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Abstract

This dissertation consists of three parts. The main issue is a description of how the frequency
dependent shearmodulus of a supercooled liquid can be deduced using a new technique based
on a piezoelectric transducer.

The method have been applied to 1,2-butandiol, 1,3-butandiol, 1,2,6-hexantriol, 1,2-propandiol
og 2-metyl-2,4-pentandiol. These liquids have been found to obey the temperature/time
superposition principle and the frequency dependences of the shear modulus follows a
phenomenological extended Maxwell model.

The frequency dependeces of the specific heat have also been studied for the same liquids.
This have been done using a method earlier developed by the author.

Both examples of a narrower relaxation spectrum of the specific heat compared to the shear
modulus and the opposite have been found. However the relaxation times are in all cases
longer for the specific heat than for the shear modulus. That is the liquids are more fluent at
the calorimetric glass transition than one would expect.

The dissertation contains also a discussion on how the frequency dependent specific heat and

heat conductivity are defined in a relaxing substance.
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Abstract of the ph.d. dissertation entitled

" Description of a method of measuring the shear modulus of supercooled liquids and a

comparison of their thermal and mechanical response'functions."
. By Tage Christensen, IMFUFA, Roskilde University Center, Denmark

This dissertation consists of three parts. The main issue is a description of how the frequency
dependent shearmodulus of a supercooled liquid can be deduced using a new technique based
on a piezoelectric transducer.

The method have been appliéd to 1,2-butandiol, 1,3-butandiol, 1,2,6-hexantriol, 1,2-propandiol
og 2-metyl-2,4-pentandiol. These liquids have been found to obey the temperature/time
superposition principle and the frequency dependences of the shear modulus follows a
phenomenological extended Maxwell model.

The frequency dependeces of the specific heat have also been studied for the same liquids.
This have been done using a method earlier developed by the author.

Both examples of a narrower relaxation spectrum of the specific heat compared to the shear
modulus and the opposite have been fouhd. However the relaxation times are in all cases
longer for the specific heat than for the shear modulus. That is the liquids are more fluent at
the calorimetric glass transition than one would expect.

The dissertation contains also a discussion on how the frequency dependent specific heat and

heat conductivity are defined in a relaxing substance.
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Resumé af ph.d afhandlingen med titlen

" Beskrivelse af en metode til bestemmelse af underafkglede vaskers shearmodul og en

sammenligning af deres termiske og mekaniske responsfunktioner."

Afhandlingen bestdr af tre dele. Hovedvagten er lagt pd en beskrivelse af, hvorledes det
frekvensafhengige shearmodul af underafkglede vasker kan bestemmes i audio
frekvensomrddet ved hjzlp af en sa@rlig udviklet piezoelektrisk transducer.

Denne metode er blevet anvendt pd. 1,2-butandiol, 1,3-butandiol, 1,2,6-hexantriol, 1,2-
propandiol og 2-metyl-2,4-pentandiol. Vaskermme er fundet at adlyde temperatur/tid
superpositions princippet, og frekvensafh@ngigheden af shearmodulet er fundet at fglge en
fznomenologisk udvidet Maxwell model.

For de samme vasker er den frekvensafhagige varmefylde blevet bestemt ved brug af en
metode tidligere udviklet af forfatteren.

Der er bide eksempler pd at relaksationsspektret er smallere for varmefylden end for
shearmodulus og det modsatte. Derimod ses det generelt, at relaksationstiden er lengere for
varmefylden end for shearmodulet. D.v.s vaskerne er mere flydende ved den kalorimetriske
glasovergang end man skulle forvente.

Afhandlingen indeholder derudover ogsd en diskussion af definitionen af frekvensafhzgig

varmefylde og varmeledningsevne for et relakserende medium.
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Chapter 1. Introduction.

The thermal and mechanical properties of liquids like the specific heat cp,the
compressibility x,, the thermal expansion coefficient «, ,the shear modulus G etc at

temperature T and pressure p are usually considered constant. In fact they are time-
dependent (or frequency-dependerit). This phenomena is called thermoviscoelasticity.

» However this only manifests itself on a timescale ¢ (D) increasing with decreasing
temperature T. For liquids amenable to supercooling this phenomena is seen on a

timescale of 10%s at the conventionally defined glass-temperature Tg'

In this thesis two properties, the specific heat cp(m) and the shear modulus G(w) of a

number of liquids, have been measured and the relaxation times compared. This as a part
of a greater programme establishing phenomenological/theoretical connections between
all the thermoviscoelastic properties.

The shear modulus was measured by using a new technique based on a piezoelectric

transducer. This technique enables the measurement of high moduli ( 107-5-10° Pa ) in

the audio frequency range ( 10-5-10* Hz ). The principle of the method is rather simple:

the liquid is mechanically coupled to the piezoelectric transducer and thus the liquid
clamps the movement of the transducer more or less depending on its shear modulus.
This clamping is seen as a decrease of the electrical capacitance of the transducer.
However the analysis and unfolding of data is somewhat involved. Thus the description
of this method forms a large part of the thesis.

The specific heat was measured using the same technique as originally applied to
glycerol ! described in detailed elsewhere ? and only a short review of this method is
given here.

This thesis also includes a discussion of how the concepts of the frequenéy dependent
specific heat and heat conductivity can be defined in a macroscopic continuum
formulation. This is needed in order to clarify some misunderstandings in the litterature

to be discussed.



Chapter 2. The concepts of frequency dependent specific heat and heat conductivity.
-2.1 Identification of the proper thermal and mechanical variables.

The purpose of this chapter is to see how the specific heat and heat conductivity can be
defined in a relaxing medium. This has been considered also by others *, but here we
emphasize the proper choice of the generalized currents and forces that defines these
response functions. By choosing these in a way that their product gives the dissipation of
free energy we ensure that the response function they define can be put into the sceme*
of linear response theory and theorems such as the Fluctuation-Dissipation Theorem *
applies.

Let a body change its state with the values y of internal energy, § of entropy and y of

volume into a state with the corresponding values U,S,,V,. Then it is a wellknown

result’, that if the body resides in a reservoir of temperature T, and pressure Py’ then

‘the’ maximum work, that can be obtained during the process is

R = U-U,-T,(S-S)+p(V-V,) | 2-1)

If one introduces the exergy (availability) 4

A = U-T,S+p,V | 2-2)

then R is simply the change in exergy ".(2-1) holds for homogeneous changes in the

body. When gradients are also present a continuum formulation is needed. The conjugate
variables, their products giving the transferred rate of exergy per time per volume, shall
now be found.

“The 1.law of thermodynamics tells

" The exergy A should not be confused with Gibbs free energy G = U-TS+pV.

During a cyclic proces AG = 0, G being a state variable, whereas -AA is equal to the
dissipation, the loss of working ability of the surroundings.



g . .
R L 2-3)

where y is the internal energy per volume, p the density, J Q“the heat current density
and Jw the work current density. The kinetic contribution py? and the contribution from

the gravitational field to the energy is neglected.At temperature T the entropy current

associated with the heat current J o is Jg = %’J o The 2.]aw of thermodynamics can be

written

T, |
Jo = (l-—T—‘f)JQ+TOJS (2-4)

whereby the heat current is split into the available part (1 -IQ)J 0 and unavailable part
T

T (1 —_?) is also known as the Carnot factor q .

-V.J,, is the rate of work done per volume

-VJ, = o‘.’éii

(2-5)

where ¢, is the stresstensor and &, is the time derivative of the straintensorGU

¥

(summation over repeated index). Define a;. by extracting the reference pressure from

%"

I -
Oy = “Pody*0; (2-6)
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Note that qi/i is not traceless, since there could be variations of pressure p around

Py -(2-4),(2-5) and (2-6) inserted into (2-3) gives then

‘ T,
%pu = -V'[(1-7°)JQ] +0 {,i-: i Pod &~ V(TJ ) 2-7)
or
T, T,
% pu+V{(TJ ) +pgr(¢,) = -(1 —-FO)V-JQ—JQV(I —?0) +°i/1€i;" (2-8)

Comparison with (2-1) shows that the left-hand side represents the exérgy transferred per

time per volume.



2.2 Definition of the isobaric specific heat cp(m) and the heat conductivity x(e).

Now assume constant pressure p = p,- In (2-8) two pairs of conjugate thermal variables

can be identified (-vJ

T T
, (1-=2) and (-w(1--2), J,). For small temperature
o ( T)) (-¥( T) o p

variations §T = T- T, the Carnotfactor becomes 8T . In linear response theory there will

T,

only be couplings between quantities of the same tensorial order in an isotropic medium

(The Curie-Prigogine principle)’. Thus one must have

8T | )
-v-T: = £ Z,(t-thdJ (1) (2-9)

(2-10)

!
v, = _thgST)
v, = f., Y (e-t'd T

The isotropy reduces the tensor Z to a scalar .z and y are properties of the liquid.
Py . . . prop q

They are not dependent on position  due to the homogeneity of the liquid on the

length scale of interest.

For an ordinary nonrelaxing liquid Z (s) becomes simply 1 , where x is the heat

xT,

conductivity. The continuity equation

-g(pcpr) - -vJ, 2-11)
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likewise shows that Y _(z) is connected to the timedependent heat capacity c,(®) ( acreep
. P .

function less T, ) '

Tpc, () = f Y, (¢hat’ (2-12)

"For a nonrelaxing liquid () becomes simply Topcps(t_o*), where §(r) is the
’ .

deltafunction’.

The responsefunctions can now be given in the frequency-domain. Let R() denote a

responsefunction. Then R(s) is defined as § f R(e *dr and R(w) is defined as R(s=-iw)-
0 .

1,1
@) 7.(

The indices x and c, is given in order to stress, that z'x(w) =

2.3 A generalized diffusion equation.

Taking the divergence of (2-9) and inserting (2-10) one would arrive at the generalization
of the heat diffusion equation for a liquid with time dependent specific heat and heat
conductivity. It is better however to keep the discussion at the level of the two coupled
equations and moreover transform to the frequency. domain. For onedimensional

problems the solution is facilitated by a transfer matrix 2.

" 8(t-0) indicates the limit lim__. 8(t-€), which must be performed after integration

of the delta-function



2.4 Accordance with 2.Jaw of thermodynamics.”

Now consider a cyclic process for a volume element 4y. The total exergy transferred to

the element becomes

de(Ba;pu+V'T0]s+potr'§)dt = dV§VTJds = T,EdV (2-13)

where ¥ is the total entropy produced per volume in the element. Thus T,% is the

dissipation p i.e. the loss of exergy or working ability of the surroundings during the

process per volume. The right-hand side of (2-8) on the other hand gives

D - Re{?cp(m)}(%)z +ReZ () @-14)

This shows that the 2. law of thermodynamics will be fulfilled if and only if

ReY (w) 20  and  ReZ(vw) 2 0 (2-15)

since geometries and boundary conditions with J 0=0 suitable for measuring the specific

h 8T

T = ( suitable for measuring the heat conductivity can be devised. From
0

heat or wit

this discussion three points are inferred:

1) Since ¥ (w) = -iwpc, (o), ¢, (w) has the ordinary significance of a generalized
susceptibility, its imaginary part Imc () = 1 ReY_(w) according to (2-14) being
wp »

proportional to the mean dissipation pr time. This conclusion is opposed to Donth

saying that Imcp(m) cannot describe dissipation because the energy connected tocp(m)
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is heat itself. However dissipation is only synonymous with heat production under
isothermal conditions. Therefore Donths argument is wrong. The puzzling thing is that
during the cyclic process the total amount of heat, put into the system is zero. However

when Imc(w) * 0, the time lag between temperature and enthalpy implies, that in

mean the temperature is higher , when heat is put into the liquid than it is, when heat
is withdrawn. Thereby exergy is dissipated, or equivalently entropy created. This is in
accordance with the statement of N.O. Birge and S.R. Nagel °. However in their

experiment both terms in (2-14) gives contribution and integrated up in space in fact must

.6_T)2 Rel,[-iwpc (0)x(w)) per area of the plate. Here §T is the temperature

ive
g ( T,

amplitude at the plate at which the thermal waves are excited.

2) Formula (2-14) also shows that opposed to some authors " the frequency dependence
of the heat conductivity cannot be ruied out on thermodynamic grounds. From a
microscopic point of view on the other hand it is difficult to see how a frequency
'dependence of x near the glass transition should come about, since heat is transported
by vibrations which are hot affected by the glass transition. A mechanism, which could
introduce frequency dependence would be diffusion of molecules with interﬁal thermal

relaxation, but this is ruled out due to the low diffusion constant near the glass transition.

3) There have been a discussion 2 1 on whether a frequency and wavevector
dependent heat conductivity A(k,s) should be more fundamental than the quantities
¢ (@) and x(w). From a macroscopic point of view one can clearly distinguish between
¢, () and x(w)- They are - as defined by the equations (2-9), (2-10) - independent
measurable quantities. Moreover it is difficult to understand, how the wavevector comes

in as long as we do not consider microscopic distances. Long range correlations are not

to be expected for the glass transition as for a continous ( 2.order ) phase transition.
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Chapter 3. The specific heat C,,(O)'
3.1 Methods of measuring cp(m)-

The specific heat c, of a substance can be determined by measuring the temperature

response following an oscillatoric heat input. This technique is known as the AC-

temperature technique' ¥

and can be traced back to Angstrem'®, Likewise with an
appropriate geometry the heat conductivity can be found.

The method takes advantage of the possibility of using a correlation technique in order
to see a tiny temperature amplitude and phase on a noisy background '. The

requirement of a little amplitude arises in temperature ranges, were the temperature

dependence of c, is large e.g. at phase transition. The correlation between imposed AC-
heatcurrent and AC-temperature may be executed by a lock-in amplifier at high frequ-
encies (w2 1 Hz) or by a computer (< 100 Hz) at low frequencies.

Earlier the method had been used in determination of frequency independent heat
capacities only. Recently the use of the AC-temperature technique has been extended °
! to the study of the frequency dependence of the specific heat in supercooled liquids at

the glass transition.

The frequency dependent specific heat ¢ () is the Laplace-Stielties transformed of the

time dependent specific heat ¢ () which in turn is nothing but the relaxing enthalpy H(t)

following a little temperature step divided by this step. Earlier there have been studies

18 19 20

of the enthalpy relaxation in glasses although usually in a nonlinear regime.

Thus the new methods do not introduce any physical entity not considered before.

However ¢,(w) can be determined more accurately because of the correlation technique.

Besides ibe icmperature amplitude can be Kepi small 10 ensure linear response.
Independently two differing methods have been developed in order to measure c,(0)-

In short they can be distinguished as follows. Consider a sample of density p, specific

heat c, heat conductivity x and a characteristic size 1. Let p = —* denote the heat
PC,
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diffusivity. At a cyclic frequency » the damping length of a thermal wave will be

11

A = 2, the diffusion length. '
J w

d92122

The one metho uses a geometry which assures A<l and measures the ratio

= % between the heat current Je -iot and the temperature T,e -iot at the end face of
5 .
a semiinfinite medium. This ratio can be classified as an admittance and for this geometry
Y = m. Assuming x is frequency independem one can calculate relative
variations of c,(w)-
The other method ! described in detail elsewhere? uses a geometry and frequency so that

A > L, and measures cp(m) without involving x. Only a short summary of this method

will be given here.

The calorimeter consists of to concentric cylinders e = 0.3 mm apart with a mean
diameter of 12 mm and the height of 8 mm. The space in between the cylinders. is the .
- space to be filled with the sample liquid. It has a volume of approximately 0.1 cm’. the .
cylinder walls have a thickness of 0.06 mm , and they are both wound with a 0.05 mm

electrical wire on the sides not facing the liquid chamber. The characteristic diffusion

time T, Biven a typical liquid heat diffusivity D of 0.1 mm?/s, is T, = = 1s.An

L
D
electrical voltage y(r) = Vocos(%t) is applied to the one wire, and given an electrical

resistance R of the wire, a heat current
P(t) = Py+P,cos2wt) 3-1)

2
is generated. Here P, = L;. The DC heat current P, is carried off by a thermal

conductance A
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. . . o e . ) Po
( nonadiabatic calorimetry) to the cryostat, giving raise to a temperature offset Ty=—
, ' A

of the calorimeter relative to the cryostat. The timevarying temperature of the
calorimeter is measured through the electrical resistance of the other wire. For small

oscillations it will be harmonic too,
) = T,+T cos(wt)+T,sin(w?) (3-2)

.T, and T, is computed as the size of these two Fourier components in the measured

temperature variations.Defining the measured thermal impedance

z - Lt @3-3)
Fy
, @ model of the experiment, valid for ¢+ p< 1 gives
% = A-iwCy-iwC(w) (3-4)

C, being the heat capacitance of the empty calorimeter and / the imaginary unit.
Determination of A and C, (calibration) is done by measuring z with an empty

calorimeter (C(w) = 0). Then (3-4) gives C(w), when Z has been measured with a filled

calorimeter.
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3.2 The specific heat of 1,2-butanediol; 1,3-butanediol; 1,2,6-hexanetriol 1,2-propanediol
; 2-methyl-2,4- pentanediol.

The results of the measurements is presented in the curves of App. 3.1 .For each liquid

is shown

1) The real part of the measured total capacity C, (= Re{ .1

}) versus temperature for
-iwZ

different frequencies.

2) The real part of the measured admittance y (= Re{%}) versus. temperature for

- different frequencies.

3) The real part of the heat capacitance of the liquid with the liquid curve C(w»=0,7) and
the glassy curve C(w=o,T). |

v4) The Nyquist plot of the normalized heat capacity. The measured points joins a

common curve indicating the principle of time-temperature equivalence to be valid. A

model of the form

. 1-a
C(s) = g5 7 , 8 = —iwt(D 3-5)
1+s+gs'™®

discussed in ? is fitted to data by varying 4 and .

5) The mastercurves (Re C , log w) and (Jm C , log w) of the fit of 4). The time-

displaced data also shown.
6) The model-relaxation time ¢(7) found by the logarithmic displacement of data needed

to fit mastercurves in 5).¢(7) is fitted with

(D) = ex;(%-%) (3-6)
0

Table 3.1 gives the results of the fitting constants
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Table 3.1

Parameters of fit to the Specific Heat ¢ (@)

q
1,2-butanediol ° 1.1
1,3-butanediol 1.5
1,2,6-hexanetriol 1.7
1,2-propanediol 5
2-metyl-
2,4-pentanediol 1.0

.50
.54
22
48

S50

A T

1K K

243 182.3
2.15 180.4
2.96 206.5
2.19 174.1
291 191.4

Fig. 3.2.1 shows the dependence of the relaxation times on temperature for the 5 liquids
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Relaxation time of Specific Heat

7.00
5.00 L
3.00 1L
@ 1.00.L
=
2-1.00 1
S 1
-3.00 |
4 x 1, 2-butanediol
-5 00 + 1, 3-butanediol
T o 1,2, 6-hexanetriol
4 o 1, 2-propandiol
a 2- metyl 2, 4 pentandml
-7.00 ] 1 = 1 | ]
3.85 ' 4.35 | 4. bs 5. 55 5.85 6.35

T [16° 1/K ]

- 10 -
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Chapter 4. The shearmodulus G(w)--

4.1 Theory of the Piezoelectric Shearmodulus Gauge,PSG.

In order to measure the shear modulus of a viscoelastic substance at high modulus and
low frequencies (audio range) a novel technique have been developed at IMFUFA,
Roskilde University Center. It is based on a transducer, the socalled Piezoelctric

- Shearmodulus Gauge (PSG). Contrary to the methods of resonance or reflection of waves ®
the PSG measures G,(Qj at low frequencies, where the wavelength is much longer than
the size of the sample. Using the piezoelectric effect the transducer couples a mechanical

signal to an electrical signal. Thus the mechanical properties of liquids can be measured

with an electrical impedance bridge (HP4192A).

In the following a description of how G (w) can be deduced from the measured electrical

capacitance C (v) will be given.

2R, —>
\ WCa..h
N -—-.w.spenmn
N
~thany
Nt [ —f"'"zf-;‘s “ o
N 4 [JTITIHbquid ©

[
MR

fig | o

"‘:“D
¢
W
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Consider the following model system. A liquid layer of thickness d is placed between a
completely rigid surface on one side and a piezoelectric disc (pz- disc) of radius R, and
thickness t on the other, fig. 1a. The pz-disc has been poled axially and has rotational
symmetry. It is coated with electrodes on top and bottom.

The pz-disc contracts (or expands) radially on application of an electric voltage and the
liquid is given a shear strain. Dependent on the shearmodulus the liquid pulls more or
less at the disc. This can be seen in the electrical capacitance of the disc. Notice that the
strain field in the liquid will not be homogeneous.

Further details on the transducer will not be given here , but as will be shown the

measurements are in good agreement with the model system.

Place a cartesian coordinate system with base vectors (eee,) at the center of the pz-
disc, e, in the axial direction. The equations are set up in cylinder coordinates (r,¢,z).
These refers in the neighbourhood of » = rcos(cb)ex+rsin(¢)ey'+zez to the radial e, the

~azimuthal . and axial e, unit vectors. A material point lays at  before the

$

displacement and ,/ after the displacement. The displacement field is u(r) = /-r =

: 24
ue U, UL, The strain tensor becomes

ou, 10u, u u,
en = ew E e e—— o a— €ZZ T c—
or rod r oz
€4 = l(l%+%) € = l(%+% “4-1)
2 rod © 2 0z or
1, 0u, u, 10u,
€'¢ = _(_2——24»— )
2 or r rop

The cylindrical symmetry gives y o = 0 Furthermore u, is neglected, since the thickness

of the disc is much lesser than radius. (t = .5Smm, R, = 10mm ). The only remaining

nonzero components thus becomes
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ou u
Nt 4 - _r 4-2
e = —I , €. = — 4-2)

r

The offdiagonal elements of the stress tensor g are zero being proportional to the

offdiagonal elements of g. Neglecting inertial effects o, is also zero, because the pz-disc

is free to move in axial direction.

The external electrical field of the piezoelectric ceramic is directed along the axial
direction . This is also the pole axis and therefore the field of £ and p must have the
same directions inside the ceramic. The constitutive matrix corneating the inputvariables o, O » E,

with the outputvariables ¢ D, is symmetric (reciprocity/Onsager

’ e“ ’
relations).Furthermore the axial symmetry means that there is no difference between the

directions of ¢ and ¢ R So one has &

€, Sy S dylfo,

€9 = [S12 S d;, O s (4-3)
T

D, dy dy; €3 E,

If instead €, s €pp and E, are considered as inputvariables then

g, th €12 ~e3| (€,

Opp| = €12 11 €3 €4y (4-4)
s

D, e &, €3 )\E;

2 1
by ¥ = (L)2 one has
4 T
€33(5);+512)
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c,, = 1 C,, = p
"o S *Psy, 2 $11*PSy,
(4-5)
d
e31 = 13 €§3 = 6;3(1 -k:)

S11¥852

Let Q be the charge and y the potential difference of the electrodes of the pz-disc. The

_capacitance C,_ = QU is the measured quantity. Now U = E; and

Q= ?anDz(r)dr (4-6)
0
The free capacitance cf defined by O, = Oy = 0 becomes
P %)
' and th'e clamped capacitance C, defim;:d by €, = €y =0 becomes .
C, = ne§3R%2 (4-8)
Thus
Ca 1 (4-9)
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The coupling factor k, is a dimensionless measure of the strength of the piezoelectric

effect " k, ranges from zero to one. A value close to one means a strong coupling

between the mechanical and electrical port. Typical values of k, are 0.1 for quartz, .4 for

barium titanate ceramic and .6 for lead zirconium titanate ceramic. The latter is the kind

used here.
From (4-6) , (4-4) and (4-2) one deduce

R
Q= f 21tr{e3,(e"+ew)+e§3Ez}dr
0

R,
0 s
27 [le,, — E)d
b4 ‘[ € ar(ru,)+re,3 Jar

i}

2nley Ry, (Ry) +'21‘€33R: E)

and thereby the measured capacitance

2
Fe C,-C, ) (&—l)l-kp
C/'Cct el k:

one finds

Cj ~ Ccl

" In the computer programme the variable kob =

cl

(4-10)

(4-11)

(4-12)

is used instead of kp
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1
ERydy,

u(R) (4-13)

F is by (4-12) directly given by the measurable quantity C_. It is left to find the

displacement y (R)) of the edge of the pz-disc as a function of the shear rigidity G of the

liquid and to invert this function.

The radial equation of motion becomes (fig.2)

(r+dr)déto d,—rd¢to”-drz2£’2$o (4-14)

r+drr+ $

-ordrdd = ptdrrddi,
Here the tangential stress -0, On the surface element drrd$ being due to the liquid

gives rise to the force -g drrd¢ ".p is the density of the piezoelectric ceramic.

. -Gby Gv-nlv‘o--pd...
L %,J:*_J
v .

—t D

redv myde

{"32

(4-14) becomes

* Obviously -a, has a torque about the azimuthal axis. This is compensated by
torques of gradients of o, emerging as the disc bends. This bending is neglected.

. . . . T
Otherwise the two constitutive equations e, = 549,%dE , D, = d o, _+e,E and the
axial equation of motion should be taken into account
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d

5(’°n)'°¢¢'°v = prii 4-15)

r

- |~

In the following harmonic time variation of E, and y_at cyclic frequency o is assumed
and the factor ¢ -#f is eliminated. An essential assumption is that the deformation in the
liquid is pure shear and that only the component e’;q““(r) is nonzero. Again this

approximation holds because 4 « R,. Then (fig.3)

, = 2G(w)e™ = G(m)—“';') (4-16)
where G(w) is the shearmodulus of the liquid.
U .
d ' / L‘.%ul J (c. 3@,;——
" :
& e ]




: 23
Using (4-2) , (4-4) and (4-16) the tensions of equation (4-15) can be expressed by the

displacement y , .

. 2
rzu”+ru,'+{(&g-ﬂm—))r2—l}u, =0 (4-17)
¢y Oyl

The boundary conditions of this differential equation is zero deformation at the center,

u@© =0 (4-18)
and zero stress at the edge,
o;,(Ro) =0 7 (4-19)
or using (4-4) , (4-5) and (4-2)
u, (R0)+Eu Ry = (1+p)d,|E, , (4-20)

The problem becomes dimensionless by the definition

1

x = f/RO , e = —TJB—E J(RyX) 4-21)
befine the characteristic
modulus G, = c“‘:t v (422)
R;
inertance M, = pdt (4-23)

and
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- - 'GV' c |
frequency 21th S Wy = —K - _“2 (4-24)
My N eR

Glw) = gLy | g=s-y (4-25)
G, Wy

together with

V =

Then (4-17) becomes a Bessel differential equation

x2e”+xe’+(k*x2-1)e = 0 (4-26)

with boundary conditions
e(0) = 0 4-27)
e'(l)+pe(l) = 1 (4-28)

The dimensionless measure (4-13) of the measured electrical capacitance becomes

F(w) = (1+p)e(1) (4-29)

e(1) is by (4-26) a function of ¢ and thereby ¢ . The solution of (4-26) is given by 1.order

Bessel functions
e(x) = AJ (kx)+BY,(kx) (4-30)
(4-27) yields B = 0, while (4-28) leads to

A = (,(k)+pJy ()" = (k) +(p~1), (k)" (4-31)

Thus the measured electrical capacity ¢, becomes

where

and
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2

k
C.(w) = C (F(S(w),/w)) ,2+1) 4-32)
1-k,
J, (k)
- F(S,V) = (1+p)— L (4-33)
FON = P e r®
k= 5V - \J(i)z-—‘;—‘“’—) (4-34)
A wy Gy
The resonances occur for those k = k. ,n=12. , which satisfy
0 = kJy(k)+(p-1)J,(k,) (4-35)

Thus the resonances depends on Poissons ratio p. A numerical solution of (4-35) gives

approximately
k() = 0.621p+1.861 02 <p<04 (4-36)
ky(p) = 0.192p+5.332 02 < p <04 ' 4-37)
and so
plkytk) = -1.417k,Jk, +4.032 2.5 < klk, <275 (4-38)

f, = fgk, are the measured dimensional resonance frequencies of an empty transducer

(G(w) = 0). Since Lif, = Kk, (4-38) makes it possible to determine Poissons ratio
directly from the observed 1. and 2. resonance frequencies without knowing the
characteristic frequency fe P18 found to be 0.31 within a variation of 3% in the

temperature interval 180 K - 250 K. This variation is neglected in the following. Thus
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k, =2054  k =5391  for p =03l (4-39)

n = 1,2... ,which satisfy

The zeros of F occur for those % = J.
0 = J(G,) v (4-40)

The first two are j, = 3.8317 J, = 7.0156. Hence it is possible to determine C, as

the measured capacitance at the first antiresonance frequency

£ = %, =186, , C,=C.() (4-41)

1

Fig. 4 shows a fit to C_ of the empty transducer at 250 K obtained by suitable scaling.
The fitting parameters f ( or rather fi = fik, ) and k, was varied to give the best

2

proportionality between C_ and F. b +] atall frequencies as shown in fig.5. Thereby C,

2
1k

is automatically given as the proportionality constant. At this temperature it was found

f, = 107.1 kHz , k,, = 0.55 and C, =153 nF. Typical values of the other characteristic

entities can then be given.Since p = 7.65-10° kgm >, d = =10 m and; - %.10-3 m

1
6

2
one has My = pdt = 6.4:10*kgm ! and hence Gy = 1;4’{(_::{‘)2 = 610’ Pa-
1



(nF)

ELECTR. CAPACITY C

(nfF]

CLAMPED CAPACITY Ccl
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10,0 + "
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4.1.2 A resonance method.

The transducer can in principle be used in a very simple way to determine shearmodulus G(f))

of a substance in temperature ranges, where G shows no dispersion and is real at the
resonance frequencies. Denoting f(0) and £(G) the i'th resonance frequency of the empty

and filled transducer respectively. Then according to (4-34)

f0) G), G()
gy et S (4-42)
AR
or
G(f) = ka,(((ﬁ@-)z—l) (4-43)

BAV)

= @MU (G)-f,(0)
Thus G is determined by the movement of the resonances. In practice however thickness
and floppy modes not considered in the present treatment can trouble this method.

Indeed the interest here is the case of G showing dispersion and the complete solution

(4-32) - (4-34) has to be used.
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4.1.3 The partially filled transducer.

A complication arises when the liquid does not fill out the cell completely. This is

inevitable since the cell is filled at T = 300 K and the measurement perhaps done at

200 K. With a typical expansion coefficient of 4.10% K !, AR& becomes 3% . This is of
: 1

importance since the greatést shear deformation is at the edge. Thus an enlarged model
with the liquid filling up the cell to radius R, is considered. Put x, = R/R, . (4-26) is
replaced by . |

M, 0*-G
. x%e, +xe/+[(kx)?-1le, =0 , Kk = __LG___
f (4-44)
M w?
x%, +xe;+[(kx)*-1le, =0, kI = c‘;
X

The boundary conditions are as before plus continuity of displacement and stress at xp

€,0) =0 s e(x) = eyx)

e/(x)+Ze(x) = e;x)+Leyx) (4-45)
x, X, ,

e,(1)+pey(1) = 1

Introduce
P = kJ (k) +(p-1)J,(k)
Q-= ijo(kz)‘f(P-l)Y,(kz)
R = kyxJo(kx ), (kx) -kyx Jo(kx ), (k x)
T = kxJy(kx)Y,(kx)~kx Yo(hex M (k x) (4-46)

A = PT-RQ
€ =TaA
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D = -R/A
Then

e,(1) = CJ,(k,)+DY,(k,) (4-47)
e, (1) isby ¢, Dp and k, a functionof ¥, § and x, -

F defined by (4-12) becomes now a function of x, also . It is still given by (4-13), that
is (4-33) is replaced by

FS,Vx) = (1+pley(l) (4-48)

while (4-32) , (4-34) still hold.
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4.1.4 The weak dispersion of the dielectric constants of the piezoceramics.

Another problem also must be taken into account.In fig.6 is shown again the ratio

2

between C, and F k +l butina logarithmic plot over a wider frequency span. Below

2
1-k]

the resonances, C,, is seen to have a weak dispersion. This reflects dispersion of the

dielectric constant ¢, « C . Similarl C. « e, will show dispersion, but it is assumed
33 el y G, 33 P

in the following that C/Cd and thereby the coupling factor k, is not frequency

dependent.
8.00_-
T: 250K p: .3t
T ¢4: 107, 8 kHz- kp: .55

7.80_L
-y b o
3
of
g 7.40_L
s 7.201

Bl i 1 I |
7. 00' %40 —= 1 .bO i 1°b . 1“0

FREQUENCY f [ kHz )

FLs. S
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Then the frequency dependence can be eliminated in the analysis by considering the ratio

of a referencespectrum C (w) of an empty transducer and a spectrum C,(w) of a filled

cell. Introduce

Cc,C SV,
O(S,V,x’) = [ cl — F( ’xl)

- (4-49)
c-C, FS0))

2 2
&(hl—kp 1 _l-kp 1
c, @ FOSD 2 FOSD

F(S,Vx) and F(5,0,1) and thus @(S,V,x) are known analytically. ¢ and C, can be
measured and thus @ determined experimentally. Left is only an inversion to give
V = G(w)/G, - This is done by approximating ¢ with an algebraic expression. Since
®-1 for V-0 and $-0 for V-= a broken rational function with the denominater of 1

degree higher the numerator is chosen,

1+a(S,e)V

(S, Vx) = (4-50)
1+B(S,€)V+c(S,e)V?
where ¢ = 1-x, and
a(s,e) = 1
’ 1 4.51
a©)1-s—) @31
a,(e)
a,(x) = 25.82(1 -0.407e-22.27€%)
a,(x) = 13.25(1+0.2e+11¢€?)
b(s,e) = !
U s lTei-——) @-32)
@ ' 4.22
) 1
c(s,e) = (4-53)

(740.+18500.€)(1-0.2875+0.118s2)
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This expression approximates ¢ within 5% for 0.95 < x, <10 and 00 < s < 4.0, that

is up to the first resonance of the free transducer.

Inversion of (4-50) yields

a-bd +\/((z-b¢)2-4¢c(¢ -1) C (4-54)
2¢c

(Sx) =

Fig. 7 and 8 illustrate the accuracy of the algebraic fit to ¢ . These Nyquist plots show

.- the imaginary versus real part of the modulus of a hypothetical Maxwell liquid

G,(w) = G 2T (4-55)

l1-iwt

with G/G, = 10 and radius x, = 1.00 respectively 0.95. The solid line is the Maxwell
model G, The crosses are (@) calculated from (4-54) but with ¢ calculated from G,

by the analytical formulas (4-48),(4-47),(4-46).




-In 6
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In order to further increase the accuracy in calculating V one can now resort to a
Newton algorithm with the V calculated by (4-54) as a trial function . It follows from

(4-32) that

C 1-k2  1-k2
F(S,Vx) = —2(F(5,0,1)+—2)-—2F (4-56)
C k2 k2
r P p

Denote the value of F calculated by this formula using the measured C, (w) and,cr(w)
by F_ ( the measured F ) and the exact V corresponding to this value by y,. Thus

F_ = FS\V,x). Since v, is near v, one has

_(OF, -o, =£ -
FooF, <) VoV =) V) (4-57)

V is complex. A complex derivative is independent of the direction of the differention.

Let AV = V3, where § is a small real positive number, that is differentiate in the
direction of ¥ . Then

F(V(1+8))-F(V))
Vo

t

F,-F(V) =

V,-V) (4-58)

or

F _-F(V)

Vo = V(1+5
F(V(1+8))-F(V)

(4-59)

If one uses the ¥, calculated by (4-59) as a new trial function the process can be iterated

since the successive ¥ will have y. as a fix point. However (4-54) is so close to the exact
' 0 P

value that in practise one iteration suffices. 4
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4.2 shearmodulus G(w) of 12-butanediol; 1,3- butanediol; 1,2,6-hexanetriol 1,2-

propanediol ; 2- methyl-2,4-pentanediol.

Shearmodulus of 6 different liquids have been measured. The experimental procedures
were identical, and the liquid 2-methyl-2,4-pentanediol is taken as an example.
Preliminary the empty transducer was calibrated. The properties of the piezoelectric
ceramic is temperature and timedependent ( annealing effects), and so an identical time
schedule was followed in calibration and measurement.

The transducer is placed in a cryostat. First the temperature was lowered from about

300 K to 250.0 K and the ceramic annealed for 200 minutes. Then one spectrum C(w)

was taken and another 15 minutes later. The temperature was now lowered in steps of
4 K every 30 minutes and for each temperature step two spectra was taken, respectively
15 and 30 minutes after the step until the temperature was 170 K.

By fitting the theoretical spectrum to the measured the scaling factors f, (resonance
frequency), k, (coupling factor) and C, (clamped capacity) was found at some
temperatures as described page 26 and their temperature dependences interpolated at

both annealing times.
After the calibration,, the spectrum C (w) of the frequency dependence of the electrical
capacitance of the filled transducer was taken following the same time schedule. In fig.

4.2.1 is shown the real part of C_ versus frequency f = L at some of these

2n

temperatures. The curves are twofold due to the annealing of the ceramic. That this is
so, and not an annealing effect of the liquid, becomes clear, when the modulus is
calculated by (4-49) and (4-54) using the different reference spectra of the two annealing

times.



RCG1 [ nF
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The real part of the modulus versus frequency is shown fig. 4.2.2, the solid line is the
results at first annealing time ( 20 points/decade ) and the crosses the:results at second
annealing time ( for clarity 4 points/decade picked out ). In the modulus no difference
is seen between measurements at different annealing times. The liquids were all assumed
to have a thermal expansion of 4*10* K, in order to calculate the radius of the liquid at
different temperatures "

It has turned out that the data of the liquids consider here can be represented by a
simple extension of the Maxwell model. Recapitulate this, the simplest model of a viscoe-
lastic liquid. The response of the liquid to a shear stress is represented as the connection

of a dashpot and a spring giving the creep function

1 , - n
Ji =J = J(+(- 1 = 4-60
(w) = J + Tron (+(Ciwty)™) 1, G (4-60)
or the modulus
Gw) = - =g—m g -1 (4-61)
J(w) l-iwT,, J,

The plot of Re G versus Im G gives the characteristic half circle fig 4.1.7. This model
fails for most liquids but the liquids considered here are astonishihg well represented by.

adding a term to the Maxwell model
J(w) = J(1+(-iw1) " +g(-iwT)™) (4-62) -

G(w) changes with temperature, but it is possible to keep g and ¢ of the fit constant,
only varying ¢(7) and G_(7). That is the so-called prinéiple of temperature-time equiva-

lence holds.

“Trials with different expansion coefficients of the same order has shown that G(w)
only becomes scaled with a constant factor, so it is not critical not knowing
exact value of the expansion coefficient for the determination of q, @ and t(7) in the
following.
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Fig. 4.2.3. and 4.2.4 shows such a fit ( the solid line ) to the measured G(w,T) ( the

crosses ) with ¢ = 42, q = 1.25,

G(w,D = G mCLI¢)— (4-63)
1ot (D) +q(-ioT (D)

Fig 4.2.5 shows the normalized plot Re{GG } versus Im{_Gi_). The standard deviation
D

of one point respective to the fitted curve is even at the lowest temperatures lesser than
2%.

The measured modulus of the other liquids can be fitted equally well and the results on
q and ¢ is showed in table 4.1

Fig. 4.2.6 shows the temperature dependence of the relaxation time of the model (4-63)
.This could be fitted for all the liquids by '

1 1
(1) = expdy(=;-—) (4-64)
T 71,
where the constants A, and T, is given in table 4.1.

Table 4.1

Parameters of fit to Shear Modulus

q alfa A, T,

10K K
1,2-butanediol 1.63 .42 1.76 177.2
1,3-butanediol 1.53 425 1.73 176.5
1,2,6-hexanetriol 2.1 42 2.74 201.3
1,2-propanediol 1.8 48 1.44 169.8

2-metyl-
2,4-pentanediol 125 42 227 186.4
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Chapter 5. Comparison of relaxation times. :

The specific heat CP(Q) and shearmodulus G(w) of five liquids have been found.

It is already clear from table 3.1 and 4.1, that the relaxation times are not equal for the
two kinds of experiments. T, of both fits (3-6) and (4-64) is the temperature, where ¢ is
1s, and this teﬁlperature is systematically higher for c,(w) than for G(w)-

This fact becomes more clear in the figures 5.1-5.3. The relaxation time of the specific
heat is seen to be 1-1.5 decade longer than that of the shear modulus.

The two cryostats used in the measurements were calibrated using a pt100 platinum
resistor and they have the same temperature within 0.1 K. Therefore a temperature
difference cannot explain the difference.

Moreover, the experiments reported here are supported by other experiments. The solid
lines of fig 5.1 and 5.2 are relaxation times deduced from enthalpy relaxation ® and the
solid line of fig 5.3 the relaxation time by an alternative measurement of C,,(w) % The
dashed lines of fig 5.1 and 5.2 are the relaxation times of shearmodulus measured in the
Mhz-range 7.

A theory of the glass transition of these liquids should connect the thermal and
mechanical properties, but will have to explain the differences in the relaxation times of
the shear modulus and the specific heat. Regarding the shape of the relaxation functions
a theory must tell how they should be compared. It seems naturel however that the

exponent ¢ describing the high frequency behaviour in both cases, should be the same.

In terms of a distribution of relaxation times a small ¢ reflects a broad distribution. In
comparing table 3.1 and 4.1 one finds that the spectrum of the specific heat is equal to

or perhaps a little narrower than that of the shearmodulus.1,2,6-hexantriol is an exception

to this. Here ¢ of cp(m) is significant smaller than that of G(w).
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