq. (A2) is by definition displaced
slightly to the right of the imaginary axis. The integral may be
calculated by including an infinitely large semicircle
surrounding the left half-plane, which closes the integration
contour so that the residue theorem may be applied. The are N

poles, corresponding to the N eigenvalues of the "Hamiltonian"



matrixs: ~X;564—n;¥ . qu master.equations in general, all
eigenvalues are negative real numbers except one which is zero.
It is eagy to see that the residue at s=0 , corresponding to the
zero eigenvalue, is equalito the normalised thermal equilibrium
solution given by the canonical ensemble, Ph??“'“/&L' The

remaining eigenvalues, - WK (k=1,..,N-1) , are determined from the

equation
. N . . ‘
yl.
i . ) : -
] - C7 (A4)
. XJ"k)k ’ )
3=

and gbey
Xk < wk N Xk*l : (AS)

Note that there is no pole at s=-Y; since this singularity is
cancelled by the second term of eq. (A3). The residue at s=—Wy

is easily found by the standard Eules, and the final solution is

- U

(AL)

. | L
P, (#)= P"?‘l + ni o G=i ! . e—w“t

h=

which proves eq. (24). The normalisation of P ié maintained
by virtue of eq. (A4).

In the evaluation of eq. (A&4) one must find the eigenvalues
from eq. (A4)., It is not wise to.use the Newton-Raphson method
which may shoot one out of the interval eq. (AR3). It is better
simply repeatedly to half the interval. At low energies W), is
very close.to Bk and large numerical errors easily arise for the

term 1/(Xk‘Uh) in eq. (A4) which instead may be evaluated from



eq. (A4):
N -
| ~:_L§ " :
; = = ni R _— : ' © (A7)
Xk -wk i<l X_] Xk
i*h

To avoid overflow problems in calculating eq. (A&) , it is
advisable to identify the leading term in each suﬁ, factorise it

and rewrite all products as e, g; ab=exp(ln(a)+1in(b)) .
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FIGURE -CAPTIONS

Fig. 1 : Determiﬁation of the activation energy of a flow event
from én Arrhenius plot of the average relaxation time T . T
may be determined e. g. from viscosity measurements. ASove TS
T is non-Arrhenius while beiow TS it becomes Arrhenius. Fig.
l1a shows the naive interpretation of data, according to which the
élope of the tangent is the activation energy and the
"preexponential” of T is exp(—-4S) where A4S 1is the activation
entropy.- There is a discontinuou; decrease in activation energy
at T3 which is traditionally explained as due to the vanishing
below Ts of the contribution from structural changes to AE .
Fig. 1b shows the interpretation of data prdposed'here which is

s

based on assuming AS=0 . The activation energy is then the

slope of the secant drawn from (0O, 1In(T,)) to (Tﬂ,lln(r )

where T, is the high temperature limit of T (T) (about 1
picosecond). Even in this interpretation does the activation
energy increase‘as the temperature decreases. But at the glass
transition there is no change of AE s instead what happens is
that AE stops ;hanging with temperature and becomes constant.
In this interpretation the preexbonential is exp(-c(T)) which
follows from the fact that the slope of the tangent is

AE(T)+Tc(T) (eq. (8)).

Fig. 2 : Connection between the entropy function "S(E) and the
dielectric loss peak, valid whenever the distribution of
re}axation times is broad. Fig. 2a shows G(E) . By definition
of temperature thé tangent at E=E(T) has slope fd . Fig. éb
shows.the loss peak in a lpg—log plot constructed from fig. 2a by

means of eq. (15). The loss peak frequency corresponds to E(T).




Fig. 3 Relaxation towards equilibrium after a quench from
high tb low temperature (a), and from low to high temperature
{b). <Each figure shows four snapshots of the energy probability
distribution. The dots mark the equilibrium distribution and the
line shows the demar#ation energy Eg4 given by éq. (26). Below
E4 states are frozen and P(é) cﬁanges only little. Fig. 3a
corresponds to the uéual,casérof glassy relaxation. Here Ej
catches the energy distribution and slides it along until the
equilibrium distribution is reached. Fig. 3b correspaonds to a
sudden -heating of a well annealed glass. When E4 reaches the
starting distribution, states around EJl jump and then almost
immediately thermalise, without visiting the states in between Ed
and E(T) . This peculiar behaviour is possible because the
master equation is non-local and is not a differential equation.
If the relaxation is interrupted at the right time by quenching

to low temperature, one ends up with a "dynamically generated"
phase separated glass. The system studied in fig. 3 has n(E)X Em

and the low and high temperatures are 0.025 E, and ©0.040 E,

respectively,

Fig. 4 3 Specific heat as function of temperature for a cooling
at constant rate from thermal equilibrium to zero temperature and
a subsequent reheating. The dotted curve is the thermal
eduilibrium specific heat. During cooling the specific heat has
the equilibrium value at high temperatures, but goes to zero at
low temperatures because the states freeze-in. O0On reheating, the
specific heat becomes slightly negative, corresponding to a
decrease in average energy though the temperature increases.

This is due to relaxation from frozen—in states at relatively




'+

high energies which becomes possible when the temperature is not
too low. Note that the specific heat exhibits hysteresis, a
phenomenon uhich is due to the kinetic nature of the glass
transition and which has been seen in numerous experiments.. The
figure was generated by solving the master equation by brute
force for a system with n(E)« Eq » stepping ahead in time a step

of T, - The starting temperature was 0.25 E, and the cooling

time to zero temperature was 5000 T,.

Fig. 35 : Different ways of reaching the glassy state; A glass
may be produced by a glass transition or by a quench. A glass
transition is cooling in a time much longer than the average
relaxation time of the liquid at the beginhing of the cooling.

In thislcase there is a gradual falling out of equilibrium during
the cooling. According to fhe theory there are two different
kinds of glass transitions, slow and fast, depending on whether

Intty, /7 T,)/C is much larger or much smaller than one, where ¢t,

3
is the cooling time, T, is 1 picosecond; and ¢4 is the
region speéific heat at Té in units of Boltzmann’s constant. A
ﬂquench is the opposite of a glass transition, i. e. when the
cooling is much faster than the liduid aver#ge relaxation time.

A quench immediately freezes the energy probabiiity distribution.
As shown in the text, a quench and a slow Qlass transition both
result in a gaussian frozen—-in energy distribution. A fast glass
transition, though arising for cooling ratés in between, results
in an exponentially increasing, abruptly decreasing frozen-in

energy distribution. In this case relaxation phenomena right at

the glass transition are important.
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