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Abstract,

A new method is presented that makes computer simulations
of hopping conduction in symmetric hopping models with thermally
activated jump rates possible at arbitrarily low temperatures.
The method utilizes the AC Miller-Abrahams electrical equivalent
circuit which is systematically reduced till one ends up with an
admittance matrix referring to the voltage generators; from this
matrix the conductivity is easily calculated. The results of
simulations of hopping in two dimensions are presented and
compared to the predictions of the effective medium approximation
(EMA). It is shown that the frequency dependent conductivity as
the temperature goes to zero in the EMA becomes universal, i. e.
, independent of the activation energy probability distribution.
The computer simulations confirm the existence of universality,
although there is not a quantitative agreement between the

simulations and the EMA universality prediction.



1. INTRODUCTION

AC conduction in disordered solids 1like amorphous'

semiconductors, ionic conductive glasses, polymers, or metal-

cluster compounds show a number of common features [1-8]. Above

a characteristic frequency, ® the conductivity becomes

m?’

strongly frequency dependent, varying as an approximate pdwer-law
ﬁith’exponént between 0.7 and 1.0. Thé-AC conductivity is always
less temperature dependent than the DC conductivity, and at low
temperatures the AC conduétiVity becomes almost temperature

independent. A final ubiquitous observation is the BNN relation

[9-13] which expresses the fact that the characteristic frequency ®,

" is proportional to the DC conductivity 6(0) . 1In particular,

these two quantities always have the same activation energy.
The most thoroughly studied models for AC conduétion in
~disordered solids are the so-¢alled_hopping models [14-16]. A
hopping médel describes jumps of charge carriers in a classical
stochastic framework. The disorder is wusually mimiced by
~assuming that the transition rates vary randomly according to
some probability distribution. Only linearized hopping models
are amenable to analytic treatment (which is still approximate).
Linearized hopping models, henceforth just referred to as hopping
models, describe the motion of non-interacting charge carriers.
Thus, self-exclusion as well as Coulomb interactions are ignored.
Recently, the role of Coulomb interactions has come into
focus [17,18]. To include the effects of Coulomb repulsion, a

"macroscopic" model [19-20] was studied by the present author,




following previous work by Springett, Webman et al, Sinkkonen and
”fishchuk [21-24]. When Maxwell's equations for an inhomogéﬁous
semiconductor are discretized, one arrives at an electrical
equivalent circuit with nodes placed on a cubic lattice and links
between neighboring nodes consisting of a resistor and a
capacitor in parallel [20,22,24]. The capacitor currents are
Maxwell's displacement currents while the resistor currents are
the free charge currents [20]. Compufer simulations of this
model in 2-D and in 3-D have shown [20] that the effective medium
approximation (EMA) [25] works very well, even at low
temperatures where the disorder is large and the EMA was not
previously believed to be reliable. In particular, the
.simulations confirmed the EMA prediction [19,20] of a universal
frequency dependence for of the conductivity at low temperatures,

independent of the probability distribution for the activation

energy of the local conductivity. If one definesd=0(w) /0 (0)

and §=1@® where @ is a suitable dimensionless frequency, the EMA

equation for the universal frequency dependent conductivity in

the macroscopic model [19,20] is

6 In(6) = 8§ . (1)

Ref. 19 gave the first general derivation of Eq. (1) and
presented the first computer simulations confirming it. Equation
(1), however, appeared in the literature already in 1980 in a
paper by Bryksin studying a hopping model with electrons
tunneling between positionally disordered sites [26]. The recent
results for the macroscopic model therefore raizes a number of

questions: 1Is the EMA for hopping models as reliable as it is




for the macroscopic model? In particular, as T7-0, does the EMA

predict Eqg. (1) as the universal low temperature frequency
dependence of the conductivity even for hopping models with
thermally activated jump rates? If this is the case: 1Is the
universality confirmed by computer simulations? To answer these
questions, new numerical methods must be developed since neither
the standard Monte Carlo method nor, e. g., the Gauss-Seidel
relaxation method allows one to go to low tempertureé where the
'jump rates. vary over. several decades (often more .than 50
_decédes!). |

The present paper introduces av new method for computer
'simulation of hopping models. The method allows one to go to

arbitrarily low temperatures without any computational "slowing

down". It utilizes the Miller-Abrahams equiValent circuit which’

is systematically reduced by eliminating nodes accofding to a
transformation well-known from electrical engineering. Before
éhis new method is presented in Sec. 3, Section 2 briéfly reviews
the basic equations of hopping models and the EMA'equation.for
the frequency dependent conductivity in hopping modelé. 'Only
symmetric hopping models are dealt with in'the present papér,‘i.
e. , models where the rate for jumps between two givén sites
-depends on a common energy barrier. Section 4 reports the
results of computer simulations in A2-D and compares the
simulations to the EMA predictions. In Sec. 5 the low
temperature limit of the EMA is studied. It is shown that Eq.
(1) even for hopping models is predicted to be the universal low
temperature conductivity. .'I‘hen Egq. (1) is compared to the

results of computer simulations. Finally, Sec. 6 contains a

P
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discussion.

2. SYMMETRIC LINEAR HOPPING MODELS

This section briefly reviewé symmetric (linear) hopping
models and their approximate solution in the EMA. Since several
reviews haQe been written on this subject [14-16,27-30], only the
most necessary background is given here.

For simplicity we consider first hopping in one dimension
in thermal equilibrium, i. e., with no external electric field.

A model solid is regarded in which the charge carriers can be

only at regularly spaced discrete sites. Let lvi denote the

number of charge carriers at site I. This number fluctuates in
time because some particles leave site I and some arrive from
the neighboring sites i-1 and i+l (only nearest-neighbor jumps
are allowed). 1f IT.i*j) denotes the probability per unit time
of a jump from site I to site j=itl, the basic equation for the

N;'s is

dN; , . , , , ,
—d—t‘- = - [D(i=1i+1)+T(i-i-1) 1 N; + I(1-1=-0) N,, + T'(i+1-1) N,
(2)
This equation is a simple example of a master equation [31,32].
In symmetric hopping models one has symmetric equilibrium

jump probabilities,




N(i-j) =T(j-i) =T(4, 75 [j=i:1] . (3)
" Introducing the probability of finding a particle at site i,

Pi=Ni./N where N is the total number of particles, Eq. (2)

becomes when Eq. (3) is taken into account

dp,

T - r(4i,i-1) [p;_,-P;] - T (i,i+1) [P;-P;,,]1 . (4)

The stafionary solution of Eq.'(4) correéponds to all sites being
equally probable. Any initial non-homogeneous distribution of
charge carriers will eventually equilibrate through "diffusion"
of particles away from densely populated sites.

Equation (4) 1is 1linear. This is the mathematical
expression of the fact that the equation deals with non-
interacting particles. The particles cannot feel each other:
neither is Coulomb repulsion taken into account nor is "self-
exclusion" [i.‘e., that there is room for only one particle at
each site]. In some papers dealing with hopping models, more
general non-linear hopping models are formulated taking these
effects into account. Equation (4) 4is then arrived at by
linearizing the general hopping equation. This linearization,
however, is not exact, but involves uncontrolled approximations
[33].

For systems of tunneling electrons the transition rates
depend exponentially on the tunneling distance (as well-as on the
energy difference). In the present papef we are concerned with
the "classical” case when the jump rates are thermally gctivated,

i. e., where one has




T,(i,7) =T, e P51 (j=is1) . (5)
Here B=1/kyT, while E; ; is the so-called activation energy -

the barrier to be overcome. The prefactor I, is the "attack

frequency” which is usually of order 102 Hz (a typical phonon

frequency). Equation (5) is relevant for ionic conduction and
for certain cases of polaronic conduction. Figure 1 shows an
example of the potential for a symmetric hopping model in 1-D
with thermally activated jumps. In hopping models one usually
assumes that the'jump rates vary randomly, i. e., are not subject
to any spatial correlations. The fnodel is then completely
characterized by the activation energy probability distribution,
D(E) .

Before considering the effect of an electric field, we
briefly discuss the boundary conditions. The bulk behavior of
the model is calculated by letting the volume go to infinity. 1In
any computer simulation only a finite sample is present and one

has to specify the boundary conditions. The case of periodic

boundary conditions is characterized by requiring P =P, if the

sites are numbered from 1I=0 to I=N. An alternative to this is

the case of blocking electrodes, i. e. , to modify Eq. (4) at the
endpoints so that no particles may pass beyond these. A third
possible boundary condition is the case of perfectly conducting
electrodes. This is arrived at by imposing a fixed probability

at the endpoints:




P, = Py = Const. . (6)

Equation (6) corresponds to having electrodes that allow free
passage for the charge carriers; the electrbdeé are particle
reservoirs, each having a fixed chemical potential. This
boundary cohdition is used below in the computer simulations.

In an external electric fieid the symmetry of the jump rates
'ié bfoken, since it ‘becomes more favdrable to jump ih the'

direction of the field than opposite to it (if the particle

charge . @ is 'positive). If the barrier top is placed

symmetrically between the two particle sites and a denotes the
-distance between neighbouring sites, the jump rates are modified .
[14] accbrding to_(nofe that;E is now the electric field and not

an energy barrier)

T (i,i+1) ePaes/z

I'(i-i+1,E)
(7)

[(i+1-1,E) = T (i,1+1) e Beas/z

-In the linear limit which defines the ordinary'field-inaependent

conductivity, Eq. (7) is expanded to first order in the electric

field:
I(i-i+1,B) =T, (i,i+1) [1+5822)
: (8)
T (i+1~1,B) =T, (i, 1i+1) [1-5:%@]

Consequently, Eq. (2) is modified and becomes



dp,

- T - r,(i-1,1) (P;,-P;] -T{i,i+1) [P;-P,,,]

+ E 222‘3 [[,(i-1,1) (Piy+Py) - T,(4,1+1) (P;+Py.,)]
(9)
Note that the electric field may depend on time in an arbitrary

way in this equation.
The [complex) frequency dependent conductivity, o( w) , is

defined as the ratio between the spatially averaged current
density and the electric field in a steady state, where the
electric field has a periodic time variation given by the factor

eiot, The Kubo formula [34] expresses the frequency dependent

conductivity in terms of the current-current time autocorrelation
function. For hopping models it is convenient to rewrite the
Kubo formula by performing two partial integrations. This leads

[35] to the following expression

= - ng*w? = . o2 -iwt
0(o) T f0<Ax (£)>,e7iotde | (10)

Here, N is the average particle density, <Ax?(t)>, denotes the

equilibrium mean square displacement of a particle in time C,

and a convergence factor lim, ,e™®% is implicitly understood in

the integral.
For a homogeneous system (i. e., with all jump rates equal)

the mean square displacement is determined from the diffusion

constant D via Einstein's equation <Ax2(t)>0=2Dt, and as is

easy to see Eq. (10) gives the frequency independent conductivity 0=ng?p

10



where B is the mobility which is given by the Nernst-Einstein

relation . In the time ¢ a particle in a homogeneous

_ D
W ET

system with equilibrium neighbor jump rate I’ performs on the

average N=2I't jumps. Therefore one has <AxZ2(t)>,=Na?=2Ta?t,

which implies D=T'a?. Ccombining these equations one finds for

the freq\iency independent conductivity of a homogeneuos system

252 A . .
g = ga’ r . . (11)

For any inhomogeneous system the high-f'requenc;y limit of
‘t;he conductivity is given by a similar expression. It can be

show [36] that 0( °°) is given by the average jump freqﬁency:
o(») = = =_ (I . 12
(=) ey | (12)

‘It is convenient to redefiné the conductivity and absorp the
trivial "prefactor" so that the conductivity is given in terms of
an equivalent jump rate. In this "rationalized" unit systelﬁ,
which will be used her)ceforth, Eq. (12) simply becomes
o ©) =<I>.

For one-dimensional hopping models it is al.so possible to
calculate the DC conductivity exactly [36]. To summarize, in 1-D

the high and low frequency limits are given by

0,.p(0) =T
0,.p() =) .

(13)

11




The inequality 1 s <I'><I"1> may be derived from the Cauchy-

;ééhwartz inequalify. It implies that one always has

0, ,(0) <0, p(®) . In fact, it can be shown [37] that in any

hopping model in any dimension the real part of the conductivity
is an increasing fpnction of frequency.

Hopping models in D dimensions for D>1 are straightforward

generalizations of the one-dimesional case. If EQ denotes the

probability of finding a particle at site 8, Eq. (4) is replaced

by [for symmetric hopping models]

Lr,0) = 3 To(s:8) [P,P,] (14)

In the present paper the sites 8 are assumed to lie on a simple

cubic lattice and the sum is restricted to nearest neighbors.

The Kubo formula Eq. (10) is also valid for D>1 where the mean-

square displacement <Ax?(t) >0 is in any [fixed] direction. The

three above mentioned boundary conditions also may be applied in
several dimensions. In an external field the concepts of
blocking or perfectly conducting electrodes makes sense only for
the sample faces perpendicular to the field; it is natural to
apply periodic boundary conditions to all remaining faces.

Evan for D>1 is it convenient to use the rationalized unit
system representing the conductivity in terms of an equivalent
jump frequency. In this unit systen the high frequency limit of

the conductivity is given [28] by

o(=) =(T) . (15)

12




For the DC conductivity, on the other hand, there is no general

analytical expression similar to Eq. (13) in one dimension.
However, the temperature dependence of o((D is known; it is

given [38-40) by (for D»>1)

0(0) e-BEc (16)

’

where the socalled percolation energy E_. in terms of 'the

activation energy probability distribution p(E) and the 1link

percolation threshold p. is given by

e

[Fp(EYdE =P, . (17)
For D=2 one has p_.=1/2 exactly while for D=3 simulations have
' shown that p_.=0.2488 [41].

The calculation of the frequency-dependent conductivity in
hopping models is a complicated problem and suitable
approximations have to be made. The standard approximation for
‘disordered systems is the coherent potential approximation (CPA)
[42,43]. The CPA is a mean-field approximation that gives an
estimate of the relevant Green's function with a number of
attractive analyticity properties. For hopping models the CPA is
known as the effective medium approximation (EMA) because it is
derived by considering one "link" (i. e. , jﬁmp frequency) of the
lattice as embedded in an "effective medium” mimicing the average
surroundings. Several papers [26,44-46] discuss the derivation

of the EMA equation and here the result is just quoted. 1If the

complex freqgquency, s=iw, is introduced - referred to below as

13




the "Laplace frequency" - the conductivity ©0=0(S) in the

i‘ationalized unit éystem introduced abcgve is given [15] as the

solution of the equation

I'-o
= O .
<D° + [1-88) ('-0) >I‘ (18)

In Eq. (18) the average is over the jump frequency probability
distribution and the quantity G is a function of S and O which

is defined by

= _ f d’k 1
Ji-z (2m)P s+2Do l-p(k)] '

(19)

where the integral is over the first Brillouin zone (-7 <ki<1t)

and

D
plk) = = ¥ cos(k,) . (20)
=1

ol

For S-« one has sG-1. Thus, as is easy to see, Eg. (18)
implies the correct high frequency l1imit Eq. (15). In the limits-0
one has SG-0. Thus, the EMA equation for the DC conductivity

in D dimensions is

I'-0(0) -
<r+(p-1)o<o)>p'° ' (21)

For D=1 Eq. (21) gives the correct result Eq. (13). In two
dimensions the EMA prediction for the DC conductivity has the
correct activation energy. This is because the EMA gives the

correct percolation threshold in 2-D [47]. 1In three dimensions

14



the EMA predicts p.=1/3 which is substantially different from
the pc~1/4 found from simulations. Therefore the EMA predicted

DC conductivity activation energy is also inaccurate in 3-D. As Do
the EMA becomes exact [48].
For the numerical solution of Eq. (18) one needs to

calculate the quantity G of Eq. (19). This is a standard

exercise in calculating the diagonal element of the Green's
function for a random walk on a cubic lattice or, equivalently,
for the quantum mechanical tight-binding model [49]. 1In 1-D one

finds [49,50]

-1
S él-D = (1+.j‘_() 2 (X=S/O) . . (22)

In two dimensions one finds [49,50]

= 2 X 4 '
| Jp— . = ’ 23
S Gop = —Tix K(4+x) (x=s/0) (23)

where K is the complete elliptic integral of the first kind. 1In

three dimensions one finds [49]

s Gp = ?";fo“t(ct»)x[t(d)) 1 do
(24)

. - = 4
where: x=s/o , t($) x+6-2cos ()

Note that Egs. (22), (23) and (24) all imply SG-1 as s-~«, as

required by Eq. (19). A rough analytical approximation to Eq.
(24) [46] is

15



sG, p = = 2 (x=s/0) ,

' l (25)
1+_§_+ 1+_1_2
X X

that works best for X larger than one.

16



3. A NEW METHOD FOR THE NUMERICAL EVALUATION OF THE FREQUENCY

FDEPENDENT CONDUCTIVITY IN HOPPING MODELS

The frequency dependent conductivity of a hopping model may
be evaluated numerically in several ways. In principie the
problem is straightforward, namely to solve a large system of
linear equations. Bdt'in practice this is not easy and several
methods exist that are not_all equally useful. For the present
work, where the interest is focussed on the low tempefature
regime, it was found hecessary to develop a new method. Before
this method is presented, a brief review is given of the
previously available methods. |
| The obvious methbd for calculating the frequency dependent
conductivity is to solve tﬁe master equation numerically. 1In a
periodic external field this equation generates a sysi:em of
linear equations with complex coefficients; from the solutioﬁ it
is straightforward to calculate the conductivity. The Gauss-
Seidel or the Jacobi relaxation methods [51] are usually applied
to such a problem. Unfortunately, they converge much too slowly
if the coefficients vary 6ver several orders of magnitude, as is
the case when one wants to study the hopping at low temperatures.
Overrelaxation methods [51] may be faster,‘but are still not fast
enough.

The most common way of evaluating the frequency dependent
~conductivity in hopping models is to use an equivalent of Monte

Carlo simulations. This method works fine at high temperatures,
but for P larger than about 10 any charge carrier gets caught in

places where it tends to jump to and fro the same placé without

17




moving away until after thousands of Monte Carlo steps. This
behaviour reflects the real physics at low temperatures in a
solid described by a hopping model. But it makes the method
highly inefficient at these low temperatures.

We now proceéd to describe an alternative method for
evaluating 0(00 for a hopping model. The method applies a
systematic reduction to the AC Miller-Abrahams (ACMA) equivalent
circuit. The reduction ends up with an admittance matrix from
which the conductivity is easily caiculated. This matrix depends
on the frequency so the reduction must be repeated for each
frequency. To describe the method we first review the one-
dimensional ACMA equivalent circuit, and then show how to reduée
the cifcuit. Finally, the generalizat;onrof the method to higher
dimension; is considered.

We want to solve Eq. (9) for small electrical fields. For

these small fields the probabilities P,

; are only slightly

different from the average probability <P> and we write

P;=<P>+8P;. When substituted into Eq. (9) this gives to first
order € where €=fga<P>E is a dimensionless electric field

a

dtbP‘i = I‘o(i—lpi) [6P.i‘1-6'pi] - I‘O(i’ i+1) [6Pi-bpi*11

26)
+e [ (i-1,1)-T (i,i+1)] .

In this equation € may depend on time in any arbitrary way.

Consider now the electrical circuit shown in Fig. 2a. The

capacitors all have capacity equal to one while the (real)

conductance between site I and i+l is I (i,i+1). The voltage

18




generators impose the potential drop -ie from the capacitors to

the ground. If the voltage at site I is denoted by U;, the

Kirchhoff law expressing current conservation is

% (U,+1€] = T, (i-1,1) [U;,-U,] - Ty(i,4+1) [U;~Up.,) .
(27)

This equation‘ transforms into Eq. (26) if one makes the

identification

U; =8P, - ie . (28)
Solving Eq. (26) therefore becomes equivalent to "solving" the
‘ ACMA circuit [25,52-54]. To completely specify the problem the
boundaries must be considered [14]. . We use perfectly conducting

- electrodes for which the boundary conditions are 8P,=8P,=0 (Eq.

(6)). For 1i=0 this implies U,=0 while for i=N the condition
1is Uy=-Ne. These two boundary conditions correspond to the
¢ircuit ebdings of Fig. 2b.

Before it is shown how to "solve" the ACMA circuit, let us
consider the calculation of the frequency dependent conductivity
from the solution. By definition, o((o) is the [complex] ratio
between the spatially averaged current and the electric field in
a steady periodic situation. If <J> denotes the spatially
averaged current in the "rationalized" unit system behind Egs.

(13) and (15), we have (where K is a proportionality constant)

19



N-1
(Pe = KY [D(i-i+1) P; - T(i+1=1) Py ) . (29)

1=0
To first order in the electric field this expression via Eqgs. (8)

and (28) reduces to

N-1

<D, =K fV_:I‘o(i,iﬂ) [2 2<ep> <P> + 8P,-8P,,,]
=0

N-1
= K?_:l"o(i,iﬂ) [U;-U;,,] (30)
=0

N-1
= K Y I (i-i+1) :

i=0

Here I,(i~i+1) is the current in the resistor from site I to

site I+l in Fig. 2a.
At very high frequencies the capacitors may be ignored and
the potential drop across each resistor simply becomes €. In

order to reproduce Eq. (15) for the high frequency conductivity
the general expression for the conductivity in the rationalized

unit system must therefore be

1 N-1
o= ;I‘(i,iﬂ) [U;-U;,,] (e=1) , (31)
or
1 N-1
0= L Y I(ini+1)  (e=1) . (32)

=0
In the limit w-0 the capacitors are completely blocking

and only the voltage generator at the site I=N matters (where

there is no capacitor, compare Fig. 2b). Thus, the ACMA circuit

effectively reduces to resistances in series and the current is

20




the same in each resistor. This current is determined by the

total resistance from 1=0 to site i=N. Each resistor has the

value 1/I'(i,i+1) and the total resistance is the sum of all

resistors. When the current thus determined is substituted into
Eg. (32) one finds the expression given in Eq. (13) for the one-
dimensional DC conductivity of a hopping model.

_ Returning now to the case of an arbitrary frequency (but
~still in 1-D), ifjis convepient to rewrite Eq. (32} in.termé of

the current through each voltage generator. If I (i) denotes

-~

the current "upwards" thrdugh the i'th voltage generator towards

site I, current conservation implies

I,(0~1) = I,(0),

Tp(1=2) = Ip(0=1) +I,(1) = I, (0) +I,(1) ; (33)
in general |
Tp(i-1i+1) ="I,(0) + ... + I, (1) . | (34)
when subsitituted into Eq. (32) this gives
o=+ zNj(N-i)rv(i) (€=1) . (35)
N = '

Equation (35) suggests regarding the ACMA circuit as anN

port donsisting of all .the capacitors and the resistors as

"internal" elements with external nodes that are to be subjected
to the potentials -€,...,-Ne. Such a circuit is characterized
by a [frequency dependent] symmetric matrix of admittances,
Y[i,j7} (i,7=0,...,N) (the index O refers to the ground). In

particular, it is possible from this matrix to calculate the

21




generator currents I, (i) corresponding to €=1 which is given by

(the value of Y[1,1i] may be any number in the below expression)

N
€=1: I, (1) =?:(j-i)Y[i,j] . (36)
=0

Substituting this into Eq. (35) one finally arrives at

N N
1 ¢ » ] ] » ]
o= = ?j ;: (N-1) (F-1) Y[1,7) . (37)
N =0 7=0 7

The problem is now reduced to calculating the admittance
matrix. "This is done by utilizing a transformation which is
well-known from electrical engineering. This transformation,
which was introduced into the random resistor network community
by Fogelholm [55], is a prescription of how to remove nodes from
a circuit without changing the "external" properties of the

circuit. Consider any node in an electrical circuit connected to

m other nodes by the admittances Y,,...,Y, This is illustrated

m.
in Fig. 3 for the case m=5. The central node may be removed by

introducing new admittances between all possible pairs of the m

neighbor nodes. The new admittance between the neighbor nodes i

and j, Y;;, is given by

Y;Y; (38)

If some of the m neighbor nodes are already connected by an
admittance, this admittance is increased by the amount given by
Eq. (38). Before proceeding, let us briefly reflect on the

question: What does it actually mean physically that the new

22




circuit is "equivalent” to the o0ld? A little thought reveals
that this means that, for all possible choices of potentials
applied to the m neighbor nodes, the same currents run from each
of these nodes into the circuit. 1In this sense, the m néighbor
nodes cannot detect any difference between the circuits before
and after the reduction. Once this condition has been specified,
it is straightforward to derive Eq. (38).

When this transformation is applied to the ACMA circuit
each of the "internal" nodes indexed i=1,..,N is removed. One

is then left with all possible connections between the "external"”
nodes that are directly connected to the voltage generators.

Each connection has an admittance which specifies the

corresponding matrix element in the admittance matrix Y[i,j].

‘With this method for evaluating;d(nﬂ of a hopping model the
number of calculations that are to be performed is independent of
the temper%ture. This is in contrast to_the two "standard"
methods, solving the linear.equations>or performing a Monte Carlo
simulation. A further advantage is that the preseht method
(which proceeds through a number of simple algebfaic operations
on the circuit admittances) introdpces virtually no numerical
inaccuracies. Thus, the conductivity is evaluated with high
‘precision.

The method is easily generalized to higher dimensions.

Considering the case D=2, the ACMA circuit is a square lattice

whose nodes are indexed by (1I,k) where 1i=0,...,N and
k=1,...,N. Each node on the lattice is connected to the ground
via a capacitor and a voltage generator [14,54]. Neighboring

23




nodes are connected by a resistor whose conductance (admittance)

is the jump ffequency. The external electric field is assumed to
be in the direction of the x-axis (indexed by i=0,..,N). This
means that the voltage generators (just as in 1-D) have a voltage
equal to -I€, and this voltage is independent of K. In effect
there is thus only one voltage generator for each I. In the y-
direction we use periodic boundary conditions so that the point (1, N+1)
is identified with the point (I,1). 1In the x-direction the
"perfect electrode" boundary condition is used. For calculating
~the conductivity, all nodes (iI,k) with iI=1,...,N-1 are removed

according to the recipe of Eq. (38). Since all nodes with the
same i-coordinate below the capacitors are connected to the same

voltage generator, one after the reduction ends up with (just as
in 1-D) an (N+1)X(N+1) symmetric admittance matrix Y[i,j] (where

both indexes refer to x-coordinates). The calculation of the

conductivity from the matrix proceeds as in Eq. (37), except that
a further division by N is neccesary to compensate for the fact

that each "layer" perpendicular to the x-axis has N parallel

channels. We thus get

N N
o(s) =+ V% (v-1) (F-1) Y14, 7is] . (39)
N*® 10 5=0o

An S=1W has been introduced here to remind of the fact that the

conductivity is frequency dependent.
It is not clear how to find the optimal strategy for
choosing in which order the nodes should be removed. This point

is important because the removal of one node introduces several
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new connections. And the more connections there are to a given
node, the more calculations are required for removing it. The
nodes should therefore be removed so that as few new connections
as possible are created. In the original Fogélholm algorithm at
any time one removes the node with fewest connections to its
‘'surroundings [56]. This works very weli for a system where most
neighboring nodes are not connected, as is the case close to the
Qercolation threshold. In the present case, however, where all
neighbors are connected, this procedure becomes inefficient,
because the last nodes to be removed become ekcessively costly.

We found it better to "contain the damage" by ‘removing one
collumn at at time (i. e., the nodes with same indexli). After

the first p collumns have been removed one has a situation where

the p+1l "electrodes" connected to the voltages O,-1,...,-p are
all connected to each other (i. e., Y[i,k]#0 for
i,k=0,...,D). Furthermore, all possible connections exist from

these p+1 "electrodes" to the N nodes of the (p+1) 'th collumn

that is to be removed next, and all nodes in the (p+l) 'th

collumn are also connected to each other. Clearly, during the
reduction a large number of connections are created. A further

optimization of the algorithm is obtained by, after removing the

first N/2 collumns, starting from the other end of the circuit
by removing collumns in decreasing order of the I-index. Thus,

the last collumn to be removed is the N/2+1'th.
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4. COMPUTER SIMULATIONS

The algorithm derived in Sec. 3 was applied to a study of
hopping conduction in two dimensions. At low temperatures large
lattices are needed to obtain reasonable statistics. We chose to
simulate hopping on a 100X100 lattice. For this system a
standard workstation calculates the conductivity (at one
particular freqﬁency) in aboutrone minute. Even this large
lattice is not selfaveraging at low temperatures, however, and it
was necessary to average over several simulations to obtain
reproducible results.

In each simulation a 100X100 lattice was generated by, for
‘each link, choosing a random activation energy according to the
probability distribution under study. Five different probability
distributions [20] were used: The asymmetric Gaussian, the
Cauchy, the Exponential, the Power law with exponent =4, the
Box. The details of how the energies were generated is described
in Ref. 20; to avoid spurious correlations the random numbers
were generated according to the RANO algorithm of Ref. 51.

For each lattice the frequency dependent conductivity was
evaluated from Eq. (39) at a number of frequencies, where the

admittance matrix Y[i, j;s] results from the reduction of the

ACMA circuit. For simplicity, the simulations were carried out
at real Laplace frequencies, corresponding to purely imaginary
frequencies. This trick simplifies the computations and, since
the conductivity is real for real Laplace frequencies, makes it
possible to present the frequency dependent conductivity in one

single curve.
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In order to identify the frequency range marking the onset
of AC conduction, the BNN relation [9-13] was used. This
relation is found in experiment [9-12] as well as in any hopping

model [13,35,57]. The BNN relation expresses the fact that the

frequency marking ‘the onset of AC conduction, W,,  1is

proportional to the DC conductivity. The value of the DC
conductivit\y is known roughly because the percolation energy
(which according to Eq. (16) is the DC conductivity activation
energy) can be. calculafed analytically for each probability
distribution [20].

| Figure 4 shows a log-log plot of the resAults for the five

activation energy distributions at the dimensionless inverse

temperatures PB=5,10,20,40, where each point represents the

average of 40 lattices. 1If p(E) is the normalized energy
probability distribution wunder "study and one introduces

B=B/[8np(E.)], the quantities S’ and & in Fig. 4 are defined
[= - R

by

s = P ¢ g = 9(s) (40)

o (0) ' o (0)

In Fig. 4 the full curves are the EMA predictions. These were

found by solving Eg. (18) numerically. In two dimensiéns the
quantity sG is given by an elliptic function (Eq. (23)). A

numerical approximation to this function was used [58], Eg. (18)
was discretized into 10.000 terms and then solved by the
bisection method. .

The EMA is usually derived from a perturbation expansion
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around an ordered state. As such, there is no a priori reason to
beleive in the EMA predictions for a severely disordered system
as the low-temperature hopping model studied here. This models

is really quife extreme: It involves jump frequencies that for
the =40 case vary 20-60 decades! This extreme variation

implies that the DC conductivity is very small and that the
scaling of the frequency introduced in Egq. (39) shifts the
frequency by in some cases more than 15 decades. In this light

it must be said that the EMA after all is doing well in Fig. 4.

5. THE LOW TEMPERATURE LIMIT OF THE EMA:

THE APPEARANCE OF UNIVERSALITY

This section studies the EMA prediction for the T7-0 limit

of the frequency dependent conductivity in symmetric hopping
models in more than one dimension. It was recently shown [19,20]
that in the "macroscopic" model for AC conduction the frequency
dependent conductivity follows Eg. (1) at low temperatures,
independently of the activation energy probability distribution.
It is shown below, using a method similar to that of Refs. 19 and
20, that the same equation appears at low temperatures by the EMA
treatment of hopping models, despite the considerable physical
difference there is between these two models.

The derivation starts by noting that
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x-=-§ <1l (P~ (41)

for all frequencies in an increasingly large range around the
frequency marking the onset of AC conduction. This observation,
which is crucial to the below derivation, was first fnade by _
Bryksin in paper from 1980 [26] dealing with electrons tunneling
between random positions. In the derivation given below Eq. (41)
will be first assumed and then Eg. (41) is shown to be consistent
with the result derived. '

Because of Eg. (41), when Eq. (18) is rewritten

0 =< F"’D >r o
I'-o0+ -0
1-sG

(42)

~ one has to first order in SG (where the numerator is rewritteni

' for convenience below)

: (43)

0 =‘<P+I(D—1)+Ds§]o—D(1+sé)o>~

T+[(D-1)+DsGl o r

'If we introduce the notation I'(E)=[ e P¥ to emphasize the

‘ activation energy dependence of the jump frequency and if the
jump frequency average is converted into an average over the
activation energy probabilitY‘distribu.tion, Eg. (43) becomes

1 _ 1 -
D(1+sG) o <F(E)+[(D-1)+Ds§l°>s '

(44)

In the P-= 1imit of Eq. (44) the jump frequencyI'( E)
varies extremely rapidly and, for given 0 and S, there are
essentially just two extreme possibilities, depending on E:
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Either one has I'( E) «[ (D-1) +DsG) 0 or the opposite extreme. In

the former case I‘(E) may be 4ignored altogethrefr from the

7denominator, while in the latter case the denominator becomes

very large and gives little contribution to the right hand side

of Eq. (44). The energy separating the two cases, E,(s), is

given as the solution of I'(E) =[(D-1) +DsG] 6, thus

E(s) = 5 1n.([(D'1%:DSé]°) . (45)

Accordingly, the right hand side of Eq. (44) for ,ﬂ-‘w becomes

< 1 > - 1 [ p(E)dE (#6)
E

I['(E) +[(D-1) +DsGl o [(D-1) +DsGl 0 YE. (9
and Eq. (44) reduces to

D-1 sG *
+ — = (E)dE . (47)
D D(1+sG) ng(s)p

Evaluating Eq. (47) at S=0 gives an expression for (D-1)/D.

When this expression is subtracted from Eq. (47), one gets

sé Eg(O)
—_— = p(E)dE . (48)
D(1+SG) ng(s)

For large P, E,(0) is close to E,(s) and therefore the integral
on the right hand side can easily be evaluated. 1If p(Eg(O) ) is
denoted by D,, the integral is simply p,[E,(0)-E,(s)] at low

temperatures. If the symbol 6=0/0(0) is introduced into Egq.

(48) it thus becomes
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___‘s’£1_=£9.1n[(1+Ds§)6] . (49)
D(1+sG) B '

To leading order in the small quantity sG Eqg. (49) reduces to

_B_ sG = 1n(&] . | (50)
D p,

.Since for D=1 one has Eg(0)=°°, the derivation assumes D>1.

‘For any dimension D>1, however, as -« E,(0) approaches the DC

'c_onductivity ‘activétion enérgy'_which is equal to the percolation
energy defined by Eq. (17); thus |

b, = p(E.) . (51)

In the fﬁrther develoémenf one has to disfinguish between

'.-‘the cases D=2 and D>2. . In the latfer case, which is the

simplest,’ the quantity sG as function of X contains a régular

first-order term (after this term there are, e. g. in 3-D, non-

analytic terms which are of no concern here). Writing

~

D>2: sG=ayx (x-0) |, | - (52)
'Eq. (19) implies

_ 1 1 dPk |
oy 2 (21t)Df1-BZ D-(cosk,+...+coskp) . (53)

Note that this integral is defined only for D>2. For D=3 one

has @,=0.253 [59]. Substituting now the expansion Eq. (52) into

Eq. (50) leads to Eq. (1): 81n(8) =5, where
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P ap

D>2: §s —m———-=— 8 .
D p, 6(0)

(54)

Finally, the consistency of the derivation is checked: The

assumption Eq. (41) is indeed satisfied, since for B““ one has

x=—S>_40 for fixed & and §.

o 0)

Turning now to the two-dimensional case, we use the

asymptotic expansion of the complete elliptic integral of the

first kind [60]: For k-1 one has K(k)=1n(4/k’) where

k2+k”=1. This implies that K(k)=--2—lln(1—k) for k-1.

——é—-)=¥:£lr1Lx) for x~0. When this is substituted into

Thus, K
us, Kl==)=—

Eq. (23) one finds asymptotically

sG, p = —4_—11t x ln(x) (x-0) . (55)

If the guantity

B = _B_ (56)

8np,

is introduced Eg. (50) thus becomes

In(d) =p = 1n(2) . (57)
o S
Defining now
D=2: 3§ = l?o())s , (58)
o
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Eg. (57) becomes

1n(8) = B% [ 1n(3)-1n(8) +1n(P) +1n (In(P)) ] .

&
Bln(P)
| (59)

-~

For fixed 0 and § as f-~ Eq. (59) reduces to Egq. (1),
61ln(d) =S. Note that the assumption X=S/0<1l is again satisfied

for fixed & and § when P is sufficiently large.

Figure 5 tests the EMA universality prediéition against
computer simulations. The five different activation energy

distributions of Fig. 4 were used, and for each distribution the
temperature was chosen so that 5;4. Each point in the figure

represents the average of 100 simulations of a 100X100 lattice.
There is not a good agreement between prediction and simulations,
but the simulations certainly show the existence of universality.

A further discussion of Fig. 5 is given in the next section.
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6. DISCUSSION -

In this paper a new method for the numerical simulation of
symmetric hopping models has been derived. The method makes use
of the AC Miller Abrahams circuit which interpretes the hopping
master equation in terms of an electric circuit. Previously,
this circuit was mainly used for developing an intuition about
hopping problems. However, it was also used by Summerfield and
Butcher [54] for deriving the extended pair approximation (EPA),
an approximate analytical method for the calculation of the
frequency dependent conductivity, that in many respects is
similar to the EMA.

The new simulation method allows a faster and more accurate
calculation of 0((0) for symmetric hopping models for larger

lattices and at lower temperatures than previous methods. Thus,

the standard Monte Carlo type method is useless if one wants to
study low temperatures like the [=5,10,20,40 of Fig. 4. The

standard relaxation methods for solving linear equations are also
too slow in this regime where the coefficients vary many, many
orders of magnitude. With the method presented here it is
possible in about one minute to calculate the frequency dependent
conductivity with a very high accuracy at any one particular
frequency for a 100X100 symmetric hopping model on a standard
workstation.

The numerical method may be generalized immediately to deal
with non-symmetric hopping models; the only change is that in the
ACMA circuit the capacitors then vary from site to site.

There exists a clever algorithm for solving 1linear
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equations Qith coefficients that vary many orders of.magnitude.
This is the algebraic multigrid algorithm (AMG) [61,62] which is
available from the Yale multigrid library in a well-documented
and carefully debugged Fortran version, AMG1R5 [63]. The AMG is
an algebraic generalization of the multigrid method for solving
ellipfic partial differentiél equations. The method has been
tested successfully for large random admittance networks with
:admittances varying many orders of magnitude-[20,64]. It solves
the Kirchhoff equatibns in a timé only propoftional_to the number

of equations. ‘For the present problem, the AMG solves the
problem in D dirﬁensions in a time «<ND, At first sight, this is
much better than the method presented in Sec. 3 which, as is easy
to show, calculates the EOnductivity in a time =N3P7?_ However,

in the practical use of the AMG it is not superior to the method
of Sec. 3. Thus, when applied -to é hopping problem at 1low
'temperatures, the AMG easily runs into overflow problems, whereas
the method of Sec. 3 avoids such problems. At low temperatures,
if one wants to calculate the conductivity by solving Eq. (9) or
the higher dimensional analogues, the solution must be extremely
‘accufate. The standard double precission real number
representation is not enough, since the equations should be
solved with an accuracy of 50-100 digits (depending on how low
the temperature is). Unfortunately, higher precissions are not
hardware implemented today and therefore very slow. Therefore,
the method presented in Sec. 3 seems to be the best available at
present. On a longer time span it seems to be likely that the

AMG will eventually become the best choice. The AMG method is
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very impressive, and-it is probably the "final" solution to the
problem of**so*l(ring hopping models numerically. s
The results of extensive computer simulations of a 100X100
lattice in 2-D was reported in Sec. 4. No simulations were
performed in 3-D because the method here is too slow for solving
large lattices. However, it works fine in 2-D. In order to
obtain reproducible results at low temperatures, it was neccesary
to average ov;errseveral simulations of different lattices. The

main problem in the reproducibility lies at low frequencies; at

frequencies where 10g(0)>1 the results [i. e., O as function

of s’ (Eq. (40))] are quite reproducible.

The results of the computer simulations were compared to
the predictions of the EMA at real Laplace frequencies at a
number of temperatures in Fig. 4. The use of real Laplace
frequencies not only simplifies the calculations, but also makes
it possible to represent the results in one curve (instead of
two, one for the real part and one for the imaginary part of the
conductivity). This curve contains all information about the

frequency dependence of the conductivity. This is because the

function 0( s) is analytic in the upper half S-plane so, by

analytic continuation, the behavior on the real S-axis

determines the function uniquely. A further virtue of this
representation is that deviations from the EMA are here somewhat

magnified compared to the use of real frequencies. The "reduced"
frequency used in Fig. 4 is not quite the § of Eq. (58) because,
for some of the highest temperatures studied, ﬂ becomes less
than one, implying that Eq. (58) does not make sense here.
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Instead, the .related "reduced" frequency S’=Bs/o((ﬂ (Eq. (40))

was used in Fig. 4.
As far as is known to the author, these results are the
first simulations of a hopping model at low temperatures where

the jump frequencies I' vary over several decades (here up to

about 50-60 decadeé). In general, there is a rather good.
_ agreement between the simulations and thé EMA,-with deviations in
the transition region where the, EMA at low temperatures
underestimates the conductivity. It should be remembered;
howeVer, that the EMA is only a mean-field approximation.‘
At low temperatures the EMA predicts a universal fregquency
dependeﬁce‘of the conductivity, which should become independent
'-fof the activation energy probability distribution (Sec. 5). The
‘equafion governing the universal conducfivity is 61ln(6)=5. A
special case of this equation was derived by Bryksin [26] for a
system of tunnglling electrons in D dimensions. Bryksin's paper
from 1980 was the first time Eq. (1) appeared in the literature.
' The equation was later derived by Fishchuk [24] for the box
.distribution of activation energies in the "macroscopic“ model,
and by the present author for a hopping model with thé box
distribution [13]. - Recently, it was éhown that Egq. V(1) is
‘universal in the 1low temperature 1limit of the "macroscopic"
model. Here it has been shown that the equation is also
universal for symmetric hopping models. What happens is that, at
low temperatures the conduction is méinly along the percolation

~paths,  and the only "signature" of the activation energy

distribution is the number pP(E_.) . The "effective" activation
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energy distribution - the distribution of activation energies
fﬁat are relevant for the frequencies around- the transition
ffequency - becomes flat, i. e., like the box distribution.

The universality prediction was tested in Fig. 5, which

studies five different activation energy probability

distributions at the same "reduced" temperaturerﬂ=4. There is

clearly a universality in the sense that the function G (§5) is

independént of the activation energy distribution. However, the
results deviate considerably from the EMA prediction Eg. (1). A
careful comparison to Fig. 4, that also contains low temperature
data, reveals that one reason for the discrepancy is that the

temperature simply is not low enough in Fig. 5. In other words,
the EMA predictions for B=4 are still not really close to Eq.

(1). Unfortunately, it 41s not possible to go to lower
temperatures for a 100X100 lattice without loosing
reproducibility.

There are interesting differences between the "macroscopic”
model [20] and hopping models. Figure 4 indicates a systematic
deviation of the simulations from the EMA predictions at low
temperatures in the transition region. Here the data give a less
sharp transition to frequency dependence than the EMA predicts.
In the "macroscopic" model, on the other hand, there is a very
good agreement between the EMA predictions and the simulations at
all temperatures. It is not clear what is the origin of these
differences. Appareptly, the hopping model is more complex than
the macroscopic model. We thus find larger sample to sample

fluctuations in the hopping model than in the macroscopic model
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(in 2-D at the same temperature and for the same activafion_
energy distribution). Also, in the derivation of universality
for hopping models, one has to distinguish betﬁeen the case D=2
and D>2; this is nof necessary for the derivation of Eq. (1) for
the macroscopic model tZO].

In the simplest possible approximation to hopping models,'

- the continuous time random walk (CTRW) approximation [35], the

conductivity for the box distribution of energy barriers is in

‘dimensionless units given by -

§ =2

— " (59
‘ln(.1+'s') (59)

As has been sho&n elsewhere [20], this‘expression is close to
that givén by Eq. (1); in pérticular ‘the two functions § (5) ha've'"'.
the séme asymptotic expressions for the exponents of the feal and‘:
imaginary parts of the conductivity.. These exponents converge
slowly to one as the frequency goes to infinity [20]. A.“
convincing experimental demonstration of this'phehomenon has
recently been given for metal-éluster compounds ' [8].

There has been relatively little discussion of4universality
for AC cénduction in the literature. In experiments, a number of
authors early pointed out that quite different systems like ionic
conductive glasses and amorphous semiconductors have surprisingly
similar AC responses [1-3]. In theory, Summerfield in 1985
termed the,pﬁrase "quasi-universality" for the fact that a number
of different models, when sdlved in the EPA [57] , give almost

the same frequency depéndence of the conductivity. Since then

there seems to have been no discussion in the literature of AC

conduction univérsality, except the recent demonstration of
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universality in the "macroscopic" model [19,20].

In a recent paper [20] computer simulations of the
"macréscopi&" model ofVAC conduction in disordéred sblids were
presented. This model regards the solid as having a spatially
varying [frequency independent] conductivity. The model studies
the consequences of Maxwell's equations: the macroscopic
conductivity becomes frequency dependent. The "macroscopic"
modelris physically quite different from'hopping models. Thus,
in hopping models one has non-interacting charge carriers and,
consistent with this, there is a spatially homogeneous electric
- field. But in the "macroscopic" model, the Coulomb forces are
crucial, the electric field is screened and it becomés strongly
locally varying. An interesfing cése between these two models,
which has recently been studied numerically by Maass et al [18],
is the case of a hopping model with Coulomb repulsion between the
charge carriers.

The "macroscopic" model leads to an electrical equivalent
circuit where the nodes on a cubic lattice are joined by a
.capacitor and a resistor in parallel [20,24]. The resistors
carry the free charge currents while the capacitor currents are
Maxwell's displacement currents [20]. In contrast to the circuit
of Fig. 2, there are no connections to the ground and no voltage
generators; the "solid" is simply subjected to a macroscopic
potential drop at the electrodes (=two opposing end-faces). As
mentioned already, when solved in the random admittance version
of the EMA, the "macroscopic" model 1leads to Eq. (1).
Simulations confirm this [20]. In the DC limit the "macroscopic"

model and hopping models both give simple resistance circuits.
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Thus, the DC limit of the EMA hoppiﬁg equation Eg. (21) is
nothing but the EMA equation for a resistance circuit.

An interesting connection betwéen the symmetric hopping
model and the "macroscopic" model is that the CTRW approximation
[28] to hopping models corresponds to the one-dimensional version
of the macroscopic model. As has been discussed in detail
elsewhere [20], this version becomes realistic at ‘low
temperatures where condﬁct;én'méinly.follows the "percolafion"
‘pafhs. Alon§ these lines;'qn approximation reférred to.éé the
"percolation path approximation" (PPA) was proposed in Ref. 20.
Since the PPA is equivalent to the CTRW for hopping models, itr
also leads to Eq. (60).‘- | '

Throughout this paper the limit of extreme disorder (where

the jump frequencies ' vary several decades) was arrived at by

‘going to iow temperatures for a system with thermally activated
hopping. The same limit is also arrived at jjx a system of -
localized electrons tunnelling between nearest neighbor sites,
when the density of electrons becomes very small. The system”of
tunnelling electrons has been studied extensively in the past
| [26,54,66]. Though it has not been spelled out in detail in
F'Sec.S, the same universality prediétion (Eq. (1)) applies to this
system és to the hopping model with activated jump rates.

There are a number of open problems and work that remains
to be done in this field. Thé symmetric hopping model should be
studied numerically at low temperatures also in three dimensions.
Large lattices are needed at low temperatures to get reasonable
statistics, and the method of Sec. 3 is not useful. Regarding

the new method, that works well in 2-D, it is not clear what is
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the optimal strategy for removing nodes. From the theorefical
point of view the main question is: Is there true universality
in the extreme disorder limit, or is there only "quasi-

universality"? If true universality does exist, as believed by
the author, is the universal function &(8) the same in all

dimensions (this seems less likely)? 1If not, analytical methods
more accurate than the EMA should be developed to calculate the
uhiversal conductivity. ;A further question that should be looked
into is: What is the cause of the difference between the hopping
model and the "macroscopic" model in 2-D, where the EMA works
significantly better than for the hopping model? Finally, does
the EMA also predict universality for non-symmetric hopping

models?
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FIGURE CAPTIONS

Fig. 1:
Potential felt by a charge carrier in a one-dimensional

symmetric hopping model with thermally activated jump rates. If B

denotes 1/kBT and AE is the energy barrier height, the rate for

jumps between two sites is T,ePAE, At low temperatures the jump
0

rates vary over several decades, and a charge carrier makes many
jumps to and fro at sites with low barriers to its surroundings.
Thus, the fluctuation-dissipation theorem shows that the
conductivity depends strongly on frequency. The DC conductivity
activation energy is the largest barrier. In more than one
dimension one has for the symmetric hopping models studied here
a cubic lattice with a similar random variation of the barrier
heights. 1In this case the DC conductivity activation energy is
the largest energy met on any "percolation" path (Eqs. (16) and

(17)).

Fig. 2:
a) AC Miller-Abrahams electrical equivalent circuit of a
symmetric hopping model in one dimension. All capacitors have

capacity equal to one while the conductance of the resistor

between site I and site 1+l is equal to the equilibrium jump

frequency I',(1I,1+1) . The voltage generators give voltages that
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are proportional to the electrical field in the sample for which€

is a dimensionless measuré; the electric field may depend on time
in any arbitrary fashion. The currents in the resistors are
equal to the particle currents in the hopping model. Similar
electrical equivalent circuits exist in higher dimensions. The
voltage depends only on the coordinate in the direction of the
electric field, and thus the capacitors in a plane perpendicular
v to the field are all connected to the same voltage. This fact is
'1_¢;ucial for the numerical methodvfor calculation of the frequency
dependent conductivity in a hopping model derived in Sec. 3.
b) Boﬁndary’conditions to the ACMA circuit in one dimension.
These boundar? c&nditions correspond to "perfectly conducting

'ﬁéléctrodes" (Eq. (6)).

Fig. 3:
" Reduction of an electrical circuit by removal of a node. In this

example the node to be removed is connected to five neighboring

nodes by admittances Y,,..,Y;. When the node is removed, all.

possible connections between the five nodes are created by,

between the i'th and the j'th node, introducing the admittance

YﬁY}/(13+. L+YC) . If two neighboring nodes were already

connected before the reduction their admittance is increased by

this amount. Physically, the fact that the new circuit is
equivalent to the old means that for any potentials applied to
the five nodes the same currents run into each circuit. The

transformation may be applied to the ACMA circuit of Fig. 2 (or
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higher dimensional analogues). - When all nodes have been removed

one is left with an admittance matrix Y[i,7] which directly

determines the frequency dependent conductivity [Eq. (37) for 1-D

or Eq. (39) for 2-D].

Fig. 4:

Log-log plots of the results of computer simulations in two
dimensions (points) compared to the EMA predictions (full curves)
for symmetric hopping on a 100X100 lattice. The figures show the
conductivity as fﬁnctic‘m of the real Laplace frequency (i. e., at
imaginary frequencies). The computer simulations were carried
out using the algorithm developed in Sec. 3. VThe points
represent averages over 40 different 100X100 lattices, where the
jump frequency activation energy varies according to the
following distributions (compare Ref. 20): a) Asymmetric
Gaussian, b) Cauchy, c) Exponential, d) Power law with exponent -

4, e) Box. Each figure shows the following dimensionless inverse

temperatures: P=5 (8), B=10 (O), P=20 (V), and B=40 (O
). The "reduced" Laplace fregquency s’ on the x-axis is the
scaled Laplace frequency defined in Eq. (40), while §=0/0(0) .

The EMA predictions were found by solving Eg. (18) where sG is

given by Eq. (23).
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Fig. 5:

Log-log plot comparing the EMA universality prediction (full
curve; Eqg. (1)) to computer simulations (points) of a 100X100
lattice for the five different activation energy probability
distributions of Fig. 4. Each point represents the average of

100 simulations taken at the "reduced" inverse dimensionless

temperature ﬂ=4 where B is defined in Eq. (56); this

corresponds to PB=63.91 for tﬁe Asymmetric - Gaussian, $=32.00
for the Cauchy, P=50.27 for the Exponential, B=119.66 for the
Pswer - law with exponent -4, and p=100.53 for the Box
idistribﬁtion.. The "reduced" Léplaceyfrequency S is defined in
:Eq. (58) and §=0/0(0). " Ths’figﬁfe shows results for the
following distributions: Asymﬁetric Gaussian (A ), Cauchy (0),
Exponential (0 ), Power law with exponent -4 (A ), and Box (V ):
AThe.figﬁre’clearly shows that there  is a universality at lsya
rtsmperstures, but there is not a good agreement with thé EMA
- predictions. Part of the disagreement is aue to the fact that
the EMA predictions at these temperatures are still not closé to
Eg. (1). Unfortunately, it was not possible to go to lower

" temperatures without 1loosing reproducibility (even after

averaging 100 times).
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