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Abstract:

The thesis deals with modelling of the human respiratory system. A model
of the human respiratory system is developed for use in the anaesthesia sim-
ulator SIMA. The model contains lung mechanics, airway dynamics, the
blood transport system, the dissociation of gasses in blood and tissue. the
metabolism and the pH value of blood.

The models are basically compartment models extended with vector compart-
ment variables and a technique that allows the distribution in inhomogeneous
compartments to be found by use of the derived of the dissociation function.
This supports interactions between several transported substances well.
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Chapter 1

Introduction

When in the summer of 1995 we faced the start of our master thesis, our
only firm decision on the topic was one of modelling dvnamic systems. The
university curriculum requires that the modelling should be made to meet
the requirements of a group of non-mathematicians. This coincided luckily
with the SIMA group at the very moment needing a model of the human
respiratory system.

SIMA is a project, which aims at creating an anaesthesia simulator for train-
ing and educating of nurses and anaesthesiologists. The project relies par-
tially on experiences acquired in an earlier simulator project and started in

' February 1995. The planned simulator includes a computer. which will run

the models of the reactions of the patient in various situations, and the nec-
essarv hardware to transfer the output of the models from the computer to
standard anaesthesia monitors.

The SIMA group consists of people from different professions; medical doc-
tors, mathematicians, engineers, and programmers. Both of the MDs Per
Foge Jensen, and John Jacobsen, Herlev Hospital, have experiences from the
previous simulator project, and are our experts on physiology and use of the
simulator. The engineers from Anaesthesia Laboratory, Herlev Hospital are
responsible for the interface between the computer and the anaesthesia mon-
itors. The mathematicians from Roskilde University are creating the models
in the simulator, which includes models of the cardio vascular system, phar-
macokinetics and dynamics, temperature, electrolytes and fluid balance, the
control by the central nervous system, and the respiratory system. The pro-
grammers from the company Math-Tech are responsible for implementation
of the real time models in the simulator.
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1.1 Identification of the problem

The SIMA requirement specification [Fre] from May 1995, says about the
respiratory system

The respiratory model must describe the gas exchange, ventila-
tion and concentration of carbondioxide, oxygen and the pH of
blood.

This description leaves the level of detail needed unspecified. Should every
organ be modelled as a specific part of the system, or would a model de-
scribing lungs and the rest of the body as a whole suffice? Must the model
include the pulsatility of breath, or are mean values of the ventilation suffi-
cient? Should the pulsatility of the blood flow be modelled? This, and similar
questions, depend on what the output is to be used for, and on constraints
on the computability of the models created.

We therefore realized that a part of our assignment, above the actual creation
of a model, was the job of finding out exactly what the model was meant to
be able to do. A preliminary literature survey gave is an overview of what
existing model of the respiratory system offered and a continual dialog with
the MDs of the SIMA group convinced us that non of the existing models
met all requirements.

The model we present in this thesis is a model of the respiratory system
without the control system. For use in the simulator the model must be
connected to the other models of the simulator. During our participation
in the project the interactions between the submodels in the simulator have
been defined and revised. Thus model organization has been the subject for
several seminars and meetings, we have participated in. We have developed
the model with the intention that it should be part of the simulator, not
an independent piece of work. This purpose has had an influence on the
delimitation of our work, for instance manifesting the choice we have made
of not modelling the control of the respiratory model, because the control of
the respiratory system is a part of the control system of all the models of the
simulator. We have put the transport of respiratory gasses with the blood
into a wider frame, the transport system. Our requirements for the model
of transport system are that the model can treat both the kinetics of the
respiratory system and the farmacokinetics. Furthermore we wish the model
to be extendable to simulate transport of any substance, which is distributed
by the blood.
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The fact that our model must cooperate with the other models of the simu-
lator, being developed alongside with our work, make demands of the main-
tainability and extendability of our model. In order to comply with these
requirements it is our task to develop a theory based model. The model has
to be close to the physiology: variables and parameters should correspond
to recognizable physiological quantities. This should ease the communica-
tion with the MD experts and improve the well-definedness of the interface
to the other models. The close resemblance also makes it easier to detect,
when short cuts and approximations have been made, and thus supports later
extensions.

1.2 Methods

In attacking the problems identified above, we found communication with
the MDs to be difficult, perhaps due to the lack of a common language in
which one can describe the physiology, and to a difference of professional
tradition. In order to overcome this obstacle we made a list of scenarios that
contained a description of special courses of events the model should be able
to simulate. The model had to meet the expectations of the medical doctors
by ensuring that it could respond to anything they wanted.

When modelling, we have made extensive use of the results from other fields.
Obviously physiology has been the source of information of the working of
the system in question, but physiology relies heavily on physics, and we
had to do as well. Chemistry has also proved relevant, as several chemical
reactions are involved in the transport of matter in the blood. As the purpose
of it all has been to develop a mathematical model, mathematics has of
course been the central field; Furthermore we have also experienced that
mathematics proved very valuable in structuring the information we have
drawn from the other fields. Finally some amount of computer programming
skill has gone into solving our models, and the computer science discipline
of svstem development has supplied some understanding to the complexity
of the process of extracting the “real” requirements from the future users of
the model. Fortunately we are well equipped in most of these fields as Tine
does physics as her second subject, and Claus does computer science.

Our prior knowledge of physiology, medicine, chemistry and biology was not
very extensive. We have therefore spent quite some time studying the sub-
jects in question and have also used the expertise that we have access to.

A very useful way of understanding the physiological processes has been to
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read and discuss the modelling efforts described in literature. By study-
ing the equations of models, we have got a different line of approach to the
dynamic processes. Often leading to a comprehension of the assumptions be-
hind the models, and giving a good inspiration for our own modelling efforts.
Even though the actual implementation of the models in the final simulator
computer program will not be our task, we have worked on implementing the
models, we found adequate. This work has been necessary in order to deter-
mine if the models behaved in. a realistic way. In addition we got knowledge
of the dynamics of the models by simulations, a knowledge that we could
afterwards verify by an analysis of the model equations.

How to read the thesis

It is our hope that people with different interests can benefit from reading
this thesis. We have aimed at describing the physiological background for
our modelling efforts in a way that will enable people without any knowledge
of mathematics to draw conclusions on the extent of the models. In addition
this means that the thesis is supposed to be understandable without any
prior knowledge to physiology.

In chapter 2 we will describe the svstem. we are aiming at modelling. We
specify the requirement of the model and give a overview of existing models
from the literature of the system in question. Our modelling is presented
in chapter 3 and 4, describing the models of the transport of substances in
the lung and the blood respectively. In chapter 5 we give an overview of the
model equations and discuss the mathematical properties of the model. The
parameters of the models and their physiological range are stated in chapter
6. and in chapter 7 output of the model is discussed.

The composition of this thesis reflect the intention of developing a theory
based model, in which the particular output of the model has had a limited
impact on the modelling process. The simulations have benefitted our un-
derstanding of the dynamic system modelled, but has not suggested drastic
changes or new approaches to the modelling. Thus the chapter evaluating
the output of the models is placed in the end of this thesis, and the param-
eters of the models are treated before the testing, since the parameters have
to lie within certain theoretically based ranges.

In this thesis the primary focus is the creation of the models, rather than on
the analysis of them. Therefore the mathematical challenge has been finding
the relevant mathematical tools for setting up the equations. The field of



i

ay

1.2 Methods 7

our work, modelling the respiratory system, includes a more general study of
compartment models based on [Jac0] and [Gib).
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Chapter 2

The respiratory system

The purpose of this chapter is to clarify our problem through a detailed
presentation of the system to be modelled, a list of the requirements that
the model must meet, a survev of modelling efforts found in the literature,
and finally a discussion of whether our problem can be solved by one of the
existing models.

Section 2.1 gives an overview of the respiratory physiology, followed by a more
detailed description of the transport mechanism of the respiratory function.
in the lung, the exchange between the lung and the blood stream, and by the
blood flow. The requirements stated by the MDs of the SIMA group, are in
section 2.2. followed by a brief description on how the model of the respiratory
svstem fits into the grand view of the simulator, and which requirements are
introduced by this. The literature survey in section 2.4 presents models of the
respiratory system or parts of this. The final discussion of how the existing
models meet our requirements can be found in section 2.5.

In writing the overview of respiratory physiology, we have found it impossible
to separate the description of the physiological system from models of the
physiology. We ascribe this not only to our own limitations, but also to
the nature of descriptions of reality. Any description of the reality, here the
respiratory system, will select some features and leave out others and are
thus in a way models. This applies to physics and chemistry as well as to
physiology, and hence it is not surprising that complete separation is not
possible. We have, however, striven to keep the description as “pure” as
possible. '
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2.1 The physiology of the respiratory system

The respiratory system is concerned with the transport of oxygen and.car-
bondioxide between the atmosphere and the tissue and organs in the body.
Oxvgen is a necessity for human life. The standard oxygen consumption
of the body-is at rest 260-m!/min [Nun].. The oxygen is continuously de-
livered from-the atmosphere to the organs -and tissue via the lungs and the
blood circuit. Carbondioxide is a waste product of the oxidative metabolism,
and is carried by the blood in the opposite direction, from the tissue to the
lungs, where it is removed by ventilation. The carbondioxide elimination
rate through the lung is at rest about 160 ml/min [Nun]. Since carbondiox-
ide dissolved in blood forms carbonic acid, which affects the pH value of the
blood. the removal of carbondioxide is important for the acid ‘base balance
of the blood.

Atmosphere
02 CO2

Ventilation

Alveoli | 92 €02

Gas exchange

v U
=07 cor—

Pulmonary circulation

Right Left
Eear] Gas transport Eea"j

Systemic circulation

02 CO2
1<

Gas exchange
Cells ! VR ! Metabolism

o

Figure 2.1: Schematic view of the respiratory system.

A tour of the respiratory cycle starts in the atmosphere outside the body.
Oxygen enters the lung at inspiration as 21% by volume of the atmospheric
air consist of oxygen. During the inspiration the air enters the lung through
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the tree structure of the airways, and is mixed with the air already present in
the lung. Down at the end of the pulmonary tree the air enters the alveoli, the
sacs that form the “end” of the lung. From the alveoli the oxygen diffuses over
a membrane into the blood of the small blood vessels, called the pulmonary
capillaries. By this diffusion the content of oxygen in the alveoli is reduced,
and hence the expiratory air contains only 16% oxygen.

Once the gas is in the blood stream, it is carried by the blood. Almost
all distribution of the respiratory gasses in the body is by carriage in the
blood stream. The flow of the blood is produced by the pressures created by
the pumping action of the heart, so that all constitutes of the blood move
together. This transport of the gasses is much faster than diffusion. The
branching of the blood vessels into tiny capillaries assures that the diffusion
lengths are small, both in the lungs and in tissue. Almost all cells in the body
are within a few cell diameters of at least one of the smallest branches [Van)].
When blood flows through the capillaries of the tissue and organs the oxvgen
leaves the blood stream by diffusion and enters the cells, where it is used

for metabolism. The metabolism produces carbondioxide, which then enters _

the blood by diffusion and is carried to the pulmonary capillaries. From here
the carbondioxide diffuses over the lung membrane into the alveoli. From
the alveoli it is transported through the airways to the atmosphere during
expiration. ' :

2.1.1 Ventilation

Under normal conditions breathing continuously renews the air in the lungs.
During inspiration the air passes from the mouth and nose, through the
tree-like conducting airwavs (figure 2.2) into the alveoli. At expiration the
air flows the opposite way. In the alveoli the air and blood are brought very
close so that oxygen and carbondioxide transfer can take place between them.
The area of the blood-gas membrane of the 3 million alveoli of a standard
man is about 90 m? [Gro).

The structure of the airways is a binary tree, where each new level of branch-
ing, called generation, doubles the number of pipes. Thus at the first genera-
tion (generation 0) the airways consist of a single pipe, named trachea, while
at the last generation (generation 23) it consists of 8 million pipes. The first
generations (0-19) are termed the conduction zone. At the later generations
(20-23) small alveoli sacs appear on the pipes, and hence these generations
are termed the respiratory zone.

In the following we describe the mechanism of airflow through the lung. Since
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Figure 2.2: Cast of the airways of a human lung [Wes2].

the lung and airways have no muscles to drive ventilation. the lung can be
compared to a bellows, with in and outflow of air driven by forces working
on the outside.

Natural ventilation is similar to the normal operation of a bellows, while
artificial respiration by a respirator is similar to filling the bellows by blowing
into the pipe.

In the lung, natural ventilation is performed by movement of the the pul-
monary walls, which cause a pressure difference and thus an airflow between
the lung and the surroundings. The alveoli walls contain a fluid, the inter-
pleural fluid, in the interstitial space between the lung and the thorax. This
space makes up a single connected chamber throughout each lung, and is
“fixed” on the “outside” to the thorax, and thus forces working on any wall of
the interstitial space is transmitted by the fluid to all the rest of the walls by
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a hydraulic principle. Natural breathing results from rhythmic contractions
and relaxation of respiratory muscles. At inspiration the movements of these
muscles cause the thorax to enlarge. When thorax is expanded by pulling
surrounding muscles the force is transmitted to the lung via the interpleu-
ral fluid, forcing each alveolus to enlarge. The expansion causes the pressure
within the alveoli to drop to less than atmospheric and the pressure difference
causes an air flow into the alveoli. The ability of the lung to expand is termed
the elastance and the inverse of the elastitance is called the compliance.

------- Thoracic wall

-------- Interstitial space

Figure 2.3: A schematic picture of the lung and the surroundings.

The pressure from the interstitial space gives the lung an elastic recoil. Nor-
mallv expiration is caused only by the elastic recoil driving the air in the lungs
the opposite way, but active forces contracting the thoracic cage can be ap-
plied. At end of an expiration the interstitial space has a pressure slightly
below the atmospheric pressure. The force from the interpleural fluid thus
‘prevents collapse of the alveoli.

During artificial ventilation the driving forces of the respiration muscles are
replaced by an externally driven pressure source in the form of a respirator.
Inspiration is obtained by raising the pressure in the ventilatory mask, and
thus forcing air into the lung. When the pressure is removed elastic recoil
drives expiration.

The volume of air flowing into and out of the lungs during each breath is
called the tidal volume. At rest the tidal volume is about 0.5 1. Not all this
air reaches the respiratory regions of the lungs, as some volume is situated in
the conducting airways, and will be expired without any exchange with the
blood. The volume of this air, which is about 0.15 1, is called the anatomical
dead space. Gas from different regions of the lung will continuously mix due
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Figure 2.4: Lung volumes during the breathing cycle. The tidal volume in the
normal respiration, but both expiration and inspiration can be increased, yielding
the vital capacity.

to the thermal movements of the gasses. However, the anatomical dead space
can be measured by analyzing the expired air and use the carbondioxide as
a tracer gas. After expiration of the gas from the anatomical dead space
is seen a sudden rise in carbondioxide concentration to the alveolar plateau
level. which is about 3-4% [Nun).

Ventilation disorders are normally split into obstructive and restrictive. The
obstructive ventilation disorders are cases in which the flow of air through
the airways is obstructed. Restrictive disorders are cases in which regions of
the lungs are damaged, resulting in lower compliance and possible decreased
permeability of the lung membrane, cf. next section.

2.1.2 Gas exchange between lungs and blood

When the inspired air reaches the alveoli there is only a tiny permeable
membrane of 0.2um dividing the air from the blood of the typically 1800
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capillary vessels that surround each alveolus, and thus 0, and CO; are rapidly
exchanged [Gro].

In the alveoli the atmospheric gasses exist in a mixture, but each gas behaves
independently of the others, and thus it is the partial pressure of a gas that
determines the movements of the gas. The partial pressure is defined as
the pressure that the gas molecules exert against a wall by their thermal
movements.

The oxygen and carbondioxide move between the alveoli and the blood by
simple diffusion, caused by a difference in partial pressures on the two sides
of the membrane, so that the net transport of a gas is from the region with
high partial pressure into a region where it is low.

Ventilation

Alveolus

Blood flow ‘}

—-—/

Capillary

Figure 2.5: An alveolus and a capillary. Each alveolus is typically surrounded .
by 1800 capillaries.

To understand the diffusion mechanism between the air and the blood one
can image a jam jar, half filled with water. The random thermal motions of
the gas molecules will let the gas diffuse to areas where the pressure is low,
even into the liquid. Thus some of the gas will dissolve into the liquid. Since
the diffusion happens by random movements, a higher number of molecules
in an area will result in more molecules diffusing out of the area. Thus,
eventually the random movements of molecule from the gas phase to the
liquid phase will equal the random movements in the other direction and an
equilibrium state is obtained. The same amount of molecules passes from the
air to the water as in the opposite direction and the net transport is zero.
Thus in the equilibrium state the pressure of the gas is uniform throughout
the jar.

The relationship between the concentration of a gas dissolved in liquid and
the partial pressure expresses a distribution of gas between the two phases.
If no chemical reaction takes place the concentration in the solvent is by a
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good approximation proportional to the pressure, and the proportionality
factor expresses the solubility of the gas in the liquid. A highly soluble gas
will adjust at a equilibrium, with a large amount of molecules per volume the
liquid, while a gas with a low solubility will have more gas molecules in the
gas phase, see figure 2.6. The solution of a gas in a liquid may include other
effects than random thermal movements, as some of the molecules may react
with molecules in the liquid. Yet, regardless of how the gas dissociates in the
liquid, the gas will adjust towards equal partial pressure in liquid phase and
gas phase.

Low solubility High solubility
(o} o)
o © o
o] o .
o ° o ° ° °
Gas o) Gas
o © o o o
o © o [e)
o o o - o
) ) °°° 0, 9 o
- . o - - o o
1quid 1
Lig o o o Liquid o0 (o) o ©

Figure 2.6: Different distributions due to different solubilities.

To distinguish between the gas in the gas phase and the gas dissolved in the
liquid, we have in this report used the term pressure for the gas in the gas
phase and the equivalent term tension for the pressure of the gas dissolved
in the liquid.

Oxvgen is poorly soluble in water. Hence it is by chemical binding to the
blood components. that a sufficient oxygen concentration in the blood flow
is reached. Without these oxygen carryving components a very high partial
pressure of oxygen in the alveoli or a much faster blood flow would have been
required. in order to transport the 260 ml of oxygen each minute, that the
body utilize. At normal atmospheric pressure and with a normal content of
blood components more than 98% of the oxvgen in the blood is bound to
blood components.

The main carrier of oxygen in the blood is hemoglobin, a protein found
in the erythrocytes (red blood cells). The oxvgen is reversibly bound with
hemoglobin. Hemoglobin combined with oxvgen is called oxyhemoglobin, and
hemoglobin not combined with oxygen is called deoxyhemoglobin or reduced
hemoglobin.

Carbondioxide is much more soluble in blood, but also in the case of car-
bondioxide the transport is improved by chemical reactions. The dissolved
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carbondioxide reacts reversibly with water and with hemoglobin and some
carbondioxide are therefore transported as bicarbonate or carbamino com-
pounds.

When carbondioxide reacts with water an acid is formed, and hence there is
correspondence between the carbondioxide level and the acid base balance
in the blood. The acid-base balance is expressed by the pH value, which is
the negative logarithm of the concentration of hydrogen ions. Variations in
the pH value is buffered by the way hvdrogen ions participate in the chemical
reactions in the blood. The hvdrogen ions combine with both bicarbonate
ions and hemoglobin, and therefore the pH value influences the dissociation
of both oxygen and carbondioxide in the blood.

Even in this complicated case of dissociation at which the two gasses affect
the dissociation of each other through the chemical reactions, the gasses
will adjust towards equal pressure in the blood and the surrounding tissue or
alveoli as long as the membrane separating the two phases is permeable. This
happens because the equilibrium of the chemical reactions are shifted, when
soluted gas is moves across the membrane, and a new chemical equilibrium
adjust as the diffusion happens.

There are several respiratory disorders that can result in imperfect gas ex-
change between the atmospheric air and the blood. A disorder often as-
sociated with damaged lung tissue is a defect membrane that inhibits the
diffusion, called a restrictive lung disorder. Alternatively the perfusion of
a part of the lung may be restricted. so that the air of some alveoli remain
unexchanged. Another case is that of an obstructive lung disorder that limits
ventilation to part of the lungs. and causes the blood perfusing this part of
the lung to leave the lung more or less unexchanged. The latter two cases
are often referred to as imperfect ventilation-perfusion ratio.

Not even for a healthy lung the ratio between perfusion and ventilation are
ideal throughout the lung. but for defect lungs the differences might be ex-
treme and thus significant for the transport of respiratory gasses.

2.1.3 The blood circuit

When gasses have been exchanged through the pulmonary membrane, the
blood leaves the pulmonary capillaries. Like the air in the lungs the blood
in the pulmonary capillaries is continuously renewed, as the blood is cir-
culating. The blood flow is driven by the heart in two serially connected
circuits, the pulmonary and the systemic circuit, see figure 2.7. From the
right ventricle the blood is pumped into the pulmonary circuit, through the
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pulmonary capillaries, where the oxygenation and carbondioxide elimination
takes place, back into the left heart chambers. From there the oxygenated
blood is pumped into the systemic circuit, through the capillaries of various
parts of the body and back to the right heart chambers.

Lungs and

airways : :
Pulmonary

§ M‘g_._,—\ékk capillaries

veins anteries

Organs and tissue
apart from lung

Figure 2.7: The blood circuit and the lungs.

During the circulation of the blood in the systemic circuit, the organs and
tissue are supplied with oxygen to be used for metabolism, and carbondiox-
ide. the waste product of the metabolism, is transported to the lung. Thus
when blood enters the right heart chamber the oxygen content in blood is
therefore lower than in arterial blood, and a higher content of carbondioxide
is found in venous blood than in arterial blood. The exchange of oxygen and
carbondioxide in the tissue happens by diffusion over the membranes sur-
rounding the blood vessels, and is thus controlled by the tension gradients
over the membranes.

The standard cardiac output is 5.2 1/min. Almost all of the blood flow in the
pulmonary circuit is pumped through the pulmonary capillaries, only about
2% is shunted past the lung. In the systemic circuit each organ receives a
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fraction of the total blood flow.

In cases of respiratory disorders or hard work, the oxygen supply might be-
come insufficient. In such cases metabolism occurs in absence of oxygen.
However, carbondioxide is also waste product of this anaerobic metabolism,
and is still removed from the tissue by the blood. If the elimination of car-
bondioxide through the lung is reduced, the consequence will soon be an
increased amount of carbondioxide and hence a decreased pH value in the
blood.

There are several possible disorders in the blood transport system. Either
the blood circulation can cause trouble, or the chemical balance of the blood
may be displaced resulting in a impaired carriage of substances. Chemical
disturbances may occur for several reasons; the chemical balance is influenced
by the level of the metabolic waste products, and will therefore be affected
by a changed metabolism. Or disturbing substances might enter via the
ventilation, an example is carbon monoxide poisoning, which disables the
hemoglobin molecules. Finally the transport system might be disordered by
a change in the blood components, e.g. the blood content of hemoglobin may
be low (anaemic blood). :

2.2 Requirements of the models

We have found the formulation of our modelling task for this thesis rather
vague. This is partly due to the lack of a common vocabulary, but even after |
we had acquired the necessary physiology, the extend of the model has been
wide open, perhaps because the MDs had no firm idea of what it would be
possible to model. Therefore it has been a non-trivial job to decide which
requirements the MDs really wanted the model to meet, and to formulate
these requirements in terms of inputs, outputs, variables, and parameters.

During the modelling we have had a unmistakable need to see measured data
from different scenarios, in order to concretize the kind of courses the MDs
are used to, and wanted the model to reproduce. Yet only in a few cases
has it actually been possible for the MDs to acquire such data. It is rare
that text books of physiology contains more quantitative descriptions of the
dynamic course of diseases and anaesthetics. Logs of data measured during
actual anaesthetics situations has also been unavailable.

In order to decide precisely what a model of the respiratory system must
be able to do, we have found it necessary to describe the requested outputs
of the system, and the conditions under which the model is expected to
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simulate realistic physiological data. This sections give a list of specific model
requirements we have compiled by a dialogue with the rest of the SIMA group.
The list is the result of a process that has been carried out simultaneously
with the modelling. )

2.2.1 " Requirements of the lung model

The purpose of a lung model is to constitute the connection between the at-
mosphere and alveoli in such a way that simulations of defect lungs are pos-
sible. The quantities concerning the ventilation, which are observed during
surgery, are the composition of gasses in the expired air. In case of artificial
respiration, the mask pressure and the tidal volume are measured as well.
These quantities are usually plotted dvnamically in a pressure-volume loop.
Disorders of the lung can be observed by disturbances in these outputs.

The Iung model must therefore produce pressure-volume diagrams and keep
track of the partial pressures of gasses in the expiratory air and in the alveoli.
These output must behave realistic in the simulations of respiratory disorders.
Even though the alveolar partial pressures are not measurable quantities
during an operation, the values will affect the gas status of the blood. and
cause changes in the tensions of gas in the arterial blood. Hence it is an
indirect requirement that the alveolar partial pressure are modelled.

The relevant defects to simulate are lungs with changed compliance, increased
resistance to airflow, and lungs with a reduced permeability of the membrane
dividing the pulmonary capillaries and the alveoli.

These cases must be simulated under different circumstances, as the patient
can either be ventilated artificially or breathe naturally. Under different clin-
ical circumstances the composition of air inspired by the patient are changed.
This is for instant done when a patient is anaesthetized by inhaling the anaes-
thetic agents. Thus in the model the composition of inspired air must be a
changeable input parameter.

2.2.2 Requirements of the model of the blood transport
system

A model of the blood transport system must keep track of different quantities
referring to the status of CO; and O, content in blood at various places of the
body. The most important quantities are those, which is observed during
surgery. This is the tension of oxygen and carbondioxide, the saturation
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of hemoglobin with oxygen and the pH value of the blood plasma. These
quantities are normally measured in both arterial and venous blood.

When the MDs observe changes or abnormalities in the monitored data,
these are normally ascribed to disturbances in either the ventilation, the
metabolism, the blood circuit or to an abnormal blood content of the com-
ponents that interact with the respiratory gasses. The model is required to
include the first three cases.

Changes in the blood concentration of O, and CO; are not trivial, because
of the chemical interactions between the respiratory gasses, the hemoglobin
and the hvdrogen ions. Model requirements explicitly state that the model
outputs a pH, based on the concentration of carbondioxide. If the gas disso-
ciation model contains data of the important gas carrying blood components
this will further enable simulations of a patient with abnormal content of
these. e.g. hemoglobin.

As a countermeasure to disturbances the MDs can in the clinical situation,
change the composition of inspired air, and/or ventilate the patient artifi-
ciallv. Our model must reproduce the changes in the measured blood data
that are the effect of such countermeasures.

2.3 The other models in SIMA

The model of the respiratory system must coexist with the other models of
the simulator. and this presents some requirements to the model. A schematic
overview of the simulator can be seen in figure 2.8. '

The cardiovascular system: A model that describes how the blood flows
through the arteries and veins. Among the outputs of the model is the
cardiac output, and how the blood is distributed to the organs and the
other tissue.

Temperature: A model of the temperature at different places in the body.
The temperature is linked to the metabolism, because heat is a byprod-
uct of the metabolic processes.

Electrolytes and fluid balance: Modelling of this has not started yet, but
the task will be to model the balance of certain ions and liquids in the
body. The acid/base status of the blood might be seen as a special case
of this problem.
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Figure 2.8: Overview of the SIMA simulator.

Pharmacokinetics and dynamics: Models of the distribution (kinetics)
and effects (dynamics) of drugs, like anaesthetic agents. in the body.
The main mean of distribution is by carriage in the blood stream,
similar to how oxygen and carbondioxide is transported inside the body.

Control System: The control system models the central nervous system.
and the way parameters of the other models are regulated. This is often
a task that cannot be solved inside a single model. An example is the
regulation of cardiac output, that is affected both by the current blood
pressure at various receptors. and by the oxvgen and carbondioxide
contents of the blood. Thus the regulation of the cardiac output is
affected both by the cardiovascular system and the respiratory system.

2.4 Modelling done by others

In our study of the literature, we have encountered several models of aspects
of the respiratory system. Some of the models describe the total system,
but not necessarily with a level of detail that can honor the requirements we
have of our model. Therefore we have also examined more detailed models
of parts of the respiratory system. Our review will focus on how the models
treat some crucial aspects of the physiology: The gas flow in and out of the
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lung, and the mixing of gas inside the lung; the gas exchange between lung
and blood; the blood transport system and the modelling of gas dissociation
in the blood and the tissue; and the modelling of the relation between gas
dissociation and pH value in the blood.

Both in models of the blood transport system and of the lung, we have en-
countered a special kind of differential equation model, the compartmental
model [Chi0, Olo, Rid0, Jac0]. A compartment model uses a compartment to
represent an area holding an amount of matter that is instantaneous mixed
inside the compartment. The differential equation describing the develop-
ment of matter in-compartment, is then stated by the principle of mass
preservation. The change of matter in the compartment is the flows into the
compartment minus the flows out of the compartment. Compartment mod-
els are widely used in the modelling of biology and medicine [Jac0], and can
describe both physical flows like the gas flow over the lung membrane and
the more abstract flow when a substance changes into another by chemical
reaction.

2.4.1 Models of the respiratory system

The most recent models of the respiratory system are found in [Olo] and
[Chi0]. Older models are found in [Fin, Hop. Lon, Sau]. A common trait is
that the control svstem has a prominent place in these models. Even though
the control system is not a concern of ours, we find these models relevant.
because thev are the most general models of the respiratory system. we have
found. All the models uses compartments to represent areas of the body, and
write mass balance equations for each compartment.

The first model, by Erik Olofsen [Olo], focuses on the special situations in
which ventilation is absent (apnoea). The primary results are the blood
oxvgen saturation, and the CO, pressure curves in the blood as a function of
time. The curves show that the oxygen supply to the tissue is acceptable for
up to 8 minutes without ventilation, if the lung is initially filled with pure
oxvgen.

The second model, by Chiari et al. [Chi0], is presented as a general model of
the respiratory system, that is claimed to compare well to experimental data

when simulations with an increased CO, and decreased O, level in inspired
air are made.

‘Both models use a single compartment for the lung, describing both the

gas filled alveoli and the blood filled capillaries. Thus instant equilibrium
between the gas and the blood phase is assumed. Olofsen represents the body
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by a single compartment, while Chiari et al. has a brain compartment and
a compartment representing the rest of the body. The brain compartment is
used for regulation of the system, reflecting that the central chemoreceptor
for carbondioxide is situated in the brain. ) '

The transport of oxygen and carbondioxide between the compartments is
-decided by dissociation of the gasses-in the blood. The level of theoretical
foundation for the exact nature of the dissociation differs significantly in the -
two models. see section 2.4.5. Olofsen uses a ‘detailed dissociation model
by Siggaard-Andersen. Chiari et al. uses a piecewise linear curve for the
dissociation of O, and a model of their own for the dissociation of CO,.

It is not clear how Olofsen incorporates the acid/base balance of the blood in
the dissociation curves. Chiari et al. neglects it for oxygen, but their model
of carbondioxide dissociation does include the effect.

2.4.2 Models of the lung

The simplest models we have found of the lung are the models that are used in
the compartment models of the respiratory system. described in the previous
subsection. The lung is modelled as a single compartment with a constant
volume. representing the mean lung volume. The compartment represents
both the alveoli and the blood in the capillaries. with instantaneous equilib-
rium between the gas and the blood phase, and the flow in and out of the
compartment describes both flow of gas carried by blood and air flow. The
air flows in and out the lung are modelled as separate non-pulsative flows.
Such lung models can be found in [Chi0] and [Olo].

All models we have found which increase the level of detail above a sin-
gle compartment do so by partitioning the lung into several sections, and
describing a pulsative gas flow in and out of these sections. Such models,
modelling the actual “bellows™ of the lung, are called models of the mechanics
of the lung Examples of such models are |Rid0, Chap. 5] and |Gol, Jac]. Fur-
thermore we have examined an unpublished model developed by MD Gert
Galster. who kindly sent us the model in the form of a computer program
source code listing [Gal].

Common for all the models of the mechanics of the lung is that they express
the models in terms of an equivalent electrical network. They differ however
in how they partition the lung, and in whether they use constant or variable
parameters for compliances and airflow resistances.

While the single compartment models of the lung consider a uniform gas mix
in the compartment, and thus easily calculate the partial pressures of gasses
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in the air mix, the models of the lung mechanics are normally not concerned
with the mix of gas. The sole exception we have found is the model in [Rid0),
where the network model of the total pressures in various lung sections are
used to drive the flows in a compartment model that keeps track of the gas
mix in the lung sections.

2.4.3 Models of the gas exchange between lung and
blood

Models of the gas exchange fall in two categories. One tvpe of model de-
scribes the gas exchange based on the ratio between ventilation and per-
fusion [Eva, Hop, Poo, Ril, Wes0]. The ventilation-perfusion ratio is much
used in literature of physiology. and a main concern of all these models is the
situation where the ratio is not -uniform throughout the lung.

Other models have a more direct approach. Here the focus is on the com-
position of gas on each side of the lung membrane, and the flux through the
membrane. |Gra, Pii|.

2.4.4 Models of the blood transport

Apart from the models of the blood transport svstem modelled in the res-
piratory models, we have encountered models of the transport system that
aim at describing pharmaco kinetics, [And, Ler, Hul. Bis].

These transport models are compartment models like the respiratory models,
but generally with more compartments. But basically the structure of the
models is the same as the respiratory models. except that the carriage of
matter by the blood is governed by other dissociation curves.

A completely different approach to modelling the kinetics of matter in the
blood transport system is found in the one, two, or three compartment mod-
els used to describe pharmacokinetics, [Gib, Hul, Jac0]. These models claim
no direct connection to the phyvsiology but are fitted to produce good ap-
proximations of the time course of the concentration of an anaesthetic agent
in the blood.

2.4.5 Dissociation models

The basic dissociation model that we have found several times is known in
physics as Henry’s law and states that if no chemical reaction takes place
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between solute and solvent the solubility is constant at low concentrations of
the solute [Atk]. Even in situations in which chemical reaction takes place,
Henry’s law is normally regarded as valid, for the part of the solute that has
not reacted chemically. : )

The level of detail in models of oxygen and carbondioxide dissociation varies
greatly. Oxygen dissociation varies from a‘three piece linear curve [Lon], over
a ten piece linear curve [Rid0}, and a quotient between two fourth degree
polynomials [Kel] to a rather complicated expression by Siggaard-Andersen
[Sig0, Sig3] and [Sig5]. Siggaard-Andersen models the dissociation of carbon-
dioxide as well.

The model by [Chi0] is based on considerations of how the dissociation of
carbondioxide interacts with the acid/base balance of the blood.

In the models we have studied, the dissociation models by Siggaard-Andersen
are unique in their level of detail, and in the number of effects theyv include.
They are the only models we have encountered. in which the mutual effect
of oxvgen and carbondioxide on the dissociation of each other is included.

2.4.6 Models of pH

We have only found one model of the blood acid/base balance and the pH
value [Chil]. The model is a set of chemical equations. describing the reac-
tions between components of the blood. Other treatments of the acid ‘base
balance of the blood are found in [Sigl. Sig2] and [Sin]. However these were
not really models. but the theoretical considerations that could be used for
modelling.

2.5 Our modelling

Based on the previously stated requirements, and our survey of the literature,
we have reached the following conclusions on the nature of our own model.

None of models we have studied can meet all our requirements, and therefore
we need to create a new model. The model must include a description of
the lung and of the blood transport system. In the light of the fact that the
model will have to cooperate with the rest of the SIMA models, we find it
natural to make the model extendable in the number of substances that are
transported both through the lung and in the blood stream. In this way the
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same basic model can handle intravenous and inhaled anaesthetics, as well
as the respiratory gasses.

Since the lung model is required to allow simulations with different com-
pliances and air flow resistances, and produce pressure-volume diagrams, a
single constant-flow ventilated compartment is not sufficient. The approach
of describing air flows between separate sections of the lung seems more ap-
propriate. This must be combined with a model of the mix of gasses in the
lung sections, as we need the partial pressures for deciding the transport
over the lung membrane, as well as the composition of the expired air for
output. This is similar to the approach of Rideout [Rid0], but fundamental
assumptions of the model are not clear. Therefore we will use the idea of a
pressure model and a gas composition model, and develop a model of the gas
mix from the overall flows.

Our lung membrane model will not be based on the ventilation-perfusion
ratio, even though it is a commonly used parameter in the literature. Since
models of the lung and the blood are required, it seems more natural to
connect the these, and model the membrane flux explicitly. If ventilation-
perfusion ratio is needed later, it can be calculated from the gas flow in the
lung and the blood flow. Furthermore the explicit approach gives the possi-
bility of modelling impairment of transport due to membrane limitations, as
well as inhomogeneous ventilation-perfusion ratios.

In accordance with the literature we have chosen to use a compartment model
to describe the dynamics of the blood transport system. The movement of
matter in and out of such compartments involves both diffusion and bulk
flow, and thus we will need to determine both tensions and concentrations.
Therefore we need models of the dissociation of the respiratory gasses. Even
though we have no explicitly stated requirements of the level of detail such
dissociation functions must have, the pH value is explicitly required as output
based on the content of gasses in the blood. We therefore find it reasonable
to demand that our dissociation functions includes the effects of the pH value,
since the literature agree that pH affects the dissociation of both carbondiox-
ide and oxvgen significantly. Without a proper link between the amount of
dissociated oxygen and carbondioxide and the acid/base balance we find it
unlikely that we would be able to construct an acceptable model of the pH
value.

Finally we will need a model of the metabolism, that can maintain an ap-
propriate metabolic rate under normal circumstances, produce anaerobic
metabolism in situations with insufficient supply of oxygen, and be increased
as a response to external input, e.g. from the temperature model.
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~ An overview of the interconnections between the parts of our model can be
seen in figure 2.9.
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Figure 2.9: Overview of the models of the respiratory system.



Chapter 3

Modelling the lung

This chapter presents our models of the airway dvnamics. Let us therefore
summarize the considerations on this part of the system and the purpose of
the models of the lung. which was discussed in chapter 2. -

The task of the lung model is to connect the atmosphere (or the respirator
mask) and the alveoli by a model of the airflow. The model must divide
the lung into various parts and calculate the flow of oxyvgen, carbondioxide
and possibly anaesthetic gasses among these parts. The output of the lung
model is the pressure at the mouth and the tidal volume, which is the data
usually measured with a spirometer, the partial pressures of the expired
air. usually measured with a gas analyzer, and the partial pressures in the
alveoli. The partial pressures of the alveoli are not directly measurable, but
must be known for the modelling of the exchange of gasses through the lung
membrane. The membrane transport will be part of both the lung model
and the blood transport model. as it is by this transport the models interact.

\When modelling airway dvnamics, we split the model into two parts; the
pressure model and the gas model. The former model describes the total
pressure in parts of the lung, while the latter model keeps track of the gas
composition in the different parts of the lungs. Hence the output of the
pressure models are used to create the pl’-diagrams and are further used
as input to the gas model, which produces the required partial pressures in
various parts of the lung.

A basic assumption of both parts of the lung model is that the gasses of the
model are considered to be ideal, obeying the ideal gas law

pV =nRT, (3.1)

29
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where p is pressure, V is volume, n is amount of molecules, R is the gas
constant, and T is temperature in kelvin. The ideal gas law does not hold
for real gasses, and these are better described by the approximative van
der Waals equation [Atk, chap.l]. However the deviations of the relevant
gasses from being ideal are very small at room temperature and atmospheric
pressure.

In both models we assume that the net transport of gasses through the
pulmonary membrane is zero, so that the exchange of gas with the blood
does not cause any differences in the total pressure. This might not be true
for a situation at which the metabolism is anaerobic, but we do not expect
the influence of this difference to be significant, as the carbondioxide diffusion
into the lung is small compared to the alveolar volume.

3.1 The pressure model

Before we describe how to divide the lung in an appropriate way, we will
discuss some assumptions on how the pressures, volume and flows in the
system interact with the anatomy of the lung.

Under some circumstance an airflow through a tube will tend to be turbulent.
For instance turbulence occur at branch points in the tube or if the radius
of the tube changes. Both of these situation are found in the system we
are modelling. At high flow rates, compared to the diameter of the tube
and the physical properties of the gas, the flow becomes turbulent as well.
Therefore it is likely that a mixed flow pattern occurs in the lungs. especially
in situations with the inhalation of an anaestetic gas, which has a high density
and low viscosity relative to air [Nun, p. 49]. However we assume the airflow
of the system to be laminar, as we find it inpracticable to model a partly
turbulent flow through the pulmonary tree. Furthermore none of the models
from the literature we have seen treat turbulence.

We now consider the dyvnamics of a laminar flow. The relation between a
pressure difference (AP) and an laminar bulk flow (F) of a fluid through a
tube are describe by Poiseuilles formula [Atk, p.741]. At low pressure differ-
ences the relationship can be considered to be linear, and thus the relation
is described by

Fo APrrt
&nl

where the proportionality factor R = nr*/8nl expresses a resistance to the
airflow. R is determined by the viscosity of the gas 7, and the length [ and the

(3.2)
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radius 7 of the tube. The radius of the airways change during the breathing
cycle due to the elasticity of the pipes, and so does the airway resistance.
However we have not found data of the variations of the airway resistance,
and we will therefore model the resistance as constant during a breath.

During natural inspiration the air flow into the lung is caused by the pressure
difference that arises from an enlargement of the lungs. When the lung vol-
ume is decreased at expiration, the air is pressed out of the lungs. This effect
is described by the ideal gas law, which states that the product of pressure
and volume pV” is constant if the same amount of molecules n is present and
the temperature is constant. The latter assumption is not necessarily valid,
but since including variation in the temperature would increase the complex-
ity considerably, we have chosen to assume constant temperature. This is in
agreement with the models we have seen in the literature.

~ In figure 3.1 the relationship between the lung volume and the pressure dif-
ference between alveoli and the interpleural fluid is shown. The pressure -
difference is often called the transmural pressure Ap,. The compliance of the
lung C, is found as the slope of the curve, which is almost constant for lung
volumes during the normal ventilatory cyvcle. Thus C; measures the ability
of the lung to enlarge when pressure of the interpleural fluid decreases. We
can therefore write the relationship between the transmural pressure and the
volume of the lung as

V=CAp+Ve ' (3.3)

where 1} is the volume of the unstreched lung, found at end of an unforced
expiration, when the pressure in the lungs equals the pressure of the inter-
pleural fluid.
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Figure 3.1: Plot of the lung volume as function of the pressure difference
between the interpleural pressure and the lung pressure [Nun].
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The relationships in equation 3.2 and 3.3 suggest that an equivalent electrical
network is a very appropriate frame for modelling the pressure in the lungs.
Air flows are equivalent to currents, pressures to potentials, flow resistances
are resistances R, compliances are capacitances (C), which make volumes
equivalent to charges. Inertances, resistance to accelerations of the flow are
neglected, as the phenomenon of turbulence in airflow.

The instantaneous relationships between the current (I) and voltage (U)
in the electrical network are given by ohm’s law Ugp = RI, equivalent to
equation 3.2. The analogue law for a linear capacitance CU¢c = @ is added
an extra term Vj, because the origo of the transmural pressure in order to
prevent a collapse of the lung differs from the atmospheric pressure, and the
law becomes thus equivalent to equation 3.3.

In the electrical model the capacitors are compartments storing matters. and
the currents are flows. Like the air flow in the lung, the flows in the networks
are changing direction when the pressure differences change sign.

The electrical network modelling the pressure and air flows in the lung are
used in several models we have seen in the literature. In this chapter we
will refer to two examples of such models of the mechanical lung, because
theyv represent two different principles of dividing the lung. The model of
[RidO] focuses on the mix of the inspired gas with the air in the deadspace
before the exchange of gasses with blood in the alveoli and models serially
connected parts of the lung representing the conducting airways, while the
second model [Gal], we present. is focusing on a nonuniform ventilation of
alveoli throughout the lung and therefore models a lung divided into several
parts containing alveoli.

The model of Rideout [Rid0], see figure 3.2. consists of four serially connected
sections of the airways: the larynx, the trachea, bronchi, and alveoli. Between
each section is a resistance.

The driving force is implemented as an oscillating generator, on the last
three chambers, as only these are expanded with the thorax, and Rideout
only aims at simulating natural ventilation. This network allows for a model
of restricted airflow by changing one or several resistances in the network.

From MD Gert Galster, Bispebjerg Hospital, we have received an unpub-
lished model of the lung, in form of a computer program [Gal]. From this we
have extracted the following model, see figure 3.3. The model splits the lung
into several (10-50) parallel sections, and describes each with an analogue
electrical network of a resistance in series with a capacitor.

With this network Galster simulates a breathing cycle that consists of an
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Figure 3.2: The model of the lung made by Rideout.
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Figure 3.3: The model of the lung made by Galster.

inspiration period, an optional pause and an expiration period. The simu-
lation can use one of two modes, one by which the inspiration is driven by
an external source, and one by which the natural inspiration works with a
constant inspired and expired volume at each breath. With this model non
uniform ventilation of the alveoli can be modelled.

As we want to change the mechanical properties of the upper airways as
well as the alveoli in different scenarios, we have developed a model. which
combines aspects of both models. As in Galster's model we place several
alveoli branches in parallel, each consisting of a resistance in series with a
capacitor. With this electrical network we can simulate that the alveoli differs
in their compliances, or that airflow is restricted in part of the lung. All these
branches connect to a generator U, (t for thorax), generating the transmural
pressure induced by the respiratory muscles. The external pressure is the
driving force at artificial respiration, and is represented by a generator Up,
(m for mouth) see figure 3.4. In parallel to the alveoli we have a capacitor




34 : Modelling the lung

Ro -
Ry -Ra R;
[ X X J
Um(2) T~ Co G4 P
Respirator
Ue(t) Respiratory muscles

Figure 3.4: The pressure model.

C, representing the volume of air, which does not reach the areas in the
lungs where gas exchange with the blood occurs. This volume models the
anatomical dead space. The anatomical dead space is in the literature of the
phvsiology considered to be constant, or is at least not believed to vary during
a breath. \We therefore model the anatomical deadspace as the unstressed
volume of the capacitor Cy, which has a low capacitance.

R, models the resistance of the upper airwayvs. This is the largest resistance
in the model as the resistance of the airways peaks at the fourth generation
of branching. according to [Wes2]. The upper airways are in our terms the
generations of branching without exchange of gasses with blood, generations
0-19. The alveoli represents generations 19-23. In figure 3.5 the pulmonary
tree is depicted. The decision of only representing the upper airway with one
capacitor in contrast to Rideouts model is based on advise we have received
from Galster. that several seriallv connected parts are overkill, in order to
include the mix of the inspired air with the deadspace.

The internal generator U, is a sine wave, which can be eliminated (zero).
This typically represents situations when the natural respiratory drive is
inactivated. The external pressure must be an imitation of the pressure
made by the respirator which is often found to be a serrated curve.

The model equations derived from the circuit in figure 3.4 express the change
the pressure p in the various parts of the lung. The index of parameters and
variables of the upper airways are 0, while the n alveoli parts have index i,
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Figure 3.5: The branching of the pulmonary tree

from 1 to the number of alveoli sections n,

S S Zn
1
?i=RE(P0—Pi—L})= | i=1.2,...n, (3.5)

Equation 3.4 expresses the change in the pressure of the upper airways pg
calculated from the pressure in this part of the lung py, the external pressure
U and the change of pressure in the alveoli sections p;. The n, equations in
3.5 express the change of pressure in the alveoli sections uses the internal and
external pressures Uy, and U; and the pressure in the alveoli itself p;. The
RC terms of the equations have dimension of time and vields a characteristic
time that expresses how fast the part of the lung empties or fills with air.

In order to plot the required pressure-volume (pV) diagrams we need to
calculate the volumes of the different part of the lung, and we use relationship
given in equation 3.3. Thus the alveolar volumes V; and can be found from
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the various alveolar pressures p;:
Vi = Cip; + Vo

\ﬁ'here Vpi is the unstressed volume of the i'th alveoli. The same relationship
holds for the volume Vj:
Vo = Copo + Vao

The sum of these volumes };ields the total volume of the lungs, and enables
the plot of the pl'-loops, as the pressure at the mouth is known as the U,
which is input to the model. :

3.2 The gas model

On top of the pressure model. we need a model to calculate the partial pres-
sures of the different lung sections, especially the alveolar partial pressures
and the partial pressures of the expired air. We intend to model the par-
tial pressures without keeping track of all gasses in the lung as for instance
nitrogen has no particular interest, neither to the other parts of the model,
nor as output during simulations. This approach implies that we neglect the
change in the total pressure which might occur in the alveoli as result of a
nonzero net diffusion through the lung membrane.

The lung sections represented by the capacitors in the pressure model, de-
tailed in the last section. are the entities of the gas model as well. The subject
in question here is the composition of the gas in each section. The gas com-
position is describe by a compartment model, in which each compartment
models a section of the lung. precisely corresponding to the compliances of
the pressure model. Thus the layout of the compartment model is decided by
the lavout of the network in the pressure model; the central compartment.
represented by Cj. connects to a number of alveoli compartments and to the
mouth or respirator mask. Each alveoli compartment connects only to the
central compartment and to the blood in the capillaries, see figure 3.6.

In the gas model of the lung. the flows between the compartments depend on
the total pressures and partial pressures of gases in the compartments. The
transport of gas between the lung sections includes two effects: air flow and
diffusion. When a pressure difference exists throughout the lungs, the former
effect is normally the most significant. The diffusion might be important
when the bulk flow in case of no breathing (apnoe) is absent. According to
thermodynamics, these effects will superimpose so that the bulk flow and the
diffusion are not influencing each other, and we will consider the two effects
apart.




3.2 The gas model 37

Central
space Alveoli

Cn

[

Mask = Co l—i Capillaries

C

Figure 3.6: The gas model.

3.2.1 Laminar flow

We wish to model how the changes in the composition of air in the different
parts of the lungs depend on the the total pressures, which is output from the
pressure model, and on the composition of gas in these parts. For keeping
track of several gas types, we will use vector variables. in which each coor-
dinate refers to a specific gas. The first coordinate represents carbondioxide
and the second oxvgen. Two needed vector variables are the vector x, which
expresses the amount of each relevant gas and the fraction vector, f, which
expresses the fraction of the total amount of matter in mole (n) that each
gas forms. Thus the relation between the two vectors are given by x = fn,
and the change of matter can be expressed:
X
%f- = %%n +f %—7; (3.6)
For a model of all gasses in the lung the components in f always adds to
one. but as we do not explicitly keep track of substances like N, in our model
the sums of fractions may be less. The equations we seek for a specific
compartment must express the relationship between the total pressures and
the gas compositions in the actual and the surrounding compartments. In
" order to find such expression, we will first examine how the composition of
gasses in a compartment is affected when this compartment is connected to
another compartment j with a different composition of gasses, illustrated in
figure 3.7.

A flow leaving a compartment will not change the mix of gas in the com-
partment, as the flow has the same mix, and therefore % = 0 in this case.
For a flow into the compartment with a different mix, matters are a little
more complicated. An inflow will result in an increase in the total number

of molecules, %Z‘t-, The composition of the inflowing molecules are the same as
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p;>p

Figure 3.7: The change of a gas fraction in a compartment

the composition of gas in the compartment the flow comes from. Thus the
change in amount of the gasses will be
dx ¢ dn
dt =~ 7dt
where f; is the fraction vector of the gas in the inflowing air. The subscript j
indicates that the vector refers to the gas fractions in the compartment from
where the gas flows.

(3.7)

The laminar airflow between the compartments, discussed in section 3.1, are
determined by the pressure difference (p; — p) and the airflow resistance R,
dn

p;i—p= RE A (3.8)

Inserting %—’; and %’} from equations 3.7 and 3.8 in equation 3.6, and isolating

the term %{ vields:

df _ (f; — )(p; — p)
dt nR

(3.9)

To obtain a differential equation of only one unknown variable, f, we ex-
press the amount of molecules n in equation 3.9 by the total pressure of
the compartment, which is known as input from the pressure model. Gasses
in our model are still assumed to obey the ideal gas law. Thus assuming
that the change in volume and pressures does not introduce a change in the
temperature, we can express the amount of molecules
pV
n= == 3.10
RT (3.10)
where p is pressure, V is volume, n is amount of molecules, R is the gas
constant, and T is temperature. The varying size of a compartment will
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introduce a change in the pressures inside the compartment. We are assuming
that the compliance of the lung is constant. When the gas is in an elastic
compartment with compliance C and an unstressed volume Vj, the relation
between pressure and volume is V = Cp+Vj, and combination with equation
3.10 vields the following expression for the amount of gas in a compartment.

Cp? + Vgp
= —— 11
n RT (3.11)
Combining equations 3.11 and 3.9, we obtain an equation describing the
change of mix when gas is flowing into a compartment:
df _ (p; = p)(f; — RT

dt ~ R(Cp® + Vop) (3.12)

where p # 0 follows from the physical situation.

Combining the special cases above, the contribution to the change in the
fraction vector of a compartment when air flows between this and another
compartment can be expressed:

af [0 when p > p; (outflow) (3.13)
at ~ | B when p < pj (inflow) |

To ease the writing we introduce the function 7., which is 0 for negative
arguments, and the identity function otherwise: '

0 forz<0
I(z) = { r otherwise

With this definition 3.13 can be written

df _ I(p; = p)(f; = ORT
dt R(Cp? + Vyp)

3.2.2 Diffusion

The diffusion of gasses between two compartments will cause changes in
the composition of gasses in both compartments, unless these have the same
distribution of gasses. We will in this section estimate how much the diffusion
contributes to the change in the gas content of the compartments. Looking
at diffusion we can assume that the molecules of a gas behaves independently
of the other gasses in the system, since diffusion is a process caused by the
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random thermal motions of the molecules. The diffusive flux J expresses
the net number of molecules of a gas passing through a unit area in unit
time. The flux is given by Ficks first law of diffusion, which states that J
is proportional to the concentration gradient of the gas in the direction of
current interest [Mor].

Oc
S J= _DE

where D is the diffusion coefficient. This coefficient depends on the viscosity
n and the density p of the gas, '

p="1
p

We now want to find the diffusion of a gas between two compartments. We
assume any difference in concentrations between the two compartments is
equally distributed over the distance ! between the compartments. Thus the
concentration gradient becomes

oc -0

at

where ¢; and ¢, are concentrations of the gas in the two compartments, and
| is the length of the tube between the compartments. Hence with a tube of
a cross sectional area A, the flow I of a gas is determined by

dx n(ca — ¢1)
J=—=4-—— .14
dt p l (3-14)

The diffusion coefficients are specific for the respective gasses. Hence with
this diffusion equation used for every gas present, the net diffusion of gasses
between two compartments is not necessarily zero. Different diffusion coeffi-
cients of ideal gasses will imply a net flow and hence induce a difference in
the total pressure of the two compartments. The pressure difference will give
rise to a laminar flow. However the diffusion coefficient of all atmospheric
gasses are approximately 107°m?/s [Alo]. In case of anaesthetic gas mix the
diffusion coefficient might differ from this order of magnitude, but in situa-
tions when an anaesthetic gas mixture is inhaled, periods without respiration
are not found and a laminar flow will be dominant.

We therefore find it acceptable to assume the gasses have the same diffusion
coefficient, which ensure that the net diffusion is close to zero. If the alveoli
are filled with 100% oxygen, respiration may be absent for 5-6 minutes, with-
out the patient becoming undersupplied with oxygen (hypoxic) [Nun|. The
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question is whether a part of the oxygen in the anatomical deadspace is uti-
lized, or only the supply in the alveoli is used, and how the effect of diffusion
between the lung sections should be modeled in our lung configuration. We
model the conducting zone in the pulmonary tree by a central compartment,
which is connected to the alveoli. The central compartment is covering the
generation 0-19 of the upper airways, and the alveoli compartment covers
the 20-23 generations. An average distance' between these compartments
are assumed to be 0.1m, and the total diameter less than 0.0lm2. Insert-
ing these numbers in equation 3.14 it is obvious that the effect of diffusion
between the compartments in our model is negligible, even in a long period
without breathing. This is a consequence of the rough partition of the lung
we have made. However the ratio of area and length between the 19 and 20
generation is approximately 500, hence the diffusion of a gas is about 0.005A¢
per second. and approximately a fourth of the amount of oxygen in the 19'th
generation will during 300 seconds diffuse into the- alveoli from the upper
compartment. Hence only a model with a more detailed description of the
lung would benefit from a model of diffusion. In our model it is included in
the instantaneous mix of gas inside each compartment, and only the diffusion
through the alveolar membrane is explicitly modelled.

3.2.3 Compartment equations

With the equations in section 3.2.1 and the above considerations we are now
ready to solve the problem of finding equations for the lung compartments.

The total change to the fraction vector of each compartment consists of the
sum of the contributions from the laminar flow between all connections to
other compartments.

The central compartment has connections to the respiratory mask reservoir,
and to each of the alveoli compartments. Hence by the contribution from the
flows to and from these compartments (cf. equation 3.13) the mass balance
for the central compartment vields

dfo _ RT L(Un ~ po)(fe —fo) i I (pi — po)(fi — fo)
dt  Cop§ + Voopo Ry

=1

where U,, and f, is the pressure and the fraction vector of the atmosphere or
the respiratory mask in case of artificial ventilation. Each alveoli compart-
ment connects to the central compartment and exchange gas with the blood

1 All parameters used in this section are estimated on the basis of table 6.1.

R 15)
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through diffusion over the membrane to the capillaries. We model the mem-
brane diffusion as & = k(p, — pf), thus the exchange of gasses depends on
the pressure difference through the membrane and the elements of a diagonal
matrix &, which expresses the permeability of the membrane with respect
to the particular gas. 2 From equation 3.6 we know that & = %¥n 4+ fd2,
This_combined with the assumption that the total flow over the membrane
is null, gives & = 19 The assumption that the net flow is absent is not
always correct, but to calculate g{ without it would require that the mem-
brane transport of all gasses was calculated to find the value of %’tl. This
could be done, but the transport model would have to keep track of nitrogen
as well, and we find this to be an unnecessary complication of the model,
since the error introduced is usually small. Under the assumption of no net
transport of gas over the membrane, we obtain, by adding the contributions
of equation 3.13 and the membrane diffusion the following equation for the
gas fraction vector of alveolar compartment i:

dfi _ RT  I(po—U:—pi)(fo—fi)
dt  Cip? + Voipi R;
RT

where U; is the pressure caused by the respiratory muscles. The equations
3.15 and 3.16 constitute the gas model. Together with the pressure model,
given by equation 3.4 and 3.3, these equations constitute our model of the
lung. In chapter 5 we will discuss the mathematical properties of the models,
and afterwards use the models for simulations of selected scenarios, but first
we will present the model of the blood transport system.

2Elements outside the diagonal represents the influence of one gas on the permeability
of another, an effect we assume absent. Yet there may be circumstances under which a
more detailed modelling of the permeability could be relevant.
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Chapter 4

The models of the blood
transport system

This chapter presents our models of the blood transport system. Some deci-
sions about the models have already been made in chapter 2 on on the basis
of the requirements of the models and of our literature review. '

In summary the blood transport must keep track of the tension! and the
concentration of carbondioxide. oxvgen and various other substances trans-
ported by the blood flow, in the arteries and veins. We intend to model the
transport of all substances in one compartment model so that the influence
of especially the respiratory gasses on one another is dvnamically modelled.

The state variables of the model is therefore a set of vectors. There must
be one vector to describe the content of matter in each compartment. the
vector components thus represent a substance each. The compartment model
therefore consists of a set of differential equations. one for each compartment,
describing changes in the vector components. These equations all take the
same form. as the change is what flows into the compartment minus what

flows out of the compartment:

d
a-j:ZI-ZO

Inside a compartment there is assumed to be an instantaneous mix. Thus
with a compartment modelling a specific part of the body, one has assumed an
equilibrium distribution of all substances in this part regardless of changes in
other parts of the body. Until now we have not decided the actual number and

1The term tension is used for partial pressure in blood and tissue to distinguish between
the partial pressure in a gas phase and the partial pressure of a dissolved gas

43
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the configuration of the compartments. Obviously there must be an arterial
and venous blood compartment, in order to calculate the required tension of
oxygen and carbondioxide in the blood. These two compartments must be
connected to some compartments so that the flows between compartments
represent the pulmonary circuit and the systemic circuit.

Since we intend to simulate the distribution of drugs in the body by-use
of our compartment model, we have chosen a model with:a high level of
detail, originally from [Ler]. This is almost the same model as the one in
‘Model 10’, [And]. an earlier work on pharmacokinetics of the SIMA simu-
lator. The compartment configuration is shown in figure 4.1. In this model
the compartments which represent organs in the systemic circuit consist of
both a tissue part and a blood part. In addition the model includes pe-
ripherical blood pools, that because of their different sizes cause a difference
in circulation times through the systemic circuit. In the pulmonary circuit,
we have extended the single capillary compartment of [Ler] with multiple
pulmonary capillary compartments, one for each alveoli compartment of the
lung model. The blood model connects to the lung model by each capillary
compartment exchanging gas with one alveoli compartment, and vice versa.
By such a configuration inhomogeneous ventilation-perfusion ratios through-
out the lung can be simulated in a straight forward way. The blood flow
through the two central blood pools is determined by cardiac output, @. and
the distribution of the blood to the various organs in the circuit, described
by z;, determines the fraction of ¢, that each compartment receives. Both
cardiac output, ), and the fractions, z;, are supposed to be output from
the cardio-vascular model, but until the two models are coupled we will use
constant mean values found in the literature e.g. [Ler].

4.1 The mass balance equations

As seen in figure 4.1, our model contains 13 + n, compartments: 5 blood
pools, 8 organ compartments, and n, capillary compartments. The different
tvpes of compartments have different in- and outflows. The venous and
arterial blood pools have only blood flows. The pulmonary capillaries have
both blood flows and gas flows to and from the alveoli. And finally the organs
have blood flows and flows determined by the metabolism, representing the
consumption and production of matter.

The following sections describes each type of compartment, and it will be seen
how the differential equation describing the actual compartment has either
the pressure or the concentration as the state variable, depending on the
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Figure 4.1: The blood transport model
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nature of the compartment. The differential equation of a compartment is n
dimensional, with state variable p or ¢ vectors consisting of a CO, component,
a O component and n — 2 components for the present anaesthetic agents.

4.1.1 Organ compartments

An organ compartment as we find them in [Ler], [Olo] and [Rid0] consists of
both a tissue and a blood part, see figure 4.2. We intend to use this dual
compartment as well, in order to model regions or parts of the body with an
equilibrium distribution of blood carried substances. The volumes of tissue
and blood V7 and Vp in each compartment is assumed to be constant. The
blood flow inside an organ branches into capillaries, in which diffusion of
gases between blood and tissue takes place. This dual compartment models
an assumption of instant equilibrium over the membrane between blood and
tissue inside the organ. Thus the tension of each gas is assumed to be uniform
throughout both tissue and blood inside the organ. This, however, does not
imply that the concentration is equal in tissue and blood, as the solubility
may differ, and a distribution of gas into the two solvents is found in an
analogous way to the distribution of gas in a jam jar half filled with water,
as discussed in section 2.1.2.

The dissociation of gasses is described by dissociation curves, which consti-
tute a vector function containing a specific function for each gas and each
solvent. The dissociation function vields a concentration ¢ as function of the
tension p of the actual substance, and might also depend on other variables
of the model. e.g. the tensions of other gasses, pH value and temperature 7.
The dissociation function depends on the solvents, and thus we call the blood
dissociation function c,. and the tissue dissociation function c;. The tissue
dissociation function ¢, may differ from compartment to compartment, while
the blood dissociation function for gasses is common to all the compartments
in the model.

The ability of the respiratory gasses to combine with the blood components
makes the nature of the dissociation of these gasses rather complex. As we
have chosen to use a mode! from the literature, which includes much of this
complexity, the functions in the model are rather long expressions and de-
pend on several variable quantities. In the case of carbondioxide the function
is given only implicitly. We will present the dissociation models in a sepa-
rate section, see section 4.3. In order to find the differential equations of the
compartments, it is sufficient to know that the dissociation models exist, and
that the dissociation functions are continuous and monotonously increasing.
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However it is worth to notice, that because of the nature of the dissociation
models, we have developed our own method for transforming the mass bal-
ance equations from describing the change of matters, x, in the compartment
to an equation describing the change of tensions, p, in the compartment. By
this method we avoid finding the inverse of the dissociation function, which
is the method used in the model of the blood transport of respiratory gasses
in the literature. In many of the models we have seen, approximated curves
are used to describe the gas dissociation. This eases the task of finding
the tension of a respiratory gas matching a certain concentration, but is an
inadequate model of gas dissociation for our purposes.

Ma (production)l P/I- (consumption)

, ool
C2Q0R)! Vi, (p;)  |h2ilas -

Figure 4.2: An organ compartment, with expressions for the content in the
blood and the tissue phase, and the flows in and out.

We describe the organ compartments as instantaneously mixed and thus in
equilibrium. This means that the tensions in the blood and the tissue are
alwavs the same. The assumption of local equilibrium. however, does not
imply equilibrium between the different compartments of the model. since-
the transport limitation of the blood flows will allow dynamic differences.
Physiologically this behaviour might be extracted from measurements of the
blood content of an injected drug during the phase of distribution. In chap-
ter 6 we will discuss the connection between our models and some typical
empirical models of such measurements.

Each organ compartment receives a fraction of the total systemic blood flow
z;. all of it flowing from the arterial compartment. Since the blood volume
inside the organ is considered constant, both the blood flow into and out of
the compartment is z;Q, where @ is cardiac output.

For an amount of matter in the compartment called x, represented by a vector
with a component for each type of matter (CO2, O; and anaesthetic agents),
the differential equation of the organ compartment, describing the change
in x, is given by the matter flowing into the compartment minus the matter
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flowing out of the compartment:

& = 2Qlews — o(p)) + M (p) ~ M_(p) (1)

dt -

where p; is the tension in the compartment. The in- and outflows of gas
with_the blood flow in equation 4.1 are calculated from the concentration
of gas in the blood and the total blood flow through the compartment 2;Q.
Concentrations in blood are found as function of the tension by use of the
blood dissociation functions, ¢,(p). The subscribed as indicates that it is the
gas concentration vector of the systemic arterial compartment, ¢,5 = C3(Pas)
The two metabolic functions, M, and M_, describe the tissue consumption
and production, and are detailed in the section on metabolism, see section
4.2.

The gasses have uniform tension throughout the compartment, and thus the
distribution of matter between the different phases can be found via the
dissociation functions. The equation for the total amount of matter in the
compartment is

x = Vice(p) + Vocs(p)

where V; and V}, are the tissue and blood volumes, and ¢; and ¢, are the tissue
and blood dissociation functions. By substituting this into the differential
equation, 4.1, we obtain:

%(v,ct(p) + Ve (p)) = 2@ = lp) + M_(p) = M_(p)

By the chain rule § = §5$8. we thus can express the change in terms of §
dp.
and 3r:

dc, dp dc, dp

Vo==— = 2iQ(css — co(p)) + M (p) — M_(p)

v
‘dp at | *dp at

Isolating § —E we finally obtain:

dp dc, A
P - (R %) 0l - ale) + M. (o) - M_(p) "

In contrast to the models we have found in the literature, our compartment
equation does not contain the inverse of the dissociation functions. This is

due to the fact that we use the tension p as a state variable, and solve the
question of distribution of matter between the two phases by the Jacobian
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matrices %Cpl and %‘p’l. If this is to make sense we must assume the existence of

(Vt%% + VL%)“, and this will be investigated later, see section 5.2.2. Under
this assumption we have arrived at'a compartment equation that describes
the content of gasses in the compartment by the state variable p and the

dissociation functions.

4.1.2 Pulmonary capillary compartment

The pulmonary capillary compartments are the places for the exchange be-
tween the transport model and the gas model of the lung. In the lung model
the oxvgen, carbondioxide and anaesthetic agents are in gas phase and not
dissolved in liquid. Thus the pulmonary capillaries have both blood flows car-
rving dissolved gasses and net diffusion of each gas through the membrane
separating the capillaries and the alveoli, see figure 4.3. The gas flowing out

Figure 4.3: Pulmonary capillary compartment with expressions for contents and
flows.

of the capillaries are determined by the tensions (partial pressures) in the
blood and the permeability of the membrane with respect to the gasses k.
The gas flows into the capillaries are determined by the partial pressures in
the alveoli, and is thus depending on the output of the gas model. and the
permeabilities.

Normally the gas flow through the membrane is sufficiently fast to ensure
that equilibrium is reached, and thus the partial pressures in the alveoli and
the capillaries are equal [Nun], and [Wid]. This however is not the case if
there are defects in the lungs, or in the case of injected anaesthetic agents,
some of which do not penetrate the membrane. In order to enable simulations
of these cases, the alveoli and pulmonary capillaries have been modelled by
separate compartments. In that way instant equilibrium over the membrane
is not assumed. In section 3.2 we saw the alveoli modelled as a number of
compartments in parallel. The same number of capillary compartments are
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chosen and connected to one alveoli compartment each. Hence we can model
different abilities of gas exchange, ventilation, or blood perfusion in different
parts of the lung.

According to the above considerations about in and out flows to the pul-
monary capillaries, we obtain the following mass balance equation determin-
ing-the amount of substance: :

O QU = M(cos = o(p)) + (pa =) (@3

with the factor A being the pulmonary shunt factor (the part of the blood
shunted past the lung). The permeability & is a diagonal matrix describing
the diffusion rate of the gasses through the membrane. c,; is the concentra-
tion in the blood of central venous compartment, €,s = Cp(Pus)-

Again we need the tensions p, since the diffusion through the membrane is
determined by these. By a calculation equivalent to the one leading to the
equation for the organ compartment, 4.2, we transform the mass balance
equation, 4.3, to use p as the state variable:

- = (ngg)'l((Q(l - A)(cvs — () + £(pa — P)) (4.4)

4.1.3 Blood pools

A part of the blood is stored in the blood pools. There are two central pools,
one on the venous side and one on the arterial side. Three peripheral blood
pools simulate the different circulation times that exist in the body [Ler].

All flows in and out of the blood pools are blood flows, except in the case when
injections are concerned. This makes concentrations an excellent system
variable. Thus the following equation governs the change of the concentration
in a blood pool compartment:

de _ Qe —¢) (4.5)
dt Vi

where Qc; is the amounts of matters pr time flowing into the compartment,
as Q is the blood flow through the compartment, and c; is the concentration
of the inflowing blood. The out flow is thus calculated as Qc, with ¢ being
the concentration of the compartment in focus, and V being the volume of
the compartment.
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When the blood is arriving from several compartments, the total concentra-
tion of inflowing blood ¢; is found as the weighted average of the concentra-
tions. Hence the concentration of blood when two flows merge is:-

o = Qi1 + Qac2
' Q1+ Q2

where ¢; is the resulting concentration, @, and c; the flow and concentration
of one branch, and Q5 and c, the flow and concentration of the other. The
flow after the merge is Q) + Q».

Since the tensions of the arterial and venous pools are explicitly required as
output from the model, we have chosen to use the tension as a state variable
in these compartments, even though there are no flows that can only be
decided by knowledge of this value. The reason is that we found it easier to
apply the same transformation of state variable than to have to introduce
the inverse of the blood dissociation function ¢,. Thus by an equivalent
transformation to the one used to reach equation 4.2 we find the following
equation for the tension change in the central pools:

%:i =‘(V’},§—§)"Q(czi— a(p) (4.6)

where c, is the concentration of the inflowing blood.

The transport model so far

\We have now stated four different equations for the different kinds of com-
partments. Each type of differential equation contains terms, which has not’
been specified vet. This is the metabolism M. and M_, and the dissoci-
ation functions c,(p) and c¢;(p). In the next sections we will present these
submodels of the blood transport model. The dissociation curves depend on
the pH value, so a model of the pH is presented as well.

4.2 Metabolism

Everywhere in the body metabolism takes place. In a model of the respiratory
svstem the metabolism is an important part, together with the ventilation
it constitutes the sinks and sources of the system. In our model we will
neglect the metabolism in the blood and only let the organ tissue consume
oxygen and produce carbondioxide. The metabolic function in the organs
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is modelled by the terms M. and M_ in the differential equation for the
organ compartments. These are vector functions modelling the metabolic
production and consumption respectively. We have chosen to model the
metabolism in these two different vector functions, because this way we can
maintain the general principles of compartment models having only positive
flows. The sign of each term in the differential equations determine whether
it is an inflow or an outflow of the compartment

Like the state vectors of the system, each coordinate in the vector function
concerns the metabolism of a particular substance. The first coordinate is
CO», the second 0,. In this section let us assume that only one substance
more is carried around. This substance is an anaesthetic agent, which will
be indicated by a subscript aa.

Carbondioxide is only removed by ventilation, so there is no consumption of
CO, anywhere. Thus the M_ consists of a zero as a first element. As long as
oxygen is present in a compartment there will be a consumption. A simple
view of the complicated chemical processes involved is that the metabolic
consumption must tend to 0, as the concentration of O, tends to 0, and at
high levels of oxygen some other factors will limit the metabolic rate. The
0O, metabolism is therefore modelled by a function in the Michaelis-Menten
kinetic form [Bis]:

dz -

5= M 5 e (4.7)
where M is a constant representing the maximum metabolic rate. and 8 is a
parameter representing the oxygen concentration when the metabolic rate is
the half of the maximum value. It is easy to verifv that the equation tends
to the maximum metabolic rate M for ¢ tending to infinity. and to O for ¢
tending to 0.

The removal of anaesthetic agents is assumed only to take place in the liver
[And]. Thus we can express M_ in liver as
0

Co

M_; = Mozgg;fc;; (4.8)
M, 50—

a ﬁoa"'&w

The M_ in organ compartments without anaesthetic metabolism models
only a consumption of oxygen:

0
M_ = M°2ﬂo_:'o*‘zc_o: (4.9)
0
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The M,, differs from compartment to compartment. The sum of the maxi-
mum consumption rates of all organ compartments must under steady state
conditions equal the rate which enters the body by ventilation.

The production of CO, only to a lesser extent depends on the present sub-
stances in the blood, as the tissue is metabolizing whether oxygen is present
or not. Thus the metabolism may be either aerobic (with oxygen) or anaero-
bic (without oxygen), but in both cases the waste product is carbondioxide.
The total energy production compared to the amount of produced carbon-
dioxide is not the same at the different types of metabolism, and thus the CO2
production is different, provided that the body produces a constant amount
of energy. We have not modelled this difference.

The metabolic rates relv on the work that the body performs. In rest and
under normal conditions, the production of CO, equals the rate, which is
eliminated through the lungs, and M. is therefore modelled as the constant
vector function, specific for each organ compartment:

M, 7
M, = 0 (4.10)
’ 0

Normal condition means that there is no reason for the body to perform more
work. As a consequence of too low temperature, the muscles will begin to
vibrate and therefore increase the CO, production, and as long as oxygen is
present also the O, consumption. Thus when the coupling of the simulator
models is done, the metabolic consumption and production M_ and M.,
need to be modelled as functions of the temperature. It is reasonable only
to model a temperature effect on the metabolism., if the temperature is too
low. Else the normal metabolic rate is expected to be maintained. There can
also be other conditions under which a metabolic rate will increase. In case
of the allergic reaction, malign hyperthermia. the metabolic rate increases in
response to a hypersensitivity to an anaesthetica. Malign hyperthermia will
be modelled as a specific scenario, in which the M_ is changed to a higher
rate. This is an example of the dual nature of the temperature and the
metabolism, as a clinical indication of malign hyperthermia is an increasing
body temperature from the increased metabolism. During the malign hyper-
thermia the ion balance of the cells and the intracelluar fluid is disturbed.
Thus the scenario requires that a model of the electrolyte and fluid balance
balance is coupled to the metabolic model and the model of the pH value.
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4.3 Gas dissociation and the pH value

When writing the mass balance equations of the compartments in the blood

transport models, we have assumed the existence of functions, which converts

the partial pressures p (also called tension) to concentrations ¢. Furthermore

when we change variables in.the mass balance equatia'on, we assume the exis-
C

tence of the derivative of the dissociation functions 3.

The dissociation functions are specific with respect to the substances as well
as to the solvents. Thus for any substance that we want to keep track of, we
have to include a model of the dissociation of the substance into the different
solvents in the model. Therefore to each solvent of the model, which is blood
and different kinds of tissue, a dissociation vector function must be specified,
in which the components are the dissociation functions of the solutes.

The dissociation of substances into tissue is considered in section 4.4.5. In
this section we will describe the carriage of substances by the blood, and the
interactions of the gasses in the blood on each other and the on pH value.
Section 4.4 presents the models of the gas dissociation functions and the pH
value. The requirements from the MDs (see section 2.2) do not include any
specification of the gas dissociation, but the pH value of the blood has been
required as output of the blood transport model.

The pH value is the negative logarithm of the concentration of hydrogen
ions [H*]. This is an important quantity measured during anaesthesia, as it
interacts with the gas status of the blood. A measurement of the pH gives
information about the acid-base balance, as the hydrogen ions are produced
by acids, which dissociate. One acid in the blood is carbonic acid, formed
by €O, soluted in water, and thus there are close relations between the CO;
level and the pH value. Furthermore hydrogen, carbondioxide, and oxvgen all
form reversible combinations with hemoglobin, and thus changes of the blood
content of one of the substances will displace the equilibrium of the reactions
with hemoglobin, and change the concentration of all involved reactants.

A model of the gas dissociation in the blood must for any two tensions of
carbondioxide and oxygen give the concentrations of the gasses and the pH
value in the blood. The chemical interactions between these quantities imply
that a change in one of the quantities causes at least three others to change
as well. The only independent quantities of the five are the two tensions of
gasses or the oxygen tension and the pH value.

We have no intention of modelling these interactions ourselves as our under-
standing of the biochemistry would not allow us to do so. In section 4.4.2
and 4.4.3 we present the models of dissociation of respiratory gasses from the
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literature, which we found were the most adequate modelling of the system.
The models give the concentrations of oxygen and carbondioxide as a func-
tion of tensions and the pH value. The models are developed for analyzing
blood data, and they are consequently based on measurements of the pH
value, the tensions of gasses, and other quantities that are not included in
our work. Thus using these functions as submodels in the our blood trans-
port model requires a model of the pH value. The pH value depends on the
carbondioxide concentration and therefore the expression for the carbondiox-
ide concentration is only implicitly given with the models of [Sig0] combined
with a model of the pH value.

The criteria for the pH model is that it depends on the carbondioxide level,
and produces an monotonously decreasing curve with a pH value of the ve-
nous and arterial CO, concentration or tension points, which is close to the
physiological values.

The normal values for pH is 7.41 in arterial blood and 7.37 in venous blood
[Nun|. Situations where the [H*] is raised are called acidosis, and if the con-
centration is below the normal level (corresponding to a high pH) one speaks
about alkalosis. These changes in [H*] can either be due to a respiratory de-
fect. where the elimination of CO, in the lung is too slow or too fast, or it can
be a metabolic acidosis/alkalosis, referring to situations when the derivation
in pH is not primarily due to respiratory problems. Models including the
metabolic acidosis/alkalosis relates to the electrolyte and fluid balance, and
our concern is therefore restricted to model the respiratory disturbances and
the respiratory compensations to metabolic disturbances of the pH system,
which will be described in the following as the respiratory buffer system.

The physiological range of pH in blood for a normal man is 7.0-7.8 [\Wid]. The
blood contains several buffer systems which will ensure that the [H™] varies
only slightly when a concentration of some acid in the blood is changed. The
buffer systems will immediately neutralize the excess H™* by combining with
it, until the body eliminates the hydrogen ions via the kidneys. We will only
model the respiratory buffer system, and not include the metabolic excretion
of hydrogen ions, as the excretion is a slow process, which we assume not to
influence the state during an anesthesia. '

The most important blood buffers are bicarbonate (produced by carbonic
acid) and proteins, which make the buffer systems of the blood closely con-
nected to the O, and CO, carriage in the blood plasma and the erythrocytes.
The reactions related to the respiratory pH buffer system are described in
the next subsections 4.3.1 and 4.3.2.
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4.3.1 Carbondioxide carriage

CO, is produced in the tissue, when metabolism takes place. As a result
of a tension gradient CO, diffuses from the tissue into the blood system.
The diffusion process will tend toward an equilibrium, and thus the same
tension is found in tissue and blood. Now the question is which concentration
the equilibrium tension will imply. If no chemical reactions were taking
place between carbondioxide and blood components when the carbondioxide
dissolves into the blood, the relation between concentration ¢ and tension p
could be expected to obey Henrys law

p=ac (4.11)

which describes an ideal solutions, [Atk, p. 163]. The proportionality factor
a is called the solubility.

When some of the carbondioxide reacts with the solvents, more carbondioxide
can diffuse into the solvents until Henrys law 4.11 again is obeved. Therefore
the total concentration of carbondioxide, some of it in a reacted form is
increased. In case of blood transport of CO, it is the total amount transported
which is of interest as the reactions are reversible, and when the net diffusion
of the dissolved part goes the opposite direction, the reactions will do so as
well.

Dissolved CO; reacts in the following way
CO; + Hy0 5 HpCO3 S HCO; + H™ (4.12)

The first reaction from dissolved CO, to carbonic acid (H,CO3) is a rather
slow reaction. but it is speeded up by the enzyme carbonic anhyvdrase. A
large part of the carbonic acid is ionized into bicarbonate and hydrogen ions.
The equilibrium of these reactions is given by the K,-value,

[H™)[HCOs]

—_ -6.1 __
Ko =10 = o o (4.13)

Since the amount of dissolved €O, is much larger than the amount of carbonic
acid [HoCO3), the concentration of the latter can be ignored, and equation
4.13 is thus written

[H7][HCO; ]

Ka —_ 10—6.1 =
[COQ]

(4.14)

The condition 4.14 is important for the carbondioxide dissociation as well as
the pH value, as it describes equilibrium of [H¥] and [cO, |. Using Henrys
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Figure 4.4: Curves of cco,(Pco,) from [Nun}].

law 4.11 the equilibrium condition in 4.14 can be written

_ [#[cos]

QPco;

K, =107%! (4.13)
as the dissolved CO, tension is proportional to the CO, tension, with a factor
of proportionality a. which differs in plasma and erythrocytes.

Under normal physiological conditions approximately 10% of the total CO; in
venous blood is dissolved. 60% has reacted and is found as bicarbonate and
hyvdrogen ions. Most of these ions are found in the erythrocytes because the
catalyzing enzvme for the reaction is present here. The last 30% of CO; has
reacted with the hemoglobin to form carbamino compounds [Van], which also
donate hvdrogen ions. The carbondioxide can bind oxyhemoglobin as well
as deoxvhemoglobin (hemoglobin bound or not bound by oxygen), but the
latter is 3.5 times as effective as oxvhemoglobin [Nun, p. 211]. This difference
causes the Haldane effect, which means that a fall in oxygen gives more
deoxyhemoglobin and by that a rise in carbon dioxide carried as carbamino.
Therefore the ability of the blood to carry CO; is increased in at the venous
side.

When the [H*] level is raised for some reason, the reactions are driven to the
left side of the expression in 4.12 to obtain the equilibrium written in equation
4.13. Therefore the level of dissolved CO, in blood is raised and more CO,
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will be eliminated in the lungs. Even though there are no elimination of [H™]
in this process, it results in a reduced amount of carbamino and carbonic
acid, which would have been donating [H*] ions if present.

The regulatory system of the ventilation is also effected by the pH level. By
a raised ventilation as a response to a decreased DH, and an increased CO,
level in’ the blood either as a purpose or a consequence of the high level of
[H7], the respiratory system acts as a phvsmloglcal buffer system, by a faster
elimination of CO, in lungs. :

4.3.2 Oxygen carriage

Oxygen dissolves poorly in blood and nearly all oxygen is carried by
hemoglobin Hb, which is found in the ervthrocytes. The total concentra-
tion of oxygen c,, carried by blood is found as

Co, = QPo, + [HDOO] (4.16)

where the first term expresses the concentration of dissolved oxygen. by use
of Henrys law 4.11 and the last term expresses the concentration of oxygen
bound to hemoglobin. Each hemoglobin molecule can carry four molecules of
0,. However, the oxygen carriage is not the only function of the hemoglobin.
Deoxyhemoglobin Hb reacts with hydrogen ions, and therefore the oxygen
is competing the hydrogen ions in binding hemoglobin. The competition is
described by the equilibrium reaction [Van, p. 454]:

HbOO + H™ < HbH + 09

This reaction causes the pH to influence the 0, affinity. With an increased
concentration of hydrogen ions, the equilibrium conditions drive the the re-
action to the right, and the ability of the oxvgen to bind the hemoglobin
decreases. This is called the Bohr shift, and is a very useful effect for the
oxygen deliverance in the tissue, where a decrease in pH of only 0.2 units
(which physiologically is an acceptable change) can increase the O release
by 25 % at low oxygen tension [Wid, p. 65]. In case of a acidosis, the
CO, increase may be caused by a increased metabolism and the improved
deliverance of oxygen provides for a sufficient supply.
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4.4 The models of gas dissociation and pH
value

In the previous section we have stated the basic reactions in the blood involv-
ing carbondioxide, oxygen and/or hvdrogen, and described the interactions
of these three substances in the blood. In this section we will present the
models of the pH value and the gas dissociation, which are all based on the
reactions in the blood and the equilibrium conditions of these.

4.4.1 The pH model

In this section we present a model for the. pH in blood, implemented as one
of the submodels of the respiratory model. We have based our pH model
directly on a model developed by Chiari et al. [Chil]. The selection criteria
are mainly that this is the only thorough model of the acid/base balance
we have found, which relates the H* concentration and the carbondioxide
concentration cco,. The concentration of carbondioxide cco, expresses all the
CO, transported by blood, both as dissolved CO, and as bicarbonate ions
(HCO3).

" The pH model of Chiari et al. [Chil] is based on four chemical reaction,
all involving hydrogen. The chemical reactions are reversible processes of a
nature so that the concentrations will adjust to a well defined equilibrium.
Thus a change in one reaction will disturb reactions that involves one or
several of the same quantities, and this is exactly what happens in a svstem
described by the four reactions of the model. The reactions of Chiaris model
are the following

CO, + Hp0 &= H™ + HCO3 (4.17)
HPr = H™ +Pr . (4.18)

NaOH + CO, = Na™ + HCOj (4.19)
NaOH + HPr < Nat + Pr™ + H,0 (4.20)

Where Pr represents the proteinates.

The first two reactions seem obvious to use, because the important blood
buffers related to the transport of respiratory gasses are described by these.
We are not able to judge whether the two last reactions are relevant or
whether the four equations are sufficient for a pH model, but as a the reactions
lead to a model depending on the total concentration of carbondioxide carried

P b
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by the blood, we will determine the relevance of this model by the values of
the output.

Based on the above reactions, ‘Chiari et al. obtain the following equations.
Expressing equilibrium for the dissociation of CO, and deoxyhemoglobin (Eq.
4.17 and 4.18):

_ [ncoz )]

Ka co —
’ [CO2]
K. - Pl
’ [HPr]

Conservation of charge gives:
[H™] + [Na*] = [HCOZ ] + [Pr7]
Finally mass balance of the chemical substances yields

Ccop = [COo] + [HCOT]
[xaOH]y = [Na*]
[HPr]y = [Pr™] + [HPI]

These 6 equations have 6 variables, with 4 initial concentrations and two
equilibrium constants as parameters.

We have solved the six equations with respect to [H*], and obtained the
following third degree polynomial equation, with combinations of the initial
conditions and equilibrium constants as coefficients.

0=+ a[H™)’ + ay[H*] + ao
as = Kgpr + [NaOH]p + K co
a1 = Kaco([NaOH]o = Cco,) + Ko pr(Kaco + [NaOH]o — [HPT])
ao = Ka.coKope([NaOH]o — [HPT]o — cco,)

In general the equation has three solutions, which might be complex, however
we can prove the existence of a unique positive real solution in a appropriate
range of the carbondioxide concentration, see section 5.2.2.

4.4.2 The carbon dissociation function

In this section a model of the carbondioxide dissociation curve is given. The
dissociation models for oxygen and carbondioxide in blood are both from MD
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Siggaard Andersen [Sig0]. The dissociation functions are rather complex,
and the fact that the derived functions are used in the differential equation
of the transport model, makes this part of the model quite complex. We have
chosen these dissociation functions, because it is possible to understand these
functions physiologically, and because they contain physiological parameters,
which enable simulation of a disordered carriage of respiratory gasses due to
change in the blood components.

According to [Sig0], the total concentration of CO, in blood cc, can be
calculated as a weighted sum of the concentration of CO, in the plasma and
the erythrocytes.

. Cub Cub
Ceos (P, PH) = cou (P, PH) = + Coop (P PH) (1 — ) (4.21)
CHb' CHb

The total concentration of CO, in the ervthrocytes cE is a sum of the bi-
carbonate concentration and dissolved CO; in ervthrocytes

cfc’;; = [HCO7] + af{;‘;pcm (4.22)

Using the equality [;-K,ei = 10%"-PX) the bicarbonate concentration, [HCO; ],
is found from equation 4.15:

_ K ,
[HCO;] = —[H':] e Peo, (4.23)
which implies that
HCO; | = aZ¥ peo, 10(PH-PX) 4.24
3 co2 2
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So the total concentration is

; E: — T F -

cEY (p, pH) = afapcoz(l + 10(PH=™ (p:pH)~PKE (p.pH)) (4.25)

By equivalent calculations, the concentration in the plasma cE2 is given by:
— = i — e Pl .

Coes (P, PH) = @hg Peoy (1 + 10PHPH (o)) (4.26)

The pK and pH values of the erythrocytes and plasma are also given by [Sig0]:

K™ (p, pH) =6.125 — log1g(1 + 10PH"" (Pip)=T84-0.06+30, (pip)

(4.27)

PHE™ (p, pH) =T7.19 + 0.77(pH — 7.4) + 0.035(1 — s, (p, pH))
, (4.28)
pK™*(p, pH) =6.125 — logyo(1 + 10°"~57) + of2p ., (4.29)

The term s,, is the oxygen saturation of the hemoglobin, and will be detailed
in next section. The pH of the plasma is output from the pH model, which was
detailed in the previous section. By these equations the CO, concentration
as function of the tension ¢ = (p) is only implicitly given. The reason is
that pH value varies with the CO; concentration: pH(cco,)-

4.4.3 Model of oxygen dissociation in blood
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Figure 4.6: Oxygen saturation curve from [Nun, p. 265].
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The total concentration of oxygen c,, is calculated as the sum of dissolved
oxygen and oxyhemoglobin:

Co,(P) = Qo3P0 + CubSo, (P) (4.30)

where a is the solubility constant, p,, the O, tension, and ¢y, the hemoglobin
concentration of the blood. s¢,(p) yields the fractional saturation of the
hemoglobin with oxvgen, which is defined as the oxyhemoglobin concentra-
tion divided by the total hemoglobin concentration:[HboO]/([Hb] + [HbOO]).
The model of the saturation states the relation between the saturation s,
the O, tension, (p.,). the COs tension, (pco,) and the pH value. In figure
4.6 the saturation curves are shown at different pH values, illustrating the
Bohr effect. When the pH value or the carbondioxide tension are raised, the
saturation curve is shifted to the right, because of a decrease in affinity of
hemoglobin for oxygen. If the pH or pco, is lowered the shift is to the left.

If the ability of the hemoglobin molecule to bind 0, was the same for each
hemoglobin binding site, we would expect the saturation to be a logistic
function of the oxygen tension. But in a plot of log(po,) vs. 10g(s0,/(1=S0,))
measurements of the oxygen saturation does not describe a linear curve,
but shows a symmetrical S shape, corresponding to different abilities of the
hemoglobin in binding of the first through the fourth 0, molecule [Nun].
The curves measured under different circumstance can be characterized by
the point of symmetry (zo.1.873), the slope of the symmetry point ng, and
distance 2h between the tangent slopes for log p,, — *oc [Sig3].

These parameters are in the model of [Sig0] used to fit measured curves. The
mode! of the oxygen saturation of the hemoglobin is given by the following
equations, where the saturation is expressed as a function of the gas tension
vector p:
1
SOO(p) =1 + e_y(p)
y(p) =1.873 + z(p) — zo(p) + h(p) tanh(0.5343(z(p) — zo(p)))
h(p) =(3.5 + a(p))
z(p) =log(po,/k Pa)
zo(p) =1.946 + a(p) + 0.055(T/°C — 37)
a(p) = — 0.72(pH(cco, (P)) — 7.4) + 0.09 log(pco,/5- 33kPa)
+ (0.07 — 0.03zwyt) (capg/mole/l — 3)

— 0.368znpco — 0.174xw; — 0.28zyy¢

The model parameters are: the substance fraction of fetal hemoglobin z gy,
the substance fraction of hemiglobin zg;, the substance fraction of carboxy-
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“hemoglobin zgsco, the concentration of 2,3-diphosphoglycerate in the ery-

throcytes capg, and the temperature T. According to [Sig3| the equations
represent a very good fit to the Servinghaus standard oxygen dissociation
‘curve, however the parameters may easily be fitted to other oxygen dissoci-
ation curves as well.

“The equations do not give an explicit expression for-the saturation, as the
expression depends on pH, and pH depends on carbondioxide concentration
Cco,(P), that in turn depends on the saturation.

4.4.4 Dissociation of anaesthetica

The dissociation functions of the anaesthetic agents we have seen or con-
cluded from models found in the literature are all simpler than the ones of
COy and O,. This is due to the fact that the anaesthetic agents behave in a
simpler way, but can also be a consequence of the lack of information about
the kinetics and dynamics of the agents.

The kinetics and dynamics of many of the anaesthetic agents are described
by measurements of concentration of the agent in the blood of a number
of patients after injection. Parameters of models with a few compartments
and linear dissociation functions are fitted to these decayv curves. Later we
will use information in terms of such parameters to obtain the dissociations
functions of the different organ compartments and the blood. see section 6.4.

If we assume that the agents obey Henry’s law and dissolve linearly, the
dissociation function is given by:

c=ap (4.31)

where c is concentration and p is tension. The assumption of linearity is often
reasonable even when chemical reaction occur, since the drug concentration
is usually much lower than the concentration of the substance the drug will
bind to [Hul].

4.4.5 Dissociation in tissue

The models we have found of dissociation in tissue are less complicated than
the blood dissociation functions. In [Chi0] the blood dissociation function is
used for CO, in tissue, and a simple linear solution is used for O,.
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Our blood dissociation function [Sig0] differentiates the dissociation of-
plasma and erythrocytes, and thus we use the plasma part for tissue dis-
sociation, after direct advice from MD Siggard-Andersen. For oxygen we
use a linear solubility with the coefficient a,, found in equation 4.30. This
reflects that no hemoglobin is present in the tissue, so the solution is simpler,
but may disregard the effect of other oxygen binding proteins. In the muscles
an oxvgen binding protein called myoglobin is present, but we have not found
any quantitative information about the binding of myoglobin with oxygen.
The changes in the oxygen stores in the muscles happens slowly as the mus-
cles is low perfused, and the effects of such change on the rest of the body are
very small. In case of anaesthetic agents the dissociation curve is assumed
to be linear. The solubility coefficients of anaesthetic agents determines the
stores of substance in the tissue. The stores in low perfused areas are of
greater importance for anaestetic agents than for respiratory gasses, as large
variations in the concentration of drugs occurs, while the respiratory gasses
is restricted from variations by the central nervous system. This control will
" be discussed in next section.

4.5 Control of respiration

The substances carried by the blood transport system are vital for the body.
Lack of O, in even short periods causes brain damage, but damaging effects
are normally avoided, because the system is controlled in order to match
the pulmonary and the metabolic gas exchange rates. In this section we
will discuss the control of the respiratory system, which is performed by the
central nervous svstem. The description is made in order to make it certain
that the models we have developed can interact reasonably with the future
model of the control by central nervous system.

Before we discuss the control system, we will draw some attention to the dy-
namics of the transport model as we have modelled it. The system already
contains some mechanism to improve utilization of the oxygen and elimi-
nation of carbondioxide as a reponse to disturbances. In case of increased
metabolic rate, the diffusion of oxygen and carbondioxide between blood and
tissue increases because of an increased tension gradient. An additional im-
provement of the oxygen deliverance is caused by the Bohr shift. Increased
‘metabolic production of CO, will effect the pH value in blood. At decreased
pH, the oxygen dissociation curve is shifted to the right. This impairs the
oxygenation of blood in the lung, but the negative effect is small compared
to the improved release of oxygen in tissue [Nun]. In the same way, the Hal-
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dane effect shifts the carbondioxide curve with respect to the oxygen level
in blood, and yields a difference in quantity of carbondioxide carried in oxy-
genated and reduced blood (at constant carbondioxide tension). This results
in an improve of the gas transport as well. '

The principal features of behavior of the respiratory control system are to
reduce the sensitivity of the:system-to external disturbances- Thus the signal
from the central nervous system counteracts changes in the body. The behav-
ior of the respiratory control system is conveniently described by a look at the
response to exercise of a healthy person. Though one must be aware of the
fact that the principal controlling mechanism is not similar under different
conditions [Nun](s. 72).

Under moderate exercise the person will be able to compensate for the in-
creased metabolic rate by a raised ventilation and blood flow. A sufficient
oxygen supply is thus maintained and a new steady state can be found. At
heavy exercise the supply becomes too small and anaerobic production will
occur. How long time the work can continue depends on the level of arterial
blood lactate. Lactic acid is the principal product of anaerobic metabolism,
but ionizes to lactate and hydrogen ions. If the lactate remains constant, a
state which is steady can exist during the exercise. After work has finished,
there will be a period of recovery when the oxygen debt has to be repaid in
order to oxide the products of the anaerobic metabolism. The mechanism
for obtaining this pattern is found in the control syvstem.

The controlled variables

The central nervous system affects the respiratory system by changing the
ventilation, the blood flow, and the cardiac output. However, other systems
affect the heart through the central nervous system. and hence the effect on
the cardiac output is a combination of stimuli from the respiratory syvstem,
the baroreceptors, and other systems.

The controlling variables

The most important input for the control of ventilation is from the peripheral
and central chemoreceptors. The peripheral receptors are called the carotid
and aortic bodies. They are sensitive to changes in the arterial blood, and are
stimulated by an increase hydrogen ion concentration, an increase in tension
of CO, or a decrease in tension of O, tension. The central chemoreceptors are
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located in the medulla, a center in the brain. They are stimulated by change
in thehydrogen ion concentration.

As mentioned the heart is controlled both by variables from the transport
model and from the cardio-vascular model. The controlling variables from
the transport model are arterial tensions of O, and CO,.

An external control system

The anaesthetic agents affect the body and thus the transport system. The
effects of the drugs must will be included in the simulator by the models of
the pharmacodynamics. When a person is left to the operating theatre, he is
anaesthetized. Drugs are given for different purposes, some drugs will make
sure that the patient is unconsiousness, others will relax the muscles, and
thus the automatical functions of the body are reduced or even absent. The
automatical functions are primary the ventilation and the heart beat. These
functions as well as the control of them, must therefore be performed by
external sources, and the medical staff take over the control with the system
in order to maintain a sufficient transport of the respiratory gasses and avoid
or reduce disturbances of this transport.

Conclusion

We have now presented our models of the respiratory system, piece by piece.
The equations in chapter 3 and chapter 4 constitutes our model, which reflect
the physiological svstem described in chapter 2 in a way we find will meet
the requirement of the SIMA group. In the next chapters we will present
and examine the model as a whole, to support this claim.
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Chapter 5

Solving the model

In this chapter we will establish an overview of the model equations, which
will be summarized without anv regards to the basic assumption or the in-
terpretation of the equations. The purposes of this equation review is to
emphasize which equations constitute our model, and further describe the
tvpes of the model equations by writing these in a compact form. This will
ease a discussion of the mathematical properties of the model, found in sec-
tion 5.2, in which the existence, uniqueness and stability of solutions to the
differential equations are discussed.

The equations of the total model have the following form of an ordinary
differential equation:

x= f(x.tip). (5.1)

where x is the state vector, t the time, and u the parameters. The state vector
x consists of the state variables for the lung model and the blood transport
model. To ease the discussion of the model, we split the model equations
_into the equations concerning the lung model and the equations concerning
the blood transport model and the model equations now read:

XB

(""~) = F(xz. x5, 1), (5.2)

where x; are the variables of the lung model, and xp are the variables of
the blood transport model. The variables x; and xp are themselves vectors,
consisting of all the variables for pressures and gas fractions in the lung and
tensions or concentrations in the transport system. The size of the x vector,
and thus the total number of equations in the model, with n, substances,
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and n, alveoli compartments is then
n= (134 ny)ns + (n, + 1)(ns + 1),

as each of the (13 + n,) transport compartments requires n, variables; and
each lung compartment requires one pressure variable and n; fraction vari-
ables. In the case with one anaesthetic agent n; = 3 and Just a single alveoli
branch n, = 1, the number of equations is 50.

In the situation when a particular compartment is in focus, the components
of the vector variables refer to the content of each of the n, substances of
the model. Such vectors are called compartment vectors and for these, we
have uniformly used the principle that the first coordinate is carbondioxide,
and the second is oxygen. For instance is the tension compartment vector if
ns = 3 containing the following elements:

Pco,
P=1{ Po (5.3)
Daa
where aa denotes the last substance, which the model keeps track of.

If the vector variables of the model are used globally (or at least for more
than one compartment), they will have one component for each compartment
in the model, in all n, + 13 components, which are vectors themselves, repre-
senting a compartment vector each. The tension vector contains for instance
the following elements:

Pliver

Phreart

p= (5.4)

Puenous pool

where the dots represent the last of the n, + 13 compartment vectors. Each
element in 5.4 is given as in 3.3. We do not in our notation distinguish
between these two kind of vector variables, as it appears from the context,
which one is used.

5.1 Model summary

In the following we will summarize the equations of the model, the equations
of the lung model in 5.1.1 and the equations of the blood transport model
in section 5.1.2. The blood transport model contains submodels for the
metabolism, the dissociation of gasses, and the pH value. These will be
included in the summary in sections 5.1.2, 5.1.2, and 5.1.2.




5.1 Model summary | ‘ 71

5.1.1 The lung model

The lung model, which determines the vector x;, consists of two models
of differential equations, the pressure model and the gas model. The state
variable of the pressure model is input to the gas model. The lung model has
two equations per compartment, a one dimensional from the pressure model,
and a n, dimensional from the gas model.

The pressure model from section 3.1:

1 - '
0= == (Un ~po— Ro 3 Cip M1
Po RoCo( po — Ro 2 pi) (M1)
) 1 . . .
pi = R1C1 (po -Di— [Jt), 1= 1, 2, Ny (.\IZ)

The gas model from section 3.2:

; RT I_(Um = po)(fe = f0) | = I(pi — po)(fi — fo)

fo = . -+ ,

* po(poCo + "oo)( Ry Z R; (M3)
RT I_(po — Uy — pi)(fo — i)

Po(PoCo + Vo0) R;

. RT;

" pi(Ciopi + Vo

i=1

f,":

)K'(pcp - pifi). i=1,2,...n, (M4)

where subscript 0 denotes the central lung compartment. and i denotes the
1-th alveoli branch.

The state variables in equations M1 to M4 are the vector x; in equation 3.2.
As the pressure model is independent of the gas model, the lung model can
be written in the linear form:

)
)

ot

(&) ]
D Ot

p = Ai1p+ Biu(t) (
f= Ag(p(t))f + BgUz(t, p(t)) (
where A, and B, are constant matrices, and u; and u, are external input

depending on Uy, Uy, and f.. The matrices A; and B; depend on the solutions
p(t) of the pressure model.
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' 5.1.2 The transport model

The transport model consists of the differential equations for the compart-
ments. In addition the differential equations rely on the dissociation curves
and the metabolism. There are two kinds of differential equations; one in
which the substance tensions p are used as state variable and another with
the substance concentrations ¢ as state variable. We could use the tension
everywhere, but it would introduce unnecessary complications in the equa-
tions for the peripheral blood pools, in which the concentration is used. In
compartments with more than one solvent, tensions are the only possible
state variables, as there might be different solubilities of the substances in
the blood and the tissue. Thus there are two concentration vectors for such
compartments, ¢; for the tissue concentrations of substances and ¢, for the
blood concentrations.

The pulmonary compartment from section 4.1.2:

C_i_pﬂ = (V, ﬁ)-l

i bdpcp (Q(1 = A)(cs(pus) — co(Pep)) + KP4 — Pcp)) (M5)

The central pools from section 4.1.3:

dpas dey
e (Vo) QU(1 = A)es(Pep) + Ach(Pus) = Co(Pas)) (m6)
dt dpas
dpys dey
gt = ( bd d ) 1Q(zvpvcvpv.' + ZypiCupt + ZadCupe + zscb(pas) - cb(pvs))
pvs A (.\47)

where

Zypr = 2)i + 2ki + Zhe T+ 2br + Zre
Zupl = Zmu + 2¢0
z,=1-— (zvpv + Zypt + zad)

The organ compartments from section 4.1.1, 7 € {li, ki, he, br, re, co, mu, ad}:

dp; _ dc, dep\ . ) — )
-E = (V dp Vbd b) (Zz (Cb(pas) - cb(pz)) + M+(Ct(pz)) M-—(Ct(al/zgg
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The peripheral venous pools from section 4.1.3:

dcypy Q(Zie{li,ki,he,br,re} 2iCy(Pi) — Cupy)

v 7 (M9)
dcyp _ Q(Zie{co,mu} 2 (Pi) — Copt) (M10)
dt \A
dcvpa _ Q(zadcb(pad) __Cvpa)
3 - 7 (M11) .

The parameters V;, and V; are volumes of blood and tissue in each compart-
ment, and are consequently different parameters in each equation, while @
is the cardiac output and thus global.

Each of the differential equations have a dimension corresponding to the
number of substances transported, i.e. the variables of the equations are
Vectors.

The metabolism

The metabolic functions M_ and M. for production and consumption re-
spectively are submodel of the transport model, as described in section 4.2.
The metabolic functions are used in the differential equations of the organ
compartments with the tissue concentration of the compartment as argu-
ments, c.f. M8.

0
M_(¢) = | Moz (M12)
\,

7885, 4+ Caa
—‘wcoz
M.(c) = 0 (M13)
0

The parameters 3; and M; are compartment specific.

The pH model

The pH model is used in the functions of the 05 and CO, dissociation, which
is input to all differential equations of the transport model. The pH is the -
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negative logarithm of the hydrogen-ion concentration, which is implicitly
given as function of the total concentration of carbondioxide cco,:

:ISH(ch) = —log([H"]) ; ': (M14)

as the concentration of hydrogen ions [H*] is found from the following third
degree polynomial equation:

0= [H*]° + aa[*] + a1(ccor)[H'] + a0(ccor) (v15)
where the coefficients of the polynomial are:

Qg = Ka,Pr + [Z\'aOH]o + Ka,CO
a, = Ka,co([NaOH]o - Cc02) -+ Ka,Pr(Ka,CO -+ [.\'aOH]g - [HPI‘}Q)
ap = Ko,coK, pr([NaOH]o — [HPT]o — Cco,)

The dissociation function
The dissociation functions are specific for both the solutes and the solvents.

The vector function for dissociation of the various substances in blood are
implicitly given by equations from section 4.4:

Carbondioxide dissociation:

Coos (P, PH) =CES, (p. D) + cF12 (p. pH)(1 - =) (\16)
ch ch

E Ery -
co2(p pH) —ac02pc02(1 + 10 (p.pH)—pK (p,pH))) (M17)
cP12 (p, PH) =0l peo, (1 + 10PH-PK (1)) (:18)

PKE™ (p, pH) =6.125 — logyo(1 + 10PH"™ (Pp)=7-84=0.06+50, (p.pw)
(M19)

pHE™ (p, pH) =7.19 + 0.77(pH — 7.4) + 0.035(1 — s,,(p, PH))

(M20)
pK™'?(p, pH) =6.125 — logio(1 + 10°*~%7) + al&peo, (M21)

Oxygen dissociation:

Co, (P, PH) =06,Do, + CHbSo, (P; PH) (M22)
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" Oxygen saturation:

_ 1
T 1 + e—v(p.pH)
y(p, pH) =1.875 + z(p) ~ zo(p, PH)
+ h(p) tanh(0.5343(z(p) — zo(p. PH))) (
h{p, pH) =(3.5 + a(p. PH)) (
z(p) =log(po,/kPa) (M26)
Zo(p, PH) =1.946 + a(p. pH) + 0.055(T/°C - 37) (
a(p, pH) = — 0.72(pH — 7.4) + 0.09 log(pco,/3.33k Pa)
+ (0.07 — 0.03z1ps)(Cdpg/mmol/l ~ 3)
— 0.368zbco — 0.174xy; — 0.28Txys ('.\'128)

802 (p) pH)

Anaesthetic dissociation:
caa(p) =0gqPaa ‘ ('\129)
The equations M14 to M29 implicitly define the function c,(p):

cCOz (pCO'z H poz: pH)

Con . Do, PH
) =| O™ (a0

Thus the dissociation functions for CO, and O, depend on the tension of
CO, and O, and on the pH value. We have furthermore based the numerical
solution of the differential equation on the assumption that the dissociation
of the various anaesthetic agents aa are only depending on the tension of the
respective agent and not influencing other substances.

The dissociation of various substances into tissue ¢; is a vector function ana-
logue to the blood dissociation, discussed in section 4.4.5.

cgcl)z (pC02 s pH) .

=] o s

The dissociation of oxygen in the tissue cf,2 is modelled to be independent of
the carbondioxide concentration, and thus the expression is less interdepen-
dent than the equation defining the blood dissociation.
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" The dissociation functions are only implicitly given, but solving the equations
can be done by finding the carbondioxide concentration, since the pH value
~ depends solely on this, and all the remaining quantities (so,, ¢o,) depend only
~ on p and pH. ) ' '

The differential equations of the transport model involve the partially deriva-
- tive of the «dissociation functions. The partial derivatives of the implicit -
function are found analytically in section 5.2.2.

The transport model in a general form

For practical reasons we have two kind of state variables in the differential
equation of the transport model. But to discuss the mathematical properties
of the system, this is a confusing and hence inappropriate form. We will
therefore rewrite all differential equations in order that the arguments of the
all equations are in concentrations.

For that purpose we will introduce two functions -, and -,;, which convert
the state variable of the blood transport model xg to the corresponding
concentration in blood and tissue respectively. This is done by compartment,
and for compartment j the coordinate function of the v functions are defined
in the following way:

¢s(xB;) when cmpt. 7 has pressure as variable
65 (XB;) =

XB when cmpt. j has conc. as variable (5.7)
i (xp) = ¢/(xp;) when cmpt. j has pressure as variable
MBI gy when cmpt. j has conc. as variable (5.8)
where xp; denotes the state vector of compartment j.
Now we can write the differential equation on the nonlinear form:
% = Blxe, 1)1(x) + Cloxe, t)n(xe) + u(t), (5.9)

where u(t) is the external input. B holds the transport relations, and C
holds the metabolism. B extends a 14 x 14 matrix for the 14 compartments,
in which every element consists of the state vector of at least 3 substances
carried around. Totally we have an 42 x 42 matrix. The 14 x 14 matrix
contains nonzero elements in the diagonal, and whenever the state variable
of another compartment is part of the differential equation, which models
blood transport into the compartment. The matrix C has the same size as
B, but is a diagonal matrix, as the metabolism in a compartment depends
only on the concentration of the tissue.
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5.1.3 Interactions of transport and lung model

Interaction between the lung and the transport models occurs only between
the gasses in the alveoli, represented by the partial pressures fp and the gas
dissolved in the pulmonary capillaries represented by the tension vector pcp.
see equations M4 and Mb5. ‘

In the final simulator the intention is to letting the lung and the transport
model run with different step lengths, and thus some ingenuity will be needed
to find a reasonable way to share these values, but we have not done anything
to this effect. When we use the two models together we simply run at the
same time scale.

5.1.4 External inputs

The external input to the models is in the pressure model the two external
pressures of the lung model U,, and U, representing the natural and artifi-
cial ventilation respectively. The gas model has the composition of inspired
air f, as input. The transport model has inputs from other models of the
simulator, as the blood flow is determined by the cardiac output @ and the
distribution of the blood flow to the various organs z;. Furthermore there
might be changes in the metabolic rate, either with these as input from the
temperature model or in the simulation situation ’

5.2 Existence, uniqueness, and stability of so-
lutions

In this section we will analvze the model in order to conclude the existence
of a solution for particular initial values, which are always positive. In case a
solution exists, we will discuss the stability of the solution, when the system
has only constant external influences.

5.2.1 The lung model

In the overview section, 5.1, we reduced the lung model, in equation 5.5, to
the following form:

p= Ai1p+ Biui(t) (5.10)
f = Ax(p(t))f + Ba(p(t))ua(t, p(2)) (5.11)
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where 5.10 is the pressure model, and 5.11 is the gas model.

Since A; and B, are constant matrices, the pressure model is linear. There-
fore a global unique solution exists for any given initial condition. The so-
lution will be asymptotically stable if all eigenvalues of the matrix A; has
negative real parts. As the model equations are derived from an electrical
network with only passive components,we know that no eigenvalues with
positive real parts exist. In order to.ensure the eigenvalues to be nonzero, we
can by examination of the network, see figure 3.4, ensure that energy in the
system will always be lost, and thus that all eigenvalues have negative real
parts.

When p(t) is regarded as an external function the gas model is a linear system,
with a non-constant matrix A,. If each function in A, is continuous it can
be proved that the system has a global unique solution for a given initial
value problem [Far0, Theorem 6.1]. This is the case with our 4, matrix, in
which the only non-differentiable function is I.(z), which is continuous in 0,
even though it is not differentiable in 0. The stability of the system in 5.11
depends on the eigenvalues, which can be considered as functions of time. If
the eigenvalues have negative real parts, that are bounded away from zero
the system is asvmptotically stable.

5.2.2 The transport model

The existence of solutions to the differential equations of the transport model
depends on solutions of the submodel equations. In order to ensure existence
of solutions to the differential equations, the requirement to the submodels
is that solutions exist to all initial values, and that the solutions are C!
for positive values. Furthermore the derivative of the dissociation functions
%f; are used in the differential equations of the transport model. Thus it is
required that these are C! (at least for positive values) as well, which implies
that the dissociation functions must be C>. We will discuss the solutions of
the submodels first, and then continue with the transport model. Finally we

will consider the stability of solutions.

The submodels of the transport model are the metabolic functions, M_ and
M., and the dissociation functions c;(p) and c;(p), which again depends
on the pH model. For the metabolic functions, c.f. M12, the requirement
of the functions being C* is met for ¢ > 0. The submodel concerned with
dissociation is more complicated, this is the subject for discussion in the
following sections. Since the dissociation models depend on the pH model we
treat this first.
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The pH model

The pH model is a third degree polynomial equation with coefficients ao and
a, described as function of the carbondioxide concentration.

g(2) = 2% + ap2® + a1(c)z + ap(c) = 0 (5.12)

The equation g(z,c) determines the relation between z = [H¥] and ¢ =
Cecop- As the coefficient of z° is 1 and hence positive, the polynomial will
tend to +oc for z — oc. Thus if g(0) < O there must exist at least one
positive root. To decide when there is exactly one, we look at the derivative
¢'(z) = 322 + 2a3z + a;. The sum of the roots of ¢’(z) is —2a,. Since
a; = K,pr + [NaOH]y + K, co is always positive the sum of the roots
is always negative. Therefore at least one of the roots is negative. Thus
for g(0) < 0 the function g cuts the positive half of the axis exactly once.

g(0) = ag and hence the condition for a unique positive solution is
a0 = KocoKapr(INaOH)y — [HPro — Ceo,) < 0 (5.13)

equivalent to [NaOH}y — [HPro — Cco, < 0. Our naive chemical interpreta-
tion of this limitation is that the total amount of acid must outweigh the total
amount of strong base. The limitation seems reasonable when compared to
the physiological pH range.

Later, when we find an expression for the derivative of the implicitly given
dissociation functions. we will make use of a positive sign of pH function
differentiated with respect to the carbondioxide concentration c¢co,. It is our
expectation from our knowledge of the physiology, that the pH function is
decreasing for increasing cco,. However we will mathematically investigate,
when it is obtained that the derivative %D?H is negative. Since pH = — log(z)
this implies that % > 0. Equation 5.12 implies that 0 = @cf—f;i), hence we
- can express 32 by:

_0g 0g 090z .
0—.3_C—§+626C (014)
Which implies, when gf # 0:
8z (dg\ "' dg - s
ac (Bz) dc (5.13)

= (327 + 200z + 1) (2K co + KacoKa,pr)
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By examination of the terms in equation 5.16 we find that all terms except
for a; is always positive as a consequence of their nature. To ensure that %ﬁ
is negative we must therefore require that a, is positive.

a) = Ka,co(—{NaOH]o — Ccoyp + Ka,Pr(Ka;CO + [N(J,OH]O - [HPT]()) >0
(5.17)

This provides an upper limit on cco,. Inserting the parameters given in [Chi0],
we find that this upper limit does not influénce the physiological range of the
carbondioxide concentration. In the allowed range the pH model is found to
be C2. Now we have ensured the necessary properties of the pH model, and
will continue with the dissociation functions.

The dissociation curves

The first problem in the model of the dissociation curves is to ensure that the
dissociation curve for CO, has a solution, as the definition of cco, is implicitly
given by the following equation:

Ccoy = %(p, pH(CCOQ)) (5-18)

Using the monotonicity of pH(¢cco,) and ¢s(p, pH) we can prove the existence
of a unique solution: The curve py(cco,) is always decreasing as the derivative
is negative:

8oy _ Opy OpH
9¢co, OpHOcco,

The first term is positive for all values of pH, and the second term is found
to be negative in the last subsection (5.2.2). Thus for any constant p, we can
conclude that there is only one intersection between the curves ¢ = cco, and
¢ = vp(pH(Ceo,)- When the pH value is found, the rest of the dissociation
functions are given by explicit expressions.

<0 (5.19)

The second problem is finding the partial derivatives of the dissociation

curves g—;. Even without an explicitly given function for the cco,, we can

find g% analyvtically by use of implicit differentiation in the vector space.

Reordering equation 5.18, we have:

F(p,c(p)) =0 (5.20)

Since the differential equations of anaesthetica are assumed to be independent
of other gasses and vise versa, the functions split up into two independent
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parts; the part for the CO, and O,, and a part for the anaesthetic agents.
Therefore only the first two coordinates of 5.20 are of interest:

- (2)- () -(2)- ()
F2 @02(p7 pH(C)) Coy 0 (5_21)
Implicit differentiation yields

OF OF dc

0= —+ —— - (5.22
op M Oc Op (522)
We want to know the Isolatmg this term when £ — is evaluated at (p,¢)
we find. that:
dc _(OF\7'( OF i
5= (%) (‘a?) (5:29)

We can prove that this matrix has full rank for all (p,c(p)) in 5.20 and hence
ensure existence of the inverse matrix.

Differentiation of F' with respect to p and ¢ vields

oF O9con GpH 1 9’co dpH
< ) 6pH 3Ccoo 6pH aCOQ >
1

ac 8¢o, 8 42![ 67702 BEH
OpH acc02 OpH dco,
B‘r’co')
_ OpH acm -1 0 3.94
- 8&900 EH -1 (D"- )
apH aCc02
The last equality follows because pH = — log[H*] and the H™* concentration

is a function of the c¢o,, but not ¢,,. Then we only need to convince ourselves.
that the first matrix element
avcm OpH
OpH (9c¢02

(5.25)

. . . 3, . . .
differs from zero. This is always true, since ﬁl is positive and a%? is
negative. The inverse matrix yields: i

6F)"1 A 0 )
—_— = 8¢o 5.26
(0c (—a;,ggggA —1) (5.26)
where
0¥co, 3pH -1
A= ( SpH Bo -1 (5.27)
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Inserting in equation 5.23, we get following result:

3¥’coz Oco,
- —————
@ e a4 A 0 3pc02 BPOZ (—- 28)
9p - "oy OpH 4 _q Bpor  OPos 9.
OpH Occo, - 8pcos  OPo,
a‘r"COo 6ipco4,
— Opcoy © Opo -
—_' 3‘Pc67>B 2_ 0oy Bpco, Bz_ Bo, ) : (329)
Opeog 8pcoy  Bpo, 8po,
where
0o, OpH }
B= (774 (5.30)
- \ OpH J8ceo,

This expression is used for both blood and tissue. In the tissue there is no
dependence on CO, and pH on the oxygen dissociation. Furthermore the CO;
dissociation is independent of O,. Hence several elements in the matrix 2%

ap
for tissue turns out to be zero, and we find:
8t
COz
0 _ _ | Fpear ;) (5.31)
0 _ %oy
P 0 aPOQ

where the ' are the dissociation curves in tissue, which differs from the one
in blood. We will not list the expressions for %9: and %‘pﬁ here, since they are
long and rather uninteresting. They appear as part of the program source
code in appendix A.3.

Due to these investigations we can conclude that p determines a unique c,
and that g—; is C1.

The compartment differential equations

The differential equations forming the compartment model are on the non-
linear form (5.9):

X¢ = B(xe, t)1p(xe) + C(xe, )7 (xe) + u(2), (5.32)

To ensure the existence of a local solution it suffices to demand that all

functions on the right hand side of 5.32 are C! in the interval of interest,

which is restricted to positive, nonzero reals. By inspection of the functions

in section 5.1, and the derivatives found in section 5.2.2 it is possible to verify

that this is the case, provided that the inverse matrices of the expression
dCt dCb

—_— 4 V,— 5.
thp + b (5.33)
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exists and is C*.

We have ensured existence of each of the matrices and their inverse each
apart, but this does not guarantee existence of the inverse of the linear com-
bination of the matrices. Investigation of the signs of the matrix elements
does not ensure that the determinant is non-zero. Thus the inverse matrix
does not necessarily exist.

The analogue physiological problem is if 0O, and CO, always dissociate in
a unique way, or whether the systems include hysteresis, where a solution
may depend on the history. Our insight in the involved biochemistry are
primary acquired from the models, and thus we are not sure whether this
is a situation to occur in reality. We will leave it to the programmers to
control that a singularity does not come into existence in the available range
of parameters. ‘

Apart from the existence of the inverse matrix, the differential equations
defines a model with a unique local solution. The pH model limits the range
of tensions to an interval ]a; b[, containing the physiological range.

5.2.3 Stability of the transport model

A mathematical investigation of the asymptotical stability of the non-linear
transport model would include finding equilibrium points of the system when
the external inputs are constant. An equilibrium point is a constant solution
to the equations that corresponds to a point where the right hand side of
the differential equation vanishes. However, due to the size of the model and
the nature of the equations this task is unrealistic. In addition deciding the
stability of the equilibrium points would mean finding the Jacobian matrix
for all the equations.

In the following we present some intuitive arguments about the stability of the
transport model. We are fully aware that these are in no way a mathematical
analysis of the model, but since such an analysis is too extensive to carry
out, we feel that the intuitive arguments are in place.

A weaker stability than asymptotical stability is marginal stability. A sys-
tem is marginally stable if the state of the system remains bounded for any
bounded input [Heh, Def. 17.1]. We find that the nature of the compartment
model allows us to argue for marginal stability.

The basic principle of mass balance in our compartmental equations ensures
that no state variable can be negative, and that the sum of all the state
variables is the total amount of matter in the system. As a consequence each
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~ variable in the system is bounded as long as the total amount of matter in the
system remains bounded. There are two ways matter can enter the system,
_either from the alveoli or from metabolism. The amount of matter entering
through the lung membrane will tend to zero as the tension of the substance
in the pulmonary capillaries tend to ps, and hence a bounded p4 cannot
_infuse an infinite amount of matter. If the ventilation is not eliminated by
the lung membrane permeability x = 0, there will exist a finite tension that
balance any bounded metabolic production. And as the blood flow in the
svstem ¢ > 0 production in the organs exceeding the ventilation will raise
the tension in the pulmonary capillaries. Therefore the system would be
marginally stable, if the domain of all submodels was R} . As this is not the
case for the pH model, too high metabolic rates for the CO, production would
- introduce CO, tensions outside the range of the pH model. In a system with
control a high CO, production would increase ventilation and blood flow to
increase the excretion and thus reduce this problem.

Our intuitive conclusion is that the model will be marginally stable for a
range of parameters, and that a control system will extend this range.




Chapter 6

Parameters of the model

The listing in chapter 5 shows that the model contains many parameters.
Yet, most of the parameters represent physical or physiological quantities;
and must therefore take values that can be estimated independently of the
model. However the model contains a few parameters that do not represent
meaningful (or measurable) quantities outside the model. In this chapter we
will state all the parameters of the models, in order to document our model
and further to discuss the principles used when estimates have been made.

Even though most parameters are bound by the quantities they represent,
differences in the nature of the parameters exist. We have found that the
parameters fall into four rough categories:

Physical: Well defined physical quantities, which only under different cir-
cumstances (like a changed temperature) change in accordance to phys-
ical laws, but the values are not to be changed from the theoretical
values. These are values like the gas constant, R, equilibrium constants
for chemical reactions, and air density.

Measurable physiological: Parameters that represent physiological quan-
tities are less well defined than the pure physical parameters, since bi-
ological systems show more variation. Thus values like the hemoglobin
concentration, the blood and tissue volumes, and the lung dimensions
are measurable, but will change from patient to patient.

Non measurable physiological: These are the parameters that in a less
direct way represent measurable quantities. Many physiological quanti-
ties require measurements in vitro, an example is the pulmonary mem-
brane flux coefficient . This quantity is not available because the
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equipment for measuring the membrane flux in vitro does not exist,
but yet the parameter represents a well defined physiological quantity.
The estimate of the non measurable parameters of the model will be
discussed in this chapter. ' '

Statistical: The last category are parameters which are not contained in any
of the above groups. This is the parameters used for fitting particular
curves like for instance some of the parameters in the blood dissociation
functions. ' ' '

For a resume of the parameters of the models, we can conclude that the
lung parameters are partly measurable quantities from the literature, partly
estimates based on the anatomy of the lungs, see section 6.1.

Most of the parameters of the transport model are physiological measurable
parameters directly taken from the literature, see section 6.2. An exception
is the dissociation curves for the injected anaesthetic agents, which are es-
timated on basis of the three compartment models used for describing such
agents, see section 6.3.

The metabolic rates of each compartment are calculated on the basis of aggre-
gated values found in the literature and the need to obtain a physiologically
correct equilibrium point of the model, see section 6.2.1

The pH model contains physical and physiological measurable quantities.

6.1 Parameters of the Lung Model

The physiological lung parameters are the compliance C and the unstreched
volume V} for each section of the lung; the resistance, R, estimated from the
area A, and the length [ of each passage between the lung sections. Further
parameters are the external pressure source U, representing the respirator
and the internal pressure source U; representing the respiratory muscles.

6.1.1 Parameters concerning the pressure sources

The graph of the external pressure source U,, representing the respirator is
found in [Bar]. Here typical graphs of the respirator pressure are plotted
as functions of time, and we have implemented alike graphs in the model,
see chapter 7. The pressure curves oscillate between atmospheric pressure
and 3 kPa above this in a continuous but non differentiable way, however,
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the precise pressure curve of the respirator depends on the respirator type
and the conditions of the patient. In the final simulator the lung model
will receive the pressure as input from the respirator, which is used in the
operating theatre during the simulations.

According to Rideout [Rid0] the internal pressure source, Uy, representing
the respiratory muscle, creates a pressure that is well approximated by a sine
curve. The amplitude and the frequency are found so that a physiological
tidal volume and ventilatory rate are obtained. The tidal volume at natural
ventilation is 0.5-0.8 1, and the frequency is 10-15 breath /minutes.

6.1.2 Parameters concerning the laminar flow

When finding parameters for the 1+ n, resistances, representing the air flow
resistances between the lung section, two approaches can be made, either
to calculate the resistances from the dimensions of the tubes the air flows
through, or find values in the literature. '

The first resistance Ry represents the resistance of the conducting airways of
branching generation 0-19, while the remaining parallel resistances represents
the resistances of respiratory zone of the lung, branching generation 20-
23. Since each generation of the airways consist of 29 tubes, where g is the
generation number, the total resistance of a generation can be calculated
from the resistance of each tube in the generation.

When the pressure model was described. see section 3.1, the resistance of a
laminar airflow through a tube with length ! and radius r was found to be

81ln

o ri

i

R= (6.1)

where 7 is the viscosity of the gas. From equation 6.1 the resistance in each
generation of tubes in the branched airways is calculated as

_ 8lIn
T 297 rd
where 29 is number of tubes in the ¢’th generation, see table 6.1. Thus an

estimate of the resistances in our model can be calculated as the sum of the
serially connected resistances in the generations of the tubes.

R

(6.2)

Table 6.1 also provides some literature values for resistances of the genera-
tions of branching [Wes2].

Our lung compartments represent the upper airways (generation 0-19) and
the alveoli (generation 20-23). As resistance between compartment 0 and
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g | dmm] [[m] R [kPa s/1]
7 Calc. Lit.

0 | 18.00 | 0.1200 | 0.00088 | 0.00680
1 | 12.20 | 0.0476 | 0.00083 { 0.00700
2 | 8.30 0.0190 | 0.00077 | 0.00740
3 | 5.60 | 0.0076 | 0.00075 | 0.00790
4 | 450 | 0.0127 | 0.00150 | 0.00830
5 | 3.50 | 0.0107 | 0.00172 |-0.00760
6 | 2.80 0.0090 | 0.00177 | 0.00610
71 2.30 0.0076 | 0.00164 | 0.00440
8 | 1.86 0.0064 | 0.00162 | 0.00330
9 | 1.54 | 0.0054 | 0.00145 | 0.00230
10| 1.30 0.0046 | 0.00122 | 0.00130
11 ] 1.09 0.0039 | 0.00104 | 0.00100
121 0.95 0.0033 | 0.00077 | 0.00030
13| 0.82 0.0027 | 0.00056 | 0.00025
14| 0.74 0.0023 | 0.00036 | 0.00020
15| 0.66 0.0020 | 0.00025 | 0.00020
16 | 0.60 0.0017 | 0.00015 | 0.000153
17 | 0.54 0.0014 | 0.00010
18 | 0.50 | 0.0012 | 0.00006
19| 0.47 | 0.0010 | 0.00003
Ry Generation 0-11 | 0.01521 | 0.06340
20 | 0.45 0.0008 | 0.00001
21| 0.43 0.0007 | 0.00001
22| 041 0.0006 | 0.00000
23 | 0.41 0.0005 | 0.00000
R, Generation 12-21 | 0.002

Table 6.1: The dimensions of the airways [Gro] and the calculated resistances
to airflow in the generations of branching compared to values of the resistances

from [Wes2).

the atmosphere we have used the resistance from the upper 12 generations
(0-11), to represent the resistance from the atmosphere to the center of
the compartment. The resistances in generation 12-21 have been used to
estimate the resistance between the center of the central compartment and
the center of the alveoli. As it can be seen, the calculated resistances in
table 6.1 do not match the values from [Wes2] well in the first generations.
Reasons could be that the simplification of the airways to cylindric tubes are
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too rough, and that the measured values include some effects of turbulence
that increase the resistance. Another reason might be that the resistance of
the elastic tubes is not constant during the ventilatory cycle and the standard
diameters and lengths are concerning another stage in this cycle, than the
resistance from [Wes2]. None of the references discuss the variation of size
.of the airways with the pressure.

In situations of artificial ventilation, the resistance of the upper airwayé, Ry,
must include the resistance of the endotracheal tube, since this is inserted

through the mouth to the upper airways, 1o connect the respiratory mask

[Bar]. We have used the physiological values found in the literature ([Wes2]

and [Rid0]) for the experiments with our model, but performed some fitting

as well, to obtain reasonable pV" diagrams, see section 7.1.1.

6.2 Parameters of the transport model

The parameters of the transport model are the quantities of the blood and
tissue volumes of the body V}, and V4, the pulmonary membrane permeability
K. the parameters determine the blood flows, which are the cardiac output
Q and distribution parameters z; and A, and finally all the parameters of the
submodels.

The cardiac output and the blood distribution fractions are supposed to
be output from the cardio-vascular model, but until the final simulator is
available, we have used the standard value 5.2 1/min for cardiac output, and
the fractions given in table 6.4. The blood and tissue volumes V; and V; are
listed in the table too.

The permeability of the membrane connecting the lung and the transport
model. K, is only indirectly a measurable quantity, and it is difficult to dis-
tinguish between the effects of a disordered membrane transport, a inho-
mogeneous perfusion/ventilation ratio or a increased pulmonary shunt. The
model is supposed to be usable for investigations of effects of a disordered
membrane transport and k gives the opportunity for differentiating the mem-
brane permeability of substances. We have not found explicit values for &
in the literature, but this has not really constituted a problem, since we
have not investigated the effect of membrane transport limitation. Thus the
elements of K has either been 0 or very large to indicate instantaneous equi-
librium over the membrane. The model implementation takes advantage of
large values of k to ensure real instantaneous equilibrium, see appendix A.
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In the following we treat the remaining parameters of the transport model
by submodel.

6.2.1 Fitting the Metabolic Rates

‘The metabolic rates are compartment specific functions of the concentration
in the particular compartment. In each functions for the consuming part of
the metabolism M_ there are two parameters, 7 and M. M describes the
maximum metabolic rate of the compartment, which is valid when the oxygen
concentration in tissue is high. 3 is the concentration where the metabolism is
half the maximum value due to lack of available oxygen. For oxygen we have
estimated § in such a way that the deviation from the maximum metabolic
rate at normal concentrations is 1%. This is done by setting 5 to 0.01% of
the tissue concentration at standard arterial tension.

Values for the metabolic rate can be found in the literature, but not as the
per organ metabolism we need, only as the following aggregated values from
[Fuk1]:

Mrain = 50 ml/min (6.3)
Mviscera = 175 ml/min 6-4
M pnuscles = 35 ml/min (6.3)

This is metabolic rates at rest when the oxvgen supply is sufficient, the sum of
these rates is 260, which is the total consumption rate. Under the assumption
that the viscera organs have a similar metabolism per volume unit, we have
estimated the metabolism of each organ from the aggregated values. A value
of the total carbondioxide production has then been distributed between the
organs by the same key as the oxyvgen consumption.

One of the most important properties of the model is that a physiological
steady state is obtained when standard input is used. The question is there-
fore, whether the total metabolic rate from [Fukl] harmonizes with the dif-
ference gas content of arterial and venous blood. The standard physiological
values are given in table 6.2.

At normal physiological steady state the tension of CO, is 5.3 kPa in systemic
arterial blood and 6.1 kPa in systemic venous blood. The tension of O, is
13.3 kPa in arteries and 5.3 kPa in veins. When these tensions are found
in arterial blood entering the organ compartment, the total metabolic rates
for production and consumption (M, and M_) of CO, and O, can be found
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arterial blood | mixed venous blood
Peo, (kPa) 6.1 5.3
Do, (kPa) 5.3 13.3
pH 7.4 7.37

Table 6.2: Standard values for pH, CO; and O, in blood [Nun, p-.208]

from the difference in concentrations in the arterial and venous blood and
the cardiac output:

M+ = QCOQ(pvs) - coz(pas) M— = QCC02 (pas) - Ccoz(pvs)

(6.6)
Inserting the steady state blood tensions p,s; and p,;, we find that in total
M_ = 6.13mmol/min of oxygen and M, = 11.52mmol/! of carbondioxide,

which is 258 ml/min and 162ml/min respectively: These quantities are in
harmony with the ones given by [Fukl].

We have therefore set the metabolic rate of the brain compartment to be 50
ml/min. The adiapose compartment is assumed not to consume and produce
anvthing. The remaining body compartments are grouped in two, one group
containing the muscles and connective tissue and one group containing the
viscera organs except the brain. There are still several ways to distribute
the aggregated rates of [Fukl] between these compartments. One possibility
is for instance to distribute the total rate in accordance with the fraction of
the total blood flow, such that the organs are assumed to be highly perfused
because theyv have a high consumption. This is not a physiologically correct
distribution, as the importance of other substances transported with the
blood might influence the distribution of blood to organs. We have therefore
instead distributed the rates of [Fukl] with respect to the tissue size of the
compartment. Thus for instance the maximum metabolic rate My, of the
muscle compartment are found from the equation:

My = 35—.h—. (6.7)

‘/mu + vco

6.2.2 Parameters of the pH model

There are four parameters of the pH model. Two are the chemical equilibrium
constants, K,co = 107%! mole/l, K, p, = 10772 mole/], and not subject
to change. The other two parameters are the physiological values of natri-
umhydroxide and proteinate concentrations, [NaOH], = 46.2mmol/l, [HPr} =
39.8mmol/l, from [Chil].
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6.2.3 Parameters of the dissociation models

The dissociation functions of the respiratory gasses in blood and tissue con-
tain the same parameters, as we have used the same dissociation functions
for tissue as the parts of the blood dissociation, which determine the plasma
concentrations.

Symbol  Standard value Description

all 0.195mmol/l1/kPa  Solubility of €O, in erythrocytes.

ol 0.230mmol/1/kPa  Solubility of O, in plasma.

Qo 9.83u mole/l/kPa  Solubility of 0,.

CHb 9.30mmol/] Total concentration of hemoglobin.
ZTHbf 0 Frac. of Hb that is fetal hemoglobin.
Tabco 0.005 Frac. of Hb that is carboxyhemoglobin.
TH; 0.005 Frac. of Hb that is hemiglobin.

CDPG 5.01mmol/1 Conc. of 2,3-diphosphoglycerate.

e 21.0mmol/1 Conc of Hb in erythrocytes

Table 6.3: Parameters for the dissociation of O, and 0,, from [Sig0].

The blood dissociation models by Siggaard-Andersen used for cO; and O,
have several parameters. The solubility coefficients: af%,af2 and o, are
physical parameters. The remaining parameters are the phyvsiological values
of the blood components, see table 6.3. and the blood temperature T = 37°C.
All these physiological parameters may be changed for particular simulations
if anvone wants to. Even though this does not seem to be the case for all the
quantities, we will leave it to the future users, to decide which quantities are

relevant to change.

For the anaesthetic agents the dissociation curves are supposed to be either
linear with a solubility coefficient o for each solvent. In case the agent is
protein binding, the dissociation curves are determined by the concentrations
of proteins in the solvent and the equilibrium for the chemical reaction of
drugs and proteins [And).

The solubility coefficients of the various inhaled anaesthetic agents are nor-
mally stated in the literature, but intravenous anaesthetic agents are in the
literature described by a compartment model, with three compartments, orig-
inated in the empirical data of the kinetics of anaesthetic agents. Examina-
tion of empirical values suggest that a well approximation by a linear combi-
nation of three exponential functions. The compartment model can be seen
as a way of visualizing the linear combination of three exponential equations
[Hul).
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For an intravenously given anaesthetic agents, the transport model contain-
ing a correct dissociation function for the agent ought to be an appropriate
description, as the substance is distributed by the same mechanism as the
gasses. If an agent is added to the blood, the substance will be distributed
in the body by blood circulation, which we assume is well described in the
blood transport model, and diffused into the tissue due to a tension gradient.
Hence an injected anaesthetic agent is just a new element in the state vector
of the transport model. '

Yet, the concept of tension of a dissolved liquid might not be as obvious as
the tension of a dissolved gas. Therefore we will state what the meaning
of tension is in connection with a liquid dissolved in a liquid. Just like the
case of a gas, the tension of a liquid in a liquid is a measure of how well
the solvent may hold an amount of the liquid. The lower the tension is
with a certain amount dissolved, the better the solvent is to contain the
liquid. Thus when distributing a liquid between two solvents, as in an organ
compartment, it is not the solubilities in each solvent that matters, but rather
the ratio between the solubilities. The three compartment model is a linear
model, and thus describes a linear dissociation of the anaesthetic agents. To
describe the dissociation of a substance in an organ by the solubilities requires
the transport of the agents through membranes to be sufficiently fast, so that
equilibrium in the body compartments can be assumed. According to MD.
John Jacobsen this is not an unrealistic claim.

The task is therefore to estimate the parameters of the solubility in our model
from the parameters of the three compartment model. We intend to do this
in accordance with an interpretation of the three compartment model given
by [Hul] and [Gib]. In the next section (6.3) we will therefore describe the
three compartment models, and then in section 6.4 determine the solubility
coefficients of the anaesthetica from the three compartment model.

6.3 The three compartment model

The pharmacokinetics of intravenous agents are usually described by param-
eters to two or three compartment models, illustrated in figure 6.1 [Olu]. The
central compartment represents the blood, and the two other compartments
are some kind of tissue compartments. Information about the dynamic of the
agents is given in terms of the rates k;;, in which the ¢ and j indicates the flow
is from the i‘th to the j‘th compartment. The rate ki, is the elimination rate,
and model how the agent is eliminated out of the body by metabolism and
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excretion. Finally a volume of the central compartment is stated, something
we will treat in detail later.

M
kiz | kis
2 11 3
ka1 - kn
ko

Figure 6.1: The three compartment model of intravenous agents

According to [Hul] and [Gib] the physiological interpretation of this model
says that the organs will not obtain an equilibrium state with the arterial
blood simultaneously. The different parts of the body receive a share of the
total blood flow, which is not controlled from the size of the organ, but rather
from the importance of the organ. This means that the kidney and liver will
for instance be highly perfused, while muscles and fat deposit receive only a
small part of the blood relative to the volumes of these parts.

The concentration of a substance added to the blood will increase fast in the
highly perfused organs, while the concentration in low perfused areas will
slowly creep to an equilibrium, as illustrated in figure 6.2.

The two peripherical compartments of the three compartment model are a
fast and a slow compartment respectively. If the substance dissolves equally
in any kind of tissue, the concentration at equilibrium will be the same all
over the body, but still the organs reach this point at different stages of the
distribution.

6.3.1 The equations and solutions of the 3 compartment
model

By considering the flow between the compartments, one reaches the following
differential equation, describing the change in the amount of matter in each
compartment [Olul:

—(kyg + k13 + ko) k12 ka I

dz
t
%f’ = k12 -k 0 T2
th& klg 0 —k31 X3 (68)
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Figure 6.2: Curves showing the amount of substance distributed by blood flow
to different perfused organs.

where z; is the amount of matter in the i’th compartment.

The initial conditions corresponding to an instantaneous injection of the drug
M into the blood are 1,(0) = M and z,(0) = z3(0) = 0.

We find the following solution to the system

I e’“‘
I, | =K | (6.9)
1;3 eA3t
where K is the matrix
M3 = (k21+k31) A +karka1) M2 —(ky+kgi ) ha=kaiks1)  M(A3—(ka1+ksi)As+kaiks))

(M=As}(A1=A2) (4\2—'\3)01—*2; (/\z—f\s)(h-f\sg
_(M(km(ksx—'\:)) + M(kzx(k:n—h))) M (k2) (k31 ~Xz2) M(ka; (k31 ~A2)
(A2=A3)(A1=A2) (4\2—1\3)(/\1—1\3§ (»\:—Aa)(h—f\zg (A2=Az)(A1—A3)
_(A““JI(kQI“'\?)) M (k31 (k21 =A2) ) M ks (ko) —2A2) M (ka1 (k21~X2))
(A2=A3){A1—A2)} (A2=As)(A1—As) (A2—Asj(A1=A2) (A2—A3)(A1=As)

and Aj, g, A3 are the eigenvalues of the matrix in 6.8, solving the character-
istic polynomial:

A3 4 (kya+kay + ki3 + ka1 ) A2 + (kroksy + krokar +ki2ks1 +kiakay + karkar ) A+ krokar kay = 0

To obtain a curve of the concentration in the blood from the above solution
6.9, the volume of the blood compartment has to be known. The variables
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can be changed from amounts to concentrations by dividing the amount by
the volume V; of the respective compartment.

zi(t)
(1) = —= 6.10
ci(t) v (6.10)
The volume V; is subject to some confusion in the literature, and thus we
find it relevant to clarify some definitions of volumes used in connection with
compartment models.

Apparent volume

An apparent volume is a virtual volume of a compartment, associated with
a measurement. It is the volume that the injected dose must be divided by
to obtain the concentration that can be measured after the injection of the
drug, see equation 6.10. This need not be the same as the physical volume
of the compartment, e.g. the volume of the blood [Hul].

Our interpretation of an apparent volume is that the drug is supposed to
combine with something in the compartment. to form a compound. that
is not included when the concentration is measured. A very fast chemical
reaction that is linear would satisfv such an interpretation. Linearity of a
chemical reaction is reasonable if the concentration of the drug is verv small
compared to the concentration of the substance it combines with.

However the literature is not quite clear in the interpretation of the appar-
ent volume, since the apparent volume in the literature [Gib. Hul] may be
ascribed to an insufficient mixing of the blood. In our view this interpreta-
tion of the apparent volume is not a useful quantity, since it will depend on
the exact circumstances of measurement. The mixing of the blood is closely
related to the transport of drug to the organ tissue, and thus the effect of dis-
tribution in the body is accounted for twice, both in the body compartments
(2, 3) and in the apparent volume. A model with more compartments is
based on an assumption of instantaneous mixing in smaller areas is therefore
supposed to offer a better description of the distribution.

We find that the latter interpretation is a confusion with the volume of
distribution, as described in the following.

Volume of distribution

The volume of distribution is a term from compartmental theory that de-
scribes the volume the blood compartment should have if the blood concen-
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tration of the matter in a steady state situation reflected a distribution of
matter only into the blood.

Thus the ratio of the distribution volume V; and the real blood volume V;,

expresses the ratio between the amount of substance injected, M, and the

amount of substance present in the blood, when equilibrium between blood

and tissue is obtained in a situation where the total content in the three

compartment is constant. This can be written
Vo _ Tie

AR (6.11)
where 1, is the amount of matter in the central compartment at equilib-
rium. The distribution volume can be expressed by the parameters of the
three compartment model, and enters in fact the solution of the differential
equations for the three compartment model. In a situation of equilibrium
the amounts of drug in the three compartments must satisfy

Since the total amount of matter in the model is the sum of the matter in
each compartment the equilibrium situation satisfies
kiz  kis

M=z, (1+224 023
le( k21 k31)

Inserting this in equation 6.11 vields the volume of distribution:

ki ki

Vai=V(l+ —+ —
a= W+

) | (6.12)

in which Vj is the distribution volume, and V} is the blood volume.

The volume of distribution is found directly from the solution of the three
compartment model, by setting the elimination ko to 0, and examining the
solution. In this system one of the eigenvalues becomes zero, since they are
the solutions to the following characteristic polynomial:

)\()\2 + (klg + ko + ki3 + k31))\ + kioksy + kyzkoy + k21k31) =0

Inserting A; = 0 in the solution we find for the amount of drug in the central
compartment:

ko1k3
.’El(t)—)M)‘Q/\3, t— o0
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Since the product of the roots A, and As; equals the constant term in the
second degree polynomial, (A — A1)(A = X2) = A% — (A2 + A3) A + A2A3 and
hence A2)A3 = ki2k31 + k13ko1 + ko1ks1, we find by use of equation 6.12, that:

ko1 k Vi
21(t) = M Thamy = My 0o
7 k21k31(1 + k21 +7k31 d .

The concentration Cj in the blood is found

MV, M
Ci=——a==
VoVa Vg

fort — oc.

The volume of distribution can be seen as the apparent volume of the total
model. In our opinion the confusion of the interpretation of an apparent vol-
ume in a multicompartment model might arise from a mix-up of the apparent
volume for compartment 1 with the apparent volume of the total system, the
distribution volume. If the dissociation functions of the intravenous agent
are being deduced from parameters of a three compartment model, the in-
terpretation of the volumes in this model ought to be unambiguous. In next
section (6.4) we will describe how to find the solubility coefficients of the
anaesthetica from the parameters of the three compartment model.

6.4 Solubility of intravenous anaesthetica

In the blood transport model we have assumed that the diffusion from the
blood into the tissue does not dependent on the amounts found in the two
solvents, but on the tensions. The tension relates to the concentration by
the solubility a, which we assume to be constant for the anaesthetic agents:

c=ap (6.13)

The amount of matter in a compartment is
z=cV =apV (6.14)
in which z is the amount, ¢ the concentration, V' the volume, o the solubility

coefficient, and p the tension. Thus we get

T

= av (615)
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The parameters k;; of the 3 compartment model are given as specific parame-
ters for substances. In systems without elimination (k0 = 0), the equilibrium
among the three compartments is found from the k;;‘s. -

Tieki2 = ZTockor and Ziekiz = T3cka (6.16)

where z;, is the amount of matter in the ¢'th compartment at equilibrium.

Since the physiological interpretation of the three compartment model is
that compartments 2 and 3 represent tissue, the physiological meaning of an’
equilibrium situation is that the blood has a constant concentration of drug,
and that the content of compartments 2 and 3 are distributed in the tissue
of the body in some way.

Thus the equilibrium situation of the three compartment model must corre-
spond to a situation where an equilibrium exist over the membranes dividing
the blood and the tissue. In our model this is equivalent to a situation with
the tension being uniform throughout the body. Using equation 6.15 we find '
that the tension of all compartments in the equilibrium situation is

Tie T2e T3e -
= p = - - - .1
P Vieg Voao Viaiz (6 {)
and hence we deduce that
a) ko Va
—_ = = 6.18
ax k121 (6.18)
o knls
had .19
o3 ki3l (6.19)

where a;.a; and a3 is the solubility coefficient of compartments 1, 2 and 3,
and the volumes are real volumes.

The task of fitting parameters for our model is to find the solubilities for the
eight tissue compartments and the blood. The equations 6.18 and 6.19 give
the ratio between the solubility of the blood and two different sections of the
body, which we term “fast” and “slow”. A fast compartment is one that is
fast to reach equilibrium with the blood because the blood perfusion is high
relative to the size of the organ, while a slow compartment has a low relative
perfusion.

To find which organs are fast and which are slow in the blood transport
model, we examine the the differential equation governing the change of
tension of the anaesthetic agent in an organ compartment:
dp dc decy . _
= (Vige + Vi) " (2:Q(c(Pas) — (p)) + M4 — M.)

= Ve Ty (6.20)
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The solubility of the anaesthetic agent is assumed to be constant, thus the
dissociation functions ¢(p) = ap are independent of the presence of oxygen
and carbondioxide, and thus the term gﬁ is simply the solubility coefficient
a. From equations 6.18 and 6.19 we know that the ratio between a; and ay

is constant.

Thus for the anaesthetic agent equation 6.20 in a svstem without elimination
becomes

_(_12 — ziQ(abpas - abp) — ziQ(pas - p)
dt (Viar + Vya) (Viv + V)

(6.21)

for ¥ = %: It can be seen that the equation does not depend on the actual
level of the solubilities, but only on the ratio between them.

All body compartments has inflow of blood only from the arterial blood pool,
and thus the content of drug in the inflowing blood will be equal in all body
compartments. Thus any differences in the behaviour of the body compart-
ments must come from differences in how the drug supply is relative to the
compartment size. From equation 6.21 it can be seen that the behaviour
depends on the term < (and the metabolism, which is not the concern
right now). To acquire an overview of how the different organ compartments
behave, we have calculated this term for different ratios of solubilities, see

table 6.4.

Standard parameters Perfusion vs. size
z B W 1000‘-}—,:%"—5

v=1 v=10 v =100
Liver { 0.283 2973 1.106 | 69.380 9.178 0.948
Kidney | 0.222 0.270 0.051 | 691.589 80.698 8.207
Heart | 0.048 0.307 0.040 { 138.329 15.434 1.561
Brain | 0.135 1.300 0.105| 96.085 10.301 1.038
Remaining | 0.041 0.217 0.015 | 176.724 18.764 1.888
Connective | 0.101 8.182 0.653 | 11.432 1.225 0.123
Muscles | 0.107 26.773 0.700 3.895 0.399 0.040
Adiapose | 0.062 14.786 0.562 4.040 0.418 0.042

Table 6.4: Perfusion vs. size in the organ compartments at different ratios
between solubilities in blood and tissue.

From the table it can be seen that the kidney compartment is the best per-
fused organ, but all the organs receive better perfusion than the muscles,
connective and adiapose tissue. Based on the figures, we have decided to
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partition the compartments into two groups: the viscera organs, (liver, kid-
ney, heart, brain, and remaining) as fast, and the slow “tissue”, (muscle,
connective and adiapose tissue).

Estimating the solubility coefficients of these compartments we let the fast
compartments correspond to the compartment in the three compartment
model with the highest k;;. We assume this is compartment 2, and let the
slow compartments correspond to compartment 3. Since the actual level
of the solubility does not affect the equation for each organ, cf. 6.21 we
arbitrarily set the blood solubility @, = 1. Then using equation 6.18 the
solubility of the tissue in the viscera organs become

Vikyo
Viastk21 )
where V7 is the blood volume and Vi, is the total volume of the viscera

organ compartments. The solubility of the slow compartment is estimated
by ‘

(6.22)

Qfast =

Vikia
Valowkai

Qslow = (6.23)
The final parameter for the anaesthetics, the metabolic rate, is estimated
from the same as the elimination rate k;o. Thus we have used the information
from the three compartment model to estimate parameters for the anaesthetic
agent. If more specific information of the dissociation on a specific agent is
available, we propose that this information is used, however.

6.5 Conclusion

The models of the respiratory system contain the parameters, which are
needed for the requested scenarios. We expect that the physiological ranges
of the parameters are sufficient to simulate the effect of the required disor-
ders of the respiratory system with an acceptable model output. Further
the models suggest other scenarios by the presence of several parameters,
which through the physiological literature we realized are of importance for
the system modelled. An example is the components of the blood. which
are as important as the ventilation for the transport of gasses between the
atmosphere and the tissue. Another example is the level of detail in the
description of the blood flow. The partition of the body into fourteen com-
partments enables simulations, in which the status of blood in specific parts
of the body is measured, or scenarios with changes in the size and metabolic
rates of specific organs.
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Chapter 7

Testing the model |

In this section we are testing the models of the respiratory system. The aim
of this chapter is to give an overview of the possibilities in simulations of the
respiratory svstem with the models presented in this thesis. The simulations
we will present are thus not considered to be a complete description of the
behaviour of the models under all circumstances, but rather a highlight of
some interesting behaviours.

First the lung model is tested in order to produce some characteristic pV-
diagrams found in [Bar], within the estimated range of parameters found in
chapter 6. These diagrams are output from the pressure model, which is
a submodel of the lung model. The other part of the lung model. the gas
model, shows the partial pressures in the expired air and the alveoli under
different circumstances.

The evaluation of the blood transport model is made, first by testing the
submodels of the blood transport system and afterwards the blood trans-
port model is used for simulations of distribution of respiratory gasses and
anaesthetica. We show the dvnamics of the blood transport model, with
and without metabolism. For respiratory gasses we describe the influence of
the Bohr-Haldane effect. For the anaesthetic agent thiopentone we compare
the dvnamics of drug distribution when the model is configured with esti-
mated solubilities and when it is configured with explicit solubilities from the
literature. '

103




104 Testing the model

7.1 The lung model

‘The lung model consists of the pressure model and the gas model, and we
will test each submodel individually.

7.1.1 The pféssure model 7

Based on their experience with equipment that displays diagrams of the
respiratory mask pressure and the lung volume during anaesthesia the MDs
of the SIMA group has requested that.our lung model can produce these pV’
diagrams. The technique of measurement is described in [Bar], which also
shows some characteristic diagrams.

For comparing the output of the model with the diagrams of [Bar| we have
used an approximation of a respirator pressure curve for input, see figure
7.1.1. The inaccuracies of our piecewise linear approximation are a problem
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Figure 7.1: The respirator pressure from [Bar], and our approximation.

only during testing, since the pressure will be measured on a real respirator
in the final simulator. The purpose of our tests is to demonstrate the nature
of changes in the diagrams for different configurations, and for this we find
the approximation adequate. With the pressure curve shown in 7.1.1 as the
pressure function Up,(t) and the parameters from table 7.1 we have produce
a pV diagram of a normal lung, see figure 7.1.1.

R C |V
Central ecmpt. | 1.00 | 0.02 | 0.1
Alveoli cmpt. | 0.02 | 0.80 | 2.7

Table 7.1: The parameters of the standard lung
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Figure 7.2: The model generated pV’ diagram for normal lung, and the diagram
from [Bar].

The effect of a low compliance can be seen in figure 7.3. The characteristic
effect is that the tidal volume is lower than in the normal lung. and thus that
the loop is more flat. Another significant display is the “duck tail” at the
end of the expiration. The pressure falls to zero, but since the lung contains
a small amount of air relative to the resistance, the air leaves easily, and
the last of the expiration the pressure inside the lung is almost equal to the
external pressure.
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Figure 7.4: pl” diagram generated
Figure 7.3: pV diagram generated with high airways resistance Ry = 2x
with low compliance C; = 0.5%C gq R, a4

Increasing the resistance of the upper airways hampers the flow of air in
and out of the lung, see figure 7.4. Thus the tidal volume decreases, since
less air enters during inspiration. The “duck tail” effect observed with low

compliance does not occur.
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7.1.2 The gas model

The interesting aspect of the gas model is its ability to renew the air in the
alveoli. To show the dynamics of the ventilation we have set the gas flow
over the lung membrane constant at a level that matches normal metabolism
(260m] 0, and 160ml CO, pr minute), and started the model w1th a hxgh
lev el of carbondioxide and a low level of oxygen in the alveoli.

In figures 7.5 and 7.6 can be seen the behaviour of the partial pressures of
CO, and 07 in both the central and the alveolar compartment. The standard
parameters from table 7.1 and the pressure curve from figure 7.1.1 are used.
The central compartment shows large variation, since the partial pressures
tend towards the partial pressures of the atmosphere during inspiration and
the partial pressures of the alveoli during expiration. The variation in the
alveoli are much less, which is not surprising since the alveoli make up most of
the lung volume, and the alveolar volume is about 6 times the tidal volume.
The graphs show how the excess carbondioxide is eventually removed, and
the oxvgen level increased to the normal levels.
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Figure 7.5: pco, in @ normal lung Figure 7.6: p,, in a normal lung

When the same test is run on the lung with half compliance, the result is
very different. The ventilation of this lung is not sufficient to remove the
carbondioxide or supply the oxygen. Normally this would be counteracted
by the respirator by an increased pressure, but the graphs in figures 7.7 and
7.8 illustrate the effect of a poor ventilation. The level of CO, raises and the
09 level drops.

A final view of the dynamics of our gas model can be found in figure 7.9, where
the respirator pressure is shown together with the carbondioxide partial pres-
sure in the central compartment. During the inspiration a gas analyzer in
the respiratory mask will not detect any CO,, since it receives air from the
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Figure 7.7: pco, in a lung with low Figure 7.8: p,, in a lung with low
compliance compliance

atmosphere. When expiration starts, at the peak of the respirator pressure
curve, the analyzer will start to receive air from the central compartment.
This air will show the characteristic increase in carbondioxide level, when the
air from the alveoli has filled the central compartment to an extend where
most of the air expired originates in the alveoli. Thus the volume expired
before the increase is the anatomical dead space.

Figure 7.9: The respirator pressure
U,, and the CO, pressure in the cen-
tral compartment.

7.2 The pH model

The pH value is plotted as a function of the carbondioxide concentration in
figure 7.10. We do not have any curves from the:literature for comparison,
which shows pH as a function of CO, concentration, but only the venous and
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arterial point. The curve is a bit displaced from the two physiological points,
but was accepted by the MDs from the SIMA group as a proper model of
the pH value in blood.
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Figure 7.10: The pH curve.

7.3 The dissociation curves

In this section we show output of the models of the dissociation curves of
Siggaard-Andersen, [Sig0]. under different conditions. The output is com-
pared with data from [Nun]. Other literature, [Wid, Gro, Wes2]. has been
consulted as well, but is found to be in agreement with [Nun).

The dissociation curves are curves of the gas concentration in blood as a
function of the tension of the gas, but since the respiratory gasses dissociate
into blood in a non-simple way, due to chemical reactions, the curves depend
on several other parameters. This section has two aims. One aim is to run
scenarios with the models. which produce dissociation curves under different
circumstance, and discuss whether the models of [Sig0] are in accordance
with the literature. Another aim is to evaluate the importance of the different
effects included in the model.

7.3.1 Dissociation of carbondioxide
The influence of the pH value

The models [Sig0] are developed to be used for analyzing measured data.
The pH value of blood is a parameter of the models, which is usually mea-
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sured. Thus adapting the models of the dissociation curves from [Sig0], we
have added the model of pH in blood developed by Chiari et al. [Chil]. The
graph in figure 7.11 shows the dissociation curve of carbondioxide with con-
stant pH value 7.4, compared to the curve with a dynamic pH varying with
the carbondioxide concentration. The intersection of the curves shows the
concentration of carbondioxide at which pH 7.4 is found. Both curves are
plotted with constant oxygen tension.

Obviously the interaction of carbondioxide with the hydrogen ions is the
main reason for the non linearity of the CO, dissociation. The higher tension
of pco,, the lower pH value, which limits the solubility of the carbondioxide.
In conclusion to figure 7.11 we can say that the pH dependence in the CO;
dissociation curve is verv important, and that the model with constant pH
value is not adequate.
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Figure 7.11: The carbondioxide model of MD Siggard Andersen, with and
without the pH model '

The influence of the oxygen content

In figure 7.12 we have varied the tension of oxygen from 13.3 kPa (normal
arterial tension) to 2kPa, so that the saturation of hemoglobin with oxygen
is lowered from approximately 100%, to a saturation which at pH 7.8 is about
40%. according to the model of O, dissociation. A small shift of the curve to
the left at low oxygen saturation is found. According to the values at table
7.2 from [Nun], the difference in CO, carriage of venous and arterial blood
is about 1.8 mmol/l. According to [Nun] about one third of the reported
difference is due to the Haldane effect, which is the difference in the quantity
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Arterial blood Mixed venous blood Arterial/venous
Whole blood Hb 95 % sat. Hb 70% sat. difference
pPH 7.4 - 7.367 -0.033
Deo, |kPa] 5.3 " 6.1 ' - +0.8
Cco, |Mmol/]] 21.5 23.3 +1.8

Table 7.2: Normal \)alues,for carbondioxide in blood

of CO, carried, at constant Dco,s in oxygenated and reduced blood. The rest
of the difference is caused by the change in pco, in arterial and venous blood.

Thus the difference in carbondioxide concentration in arterial blood at
(Pcoys Pop) = (5.3kPa,13.3kPa) and in mixed venous blood (pco,sPo,) =
(6.1kPa, 5.3kPa) ought to be about 1.8 mmol/l and is in the model found
to be about 1.2 mmol/l. We do not consider this discrepancy to be crucial
for the models, as the Haldane effect is rather small and thus not significant
for the behaviour of the model.
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Figure 7.12: The Haldane effect yields different dissociation of carbondioxide
for changed oxygen tensions

7.3.2 Dissociation of oxygen

The curves of oxygen dissociation are under normal circumstances dominated
by the hemoglobin carriage, as only a negligible part of the oxygen is dissolved
into the blood. Therefore there are no visible difference in the curve form of
the oxygen dissociation curve and the oxygen saturation curve of hemoglobin
when a normal content of hemoglobin is found in the blood. In this section
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we will show the saturation curves for scenarios with normal hemoglobin
content in blood rather then the concentration curve, since these are more
frequently used in the literature.

When we plot the oxygen saturation curve under different circumstances it is
not always possible to change one parameter at a time, as some parameters
of the model influence each other. Normally the literature does not treat this
problem when graphs illustrating changes in one parameter are shown. These
curves have no direct physiological interpretation and thus we do not have the
exact information in order to reproduce the graphs. It is under consideration
of this fact that the comparisons of our model with the literature have been
made.

The influence of the pH value

We have investigated the influence of a change in the pH value on the oxygen
saturation curve. The pH value changes with the carbondioxide concentra-
tion, which can be calculated as a function of different tension of carbondiox-
ide and oxyvgen. Hence a change in pH might either be caused by a variation
in the CO, tension, or by some other change that will in turn change the bal-
ance between oxvgen and carbondioxide. Hence without information about
the cause of the change in pH, it is not possible in a umque way to deduce
the CO, tensmn along the curves.
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Figure 7.13: The oxygen dissociation with different pH values. Points from
[Nun]

Figure 7.13 shows the saturation of hemoglobin as a function of the oxygen
tension for different values of pH. The carbondioxide tension is constantly
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5.3kPa. The curveis shifted to the left with increased pH values. Compared
with the points from [Nun, p. 265] the curves lie a little too close, but the
graphs in figure 7.13 are qualitatively in agreement. It is not stated which
values of pco, the curves from [Nun| represent.

The saturation curves of our model are shown for other values of Deo, in figure
7.14. We have plotted the: dissociation curves for-oxygen: at various tensions
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Figure 7.14: The oxygen saturation curves with adjusted pco,. Points from
[Nun]

of carbondioxide, which correspond to the pH values when no other effects
are taken into account. This situation is not physiologically realistic, as the
carbondioxide tension is found to exceed a physiological range. The drastic
changes of the pH values shown in the graphs are only found in situations
with other disturbances of the pH value. The curves coincide better with the
points from [Nun].

Influence of the hemoglobin status

Other parameters relevant for changes in the model of oxygen dissociation
are the concentration of hemoglobin in blood, and the fraction of hemoglobin
bound with carbon monoxide. The remaining parameters of the model are
not subject to changes in the simulator, according to MD John Jacobsen,
and we have not found any data usable for comparison in the literature.
The concentration of hemoglobin is normally 7.0 mmol/l corresponding to a
content of 14.4 g/dl. At lower concentrations the blood is called anaemic,
and the oxygen carriage is reduced. Another way to obtain a reduction in
oxygen carriage is by an increased fraction of hemoglobin in combination
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Figure 7.15: Oxygen concentration in normal, anaemic, and CO poisoned blood.
Points from [Nun].

with carbon monoxide. The presence of carbon monoxide will displace the
hemoglobin from combination with oxygen.

In figure 7.15 the dissociation curves of the two cases are shown. We have
plotted the concentration of oxygen in blood as a function of the oxygen ten-
sion at a 50% reduction of the hemoglobin concentration and at a fraction
of carboxyhemoglobin at 50% of the total hemoglobin concentration respec-
tively. The output of the model for anaemic blood is in good agreement
with the graph from [Nun]. It is seen how the concentration of oxygen in
the blood is found to be half of the concentration at a normal content of
hemoglobin in the blood. The reduction of oxygen carriage by means of a
high level of carboxyhemoglobin is not identical with the graph from [Nun].
In [Nun] it is stated, that the leftward shift is due to a change in level of
Coec (concentration of 2,3-diphosphoglycerate). which is found when carbon
monoxide is present. We have not modelled the influence of the ¢ypc by the
carbon monoxide and hence the model does not produce a realistic output
of oxvgen tensions below 4 kPa, under CO poisoning.

7.4 The blood transport model

The transport model keeps track of both anaesthetic agents and respiratory
gasses. When we are testing the model we will present the respiratory dy-
namic of the respiratory ga%ses and the anaesthetic agents separately.
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7.4.1 The blood transport of respiratory gasses

In this section we present output of the transport model concerning the
" respiratory gasses. The dynamic of the model is presented step by step
taking one effect into account at a time. First we will show the simplest
possible version of the transport model. The simulation does not show a
physiological situation. The initial simulations are made with the metabolism
set to zero and with constant partial pressures in the alveoli of 13.3 kPa in
oxygen tension and 3.3 kPa in carbondioxide tension (this is standard arterial
values), and without pulmonary shunt.

The oxygen and carbondioxide tension is initiated to 10 kPa, in all other
compartments in order to show how the oxygen is distributed into the com-
partments and carbondioxide is removed.
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Figure 7.16: Oxygen tension in various compartments without metabolism

Figures 7.16 and 7.17 show the curves of oxygen tension and carbondioxide
tension respectively for venous and arterial blood pools, for several selected
organs, and the constant curves of the pulmonary capillaries. Since the
metabolism is zero, all tensions will tend to the same value as the pressure
in the alveoli, and hence the graphs show how the compartments in different
stages reach the tension of the capillaries.

The arterial compartment is the only compartment connected directly to the
pulmonary compartment and hence the increase in oxygen and decrease in
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Figure 7.17: Carbondioxide tension in various compartments without
metabolism

carbondioxide begin in the arterial pool. The venous pool does not change
until the tensions in the flow out of the bodycompartments change.

The stages of the body compartment depend on the perfusion compared
with the size of the compartment. Thus at first the kidney compartment has
the highest increase in 0, and decrease in CO, tension. Afterwards follows
‘the brain compartment and at last the low perfused muscle compartment.
The perfusion of the muscle compartment is much lower than the viscera
compartments and therefore the change of the tensions in the venous blood
is higher than the muscle compartment, even though part of the blood flow
to the venous pool arrives from the muscle compartment.

When the oxygen tensions of the compartments increase towards the tension
of the pulmonary compartment, it is seen that the tension of the compart-
ment increases above the oxygen tension of the compartment from which the
inflowing blood came. This might seem strange but it is explained by the
Bohr effect, which causes the shift of the dissociation curves of oxygen at
different tensions of carbondioxide.
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The Bohr effect

~ Because the body compartments have a higher tension of carbondioxide than
the arterial blood, the ability of the blood to carry oxygen is lower in these
compartments and thus a lower concentration is still found in the outflowing
blood than in the. inflowing blood, even though there is a higher oxyvgen
tension in the compartment than in the inflowing blood.

The Bohr effect is seen in the overshoot of tensions in all the body¥ com-
- partments and the venous pool, but in this section we will take a close look
at what happens in the kidney compartment during the first 2 minutes. In
figure 7.18 we have plotted the curves of oxygen and carbondioxide tension
in the arterial and kidney compartment from figure 7.16 and 7.17 at a linear
time scale.
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Figure 7.18: Oxygen and carbondioxide tension in arterial pool and kidney.

The two oxygen curves intersect at about 12 seconds at an oxygen tension
about 13 kPa. The concentrations of oxygen in the two compartments at
the moment of the two curves intersection are found in figure 7.19. Even
though there is the same tension of oxygen the two compartments, the shift
of the oxygen dissociation curve by the difference in p.,, result in different
concentrations of the blood. Thus the concentration of oxygen in the kidneys
is still lower than in the arterial blood and the total amount of oxygen in
the kidneys still increases, as more oxygen is brought with the blood to the
compartment, than the amount removed by the outflowing blood.

The oxygen curve for the kidneys peaks at the moment when the concentra-
tion equals the concentration of arterial blood. This happens because the
concentration of carbondioxide is reduced significantly.
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Figure 7.19: Oxygen concentrations in the two compartments are marked at
the moment of intersection of the tension curves

The Bohr effect causes the oxygen tension of all the body compartments and
the venous blood pool to oscillate in figure 7.16. When the tension in the
venous blood is seen to decrease below the tension of oxygen in the body
compartment again, it is the same effect in reverse.

The steady state of the respiratory model

We will now introduce the metabolic functions, and thus regard oscillations
towards a more realistic equilibrium than in the previous shown graphs. In
chapter 6 metabolic rates of the transport model was found for each compart-
ment. This was done in agreement with the literature, and further calculated
in such way that a phyvsiological steady state of the model is obtained. In
this section we have turned the metabolic rates on and in figure 7.20 and
7.21 it is seen how the state of the system reach the steady state.

The Bohr effect is still causing oscillations in the curves of the oxygen tension
(figure 7.21), especially for the kidney compartment. The equilibrium of the
gas tension of the various compartments are no longer identical, because the
metabolic rates of the compartments differs. The high equilibrium tension
of oxygen in the kidney compartment reflects that the metabolic rates have
been assigned in accordance to the size of the compartment and not with
respect to the blood perfusion. A small compartment with a high perfusion
content will therefore reach a high tension of oxygen at equilibrium, and for
the same reason the carbondioxide tension of the kidneys is low.
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Figure 7.21: Oxygen tensions in various compartments with metabolism.

7.4.2 The blood transport of anaesthetica

In section 6.4 we proposed a method for estimating the solubility coefficients
of anaesthetic agents from parameters of a three compartment model of phar-
macokinetics. We estimate the solubilities in two groups, the slow and the
fast compartments. The fast compartments are the viscera organs, and the
slow compartments are the muscles, connective and adiapose tissue.

We have tested our method for the drug thiopentone. For this drug we
have both the ratio between the solubilities in each organ, from [Hul] and
parameters from a previous simulator version, see table 7.3.

The distribution of the drug in the body can be seen in figure 7.23. Att =35
we have placed 1mmol thiopentone in the central venous pool. From here
the drug is distributed first to the fast viscera organs, but eventually to the
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(s} Est. (o)

Liver 1.7

Heart 1.5
Kidney 1.5 | fast 1.8

Remaining 1.5

Brain 1.4

Muscle 1.5
Connective 1.5 | slow 1.5

; Adiapose 11.0

Table 7.3: Relative solubilities for thiopentone from [Hul] and estimated from
PAWI data.

larger compartments of muscles, fat and connective tissue. The final balance
will be with most of the drug in the adiapose compartment, which has appr.
30% of the total volume and a solubility that is 11 times as high as the
solubility in blood. The final equilibrium is when the tensions are equal in
all the compartments. This can be seen on the tension curves for the same
run, see figure 7.22.
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Figure 7.22: The tensions during distribution of drug, cf. 7.23. The unit of
this curve are not well defined, as we only know the ratio between the solubility
coefficients.
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Figure 7.23: Drug distribution in selected compartments after initial injection
of 1mmol thiopentone in central venous pool.
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Figure 7.24: Distribution of 1mmol thiopentone with estimated solubilities.
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Our estimates of the solubilities differ a lot from the real values of [Hul], see
table 7.3. However the graphs of the tissue distribution are in better agree-
ment, see figures 7.23 and 7.24. The final distribution is different though.
With the correct solubilities most of the drug ends in the adiapose com-
partment, but with the estimated solubilities it splits between the adiapose,
muscle and connective compartments. This reflects that the estimated solu-
bilities does not differentiate the tissue of the slow compartments, and thus
the drug will be distributed by organ size. With the solubilities from [Hul]
the volume of distribution of the slow compartments is 2151, while for the
estimated values it is only 73l.

During anaesthesia the distribution of the drug is most critical in the initial
stage, and hence we find that our estimates looks usable, especially for drugs
that have their primary effect in the viscera organs, in situations when correct
solubilities are not available.

7.5 Conclusion

The simulations presented in this chapter all shows that the required output
of the model is obtained within a phyvsiological change in parameters.

Even with the assumptions we have made during the construction of the lung
model it behaves reasonably like the physiological system.

The tests of the blood transport model has given us an impression of which
modelled effects are important for the dvnamics of the respiratory system.
The Bohr effect is clearly identified in the output of the blood transport
model, while the Haldane effect is not directly observable. The metabolic
functions and the ventilation determine the level of a steady state in arterial
and venous blood and the distribution of the metabolic rates of the organs
determine the tension in these organs and the peripherical venous pools.
The dissociation functions of the drugs determine the pharmacokinetics, and
hence the final distribution of drug in the various organs. However, right
after an injection the distribution will initially be influenced more by the
perfusion of the organs than by their ability to dissolve the drug.
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Chapter 8

Discussion and conclusion

In this final chapter we will discuss whether the result of our modelling is a
satisfactory solution of the assigned task.

Initially we will assess how the model meets the requirements, a subject that
has already been partially treated in the conclusions in the previous chapters.

Then we will discuss where in the modelling our contributions are most sig-
nificant, and where we mainly depend on the works of others. For the parts
of our model that are adapted from the literature, we will discuss the choices
behind these model. and how they promote our goals.

As a perspective on the future of the model, we consider the maintainability
and extendability of the model.

The problems of extracting the requirement of the model from the SIMA
group are discussed, to address the question of whether the final model is
really what the MDs and the SIMA group need. Furthermore we will discuss
application of the model in addition to use in the training sessions in the
simulator.

Finally we state a brief conclusion of the thesis as a whole.

8.1 Evaluating the model

Since our modelling is done in response to a request from the SIMA group, the
process has involved regular cooperation to ensure that our product ended
up being what the SIMA group wanted.

The cooperation with the SIMA group has submitted to the form normally
used in the group, implying that during the period of our work we have
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produced 2-3 deliverables that have been assessed by a group of at least a
mathematician, a medical doctor, and a computer programmer. By these
evaluations the SIMA group has maintained an overview of the direction of
our work, and the progress we were making, but on the other hand it has
still been our responsibility to decide the course of the modelling. We have
kept_more or less regular meetings with the SIMA MDs, to clarify medical
issues, and to present to them our modelling of different stages in order to
discuss the possibilities of courses the modelling could take. These discussions
of possible courses have touched both whether we were neglecting important
physiological relations, and whether the values of the parameters we proposed
were accessible as measurable physiological quantities.

During the modelling process we have developed both our own and the MDs
view of what the model should be able to do. By showing the model to the
group at various stages we have sparked their imagination and their awareness
of what was within reach of the modelling as well. This has resulted in a list
of requests that is larger and with more visions than the vague requirements
we originally received.

The model we present in this thesis will without any doubt meet the require-
ments of the SIMA group. The models contain parameters that allow the
requested scenarios to be simulated, and the output of the model behaves in
accordance with the expectations. The model is well suited for simulation of
anaesthetic sessions, since it includes the important physiological connexions
of short and medium time periods. For simulation of longer scenarios, like
intensive care, the slower mechanism of kidney elimination of excess base
or acid from the blood will be needed to obtain realistic output. Further-
more a control system will be important for simulation of situations where
the natural heart and respiration functions of the patient is not disabled by
anaesthesia.

The application of the model is not restricted to reproducing a certain be-
haviour in the simulations. An expectation that we share with the MDs of
the SIMA group is that by using the model the MDs can improve their insight
in the dynamics of the respiratory gasses by investigation of the quantities
that are not measurable in real life. This may for instance be the actual
concentration of gasses in the organs under different circumstances, or the
effects of changing the perfusion/ventilation ratio in different ways, which is
in real life only seen as a change in the gas content of the blood and the
expired air.
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8.2 Model contributions

In our view the foremost contribution of our modelling is the way we have
managed the interactions between multiple substances. This is done by two
basic ideas, the vector state variables, and the trick of transforming the state
variable of the compartmental mass balance equation to tension.

In the use of vectors as state variables our model differs from the models found
in the literature. Using exactly the same model for each respiratory gas and
anaesthetic agent has the advantage that it reduces the overall complexity
of the model, by exploiting the similarities in transportation mechanism.
As a mode of thought the vectors have also proved useful, since thev have
continuously drawn our attention to the fact that the gasses may influence
each other. '

The technique of converting the mass balance by means of the derivative of
the dissociation curve is especially elegant when used in combination with the
vector variables. For vector variables the derivative -g—f; is a matrix with the
diagonal elements representing the solubility, either constant or a function of
p. and non-diagonal elements representing interactions between dissociation
of substances. An alternative approach is to use the concentration as state
variable, and find the tension via the inverse of the dissociation function.
This approach is suggested by Chiari et al. in [Chi0]. However, they refrain
from carrving out the idea, as the inverse of their dissociation curve is hard
to find. In our method the Jacobian matrix can be found, even in situations

when the dissociation function is not explicitly stated.

We have adapted a model of the dissociation of carbondioxide and oxygen in
blood. that was not originally developed for use in a transport model, but to
" be used with measured values [Sig0]. To do this we have added a pH model,
to calculate the pH value from the blood carbondioxide contents.

The choice of dissociation model was rather easy since it was the only model
we have encountered that models the Bohr and Haldane effects. Since the
descriptions in the literature of the respiratory physiology had stressed that
these effects are important for the transport of respiratory gasses. especially
in situations with respiratory problems, we found it crucial to catch these
effects in our model.

We discovered our pH model [Chil] during our investigation of the dissocia-
tion curves for carbondioxide [Chi0], and found that it directly answered our
need to know the pH value from the blood content of carbondioxide. We do
not have the biochemical insight to determine whether our pH model will be
able to cooperate with a future model of the electrolytes and fluid balance.
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But since pH is one of several issues covered by the balance of ions, we find
it reasonable to let the ion model treat this problem.

The model of the metabolism, by a Michaelis-Menten kinetic reaction, is
directly from [And]. Our distribution of the metabolic rates between the
organs show that it is possible to obtain a reasonable steady state situation
with- this metabolism, at least under normal conditions. '

Our model ‘of the pressurejs in the lung is a combination of two models,
[Gal, Rid0]. The difference is that our model partitions the lung in a different
way, to enable simulation of the requested lung scenarios.

The basic principle of our gas model is similar to the approach used in [Rid0],
but to realize the basic assumptions of the model we choose to create our own
model. During this we have investigated the effect of diffusion, and found
that in a model of our level of detail the effect is captured in the assumtion
of instantaneous mixing inside our compartments.

8.2.1 Nature of variables and parameters

Modelling an object from reality is a process of selecting which effects and
relations to include in the model, and which to neglect. When the detailing
stops at some level the effects that are still unaccounted for are normally
captured by some sort of statisticallv determined parameters. Taking this
into account somewhat widens the discussion of the nature of our variables
and especially parameters.

When we identified the problem of this thesis in section 1.1, we stated that
we intended to model by use of physiologically recognizable variables and
parameters.

We find that we have adhered to this principle, but due to the nature of
modelling this is only true to level of detail. Bevond this level the parameters
are of a more statistical nature.

The blood transport model is a good example of these levels of detail. The
model itself is based on the principle of mass balance and a partition of
the body where the tension is uniform throughout each section. Thus on
this level the model has very direct interpretations to the variables, and
the parameters like cardiac output and blood fractions to various organs. To
actually state the equations of the mass balance, we need to know the relation
between tension and concentration. Such a dissociation function is in itself
a well defined physiological relation. However the model of the dissociation
of oxygen and carbondioxide has not a direct physiological interpretation of
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each parameter in the model. In the models there are several constants,
that are the result of fitting the model to measured data. According to
MD Siggaard-Andersen attempts to model the saturation curve for oxygen
in terms of hemoglobin binding sites, a more directly interpretable way, have
not vet resulted in useful models.

Our conclusion is that our model on the upper level adhere to our principle
of physiological variables and parameters. The levels where this is not true
are in the submodels, but it should be possible to change or replace the
submodels without destroving the overall structure of the model. Thus we
have confidence in the description of the physiology offered by the model,
but are aware that improvements are possible.

This naturally leads to the next section where we reflect on the fact that
the model is intended for a real project, and will thus still be subject to
development in the future.

8.2.2 Maintainability and extendability

Since our model is a part of a larger frame, the SIMA project, we expect
that future needs will arise to change or extend our model. During our
modelling we have tried to design the model in a way that would support
such developments. In the cause of this we have imagined some more or less
likelv changes and extensions.

First we have the control svstem, which is to be part of the simulator, but
which is not made vet. It is in a way an extension of the respiratory model,
since it regulates both on the ventilation and the blood flow.

-If the simulator is to be used for simulation of intensive care. as well as
anaesthesia, the long term effects of respiratory disturbances may need more
thought, especially concerning the metabolic response to long-term distur-
bances of the acid/base balance of the blood.

If the model was to deal with substances that did not support the assumption
of instant equilibrium in our organ compartments, a solutions could be to
split the organs into two compartments, and introduce a membrane transport
matrix like the one representing the pulmonary membrane.

Modelling compartments with non-constant volumes is relevant in situations
when bleeding or blood transfusions occur. This would change the compart-
ment equations, as the inflow and the outflow would no longer be the same.
Furthermore it may be necessary to model different composition of blood at
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‘various parts, and thus to include the transport of blood components like
hemoglobin in the transport vectors.

‘All our submodels are candidates of future replacement or improvement.
The pH model could be replaced with a model including a balance of the
electrolytes of the blood. The dissociation curves for anaesthetics could be
-extended with protein binding. Extension of the metabolic model could in-
.corporate more chemical insight in the mechanisms of the involved processes.

8.3 Conclusion

As a final conclusion we are well satisfied with our model. The model de-
scribes the interactions of the respiratory system in a way that is in agreement
with the theoretical basis of physiology.

We are confident that the model is what the SIMA group needs for the sim-
ulation of anaesthetic situations with the range of complications we have
included in the list of requirements for the model. Due to the general physio-
logical principles the model is based on, we believe that reasonable responses
can be expected, even with combinations of parameter values that have not
vet been tested. Furthermore due to the general physiological principles the
models may be useful for research purposes.

Should the future reveal more requirements to the model, or more scenarios
to simulate, we expect it to be fairly easyv to incorporate these extensions.

In a broader view of modelling biological systems, we want to emphasize
our contribution of the method for converting mass balance equations to
tension variables by means of the derivative of the dissociation function. Even
though the mathematics of this is not advanced beyond the level of our initial
university course of analysis, we have not found the method used in any of
the literature we have surveved. And the technique has the advantage that
the derivative of the dissociation function may be obtainable in situations
when the inverse of the function cannot be expressed analytically.



Appendix A

The implementation

The contents of this section is a documentation of our implementation of
the model. The information is primarily meant for the programmers that
will later incorporate our model in the simulator software, but may serve
as a useful source of details on precisely how the models are run for other
readers as well. The source code for our model implementation is later in
the appendix, A.3. Even though numerical analysis techniques has not been
a primary concern in this project, a short description of the methods used
are included in this section as well.

A.1 The implemetation

All implementations are in C~-, and the numerical differential equation
solver used is a Runge-Kutta-Fehlberg adapted from ‘Numerical Recipes in
C’ |Pre]. see section A.2.1. For solving the equations of the pH model and the
dissociation curves, we have used the Newton-Raphson method, see section
A2.2

The interface to-the solver is a class template that can be configured to
handle a differential equation system of a number of equations. As a special
feature the type of the system variables of the equations are configurable as
well, and thus the equations may have any user defined data type as system
variables, as well as built-in data types like double. This option is used to
write differential equations with vectors as system variables in our models.

For this use we have developed a general vector class, defining vector variables
with addition, scalar multiplication, and a square matrix class with addition,
scalar multiplication, and multiplication of a matrix and a vector.
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A general base class for compartment models have been derived from the
solver class, and used as a base class for the transport model, but not for the
lung model, as this proved easier to implement directly on top of the solver
class. . '

A.1.1 The tré,nspoft model implemehtation

The transport model is a derived class from a 14 compartment instantiation
of the general model class with three dimensional vectors as the base data
tvpe: Model<vvec<double,3>,14>. The model class receives an array of
compartment pointers, where each compartment is a derived class from the
class cmpt. The role of the compartment class is to unify the most basic
features each compartment has, thus the compartment class has a function
to calculate the derivative, and another to set its state variable to a new
value. The hierarchy of compartment classes are shown in figure A.1.

liver
class Model / class Cmpt

kidney
cupres empts b} heart Vee dx(...)
poola
void cale(...)
void derivs(...) poolv
cap classTranscmpt
poolvl InSet inset
class Transmodel double flow()
Vec ¢B()
Implementation Flow handlihg
of output and general
functions base class
classpempt class ccmpt
Vec p Vec ¢
classBodyempt classPulcmpt classCpool classBloodpool
Organ equation Capillary equation Pentral pool equatioh |Peri. pool equation

Figure A.1: The relations between the main classes.
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Class Transcmpt

The knowledge of connections and flows between compartments are included
in the transport compartment class Transcmpt, as well as an interface to the
pH model and the blood dissociation curves. The class serves as a common
base class for all compartment classes, and defines functions that are common
to all our compartments.

Connections between compartments are represented as a set of connections,
in which each element holds a compartment and a fraction in a structure
called In. The semantics on an In is that it represents an inflow to a com-
partment, the compartment identifier telling which compartment, and the
fraction telling how much of the outflow of that compartment that goes to
here. :

Based on the set of In structures the class implements the flow system; a
function double flow() returning the current flow through the compart-
ment. The default implementation is to return the sum of inflows defined
by the In-set. but the derived central blood pool class Cpool redefines this
function, to avoid an infinite recursive definition. The Cpool’s are the central
compartments through which cardiac output flows.

The blood concentration is returned by the function cB(), which is imple-
mented in the derived classes pcmpt and ccmpt. By combining the blood con-
centration function and the flow function the amount of matter transported
into the blood can be calculated, which is done in the function sumI().

The pH model and the dissociation curves are both implemented by a nu-
merical solution to the involved equations. The method used in both cases
is Newton-Raphson, see section A.2.2. Solving the dissociation curve means
solving the pH model as well. as the pH level depends on the concentration of
c0O;. Fortunately the dissociation curves only depends on the concentration
through the pH value. Hence the CO, concentration can be found indepen-
dent of the O, concentration, and thus a two dimensional Newton-Raphson
is not needed. When finding the CO, concentration, each proposed value can
be used in the pH model to find the corresponding pH value, and the sought -
concentration is then the one that satisfies cco, = @co, (P, PH(Cco,))-

The pH function and the dissociation curves are defined in the modules ph.cc
and phi.cc. These are used by the implementations in the class hierarchic to
calculate pH and concentrations from the value of the compartment variable.
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Class pcmpt and class ccmpt

These classes define the state variable for the compartment; a pressure vector
in pcmpt and a concentration vector in ccmpt.

The blood concentration function i redefined in these classes, to return the
current, concentration..

Specialized compartment classes

Derived from pcmpt and ccmpt are the final specialized compartment classes.
The differential equations are implemented as the function dx() There are
four different compartment types:

Pulcmpt: The pulmonary compartment with blood flow from the central
venous pool, and gas exchange to the lung model. To speed model
calculations the latter has been implemented as a ‘cheat’, where high
permeability coefficients are treated as instantaneous equilibrium be-
tween the blood and the alveoli. This is done to prevent the step size
regulation of the Runge-Kutta-Fehlberg algorithm to reduce stepsize
enough to find the precise curve of this equalizing.

Cpool: A central blood pool with only a blood part. Pressure is used as
a state variable, not because it is needed to find equilibrium between
different phases of gas, but because the arterial and venous tension is
wanted as an output variable. An alternative implementation would be
to use concentration as the state variable, and then find the pressure
when needed by solving the equation ¢ = cB(p). We have chosen to
change the state variable, as this is similar to what is done in the other
pressure compartments, and does not involve multidimensional root
finding.

Bodycmpt: Organ compartments with a single inflow from the arterial pool.

Bloodpool: The only type of concentration based compartments, used for
the local venous pools.

A.1.2 The lung model implementation

The lung model is implemented directly on top of the differential equation
solver class rkf. This was done because the interactions between the com-
partments are heavier than is the case with the transport model.
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The implementation combines the pressure and the gas model to a single
model with a state variable that consists of a fraction vector and a scalar
pressure. This is implemented as a vector with the pressure added as an extra
component, a data type named xpvec. The rkf class requires a function to
calculate the derivative in a point (¢,x). As the functions for the derivatives
are already generalized to a variable number of alveoli compartments, the
implementation also enables easy variation of the number of branches.

A.2 Numerical Methods

A.2.1 The Runge-Kutta-Fehlberg adaptation

The Runge-Kutta-Fehlberg method is a differential equation solver, and is
here described in two parts; the Runge-Kutta method and the Fehlberg part.
The implemented Runge-Kutta is of order five, which means that for every
timestep. a weighted average of the differential quotient in 6 points are used
for the calculation of the new state. The error committed by this method
is proportional to the stepsize in fifth power: At5. Hence the category fifth
order.

The general form of a fifth order Runge-Kutta-Fehlberg formula is

ki = h’f(x'ﬂf yn) (A-l)

ko = hf(zn + azh, yn + bar k1) (A.2)

(A.3)

ke = hf(zn + ash. yn + berk1 + - - - + besks) (A4)

Yno1 = Yn + C1 k1 + C2k2 + c3k3 + caks + c3ks + coke (A.5)

The Fehlberg part of the method optimizes the stepsizes by an estimate of
the error. This is done comparing two estimates of the new state calculated
with different weighting of the differential quotients in the 6 points.

Yn+l = Yn T+ cllkl + C‘lzk2 + C'3k3 <+ Cgk4 + Cl5k5 + C’sks

For the adaption to the vector class, we have defined the difference of these
states as the sum of differences in each variable.
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A.2.2 The Newton-Raphson method - :

~ The Newton-Raphson method is used for solving equations of the form O =
g(z), by successive approximation with the expression

g(zn)
g'(zn)”

Tps1 = Ty —

until |g(zn+1) — 9(z5)] < ¢ for some zero criteria ¢.

Problems with the method occur in points when ¢'(z) = 0, but otherwise the
algorithm normally terminates fairly fast.

We use this method for finding the root of the polvnomial in the pH model,
even though a general formula for the root of a third degree polynomial is
available. This is because the general solution may involve complex number
as intermediate results, even though the root itself is a real number. Aside
from this practical problem the numerical stability of the Newton-Raphson
might be better, than using the explicit expression, as the general formula
involves the difference between two complicated expressions, where underflow
in the calculations may affect the resulting small value significantly.

A.3 Program source listing

The following is a source code listing of out model implementation.

File: cmpt.h

17

// The compartmant base class
1

8include <iostream.h>
#include “rkf.h"

sinclude “vec.h"

class Capt {

public:
virtyal Vec dx{double t, double dt) = 0;
virtual void x{censt Veck) = 0;

b H

class Cid {
static Cmpte" cmpts;
int idx;
/7 Cupts cp
public:
Cid(int 1) { idx = 4; }
opsrator Cumpt* () { zreturn cumpts{idx}; }
Cmpts operator->{) { return cmptsiidx]; }
int operatorsm(const Cidk cid) const { return idx =a cid.idz; }
static void z_compts(Copter cpp) { <mpts » cpp; }
b8

template <class C, int n> class Model : public rikf<C, n> {
Comptes cmpts;
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double ddtinc;
void cmptinit(const vvec<C,n>k x)

for (imt i = 0; i < n; i+e)
empts[i]->x(x[il):

void derivs(double t, double dt, const vvec<C,ndt x, vvec<(C,n>t dxdt)

int i
emptinit(x);
for (i = 0; i < m; i+e)
dxdt (i) « cmpts(il->dx(t, dt);
b4
public:
Model(Czptse cpp, doubls ddti = 1) { cmpts = cpp: ddtinc « ddti; }
virtual void initdisp() {}
virtual void disp(double t, int mm = 0) = 0;
void initx(const vvec<C,o>k x)
{ !
yinit(x);
emptinit(x);
}
// disp() is called each ddt
void cale(double ti, double t2, double ddt = 10, double cdt = 5)
{

stopsize(cdt); .
initdisp();
daisp(tl);
for (double t = t1; ¢ < t2;) {
sifndef __GNUC__
try {
Sendif
odeint (t,t+ddt);
gifnde? __GNUC__
}
catch(StopUFError sufe)
{
cerr << "Step underflov in rikf\m";
// do the appropiate thing

>
catch(StepSzError sse)
{
cerr << "Step size error in rkf\a";
}
catch (HConcBrror hee)
{

cerr << "Error in pE model: " << hee << “"\n";

>
sendif
disp(teaddt); .
ddt == ddtin¢;
}
}
).

File: trans.h

sifndef _TRANS_B
sdefine _TRANS_H
sinclude <iostream.h>
sinclude "cmpt.h”
#include “vec.h"
#include "set.h"

const int ncmpt o 14;

sifades __GNUC__
ostreank operator<<(ostreazk o, const HConcErrork err)

return ©

<¢ “(z=" << erT.z << “,gHe" << orr.gB << “,dgH/dz=" << err.dgHdz << ")";
)
Sendif

// The blood transport model
class Transmodel : public Model<Vec,ncmpt> {
sot<Cid> plot;
pudblic:
Transmodel (Cmpt** cmpts, set<Cid> p, double ti=1)




136

The implementation

: Hodoi<Voc,nézpt>(cmpu, ti) { plot = p; }
void calc{doudble tl, double t2, double ddts10, double cdts5)
{

Model<Vec,ncmpt>::cale(tl, t2, ddt, cdt);

void initdiap();
void disp(double t, int gz = 0);

H
class In {
double z;
B Cid cid;
pudblic:
// In(double frac, Cid id) : cid(id) { z = frac: }
In(Cid id, double frac) : cid(id) { z = frac; }
int operator==(const Iok in) comst { return cid == in.cid; }
double flow();
Vec Xflov();
}:
class Transcmpt : public Cmpt {
double VB; // the volume of the blood part of compartment
double VT; // the volume of the tissue part of compartment
double Texp; // Core temperature
set<In> inset: // inflovs as fractions from compartments
public:

Transczmpt (double vb, double vt, const set<In>k is, double Tw37);
virtual Vec dx{double t, doudble dt) =« 0;

virtual void x{const Veck) = 0;

virtual const Veck cB() = 0; // phi blood

virtual comst Veck q.x() = 0;

virtual double pH();

virtual double T(}; -

Vec suzl(}; // the infloving amoust iz concentration
virtual double flow(}; // the blood flov through compartment
double q_VB();

double q_VT();

double q.T();

Sendif

File: scmpt.h

"

// Specialized compartments for the TC modsl
1/

sinclude “trans.h™

sincluds “ph.B"

#isclude “pbi.h"”

class pempt : public Transcapt {

Vec p; // uniform cozmpartment pressure

Vec ¢: // bvlood comc ¢ = cB(p)

double curpf; // current pB = pB(c(C02]);
public:

pezpt(doudle vb, double vt, const set<Indk is)

: Transcmpt{vb,.vt,is) {

Mat dcB() { return dedp(p, curpH, ¢(C02]); }

const Veck pB{) { retvwm p; }

const Veck ¢B() { return ¢: }

const Veck q.x(} { return p: }

void x(const Veck up) { p » mp; ¢ = ::¢B(p); curpB = pE(); }
double q_pE{) { return curpg; )}

virtual Vec dx{double t, double dt) = 0;

}:
class ccmpt : public Transcmpt {

Vec ¢ // dlood conc c = phiB(p)
public:

ccapt(double vb, doudble vt, const setiIndk is) : Transempt(vd,vt,is) {}

void x{const Veck nc) { ¢ = ne; )}
const Veck q.x() { return ¢; }
virtual Vec dx(double t, double dt} + 0;
const Veck ¢B() { return ¢; }
3

class Bodyampt : public pempt {
Vec mr; // setadolic rate
Vec beta; // metabolic increase conmst.
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double aanaT; // alpha ana tissue [mmol/(1 kPa)l
public:
static int mh = O; // malign hyperthermia activated
Bodycmpt (double vb, double vt, const Veck r, Cid cid, double z,
double sat) : pempt(vb, vt, set<In>(In(cid.z)))

{
mr = ¥;
aanaT » aat;
betaf{02] = 0.0005; // mmol/l rather low
beta[ANA] = 0.004; // mmel/l, from Model 10
}

double cTana() { return pB() (ANA)saanaT; }

double ¢Tco2() { rerumm ::cTco2(pB()([C021); }

Vec cT():

//Bodyecmpt (double vb, set<In> im) : pempt(vb,0,0.in) {}
Vec metabolism(double t)

<
Vec meta = q_VT{()emr;
// Malign Bypertherzmia
i (zh &2 t > 0)
meta *= (t < 4) T 2.5t : 10;
meta[02) »= mo2+pB(){02]/(betal02]+a02+pB()(02]):
oetal(ANA) e= aansepB() (ANAJ/(beta[ANA)saana=p8() (ANA});
returc meta;
}
Mat dcT()
{
Mat dc = ::dcTdp(pB());
dc[ABA) (ANA) ¢ aanaT;
return dc;
}

virtual Vec dx(double t, double dt);
).

class Pulczpt : public pempt {
vmatrix<double.3> permea;
lung* lungp;
Vec pa;
// froz mech lung compartmentmodel, if available.
publac:
Pulcmpt (double vb, Vec perz, Cid cid, double z, const Veck p)
: pempt{vb,0, set<In>(In(cid, z))).permea(perm)
{ps o p; lungp = 0; }
virtusi Vec dx(double t, double dt);
¥ec pA() const { return lungp ? lungp->pa(i) : pa; }

Vec dppequ{int 1); // change vhen instant equilibriuz with alveoli

const wvmatrix<double,3>: perm() { return permea; }
void initlung(lunge® 1p) { lungp * 1p; }

¥
class Cpool : pudlic pempt {

double 0c: // the Cardiac Output
publac:

Cpool(double VB, double qc, const set<In>k is) : pempt(VB,0.is) { Qecuqc; }

double flow() { revurn Qc: }
virtual Vec dx(double t, doudble dt);
double pANA(doudle nana)
{
return nana/{q_VB()saana);
)}
}:

class Bloodpool : public ccupt {

public:
Bloodpool(double VB, comst set<ln>dk is) : ccmpt(VB, 0, is) O
virtual Vec dx(double t, double dt):

File: lm.h

// the lung model
sifnde? _LM_E
sdefine _LM_E
sinclude <iostream.h>
Sinclude "rkf.h"
sinclude "vec.h”

enum { dead, alvi, NPCMPT };
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#define PRESS NGAS
#define NSAWM 10
const double pi = 3.1415725;

typedef vvec<doudble, NGAS+1> xpvroc;
typedef vvec<xpvec,NPCMPT> pulvec;

ostreamk operator << {ostreamk o, const xpveck Xp);

¢lass Pulcampt;

class lung : .public rikf<xpvec, NPCMPT> {
vvec<double, NPCMPT> R; // tlov resistance
vvec<double, NPCMPT> C; // compliance
vvec<double, NPCMPT> VO; // unstressed volume
vvec<double, NPCMPT> 1; // tube length
vvec<doubls, NPCMPT> &; // total tube area
double RT; // Gas constants
Pulcampte pulcap; // the pulmonary capillaries
double patnm; // barometric pressure = 101.3. kPa
double a; // amplitude of pe
double v; // angular velocity
Xpvec Xpe; // x distribution of mask air
// double D; // diffusion coefficient [m~2/s)
double VT; // Tidal volume for tidal(}

double pmin; // Min pressure for tidal()
double tmax; // Max resp. cycle leangth

double dpl, dp2; // slopes for tidal() pressure curve

enum { T_ASC, T_DSC, T_EXP } state; // tidal() variables

doudble t0,t1; // tidal() var: length of increasing pressure period
double poax; /7 " : mAX pressure

double vmin;

int nflg;

int av; // hov many full rounds

int nsav; // sav() aumber of points

double ps[NSAW]; // sav() parametars, nsav points

double ts{KSAWM]; // sav(} turn points, v fractioms

double sav(double t); // sav tooth generator

double tidal(doudle t); // constant tidal volume gensrater
virtual double ut{double t) { return 0; }

//virtual double um{double t) { return a=(sin(v=t)+1) + patm; }
virtual double um(double t) { return saw(t) + patm; }

// mask pressure:

virtusl xpvec pe(double t) { xpe{PRESS] » um(t); return xpe; }
static xpvec pp{const zpvect xp) { return xp * xp[PRESS]; }
static Vec parp(const xpveck xp)

{

Vec pp:

double p = xp[PRESS]);

tor (int 4 = 0; i < HGAS; iev)
ppl{i) = xp(ilwp;

Teturn Pp.

xpvec dfflew(int i, const xpveck xp.const xpveck xpx,.double R);
init();
int prsasgn(chare, doubles);
iot prsiasgn(chare, ints, doubles, int maxi = NPCMPT);
int prsasgnvec(chare, xpvec®);
int prsiasgnvec(chars, inte, xpvece, int maxi = NPOMPT):
public:

lung() { pulcap = 0; nflg = av = -1; imit(); }
void readfile(chars fn);
lung(char= fo) { iniv(}; readfile(fn); )
void dispparan();
virtual "lung() O
void derivs{double t, doudle dt, const pulveckt xp, pulveck dxdt);
virtual void disp{double t, int mm = 0);
virtual void initdraw(double t0, double t1) {}
virtual void drav(double t) {}
void calc{double t0, double ti, double ddt);
Vec pAliot i) { return parp(qy()[i]); }
rpvec dfven{int i. const pulveck xp)
1{

return dfflov{i, xplil, xp{0), R[il):
3
xpvec dfven(int i) { return dfven(i, qv()); }
double dplint i)
{

return (qy()[0][PRESSI-qy () (4] [PRESS] - um(qx()))/(R{ilec(il);

Vec dph{int i)

implementation
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{
Vac v,
double p = qy() (i) (PRESS];
Xpvec Xp;
xp = prafven(i); //+dp(i)sqy([i);
for (ipt i e 0; i < NPCMPT; i++)
v{il = 2plid;
return v;
3}
double um(} { return um(gx()); }
double _V();
double V() { return _V() - wmin; }
double Vdot():

void zafig(int i) { aflg = i; )}

void initpulcap(Pulezpt® pc) { pulcap = pe; }

)
sendif

File: pv.h

// pV draving lung model
ginclude "win.h"
sinclude "lm.h"

class glung : lung {
Wine win;
public:
};
class pV : public lung {
VIe win;
int first;
int values;
public:
pV(int v = 1) { values = v; }

virtual “pv() {3

void initdrav(double, doubls);
void drav(double t);

void disp(double t);

h

class VV :

public lung {

VI« wvin;
int first;
int values;

public:

VV(int v ¢ 1) { values = v; }
wirtual “W() (&

void initdraw(doudble, double);
vo:d drav(double t):

void disp(doudble t);

File: rs.h

// The Total Respirstory Systez
sipclude “trans.h”
sinclude "1z.b"

class rs {
double

ddtinc;

Transzodelt tz;
lungk Iz;

public:

rs(Transmodelt t, lungd 1, double disl)
void calc{double xi, double x2, double ddt, double cdt);

};

File: phi.h

// Dissociation curves

: to(t), 1m(1l) { ddtinc = ai; )
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sinclude “ph.h"

ginclude “vec.h”

// concentration in blood: dissociation curves

extern double c¢Hb;//9.3; // Blood Hb conc, mmol/l

oxtern double cHhery;//21; // Exy Hb conc, mmol/l

extern double ksi;//cHb/cEbery; N

extern double xHi;// 0.005;

extern double xHbco;// 0.00§; // Fraction

extern double ctHy; //;// 9.30; // Total Hb conc: mmel/l

extern double xEhf; // O fraction

extern double cDPG; // conc diphosphaglycerate

// anaesthetica dissociation ‘curve parameters

extern double aanaf; /e " " fatr solubility

extern double aanat; H"e " " tissue solubility
extern double cBpro; // ¢ total anss. binding protein conc ia blood
extern double cpr0; // - " in non fat tissue
extern doudle Ke; // ¢ protein equilibrium [Prins] = Ke{Pr][Ana)
extern double aana; // G alpha anaesthetica blood part solubility

extern double a02; //;// 0.00983; // Selubility 02 in blood: mmol/(1 kPa)
extern double aplaco2;//0.230; // Solubility:alpha[plasma, co2) mmol/(l kPa)

extern double asryco2;//0.185; // Solubility:alpbalery, co2] mmol/(1 kPa)

double cplasma(const Veck p, double pH);

double _phiC02(const Veck p, double pH, double ksi = §.3/21);
double cC02(const Vect p, double c = 22, double ksi = §.3/21);
doubls c02(const Veck p, double pH):

Mat dcdp(const Veck p, double ph, doudle c);

Mat dcTdp(const Veck p);

doubls cTana(double p):

double cTco2(const Vect p);

double dcTana(double p);

double so2{const Veck p, double pH):

Vec cB(const Veck p. double oldc = 22);

Vec cT(const Veck p);

File: ph.h

// p8 model interface
®ifndaf _ph_h
S8define _ph_ L

class HConcBrror {
pudblic:
double z, gH, dgRdz;

BConcPrror(double x, double gh, double dgh) { z = x; gB = gh; dgldz = dgh; }

}:
extarn doudble cna; // (a+): mmol/1
extern double cpro; // (EPT)0: mmel/l

extern double Kal;// 7.9433e-7; // Ka: C02 + H20 <-> H+ + BCO3- (pK=6.1)
extere double Ka2;// 5.0119e-8;: // Ka: Pr <-> Be + Pr- (pKe7.3)

double pH(double c};
double dpRdci(doudble ¢);
Sendift

File: rkf.h

1/

// Frontend for the Runge-Kutta-Fehlberg algorithn
17/

sifndef RKF_E

Sdefine RXF_H

#include <math.b>

#include “vvec.h”

class StepSzError {
public:

StepSzError(} {}
X

class StepUFErroer {
double x, err;
public:
StepUFError(double v, double ¢) { x = v; err = ¢;}
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}s

template <class C, int o> class rkf {
double x; // currenmt x value
vvec<C.n> y; // current y value

vvec<(,n> dydx;
wvvec<C,n> yerr;
- vvec<C,n> yout;
vvec<C,n> yscale; // scaling of errors
double eps: // limit
int mnok, emmbad;

double hi; // stepsize
. double hmin; // minimum allovable stepsize
- double bact: // The actual stepsize
double haxt; // nxt proposed stepsize

double TIKY; // = 1.0e-30;
double SAFTY: // = 0.9;
double PGROW:; // = -0.2;
double PSHRIKK; // = -0.25;
double ERRCON; // = 1.83e-4;
public:
rkf(double dxe0.1, double e=le-8, double dxminele-15)
{

znok = mndad = 0;

x =0

eps * o

bl ¢ dx;

hzir * drxmin;
TIKY = 1.0e-30;
SAFTY = 0.9,
PGROW = -0.2;

PSHRINK = -0.25;
ERRCOX = 1.80e-4;

>

vartual “rif()

{

rEf<C,n>% operator=(const rkf<C,m>t b)

{
x *b.x; // current x value
y*b.y: // curreut y value
dydz = b.dydx:
yorr = b.yerr:
yout = b.yout:
yscale = b.yscale: // scaling of errors
ops = b.eps; /7 lamiv
‘mnok ® b.mnok;
mnbad « b.znbad;
hoio * b.bmin; // minimuz allovable stepsize
bact = b.bact; // The actual stepsize
hast = b.haxt; // nxt proposed stepsize
return ethus;

}

void stepsize(double b) { b1 = abs(h); }
void yinit{const vvec<C,n>k yimit) { y = yimat; }
virtual void derivs(doudble t, double dt, const vvec<C,ndk y, vvec<C,n>k dydt) = O;
/e Sth order Runge-Kutta-Pehlberg method Num Res (2ed) p 719 o/
void rkck{doudle b)
{
ant 3;
const double a2» 0.2, a3» 0.3, a4= 0.6, aSe 1.0, aBe 0.875,
b21e €.2, bB3ie 3.0/40.0, b32= $.0/40.0,
bdle 0.3, bA2> -0.9, dASe 1.2,
BSis -11.0/54.0, bS2e 2.5, bS3« -70.0/27.0, bS4= 35.0/27.0,
b8ie 1631.0/55296.0, b62= 175.0/512.0. »83= $575.0/13824.0,
b6Ae 44275.0/110592.0, b6Se 283.0/4096.0,
cle 37.0/378.0, c3= 250.0/621.0, cé= 125.0/584.0.
c6= 612.0/1771.0, dcS= -277.0/14336.0;
const double dcle c1-2825.0/27648.0, dc3= c3-18575.0/48384.0,
dede ¢4-13525.0/58296.0, dcbe c6-0.25;
wvec<C,n> ak2,ak3, akd,sk5,aké;
derivs(xea2eh,{1-a2)sh,y+b21ehedydx,ak2);
derivs(xeadwh, (1-83)eh,y+he(bI1odydx+b3I2sak?) akd);
deriva(zeaded, (1-a4)eh,yoh» (bd1=dydx+bé2vak2+b43sak3) ,akd);
deriva(xeaSeh, (1-85)=h,y+he(bS1edydxeb52eak2+b53sakI+b54ak4) ,ak5) ;
derivs(zvabeh, (1-a6)eh,y+he(b61sdydx+b62eak2+b63sak3+bb4»aké+b65S*aks)
Jax6);
yout = yebe(cisdydxsc3nakI+cdnakésclraks);
yorr = he(dcledydx+dc3eak3+dcé=aké+dcSeak5+dcsraxs);
}
void rkqs(doudle h)
{

int i:
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double errmax,htemp,xnev;
tor(;;) {
rkek(h);
errmax = noru(yerr/yscale)/eps;
if(errmax>1.0) {
- htemp*SAFTYsh+povw(errmax,PSERINK);
i2(h>=0.90)
(htemp>0.1%h) ? hehtemp : h »= 0.1;
i2(5<0.0) )
(btemp<0.1%h) ? hahtemp : h == 0.1;
Inev = x+h;
. - if (xnew==x)
sifdef __GNUC__ R
{ cerr << "Step underflow" << x << "," << errmax << "\n“;
return; J} )
selse
throv StepUFBrror(x, errmax);
sendif
dorivs(xz,h,y,dydx);
} olse {
1f (errmax>ERRCON)
hnxteSAFTYshepow (errmax,PGROW) ;
else
hnxt=S.0eh;
x += (bactsh);
y = yout;
return;

3
>
// develop from xi to x2
void odeint{double xi, double x2)

int i;
double h;
X*xl;
b = {(x2>x1) ? b1 : -hi;
gnok = mnbad = O;
tor (;3) {
derivs(x,b,y,dydx);
yscale=aba(y)+abs(dydxeh)+vvec<C,n>(C(TINY));
it ((x+h-x2)(x+h-x1) > 0.0)
hex2-x;
rkqs(b);
(hact == h) 7 semnok : +emnbad;
if ((x-x2)*(x2-31) >= 0.0) {
hisabs(haxt);
Teturn;
}
if (abs(haxt) <= hmin)
sifdef __GNUC__
{ cerr << "Step size error " << z << "\n";

return: }
Selse
throv StepSazError();
Sendi?
hshaxt:
}
b
double singlestep{double x1, double maxh)
{
int §;
double b = min(hl,maxh);
x*x1;
deriva(x,h,y,dydx);
yscalemabs{y)+abs{dydx*h) +vvec<C,a>{(C{TINY));
rkgs(h);

return hact;
}
doudble qx() { return x; }
const vves<C,n>k qy() { return y; )}
const vvee<C,n>t qdydx() { return dydx; }
X
sendif

File: trans.cc

7/
// the Transpert model
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#include <iostream.h>
#include "trans.h"
tinclude "pb.h"

double In::flow() { return z*((Transcmpte){(Cmpt*)cid)->flov(); }
Vec In::Xflow() { return flow()={(Transcopte)(Cmpte)cid)->¢B(); }

Transcmpt: :Transcopt (double vb,double vt, const set<In>t is, doudle T)

: inset(is)
{
VI=vt; VBevb; TempsT:
}
= double Transcmpt::pH() { return ::pH(cB()[C02)); } // pE in the blood part

double Transcwpt::T() { return Temp; }

double Transczpt::q.VB{) { returan VB; }
double Tramscmpt::q.VT() { return VI; }
double Tramscmpt::q.T() { return Temp; }

File: scmpt.cc

#include <iostreax.h>
ginclude <stdio.h>
sinclude "1lm.h"
sinclude "scmpt.h’

//tezplate <class S5, class R> R sum(set<S>, const Rk (*f)(const Sk)):
Vec Transcmpt::suml()
{

// sum all the inflows

const member<In>e ip;

Vec res = 0;

for (ip = inset.members(); ip; ip = ip->tail())
res +e ((In)(=ip)).Xflow();

return res;

b4
double Transcmpt::flow()
{
const member<ln>* ip;
double res = O;
for (ip = inset.members(); ip; ip = ip->rail())
res = ((In){*ip}).flov{);
Teturn res;
}
Vec Cpool::dz{double, double)
{
return invers{q.VB{)*deB())*(sumnI() - flow()ecB()):
}
Vec Bodycmpt::dx(double t, double)
{
Vec I, 0, K;
double f;

Mat o * (q_VT()=dcT()+q_VB()edeB());
o.invers();
1 e suml{):
0 = eB();
2 e flov():
¥ = petabolism(t):
//tprante (stderr, 1ol felf OeLf £0=%f MaXe\n~,I(ANAL,f,0(ANA],2e0(ANA] ,M[AKAT):
Vec v = (I-fe0eM);

v = pev;
return v;

}

Vec Bodycampt::cT()

{
Vec ¢;
c(€02) » cTeo2():
c(02) = ao2+pB()(02);
c{ANA] = cTana();
return c;

}

// really dc/dt, as system variable for this cmpt is ¢, mot p.
Vec Bloodpool::dx(double, double)
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return (sumI{) - 2low()=cB())/q_.VB();

Vec Pulempt::dppequ{int i)
{ R : i

return 0.5e(invers(q_VB()*dcB())*(sunI()-flov()=cB()) + lungp->dpA(i));
// It permea[i] >= 100, assume instant equilibrium of gas i

12; calculated if lung model is present
17 believed true since initiation-of plil, othervise.

Vec Pulcmpt::dx(double, double dt)
{ == -
Vec d;
Vec dpag;
if (lungp) )

dpeq * dppequ(alvi);
deipvers{q_VB{)=dcB())=(suaI() - £lov()=cB() +permea={(pA()-pB())}};
for (int i = 0; i < NGAS; iee)
it (permeafil (i) >= 100)
d4fi) = dpeqlil;
return d;

File: Im.cc

124

// The complete lung model
sinclude <stdio.h>
sinclude <stdlib.h>
sinclude <iostream.h>
sinclude <fstreaz.h>
sinclude <zath.h>
sinclude <ctype.h>
#include “lm.bh"

8include "scampt.h"

ostreant cperator << (ostreamk o, const xpveck xp)
{

return o << "(* << xp[C02) » xp[PRESS) << ~," << xpl02) = xp(PRESS) << ")";
}

const double platz ¢ 101.3; // late » 101.3 XPa
lung::anst(}
{

patz = platm; /! xPs
RT = 8.31451+310;

a=1; /! xPa

v e 1; /7 2pi*1/6 s°-3
xpefC02] = 0:

zpe{02) = 0.21:

xpe [PAESS] = patz;

//D = 1.76e-5; 1/ z*2/s

//R[Q) = 0.055; // kPa s /1

afo] = 0.20; // xPa s /1

€(0) = 0.10; // 1/ xPa

AL0) = pow(0.018/2,2)pi; // A tranchea [z-2]
1{0) = 0.20; /s

/7 v0 = vo[1atz) - latasC
vo{o] = 0.1-plarmeC(C]; // 1
R{1] = 0.0010;

cf1} = 1.10;

A1) = 5000009pov(0.0005/2,2)*pi;  // Generatics 19 (2]
1(1) = 0.25; /e

vol1) = 2.7-pilatmeC{1]); /71
/7 sav tooth function initialize
nsav = 3;

pe{0 » 0.0;

psf1) = 1.47; // kPa

psf2] = 0.2;

ts[0] » 0.9/3.2;

ts{i]l = 0.1/3.2;

ts{2) = 2.2/3.2;

}

xpvee lung::dfflov{int i, comst xpveck xp,const xpveckt xpx,double R)
{
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xpvec df;

double Dp;

double p = xp(PRESS];

it ((Dp = xpx(PRESS) - p) > 0) {
df = Dpe(xpx - xp)/(22.39%R);
4t [PRESS] = 0;

} else
return df; // 0O

return 4feRT/((CLi}ep+vo(il)ep);

¥

void lung::derivs(double t, doubls dt, const pulveck xp, pulvect dxdt)
{
int i;
xpvec xp0 = xp(0];
/! p part
double dpdt [NPCMPT];
double x = 0;
double u = ut(t);
pelt):
double z;
for (i = 1; i < NPCMPT; i++) {
x o (z = (xpO[PRESS)-xp(i) [PRESS) - w)/R[il);
dpdt(i] = z/CLid;

dpdar[0] = (zpe[PRESS)-xpO[PRESS])/(R[01=C[0]) - x/Cl0];
// ftrac part
// cerr << "d(" << t << ") wy
//xpvec dfd = dfdiff(xp0, xpe, A[0], 1(0]):
xpvec dff = dfflow(0, xp0. xpe, R[0]);
for (i = 1; i < NPCMPT; is+) {
// contribution to cmpt 0
/7424 += drdife(xpo, xpli), ali}, 1[id):
dars <= agflow(0, xp0, xp(il, R[il):
double p » xpli) [PRESS];
xpvec dx;
dxdt[i] = dfven(i, xp);
if (pulcap) {
Vec dpp « RI/{(Cli)epevo(il)=p)
spulcap->pern ()« (pulcap->pB()-parp(zplil));
Vec dfvp = pulcap->dppequ(i); // ventilationsperfusion rate
for (int k = 0; k < NGAS; k++)
if (pulcap->pera() kI (k) < 100)
dxdt (i) (k] <« applxl;
else
dxde (1) (k) e (asvpOxd-dpde [$)exp(i](x])/p:
} olse {
// membrane diffusion, to match mstabolisn
// in pot-present body model
doudle m = 1.8e-3%0.083eRT/((C{i)wpev0(il)ep):
axdt (i) (CO2) = ®;
dxde(1)(02) -= m:
}

)
//dxdt[0) = dftot(xpO[PRESS], C[0), vO[0), af4, afe);
axde (0] « dfe;
// 2£i11 in the derivative for tbe pressure model
for (i = O; i < NPCMPT; iee)
axat (i) (PRESS) = dpde(i]:
Y

double lung::sav(double t)
{

double T = (2epiev);
int o & (iat)(t/T);
it (o > aw) {

woin = _V();

ov * o;

)
t -= floor(t/T)eT;
t /=T
iot i;
double tt;
for (i = 0, tt = 0; i < nsav-1 &t t > (tt + ta[i]); iee)
tt += ts(i);
return ps(i] + (t-tt)e(ps((i+1)%nsav] - pslil)/es(il;
>

double lung::tidal(double t)
{

//% «= floor(t/w)ew;
double p;
suitch (state) {
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case T_ASC:
pnax » (t-t0)=dpi;
if (v() < VT)
return pumax;
state = T_DSC;
t0 s t;
// tall through
case T_DSC:
p = poax - (t-t0)*dp2;
it (p > pmin)
return p;
state = T_EIP;
tl = ¢,
// tall through
case T_EXP:
if (¢ - t0 >= tmax)
state = T_ASC;
return pamin;

}

void lung::disp(double t, int mm)
{

double p0=
double pl=
xpvec ppoO=

qy () (0] (PRESS);
qy () (1] [PRESS];
prlqr 0 0)), ppi= pplqr(001d):

if (eflg < 0 i} nflg == av) {

if (tom)
cout << ¢,

cout << '\t’ << pe(t){PRESS]-platz << '\t' << V() << '\t’
<< pd << '\’ << ppO[CO2] << '\t << ppOf02] << '\v’
<< p1 << \r? << ppt{C02] << ’\t’ << pp1[02];

if (tmm) {
cout << ‘\n’;
cout.flush();

}
}
void lung::calc(double t, double ti, double ddt)
{
inicdrav(t, t1);
disp(t);
for (; t < ¢1;) {
odeint(t, teddt);
drav{t);
aisp{ ¢ o= ddt);
b
}

double lung:: V()
{

int i;

double Q = O;

for (i = 0: 3 < ¥POMPT. 1e9)
QeeClileqy() (i1 (PRESS) - Clilepiatz;

return §;

}
double lung::Vdot()
{

igt 4
double Vd = O;
for (i = 0; 1 < WPCMPT: ie¢)
Vd += C{i)eqdydx () [1](PRESS]:
reture Vd;

)
void lung::resdfile(char* fn)
{

ifstream in(fn);

char buf{1024];

int ok, i, lno=(;

chare s;

double v;

zpvec vV;

pulvec xp * qy():

doudble vO[NPOMPT];

for (i = 0; i < NPCMPT; i++)
v0[i) = VO[i)+platmsC(il;

// #ix initial values

vhile (in.getline(buf,1024)) {
lno++;
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}

for (s = buf; isspace(+s); s++)

svitch (»3) {
cass '#’: continue;
// paramotoers
case °*R': if (ok = prsiasgn(s+i, &i, &v)) R[i) = v; break;
case 'C': if (ok = prsiasgn(s+l, ki, &v)) C[i) = v; break;
case 'V': if (ok * prsiasgn(s+i, &i, &v)) vO[i] = v; break;
case 'A': 12 (ok = praiasgn(s+1l, &i, &v)) A[i] = v; break:
case ’1': if (ok = prsiasgn(s+1, &i, &v)) 1{i] = v; break;
//case 'D': if (ok = prsasgn(s+i, &v)) D = v; break;
// generators
case ’'a‘': if (ok » prsasgn(s+l, &v)) a = v; break;
case 'w': if (ok = prsasgn(s+l, &v)) v = v; break;
case ‘n’: if (ok = prsasgn(s+l, &v) Rk (int)v > 1 &k (int)v < NSAWM)
nsav = (int)v; break;

// initial values
case 'p':

switeh (s01]) {

case ‘e': if (ok = prsasgn(s+2, &v)) xpe{PRESS] « v; break;

case 's': if (ok = prsiasgn(a+2, &i, &v,nsaw)) ps[i] * v; break;

default:

if (ok = prsiasgn(s+l, &i, &v, 3))
xp{i] [PRESS] = v;

break;
case 't':
it (ok = prsiasgn(s+l, ki, &v, nsav)) ts[i] » v; break;
case 'f':
it (=5 == ’e’) {
if (ok = prsasgnvec(s+2, &wv)}) {
wv[PRESS] = xpe[PRESS];
xpe ® vv;
}
} else if (prsiasgnvec(s+l, &i, &vv)) {
vv{PRESS] = xp(il (PRESS];
xp[i) = vv; break;

}
break;
default:
ok = 0;
Y
it (fok)
corr << fpn << ": gyntax error lime " << lmo << “\n";
}
yinit{xp); -

for (i = 0; i < NPCMPT; iee)

voli) = v0{iJ-ptavz=C(i];

double t = O;
for (i ® 0; i < nsav-1; 4++)

t += ts{il;

tali} » 1 - ¢

lung::praasgn(chare s, double *vp)

tor (: isspace(ws); se+)

it (osse ta 2er)

return O;

char* p;
evp = strrod(s, &p);
return s != p;

lung::prsiasgn{chare s, ints ip, double =vp, int maxi)

iot i = 0, found = 0;
vhile (s >= 0’ &k ®a <= '9*') {

i s 10;
i em sgee - 10';
found = 1;

if (found &k i < maxi) {

}

if (prsasgn(s, vp)) {
eip = i;
roeturn 1;

}

return O;

int lung::prsasgavec(chars s, xpvecs vp)
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{
chars p;
for (; isspace(vs); s++)
if (wges tn 1ar)
© return 0; -
tor (int i * 0; i < NGAS; i++) {
“for (; isspace(sa); s++)
if (o ®= (3 7 0 : (1))
844
_for (: isspace(ws); g++)
g (o5 w= 2] |} (i == NGAS-1 R =g ax ’)’))
(evp) [i+s] = strtod(s, &p);
else
’ return 0; )
)
returm 1;
}
int lung::prsiasgnvec({char= s, inte ip, Xpvec *vp. int maxi)
{
int i » 0, found = O;
vhile (=8 > *0’ &k =8 <= *9’) {
i ee 10;
i es egee . 707,
tfound = 1;
if (found &t i < maxi) {
it (prsesgnvec(s, vp)) {
sip ® §;
return 1;
)
3}
return 0;
}

void lung::dispparas{)
{

int
eout
cout

i
< "8 pe » " << zpe[PRESS] << "\n";
€C "8 fe = " (& xpe <& "\n";

/leout << "8 D = " << D << "\n";

cout
cout
cout
for

cout
for

File:

/"

// tmain:

/7

sinclude
sinclude
sinclude
sinclude
sinclude
sinclude

€< "8 a v " << g < "\g";

€< "8 v e "<y <C "\t

<< “sSav  p t\n";

(2 ® 0; i < psav; i++)

cout << "8 " << psfi] <c "\e" << teli] <c "\n*;

<< "9 Cmpt B C Vo Afe-6] 1 p f\a~;

(2 = 0; i < KPCMPT; ie«s)

cout €< "H\t" <¢ i << "\t* << R{i} << "\t" << Ci) << "\t"

<< VO[i) « Clieplatz << “\t" << A[i}e1e6 << "\t™ << 1[4] << =\¢"
<< gy ()[4 [PRESS] << "\t" << qy()(i] << "\n";

main.cc

Blood transport model

<CetOpt.b>
<iostreaz.h>
<fstream.h>
<stdic.h>
“rs.h"
"sczpt.h”

eoum { cap, poola, poolv, kidney, brain, heart, liver, muscles, coam,
adia, rest, poolvv, poolvl, poolva, local_ncmpt };
Capt* cupts(ncmptl;
chars cpptoan(] =
{ “cap”, “poola”, “poolv", “"kidney”, "braim",
Theart", "liver", "muscles”, "coma",
"adia”, “rest”, "poolvv", "poolvl”, "poslva"};

Copte* Cid::cupts = copts;

enuz { F_CMPT3 };
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void initcmpts(int flgs):

enum { O_P, 0_CB, 0_CT, 0.X, N_OUT };:
chars outnam{J = { "p", “cB", "eT", "x" };
int out; // bits: 1 << O_x

int outans = O;

ostreamk operator<<(ostroamk os, const Veck v)
{
if (outvana)
o5 << v(ANAD;
else
o8 ¢¢ "(” << v[C02} << "," <c v[02]) << M)*;
return os; .

int Bodyempt::mb = 0;
int main(int arge, chare argv(l)

if {local_ncmpt != nempt) {

cerr << "lllegal configuration:\nmodel size (" << ncampt
<< ") differs from pumber of compartments (" << local_mempt << “)\a";

exit{1);
M
int i;
int mhflg = 0;
int flgs = 0;

int 85 = 0; // select staty state starting peint

double t0 = 5;
double tmax e 20000;
double ddt = 0.1;
double cdt = 0.05;
double dddt = 1.1

double nana = 0; // amount of ansesthetica placed in vanous pool

char* lungfile = O;

Getlpt getopt{arge, argv, "3a:cCxpmst:d:1:L:");
vhile ((i = getopt())'s EOF) switeh (4) {

case '3': flgs |= (1 << F_CMPT3); break:

case ‘t’: tmax = atof{getopt.optarg);: break;
case 'd’: ddt = atof(getopt.optarg); break;
case 'l’: dddt = atof(getopt.optarg): break;

case 's’: outana++; nana = atof (getopt.optarg); break;

case 's’: ss++; break;

case ‘c’: out I= (1 << 0_CB); break;
case 'C': out I {1 << 0_CT): break;
case 'z’: out le (1 << 0_X); break:
case ‘p’': out I= (1 << O_P); break;

case ‘z’': mhflge+; break;
cass 'L': lungfile = getopt.optarg: break;
default:
cerr << “usage:” << "\a";
exit(1);
}
17 (‘out)
. out = (1 << 0_P):
it (mhflg)

Bodycupt : :mhes;
i2 (ddt < cdt)
cdt = dde;
// create transport model
anizempre(figs) .
vvec<Vec,ncapt> x0;
* Transmodel tm{cmpts,

set<Cid>(poola,poolv).ins(cap).ins(muscles).ins(kidney)

.ins(brain).ins(adia), dddt};
it (ss) (
x0(cap)emkv(5.3,13.8);
20 [poola) wakv(5.3161,12.4666) ;
20 (poolv)=ukv(6.13678,5.17942);
x0{kidney] smkv(5.49209,8.41225) ;
x0[brain)*mkv(6.53507,4.4601) ;
20 [heart)wakv(6.28108,4.91897);
20(liver}enkv(6.9572,3.86156);
x0{muscles)smkv(6.1229,5.26527);
x0{conn] *mkv(5.56972,7.6418);
x0[adia)=mkv(5.31614,12.4566) ;
20 (rost)=mikv(6.10728,5.30375);
x0(poolvv] =mkv(25.2272,6.37059) ;
x0(poolvl]emkv(24.5604,7.60013);
x0[poolva)wmkv(23.7613,9.08395) ;
Y olse {
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}

x0[cap] = ((Pulcmpte)cuptslcapl)->pA();
z0[poola] = x0[kidney)=x0[brain)=x0[heart]=x0[liver]
=x0[conn}=x0[adia]=x0[rest] = x0{poolvls mkv(10,10,0);
x0(pooclvv]ex0i{poolvl)=x0{poolval = cB(mkv(10, 10, 0 ));
20 {muscles] = miv{10,10,0);
}
if (outana)
x0[poolv] [ANA] = ((Cpool®)empts(poolv])->pANA(nana); -
tm.initx(x0):
// create lung model
pulvec p;
double platm = 101.3;
Vec pep = tm.qy() [capl;
pl03.(CO2] = 0.004;
pl03[02) = 0.10;
p(OJ[PRESS] = piatm;
pl11[C02) = pep(C02)/platm;
p{11{02] = pecpl02]/platn;
p{1][PRESS] = platm;
lung Im;
im.yinit(p);
im.stepsize(0.1);
// link lung to transport, and vice versa
1m.initpulcap((Pulempte)ampts[capl);
((Pulcmpte)cmpts{capl))->initlung(dln);
// create the combined model
rs resp(tm, 1lm, dddt);
cout << "8 Blood transport model: "
<€ tD €C "o << Tmax << " €" << ddt << "[" << dddv << "J\n";
it (Bodycmpt::mh)
cout << "8 Malign Hyperthermia activated\n”;
resp.calc(t0, tmax, ddt, cdt):

void initempts(int figs)
{

// Caxdiac QOutput

const double Qc = 0.083; // /s #8388 check value
// Bleod volumes, [Model 30, Laroul
const doubls Vbvein = 1.427;

const double Vba = 0.2eVdbvein;
const double Vbvt = O.8+Vbvein;
const double Vbv @« 0.126eVbwe;
const double Vbvl = 0. 364+Vbve;
const double Vbva & 0.11leVbwvy;
const double VBvv = 0.399eVbve;

// Pulmonary shunat

const double lambda = 0.02; //0.02;
// Organ Blood and Tissue volumes
const double Vtkad = 0.27;

const double Vbkid = 0.05::
const doudble Vthea = 0.307,
const doudle Vbhes = 0.040;
coost double Vtbrs = 1.3;

const double Vhbra = 0.105;
const double Vtliv = 2.973;
const doudle Vbliv e 1.106:
censt double Vizus #26.773;
const double Vbmus = 0.700;
const double Vtcon = 8.182;
const double Vbcon = 0.653;
const double Vtadi *14.786;
const double Vbadi = 0.562;
const double Vires = 0.217;
const double Vbres = 0.015;

const doudble Vdlun = 0.530;

const double Vt = VtkideVihea+VtbrasVrliv+Vires;
// blood flov fractions

const double zbra = 0.135;

const double zkid = 0.222;
const double zliv = 0.283;
const double zhea = 0.048;
const doudble zmus = 0.107;
const double zcon = 0.101;
const double zadi = 0.062;
const double zres = 0.041;

const double zorg ® zbra + zkid + zliv + zhea + zadi+ zTus+ zcon+ ITes;
// Thiopentale: alpha ana tissue, from Hull

double aabra = 1.4;

double aakid = 1.5;

double aaliv = 1.7; // adj. since our liver includes stomach
double aahea * 1.5;

doudble asmus = 1.5;
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double aacon = 1.5;

double aaadi =11.0;

double aares = 1.5;

if (flgs & (1 << F_CMPT3)) {
/7 x12/x21 /] slow
double aaslov = 14.308+5.2/(Vtous+Vtadi+Vtcon);
/1 x13/%31 // tast
double aafast = 1.78125.2/Vy;
asbra = aakid * aaliv = aahoa » aares ® aafast;
sacus * aacon * aaadi = aaslov;

}

Cid::z_capts(capts);

// back up for missing lung model

Vec pi = mkv(5.3,13.3,0);

sdefine mkIn(x) In(x,1)

/7

}

cmptsicap] = nevw Pulempt(0.53,mkv(100,100,0),poolv,1-lambda,ph);
copts(poolal = nev Cpool(Vba, ¢,
set<In>(In{cap, 1), In(poolv, lasbda)));
cmpts(poolv] = nev Cpool(Vov, Qc,
set<In> (mkIn(poolvv)).ins(mkIn(poolvl)).ins(mkIn(poolva))
.ins(In(poola, /e1-z0rge/0)));
double xv = 175.0/260.0; // frox Fukui;
double xbra = 50.0/260.0;
double x1 » 35.0/260.0;
const double co2prod = 6.15/60; // (mmol/s) CO02 prod [Nun]
const doubls o2con = -11.52/60; // (mmol/s) 02 consumption [Munl)
Vec Mv = mkv(co2prodexv, o2conesxv, 0)/(VtkidsVtheas+VtliveVtres);
Vec KMbra * mkv(co2prodexbra, o2conexbra, 0}/Vtbra:
Vec Ml = mkv(co2prodexl, o¢2conmexl, 0)/(VtmuseVrcon);
Vec 1lmr; // standard metabolic rate, liver
lmr(AEA) = -26.5/60/1000/Vtliv; // froz ‘'model 10'
coptsikidney] = nev Bodycmpt(Vbkid, Vtkid, Mv, poola, zkid,aakid);
coprsfbeart] © nev Bodycmpt(Vbbea, Vthea, Mv, pools. zhea.sahss);
capralbrain) = nev Bodycmpt(Vbbra, Vibra, Mvra, poola, zbra,aabra);
cmptalliver) = nav Bodycmpt (Vbliv, Vtliv, Mvelmr, poola, zliv,aaliv);
cmpta(muscles) = nev Bodycmpt(Vbmus, Veizus, M1, poola, zmus,aamus);
coptalconn) = nev Bodycmpt(Vbeen, Vtcon, M1, peola, zcon,sacen);
capteladia] = nev Bodycmpt(Vbadi, Vtadi, mxv(0,0,0), pools, zadi,ansadi);
czprs[rest] = nev Bodycmpt(Vbres, Vtres, Mv, pools, zres,aares);
cmpts{pooivy] e nev Bloodpool(Vbvv,
set<In> (mkIn(kidney)).ins(mkIn(heart)).ins(nkIn(brain))
.ins(mxIn(liver)).ins(mkIn(rest))});
capta(poolvl] = nev Bloodpool{Vbvl,
set<Iin>(mkIn(muscles), mkIn(comn))):
cmprs(poolval = nev Bloodpool(Vbva, set<In>(mkin(adia)));

voi1d termipate()

{

cerr << "exception not catched.\sn";
exat(1);

vo1d Transmodel::in:tdisp()

{

}

cout << "8,
for (12t o = 0; o ¢ N_QUT; oee)
12 (out & (I << o))
cout << '\t' << outnamlo);
cout << "\p";
cout << 8"
for (ant § = 0; i < ncmpt; iee)
1¢ (plot.ainfi))
cout << '\t << cmptoam[i);
cout << "\n";

void Transpodel::disp(doudle t, int mm)

{

int outp;
it (‘mm)
cout << t;

for (int o @ 0; o ¢ N_OUT; o++) {
12 (*(out & (1 << 0)))
continue;
outp = o;
for (int i = 0; i < nempt; ies)
if (plot.in(s)) {
Transcmpte p = ((Transcmpte)::cmptslil);
Vec x;
switeh (4) {
// ®loed onmly

case cap:
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case poola:
case poolv:
x = (outp == O_P) ? p->q._x()
: ((outp == 0_X) ? p->q.VB() : 1.0)*p->cB();
broak:
// cone only

case poolvv:
case poolvl:

case pool
x = (
break
// both ¢t
case kidn

va:

(outp == 0_X) ? p->q_VB() : 1.0)sp->q.x(};

B
issuo and tension
0y :

case brain:
case heart:
case liver:
case muscles:
case conn:

case adia
case rest

svitch (outp) {

case
case
case
case

}

0.CB: x » {(Bodycmpts)p)->¢cB{); break;
0.CT: x » ({Bodycmpt*)p)->cT(); break;

0.X: x = p->q.VT()={(Bodycmpte)p)->cT(}; break;

O_P: x = p->q.x(); break;

break;

cout << °*

}

}

if (tmm) |
cout << ’\n’;
cout.flush();

File: ph.cc

1

\t? << X3

/7 Chiari et al: pE model

1

sinclude <math.h>
Sinclude <iostream.b>
#include “ph.h"

double cna = 46.2e-3;
double cpro = 35.8e-3;

double Kal *» 7.9433e-7;// pov(10,-6.1);Ka: €02 + H20 <-> B+ + BCO3- (pKe6.1)
double Ka2 = 5.0119e-8;// pov(10,-7.3);Ka: Pr <-> He + Pr- (pK=7.3)

sifdef __GNUC__
inline double abs(double
Sendif

// =21/l
/! mol/)

x) { return x >a 0 ? x : -x; }

static double gH(double z, doubls ecco2)

{

return {{z + KaZ+coa+Kal)ez + Kale(cna-cco2)e+Ka2e(cna-cproekal))=z

+ KsisKa2e{cns-{c
}

static double dgBdz(doubl.
{

return (3ez + 2s(Ke2+cua+Kal))sz + Kale{cna - cco2)+Ka2e(cns - cpro + Kal);

}

co2+cpro));

e z, double ccol)

static double dgldc(double z, double cco2)

return -Kais(z+Ka2):
b

static double H(double ¢)

1
double z, dz;

const double ¢ « 1e-20;

for (z = 0.000001; sbs(dz = gH(z, c)/dgRdz(z, ¢)) > e; z -= dz)

it (z < 0)
sitndef _ _GNUC__
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throw BConcError(z, gB(z,¢), dgHdz(z,c));
folse
{ cerr << "pH error: "<<z<<", "<<gH(z,c)<<", "<<dgHdz(z,c)<<"\n";
return le-14; }
Bsendif
Teturn z;

}

// ¢ in mmel/l
doudle pE(double ¢)
{

return -1ogl0(H(c/1000));
: }
// dpH/dc
double dpHdcl(double ¢)
{

c /= 1000;
double z = H(c);
return (1/10g(10))/B(c)=dghdc(z,c)/dgBdz(z,¢)/1000;

File: phi.cc

ginclude <math.h>
sinclude <stdic.h>
sinclude <stdlid.h>
#include <iestream.h>
sinclude "pb.h"
sinclude "phi.h"

//double ctHL = §.30; // Total Hb conc: mmel/l
double aplaco2=0.230; // Solubility:alpha(plasma, co2] mmoel/(1l kPa)
double asryco2s0.195; // Solubility:alpbalery, co2] mmol/(1 kPa)

doudble cHb=$.3; // Blood Hb come, mmol/l

double cEbery=21; // Bry Bb conc, mmol/l

double ksi=cHb/cEbery:

double cDPG»S.01; // mmol/l

‘doudle o2 = 0.00983; // Solubility 02 in blood: =mol/(l kPa)
double xHi & 0.005: // Fraction

double xHbE = 0;
double xHbeco = 0.005;
// blood solubility of anaesthetic agent

double aana = 1: // @l / (1 XPa)

// Thiopental:

832 0

double g2 = 14.308; //=(5.2/49.741); /7 x12/k2%  // slov
double g3 = 1.781: //=(5.2/5.067); // x13/k31  // tast

double aanaf = (g20(14.786+8.182+26.773)-g3#(14.786+26.773))/14.786;
double aanat = g3;

//8else

double aanaf « 11;

double eanat = 1.5;

send1f

// protein binding, not configured!®

double ¢Bpr0 = O;

double ¢pro = 0;
_ double xfat = 0;

double Ke = 1; // virtual!, change when cprd ‘s O
double T o 37; // Texperature celcius

// Siggaard Andersen: phi C02

inline double alog{double x) { return pow(10,x); }
doubdble pKpla(const Veck, doudble ph)

{

return 6.125-log10(1+alog(ph-8.7));
}

doubls pHery(const Veck p, double ph)

return 7.1940.77(ph-7.4) + 0.035+(1-(s02(p, ph))):
}

double pKery(comst Veck p, double ph)
{

return 6.125-log10(1+alog(pEery(p,ph) - 7.84-0.06=802(p, ph)));
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// €02 concentration in plazma
J/ Bqn (3) [4-71
// ¢ is co2 conc for pH calculation
double cplasma(const Veck p, ‘double ph) -
{

return apleco2ep{C021s{1 + alog(ph-pKpla(p,ph}}};
} -

// Bqn (11) [ 12 - 14 ]
double cery(const Vect p, double ph)

{ R

Toturn uoryco@fp[CO2]‘(lwalog(pﬂcry(p.ph)-pKury(p,ph))); -
// p in Pa
7/ eqn (8) [ 93
double _phiC02(const Veck p, doudle ph, double ksi) .
{

roeturn cery(p, ph)eksi + cplasmalp, ph)e{i-ksi);
Y

// primitive pumeric---works!
double d_phide(double ci, const Veck p, double ph, double c¢)
{
double dcele-9;
roeturn (_phiC02(p,pH(crde))-ci)/de:
}

// iterate the correct ¢ value io the phi, pE equation
// p in kPa, proposed start value ¢ in mmol/l

double cC02{(const Veckt p, double c, double ksi)

{

double dc;

int i = 100;

const doubls ¢ & le-10;

double pb » pH(c);

double ¢t = _phiC02(p,ph,ksi);

for (; abs(dce{ci-c)/(d_phide(cl,p,ph,e)-1)) > o &t -=i;) {
pb = pH{c -= dc):
€l = _philD2(p,pb. kei};

}

return ¢;

}

1

// Siggard Andersen phi function for 02

11

double a(const Veck p, double ph)

{
return -0.72¢(ph-7.4)¢0.09+(1og(p[C02)/5.33))
+(0.07-0.03%xHb2)+(cDPG-S)
-Q.3682xHbco-0. 1T4*281-0. 282t ;

}

double b()

return 0.055=(T-37);

double xx(const Veck p)
{

rectara log{p(02});
}

double xO{const Vsck p, double ph)
{

return 1.946+a(p,ph)+d(};

double h{const Veck p, double ph)
{

return 3.5+a(p.ph);
>

double Tb(const Veck p, double ph)

{
return tanh(0.5343+(x=z{p} - z0(p,ph)));

double y(const Veck p, double ph)
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return 1.875+xx(p)-x0(p,ph)+h(p,ph)*Th{p,pb);

doudble so2(const Vecd p, double ph)

return 1/(1+exp(-y(p,pb}));

double c02(const Veckt p, double ph}

double cHbfree = cHbe(1-xHbco-xBi);
return aoc2=p(02) *cHbfreess02(p, pb);

¥
Vec cB(const Veck p, double oldc)
{
Vec ¢
c{C02} = <CO2(p. olde):
c02]) = c02(p, pB(c(C021));
c[ANA] » sana=p[ANAJ:
returt <; -
}

double cTco2(const Veck p)

return ¢CO2{p. 22, 0):

}
Vec c¢T(const Veck p)
{
Vec ¢;
c[C02) » cTco2{p):
e{02) » ac2-p(02);
returs ¢
}
/! Derived:
Vec dsdp(const Veck p, deuble pb)
{
Vec g
register double ey = sxp(-y(p,phl);
register double n2 * pov(i+ey,2); ‘
register doudble c2 = pov(cosh(0.5343+(xx(p)-x0(p,ph})).2);
register double ch = b(p.pb);
2[C02] » oy/n2e(0.09/p[€02))a(-1eche(-0.5343/c2)*Tn(p.ph));
2[92) © oy/02/p(02)=(19cheC.5343/c2);
s(axa} - 0; '
feturn 2
}
double dadpB{coast Veck p. double ph)
{
register double ey * exp(-y(p.ph));
register double n2 * pov(ieey,2);
doubls dThdpE = O.T72¢0.5343/pov(cosh(0.5343+(xx(p} - 20(p.ph))).2);
return ey/n2 *(0.72+n(p,ph)=dThdpB+Th(p.ph}=(-0.72});
)
double dphiiTdpi{comst Veck p, doudble ph)
{
double alogpla » alog(pb-pKpla(p,pb)):
doudble dpias = aplaco2e(lealogpla):
return dplas;
)

@double dphildpllconst Veck p, doudle ph)
{

Vec ds = dsdp(p. ph):
double ks: = cHb/cHbery;
double dpHery » -0.035¢ds[C02]);
double phery = pHery(p.ph);
double pkery = pKery(p,ph);
double so * so2(p,ph);
deuble alogph = alog(phery-7.84-0.06=80);
double dpKery = 0.095¢ds[C02)/(1+alogph)=alogph;
double alogery ® alog(phery-pkery);
double alogpla = alog(ph-pKpla(p,ph));
double dery ® aeryco2e(i+alogery
+ plC02]»10g(10) *alog(phery-pkery)+(dpBery-dpKery));
double dplas = aplaco2=(1+alogpla);
return ksisdery+(1l-ksi)=dplas;
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double dphildp2(const Veck p, double ph)
{

doudle ds e dsdp(p,ph)(02];
double so = so2(p,ph);
double phery = pRery(p,ph);
double alogery * alog(phery-7.84-0.06%s0);
doudble dpHery = -0.035+ds;
return ksisaeryco2+p[C02)+1log(10)+alog(phery-pKery(p,ph))
= (dpHery+alogery/(1+alogery)= (dpHery-0.06ds));
>

double dphi2dpi(const Veck p, double ph)
{

return cHbedsdp(p, pb)[C02);

double dphi2dp2{(const Veck p, double ph)
{

return aoc2+cHbedsdp(p.ph}{02]:
}

Vec dphidpH(const Vect p, double ph)

Vec x;

double ds = dsdpH(p, ph);

double dpEery = 0.77-0.035+ds;

double phery = pHery(p,ph);

double alogph * alog(phery-7.84-0.06%s02(p,ph));

double dpKery « -alogph/(i+alogph)=(dpHery-0.06=ds);

double dcery = aeryco2+p(C02)»log{10)=alog(phery~pKery(p.ph))
»{dpHery - dpKery);

double H = alog{ph-8.7);

double dpKpla = -H/{1+H);

double dcplas © aplace2ep(C02)+log(10)+alog(pb-pKpla(p,ph))=(1-dpKpla);
z2(C02] » ksiedcery+{1-ksi)sdecplas;

x(02] « cHbeds:

Tetwrn X;

Mat dcdp(const Veck p, double ph, double ¢)

Mat dc;
Vec ddpR = dphidpH(p,ph);
double A = 1/(ddpH{CO2]=dpHdci(c)-1);
double B = Ar(ddpE{02)*dpHdci(c));
dc{AHA) [ANAY = mada;
dc(C021[C02) = -dphiidpi(p.pblea;
8if O
cout << “dedp:\t{® << plCO2) << "," << pl02] << *,* << p[ANA) << ")
e\ gc € <C"\t"e< ph <<”\Emec A <<¢m\ev<< de(C02] (€02)
<<"\t"<< dpbidpH(p,ph) [C02] <<~\t"<< dpHdel(e) <<"\t“<< dphildpl(p.ph)
€< "\ << "\p";
sendif
dc[C02){02] = dphi2dpi(p,ph)-dphildpi(p.ph)eB;
ac(021{c02) o -(dphiidp2(p.ph)=a);
dcf02)[02] » dphi2dp2(p.ph}-dphitdp2{p,.ph)*B;
retwsn dc;

>
void tdedp()
{

Vec pi;
doudle p, 4, ¢, ph, dc;
p1{02] = 5.3;
cout << "spc pB A dc didpE dpEde  didpl  dedpii\n";
for (p = 1; p < 15; pee0.1) {
p1(c02) = p;
¢ = ¢B(p1)(c02]);
phe pH(c);
Vec ddph = dphidpH(p1,ph);
A = 1/(ddph{C02]) »dpHde1{e)-1);
de = .dphildpi(pl.ph)=A;
cout €< p €< "\e{" << p1€02) < ", " < p1f02) << v << pilANA) €< ")
CCM\TULLE € £4U\ETCC ph <CU\EUKL A <LU\EVed de
<<"\$"¢< dphidpH{pl,ph) [€02] <<"\t"<c dpBdci{c) <<"\t << dphiidpi{pi,ph)
€< "\ << dedp(pl, pb, ¢){C02J[C02] << "\a";

}
double dphilTdpH(const Veck p, double ph)

{
double E = alog(ph-8.7);
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double dpKpla = -H/(1+H);
return aplaco2+p(C02]%log(10)=alog(ph-pKpla(p,ph))=(1-dpKpla);

M
Mat deTdp(const Veck p)
{
Vec ¢ = ¢T(p);
double ph = pH(c[C02]);
Mat dc;
double A = 1/(dphiiTdpH(p, ph)=dpHde1(c[C02])-1);
dc[€02] [€02) = -dphilTdpl{p,ph)eA;
dc[02][02] = a02;
return dc;
}

.
File: pv.cc

sinclude <iostream.h>

sinclude “pv.B"

void pV::initdreu(double, double)

it (vin = nev VI)
vin->axes(-0, 3, 0, 1.5);

}
void pV::drau(double t}
{
if (twin)
return;
if (first) {
vin->move(un()-101.3, V());
first = O;
Y olse
vin->drav(uz()-101.3, V());
}

void pV::disp(doudbls t)

if (values &k t >s 2)
eout << t < "\t" << um() << *\r" << wm()-101.3 << "\t" << V() << "\n";

}
void WV::initdrav(doudle, doudble)
{
&2 {vic « pev VX)
win->axes(-1.2, 1, -1, 1);
M
void VV::drav(double t)
{
it (twin)
return:
it (tirst) {
win->move(V(), Vdor{()):
first « 0:
} olse
wia->drav(uz()-101.3, V());
}

void VV::disp(double t)

it (values) '
cout << t €¢ "\t" << um{) << "\t" << um()-101.3 €< "\e* << V() << "\n";

File: rs.cc
sinclude <iostreaxm.h>
sinclude “rs.h”

// step the tvo models in unmison
void ps::calc(double x1, double x2, double ddt, double cdt)
{
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double h2;

double x=x1;

pulvec puly, npuly;
double h = cdt;

ipy aisp = 1;

tor (;3) { .
if (disp) {
cout << x; -

}

1z.disp(x,1);
tm.disp(x,1);
disp = 0;
cout << ’\n’;
cout.flush();
>
puly = lm.qy();
b & 1lm.singlestep(x,b);
npuly = lm.qy();
1m.yinit(puly):
h2 = tm.singlestep(x,h);

if (h2 < b)
lm.singlestep(x,h = h2);
else
1z.yinit{apuly);
x += h;
it ((x+h-(x1+ddr))=(x+b-x1) > 0.0) {
T dispee;
xl * x;

ddr e= ddtinc;

}
it ((x-x2)=(x2-x1) > 0.0)
break;

cout << x;
1p.disp(x,1);
tm.disp(x,1);
disp = 0;
cout << '\n’;
cout.flush();
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(Glossary

This chapter contains definitions of the physiological and medical vocabulary,
that has caused us trouble during the preparation of this report.

Acid 1) Molecule capable of releasing a hvdrogen ion. 2) A solution having
a concentration of hydrogen ions, which is higher than that of pure
water.

Acidosis Any situation in which arterial hvdrogen ion concentration is ele-
vated.

Alkalosis Any situation in which arterial hvdrogen ion concentration is re-
duced. :

Alveolar deadspace The volume of air in unperfused alveoli, which thus
remains unexchanged with the blood.

Alveoli The blind-ended terminal sacs of the airways where majority of gas
exchange takes place and majority of the lung volume resides.

Anatomical deadspace The volume of air in the conducting zone, which
is expired without exchange of gasses with the blood.

Apnoe A short pause or a stop of breathing in the expiratory position
Bohr effect The influence of CO, on the dissosiation curve for O,.
Bronchi Airways between the trachea and the alveoli.

Carbamino A complex of protein (mainly hemoglobin) and carbon dioxide.
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Carbonic anhydrase An enzym found in red blood cells which accelerates
the equilibrium of the reaction co, + H,O & H,CO;.

DPG 2,3-Diphosphoglycerate, found in red cells, shifts the 0, dissociation
curve to-the right.

Erythrocyte Red blood cell.
Halda'xie effect The influence of O, on the dissosiation curve for CO,.

Hemoglobin A protein found in red blood cells by which most of the oxvgen
in blood is carried

Henderson-Hasselbalch equation Yields the equilibrium condition of
CO, and bicarbonate, and hydrogen ions.

Hypoxia Lack of oxygen in tissue.

Lactic acid Three-carbon molecyle formed in absense of oxygen. Dissoci-
ates to form lactate and hydrogen ions.

Metabolic acidosis Acidosis due to any cause other than accumulated CO,

Metabolic alkalosis Alkalosis due to any cause other than excessive respi-
ratory removal of CO,.

Myoglobin A protein binding molycyle found in the muscle fibres.

Obstructive pulmonary disorder A disordered ventilatory function due
to an obstruction of the airways.

Pulmonary The adjectival form of "lungs".

Respiratory acidosis Increased arterial hvdrogen ion concentration due to
CO; retention

Respiratory alkalosis Decreased arterial hvdrogen ion concentration due
to excessive respiratory removal of CO,.

Restrictive pulmonary disorder A disordered ventilatory function due
to Impaired respiratory movement.

Spirometer An instrument for measuring lung volumes.

Total deadspace The anatomical and alveolar deadspace.
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Tidal volume That volume of air passing into or out of the lungs during
each breath.

Trachea Single airway connecting larynx with bronchi.
Vein A vessel that returns blood to the heart.

Ventilation Air exchange between air and alveoli.
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Appendix C

Symbol list

Symbol Description
Lung model
' p pressure
f fraction vector
R resistance
C compliance
| % volume
Vo unstreched volume
Um respirator generated pressure at mouth
U, pressure generated by respiratory muscles in thorax
R the gas constant '
T absolute temperature
K lung membrane flux coefficient
ng number of alveoli branches
n amount of substance by number of moles
g generation of airway branching
r radius
{ length
p density of gas or fluid
n viscosity of gas or fluid
I current
J flux
U voltage
Q charge
Blood transport model
z amount of matter
My metabolic production rate
M metabolic consumption rate
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Symbol Description

Q cardiac output
i fraction of cardiac output to compartment %
Ai fraction of cardiac output to capillary branch
A pulmonary shunt
c concentration
Ch blood concentration -
Ct tissue concentration
Ci concentration in blood of compartment i
p pressure vector
\A volume of blood part of compartment
Vi volume of tissue part of compartment
K lung membrane flux coefficient
Metabolism
I} reference concentration when metabolism is half M
M metabolic rate
My metabolic rate, production
M_ metabolic rate, consumption
M maximum metabolic rate
pH and dissociation
(] concentration of substance z
a solubility coefficient
Qo, solubility coefficient of 02
QEE;‘; solubility coefficient of CO in erytrocytes
afl2  solubility coefficient of CO in plasma
o solubility coefficient of anaestetic agent
Cub concentration of hemoglobin
CE{JV concentration of hemoglobin in erytrocytes
Ceos concentration of CO9
Con concentration of O3
Ery

CCoy concentration of CO in erytrocytes
k2 concentration of COz in plasma

So, oxygen saturation of hemoglobin
K, equilibrium constant for chemical reaction
pH PH in plasma

pHEY  pH in erytrocytes
pkF2  pK in plasma
pKE™ DK in erytrocytes
THbE fraction of fetal hemoglobin
zupco fraction of carboxyhemoglobin
THi fraction og hemiglobin

Miscellaneous

7 the set of model parameters
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Symbol Description
XL state variable of the lung model
XB state variable of the blood transport model
g number of alveoli and capillary branches
N number of substances in a compartment vector
Vb function that converts the state vector to blood concentrations

Yt

function that converts the state vector to tissue concentrations
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"RUPNOK - stationar stremning i elastiske ror"
af: Anja Boisen, Karen Birkelund, Mette Olufsen

Vejleder: Jesper Larsen

"Automatisk diagnosticering i digitale kredsleb"
af: Bjoern Christensen, Ole Maller Niclsen

Vejleder: Stig Andur Pedersen

"A BUNDLE VALUED RADON TRANSFORM, WITH
APPLICATIONS TO INVAK{ANT WAVE EQUATIONS™

by: Thomas P. Bianson, Gestur Olafsson and
Hlenrik Schlichtkrul

On the Kepresentations of some Infinite Dimensional

Grroups and Algebras Kelated to Quuantum Physics

by: Johnny T. Ottesen

THE FUNCTTIONAL DETENMINANT

by Thomas (. Branson

UN: VERSAL AC CONDUCTIVITY OF NON~METALLIC SOLI1DS AT

LOW TUMPERATURES

by: Jeppc C. Dyre

YHATMODELLEN® Impedansspektroskopi. i ultrarent
en-—-krystallinsk silicium

af: Anja Boisen, Anders Gorm larsen, Jeaper Varmer,

Johannes K. Nielsen, Kit I. lansen. Peter Boggild

og Thomas Hougaard

Vegjleder: Petr Viscor

"METHODS AND ‘MODELS FOR ESTTMATING THE GLOBAL
CIRCULATION OF SELECTED EMISSIONS FROM ENERCY
CONVERSION"

by: Bent Serensen

227/92

228/92

229/92

230/92

231A/92

231B/92

232/92

233,92

234/92

235,92

“Computersimulering og fysik"

af: Per M.Hansen, Steffen Holm,

Peter Maibom, Mads K. Dall Petersen,
Pernille Postgaard, Thomas B.Schreder,
Ivar P. Zeck

Vejleder: Peder Voetmann Christiansen

“Teknologi og historie"
Fire artikler af:

Mogens Niss, .‘ens Heyrup,
Hans ledal

ib Thiersen,

"Masser af information uden becydning'

En diskussion af informationsteoiicn
i Tos Nesretranders' "Mack Verden" og
en skiitse til et alternativ basserec
pa andenordens kybernetik og semiotik.

af: Seren Brier

"Vinklens tredeling ~ et klassisk
problem”

et matematisk projekt af

Karen Birkelund, Bjosn Christensen
Vejleder: Johnny Oltesen

"Elekt:ondiffusion i silicium - en
matemacisk model"”

af: .lesper Voetmann,
sette Olufsen,

Karen Birkelund,
Ole Meller Niclsen

Vejledere: Johnny Ottesen, H.B.Hansen

“Llektrondiffusion i silicium - en
matematisk model"” Kildetekstev

af: Lesper Voetmann, Karen Birkelund,
Metie Olufsen, Ule Mwller tielsen

Vejledere: vohnny Otcesen, li.B.ilanscn

"Undersoegelse om den simuliane opdagelse
af energiens bevarelse og isicaeles om
de af Mayecr, Colding, Joule og llelmholtz
udforte arbecjdei”

af: L.Arlech, G.i.Dybkjer, M.7.0scergird

Vejleder: Dorthe Posselt

“The effect of age-dependent host
mortality on tLhe dynamics oi an endemic
disease and

Instability in an SIR-model with age-
dependent susceptibility

by: Viggo Andreascn

“THE FUNCTI1ONAL DETERMINANT OF A FOUR-DIENS[ONAL
BOUNDARY VALUE PROBLEM"

by: Thomas P. Branson and Pcter B. Uilkey
OVERFLADESTRUKTUR OG POREUDVIKLING AF KOKS

- Modul 3 fysik projekt -

af: Thomas Jessen




236a/93 INTRODUKTION TIL KVANTE

HALL EFFEKTEN
af: Ania Boisen, Peter Beggild

Vejleder: Peder Voetmann Christiansen
Erland Brun Hansen

,

236b/93 -STREMSSAMMENBRUD AF KVANTE =

237/93

238/93

239/93

240/93
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242,793

243/93

244 /93
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/93

246/93

HALL EFFEKTEN
ar: Anja Boisen, Pecter Béggild

Peder Voetmann Christiansen
Erland Brun Hansen

Vejleder:

The Wedderburn principal theorem and
Shukla cohomology

al: Lars Kadison

SEMIOTTK OG SYSTEMEGENSKABER (2)
VektorbAnd og tensorer

af: Peder Voctmann Christiansen

Valgsystemer - Modelbygning og analyse

Matematik 2. modul
-‘af: Charlotte Gjerrild, Jane Hansen,
-Maria Hermannsson, Allan- Jergensen,

Ragna Clauson-Kaas, Poul Lutzen

Vejleder: Mogens Niss

Patologiske eksempler.
Om sare matematiske fisks betydning for
den matematiske udvikling

af: Claus Draby, Jern Skov llansen,
Ulsee Johansen, Peter Meibom,
Kristoffer Nielsen

Runa
Johannes

Ve jleder: Mogens Niss
FOTOVOLTAISK STATUSNOTAT 1
al: Bent Serensen
Brovedligeholdelse -~ bevar mig vel

Analyse al Vejdirektoratets model for
optimering af broreparationer

af: Linda Kyndlev,
Tulinius, Tvar Zcck

Karc Fundal, Kamma

Vejleder: Jesper Larscen

TANKEEKSPERIMENTER I FYSIKKEN
Et l.modul fysikprojckt
af: Karen Birkelund, Stine Sofia Korremann

Vejleder: Dorthe Posselt

RADONTRANSFORMATIONEN og dens anvendelse
i CT-scanning

Projektrapport

af: Trine Andreascn, Tine Guldager Christiansen,

Nina Skov Hansen og Christine lversen

Vejledere: Gestur Olafsson og Jesper Larscn

Time-Of-Flight mdlinger pd krystallinske
halvledere
Specialerapport

af: Linda Szkotak Jensen og Lise Odgaard Gade
Vejledere: Petr Viscor og Niels Boye Olsen
HVERDAGSVIDEN OG MATEMATIK

~ LEREPROCESSER I SKOLEN

af: Lena Lindenskov, Statens

Forskningsrad, RUC, IMFUFA

Humanistiske

©247,/93

248/93

249/93

- 250/93

251]93

252|93

253/93

254/93

255/93

256/93

257/93

258/93

259/93

260/93

UNIVERSAL LOW TE&PERATURE AC -CON-
DUCTIVITY OF MACROSCOPICALLY
DISORDERED NON-METALS

by: Jeppe C. Dyre

DIRAC OPERATORS AND MANIFOLDS WITH
BOUNDARY

by: B. Booss-Bavnbek, K.P.Wojciechowski

Perspectives on Teichmuller and the
Sahresbericht Addendum to Schappacher,
Scholz, et al. - .

by: B. Booss-Bavnbek

With comments by W.Abikoff, L.Ahlfors,
J.Cerf, P.J.Davis, W.Fuchs, F.P.Gardiner, _
J.J0st, J.-P.Kahane, R.Lohan, L.Lorch,
J.Radkau and T.Sodergvist -

-

FULER 0GC BOLZANOQ - MATEMATISK ANALYSE SET J ET
VIDENSKABSTEOKKETISK PRRSPEKTTV
r
Projektrapport af: Anga Juul, Lone Michelsen,
Tomas Hejgdrd Jensen

Vejleder: Stig Andur Pedersen
Genotypic Proportioné in Hybrid Zones

by: Freddy Bugge Christiansen, Viggo Andreasen
and Ebbe Thue Poulsen

MODELLERING AF TILFELDIGFE FANOMENER

Projektrapport af: Birthe Friis, Lisbeth Helmgaard,
Kristina Charlotte Jakobgen, Marina Mosbek
Johannessen, Lotte Ludvigsen, Mette Hass Nielsen

Kuglepakning
Teori og model
af: Lise Arleth, Kare Fundal, Nils Kruse

Vejleder: Mogens Niss

Regressionsanalyse
Materiale til et statistikkursus
af: Jergen Larsen

TID & BETINGET UAFHANGIGHED
af: Peter Harremoés

Determination of the Prequency Dependent
Bulk Modulus of Liquids Using a Piezo-
electric Spherical Shell (Preprint)

by: T. Christensen and N.B.Olsen

Modellering af dispersion i piezoelektriske

keramikker N

af': Pernille Postgaard, Jarmik Rasmussen,
Christina Spechi, Mikko @stergard

Vejleder: Tage Christensen

Supplerende kursusmateriale til

Linewre etrukturer fra algebra og analyse”

af: Mogens Brun Heefelt

STUDIES OF AC HOPPING CORDUCTION AT LOW
TEMPERATURES

by: Jeppe C. Dyre

PARTITIONED MANIFOLDS AND INVARIANTS TN
DIMENSTONS 2, 3, AND 4

by: B. Booss—-Bavmbek, K.P.Wogjciechowski
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265/94

266/94
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271/94

OPGAVESAMLING
Bredde-kursus i Fysik

Eksamensopgaver fra 1976-93

Separability and the Jones
Polynomial

by: Lars Kadison

Supplerende kursusmateriale til
"Linezre strukturer fra algebra

oa analyse" 1II

af: Mogens Brun lleefelt

FOTOVOLTAISK STATUSNOTAT 2

af: Bent Serensen

SPHERICAL FUNCTIONS ON ORDERED
SYMMETRIC SPACES

To Sigurdur Helgason on his
sixtyfifth birthday

by: Jacques Faraut, Joachim Hilgert
and Gestur Olafsson

Kommensurabilitets-oscillationer i
laterale supergitre
Fysikspeciale af: Anja Boisen,

Peter Beggild, Karen Birkelund

Vejledere: Rafael Taboryski, Poul Erik

Lindelof, Peder Voetmann Christiansen

Kom til kort med matematik pa
Fksperimentarium - Et forslag til en
opstilling

af: Charlotte Gjerrild, Jane Hansen

Vejleder: Bernhelm Booss-Bavnbek

Life is likec a scwer ...

Ft projekt om modellering af aorta via
en model for stremning i kloakrer

af: Anders Marcussen, Annc C. Nilsson,
Lone Michelsen, Per M. Hansen

Vejleder: Jesper Larsen

Dimensionsanalyse en introduktion
metaprojekt, fysik

af: Tine Guldager Christiansen,
Ken Andersen, Nikolaj Hermann,

Jannik Rasmussen

Vejleder: Jens Hejgaard Jensen

THE IMAGE OF THE ENVELOPING ALGEBRA
AND IRREDUCIBILITY OF INDUCED REPRE-
SENTATIONS OF EXPONENTIAL LIE GROUPS

by: Jacob Jacobsen

Matematikken i Fysikken.
Opdaget eller opfundet
NAT~-BAS-proiekt

vejleder: Jens Hpjgaard Jensen

272/94

273/94

274/94

275/94

276/91

277/94

278/94

279/94

280/94

281/91

282/94

Tradition og fornyelse

Det praktiske elevarbejde i gymnasiets
fysikundervisning, 1907-1988

af: Kristian Hoppe og Jeppe Guldager
Vejledning: Karin Beyer og Nils Hybel

Model for kort- og mellemdistancelaeb
Verifikation af model

af: Lise Fabricius Christensen, Helle Pilemann,
Bettina Serensen

Vejleder: Mette Olufsen

MODFL 10 - en matematisk model at intravecnese
anastetikas farmakokinetik

3. modul matematik, fordr 1994

af: Trine Andreasen, Bjern Christensen, Christine

Green, Anja Skjoldborg tliansen. Lisbeth
Helmgaard

Vejledere: Vigpo Andreasen & Jesper Larsen

Perspectives on Teichmuller and the Jahresbericht

2nd Edition

by: Bernhclm Booss-Bavnbek

Dispersionsmodellering
Projektrapport 1. modul

af’: Gitte Andersen, Rehannah Borup, Lisbeth Friis,

Per Gregersen, Kristina Vejre

Ve jleder: Bernhelm Booss-Bavnbek

PROJEKTARBEJDSPEDAGOGIK - Om tre tolkninger af
problemorienteret projektarbejde

af: Claus Flensted Behrens, Frederik Voetmann
Christiansen, Jarn Skov Hansen, Thomas
Thingstrup

Vejleder: Jens Hejgaard Jensen

.

The Models Underlying the Anaesthesia
Simulator Sophus :

by: Mette Olufsen(Math-Tech), Finn Nielsen
(R1SY Natlionul Laboratory), Per Foge Jensen
(Herlev University Hospital), Stig Andur
Pedersen (Hoskilde Universily)

Description of a method of measuring the shear
modulus of supcrcooled liguids and u comparison
of their thermal and mechanicual response
functions.

af: Tage Christenscen

A Course in Projective Geometry

by lLars Kadison and Matthias T. Kromann

Modellering af Det Cardiovaskulzre System med

Neural Pulskontrol

Projektrapport udarbejdet af:

Stefan Frello, Runa Ulsec Johansen,
Michael Poul Curt Hansen, Klaus Dahl Jensen

Vejleder: Viggo Andreasen
Parallelle algoritmer

af: Erwin Dan Nielsen, Jan Danielsen,

Niels Bo Johansen
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288/9%

289/95

290/95

291/95
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Graznser for tilfaeldighed

(en kaotisk talgenerator)

af: Erwin Dan Nielsen og Niels Bo Johansen

Det er ikke til at se det, hvis man ikke
lige ve' det!

Gymnasiematematikkens begrundelsesproblem
Eﬁ specialerapport af Peter Hauge Jensen

og Linda Kyndlev

Veileder: Mogens Niss

Slow coevolution of a viral pathogen and
its diploid host

by: Viggo Andreasen and
Freddy B. Christiansen

The energy master equation: A low-temperature
approximation to Bassler's random walk model

by: Jeppe C. Dyre

A Statistical Mechanical Approximation for the
Calculation of Time Auto-Correlation Functions

by: Jeppe C. Dyre

PROGRESS IN WIND ENERGY UTITLTZATION

by: Bent Serensen

Universal Time-Dependence of the Mean-Square
Displacement in Extremely Rugged Energy
Landscapes with Equal Minima

by: Jeppe C. Dyre and Jacob .lacobsen

Modcllering af uregelmassige belger
Et 3.modul matematik projekt

af: Anders Marcussen, Anne Charlotte Nilsson,
Lone Michelsen, Per Markegaard Hansen

Vejleder: Jesper Larsen

1st Annual Report from the project

LIFE-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

an example of using methods developed for the
OECD/IEA and the US/EU fuel cycle externality study

by: Bent Serensen

Fotovoltaisk Statusnotat 3

af: Bent Serensen

Geometridiskussionen - hvor blev den af?
at: Lotte Ludvigsen & Jens Frandsen

Vejleder: Anders Madsen

Universets udvidelse -
et metaprojekt

Af: Jesper Duelund og Birthe Friis

Vejleder: 1b Lundgaard Rasmussen

A Review of Mathematical Modeling of the
Controled Cardiovascular System

By: Johnny T. Ottesen

'296/95

297/95

298/95

299/95

300/95

301/95

302/95

303/9%

Johannes K. Niclsen,

Vejledere:

RETIKULER den klassiske mekanik

af: Peder Voetmann Christiansen
A fluid-dynamical model of the aorta with

bifurcations

by: Mette Olufsen and Johnny Ottesen

Mérdct pé Scheringefs kat ~ ct metaprojekt om

to fortolkninger af kvantemekanikken

af: Maria Hermannsson, Sebastian Horst,

Christina Spechf

Vejledere:rJeppe Dyre og Peder Voetmann Christiansen

ADAM under figenbladet - et kig p& en samfunds-

videnskabelig matematisk model »

Et matematisk modelprojekt
af: Claus Draby, Michael Hansen, Tomas Hejgdrd Jensen

Vejleder: Jorgen Larsen

Scenarios for Greenhouse Warming Mitigation

by: Bent Serensen

TOK Modellering af traers vakst under pavirkning

af ozon

af: Glenn Meller-Holst, Marina Johannecssen, Birthe

Nielsen og Bettina Serenscn

Vejleder: Jesper Larsen

KOMPRESSORER - Analyse af en matcmatisk model for

aksialkompressorer

Projektrapport sf: Stine Beggild, Jakob Hilmer,

Pernille Postgaard
Vejleder: Viggo Andreasen
Masterlignings-modeller af Glasovergangen

Termisk-Mekanisk Relaksation

Specialerapport udarbejdet af:
Klaus Dahl Jensen

Jeppe C. Dyre, Jergen Larsen

304a/95 STATISTIKNOTER Simple binomialfordelingsmodeller

at’: Jargen Larsen

304b/95 STATISTIKNOTER Simple normalfordelingsmodeller

af: Jorgen Larsen

304c/95 STATISTIKNOTER Simple Poissonfordelingsmodeller

L4
af: Jergen Larsen

304d/95 STATI{STIKNOTER Simple multinomialferdelingsmodeller

304e/95

af: Jergen Larsen

indeholdende bl.a. ordforklaringer, resuméer og
tabeller

af: Jeorgen Larsen

STATISTIKNOTER Mindre matematisk-statistisk opslagsvar
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310/96

311/96

312/96

313/96

314/96
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The Maslov Index:
A Functional Analytical Definition
And The Spectral Flow Formula

By: B. Booss-Bavnbek, K. Furutani

Goals of mathematics teaching

Preprint of a chapter for the forth-
comming International Handbook of
Mathematics Education (Alan J.Bishop, ed)

By: Mogens Niss

Habit Formation and the Thirdness of Signs
Presented at the semiotic symposium

The Emergence of Codes and Intensions as
a Basis of Sien Processes

By: Peder Voetmann Christiansen

Metaforer i Fysikken

af: Marianne Wilcken Bjerregaard,
Frederik Voetmann Christiansen,
Jern Skov Hansen, Klaus Dahl Jensen
Ole Schmidt

Vejledere: Peder Voctmann Christiansen og
Petr Viscor

Tiden og Tanken
En undersegelse af begrebsverdencn Matematik
udfert ved hjzlp af en analogi med tid

af: Anita Stark og Randi Petersen

Vejleder: Bernhelm Booss-Bavnbek

Kursusmateriale til "Lineare strukturer fra
algebra og analyse' (E1)

af: Mogens Brun Heefelt

2nd Annual Report from the project
LIFF-CYCLE ANALYSIS OF THE TOTAL DANISH
ENERGY SYSTEM

by: Héléne Connor-Lajambe, Bernd Kuemmel,

Stefan Kruger Nielsen, Bent Serensen

Grassmannian and Chiral Anomaly

by: B. Booss-Bavnbek, K.P.Wojcicchowski

THE 1RREDUCIBILITY OF CHANCE AND
THE OPENNESS OF THE FUTURE
The Logical Function of ldealism in Peirce's

Philosophy of Nuture

By: Helmut Pape, University of Hannover
Feedback Regulation of Mammalian
Cardiovascular System

By: Johnny T. Oitesen

“Rejsen til tidens indre" - Udarbejdelse af

et manuskript til en fjernsynsudsendelse

+ manuskript
af: Gunhild Hune og Karina Goyle

Vejledere: Peder Voetmann Christiansen og

Bruno Ingemann

316/96

317/96

318/96

319/96

320/96

321/96

322/96

323/96

324/96

325/96

326/96

327/96

328/96

Plasmaoscillation i natriumklynger
Specialerapport af: Peter Meibom, Mikko @stergird

Vejledere: Jeppe Dyre & Jern Borggreen

Poincaré og symplektiske algoritmer
af: Ulla Rasmussen

Vejleder: Anders Madsen

Modelling the Respiratory System
by: Tine Guldager Christiansen, Claus Draby

Supervisors: Viggo Andreasen, Michael Daniclsen

Externality Estimation of Greenhousc Warming

Impacts

by: Bent Serensen B

Grassmannian and Boundary Contribution to the
-Determinant

by: K.P.Wojciechowski et al.

Modelkompetencer — udvikling og afprevning

af’ et begrebsapparat

Specialerapport af: Nina Skov Hansen,

Christine lversen, Kristin Trocls-Smith

Ve jleder: Morten Blomhej

OPGAVESAMLING
Bredde-Kursus i Fysik 1976 - 1996

Structure and Dynamics of Symmetric Diblock
Copolymers
PhD Thesis

by: Christine Maria Papadakis

Non-linearity of Barorc¢ceptor Nerves

by: Johnny T. Ottlesen

Retorik eller realitet ?
Anvendclser af matematik i del danske
Gymnasiums matematikundervisning i

perioden 1903 -~ 88

Specialerapport af liclle Pilemann

Vejleder: Mogens Niss

Bevisteori
Eksemplificeret ved Gentzens bevis for
konsistensen af teorien om de naturlige tal

af: Gitte Andersen, Lise Mariane Jeppcesen,
Klaus Frovin Jergensen, 'lvar Peter Zeck

Vejledere: Bernhelm Booss-Bavnbek og
Stig Andur Pedersen

NON-LINEAR MODELLING OF INTEGRATED ENERGY
SUPPLY AND DEMAND MATCHING SYSTEMS

by: Bent Serensen

Calculating Fuel Transport Emissions

by: Bernd Kuemmel




