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Abstract

The effect of age-dependent host mortality
on the dynamics of an endemic disease

and

Instability in an SIR-model with
age-dependent susceptibility

This text consists of two papers on age-structured epidemic models of the
SIR-type. Both papers utilize the observation that for most diseases the infec-
tious period 1s much shorter than the average life span of the hosts.

In the first paper, The effect of age-dependent host mortality on the dynam-
ics of and endemic disease, 1 show that when disease transmission is indepen-
dent of age, the endemic equilibrium is always stable. I discuss in some detail
how the dominant eigenvalues depend on the distribution of host life lengths.

The second paper, Instability in an SIR-model with age-dependent suscep-
tibility, deals with the situation where disease transmission depends on age. |
give conditions for the stability of the endemic equilibrium and show how the
endemic equilibrium may loose its stability through a Hopf-type bifurcation.

The effect of age-dependent host mortality on the dynamics of and endemic
disease is in press in Math. Biosci.

Instability in an SIR-model with age-dependent susceptibility is submitted
to Proc. 3rd Int. Conf. Math. Popul. Dynamics, Pau, June 1992.




The effect of age-dependent host mortality
on the dynamics of an endemic disease

Viggo Andreasen
Department of Mathematics and Physics
Roskilde University, DK-4000 Roskilde, Denmark

Abstract: Using asymptotic expansions in the ratio between the du-
ration of infection and host life length, I analyze equilibrium conditions
for an SIR-type epidemic model with age-dependent mortality and age-
independent disease transmission. Disease incidence at equilibrium de-
pends on the distribution of life lengths. Incidence is maximal if host life
span is fixed and — for vanishing higher moments — it decreases with
increasing variance of the distribution. The spectrum of the linearization
about the endemic equilibrium has two dominant components, one near
0 and one with large imaginary part. All roots have negative real part so
the model is always stable. The roots with large imaginary part dominate
in most cases, indicating that the approach to equilibrium will be through -
slowly damped oscillations.

The purpose of this paper is to study the effect of host demographic struc-
ture on the dynamics of an endemic disease under the simplest possible assump-
tions about disease course and transmission. Classical models of epidemiology
assume a constant mortality and hence an exponentially distributed duration
of life. In contrast I here allow host life-lengths to follow a general distribu-
tion with some restrictions in variation and range leading to a more realistic
demographic structure. The vital dynamics of the host population affect dis-
ease transmission. If exposed individuals acquire permanent immunity, older
individuals are more likely to be immune due to previous exposure [20]. There-
fore, in a population where mortality increases with age, more deaths will occur
among immune individuals than in a population with constant mortality. Our
aim is to understand the effect of the mortality structure on the dynamics near
the endemic state.



Table 1. Duration of infectiousness D and reproduction ratio Ry for some
viral diseases. The reproduction ratio varies with population density and social
‘conditions. The ratio € of D to average host life span A is computed for
A = 71.6 years. Data for influenza from [40] and [9]; all other data from [1].

D=yt e=D/A Ry
in days
Measles 6-7 2.3-2.7 x1074 5-16
Chicken pox 10-11 3.9-4.2 x107% 7-10
Rubella 11-12 4.2-4.6 x10~4 6-7
Influenza 2-3 0.8-1.2 x10~* 2-5

Recently, age-structured models of epidemics have been studied inten-
sively for both biological and mathematical reasons. Biologically the host age-
structure is important for several aspects of infectious disease epidemiology:
including age-dependent disease transmission (2, 4, 37]; age-dependent severity
of infection (3, 21, 31]; and age-stratification of empirical data [8, 20]. In this
study we isolate the effects of age-dependent host mortality, thus providing
a baseline to which one can compare the effects of additional age-dependent
factors.

Parallel to the biological interest, age-structured models have received much
attention in the mathematical literature starting with the work of Hoppen-
steadt [28] and Dietz [20]. By now it is well known that age-dependent SIS-
and SIR-models are well posed for reasonable choices of age-dependent pa-
rameters. In addition, Dietz and Schenzle [22] identified a threshold quantity,
the reproduction ratio, that determines the existence of an endemic equilib-
rium and the local stability of the disease-free equilibrium [12, 16, 24, 25].
Busenberg et al. [12] show that in an SIS model the endemic equilibrium is
always stable when it exists, while Thieme [41] recently found conditions for
the destabilization of the endemic equilibrium in an SIR-model. The results
are formulated also in a modern functional analytical frame allowing for some
global results and a more general formulation of the threshold and stability
conditions [14, 19, 29].
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Clearly the general question of the local stability of the endemic equilibrium
is hard since the characteristic equation is transcendental and quite compli-
cated. Qur focus will be on deriving asymptotic expressions for the spectrum
of the linearization around the endemic equilibrium. To simplify the computa-
tions, I focus on realistic parameter values. Table 1 shows that for many viral
diseases, the system involves processes at two different time scales, namely
the host death and renewal processes and the duration of infection. The ratio
between the two time scales can be 3-4 orders of magnitude thus allowing for
simplification by the use of asymptotic expansions [6].

Inaba [29] and Thieme [41] report that the endemic equilibrium is stable
at low disease levels for a model with age-dependent infectivity and mortality.
Their proof consists in studying the limit of the spectrum as the force of in-
fection goes to zero. From biological reasoning, 1 will argue that one should
rather fix the force of infection and study the behavior as ¢ the ratio of the
two time scales goes to zero. My analysis of will show that in this limit the
dominant part of the spectrum is determined by a stability equation contain-
ing a singularity that leads to two types of roots. One group of roots lies
near the origin while a pair of roots have imaginary part on the order of g~1/2
and real part of order unity. Both types of roots remain in the negative half
plane, showing that the endemic equilibrium is always stable. The roots with
large imaginary part are associated with the slowly damped oscillations char-
acteristic of epidemic models. However it is not clear that these roots always
dominate.

o

The presence of multiple time scales has been recognized in connection
with numerical difficulties [16], and Anderson and May (3, 5, 33] use first
order expansions to give approximate expressions for the age-dependent disease
incidence and a discretization in time to asses the period of the oscillations in
models similar to the one we study here. Numerical studies show that the
endemic equilibrium is stable with slowly damped oscillations, e. g. [30] and I
here give an explanation for these observations.

On the short time scale several processes may not be well approximated by
simple rates as is used in SIR-models. Time of recovery is not exponentially
distributed e.g. [9] and Tuljapurkar and John [43] find by incorporating the
daily pattern of human contacts that the force of infection may be non-linear
especially in sparsely populated areas. Since our concern is with the long time
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scale, we neglect these details; in particular we will use standard estimates of
the transmission potential Ry to access the magnitude of the force of infection.

Since mean life length is a key aspect, the age-dependent mortality is not a
convenient way to describe the host demographic structure. In stead I use the
distribution of host life-lengths and its mean value. Thieme [41] transforms
in a similar manner using the distribution of the age of infectives and obtains
?quitefsimilar exgressiéns for thefétabiljity eduatic;n, but his Siabilify eqﬁatioh is
not amendable for the limit procedure we wish to apply. In my formulation the
model becomes similar to distributed delay models and the stability analysis
will utilize methods from that field [10, 17, 32].

In the first part of the paper, I state the age-structured version of the SIR-
model with age-dependent mortality and demonstrate by rescaling how ¢, the
ratio between the two time scales, enter. In order to determine the stability
properties of the model, we will need second order approximations of the Lotka
characteristic equation. As a first step, I analyze the endemic equilibrium and
obtain an expansion in ¢ of the force of infection at equilibrium. The machinery
is now set up for a description the dominant part of the spectrum of the
linearization. Finally I study in more detail gamma distributed life-lengths
and show that in this cases the roots with large imaginary part dominate.

1 Multiple time scales

Our starting point is the well known age-dependent SIR model of the trans-
mission dynamics of an immunizing contagious disease in a host population
where we take into account the host’s vital dynamics. For a detailed deriva-
tion see [28]. With respect to the disease, the host population is divided into 3
classes, susceptibles S, infectious I, and recovered and immune R. Each of the
classes is further divided according to host age a so that S(a,t),I(a,t), and
R(a,t) denote the age distribution of susceptibles, infectious, and recovered
respectively. Hence [} S(a,t)da gives the number of susceptibles between age
a and age b at time t, etc. For simplicity we will assume that the rate of
recovery v is a constant independent of age and time since infection and that
disease transmission is independent of age, so that the force of infection A is
proportional to the number of infectious. Some of our results will hold for




age-dependent infectivity and we will return to this question in the discussion.
With these assumptions we have ‘

oS 0S
? + B —AS —m(a)$S
I 0l
aa + il AS —vI —m(a)!
R OR '
—a'z“i"é? = vI—m(a)R (1)

A(t) = B/OOOIda
S(0,t) = o  I(0,t)= R(0,t) =0.

New individuals are born susceptible, and the birth rate g is constant, insuring
that the total population size is fixed:

/OO(S+ ]+ R)da = 9/90 e’foam(a)do da = N.
0 0 .

The equation for R is thus redundant. Since we are concerned with the limit
behavior, we omit explicit reference to initial conditions. As is common when
modeling the spread of a directly transmitted disease, the incidence rate 851 is
assumed to be proportional to as well the number of infectious as to the number
of susceptible [1). For large populations it is biologically more reasonable to
assume that the incidence rate is proportional to the fraction of individuals
who are infectious [39], but since we are concerned solely with models of fixed
population size N this will lead to the same basic model.

To simplify the analysis we observe that model (1) encompasses two dif-
ferent time scales, since the host renewal process is associated with the mean
host life-span A while the recovery process is associated with the duration of
the disease D = v,

The effect of the two time scales becomes clear after rescaling time ¢ and
age a in units of host life span ‘A and measuring S and  in units of p. The
new dimensionless variables s = S/p and ¢ = I/ give the fraction of a cohort
which is susceptible and infectious respectively.

The rescaled equations become

ds 0Os
% + —67 = —As— ;L(a)s



o: 01 1

- N . %“LE =7)\s-zz'—;;1(a)z: B 7
b o
A1) = E/o i da (2)
s(0,8) = 1  4(0,8)=0,

where the two dimensionless parameters are b = SND and € = D/A and the
function p(a) gives the host mortality in rescaled variables:

The ratio between the two time scales € now appears explicitly in the model.
Furthermore the rescaling shows that all the necessary biological information is
summarized in b, €, and pu(a). Especially the complicated question of the rela-
tionship between disease transmission 8 and population size N is concentrated
in the estimate of b.

Our assumptions about the magnitude b, ¢ and p(a) can not be motivated
within the model but must come from biological considerations. We will fo-
cus on viral infections with short infectious period relative to the host life
span; hence we assume that ¢ < 1. The parameter b is closely related to the
reproduction ratio R since Ry gives the number of secondary infections per
primary infection in a susceptible population, and b gives the same quantity if
we neglect deaths during the infections period. In the next section we provide
some more details about this reasoning but the present argument suffices since
the assumption that € < 1 allows us to neglect deaths during infection. The
magnitude of Ry can be assessed in several ways. The probability that an in-
dividual escapes infection during its entire life is approximately 1/ Rq [39] and
age stratified serological profiles or case notifications yield information about
R, [4, 5, 8, 20]. In general one finds that R is on the order of 2-20, the latter
corresponding to an extremely contagious disease, Table 1. Therefore we chose
to assume that b = O(1).

The mortality p(a) increases rapidly with age for old individuals, and p(a)
introduces large numbers that can not be related to €. In fact these large
numbers will not affect our analysis, but to clarify the approximations, we will
avoid using p(a) and in stead describe host mortality by the distribution of
life lengths with density function

9(a) = p(a)e™do 1%
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Figure 1. Number of deaths per year for a cohort of 100,000 Danish men,
based on the vital statistics for 1984-85. In 1984-85 the expectation of life
for Danish men was 71.6 years. Data from [18].

and by the survival function
G(a) =€~ foa“(")d",
giving the probability that a person survives to age a.

Figure 1 shows a typical example of the life length distribution. Due to
our rescaling of the age-axis, we know that the mean value of the life lengths
is exactly one, [;°ag(a)da = 1. In rescaled variables g(a) is on the order of
unity and vanishes for a larger than some ag = O(1). In order to allow for
convenient examples of g(a) we will not require that g(a) has compact support
but assume that G(a) goes to 0 at an exponential rate. In the computations
we also will need to know that

/0 " eeg(a) da < €7, 3)

corresponding to the requirement that the life length distribution does not have
a significant mass concentrated near a = 0. For human populations there is a
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significant infant mortality, but we will postpone this problem to the discussion
- and assume that (3) holds. - : -

In conclusion we rescale the SIR model such that the presence of the small
quantity € appears explicitly, while we assume — with some biological justifi-
cation — that all other parameters are of order unity. The magnitudes of the
variables s, ¢, and A are not determined, indeed they may vary over time.

2 The equilibrium age distribution

Direct application of asymptotic expansions to (2) does not appear to yield
new insights because the magnitude of A varies. I focus on the analysis of the
equilibria and use well known techniques for the local analysis of (2) to derive
an implicit equation in A", the force of infection at the endemic equilibrium
[12, 25]. I then can show that A" is on the order of unity and find a second
order expansion of the equation in A~

Any equilibrium age-distribution (s*,") for (2) can be found by the use of
the method of Dietz [20]. The crucial point in Dietz’s method is to observe
that at equilibrium, the force of infection A(t) is a constant A* independent of
age. Therefore we can use a two-step process to find A*. In the first step, we
solve the steady-state equations assuming that A" is an (unknown) constant:

ds”

= = —-A"s" — u(a)s
di” T -
Ja = A"s" — i pla)e (4)

s0) = 1 #(0)=

It is easy to see that the solution to (4) will remain positive for all @ > 0, and
hence that they correspond to biologically meaningful age distributions [24].

In the second step, we determine A* implicitly by requiring that A* must
satisfy the definition of A:

Y

b foe A { —A*a —afe vy =
—/0 Teow (7" °Gla) —e G(a)) da. (5)

3
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The delay kernel corresponding to the distribution of life lengths g(a) does not
appear explicitly in the equilibrium condition. To introduce g(a) we integrate
(5) by parts and obtain

b oA (1 1 e 11 o
*'-zzzti(:'xo g(a)da~ o+ g [ e 9“”%

b\ (I—Lg(A) 1= Ly(1/¢)
1-¢eX X 1/ )

where for notational convenience we omit the * and let
o
Ly(k) = [~ e™*g(a)da
0

denote the Laplace transform of g(a).

(6)

It is well known that (6) has at most one positive root for fixed ¢, b [22]
but for completeness we sketch briefly the argument. The function

-1
b(A) = (1—e)) (1 “ L) _1- f7£1/g))

is monotonically increasing for A > 0 giving the uniqueness of the positive
root. To determine the range of b, first observe that

) o 1= 6—,\a
lim a
A—0Jo Aa

gla)da = [~ agla)da=1,

where the last equality is due to our rescaling of the age-axis. The range of b
is now determined by the limits

3

1
imb(A) = by =
lim o) = bo 1—e+ely(l/e) -

and
b— o0 as A — oo.

As already observed, the magnitude of b is closely related to the repro-
duction ratio Ry. We now provide an asymptotic analysis of the relationship
between b and Ro. The lower limit bg is the smallest.transmission rate that al-
lows the disease to persist. This gives the following condition for the existence
of an endemic equilibrium: .

1
1 —e+eLly(1/e)

1<b/ (7)
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The right hand side of (7) gives the reproduction ratio Rq [12, 19, 22]. That is

1

1—5+5Lg(1/£)=b+6b+0(52) (8)

Ro=b)

- Since we know from empirical studies that Ry typically is on the order of 2-20
for viral diseases, we conclude that for ¢ « 1, the transmission coefficient b is
on the order of unity justifying our assumption. We observe by (6) that A and
1/b are of the same magnitude so that A = O(1). ' -

In the next section we will need an expansion of b()) to second order and
we note that for small ¢, the equilibrium condition (6) simplifies to

b = 1 (1—L9(A) 1—L9(1/e))

1—el A 1fe

= (1= Ly(N)/A —eLy(X) + O(e?). (9)

To the first order \

LM

determines the relationship between the disease transmission parameter b and
the force of infection at equilibrium A. Here the effect of the host mortality
appears through the Laplace transform L, of the life length distribution. Since
the function e~ is (upward) convex, Jensen’s inequality shows that L, takes
its minimum when g is a delta function at @ = 1, Lg(A) = ¢~* [36, p. 63].
Hence for fixed disease transmission parameter b, the force of infection will
be maximal when the host life length is a constant A(= 1). Fixed host life
span gives the life length distribution where the fewest deaths occur among
susceptibles, and hence where disease incidence peaks. Regarding L, as a
moment generating function [23], we write

Ly(d) = e (14 1pad® = Lpush® + ),
where p; is the j’th moment of g(a) about 1
pr= [ (a-1Yg(a)da

and g; = 0 by our rescaling of the age-axis. For vanishing higher moments
L4(X) increases with increasing variance g, and hence, for fixed b, the force of

10




6
[= =}
2
1
< 3t
o)
o) 3 6

Figure 2. Force of infection A as a function of the transmission coefficient b
in dimensionless units, see text. The curves 1, 2 and oc correspond to the
life length distributions g;(a) = €7, g2(a) = 4ae™?%, and g..(a), a delta
function at 1. For fixed b, go.(a) gives the maximal force of infection.

infection A decreases with increasing variance. Figure 2 shows b()) for some
life length distributions g(a).

We conclude that at equilibrium, the value of A is on the order 1/Ro = O(1)
and that (9) provides an approximate implicit equation in A. Often we will
regard A as the basic model parameter and use (9) to determine b. Since there
is a one-to-one relationship between b and A this is formally possible, but it
may not be a good parametrization from a biological view point.
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3 Stability equation for the endemic equilibrium

Near the endemic equilibrium, (2) contains rates that differ by 3-4 orders of
magnitude. Hence, near the equilibrium the proportion of infectious i(a,t) will
track closely the proportion of susceptibles s(a,t), i.e. i(a,t) = A(t)s(a, t)e [3,
33]. Since the magnitude of A(t) is known only near the endemic equilibrium,
we cannot use ‘this-approach to solve:(2) in general. However, the fact that
€ < 1 facilitates the local analysis of the endemic equilibrium. The local
stability analysis leading to the stability equation for the endemic equilibrium
is well known and I only sketch the arguments, for details see [12] or others.
For ¢ « 1 the stability equation simplifies and I describe the magnitude of the
dominant roots and expand for these roots the equation to leading order.

The asymptotic stability of an equilibrium of (2) can be determined by
linearizing the equations near the equilibrium and examining separable per-
turbations of the form -

§(a,t) = s(a)e™
i(a,t) = i(a)e™
é(t) = e,

where § and | denote displacements away from the equilibrium values of s and
¢ respectively, while ¢ is the displacement of A. The age distributions of the
perturbations off the endemic equilibrium must to the first order follow the

equations
ds . .
= = —-A"s ~0s" — ps — p(a)s
di . .
:i_clz = ANs+0s"—(p+1/e)h~— p(a)
s(0) = i(0)=0.

In order for the perturbation to be consistent with the definition of 0, we in
addition require.

b r
= - i(a) da. 1
o= /O i(a) da (10)
This yields the stability equation in the eigenvalue, p,
€ p ALy(A +p)

b AMp+1/e)p+ A (A=1/e)p(p+ 1)
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_(p=NL,() _ Lo(p+1/¢) (1)
Ap(p—A+1/e) e(A=1/e)(p+1/e){p— A +1/e)

where we have used integration by parts to introduce g(a) and its Laplace

transform L,(k) as in the previous section.

The integration of (10) by parts requires that
G(a)e= Pt} 50 for a— o00. | (12)

If the survival function G(a) is not identically zero for large a, a > ag (has
compact support) there may exist roots of (11) that are not roots of (10) and
we restrict our attention to roots of (11) that satisfy (12) ensuring that the
roots solve the original stability equation (10).

Equation (11) can not be solved analytically, but the fact that ¢ < 1 allows
us to find approximate solutions for the roots near the imaginary axis. These
roots give the dominant eigenvalues and hence are the ones that determine the
stability of the model. ' ’

The term involving Ly(p + 1/€) can be important only when either L,(p +
1/¢) is large or when p = —1/¢, A — 1/¢. In both cases the real part of p is
much smaller than —1, so the term is not relevant for the stability of (2).

To simplify (11) first multiply through by p(p + A)/e and omit the order
Ly(1/z) term:

PN P LG+ (=ML
b A1 + ep) 1—¢l Ml +ep—e))

0=

Multiplying through by p(p + A) introduces extraneous roots in (13) at p =
0, —A, which do not correspond to suitable perturbations. The equation con-
tains terms that are of different magnitude since by (8) and (9), b and X are
of order 1 while ¢ « 1. The order of p is determined by the method of unde-
termined gauges, i.e. by trying roots of the form |p| = ke? [34, p. 33].

One sees that the p?/b is unbalanced if ¢ < —1. For ¢ = —1 the terms of
order p? and p?/(ep+ 1) must cancel each other but by (9) this is only possible
when ep+1 = 1+ 0(¢). We conclude that ¢ > —1 and expand in powers of ¢:
pip+A) P

+ (1 —ep+e’p?+..)

0= - )

13



“AL,(A+p) A+ eX+€2N2+..)

(=)L)

- (I—e(p-N+ep=22+..).

Using (9) to remove the p? terms and to simplify the ep® term, we get

0 = [=pA/b+ MLy(R) = Le(p + A))] |
+e[=p*/b = X Ls(A + p) = Alp — M) Ly () (13)

+e’[p /6] + O(£5°) + O(€?).

By trying roots of the form |p| = ke?, ¢ > —1 one sees that there are only
two possible types of other roots for (13) with real part near the imaginary
axis, |p| = k + O(¢) and |p| = ke='/?2 + O(1). Notice that the latter type
of roots can not be found by taking the limit as ¢ — 0 in (13) indicating a
singularity in the characteristic equation.

For |p| = k, the equation becomes
~ p(1 = Ly(N) + ALy(X) = ALy(A+ p) + O(e) = 0. (14)
For |p| & kz='/2, the equation is easily solved and we find
p = %iy/Afe + O(1). (15)

In the last case we need second order terms to determine the stability properties
of the roots. Welet p = z +i(y +,/A/e) + O(e"/?) and find after some tedious
calculations and use of (9) that the stability equation reduces to

201 = Ly(M)(z +iy) + A = AL,(A + p) + O(e'/?) = 0. (16)

Since roots with large (positive) real part are excluded, the dominant roots
lie near the imaginary axis. For the two types of roots near the axis, we
have obtained characteristic equations similar to stability equations for delay
differential equations. In the next section we shall analyze these equations and
show that all roots have negative real part.
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4 The eigenvalues

We shall now analyze the location of the dominant roots of (14) and (16).

First we focus on (14) and the roots p = £ + iy near the origin. Using our
definition of L,()) and retaining only terms of leading order, the left hand side
of (14) becomes

M.(p) +i Mi(p) =
-—:r/ (1—e"?%)g da + /\/ ~ cosya e~ **7)%)g(a) da
—1y/ 1—e?%)g )da+1/\/ sinya e~ **%)g(a) da. (17)

Since we introduced extraneous roots at p = 0, — A, we find M(0) = M(=)) =
0, but these roots are not roots of the stability equation (11).

We will now show: The equation
M,(p) +iMi(p) = 0 (18)

has only two real roots p = 0,—X and all complez roots have real part less than
-A.

If p=1x #0,-X is real we observe that
’ [e ] (6‘AG -— 1 e—(A+r)a —

Mi(p) = )z |

0

e \a
- ag(a)da
Aa za )

For fixed a the left term of the integrand is the difference between the slopes
of two secants of e™'. The first secant goes from 0 to Aa and the second secant
from Aa to (A + r)a. The relative positions of the values 0, Aa, and (A + 7)a
will not change as @ > 0 varies and hence the difference between the slopes

-t

will not change sign because e! is (upward) convex. We conclude that the

integrand will not change sign and therefore that M, (p) # 0 for p # 0, —A real.

All non-zero roots of (18) have negative real part. To see this first assume
that p=zr+iy and z > 0, y > 0. After an elementary rearrangement, the
imaginary part of (17) to first order satisfies

-] ) = —Aa 0o
/0 ya /\Z g(a)da—/; sin ya e~ **%)%g(a) da

15



oo (=}
2/ yae"\"g(a)da-—/ sinyae~**)%g(a) da
J, Jee e o s :

o o
> / (ya — sinya)e=*7)%g(q) da,
0 N

which is strictly positive because 8 > sin 6 for positive 8. Hence complex roots
with non-negative real part can not occur.

For complex roots with negative real part = < 0, observe that

oo fe—Aa __ =(A+z)a — p—Aa
M.(p) = :z:)\/ (e 1 _ € cosya —e )ag(a)da
0 Aa

Ia

=Xa _ =(Mz)e _ ,=)da
2 zz\/oo (e 1_¢ c )ag(a)da
] 0 Aa za

Regarding the left hand term of the integrand as the difference between the
slopes of two secants of e, one sees that the expression is positive if 0 <
A+ z < ) so that equation (18) can have roots only if z < —A. This concludes
our observations on the roots of (18).

For roots p=z +1i(y + \/X-/_E), the leading term in the equation is

N:(p) '*;ON:'(P) = _
21‘/0 (io— e %) g(a)da + )\/0 (L— e~ (M cos(y + \/E)a) g(a)da
+i2y/0 (1— e g(a)da +i A/O =P+ gin(y + \/A/€)a g(a) da

We first show: All roots of
N.(p) +iNi(p) =0 (19)

have real part less than zo where xo < 0 is the root of

1 - Lg(’\)

S

z+1=1Ls(A+1z). (20)
The real part N,(p) can be bounded from below by

N.(p)/ A 221—_1;—9“—)x+ 1—L,(A+z) (21)
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so (19) can have roots only if the right hand side of (21) is negative. The
function

1 — Lg()‘)
A

is increasing with I(0) = 1 while the function

l(z)=2 z+1

fz)=L,(A +z)= /0 * e~ OH2)ag(4) da

is decreasing with f(0) = L,(A) < 1. The two functions will coincide at some
Zo < 0 and the right hand side of (21) is positive for z > zo. This gives an
upper bound for the real part of the roots of (19).

We can not provide a better general estimate of the roots p of (19) but if
g(a) is a continuous function with compact support (or with a sufficiently fast
exponential decay as a — o0.), then we have

[Lo(A +p)| = O(e!?),
so that the real part of the roots of (19) are located near the real number

1 ) )
s B VY
P=aTL,00 " 72

We conclude-that for any distribution of life lengths, the characteristic roots
are negative and bounded away from the imaginary axis, showing that the en-
demic equilibrium of (1) is locally asymptotically stable, and that the stability
equation has roots with large imaginary part near the imaginary axis. For
Ly()) < 3 the roots p = —3bxi1/A/e +10(1) dominate; is is not clear if in
general these roots are always the dominant ones.

5 Examples

To obtain further information about the position of the two kinds of roots, we
examine in more detail the stability equations (14) and (16) for three types of
delay kernel. Cushing [17] and MacDonald [32] note that the stability equation
for distributed delay models is particularly simple if the delay kernel is taken
to be either a gamma distribution of integer order or a discrete delay of fixed
length. As the order tends to infinity the width of the gamma distribution
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narrows and the gamma distributed delay tends to the discrete delay. The
gamma distribution of 0 order correspond to a constant mortality, and we
treat this case separately since we here can obtain the exact spectrum. Thus
our family of distributions provide a range of life length distributions spanning
form constant mortality to constant life length.

Constant mortalirty

For a constant mortality g4 = 1, the SIR-model is age independent and the
characteristic roots are easily determined by linear analysis [20, 26]. In our
notation we get

A
p= —-;—1 +/(A—1)2/2=)/e = —%bi JO =172 = )/e.

Since we still have A = O(1), the roots have large imaginary part of the form

v/A/€ + O(1) and negative real part —1b as expected. The approximate result
may also be found by setting n = 1 in the next section.

Gamma distributed delay

Since the age-axis is rescaled to ensure that the mean of the distribution is
unity, we chose gamma distributions with mean 1. For a gamma distributed
delay of integer order n—1, the form parameter must equal n~! and the density
function becomes

g‘n(a) = (Tg-l—)!(an)"—le’“”. n>1 (22)

We let G,(a) denote the survival function corresponding to g.(a). A simple
computation shows that the Laplace transform is

Ly(k) = (1 + k/n)™".

To bring the stability equation (10) on the form (11), we performed an integra-
tion by parts which was only possible if G,(a)e~**P)% — 0 for @ — oco. Hence
our analysis applies only to characteristic roots p that satisfy Rep > —(A+n).
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The stability equation (14) for roots p near the origin is
—p (1= (4 A/m)") + M1+ M) = A1+ (A +p)/n) " =0, (23)

where we have retained only terms of leading order. As already observed we
have introduced for algebraic simplicity roots p = 0, —) that are not roots in
the characteristic equation. By a modification of the method of Blythe et al.
[10], I prove in appendix A that all non-zero roots expect the one at —\ have
real part less than =, where z; is determined by

Ty =—(n+A) if n <4;

and by

T —2n 2 2
(1 — ) cos™ L > (1-cz; P4 (nt A4, tan® if 7 > 4,
mA " " (24)
24

where ¢ = [(1 + A/n)" — 1]/

-1/2

The real part x; of the order e~ !/%-roots is determined by

=14 A/n)™ To+iya+iy/A e+ A - A
g+ ig) -t *; /n) +1-(1+ 2T - / ) +0(e1?) = 0.
. (25)
Omitting all terms of order £!/? or less, we get
: 1
Ty = A = —lb. _ (26)

T 21— (14 A/n)™" 2

Elementary algebra shows that —(A+1)/2 < 2, < —A/2. Since in general the
order 1 roots have real part less than — ), this shows that the order :~!/?-roots
dominate for A > 1. For A < 1, one can show that the upper bound r; is a

-1/2

decreasing function of A with limy_oz;(A) < —1. Hence the order £~!/“-roots

dominate in this case as well.

Discrete delay

When all individuals have exactly the same life length, g(a) is a delta function
at 1. In this case the approximate stability equations (14) and (16) are valid
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Figure 3. The real part r of roots of type p = O(1) for the stability equation
(11) when life lengths follow a gamma distribution of order n—1 and when
life length is fixed (n = 00). The solid lines show the dominant root found
by numerical solution of (23) and the broken lines indicates the upper
bound (24). In addition to these roots the model has roots with real part

—1b+ O(¢7"/?) and large imaginary part.

for all roots near the imaginary axis since the survival function G(a) vanishes
for a > 1. We find,

Ly(k) = eF,
so that the stability equation for the order 1 roots takes the form
—p(l—eM+re*1-€eP)+0(c)=0 (27)

In appendix A we prove that all roots of (27), except the ones at 0 and at —A
have real part less than z; where z, is given implicitly by

e = 47% + (1 — cz;)?, (28)
and c = (e* = 1)/A > 0.

For the roots near 1,/ A/e, the general estimate (20) provides an upper
bound zo. A heuristic argument, in Appendix B, suggests that as b varies,
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Figure 4. The real part z of roots of type p = i.i\/)\/erfor the stability

equation(11) when life length is fixed and and the ratio between the two
time scales is ¢ = 1073, Notice that z is sensitive to small changes in
the transmission coefficient . The two broken lines give the upper bound
7o (20) and a heuristically derived lower bound z,,, see Appendix B. The
roots are found numerically by a modification of Laguer’s method {35, p.

263).

the real part of dominant eigenvalues will fluctuate rapidly within an interval -
[€m; Zo). Numerical solutions of (27) support this claim (Figure 4).

Numerical solutions show that the order e=1/2 roots are the dominant ones,

and that the heuristically derived lower bound for the real part of the order
£~Y/%.roots z., is always larger than z,, the upper limit for the rea] part of the
order 1 roots. Therefore the stability is characterized by the weakly damped
oscillations oscillations of intermediate period associated with the roots of type
(15).

The results of this section are summarized in Figure 3 showing the largest
real part of order €° roots, and Figure 4 showing the real part of the order
£=1% in the model with fixed life span.
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As n increases the gamma distribution g,(a) narrows around ¢ = 1 and
in the limit we obtain the discrete delay. The equation for the £%-order roots
reflects this observation in that the equation for the gamma distribution (25)
will tend to the equation with discrete delay (27) as n goes to infinity. However
our estimate of the real part of the e~1/2 roots for g,(a) (26) do not behave in
this way since in the limit we can not neglect the (1 + £/n)"/?-term and for
the discrete delay the leading term in the i\/m-roots will depend critically
on €. '

6 Discussion

The presence of an endemic infectious disease is due to a balance between the
introduction of new susceptibles and the loss of susceptibles through infection
and subsequent recovery or death. For a disease that confers permanent im-
munity, new susceptibles appear only through host births, and the time scale
of this process is closely linked to the host life span [44]. Susceptibles become
infected through contact with infectious individuals so the course of the disease
within the individual host determines the disease transmission. The mainte-
nance of an immunizing disease thus depends on the interaction between two
biologically distinct phenomena. The key observation in this paper is that for
many infectious diseases, host renewal and individual infection take place on
time scales that differ by 3-4 orders of magnitude.

After a rescaling of time to units of the average host life span and 'non-
dimensionalization’ of the variables, the ratio ¢ between the two time scales
appears explicitly in the age-dependent SIR-model. The model contains only
two additional dimensionless parameters, b that describes disease transmission
and g(a) describing the distribution of host life-lengths in the rescaled vari-
able. From biological considerations we chose to assume that b = O(1) and
g(a) = O(1). In the rescaled system the well known threshold condition for the
existence of an endemic equilibrium in the SIR-model becomes b > 1 + O(¢),
and we focus on this situation and on how the mortality structure affects the
equilibrium for fixed mean host life span and mean duration of infection.

An asymptotic expansion of the equilibrium condition yield a simple, im-
plicit relationship between b, g(a) and ), the force of infection at equilibrium.
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For fixed b the force of infection A takes its maximum when the distribution
of host life-lengths g(a) correspond to a fixed life span A, and — for vanish-
ing higher moments of ¢ — X decreases with increasing variance around A.
Narrowing the life length distribution around the mean reduces the number of
deaths in the younger age-classes and since younger individuals are more likely
to be susceptible, a narrow distribution gives a higher incidence of the disease.

The stability equation for the endemic equilibrium takes a form similar
to that of delay differential equations with delay kernel g(a). In epidemi-
ology delay models have been studied in connection with variable infectivity
or period of infectivity [11, 15, 27] and age-dependent mortality [41]. For
the age-dependent model with the present limit procedure, the structure of
the characteristic equation is considerably simpler, allowing us to describe in
some detail the dominant part of the spectrum of the endemic equilibrium.
By asymptotic expansion of the stability equation we find that all roots have
negative real part, bounded away from the imaginary axis, and that the roots
near the imaginary axis must be complex. Thus the endemic equilibrium is
always stable when it exists. Using gauges of the form |p| = ke?, we find that
the stability equation is singular at € = 0 and that two types of roots near the
axis may occur: 1) roots located near the origin and 2) roots near %i \/v;

For continuously distributed life lengths that fall off sufficiently fast as age
goes to infinity, the roots near =i \//VE_ have real part z = —1b+0(e~/?), the
same as in the model with constant mortality. In this case the damping time as
measured by 1b is independent of the details of the mortality structure while
the period determined from the imaginary part \/:\-F will change with the life
length distribution g(a). If g(a) has peaks of width O(¢~'/?), the leading term
in real part of the order e!/%-roots fluctuates with small changes in parameter
values. For example, for a population with fixed life length, 1 give a rigorous
upper bound for z and a heuristically derived lower bound. Within those
bounds, z appears to be sensitive to variation in the transmission factor b.

If life lengths follow a gamma distribution, the stability condition may be
expressed in algebraic terms, allowing for an explicit bound on the roots and
numerical solution of the spectrum. Here the roots with large imaginary part
always dominate. The waiting time for the completion of n consecutive expo-
nential decays follow a gamma distribution of order n, so the analysis applies
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to such models. Tudor [42] and Schenzle [37, 38] proposed a discretization of
the age-structured SIR-model obtained by dividing the host population into

n (age) groups with a constant transfer rate from one group to the next and
variable mortality and disease transmission among groups. Thus model (2)
with a gamma distributed' delay correspond to their models in the case where
all transmission rates are identical and all mortality occur in the highest age
class. Our computation confirms Tudor and Schenzle’s nurnerlcal findings that
their models are always stable B

-1/ 2-roots are dominant

For any life length distribution g(a), the order e
for sufficiently large A and appear to always dominate. The analysis thus
confirms the general observation that age-structured models in epidemiology

exhibit slowly damped oscillations with period T = 27/¢/) or in dimensional

units T, = 2ry/DA/) where A and D are the period of infectiousness and the
host life span respectively. Since we find that A = O(1), the period is on the
order of the geometric average of the two times scales involved [3].

. Throughout the paper we have assumed that the distribution of deaths
has no significant mass concentrated at age 0, c.f. condition (3). A close
examination of Figure 1 shows that even for industrialized countries, infant
mortality can not be neglected and hence our condition (3) on the distribution
of life-lengths g(a) may not be biologically reasonable. In practice the effect of
infant mortality on disease transmission dynamics may be small: Infants are
temporarily protected against many infectious diseases by maternal antibodies
and much of the mortality occurs in premature infants that are isolated in
hospitals’ intensive care units. The infant mortality will affect the reproduction
of hosts, but since we have not accounted in detail for the host population size
and regulation, childhood mortality simply may be compensated by a slight
increase in the birth rate g. For developing countries, however, condition (3)
may be unrealistic and our results may not hold.

In addition to the demographic effect on disease transmission dynamics,
epidemiological evidence show that disease transmission depends on the age
of both infector and infectee [4, 37]. A change of variables from the age-
distribution of each of the epidemic classes to age-specific frequencies of the
epidemic classes shows that the survival function exp( [, —u(«a)da) plays the
same role in the dynamics as age-dependent infectivity [13, 29, 41]. Therefore
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it is straight forward to generalize our results allowing for disease transmission
to depend on the age @ of the infectors. The delay kernel in this case becomes

h(a) = (u(a)B(a) — B'(a)) elo ~#(@)%

where §(a) is the age-dependent transmission coefficient in rescaled variables.
With restrictions on the range and variation of A(a) similar to (3) one can show
that the dominant part of the spectrum has the same structure as in the case
B(a) = b. We have no biological reason to assume that h(a) > 0 but the proof
may be modified to show that the roots near the origin remain in the negative
half plane though the upper bound on the real part is weaker. If h(a) contains
no point masses, the roots near i\/:\_/z will remain in the negative half plane
since the real part is independent of h. The analysis of age-dependent disease
susceptibility is considerably more complicated. A partial analysis shows that
the roots with large imaginary part can cross the imaginary axis when disease
susceptibility decreases with age [7].
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Appendix

A The 0 order equation.

In case of gamma distributed life-lengths the characteristic equation for the 0
order roots p simplifies to = '

l—vz=(1 %’z)-" (29)

where v = (n + A)[(1 + A/n)" — 1]/ and the eigenvalues are rescaled by
z = p/(n+ ). In the main text we introduced extraneous roots in the stability
equation at p = 0 and p = —\ corresponding to z = 0,—-A/(n + A). All
other roots are complex, come in conjugate pairs, and must have Rep < —\
Furthermore only roots with real part Rep > —(n + A) will correspond to
roots for the stability equation. We focus on such roots z = £ + ip with
=A(n+A)>€&>-1and > 0.

Following [10], we reparametrize the problem in terms of the real part ¢ of

z and the principal argument € of 1 + z, i.e.

n T
t = — <0< -—.
ané P 0< <2

as 1 varies from 0 to oc, § will run from 0 to 7 /2.
For fixed ¢, —A/(A + n) > £ > —1 we now define two functions
Li=1=vz=1—-~6—-iy(1+¢&)tan b

and
So=(14z)"=(1+6)"cos" e,

Solutions to equation (29) will correspond to values of § where the two func-
tions take the same (complex) value. As 8 varies from 0 to 7/2, L, makes a
half line in the IV-quadrant with base point z = 1 —4£ > 0 while the value of
Sy describes a shrinking spiral turning clockwise from z = (1 +¢)™" to z = 0,
see Figure 5.

I first prove that if @ satisfies the inequality

tannd > ntanf > 0 (30)
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Figure 5. Position of the points Ly = 1 — 4z and Sy = (1 + z)~" for fixed
real part Rez = £ and varying argument 8 of 1 + z. At the point P where
the spiral Sy crosses the line Ly for the first time, ImLg < Im Sp.

then Ly lies above S; for the angle § where Sg crosses the 1 — vz-line, i.e. |
prove that if (30) holds then

ReL9=ReSg=>ImL9>ImSg. .
To see this first observe that by the convexity of the function (1 + t)", the
constant 4 satisfies the inequality
A n
(n+ ) (1+;) >y>n+ A
Since £ < —A/(n+)) we find that when Re Ly = Re Sy = 1 —1¢, the imaginary
part gives

ImLy = —yp=

27



—v(14+¢€)tanb >
— (1 + i) ntan 6
n

ImSy; = —(1—~€)tannf <

: - (1 +;;\—) tan nd. ' (31)

and

So if (30) holds, then Im Ly > Im S,. Condition (30) holds for nf < =/2
so since Sg starts on the right hand side of the origin when £ > —1, Sy must
have turned at least /2 before a root can occur. Since the Ly lies in the
IV-quadrant, Sy must have completed a full turn and nf > 2.

We conclude that § > 27/n. By our parametrization we have that § < 7 /2.
For n < 4, nf < 2, so in this case roots with £ > —1 are excluded.

For n > 4 roots with £ > —1 may exist, and we use the condition § > 27 /n
to obtain an upper bound on £ by comparing the modulus of Ly and Sp. The
conditions 7/2 > 6 > 2r/n and £ > —1 gives

[Ss] = (1 4+€) " cos" @ < (1+&)7" cos™ 2—;-,
and
Lol = (1= 6)* +77(1+€)*tan’ 0 > (1 = 76)" + 7*(1 + )" tan” 2777

At a root, |Lg|? must equate |Sp|? providing an upper bound on ¢§:

' 2n
(1467 cos™ 22 > (1= 46)" +72(1 +€)" tan .

In the case of a discrete delay, the analysis is quite similar. To leading
order the stability equation (27) is
l—cp=€eP=0, (32)
where ¢ = (e* = 1)/A > 0.
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Apart from the two extraneous roots p = 0, — A all roots are complex Setting
p=r+1y, we get

l—czx = e “cosy (33)
cy = e Tsiny. " (34)

Focusing on the roots with positive imaginary part, y > 0, we observe that
since siny < y, (34) shows that c < e™% or z < —logec < 1/c — 1, so that

c<1l—cz.
Rewriting (33)-(34) in terms of modulus and argument gives

cy/(1 —ex) = tany ' _ (35)
ey’ +(1—cz)? = % } (36)

Simple geometry and (35) now show that y > n/2. Since 1 —cz > ¢ > 0, (33)
shows that cosy > 0 and hence that y > 37 /2. Equation (34) shows that also
siny > 0 so that y > 2r. The modulus equation (36) now yields

e =yt + (1 — cz)? > 4x%c* + (1 — cx)?,

giving an upper limit for the value of z.

B Second order approximation to order 1/\/z-roots

In the case of ﬁxéd life length, the stability equation (16) for the roots p =
z+i(y +w), w=4/A/e becomes

2(1 — e M)z +iy) + A — de” P+ (cos (y + w) —isin (y +w)) =0
which depends explicitly on ¢.
With ¢ = (¢* = 1)/A > 0, we have

e"cos(y+w) = 2zc+e
—e Tsin(y+w) = 2yc.
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It follows that
e™¥ = (2zc + )2 + (2yc)?. - : (37)

The real part of the order e~!/2 eigenvalue z is determined by the intersection

of the graph for e~2* and the parabola (2cz + €*)? + (2cy)®. The rightmost
intersection of e~2* and the parabola (2cz +¢*)? gives our general upper bound
o (20) on z. '

We nowj describe thegroots as a function ;of A by the fbllowing heuristic
argument. The imaginary, second order correction term, y, is determined by

the equation
2c

et e’
I conjecture that (38) has a root between —7 /2 and = /2. (This is not clear,
since (38) depends on z, but | argue that z does not matter in the sense that
for any given x, (38) has at least one solution between —7/2 and 7/2.) The

equation will have additional roots with larger magnitude of y, but by (37)
-1/2

tan(y +w) = (38)

they cannot give rise to the dominant order e eigenvalue. Since w = \//\—/E,
w changes rapidly when A varies, and we expect that the roots of (38) will
vary rapidly between —7 /2 and 7 /2. The variation in y will force z to vary
between zo and z,,, where z,, is the intersection between ¢~2% and the parabola
(2cz + €*)? + (cr)? (Figure 4).
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Instability in an SIR-model
with age-dependent susceptibility

Viggo Andreasen
Department of Mathematics and Physics
Roskilde University, DK-4000 Roskilde, Denmark

Abstract: For many common contagious diseases, the infectious period
is several orders of magnitude smaller than host life span while the trans-
mission potential Ry is on the order of unity. If such a disease confers
permanent immunity, its persistence depends on biological processes oc-
curring on two different time scales. Therefore many situations of biolog-
ical interest (e.g. childhood diseases) are covered when applying to the
disease models asymptotic expansions in the ratio of the two time scales.
In an SIR-model with age-dependent mortality and disease transmission
of the proportionate mixing type, a suitable change to dimensionless vari-
ables yields a model on the long time scale where all parameters are on the
order of unity except ¢ < 1, the ratio between infection period and host
life length. The magnitude of the force of infection may change during
a transient period and I focus on the stability properties of the endemic
equilibrium. For ¢ small, two types of roots occur near the imaginary axis:
Roots near the origin and roots with imaginary part of order 1/y/c. The
order 1/4/ roots give rise to the oscillations with a period of a few years
that are characteristic of SIR-models. If disease susceptibility decreases
with age, the eigenvalues with large imaginary part may have positive real
part and numerical simulations suggest that a stable limit cycle appears
through a Hopf-bifurcation.

Key words: epidemic model, age structure, singular perturbation, Hopf
bifurcation.

AMS(MOS): 92A15 (34K20, 35L60)

In this note I describe the structure of the stability equation for the en-
demic equilibrium of an SIR-mode! with age-dependent disease transmission
and host mortality using the simplifying assumption that the infectious period
is small compared to the host life span. The limiting case of short infectious
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period is appropriate for many common infections such as childhood diseases

- or influenza. Anderson and May (1983) used this observation to determine the-
period - but not the stability - of the oscillations in the model. For this limit,
I recently showed that when only mortality depends on age, the endemic equi-
librium is always stable with two components in the dominant spectrum, one
component near the origin and one singular component with imaginary part
on the order of the geometric average of the host life span and the infectious
period (Andreasen, 1992). The latter roots concur with the period determined
by- Anderson and May (1983). Here we relax the assumptions allowing for
age-dependent disease transmission following proportionate mixing (Dietz and
Schenzle, 1985).

Starting with the works of Hoppensteadt (1974) and Dietz (1975), SIR-
type models of infectious disease epidemiology have received much attention
during the last 15 years and many basic properties of such models are now well
known (Dietz and Schenzle, 1985; Busenberg et al, 1988; Castillo-Chavez et

- al, 1989; Greenhalgh, 1987, 1988; Busenberg and Hadeler, 1990; Inaba, 1990;
Thieme, 1991; Ianelli et al, 1992). The models are well posed; for positive ini-
tial data the solutions remain non-negative; and the models exhibit a threshold
phenomenon controlling the existence of one (or more) equilibrium solutions
with positive disease prevalence. In the situation where such endemic equi-
libria exist. their local stability may be determined by standard linearization
methods yielding a stability equation in the eigenvalues of the associated linear
operator. The location of the eigenvalues is known only under quite restrictive
assumptions: Inaba (1990) found that the equilibrium is stable for low disease
incidence when disease transmission is independent of age while Thieme (1991)
showed that high disease levels can lead to instability in the same model.

To focus on the situation where the infectious period is small, we first
reparametrize the SIR-model to display explicitly the small parameter. In
the subsequent sections we assume that an endemic equilibrium exists and
sketch how the implicit expressions for the endemic equilibrium and for the
characteristic roots of its linearization are derived in the previously mentioned
studies. By applying perturbation methods to these algebraic equations we
obtain simple expressions for the leading eigenvalues of the stability equation
and show how age-dependent susceptibility may lead to loss of local stability.
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1 Dimensional analysis

The basic age-dependent SIR-model that we shall study was formulated by
Hoppensteadt (1974) and Dietz (1975) who proposed to describe the dynam-
ics of an epidemic disease without latent period by the following system of
.differential equations

95 05

0a Ot

ol ol

Ja Ot

A .

Aa,t) = .C/O b(a)b(a)I(a,t) da
S(0,t) = o
10,¢) = o.

= —A(a,t)S(a,t)— p(a)S(a,t) 0<a<A

= A(a,t)S(a,t) — vI(a,t)

Here S(a,t) and I(a,?) denote the age distribution of susceptibles and infec-
tious to time {, while A(a,t) gives the age-dependent force of infection de-
termined by a weighted average of the infectious at time ¢. To simplify the
discussion we have assumed proportionate mixing so that disease transmission
separates into an age-dependent susceptibility b(a), an age-dependent infec-
tivity b(a), and a scaling factor C to be discussed later. All individuals are
subject to the same age-dependent mortality u(a) and infectious individuals
recover and obtain permanent immunity at a rate v independent of age and
time since infection. The boundary conditions indicate that individuals are
born susceptible at a fixed rate p and we assume that initial data have been
chosen so that the population has already reached demographic equilibrium.
Finally we assume that there is a fixed upper limit of host life lengths A.

The model involves two characteristic time scales, the infectious period »~?
and the average host life span

L= /OA M.(a) da,

where M(a) = exp(— [y p(a)da) denotes the probability of survival to age a.
We focus on the long time scale and measure time and age in units of the host
life length L, t = Lt and a = La. In the rest of this paper, we refer only to
the new dimensionless time and age variables and omit the bar for simplicity.
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To further simplify the analysis, we replace S and I by the fractions of the
cohort which is susceptible and infectious respectively

_ S(a,t) _ I{a,t)
@M@ YT i)
In these new coordinates, the model reads
bs 631 '
o+ = —hs 0<ash | (1)
o & 1,
Ay .
Ma,t) = Co /0 b(a)b()i(a, 1) M(a) da (3)
s(0,1) = 1 (4)
i(0,¢) = 0, (5)

where ¢! = vL, A; = A/L while b(a)iand b(a) denote the age—depeﬁdent
transmission coefficients in the new age-coordinates.

The next step involves biological — not mathematical — considerations
in that we wish to assess the magnitude of the parameters. Since we study
diseases with short infectious period v~!, we assume that ¢ = v~!/L <« 1. For
human populations the maximal life span A4 and the average lifespan L are of
the same order of magnitude so that A; = O(1) with M(A4,) = M'(4;) =0
while M(a) = O(1) for a < A;.

The parametrization of the disease transmission coefficient includes an ar-
bitrary scaling factor C so we chose to set b(a) and b(a) = O(1). Since disease
transmission varies with age and hence on the slow time scale, we also as-
sume that the first and second derivative of b(a) and b(a) are of order unity.
The remaining quantity Cpg is closely linked to the transmission potential Ro
measuring the number of secondary infections that an ’average’ infectious in-
dividual will cause in a population comprised of susceptibles only (Diekmann
et al, 1990). For proportionate mixing the transmission potential Rp is known
explicitly (Dietz and Schenzle, 1985)

A] - a 1
Ro=/ Cgb(a)M(a)/ b(a)e (*=*) da da.
0 0
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A straight forward computation now shows that
A; -
Ro = Cge/o b(a)b(a) M (a) da + CoO(e?).

The magnitude of R can be found by independent methods and varies for short
lived infections like influenza and childhood diseases from 2 to 20 (Anderson
and May, 1991). Therefore we chose to assume that Ry = O(1) and introduce
¢ = Cpe = O(1). We can now replace equation (3) by

c

Mat)= /0 * b(a)k(a)i(e, 1) da, (6)

where k(a) = b(a)M(a). These observations allow us to assume that in our
final model (1,2,6,4, 5) all parameters except ¢ are of order O(1).

2 The endemic equilibrium and its stability |

When the threshold parameter Ry exceeds unity, the disease-free equilibrium
looses its stability and a positive endemic equilibrium appears. Since we as-
sume proportionate mixing, the endemic equilibrium is unique (Dietz and
Schenzle, 1985). The equilibrium age distribution s'(a),i'(a) and its stabil-
ity equation may be determined by well known methods e.g. (Dietz, 1975;
Greenhalgh, 1988) and we only sketch the results; for details see for example
(Thieme, 1991). To find an equilibrium one first observes that the force of in-
fection at equilibrium A*(a) is of the form A*(a) = ["b(a) where [* is a constant
yet to be determined. The value of I* is found by solving the steady state
version of (1,2,4,5) for s and ¢ and substituting the solution for ¢ into (6) the
definition of A(a) to obtain an equation in [:

c

Me) = tba) = < /OA‘ b(a)k(a)i(a) da

or

[ ke [ a)starets e dada

A A4 1 1
/ k(a)e™<® Ib(a)s(a)e:® dada
0

R

—

A A
= c/o k(a)b(a)s(a)da + ce/(; IK'(a)b(a)s(a)da + O(e?), (7)
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where we used the assumption that k(A;) = k’'(A;) = 0. Since s(a) =
_exp(—_Jy Ib(a) da) depends on [ this provides an_implicit equation in I. The
last approximation holds only if k, b, and hence s are well behaved so that at
least the second derivative is bounded.

The equation has exactly one positive solution [ = {* > 0. When this I
is known it is straight forward to compute the equilibrium values of s*(a) and
t*(a). Still following:the method of (Greenhalgh; 1988) and others we deter-
mine the local stability of (s*,1*) by trying separable perturbations of the form
s(a,t) = s*(a) +s(a)e™, i(a,t) = i*(a) + i(a)e™, and A(a,t) = A*(a) + 6b(a)e™.
Neglecting higher order terms we obtain a system of ordinary differential equa-
tions :

d
.i. = =b(a)fs™(a) — (I"b(a) + p)s
di . :
é-: M@%%@+wa%+m&-é+Pﬁ
c (A . i
0 = 2 [ kajia)da

with initial conditions s(0) = i(0) = 0.

Using the same procedure as above, the stability equation becomes

6§ = ﬁWWMM

= c_/ Je~tire ]a(ob(a)s'(o) + I"b(a)s(a)) (s +P° da da
e 0
c (A1 A
- & ( +p)(e-a)
), [, kla
%mw(bi /abemmm>@m

c (4 € , g2
- E/o (k(a)1+£p+k(a)(l+ep)2>
X (1 - /00 b(a')ePle'~®) do') 6b(a)s*(a) da

2 A A " 1ip)(a—a = =
e L7 [ E@)et e (gb(a)s (@) + Ibla)s(a)) da d6)

For 8 # 0 this yields an equation in p allowing us to identify the possible
perturbations.
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3 Approximations of the characteristic roots

The general stability equation (8) is hard to analyze so we will now utilize our
assumption that ¢ <« 1 to allow for a small parameter simplification of (8).
Multiplying through by (1 + £p)/8 and using the equilibrium condition (7) to
simplify the expression, the equation reduces to

ep = —c /0 . Ka)b(a)s™(a)l" /0 * b(a)e"*") da da
! .
+e /0 ™ ¥(a)b(a)s*(a) ( l:ep - 115;» /0 b(a)e"’(““’)da) da
52

The terms involving (1 + €p)~! blow up for p = —1/¢ but roots near —1/¢
are not important for the stability and will not be discussed here. Using
underdetermined gauges of the form |p| = he?, we find that for ¢ > 0 (9)
reduces to

0= c/OA’ k(a)b(a)s™(a)l" / b(a)e~"%"®) da da + O(c). (10)

0

In the singular case ¢ < 0 we may approximate (9) by

Ay
Ep = _5/0 l'k(a)b(a)25-(a)da
+§ /OA) l‘k(a)b(a)s'(a) (5(0)6""‘ + %b’(a) _ %b’(o)e—pa) da
+O(———) + O(___Ei__) + 0 e’p )+ 0().
p(l+¢ep)” (1+ ep)? 1 +ep)

Only the term ep can balance the first term on the right hand side of the

equation so the only type of roots with ¢ < 0 is |p| = h//e. To the first order

we get

p=tiw/VE

where

w? = c/OA’ I"k(a)b(a)?’s*(a) da. (11)
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Since the first order term is purely imaginary we need second order terms to
determine the stability of the of the roots and find for p = iw/\/e + v+ O(V/E)

S (z'k(O)b( P+ [" Pk @@ ). (2)

Assuming that all dominant roots of (9) are of the form |p| = he?, (10) and
(11)-(12) determine the dominant roots of the stablhty equation and hence
the local stability of the endemic equilibrium. I have not been able to obtain
general results about these roots but if b(a) and b(a) are both constant then
all roots have negative real part and if in addition the host life spans follow a
gamma distribution, then the roots p = iw/+/¢ dominate (Andreasen, 1992).

In the stability equations, the distribution

g(a) = cs™(a)b(a)k(a)

plays a significant role. The quantity g(a) may be interpreted as the contri-
bution of individuals of age a to disease transmission at equilibrium, just like
cb(a)k(a) gives the contribution of individuals of age a to disease transmission
in a susceptible population in the expression for Ry. By (7) g(a) integrates to
unity.

The angular frequency w may now be written as
w=1\1Ib

where b is the average of b(a) with respect to g(a). Here the effect of the age
structure on the period splits into two components, a direct effect through b
and an indirect effect through changes in the force of infection {*.

The characteristic roots p may be compared with those of the uniform
SIR-model without age structure

c . . _ C . .
pu=—§i\/(l -1)2/2—1/5_-511\/1_/_e+0(\/2).

Clearly the order /e-roots (11)-(12) correspond to p,. Since b = O(1) the
order \/e-roots give rise to oscillations with a period on the same order of
magnitude as p,. For biologically reasonable parameters this yields oscillation
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Figure 1: Force of infection /b(a) and dominant eigenvalue vy + iw/+/e for
the endemic equilibrium of the age-structured SIR-model with proportionate
mixing and contact rates determined by (13-14) while Ry ~ ¢ = 4. The
slope of the age-dependent disease susceptibility is —é, hence the equ111b11um
1s unstable when disease susceptibility decreases with age.

on the order of a few years (Anderson and May, 1991). The order 1-roots (10)
-with their period on the order of host life expectancy L ~ 75 yrs. arise from the
age structure and have no counterpart in the uniform model. The transition
from a uniform population to an age-structured population is discussed in more

detail in (Andreasen, 1992).

4 Numerical example

The stability conditions (10) and (11)-(12) depend on the.shape of k and b.
We will not attempt a general investigation of the stability conditions but
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Figure 2: Sustained oscillations in the prevalence I = [ i(a,t) da of a disease
with SIR-dynamics and proportionate mixing as specified by (13-14). The
transmission potential is By = ¢ = 4, while the infectious period is ¢ = 5x 1074
units of host life span. Time is measured in units of host life span L, see text.
With L ~ T70yrs. the period of the oscillations is about 5yrs. When the
parameter é is positive, disease susceptibility decreases with age.

observe that instability can occur if b varies. As a theoretical example — with
no biological justification — assume that
k(a) = ee’V/UU/K  0O<axl (13)
bla) = —ba+(1-36), (14)
where -2 < 6§ < 2 and K = [} aexp(—1/(1 — a)) da.
Using (7) the real part 4 of the order £/ roots simplifies to
cbl”

17 5
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so v changes sign with the sign of é and a pair of complex eigenvalues passes
through the imaginary axis at § = 0. It is not hard to see that all roots of (10)
have negative real part at 6 = 0 - and hence by continuity that the roots will
remain in the negative half plane for some interval (0;46;) (Andreasen, 1992).
Since only one pair of eigenvalues changes sign we expect that a Hopf-type
bifurcation occurs (Figure 1).

Numerical simulations of the model are found by solving along charac-
teristics using an implicit first order scheme similar to the one proposed by
Ianelli et al (1992). The algorithm is highly damped and step sizes as small as
Aa = At = 1/134400 are necessary to obtain solutions for £ = 5x 107%. As ex-
pected the solutions indicate that a stable limit cycle appears for § > 0+ O(¢)

suggesting a supercritical Hopf bifurcation (Figure 2).

5 Discussion

Using the ratio of infectious period to the host life span as a small parameter,
perturbation analysis of the stability equation for the endemic equilibrium
shows that the spectrum has two dominant components: one near the origin
and one with large imaginary part. The relative position and sign of the
real part of these roots are not known in general. If disease transmission s
independent of age then both types of roots have negative real part and if in
addition host life span follows a gamma distribution, then the roots with large
imaginary part dominate (Andreasen, 1992). A generalization of these results
to the proportionate mixing case would be nice but is not obvious.

The main result in this paper is that age-dependent disease transmission
can lead to sustained oscillations with the characteristic period of a few years
known from many childhood diseases. When disease transmission follows pro-
portionate mixing, sustained oscillations can occur only if disease susceptibility
1s ‘on the average’ decreasing with age. Biologically this seems to be an un-
likely mechanism for the maintenance of recurrent epidemics as much empirical
evidence shows that the experienced force of infection increases with age - at
least until an age where most individuals have been infected (Anderson and
May, 1983).
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Our stability analysis relied heavily on the assumption of proportionate
mixing but it may be possible to generalize the results to other transmission
patterns. Anderson and May (1985, p. 372) propose a two age class model
where the force of infection in age class 7 is determined by '

A,'=b;TI_1+EI_2. i=1,2:

o . _ 6 € i

Here I, = [{<I(a,t)daand I, = 4. I(a,t) da give the number of infectious in-
dividuals in the two age classes. If A = b;;b02 — b1282; # 0 disease transmission
is not of the proportionate mixing type. Extension of the method of Anderson
and May (1985) to the first order separable perturbations yields a stability
equation that is amendable to the limiting procedure of this paper. Under the
assumption of a short infectious period, the roots of the stability equation for
an endemic equilibrium show the same structure as for proportionate mixing,
i.e. there are two types of dominant roots, one type near the origin and one
type of the form p = v + iw/+ /e with '

e b11A1S) + b22A25; — A5 S2(Ay + A)
- 1 - A5 S, ’

where S5; is defined in the same way as I;. The second order term ~ is sensitive
to the discretization of the age structure and is too messy to allow for analysis,
but the result suggests that the occurrence of roots with large imaginary part
may be a general feature of SIR-models with short infectious period. Similarly
one finds that the endemic equilibrium of SEIR-models with short latent and
infectious periods have roots with large imaginary part.
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og Jens Hejgaard Jensen.

4/78 "TRE ESSAYS" - om matematikundervisninc,
matematxklareruddannelsen oo videnskabs-
rindalismen.

Af: Mogens Niss
Nr. 4 er n.t. udglet.

5/78 "BIBLIOGRAFISK VEJLEDNING til studiet af
DEN MODERNE FYSIKS HISTORIE".
Af: Helae Kragh.
Nr. 5 er p.t. udgdet.

6/78 "NOGLE ARTIKLER OG DEBATINDLEG OM - l&rer-
uddannelse og undervisning i fysik, o¢c - de
naturvidenskabelige fags situation efter
studenteropreret”.

Af: Karin Beyer, Jens Hgjgaard Jensen og
Bent C. Jorgensen.

7/78 "MATEMATIKKENS FOREOLD TIL SAMFUNDS@KONOMIEN".
Af: B.V. Gnedenko.
Nr. 7 er udgéet.

B/78 "DYNAMIK OG DIAGRAMMER". Introduktion til
eneragv-bond-graph formalismen.
Af: Peder Voetmann Christiansen.

9/78 "OM PRAKSIS' INDFLYDELSE PA MATEMATIKKENS UL -
VIKLING". = Motiver til Kepler's: "Nova Stere-
ometria Doliorum Vinariom".

Projektraprnort af: Lasse Rasmussen .
Vejleder: Anders Madsen,

10/79 "TERMODYNAMIK I GYMNASIET".
Projektrapport af: Jan Christensen og Jeanne

Mortensen, )
Vejledere: Karin Beyer og Peder Voetmann
Christiansen.
11/79 “"STATISTISKE MATERIALER".
. Af: Jsrgen Larsen.
12/79 "LINEZRE DIFFERENTIALLIGNINGER OG DIFFEREN-

TIALLIGNINGSSYSTEMER".
Af: Mogens Brun Heefelt,
Nr. 12 er udglet.

13/79 "CAVENDISH'S FORS®G I GYMNASIET".
Projektrapport af: Gert Kreinge.
Vejleder: Albert Chr. Paulsen.

History,

14/79 "BOOKS ABOUT MATHEMATICS: Philosophy,

Education, Models, System Theory, and Works of”,

Af: Else Heyrup.
Nr. 14 er p.t. udglet.

15/79
i og udenfor termodynamisk ligevagt®.
Specialeopgave af: Leif S. Striegler.
Vejleder: Peder Voetmann Ckristiansen.

1€/79 "STATISTIK I RREPTPORSKNINGEN".

Projektrapport af: Michael Olsen oc J¢rn Jensen.

Vejleder: Jergen Larsen.

17/79 "AT SP@RGE OG AT SVARE i fysikundervisningen".
Af: Albert Christian Paulsen.

"STRUKTUREL STABILITET OG KATASTROFER i systemer

18/79

19/79

20/79

21/79

22/79

23/79

"MATREMATICS AND THE REAL WORLD", Procee-
dings af an International Workshop, Ros-
kilde University Centre, Denmark, 1978.
Preprint. :
Af: Bernhelm Booss og Mogens Niss (eds.)

“GEOMETFI, SKOLE OC VIRKELIGHED".
Projektrapport af: Tom J. Andersen,Tommy
R. Andersen og Per H.H. Larsen.

Vejleder: Mogens Niss.

“STATISTISKE MOIELLER TIL BESTEMMELSE AF SIKRE
DOSER FOR CARCINOGENE STOFFER".

Projektrapport af: Michael Olsen og J¢m Jensen.
Vejleder: J¢rgen larsen

*KONTROL I GYMNASIET-FOPMAL OC KONSEKVENSER".
Pnuektnmxnrtaf Crilles Bacher, Per S.Jensen,
Jensen og Torben Nysteen.

"SEMIOTIK OG SYSTEMEGENSKABER (1)".
l-port line=rt response og st@j i fysikken.
Af: Peder Vbetmann Christiansen.

"ON THE HISTORY AF EARLY WAVE MECHANICS - with
special emphasis on the role af realitivity".
Af: Helge Kragh.

24/80
atb

- 25/80

26/80

27/80

28/80

29/80

30/80

31/80

32/80

33/80

34/80

"MATEMATIKOPFATTELSER HOS 2.C'ERE".

1. En analyse. 2. Interviewmateriale.
Projektrapport af: Jan Christensen og Knud
Lindhardt Rasmssen.

Vejleder: Mogens Niss.

*EXSAMENSOPGAVER", Dybdeodulet/fysik 1574-79.

"M MATEMATISKE MODELLER".
En projektrapport og to artikler.
Af: Jens Hpjgaard Jensen m.fl.

*METHODOLOGY AND PHILOSOPHY AF SCIENCE IN PAUL
DIRAC's PHYSICS".
Af: Helge Kragh.

"DLIETRISK ZEIAXATI®N - ot forslag til en ny
model bygget pd vaskemes viscoelastiske egen-
skaber"”.

Projektrapport af: Gert Kreinge.

Vejleder: Niels Boye Olsen.

"ODIN - undervisningsmateriale til et kursus i
differentialligningsmdeller”.

Projektrapport af: Tammy R. Andersen, Per H.H.
larsen oc Peter H. lassen.

Vejleder: Mogens Bnun Heefelt.

"FUSIONSENERGIEN - ~ = ATOMSAMFUNLETS ENDESTATI-
N".

Af: Oluf Danielsen.

Nr. 30 er udglet.

"VITENSKABSTEORETISKE PROBLEMER VED UNDERVISNINGS -
SYSTEMER BASERET PA MENGDELARE".

Projektrapport af: Troels lange og J¢rgen Kar-
rebak.

Vejleder: Stig Andur Pedersen.

Nr. 31 er p.t. udgdet.

*"POLYMERE STOFFERS VISCCEIASTISKE EGENSKAEER =
BELYST VED HIELP AF MEKANISKE IMPEDANSMALIN -
GER MDSSBAUEREFFEKTMALINGER".

Projektrapport af: Crilles Bacher og Preben
Jensen.

Vejledere: Niels Boye Olsen og Peder Voet-
mann Christiansen.

*"KONSTTTUERING AF FAG INIEN FOR TEKNISK - NATUR-
VIDENSKABELIGE UDDANNELSER. I-II ".
Af: Ame Jakaobsen.

"ENVIRONMENTAL IMPACT AF WIND ENERGY UTILIZA-
TION".

ENERCY SERIES NO. I.

Af: Bent Sorensen

Nr. 34 er udgdet.



35/80

36/80

~

*HISTORISKE STUDIER I DEN NYERE msm UDVIKLING".
Af: Helge Krach.

"HVAD ER MENINGEN MED MATEMATTKUNDERVISNINGEN?".
Fire artikler.
Af: Mogens Niss.

37/80 "RENEWAELE ENERCY AND ENERGY STORAGE".
ENERGY SERIES NO. 2.
Af: Bent Sgrensen

38/81 "TIL EN HISTORIETEORI OM NATURERKENDELSE, TEKNOLOGI
OG SAMFUND".
Projektrapport af: Erik Gade, Hans Hedal, Henrik Lau
og Finn Physant.
Vejledere: Stig Andur Pedersen, Helge Kragh og Ib
Thiersen.
Nr. 38 er p t. udgéet

39/8B1 "TIL. KRITIKKEN AF vummm

z Af: Jens Hgjgaard Jensen.

40/8] "TELEROMNIKATION 1 DANMARK - oplag til en tekno-

41/81

42/81

43/81

44/81

logivurdering”.

Projektrapport af: Arme J¢rgensen, Bruno Petersen og
Jan Vedde.

Vejleder: Per Ng¢rgaard.

“PLANNING AND POLICY QONSIDERATIONS RELATED TO THE
INTRODUCTION OF RENEWABLE ENERCY SOURCES INTO ENER-
GY SUPPLY SYSTEMS".

ENERGY SERIES NO. 3.

Af: Bent Sgrensen.

“VIDENSKAB TEORI SAMFUND - En introduktion til materialis-

tiske videnskabsopfattelser®.
Af: Helge Kragh og Stig Ancur Pedersen.

1."COMPARATIVE RISK ASSESSMENT OF TOTAL ENERGY SYSTEMS".
2. "ADVANTAGES AND DISADVANTAGES OF DECENTRALIZATION".
ENERGY SERIES NO. 4.

Af: Bent Sgrensen.

"HISTORISKE UNDERSPGELSER AF DE EXSPERIMENTELLE FOR-
UDSETNINGER FOR RUTHERFORDS ATOMMOLEL".
Projektrapport af: Niels Thor Nielsen.

Vejleder: Bent C. Jorgensen,

45/82

46/82
1411

47/82

48/82

49/82

50/82

51/82

Er aldrig udkammet.

"EXSEMPLARISK UNDERVISNING OG FYSISK ERKENDESE-
TLIUSTRERET VED TO EXSEMPLER".

Projektrapport af: Torben 0.0lsen, lasse Rasmissen o9
Niels Dreyer Sgrensen.

Vejleder: Bent C. J¢rgensen.

"BARSERACK OG [DET VARST OFFICIELT-TENKELIGE UHELD".
ENERGY SERIES NO. 5.
Af: Bent Sgrensen.

"EN UNDERS(FISE AF MATEMATTKUNDERVISNINGEN PA ADGANCS-
KURSUS TI1. ROBENHAVNS TEKNIKIM".

Projektrapport af: lis Eilertzen, Jeroen Rarrebak, Troels
large, Preben Nerregaard, Lissi Pedesen, laust Rishoj,
1ill Ren og Isac Showiki.

Vejleder: Mogens Niss.

"ANALYSE AF MULTISPEXTRALE SATELLITBILIEDER".

Projektrapport af: Preben Ngrregaard.
Vejledere: Jgrgen larsen og Raamus Ole Rasmssen.

"HERSIEV -~ MILIGIETER FOR VEDVARENIE ENERGI I EN
LANDSBY".

ENERGY SERIES NO. 6.

Rapport af: Bent Christensen, Bent Hove Jensen, Demis
B. Mpller, Bjame Laursen, Bjarme Lillethonp og Jacob-
Mzrch Pedersen.

Vejleder: Bent Sgrensen,

"HVAD KAN [ER GIRES FOR AT AFHIELPE PICGERS BLOKERING
OVERFOR MATEMATTK 2"

Projektrapport af: Lis Eilertzen, Lissi Pedersen, Lill
Ren og Susamne Sterder.

52/82 "IESUSPENSION. (F SPLITTING ELLIPTIC SYMBOLS"
Af: Bernhelm Booss og Krzysztof Wojciechowski.

53/82 *THE CONSTTIUTION (F SUBJECTS IN ENGINEERING
EDUCATION".
Af: Arne Jacohsen og Stig Andur Pedersen.

54/82 "FUTURES RESEARCH" - A Philosophical Analysis
of Its Subject-Matter and Methods.
Af: Stig Andur Pedersen og Johannes Witt-Hansen.
55/82 "MATEMATISKE MDELLER" - Litteratur pd Roskilde
Universitetsbibliotek.
En biografi.
Af: Else Hegyrup.

Vedr. tekst nr. 55/82 se ogsd tekst nr. 62/83.
56/82 “EN - 0 - MNNGE" - '
En uwnderspoelse af matematisk ¢kologi.

Proj rt af: Troels Lange. _.
Vejleder: Anders Madsen.

57/83 "ASPPCT EXSPERIMENTET"-
Skjulte variable i kvantemekanikken?
Projektrapport af: Tom Juul Andersen.
Vejleder: Peder Voetmann Christiansen.
Nr. 57 er udglet.

58/83 "MATEMATISKE VANDRINGER" - Modelbetragtnin-
ger gver spredning af dyr mellem smdbiotoper
i agerlandet.
Projektrapport af: Per Hammershej Jensen og
Lene Vagn Rasmissen.
Vejleder: Jorgen Larsen.

59/83"THE METHODOLOGY OF ENERGY PLANNING".
ENERGY SERIES NO. 7.
Af: Bent Sgrensen.

€0/83 "MATEMATISK MODEKSPERTISE"~ et eksempel.
Projektraprort af: Erik O. Gade, Jergen Kar-

61/83 "FYSIKS IIBCOLOGISKE FUNKTION, SOM ET EXSEMPEL
PA EXN NATURVIDENSKAB - HISTORISK SET".
Projektrapport af: Annette Post Nielsen.
Vejledere: Jens Heyrup, Jens Hejgaard Jensen
og Je¢rgen Vogelius.

62/83 "MATEMATISKE MODELLER" - Litteratur pd Roskilde
Universitetsbibliotek.
En biografi 2. rev. udgave.
Af: Else Hoyrup.

“GREATING ENERGY FUTURES:A SHORT GUIIE TO ENER-
GY PLANNINC".

ENERGY SERIES No. 8.

Af: David Crossley og Bent Sgrensen.

63/83

64/83 "VON MATEMATIK UND KRIEG".
Af: Berhelm Booss og Jens Hgynup.

"ANVENDT MATEMATIX - TEORI ELIER PRAKSIS".
Projektrapport af: Per Hedegird Andersen, Kir-
sten Habekost, Carsten Holst-Jensen, Annelise
von Moos, Else Marie Pedersen og Erling Mpller
Pedersen.

Vejledere: Bernhelm Booss og Klaus Grilnbaum.

65/83

66/83 "MATEMATISKE MOCELLFR FOR PERIODISK SELEXKTION
I ESOHERICHIA QOLI".

Projektrapport af: Hame Lisbet Andersen, Ole
Richard Jensen og Klavs Frisdahl.

Vejledere: Jorgen larsen og Anders Hede Madsen.

67/83 "ELEPSOITE METODEN - EN NY METOLE TIL LINEAR
PROGRAMMERING? "
Projektrapport af: Lone Biilmann og lars Boye.
Vejleder: Mogens Brun Heefelt.
68/83 "STOKASTISKE MXELLER I POPULATIONSGENETIK"
- til kritikken af teoriladede nodeller.
Projektrapport af: Lise Odghrd Gade, Susanne
Hansen, Michael Hviid og Frank Mglgird Olsen.
Vejleder: J¢ruen larsen.




69/83 "ELEVFORUDSEININGER I FYSIK" 83/84 "ON THE QUANTITICATION OF SECURTTY":
- en test i 1.g med kammentarer. TEACE RESEARCH SERTES NO. 1

: Albert lser Af: Bent Sprensen
Af: C. Pa ) nr. 83 er p.t. udglet

70/83 "INDLARINGS ~ OC FORMIDLINGSPROELEMER 1 MATEMATIK

PA VOKSENUNDERVISNINCSNIVEAU". 84/84 "NOGLE ARI‘IJ(IER oM MATEMATIK, FYSIK OG ALMENDANNELSE".
Projektrapport af: Hanne Lisbet Andersen, Tor- Af: Jens Hpjgaard Jensen, Mogens Niss m. fl.

ben J. Andreasen, Svend Age Houmann, Helle Gle-

rup Jensen, Keld F1. Nielsen, lene Vagn Ras- 85/82 "CENTRIFUGALRECULATORER OG MATEMATIK".

mussen. Specialerapport af: Per Hedegird Andersen, Carsten }blst-
Vejleder: Klaus Grimbaum og Anders Hede Madsen. Jensen, Else Marie Pedersen og Erling Mgller Pedersen.

Vejleder: Stig Andur Pedersen.

71/83 "PIGER OG FYSIK" ]
- et problem og en udfordring for skolen? 86/84 "SECURITY IMPLICATIONS OF ALTERNATIVE DEFENSE OPTIONS

Af: Karin Beyer, Sussanng Blegaa, Birthe Olsen, FOP. WESTERN EURCPE".
Jette Reich og Mette Vedelsby. PEACE RESEARCH SERIES NO. 2
Af: Bent Sgrensen.

72/83 "VERDEN IFVLGE PEIRCE" - to metafysiske essays,

am og af C.S Peirce. 87/84 "A SIMPLE MDDEL CF AC HOPPING CONDUCTIVITY IN DISORDERED
Af: Peder Voetmann Christiansen. SALIDS".
Af: Jeppe C. Dyre.
73/83 ""EN ENERGIANALYSE AF LANDERUG" - .
- gkologisk contra traditionelt. 88/84 "RISE, FALL AND RESURRECTION OF INFINITESIMAIS™.
ENERGY SERIES NO. 9 Af: Detlef Laugwitz.
Specialeopgave i fysik af: Bent Hove Jensen, " "
Vejleder: Bent Sgrensen. 89/84 "FJIERNVARMEOPTIMERING' .

Af: Bjarne Lillethorup og Jacob Mprch Pedersen.

90/84"BEREIIIG-B€TEDRIFDRTJIM

74/84 "MINIATURISERING AF MIKRCELEKTRONIK" - om vi- : Albert Chr. Paulsen.
denskabeliggiort tacnologl og nytten af at l=re

fysik.
Projektrapport af: Bodil Harder Linda Szko-
o cereory o9 91/85 "KVANTETEORI FOR GYMWASIET".
Vejledere: Jens Hejgaard Jensen og Bent C. Jergensen. 1. Lerervejledning
Projektrapport af: Biger Lundgren, Hemning Sten Hansen

75/84 "MATEMATIKUNLERVISNINGEN I FREMIIIENS GYMMASTUM" og John Johansson.
- Case: Linezr programmering. Veileder: Torsten Meyer.
Projektrapport af: Morten Blamhej, Klavs Frisdahl -
og Frank Mplgaard Olsen. 92/85 "ENANTETEORI FOR GYMNASIET".
Vejledere: Mogens Brun Heefelt og Jens Bjgrneboe. 2. Materiale
Projektrapport af: Biger Lundgren, Henninc Sten Hansen
'76/84 "KERNEKRAFT 1 DANMARK?" - Et heringssvar indkaldt og‘John Johansson.
af miljoministeriet, med kritik af miljestyrelsens Vejleder: Torsten Meyer.
rapporter af 15. marts 1984.
ENERGY SERIES No. lo 93/85'1!ESE)QGI'I(SOFG.AMW-W-LO:ALI'IY”.
Af: Niels Boye Olsen og Bent Sgrensen. Af: Peder Voetmann Christiansen.
77/84 "POLITISKE INIEKS - FUP ELLER FAKTA?" 94/85 "TREENIGHETEN BOURBAKI - generalen, mat@matikeren
Opinjonsundersggelser belyst ved statistiske og &nden”.
modeller. ijektra;p:xt af: Morten Blomhej, Klavs n'isdahl
Projektrapport af: Svend Age Houmann, Keld Nielsen oo Frank M. Olsen.
og Susanne Stender. Vejleder: Mogens Niss.

Vejledere: Jgrgen larsen Jens Bjgrneboe. :
2 %9 i 95/85 "AN ALTERNATIV DEFENSE PLAN FOR WESTERN EUROPE".

78/84 "JEWNSTRAMSLEININGSEVNE OG GITTERSTRUKTUT I PEACE RESEARCH SERIES NO. 3
AMORFT GERMANTIWM". Af: Bent Sgrensen
Specialrapport af: Hans Hedal, Frank C. Ludvigsen "
og Finn C. Physant. .96/85"ASPEKTER VED KRAFTVARMEFORSYNING".
Vejleder: Niels Boye Olsen. Af: Bjame Lilletorup.

Vejleder: Bent Sgrensen.

79784 "MATEMATTK OC ALMENDANNELSE'. . 4
Projektrapport af: Henrik Coster, Mikael Wemner-  97/85 "ON THE PHYSICS OF A.C. HOPPING CONDUCTIVITY".

berg Johansen, Povl Kattler, Birgitte Lydholm Af: Jeppe C. Dyre.
og Morten Overgaard Nielsen.
Vejleder: Bermhelm BoosS. 98/85 "VALGMULIGHETER 1 INFORMATIONSALDEREN".
. Af: Bent Sgrensen.
80/84 “KURSUSMATERIALE TIL MATEMATIK B".
Af: Mogens Brun Heefelt. 99/85 "Der er langt fra Q ti1 R".
Projektrapport af: Niels Jergensen og Mikael Klintorp.
81/84 "FREKVENSAFHANCIG LETNTNGSEWNE 1 AMORFT GERMANIUM'. Vejleder: Stig Andur Pedersen.
Specialeraprort af: Jergen Wind Petersen
Crristenson ° 9 JaN  )00/85 “TALSYSTEMETS CPBYGQNING™.
Vejleder: Niels Boye Olsen. Af: Mogens Niss.
B2/84 "MATEMATIK - OC FYSIKUNIERVISNINGIN I [ET Ao -  101/85 "EXTENIED MOMENTLM THECRY FOR WINDMILLS IN
Rapport fra et seminar afholdt i Hvidovre Af: Ganesh Sengupta.
25-27 april 1983. '
Red.: Jens Hejgaard Jensen, Bent C. Jorgensen 102/85 OPSTILLING OG ANALYSE AF MATEMATISKE MODELLER, BELYST
09 Mogens Niss. : VED MOTELLER OVER KEERS FOLERCPTACELSE OG - OMSEINING”.

ProYektrapport af: Lis Eilefrtzen, Kirsten Habekost, Lill Rgn
og Susamne Stender.
Vejleder: Klaus Grimnbaum.



103/85 "QUSIE KOLDKRIGERE OG VIDENSKABENS LYSE IDEER".
Projektrapoort af: Niels Ole Dam og Kurt Jensen.
Vejleder: Bent Sgrensen.

104/85 "ANALOGRECGNEMASKINEN OC LORENZLIGNINGER".
Af: Jens Jager.

105/85"THE FREXUENCY DEPENTENCE OF THF SPPTIFIC HEAT AF THE
(FASS REANSITIO".
Af: Tace cxrim:ensen.

*a SDMPLE MOTEL AF AC HOPPING CONDUCTIVITY".

Af: Jeppe C. Dyre.

Contributions to the Third International Conference
_on the Structure of Non - Crystalline Materials held
in Grencble July 1985.

"OUANTUM THEORY OF EXTENTCED PARTICLES".
Af: Bent Sgrensen.

106/85

"EN MYG GUR INGEN EPIIIMI",

- flodblindhed sam ekse'rpel P& matematisk noélle—
ring af et epidemiologisk problem.

Projektrapport af: Per Hedegird Andersen, lars Boye,
Carsteniolst Jensen, Else Marie Pedersen og £rling
Mrller Pedersen.

Vejleder: Jesper lLarsen.

107/85

mmmsmnm.mcmmmmcsm-
RICULIM" - state and trends -
Af: Mogens Niss.

"COX 1 STUDIETIIEN" - Cox's regressionsmodel anvendt
studenteroplysninger fra RIC.

108/85

109/85

ler og Torben J. Andreasen.
Vejleder: Jgrgen larsen.

110/85"PLANNING FOR SECURITY".
Af: Bent Sgrensen

111/85 SORCEN RINDT PA FLALE KORT".
Projektrapoort af: Birgit Andresen, Beatriz Quinones
og Jimmy Staal.
Vejleder: Mogens Niss.

112/85 "VIDENSKABELIGGORELSE AF DANSK TEKNOLOGISK INNOVATION
FREM TIL 1950 - BELYST VED EKSEMPLER".
Projektrameort af: Erik Odgaard Gade, Hans Hedal,
Frank C. Ludvigsen, Annette Post Nielsen og Finn

Physant.
Vejleder: Claus Bryld og Bent C. Jorgensen.

113/85 "[ESUSPENSION OF SPLITTING ELLIPTIC SYMBOLS 11°.
Af: Bemhelm Booss og Krzysztof Wojciechowski.

114/85 "ANVENDELSE AF GRAFISKE METODER TTL ANALYSE
AF KONTIGENSTAEBELLER".
Projektraprort af: lone Biilmarm, Ole R. Jensen
og Armne-Lise von Moos.
Vejleder: Jorgen larsen.
115/85 "MATEMATIKKENS UDVIKLING OP TIL RENASSANCEN",
Af: Mogens Niss.

"A PHENCMENCLOGICAL MOOEL FOR THE MEYER-
Af: Jeppe C. Dyre.
"KRAFT & FJERNVARMECOPTIMERING"

.f: Jacob Mprch Pedersen.
Vejleder: Bent Sgrensen

116/85
117/85

L

118/85 TILFELDIGHEDEN OG NCDVENDIGHELEN IFULGE
PLIRCE OG FYSIKKEN",
Af: Peder Voetmarm Christiansen

119/86 "[ET ER GANSKE VIST - - EUKLIDS FEMIE POSTULAT
KUNNE NOK SKABE RORE I ANIEDAMMEN".
Af: Ihen Maj Christiansen
Vejleder: Mogens Niss.

120/86

121/86

122/86

123/86

124/86

125/86

"ET ANTAL STATISTISKE STANDARIMOELLER".

Af: Jergen Larsen

"SIMULATION I KONTINUERT TID".

Af: Peder Voetmann Christiansen.

"ON THE MECHANISM OF QLASS IONIC CONDUCTIVITY"
Af: Jeppe C. Dyre.

"GYMNASIEFYSIKKEN OG DEN STORE VERCEN".
‘Fysiklzrerforeningen, IMFUFA, RIC.

*OPGAVESAMLING I MATEMATIK".
Samtlige opgaver stillet i tiden 1974-jan. 1986.

';I?B_Y,;gﬂ_st_eﬁ - en effektiv fotametrisk spektral-
klassifikation af B-,A- og F-stjemer”.

‘Projektrapport af: Birger Landgren.

126/86

127/86

128/86

"OM UDVIKLINGEN AF DBi SPECIELLE RELATIVITETSTEORI".
rojektrapport af: Lise Odgaard & Linda Szkotak Jensen:
Vejledere: Karin Beyer & Stig Andur Pedersen.

"GALOIS' BIDRAG TIL UDVIVLINGEN AF DFX ABSTRAITE
Jmm"-

Projektramport af: Pernille Sand, Heine Larsen &
Lars Frandsen.

Vejleder: Mogens MNiss.

"SMAKRYB" - am ikke-standard analyse.

_Projektrapport af: Niels Jorgensen & Mikael Klintorp.
Vejleder: Jeppe Dyre.

129/86 "PEYSICS IN SOCIETY"
Projektraprort af: Mikael Wennerberg Johansen, Poul Kat-

P4

130/86

131/86

132/86

133/86

Lecture Notes 1983 (198¢€)
Af: Bent Sgrensen

*Studies in Wind Power"
Af: Bent Serensen

"FYSIK OG SAMFUND" - Et integreret fysik/historie-
projekt om naturanskuelsens historiske udvikling
og dens samfundsmessige betingethed.
Projektrapport af: Jakob Heckscher,
Andy Wiered.

Vejledere: Jens Heyrup, Jergen Vogelius,
Jens Hejgaard Jensen.

Soren Brond,

"FYSIK OG DANNELSE"
Projektrapport af: Seren Brend, Andy Wiered.
Vejledere: Karin Beyer, Jorgen Vogelius.

"CHERNOBYL ACCIDENT: ASSESSING THE DATA.
ENERGY SERIES NO. 15.
AF: Bent Seorensen.

134/87

135/87

136/87

137/87

"THE D.C. AND THE A.C. ELECTRICAL TRANSPORT IN AsSeTe SYSTE
Authors: M.B.El-Den, N.B.Olsen, Ib Hest Pedersen,
Petr Viscdr

"INTUITIONISTISK MATEMATIKS METODER OG ERKENDELSES~
TEORETISKE FORUDSETNINGER" .

MASTEMATIKSPECIALE: Claus Larsen
Vejledere: Anton Jensen og Stig Andur Pedersen

"Mystisk og naturlig filosofi: En skitse af kristendormens
forste og andet mode med grask filosofi”

Projektrapport af Frank Colding Ludvigsen

Vejledere: Historie: Ib Thiersen
Fysik: Jens Hejgaard Jensen

"HOPMODELLER FOR ELEKTRISK LEDNING I UORDNEDE
FASTE STOFFER" - Resume af licentiatafhandling
Af: Jeppe Dyre

Niels Boye Olsen og

Vejledere:
Peder Voetmann Christiansen.
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Paper presented at The International

Workshop on Teaching Nonlinear Phenomena

.8t Universities and Schools, “Chaos in
Education". Balaton, Hungary, 26 April-2 May 1987.

By: Peder Voetmann Christiansen
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140/87 "ON THE TOPOLOGY OF SPACES OF HOLOMORPHIC MAPS"

By: Jens Gravesen

141/87 "RADICMETERS UDVIKLING AF ELODGASAPPARATUR -
ET TEKNALOGIHISTCRISK PROJEKT"
Projektrapport af Finn C. Physant
Vejleder: 1b Thiersen

142/87 "The Calderdn Projektor for Operators With
Splitting Elliptic Symbols"

by: Bernhelm Booss-Bavnbek og
Krzysztof P. Wojciechowski

143/87 "Kursusmateriale til Matematik p& NAT-BAS"

af: Mogens Brun Heefelt

144/87 “Context and Non-locality - A Peircean Approach

Paper presented at the Symposium on the
Foundations of Modern Physics The Copenhagen
Interpretation 60 Years after the Camo Lecture.
Joensuu, Finland, 6 - 8 august 1987.

By: Peder Voetmann Christiansen

145/87 "AIMS AND SCOPE OF APPLICATIONS AND
MODELLING IN MATHEMATICS CURRICULA"

Manuscript of a plenary lecture delivered at
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By: Mogens Niss

146/87 "BESTEMMELSE AF BULKRESISTIVITETEN I SILICIUM"
~ en ny frekvensbaseret malemetode.
}ysikspeéiale af Jan Vedde
Vejledere: Niels Boye Olsen & Petr ViZdor
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redigeret af: Mogens Brun Heefelt
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152/87 "PSEUDC-LIFFERENTIAL PROJECTIONS AND THE TOPOLOGY
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PROBLEMS"

by: Bernhelm Booss-Bavnbek
Krzysztof P. Wojciechowski
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Vejleder: Ib Thiersen

154/88 "MASTER EQUATION APPROACH TO VISCOUS LIQUIDS AN
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By: Jeppe Dyre
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SELFADJOINT DIFFERENTIAL OPERATOR"
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157/88 " STABILIZATION OF PARTIAL DIFFERENTIAL EOQUATIONS
BY FINITE DIMENSIONAL BOUNDARY FEEDBACK COKTROL:
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by: Michael Pedersen
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by: Bent Serensen
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161/88 "PSEUDO-DIFFERENTIAL PERTURBATIONS AND STABILIZATION
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by: Jens Gravesen
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Af: Jorgen Larsen
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. Af: Jergen Larsen
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modeller”

Af: Jergen Larsen

168/88 "OVERFLADEN AF PLANETEN MARS" 7
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Birger Lundgren

Vejledér: Jens ﬁartxn Kﬁudsen
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Peder Voetmann Christeansen

170/88 "OPGAVESAMLING I MATEMATIK"
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Kvantemekanikkens grundlagsproblem
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af: Mogens Brun Heefelt
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175/89 " AN ELEMENTARY ANALYSIS OF THE TIME
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af: Michael Pedersen
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af : Jeppe Dyre
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Vejledere: Peder Voetmann Christiansen
Karin Beyer
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Vejleder: Peder Voetmann Christiansen

181/89 "A ZERO-PARAMETER CONSTITUTIVE RELATION FOR PURE
SHEAR VISCOELASTICITY"

by: Jeppe Dyre

183/89 "MATEMATICAL PROBLEM SOLVING, MODELLING. APPLICATIONS
AND LINKS TO OTHER SUBJECTS -~ State. trends and
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by: WERNER BLUN, Ksssel (FRG) og
MOGENS NISS, Roskilde (Denmark)

184/89 “En metode til bestemmelse af den frekvensafhengige
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af: Tage Emil Christensen

185/90 "EN MESTEN PERIODISK HISTORIE"
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af: Steen Grode og Thomas Jessen

Vejleder: Jacob Jacobsen

186/90 "RITUAL OG RATIONALITET i videnskabers udvikling"
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af: Annemette Sofie Olufsen, Lars Frellesen
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“FIVE REQUIREMENTS FOR AN
APPROXIMATE NONLINEAR RESPONSE

THEORY"

by: Jeppe Dyre

*MOORE COHOMOLOGY, PRINCIPAL
BUNDLES AND ACTIONS OF GROUPS
ON C*~ALGEBRAS"

by: lain Raeburn and Dana P. Williams

"Age-dependent host mortality in the
dynamics of endemic infectious diseases

and

SIR-models of the epidemiology and natural
selection of co-circulating influenza virus
with partial cross-immunity"

by: Viggo Andreasen

"Causal and Diagnostic Reasoning"

by: Stig Andur Pedersen

“DETERMINISTISK KAOS"

Projektrapport af : Frank Olsen

"DETERMINISTISK KAOS"
Kerselsrapport

Projektrapport af: Frank Olsen

“"STADIER PR PARADIGMETS VEJ"
Et projekt om den videnskabelige udvikling
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Projektrapport for 1. modul pd fysikuddan~
nelsen, skrevet af:

Anja Boisen. Thomas Houplrd. Anders Gorm
Larsen, Nicolai Ryge.

Vejleder: Peder Voetmann Christiansen
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Vejleder: Peder Voetmann Christiansen

"Kontrafaktiske konditionaler i HOL

af: Jesper Voetmann, Hans Oxvang Mortensen og
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Speciale

af: Frank Olsen
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af: Jens Hejgaard Jensen
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af: Karen Birkelund og Kiaus Dahl Jensen
Vejledere: Petr Viscor, Ole Bakander
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"TEGN OG KVANTER"

Foredrag og artikler, 1971-90.
af: Peder Voetmann Christiansen
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af: Thomas Jessen
Vejleder: Petr Viscor
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A - GE TYNDFILMS ELEKTRISKE
EGENSKABER"

Eksperimentelt Pysikspeciale
af: Jeanne Linda Mortensen
oq> Annette Post Nielsen
Vejleder: Petr Viscor

"SOME REMARKS ON AC CONDUCTION
IN DISORDERED SOLIDS" -

by: Jeppe C. Dyre .

"LANGEVIN MODELS FOR .SHEAR STRESS
FLUCTUATIONS IN FLOWS OF V18CO-
ELASTIC LIOUIDS" :

by: Jeppe C. Dyre . -

“LORENZ GUIDE" Kompendium til den
danske fysiker Ludvig Lorenz,
1829-91.

af: Helge Kragh

"Giobal Dimension, Tower of Algebras,
and Jones Index of Split Seperable
Subalgebras with Unitality Conditicn.

by: Lars Kadison

"7 SANDEEDEKS T.JENESTE"
- higtorien bag teorien for de¢ komriekse =ci.

af: Lise Arleth, Charlotte Gierrild,
Jane Hamsen. Linda Kyndlev, Awne
Charlotte Nilgson. Kamma Tulirius.

Vejledere: Jesper Larsen og Bermhei=
Eooss-Bavnbek

"Cyclic Homology of Triangular Ma:rix
Algebras"

by: Lare Kadison

"Disease~induced natural selection in a
diploid host
by: Vigoo Andreaser and Freddy B.Christianser.
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"Hallej i =teren" - om
elektromagnetisme. Oplag
til undervisningsmateriale
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Af: Nils Kruse, Peter Gastrup,

Kristian Hoppe, Jeppe Guldager

Vejledere: Petr Viscor, Hans Hedal

"Physics and Technology of Metal-
Insulator-Metal thin film structures
used as planar electron emitters

M.Drsticka, K.Hladil,
P.Pavelka andg
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V.Kolarik, F.Olsen,
Petr Viscor.
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af§ Thomas Jessen
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“Two papers on APPLICATIONS AND MODELLING
IN THE MATHEMATICS CURRICULUM"

by: Mogens Niss

"A Three-Square Theorem"

by: Lars Kadison

"RUPNOK ~ stationer stremning i elastiske rer"
af: Anja Boisen, Karen Birkelund, Metté Olufsen

Vejleder: Jesper Larsen

"Automatisk diagnosticering i digitale kredsleb"
af: Bjern Christensen, Ole Moller Nielsen

Vejleder: Stig Andur Pedersen

"A BUNDLE VALUED RADON TRANSFORM, WITH
APPLICATIONS TO INVARIANT WAVE EQUATIONS"

by: Thomas P. Branson, Gestur Olafsson and
Henrik Schlichtkrull

On the Representations of some Infinite Dimensional
Groups and Algebras Related to Quantum Physics

by: Johnny T. Ottesen

THE FUNCTIONAL DETERMINANT
by: Thomas P. Branson

UNIVERSAL AC CONDUCTIVITY OF NON-METALLIC SOLIDS AT
LOW TEMPERATURES

by: Jeppe C. Dyre
"YATMODELLER" Impedansspektroskopi i ultrarent
en-krystallinsk silicium

af: Anja Boisen, Anders Gorm Larsen, Jesper Varmer,

Joharmes K. Nielsen, Kit R. Hansen, Peter Beggild

og Thomas Hougaard

Vejleder: Petr Viscor
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by: Bent Serensen
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"Computersimulering og fysik"

af: Per M.Hansen, Steffen Holm,

Peter Maibom, Mads K. Dall Petersen,
Pernille Postgaard, Thomas B.Schreder,
Ivar P. Zeck

Vejleder: Peder Voetmann Christiansen

”Teknologi og hisﬁorie"
Fire artikler af:

Mogens Niss,
Hans Hedal

Jens Hoyrup, Ib Thiersen,

“Masser af information uden betydning"

En-diskussion af “informationsteorien
i Tor Nerretranders' "Mzrk Verden" og
en-skitse til et alternativ basseret -
pd -andenordens kybernetik og semiotik..

af: Seren Brier .

“Vinklens tredeling -~ et klassisk
problem"

et matematisk projekt af
Karen Birkelund, Bjern Christensen
Vejleder: Johnny Ottesen

"Elektrondiffusion i silicium - en
matematisk model"

af: Jesper Voetmann, Karen Birkelund,
Mette Olufsen, Ole Meller Nielsen

Vejledere: Johnny Ottesen, H.B.Hansen

"Elektrondiffusjion i silicium - en
matematisk model" Kildetekster

af: Jesper Voetmann, Karen Birkelund,
Mette Olufsen, Ole Moller Nielsen

Vejledere: Jjohnny Ottesen, H.B.Hansen

"Undersegelse om den simultane opdagelse
af energiens bevarelse og iszrdeles om
de af Mayer, Colding, Joule og Helmholtz
udferte arbejder”

af: L.Arleth, G.I.Dybkjar, M.T.@stergdrd

Vejleder: Dorthe Posselt

"The effect of age-dependent host
mortality on the dynamics of an endemic
disease and

Instability in an SIR-model with age-
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by: Viggo Andreasen




