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Abstract

This thesis was submitted for the Danish doktorgrad in December 1995. The
defence is scheduled to take place March 14 1997 at 1 p.m. in the auditorium
of building 46 of Roskilde University. The thesis consists of 15 publications
and a summary. The publications are reprinted here after the summary. A
three page abstract of the thesis is given on page 7-9; the Danish version of
the abstract (required by the rules) is given on page 10-12.
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Preface

This thesis was submitted for the Danish doktorgrad in December 1995 and
_ will be defended March 14 1997 at_1 p.m._in the auditorium of building 46.— — —
The thesis consists of 15 publications and a summary. The publications are
reprinted below after the summary. The summary states the main results, -
connects the publications, and gives some supplementary comments.

The thesis is the result of more than ten years of work in various di-
rections in the field Structure and Dynamics of Amorphous Solids. My own
employment at Roskilde University was part of an expansion of the research
activities into this field at the Department of Mathematics and Physics.
Throughout the years I have been given very good working conditions by
the Department and have received generous grants from the Danish Natural
Science Research Council. I would like to thank everyone in the Department
for always being helpful and positive about the research carried out by the
“glass” group. .

On a more daily basis, I am indebted to Niels Boye Olsen and Tage
Christensen for creating an inspiring research environment and always ac-
cepting interruptions for “urgent” physics discussions. The computer simula-
tions would have been hard to carry out without help from Ib Hgst Pedersen.
In writing the summary, Tage Christensen have given a number of helpful
comments and Jgrgen Larsen have helped with BTEX-technical problems. I
would like to thank you all. At home, Pia and little Elisabeth Rgsle have
given moral support and been very patient during the writing of the thesis
summary for which there - in the middle of moving into our new house - was
little time.

Jeppe C. Dyre
Roskilde University
February 1997
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Abstract

This thesis consists of fifteen publications (P1-P15) published between 1987
and 1996 and a summary. In this abstract an overview of the main results is
given by following the summary’s three Chapters.

The first Chapter with the title “AC Conduction in Disordered Solids”
reviews and comments P1-P7. In P1 from 1988 a phenomenological model for
AC conduction in disordered solids is proposed. It is shown that the model
explains the characteristic AC properties of disordered solids, summarized
in 8 points. P3-P7 is an attempt to. explain the success of the model of P1,
which is based on a number of ad hoc hypotheses. In this line of reasoning,
P2 from 1991 is a digression; in P2 - mainly for pedagogical reasons and with
few original contributions - a number of common misunderstandings and
misconceptions are cleared up. P3 and P4 from 1993 discuss a macroscopic
model for AC conduction; P4 details the brief paper P3, that is included
in the thesis mainly because its figures are more pedagogical than those of
P4. By means of analytical approximations it is shown that at sufficiently
low temperatures - corresponding to extreme disorder - all disordered solids
with thermally activated conduction exhibit the same AC conduct1v1ty inde-
pendent of the energy barrier probability distribution; the AC conductivity
is “universal”. This result is confirmed by computer simulations in two and
three dimensions. The universal AC conductivity is very close to that of
the phenomenological model studied in P1. P5 from 1994 derive universality
for the microscopic so-called hopping model. The universality prediction is
confirmed by computer simulations in two dimensions, but the quantitative
agreement is not quite as good as for the macroscopic model. In P6 from
1995, the mean-square displacement as function of time for a charge carrier
“hopping” in an extremely disordered solid is calculated from the expression
for the universal AC conductivity derived in P5. P7 published in 1996 pro-
poses a new expression for the universal AC conductivity in hopping models,
derived by assuming that electrical conduction in extremely disordered solids
is essentially a one-dimensional process. It is shown from computer simula-
tions in two and three dimensions that the new expression is more realistic
than that of P5. Still, the new expression is relatively close to that of the
phenomenological model proposed in P1.

The second Chapter with the title “Viscous Liquids and the Glass Tran-
sition” reviews and comments P8-P10. In P8 from 1987 a simple model for
the glass transition is proposed in which there is only one relevant degree
of freedom, the potential energy of a region in the liquid. The model was
originally constructed to explain the non-Arrhenius temperature-dependence
of the average relaxation time in viscous liquids, an approach that is also fol-
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lowed in Chapter 2. However, in P8 itself the focus was on the prédiction that
there are two different types of glass transitions. In P9 from 1995, Béssler’s
random walk model for viscous liquids is studied. It is argued that at low

— —— 77— ' ~temperatures this model is well described by the simple model of P8. Thus,

a clear physical picture of the low-temperature behavior of Béssler’s random
walk model is established. In P10 published in 1996, an alternative model for
explaining the non-Arrhenius temperature-dependence of the average relax-
ation time in viscous liquids is proposed. In the new model, the short-time
(or high-frequency) elastic properties of the liquid determine the activation
energy for the average relaxation time. It is shown that the new model agrees
well with experiment on a number of organic molecular liquids.

The third Chapter with the title “Extensions of Linear Response The-
ory” reviews and comments P11-P15. P11 from 1988 deals with electrical
1/f noise. This, in a sense, is a linear phenomenon, but as shown in P11
the magnitude of the noise is determined by fourth order cumulant averages
of the equilibrium current fluctuations (while the ordinary linear response -
the AC conductivity - is determined by the time autocorrelation function, a
second order cumulant average). P12 from 1989 discusses a maximum en-
tropy “ansatz” for nonlinear response theory. This “ansatz” makes it possible
to predict the nonlinear response in a static external field from a complete
knowledge of the equilibrium fluctuations of the quantity of interest. P13
and P14 both deal with nonlinear viscoelasticity. P13 from 1990 suggests a
simple formula, a so-called “constitutive relation”, for calculating the stress
for an arbitrary shear flow. In P14 from 1993 it is shown that, if the equilib-
rium fluctuations of the stress are described by a Langevin equation, there
is only one way to extend this equation to deal with stress fluctuations in a
nonlinear flow. The extension is shown to be consistent with linear response
theory, ensuring consistency. P15 from 1994 concerns the calculation of time
autocorrelation functions (that via the fluctuation-dissipation theorem de-
termine the linear response). An approximation is suggested, in which the
calculation is reduced to calculating a “double” canonical average as well as
the mean-square displacement as function of time.

The 15 publications are related to each other in the following way. P1-
P7 is a continuously progressing attempt to explain the AC properties of
extremely disordered solids (with P2 as a digression). P8 discusses a simple
model for viscous liquids and the glass transition. In P9 it is shown that
this model at low temperatures results from Bissler’s random walk model,
a model that is very similar to the hopping model studied in P1 and P5-P7.
P10 discusses an alternative phenomenological model for viscous liquids. In
many respects, the P10 model is complementary to the P8-P9 models. Thus,
one may conjecture that these two models more or less span the “universe”
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of possible phenomenological models. P11 concerns a frequency-dependent
electrical property different from the conductivity, namely the electrical ex-
cess noise. P12 is related to P11, because the main result of P11 is a special
case of the general formalism developed in P12. P13 and P14 both concern
the same subject, nonlinear viscoelasticity. This subject is relevant for any
viscous liquid close to the glass transition, where one expects the liquid to
become nonlinear at shear rates larger than the inverse Maxwell relaxation
time. In the linear limit, the constitutive relation suggested in P13 predicts a
frequency-dependent viscosity that varies as one over the universal AC con-
ductivity studied in Chapter 1. Thus, it is proposed that the atoms in a
viscous liquid have the same mean-square displacement as function of time
as that of charge carriers in an extremely disordered solid. P14, though only
dealing with nonlinear viscoelasticity, is closely related to P12, because P14
gives an alternative recipe for estimating the nonlinear response from knowl-
edge of the equilibrium fluctuations. In P15 the mean-square displacement
as function of time is assumed known; this quantity is calculated in P86, if
the liquid on the relevant time-scale may be regarded as a disordered solid,
as suggested in P13. P15 is motivated by P8-P10: In these papers the focus
is on the temperature-dependence of the mean relaxation time in a viscous
liquid, and P15 starts from asking why quite different physical quantities in
viscous liquids have roughly the same mean relaxation time.
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Dansk resume

Denne afhandling bestdr of 15 artikler (P1-P15) publicerede i perioden 1987-
1996 samten resumering og kommentering af dem. Kommenteringen er delt
i tre kapitler vedrorende henholdsvis publikationerne P1-P7, P8-P10 og P11-
P15. Nedenfor gengives kort emnerne og hovedresultaterne af publikationerne
ved ot tage udgangspunkt i kommenteringens strukturering i tre kapitler.

Det forste kapitel med titlen “vekselstgmsledningsevnen i uordnede fa-
ste stoffer” resumerer og kommenterer P1-P7. I P1 fra 1988 foreslds en fe-
nomenologisk model for vekselstromsledningsevnen i uordnede faste stoffer.
Det vises, at modellen forklarer en reekke karakteristiske egenskaber ved disse
stoffer opsummeret i 8 punkter. Publikationerne PS-P7 kan ses som et for-
sdg pd at forklare, hvorfor den ret primitive model fra P1, der er baseret pd
en rekke “ad hoc” antagelser, virker sd relativt godt, som den ggr. I denne
argumentationsrekke er P2 fra 1991 en digression, idet den - uden egent-
lrge originale bidrag og i hgj grad af pedagogiske grunde - opklarer en rekke
udbredte misforstdelse og opsummerer vesentlige ulgste problemer inden for
forskningsomridet. P3 og P4 fra 1993 diskuterer en makroskopisk model for
vekselstromsledningsevnen. Det vises ud fra analytiske approksimationer, at
for ethvert wordnet stof, hvori ledningsevnen er termisk aktiveret, vil man
ved tilstreekkeligt lave temperaturer - svarende til ekstrem uorden - altid (dvs
uafhengigt af energibarriere-sandsynlighedsfordelingen) observere den samme
frekvensafhengighed af ledningsevnen: ledningsevnen bliver “universel”. Dette
resultat underbygges af omfattende computersimuleringer i to og tre dimen-
sioner. Den universelle ledningsevne er meget lig den i P1 udledte. P5 fra
1994 viser det samme resultat for en mikroskopisk model for ledningsevnen,
den sdkaldte hopmodel. Resultatet underbygges igen af computersimuleringer
i to dimensioner, men kvantitativt passer de knapt sé pent med teorien, som i
P83 og P4. P6 fra 1995 beregner den middel-kvadratiske forskydning som funk-
tion af tiden for en ladningsberer i et uordnet stof, hvis frekvensafhengige
ledningsevne er givet ved det universelle udtryk udledt for hopmodellen i P5.
P7 publiceret i 1996 udleder et nyt udtryk for den universelle ledningsevne for
hopmodellen. Udtrykket udledes ud fra en antagelse om, at elektrisk ledning
1 ekstremt uordnede faste stoffer essentielt er en én-dimensional proces. Det
vises ud fra computersimuleringer i to og tre dimensioner, at det ny udtryk
passer bedre end udtrykket fra P5; dog er det ny udtryk pd mange mdder ikke
veesensforskelligt fra det gamle, og det har de samme kuvalitative egenskaber,
som udtrykket udledt i P5.

Det andet kapitel med titlen “seje vesker og glasovergangen’ resumerer
og kommenterer P8-P10. I P8 fra 1987 fremscettes en simpel fenomenologisk
model for glasovergangen, en model der kun har én frihedsgrad, nemlig en
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veskeregions potentielle energi. Modellen blev oprindeligt udviklet i et forsgg
pé at forklare temperaturafhengigheden af middelrelaksationstiden i seje vee-
sker, men i publikationen P8 blev fokus i stedet sat pd modellens forudsigelse,
at der findes to forskellige slags glasovergange. I P9 fra 1995 studeres Bdss-
lers hopmodel for seje vesker. Det vises, at ved lave temperaturer beskrives
denne model godt af den simple model foresldet i P8. Herved opnds et klart
fysisk billede af lavtemperaturopforsien af Bdisslers model. I P10 publiceret i
1996 fremscettes en alternativ model til forklaring of middelrelaksationstidens
temperaturafhengighed, baseret pd helt andre mekanismer. I den ny model er
det de elastiske egenskaber af vaesken ved meget korte tider (svarende til hgje
frekvenser), der er den afggrende faktor. Det vises, at den ny model er i over-
ensstemmelse med eksperimenter pd en rekke organiske vesker, der danner
glasser ved temperaturer betydeligt under stuetemperatur.

Det tredie kapitel med titlen “udvidelser af linecer responsteori” resume-
rer og kommenterer P11-P15. P11 fra 1988 handler om elektrisk 1/f stoj.
Dette fenomen er © en wis forstand lineert, men som vist er stgrrelsen af
stgjen bestemt af fjerde ordens kumulant-middelverdien af den fluktuerende
strgm 1 termisk ligeveegt, hvor det sedvanlige lineere respons (ledningsevnen)
jo er bestemt of anden ordens kumulant-middelverdien (tidsautokorrelations-
funktionen). I P12 fra 1989 diskuteres en mazimum entropy “ansatz” for ikke-
lineer responsteori. Ved hjelp af denne er det muligt at forudsige det ulineere
respons i et statisk ydre felt pd basis af et totalt kendskab til ligeveegtsfluk-
tuationerne of stgrrelsen, der studeres. P18 og P14 handler om ikke-lineer
viskoelasticitet. I P13 fra 1990 foreslds en simpel formel til beregning af flyde-
egenskaber. I P1/ fra 1993 vises det, at hvis stress-ligevegtsfluktuationerne er
beskrevet ved en Langevin-ligning, er der netop én mdde at udvide beskrivel-
sen pd til at geelde stress-fluktuationer i en ulineer flydesituation. Det vises,
at denne udvidelse reproducerer lineer responsteori, hvilket er ngdvendigt for
at undgd inkonsistenser. P15 fra 1994 vedrgrer beregning af tidsautokorrela-
tionsfunktioner, der jo via fluktuations-dissipations teoremet bestemmer det
lineere respons. Der foreslds en approksimation i folge huilken, problemet
reduceres til to elementer: dels en ny slags kanonisk middelverdiberegning
og dels en beregning af den middel-kvadratiske forskydning som funktion af
tiden.

De 15 publikationer er relateret til hinanden pd foalgende mdéde. P1-P7
udger et jevnt fremadskridende forlgb med bidrag til forstdelsen af ekstremt
uordnede faste stoffers vekselstromsledningsevne (en undtagelse er P2, der di-
skuterer en rekke mere eller mindre lgsrevne problemer inden for forsknings-
omrddet).- P8 vedrgrer en simpel fenomenonologisk model for seje vesker og
glasovergangen. I P9 vises det, at denne model fis som lavtemperaturgren-
sen af Bdsslers hopmodel, en model der minder meget om hopmodellen for
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vekselstrogmsledningsevnen studeret © P1 og P5-P7. P10 vedrgrer en alterna-
tiv model for seje veesker og glasovergangen. Det vises i slutningen aof kapitel
2, at P8-P9-modellerne pi den ene side og P10-modellen pé den anden er
~ — — -— — —= -~%omplementere pien rekke punkter. Disse mad derfor til en vis grad forven-
tes at udspende udfaldsrummet af mulige modeller. P11 vedrgrer en anden
frekvensafhengig elektrisk egenskab end ledningsevenen, nemlig 1/f stgj. P11
udgor dermed en modpol til P1-P7, ogsé fordi det i P11 antages, at lednin-
gevnen er helt frekvensuafhengig. P12 er relateret til P11, fordi hovedresul-
tatet fra P11 i P12 fremkommer som et specialtilfelde. P18 og P14 vedrgrer -
samme emne, nemlig ulineer viskoelasticitet. Dette emne er relevant for en-
hver sej veeske ved temperaturer teet pd glasovergangen, idet man forventer,
at enhver sidan veske udviser ikke-linecere flydeegenskaber ved forskydnings-
hastigheder, der overstiger den inverse Mazwell relaksationstid. Den konsti-
tutive relation fremsat i P13 er i den linecere grense ekvivalent med, hvad
der geelder for de tids- og frekvensafhengige elektriske egenskaber i uordnede
faste stoffer, hvorfor P13 er direkte relateret til P1-P7. Eksempelvis er et
af resultaterne fra P6 den lineere grense af krybefunktionen beregnet i P13.
P14 er, skgnt den ikke er formuleret generelt men kun med reference til uli-
neeer viskoelasticitet, teet relateret til P12, fordi disse begge sgger at besvare
spprgsmdlet, hvorledes det ulineere respons kan estimeres ud fra kendskab
til ligevegtsfluktuationer. P15 er relateret til P6, ford: der i P15 antages
kendskab til den middel-kvadratiske forskydning som funktion af tiden; dette
‘problem lgses i P6 under antagelse af, at vesken pd den relevante tidsskala
kan betragtes som et ekstremt uordnet fast stof. -Endvidere er P15 relateret
til P8-P10. Disse-diskuterer middelrelaksationstiden for en sej veske, og P15
tager, som den presenteres 1 kapitel 3, sit udgangspunkt i spgrgsmdlet om,
hvorfor der i seje vesker overhovedet er en felles middelrelaksationstid for
- de fleste fysiske stgrrelser.



Chapter 1

AC CONDUCTION IN
DISORDERED SOLIDS

1.1 Introduction

Any solid has an electrical conductivity, o. If J is the current density and E
the electric field, o is defined by

J = oE. (1.1)

In general, the conductivity may be frequency-dependent: Writing E(t) =
Re(Ege™?) and similarly for J(t), o(w) is the complex number defined by

J() = a(w) Eo. (12)

A non-zero imaginary part of o(w) signals a phase difference between the
electric field and the current density.

For disordered solids at frequencies below phonon frequencies - the fre-
quency range of interest in the present work - whenever there is a non-trivial
frequency-dependence of the conductivity, the displacement of the charge
carriers lags behind the electric field. This time-lag is at most that corre-
sponding to one quarter period. Thus, the current reaches its maximum in
time earlier than the electric field, causing a positive imaginary part of the
conductivity in disordered solids. The requirement of a positive dissipation
implies, of course, that the real part is also positive.

The frequency-dependent dielectric constant, e(w), is defined by

Do = E(UJ) Eo, (13)

where Dy is the complex amplitude of the displacement vector D = ¢E + P

13
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(€o is the vacuum permittivity and P the dipole density). Since P = J, the
following relation exists between the conductivity and the dielectric constant:
)
Any solid with a non-zero DC conductivity has a dielectric constant that
diverges as the frequency goes to zero. To avoid this, ¢(0) is often subtracted

from o(w) in Eq. (1.4) as the definition of the frequency-dependent dielectric
constant, as we will also Vdo belovy Whenever the term ‘dielectric’ loss is used:

ow) =" felw) = &] .

o(w)—0o(0) = iw [e(w) — € - (1.5)

The dielectric constant is usually thought of as referring to bound charges
only, but experimentally bound charges cannot be distinguished from free
charges and the only measurable quantity is the “total” dielectric constant of
Eq. (1.4), which has contributions from bound as well as from free charges.

The fluctuation-dissipation (FD) theorem expresses any linear-response
function in terms of equilibrium fluctuations. This theorem is fundamental
to solid state physics. The earliest indication of the FD-theorem is probably
Einstein’s expression for the specific heat, which he showed is proportional
. to the variance of the energy in the canonical ensemble. In another precursor
of the FD-theorem Einstein noted that the diffusion constant, D, by defini-
tion referring to the non-equilibrium situation of a concentration gradient, is
related to the equilibrium mean-square displacement of a particle in time, ¢,
by the following expression,

(Az?(t)) = 2Dt. (1.6)

Good discussions of the FD-theorem have been given by Voetmann Chris-
tiansen! and by Doi and Edwards.? The electrical version of the FD-theorem
goes back to Nyquist’s famous paper from 1928;3 Kubo generalized the result
and obtained the following expression? for the frequency-dependent conduc-
tivity

o(w) = éfﬁ /0 ®3(0)- (1) e at, (1.7)

where the autocorrelation function on the right hand side refers to equilib-
rium fluctuations.

For a system of non-interacting particles the Kubo formula may be
rewritten by performing two partial integrations.> Thereby, one arrives at the
following frequency-dependent generalization of the Nernst-Einstein relation
(where n is the charge carrier density and g is their charge),
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_ e
o(w) = o T D(w), (1.8)
where the frequency-dependent diffusion constant is defined by
w? oo 2 —iwt
Dlw) = -+ | (Az*(t)) e dt. (1.9)

In Eq. (1.9) it is understood that there is a convergence factor lim._,¢ exp(—et)
in the integration. Note that for ordinary diffusion Eqgs. (1.6) and (1.9) imply
D(w)=D.

Solids can be classified into conductors and “insulators”. By conductors
we here mean metals; these are characterized by a large DC conductivity with
a weak temperature-dependence. “Insulators” may have a zero or extremely
small DC conductivity, or a somewhat larger DC conductivity. In the latter
case they are conventionally referred to as semiconductors if the conduction is
electronic, and superionic conductors if the conduction is ionic. Below, metals
are not considered at all and by a solid is henceforth meant an “insulator”.

Most solids in the real world are inhomogeneous. All inhomogeneous .
solids, whether inhomogeneous on a macroscopic or a microscopic scale, show
pronounced frequency-dependence of the conductivity at frequencies below
phonon frequencies. Examples of disordered solids are amorphous semicon-
ductors, ionic conductive glasses, non-stoichiometric or polycrystals, ionic
or electronically conducting polymers, organic semiconductors, polaronically
conducting transition-metal oxides, or doped single crystal semiconductors at
helium temperatures (where the disorder due to the random positions of the
dopant atoms becomes important). Today, it is generally recognized that dis-
ordered solids exhibit common features for the temperature- and frequency-
dependence of their conductivity (listed below in 8 points). However, until
relatively recently this fact was only appreciated by a small number of experts
in the field,*® and there is still not general agreement as to how significant
these common features are.°

Historically, the field developed in independent directions. Quite early
(i.e., in the 1950’s), measurements were made of the frequency-dependent
dielectric constant of ionic conductive glasses. This work was motivated
by technological requirements for a better understanding of glasses applied
to X-ray tubes, transmitting valves, etc. The early measurements on ionic
glasses!!'!? revealed a correlation between the DC conductivity, the dielectric
loss peak frequency, wy,, and the dielectric loss strength, Ae = €(0) — €(00).
The relation between these quantities, below termed the “BNN-relation” (a
name introduced in 19862 to credit the contributions of Barton, Nakajima,
and Namikawa!416), is
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c(0) = p A€ wn, (1.10)

. ____ _ __.__where.pisanumerical constant-of-order-one: — — — —-— — —— - — — -

Another direction of research into the AC properties of disordered solids
was opened by Pollak and Geballe, when they in 1961 published their famous
paper reporting AC hopping conduction in doped n-type semiconductors at
helium temperatures.'” The data were presented in terms of the real part of
the conductivity, o’(w). This quantity was shown to follow an approximate
power-law,

o'(w) o« W', : (1.11)

with an exponent s around 0.8. This means that the negative imaginary part
of the dielectric constant, €”(w), has a rather weak frequency-dependence.
'This was known previously for ionic glasses, which were found to exhibit
extraordinarily broad dielectric loss peaks. However, as mentioned already,
few noted the similarity between electronically and ionically conducting dis-
ordered solids until several years later. '

It is convenient to focus on the real part of the conductivity, because the
observed conductivity has the uninteresting purely imaginary contribution
from electronic polarization, iw(e(oo) — €). It is usually the contribution
to the conductivity from the mobile charge carriers that is of interest. This
quantity is below denoted by o(w), thereby redefining this quantity: Where
o(w) in Eq. (1.4) was the total observable conductivity, we now for this
quantity write

Oons(w) = o(w) + iw(e(c0) — ). (1.12)

During the last 30 years enormous amounts of data for the frequency-
dependent conductivity in disordered solids have been published. The mea-
surements were fairly easy with classical bridges ; today they are even easier
with modern frequency-analyzers. No detailed review of the literature will
be given here. Instead we list in 8 Points (P1) the common features observed
almost universally for disordered solids:

Point 1 For ¢'(w) one observes at high frequencies an approximate
power-law (Eq. (1.11)) with an exponent s obeying 0.7 < s < 1.0. If any de-
viation from a power-law is discernible, it corresponds to a weakly increasing
exponent, s(w).

Point 2 At lower frequencies there is a gradual transition to a frequency-
independent conductivity (depending on temperature, the transition may
take place at unobservably low frequencies).
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Point 3 Whenever there is a measurable DC conductivity there is always
a dielectric loss peak; the transition between DC and AC conductivity takes
place around the dielectric loss peak frequency. The loss peak frequency
satisfies the BNN-relation (Eg. (1.10)). When there is no measurable DC
conductivity the exponent s of Eq. (1.11) is very close to one.

Point 4 As regards their temperature-dependence, ¢(0) and w,, are
roughly proportional and usually Arrhenius (thus, with the same activation
energy), although more complicated temperature-dependencies are occasion-
ally observed, e.g., in group-IV amorphous semiconductors.

Point 5 The shape of the dielectric loss peak (or equivalently of the real
part of the conductivity) is temperature-independent in a log-log plot, i.e.,
it obeys the time-temperature superposition principle (TTSP). The shape of
this curve is roughly the same for all disordered solids.

Point 6 In a log-log plot the AC conductivity is much less temperature-
dependent than the DC conductivity. For exponents s close to one the AC
conductivity is almost temperature-independent.

Point 7 The exponent s increases as the temperature decreases, and for
T — 0 one finds s — 1. In particular (compare Point 6) the AC conductivity
becomes almost temperature-independent as T — 0.

Point 8 While 0(0) may vary several orders of magnitude, the AC con-
ductivity - for different solids at different temperatures - varies only relatively
little at frequencies safely above the loss peak frequency. In this regime, the
AC conductivity is very roughly given by

, " o'(w) ~ € w. | (1.13)

After reviewing the experimental facts regarding ionic and electronic
conduction in glasses Owen wrote in 1977:" A unified theory for the loss or
AC conductivity spectrum which accounted for the close correlation between
the DC conductivity and the low-frequency loss peak, and the much weaker
temperature-dependence of the o(w) & w! region at higher frequencies, would
certainly be physically appealing. This quote may be regarded as the starting
point for P1, the first publication to be reviewed below.

Many models for the AC conductivity of disordered solids have been
proposed throughout the years. Most models (but not all) assume that the
disorder is an essential ingredient. Few models address the surprising simi-
larity between the AC properties of quite different disordered solids. In P1,
this similarity is the starting point. In the subsequent papers the effect of
disorder is studied in detail. It is found that in the extreme disorder limit a
universality exists. A comparison of the universal AC conductivity to exper-
iment is not given in P3-P7; however, the universal AC conductivity studied
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in these papers is close to the predlctlons of the 51mple model of P1, that
compares well to experiment.

1.2 Paper 1: Random Free Energy Barrier
Model

Problem

1. Why are the AC conductivities of quite different disordered solids so sim-
tar?

2. Is it possible to construct a simple phenomenological model based on phys-
ically reasonable inputs, that is able to reproduce the 8 Points listed above?

Solution

The common feature of all solids obeying the 8 Points is their disorder, and
more or less all disordered solids obey the 8 Points. Following what has
become a standard approach, disorder is modelled by randomness of some
parameters. A model that has been studied extensively in the literature is
the so-called hopping model.'*2° In a hopping model one sometimes assumes
that charge carriers move on a simple cubic lattice; this is also done in P1.
The jump rates vary randomly according to some probability distribution.
For simplicity it is assumed that the charge carriers are non-interacting and
that only nearest neighbor jumps are allowed. Not only are the long range
Coulomb tepulsions thus ignored, but so is the short range “self-exclusion”
at any charge carrier site.

To guess at a realistic “ansatz” for the jump rate probability distribution,
we refer to the observed AC conductivities and to the ion-electron analogy.
In terms of the dielectric loss, the power-law of Eq. (1.11) implies a loss peak
that is much broader than usually seen, e.g., in liquids. In the language of
Debye processes, to describe extremely broad loss peaks one needs a super-
position of processes that involves very many decades of relaxation times.
This indicates a more or less uniform distribution of relaxation times, 7, on
the logarithmic axis, leading to p(7) o 1/7. This conjecture is confirmed
by considering the analogy between electronically and ionically conducting
disordered solids: For amorphous semiconductors the jump is a quantum me-
chanical tunneling process, where the jump rate, I', depends exponentially on
the tunneling distance r: I’ « exp(—ar). For ionically conducting disordered
solids the jump is a classical thermally activated process and the jump rate
is given by Eyring’s rate theory, according to which I & exp[—AE/(kgT)]
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where AF is the energy barrier. The simplest way to understand the ion-
electron analogy is to assume that the jump distances resp. the activation
energies vary randomly (i.e., according to a “Box” distribution). To adopt
a uniform language covering both tunneling and barrier hopping, we write
I' oc exp[~AF/(kgT)], where AF = AE — TAS is the free energy barrier.
The tunneling case is then regarded as a case of entropy barrier dominated
hopping. '

For the jump rate probability distribution, the Box distribution of acti-
vation free energies implies

p(l') « =, (1.14)

which is equivalent to p(7) o< 1/7 where 7 = 1/I'. This distribution is not
normalizable, so both high- and low-frequency cut-off’s must be introduced
by assuming that only a finite range of jump frequencies are allowed: ['p;, <
I' < Tiax. In order to reproduce the fact that the conductivity continues to
" increase with frequency up to phonon frequencies, the high-frequency cut-
off must be chosen close to phonon frequencies. The low-frequency cut-off
is much lower. To simplify things we therefore only investigate the limit
Fmax/Tmin = 00. In this limit the DC conductivity itself diverges, but it is
easy to remove this divergence by a “renormalization”.?!

The model has now been completely specified. Unfortunately, it is im-
possible to solve a hopping model analytically, even in one dimension. Either
one has to study the model by computer simulations (which in the limit of
many decades of jump frequencies requires considerable computer capacity
and development of new algorithms, see P5), or one must solve the model
by analytical approximations. The latter approximate solutions give an es-
timate of the average Green’s function (i.e., averaged over all realizations of
the jump frequencies). From this quantity it is straightforward to calculate
the frequency-dependent conductivity.

The simplest approximation is the continuous time random walk
(CTRW) approximation of Scher and Lax.> When the random free energy
barrier model is solved in this approximation one finds (where 7 = 1/I'nip)

UIT

O'(Cd) = 0'(0) m

(1.15)

In terms of the dimensionless “reduced” conductivity ¢ = o/0(0) and the
dimensionless imaginary (“Laplace”) frequency § = iwr, the CTRW solution
of the random free energy barrier model is
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~ 8

- 71n(1 +3)° (1.16)

— - ~A more Teliable approximation than the CTRW is the effective medium é;é N

proximation (EMA),'®® that was introduced around 1980 simultaneously
by several groups (building on the coherent potential approximation?? - the
standard approximation for dealing with systems with a disordered Hamilto-
nian). The EMA does not lead to an explicit expression for the conductivity,

but to a transcendental equation. For the random free energy barrier model
the EMA leads (P1) to

0 Ing = 5. (1.17)
As shown in Fig. 7 of P1 the CTRW and the EMA approximate solutions
of the random free energy barrier model are almost indistinguishable. In
particular, all qualitative features are the same for the two solutions. We
therefore only discuss the CTRW solution below, where each of the 8 Points
are considered. '
Point 1: The real part of the conductivity is given by (with @ = wr)

@ arctan(®)
In*(1+&2%)/4 + arctan?(@)

5@ =

Considerably above the loss peak frequency (marking the onset of AC con-
duction) one has @ >> 1 and consequently

(1.18)

T W

2 1n%(@)
This implies an approximate power-law where the exponent s of Eq. (1.11)
is given by

5(@) =~ . (1.19)

dlng’ 2
At frequencies high enough for the term an “approximate power-law” to make
sense, Eq. (1.20) implies 0.7 < s < 1.0. The function s(@) is weakly in-
creasing and goes to one as the frequency goes to infinity. Note that the
conductivity curve in a log-log plot (Fig. 7 of P1) is very close to a straight
line just a few decades above the onset of AC conduction.

Point 2: At lower frequencies there is a gradual transition to frequency-
independent conductivity, the DC conductivity. The transition takes place
around the dielectric loss peak frequency; in dimensionless units the loss peak
frequency is given by
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Om = 4.71. (1.21)

Point 3: The dielectric loss peak is shown in Fig. 4 of P1. This loss
peak is very broad compared to typical dielectric loss peaks in viscous liquids.
In real units the loss strength is given by

1

Ae = 3 a(0) 7. (1.22)

- From Eqs. (1.21) and (1.22) we find that the BNN p-parameter of Eq. (1.10)
is given by

p = 0.42. (1.23)

The EMA leads to p = 0.59, which is somewhat closer to the experimentally

reported p ~ 1.5 When there is no measurable loss peak, the time 7 cor-

responds to frequencies lower than those accessible by experiment. In this

case, measurements take place in the regime where @ >> 1, and thus the

exponent s is close to one (Eq. (1.20)).

Point 4: Experimentally, the dielectric loss strength is only weakly

temperature-dependent compared to the DC conductivity or the loss peak

frequency. The latter two quantities are usually Arrhenius; because of the

BNN-relation, their activation energies are equal. '
Point 5: The shape of the dielectric loss peak or of the conductivity

curve is temperature-independent, because in reduced units the same func-

tion applies at all temperatures. Thus, the model obeys the TTSP. The

function given in Eq. (1.18) gives a rather good fit to experiments for quite

different solids, as is clear from Fig. 3 of P1.

Point 6 : As the temperature is lowered, the whole conductivity curve

is displaced in a direction 45 degrees to the x- and y- axis of the standard

log-log plot (compare Fig.1 of P1). Clearly, the AC conductivity is less

temperature-dependent than the DC conductivity, and if the exponent s is ‘
very close to one, the AC conductivity is almost temperature-independent.

Point 7: From Fig.1 or Fig. 6 of P1 it is clear that, if the temperature
is decreased, one effectively in a fixed frequency range measures further and
further out on the same conductivity curve. Consequently, the model predicts
that s — 1for T — 0. In particular, according to Point 6 the AC conductivity
becomes almost temperature-independent at low temperatures.

Point 8: Experimentally, the dielectric loss strength is usually of the
same order of magnitude as €. At high frequencies one finds from Egs. (1.19)
and (1.22) the following very rough order of magnitude estimate
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ey arm ey e, (124

which is Eq. (1.13).

In conclusion, in P1 a simple phenomenological model was constructed
that is able to explain the 8 Points. The model is also able to explain the so-
called “Summerfield-scaling”,? according to which the reduced conductivity,
&, is a function of a single variable:

G =F (a((‘)‘; T> . (1.25)

Because of Eq. (1.22), if one assumes the Debye law for the dielectric loss
strength, Ae o« T~!, Summerfield scaling follows froi the fact that the
reduced conductivity is a function of @.

The model of P1 is based on the assumption of randomly varying en-
ergy barriers. Ideas in this direction were discussed early in the history of
the field. Thus, Stevels and Taylor'! already in the 1950’s - justified from
Zachariasen’s random network model for oxide glasses - discussed the possi-
bility of having random barriers for jumps in ionic conductive glasses. The
idea was that AC conduction takes place over limited ranges and involves the
smaller energy barriers, while DC conduction extends to infinity and thus in-
volves the largest barriers. These authors erroneously concluded that such
a model is inconsistent with experiment. This was based on two arguments.
First, they argued that any distribution of energy barriers must lead to a
temperature-dependent shape of the loss peak (increasing in width as the
temperature is lowered). Secondly, they argued that the BNN-relation can-
not be explained in this approach, because the activation energy of the loss
peak frequency, by referring to AC conduction, must be lower than that of
the DC conductivity. Both things are wrong. The Box distribution implies
Eq. (1.14) at any temperature (Stevels and Taylor may have known this, but
were probably looking at superpositions of Debye processes for which the Box
distribution of energy barriers leads to a completely frequency-independent
dielectric loss). And the loss peak frequency of the random free energy bar-
rier model is the lowest effective jump rate and therefore its activation energy
is the same as that of the DC conduction. When the present author briefly
met Stevels in 1985 and told him that their old idea works much better than
they themselves expected, he looked quite pleased.
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Outlook

The random free energy barrier model involves a number of simplifying as-
sumptions: a) The distribution of energy barriers is a Box distribution; b)
there is a sharp activation energy cut-off; ¢) the charge carriers are non-
interacting; and d) the charge carriers jump on a cubic lattice. Given these
rather restrictive assumptions, the obvious question is: Why does the model
work well? Most of the contents of P3-P7 may be regarded as an attempt to
answer this question. In this connection it should be noted that in arriving
at Eqgs. (1.16) and (1.17) a further assumption is made by using the approx-
imate CTRW or EMA. These are both mean-field theories, and a prior: it is
far from obvious that either are realistic in the extreme disorder limit. This
question is also addressed below by reference to computer simulations.

Another problem is to explain the AC response of macroscopically in-
homogeneous solids, where one also finds that Eq. (1.16) works well. Why is
this, when Eq. (1.16) was derived assuming microscopic disorder? A hint to
understanding this is provided by the one-dimensional electrical impedance
network consisting of a series of RC-elements as shown in Fig. 8a of P1.
If one assumes that all capacitances, C, are equal while the resistances, R,
are distributed uniformly on a logarithmic scale (corresponding to a Box
distribution of energy barriers, compare Eq. (1.14)), the characteristic time
t = RC is distributed according to p(t) « 1/t and the impedance of the cir-
cuit is given by (where K is a normalization constant and 7 is the maximum
characteristic time) -

20) = (zor1o5) = ©f e
wh= R + wC T Clotrtiw t
K 7 1
= — t. 1.
C Jo 1+iwtd (1.26)

When the constant K is determined self-consistently and expressed in terms
of the DC conductivity, this expression leads to Eq. (1.16). The circuit has
been used by many authors, including Macedo, Moynihan and Bose in their
famous paper introducing the modulus formalism.?* But how is the circuit
justified?

A final question that arises on the basis of the success of the random
free energy barrier model is: What can be learnt at all from measuring the
AC conductivity? The model predicts that all solids have the same AC
conductivity. This is not quite the case experimentally,’® although the AC
conductivities of quite different solids are surprisingly similar. Some time ago
Pollak and Pike?® suggested that o(w) o w is the “natural” low-temperature
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(i.e., extreme disorder) limit of the conductivity of disordered solids, and
that information about the solid under study is provided by deviations from
this. While our expression Eq. (1.16) in a sense also gives the Pollak-Pike

= -— --high=frequency limit; the Tandom free energy barrier model suggests a more

subtle result: Detailed information about a solid is provided by deviations
from Eq. (1.16), that itself is non-trivial.

1.3 Paper 2: Comments on AC Conduction

Paper 2 is pedagogical in the sense that most of the results discussed are
not new, but more or less buried in the literature. P2 discusses a number of
controversial issues and some workers in the field would undoubtedly say that
the paper presents a rather personal point of view. A number of unrelated
comments are made, and below we consider these comments one by one,
following the numbering used in P2.

2.1 The observed power-law frequency-dependence of the conductivity is
hardly fundamental.

For many years the results of AC measurements were reported in terms
of the exponent s of Eq. (1.11). This is an obvious thing to do, because to plot
the data meaningfully log-log plots must be used, and in these plots almost
straight lines do emerge. However, and this is a point to be emphasmed
almost anything is a straight line in a log-log plot.

The problem is not that data are reported in terms of exponents, but that
these exponents subsequently by theorists are often regarded as rigorously
established experimental facts. The reason for this is probably that power-
laws in the 1970’s became a new paradigm for solid state physics inspired

- by the renormalization group theory of second order phase transitions.?® Be-
fore Widom’s paper from 196527 power-laws were virtually unknown in solid
state physics, but after about 1980 they seemed to show up everywhere.
Once power-laws were regarded as fundamental even for the understanding
of AC transport in disordered solids, many more or less esoteric explana-
tions were proposed, often assuming some kind of spatially fractal structure
of the solid.2*32 Thus, the observation of what should rightly be termed
“approximate power-laws” were taken as direct experimental evidence for the
existence of fractals in disordered solids. The purpose of 2.1 was simply to
warn against this “over”interpretation of experiment.

2.2 The Ngai relation is a consequence of the BNN relation and the
time-temperature superposition principle.

As mentioned on page 21 of this summary, the BNN-relation implies
that upon lowering the temperature the conductivity curve is displaced in a
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direction 45 degrees to the x- and y-axis of the log-log plot (ignoring the weak
temperature-dependence of A¢). As is easy to show, this implies that for a
power-law frequency-dependent conductivity with exponent s, the activation
energy for AC conductivity (found as the usual derivative of the logarithm
of the conductivity) is related to that of the DC conductivity by

AEAC = (1 - S) AEDC . (127)

Experiments confirm this relation which is quoted by Ngai as evidence in
favor of the coupling model.?® However, Eq. (1.27) is model independent and
a mathematical consequence of other well-established experimental facts.

2.8 The shape of the modulus peak has no fundamental significance.

The electric modulus, -M(w), is defined by analogy with the ordinary
mechanical modulus?* as force over displacement; thus
Tw

Oobs (w) '

. This quantity was introduced in connection with modeling a disordered solid
via the one-dimensional circuit of Fig. 8a in P1. The basic idea of the circuit
is to emphasize that the same mechanism is responsible for both DC and AC
conduction.®* The concept of “electric field relaxation” was also discussed in
the original paper by Macedo et al.?* By this is meant the relaxation of the
electric field towards zero for a suddenly imposed constant displacement, D.
The modulus is the Laplace transform of the electric field relaxation func-
tion. There are two practical arguments for the use of electric modulus. First,
the electrodes often give serious problems for accurate conductivity measure-
ments. The simplest model is to regard the electrodes as pure capacitances
in series with the sample; in this case the electrodes only contribute to the
real part of the electric modulus and by focusing just on the imaginary part,
electrode effects are eliminated. Secondly, the imaginary part of M (w) shows
a “loss peak”, while the imaginary part of the dielectric constant only shows
a loss peak if the DC conductivity is subtracted from o(w) (and because of
electrode effects o(0) is often difficult to measure accurately).

Since its introduction, the electric modulus has become a popular means
of data representation. From the modulus loss peak frequency a character-
istic time is deduced, which may be compared to other characteristic times.
Another application of the electric modulus formalism is a deduction re-
garding the conduction mechanism in ionic conductive glasses. It is usually
observed that upon dilution of ion concentration the modulus loss peak in
these systems narrows and and approaches a Debye peak. This is “explained”
as being due to the fact that the Coulomb interactions between the mobile

Mw) =

(1.28)
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ions become less and less significant upon dilution.343%

Both these applications of the modulus formalism are flawed as will be
explained now, the point being that “the shape of the modulus peak has no

-fundamental significance” as regards the conduction mechanism. One might

add: The modulus loss peak frequency also has no significance. In fact,
already in 1983 did Almond and West point out the limited usefulness of
the modulus formalism.*® In P2 this was reinforced and illustrated by a
figure (Fig. 2). Since then the point has also been made by Elliott,?” who
emphasizes that there is a modulus peak even when there is no non-trivial
frequency-dependence of the conductivity, i.e., when o5 (w) = 0(0)+iw(€0o —
€o) (here and henceforth €(c0) is denoted by €4).

In P2 it is noted that the observed conductivity is additive: When there
are two different and unrelated conduction mechanisms, the observed con-
ductivity is the sum of the two conductivities. There is always the purely
imaginary contribution iw(e. —€g) to the observed conductivity (Eq. (1.12)).
Because the conductivity goes into the denominator in the definition of M (w),
the entire modulus loss peak thus depends on the value of €¢,,. This is illus-
trated in Fig. 2 of P2 from which it is clear that, when e, is changed
for a fixed mobile charge carrier contribution to the conductivity, not only

. does the shape of the loss peak change, but so does the value of the loss

peak maximum. The figure furthermore shows that the peak narrows when
0(0)7/€x — 0, which is precisely what is observed in experiment. This math-
ematical fact carries no information about the conduction mechanism. In
conclusion, the modulus representation is misleading and should be avoided.
2.4 There are close mechanical analogies to the observed AC behavior.
One of the signals of ionic motion is the existence of a mechanical loss
peak at the dielectric loss peak frequency. Another mechanical “signal” is
seen in viscous ionic liquids, where one finds that the frequency-dependent
viscosity behaves much like 1/0(w) for a typical disordered solid. This is easy
to understand from the FD-theorem applied to a hydrodynamic model for
ionic motion, and it is one of the starting points for P13 reviewed in Chapter
3.
3.1 Three common arguments against hopping models are all incorrect.
As mentioned already, two early arguments against Stevels’ and Taylor’s
model (that the loss peak frequency should have a lower activation energy
than the DC conductivity and that the loss peak cannot have a temperature-
independent shape) are wrong. A third argument against hopping models
based on distributions of activation energies is also wrong: In these models
the DC conductivity does not have to be non-Arrhenius as is sometimes
claimed; in fact, at low temperatures o(0) is always Arrhenius due to the
importance of percolation (P3-P7).
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3.2 The conductivity is frequency-dependent only if there are correlations
between the directions of charge carrier jumps.

Several models discussed in the literature, including the CTRW model
are inconsistent. In order to have a non-trivial AC conductivity there must be
correlations in the directions of subsequent charge carrier jumps. The mere
existence of a distribution of waiting times or a non-exponential decay of the
probability to be at one site (a non-Markovian dynamics) does not give rise to
frequency-dispersion. For the CTRW model this was pointed out by Tunaley
already in 1974,% but was subsequently almost forgotten. (While the CTRW
model is inconsistent, the CTRW formula for the conductivity derived by
Scher and Lax® is mathematically equivalent to the Hartree approximation,
the simplest possible mean-field approximation,®® thus justifying the use of
the CTRW in P1.)

4.1 Are reported data always reliable and not due to contact effects?

Contact effects at the electrodes cause serious problems for accurate
AC conductivity measurements, in particular below the loss peak. Due to
contact effects, sometimes one cannot see the low-frequency leveling-off of the
- conductivity as function of frequency; instead the conductivity is observed
to continue to decrease when the frequency is decreased. This is due to
the blocking effect of the contacts, which is particularly serious for ionic
conduction. In principle one could vary the sample dimensions to eliminate
this problem. However, it is often difficult to prepare identical samples: since
the conductivity is thermally activated, a slight change in the activation
energy causes a considerable change in the conductivity. In some cases,
varying sample size does indeed work.*® The contacts may even influence
the frequency-dependence of the conductivity, leading to a spurious w!/2-
frequency-dependence.®! In conclusion, it seems that reported data are not
always reliable.

4.2 Are DC and AC conduction always due to the same mechanism?

A BNN-like relationship between the DC conductivity and the frequency
marking the onset of AC conduction does not necessarily imply that DC and
AC conductivity are due to the same mechanism. A nice illustration of this
fact was provided recently by Moynihan, discussing old measurements on a
dilute solution of Li in glycerol.3 '

4.8 There are theoretical reasons to expect €"(w) is proportional to w'/?
on the low-frequency side of the dielectric loss peak.

In hopping models the long-time tails well-known from liquid state
physics manifest themselves in the above fashion for the AC conductiv-
ity:'* If s = 4w one has for s — 0 the following expansion: o(s) =
0(0) + As + Bs*? + ... (in Paper 2 the second term is missing). As is easy
to show this expansion leads to the prediction that the dielectric loss varies




28 AC CONDUCTION IN DISORDERED SOLIDS

as the squareroot of the frequency at low frequencies compared to the loss
peak frequency. '
4.4 Does any solid exist which has ¢’ (w) << €y w?

-~ — -—— — — — -— ~“The-answertothis question is; i fact; yes. A more relevant question was
recently posed by Angell.*> We know that the conductivity in the infrared

region (i.e., at phonon frequencies) is of the order 1 (Qcm)~! (this also follows
from the sum rule for the real part of the conductivity*). If there is nothing
going on at lower frequencies (i.e., if the charge carriers are permanently
localized) the real part of the conductivity decreases as w? below phonon
frequencies. The question is: Is it possible to come arbitrarily close to this
lower limit of the AC conductivity? Unfortunately, experiments are here
extremely difficult because of the dominance of the imaginary contribution
to the conductivity from the e,,-polarizations.

4.5 What kind of measurements could supplement the measurements of
o(w)? '

Several quantities could supplement conductivity measurements. For
ionic conduction, NMR has recently been shown to give valuable extra infor-
mation about the conduction process.3%43 : A

4.6 Is the observed AC behavior due to microscopic or macroscopic in-
homogeneities?

This question inspired to the work behind the publications P3 and P4.

4.7 How accurate are the presently available approzimate analytical so-
lutions of hopping models, and what is the cause of the quasi-universality
among different models?

This question is dealt with in P5-P7.

4.8 Are hopping models the correct framework for describing experi-
ments? '

This question is addressed in P3-P7, albeit indirectly.

1.4 Paper 3 and 4: Macroscopic Model

Hopping models are the most popular models for AC conduction in disordered
solids, and extensive work has gone into developing theories for hopping.'8-20
However, only hopping of non-interacting charge carriers may be treated
analytically with reasonable reliability. It may well be questioned whether it
is realistic to completely ignore Coulomb repulsion between charge carriers.
In any case, the assumption of non-interacting charge carriers is certainly
inconsistent with Maxwell’s equations; a particle can only feel an electric
field if it has a charge, and if it has a charge it must interact with other
charged particles. In view of this one may ask:
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Problem

What is the simplest possible realistic model for AC conduction in disordered
solids that does take into account Coulomb interactions?

Solution

The hopping of interacting charge carriers may be studied in computer simu-
lations,** but as mentioned there is no reliable approximate analytical treat-
ment of such models.*> Instead, one may take a macroscopic approach and
consider the AC conductivity of disordered solids in light of Maxwell’s equa-
tions for an inhomogeneous conductor. The study of inhomogeneous conduc-
tors goes back to Maxwell himself. In P4 some care was taken in deriving the
model from basic principles, because the resulting electrical circuit is usually
incorrectly interpreted. For this part of P4 there is, of course, no claim of
originality. '

Consider a solid with bound charges described by the frequency-
independent dielectric constant, €., and free charges described by a spa-
tially varying frequency-independent conductivity, g(r). It is assumed that
all charge is either free or bound. The free charge carrier density is de-
noted by p and the free charge current density by J. The relevant Maxwell
equations are V-D = p and VxE = —dB/dt. In our frequency range
the magnetic field is practically zero so the latter equation implies that an
electrostatic potential may be defined, E = —V¢. There is free charge con-
servation, of course, p + V -J = 0. Combining thesé equations in periodic
fields with D = €,E and J = ¢(r)E yields for the electrostatic potential
where s = iwey, 1s the “Laplace frequency”

V-([s + 9(r)]Vé(r,5)) = 0. (1.29)

When this equation is discretized one arrives at the electrical circuit shown
in Fig. 1 of P4 where, if a is the lattice constant and d the dimension, each
capacitor has the value a?~2¢,, and each resistance has the value a?=2/g(r) .

The interpretation of the circuit is the following. When the circuit is
subjected to an external potential drop, the solution to Kirchhoff’s equations
gives the corresponding potential inside the solid. Converted to a current
density, in the circuit the current is locally equal to J+ Jp, where J = g(r)E
is the free charge current density and Jp = sE is Maxwell’s displacement
current density: Jp = D = iweE. The Kirchhoff law expressing cur-
rent conservation at each site allows for no charge accumulation at any site.
This law is an expression of the identity V-(J + Jp) = 0, that follows from
Maxwell’s equations and charge conservation:
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VIp=V-D=p=-V.7J. (1.30)

The current flowing in the circuit has three contributions: Free charge,-bound- - —

~ charge and “ghost” charge, the latter being the non-physical part of the charge
in Maxwell’s displacement current. Thus, while the circuit allows no charge
accumulation at any site, the. real free+bound charge may very well accu-
mulate here and there in the solid. We have gone through this rather trivial
point in some detail, because the circuit has often been discussed in the lit-
erature as a phenomenological model for AC conduction in inhomogeneous
solids?*465! etc, without proper physical interpretation. In particular, the
capacitor currents are often erroneously identified with the bound charge
currents. The correct interpretation of the circuit may be found implicitly in
the paper by Fishchuk from 19862 and probably many other places in the
literature.

The actual spatial disorder of the solid, which must have some finite
correlation length, £, is reflected in the value of the resistors of the circuit. It
is convenient to choose the discretization length equal to £ and ignore corre-
lations beyond this length. This is of course an approximation. Making this
assumption, however, the resistors are uncorrelated from link to link and the
model is completely specified by the resistor probability distribution. Next,
we assume that the free charge conductivity is thermally activated, i.e., that
it is given by an activation energy: g(r) = goexp[—BE(r)]. The model is
completely specified by the activation energy probability distribution, p(E).
A “solution” of the model consists of calculating the overall free charge admit-
tance. It is convenient to convert this quantity to a free charge conductivity,
o(w). Clearly, the free charge conductivity is determined by the average
resistor current (for a given external potential drop across the sample).

The model may be studied numerically by computer simulations or ap-
proximately analytically. The latter is done by using the effective medium
approximation (EMA) for admittance circuits. This approximation, the
mathematics of which is identical to the mathematics of finding the effec-
tive dielectric constant of a random mixture of dielectrica, is more than 50
years old.?

We first consider the dielectric version of the EMA. It is derived in the
following way. Given a random mixture of materials with different dielectric
constants, what is the “macroscopic” dielectric constant of the mixture, €,,?
If () denotes a spatial average, €, is defined by

(D) = ¢p (E). (1.31)

The fact that we are concerned with a mixture is expressed mathematically
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in the equation

D(r) = ¢(r)E(r), (1.32)

where the dielectric constant in some sense depends randomly on the posi-
tion. The problem is to calculate ¢, from a knowledge of e(r): Consider
a sphere of dielectric constant, ¢, embedded in an effective medium. The
effective medium represents the average surroundings of the sphere in the
actual inhomogeneous medium; the effective medium is characterized by the
“average” dielectric constant, €. In an electric field, which far away from
the sphere is equal to Ey, the sphere becomes polarized whenever ¢ # ¢,,.
Consequently, the electric field inside the sphere is different from Egy. It is
straightforward to show®* that the field inside the sphere, E, is homogenous
and given by

3
E=_——E,. 1.33
24 efem O (1.33)
'The EMA equation is now derived by the “self-consistency” requirement that, -
on the average, E is equal to Eg, i.e.,

(E) = Eo. V - (1.34)
This implies (3/(2 + €¢/e,)) =1, or |

<i(5)—ﬁ> = 0. (1'.35)

2¢,, + €(r)

Returning now to conduction in disordered solids, in the DC case Eq.
(1.29) is mathematically equivalent to the basic equation for an inhomoge-
neous dielectric, V-[e(r)V¢] = 0. We thus immediately from Eq. (1.35) get
an equation for the average DC conductivity, o(0),

g(r)—o(0)\ _
(S5 = 0. (1:36)

This expression is also valid for the complex average conductivity of an ad-
mittance circuit. For the circuit characterizing the macroscopic model, the
capacitor currents are not of interest. When these are eliminated, the follow-
ing EMA expression for the free charge conductivity, o(s), in d dimensions
is arrived at®?

<9+ (dg——1)0a+ds> =0 (1.37)
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In P3-and P4 this equation issolved in the extreme disorder limit. By this
we mean the limit 5 — oo, where the local conductivity varies more and more
decades. In this limit Eq. (1.17), & In(6) = 3§, is arrived at independently
— -—— -— -— -— —of the activation energy probability distribution, where & = o(w)/o(0) and

B
d p(Ec) o(0) |
Here, E. is the percolation energy, the largest energy met on an optimal
“percolating” path. : . )

To test the EMA and in particular the universality prediction, extensive
computer simulations of the macroscopic model were undertaken in P3 and
P4. For simplicity the simulations were only carried out for real Laplace
frequencies. There are two problems in simulating the model at low tem-
peratures. First, using standard algorithms one encounters endless overflow
problems when the local conductivity varies 100 or more decades. Secondly,
very large lattices are needed to obtain reasonable reproducibility. The first
problem was solved by referring to the star-mesh transformation well-known
from electrical engineering.® The star-mesh transformation allows one to
remove an internal point in a circuit without changing the “external” proper-
ties of the circuit. In two dimensions this was developed into a very efficient
algorithm by Frank and Lobb;% earlier and more generally the star-mesh
transformation was applied by Fogelholm to the study of percolating net-
works.%” The advantage of the star-mesh transformation is that it involves
no subtractions. To avoid the second problem with large lattices, most of the
simulations were two-dimensional. However, the simulations of Fig. 5 in P4
were done in three dimensions; these results may be somewhat uncertain, but
they were subsequently confirmed by a real-space renormalization numerical
technique developed by Thomas Riedel in his master’s thesis.58 %

In comparing the simulations to the EMA, we have considered only the
EMA prediction for the relative conductivity, &, and in the definition of § (Eq.
(1.38)), the correct percolation energy and the empirical o(0) were used and
not those predicted by the EMA. This was done because the main focus is on
the shape of the conductivity curve. In this approach, the simulations of P3
and P4 show that the EMA is a very good approximation at all frequencies
and temperatures studied. This is rather surprising, because existing quasi-
rigorous derivations of the EMA arrive at it from weak-disorder expansions.

The fact that percolation dominates DC conduction has been known
for many years,5%%! but a rigorous proof that the DC conductivity activa-
tion energy is the percolation energy was only given recently.%? The crucial
importance of percolation is the starting point for the phenomenological “per-
colation path approximation” (PPA). While the macroscopic model justifies

§ = (1.38)
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the use of the electrical circuit of Fig.1 in P4 as a model for conduction in
disordered solids, the one-dimensional version of the circuit is arrived at as
the percolation path approximation to the circuit, valid at extreme disorder.
In this limit, conduction effectively becomes one-dimensional with a sharp
activation energy cut-off, leading to the CTRW expression for the frequency-
dependent conductivity Eq. (1.16). According to the PPA universality arises
because at low temperatures only activation energies slightly below E. are
important for the frequency-dependence of the conductivity.

The naive approach behind the PPA ignores the fact that the percolation
cluster is a fractal with dimension larger than one. However, only the so-
called “backbone” part of the percolation cluster is important for conduction,
and the backbone has a lower fractal dimension than the percolation cluster.
On the backbone the so-called “red bonds” (defined as the bonds that stop
the current if they are cut) are the main contributors to conduction; the set
of red bonds has an even lower fractal dimension, not far from one.5?

Outlook

The macroscopic model is conceptually very different from the hopping
model: the first is macroscopic, the latter is microscopic; the first is de-
terministic, the latter is stochastic; for the macroscopic model the overall
potential drop across the sample is controlled, for the hopping model the
local (uniform) electric field is controlled. If one were free to choose, the
macroscopic model is to be preferred for the following reasons: 1) It takes
the effects of Coulomb interactions into account and is thus more realistic;
2) because one controls the overall potential drop, the field inside the sample
varies and adjusts itself so that Gauss’ law is obeyed; 3) when subjected to
approximate analytical treatment, the macroscopic model is simpler than the
hopping model; 4) the macroscopic model is easier to computer simulate. On
the other hand, understanding the hopping model is important also for other
fields where hopping is relevant (e.g., stochastic transport in multidimen-
sional parameter spaces), while the macroscopic model specifically concerns
electrical conduction.

Since hopping is quite different from the macroscopic model, it is sur-
prising that both models lead to similar results for the AC conductivity. We
have seen that the EMA for the macroscopic model leads to the expression
Eq. (1.17) for the universal frequency-dependence of the conductivity in the
extreme disorder limit. Also, the PPA leads to the CTRW expression for
the random free energy barrier model (Eq. (1.16)). A closer investigation
of hopping is needed including computer simulations, before the following
questions that logically arise may be answered: 1) Is conduction in hopping
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models also universal at low temperatures? If yes: 2) Does the EMA lead to
Eq. (1.17) for hopping in the extreme disorder limit? If yes: 3) Do computer
simulations confirm the EMA for hopping?

1.5 Paper 5 and 6: Hopping Model

After the results obtained for the macroscopic model in P3 and P4, the logical
next step is to investigate hopping models from the same point of view. P5
and P6 present a study of hopping models, again emphasizing the extreme
disorder limit. '

Problem

1) Is AC hopping conduction universal in the extreme disorder limit?
2) If yes: Is the universality confirmed by computer simulations? How are
these difficult simulations performed at extreme disorder?

Solution

The above questions are dealt with mainly in P5, while P6 evaluates an im-
portant consequence of the results obtained in P5. As in P1, only symmetric
hopping of non-interacting charge carriers on a cubic lattice is studied. Sym-
metric hopping involves hopping between energetically equivalent sites. To
look into the possible existence of universality we use the EMA approximation
for hopping. This approximation is not identical to the EMA for the macro-
scopic model discussed above, but the two approximations have the same
name because they are based on the same mean-field idea. For hopping one
wants to calculate the Green’s function averaged over all realizations of the
disorder. The EMA considers one link of the lattice embedded in an “effective
medium”, which is homogeneous and described by the average Green’s func-
tion. Selfconsistency is then required, i.e., that the Green’s function for the
effective medium plus the link on the average is equal to the average Green’s
function. Remembering that the frequency-dependent diffusion constant is
proportional to the frequency-dependent conductivity (the Nernst-Einstein
relation Eq. (1.8)), instead of following P5 we below give the EMA equation
for the frequency-dependent diffusion constant, D(s): In the unit system
where the diffusion constant on a homogeneous lattice with jump rate I' is
given by D =T, if the dimension is d, if one defines p(k) = 1 3%, cos(k;)
and if sG is the following integral over the first Brillouin zone (—m < k; < ),
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N S dk
G = /I_Bz s+2d D[l p(k)] (2m)?’ (1.39)

the EMA equation is given by the following average over the jump frequency
probability distribution

r-D
<dD+[1—s(;(1“—D)]> =0 (1.40)

For hopping with thermally activated jump rates, the EMA equation
becomes universal in the extreme disorder limit (P5). In this limit, the EMA
equation reduces to the diffusion constant analogy of Eq. (1.17),

DD = 3, (1.41)

where D = D(s)/D(0) and § = Const.s/D(0) (interestingly, the constant
of proportionality has a different temperature-dependence in two dimensions
and in more than two dimensions (P5)). In P1 Eq. (1.41) was derived for
the special case of a Box distribution of energy barriers, where the average
in Eq. (1.40) may be calculated explicitly. Equation (1.41) was first derived
by Bryksin in 198054 for the specific hopping model with tunneling be-
tween random positions (so-called r-hopping). The derivation of Eq. (1.41)
presented in P5 not only proves universality within EMA, but is also more
transparent than Bryksin’s derivation.

P6 presents a calculation of the mean-square displacement for diffusion
in d dimensions when the frequency-dependent diffusion constant is given
by Eq. (1.41). The derivation is complicated by the fact that the diffusion
constant is only given indirectly as the solution of a transcendental equation.
If the mean-square displacement in dimensionless units in some fixed axis
direction is denoted by (AZ?(t)), one finds from Eq. (1.41) after a Laplace
inversion of Eq. (1.9)

(AZ2(E) = 2t + % /0 F(6) (1 - e—tE“’)) de, (1.42)
where E() = f exp(—6 cot §)/sin 6 and F(#) = (cosf — sinf/6)* +sin® 6. At
long times (f >> 1) Eq. (1.42) gives ordinary diffusion with a mean-square
displacement proportional to time. At short times (£ << 1) the mean-square
displacement is logarithmic in time: (AZ%(£)) & 2/In("!). An expression
that extrapolates between these two limits is the following

(AZ*(D)) = Hl_(l_it—‘l) : (1.43)
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Note that by Laplace transforming Eq. (1.42) one obtains an explicit mtegral
expression for the solution of Eq. (1.41):

v “'—'SE )_ e
TEg P 4

The numerical study of AC hopplng may in principle be performed by
Monte Carlo simulations. This method, however, is of little use when the
focus is on the extreme disorder limit: At low temperatures, the particles
jump back and forth billions and billions of times on links with small energy
barriers. This behavior reflects the real physics of hopping and is the cause of
the much larger AC conductivity than DC conductivity. But in a computer
simulation it is clearly inefficient to waste time on monitoring these back and
forth jumps.

Any stochastic process is in one to one correspondence w1th its Chap-
man-Kolmogorov equation or its differential form, the master equation.®®
In the numerical study of hopping it is an obvious idea to solve the mas-
ter equation instead of actually following the motion of particles as done in
Monte Carlo simulations. The master equation is a first-order linear differ-
ential equation in time. Upon Laplace transforming, the master equation for
hopping results in a sparse linear system of equations, the solution of which
gives the frequency-dependent diffusion constant or conductivity (P5). In
order to go to low temperatures but still retain reasonable reproducibility,
large lattices must be studied. The master equation is thus a large linear
system of sparse equations with coeflicients that - in the case of low tem-
perature hopping - vary many orders of magnitude. Solving this system of
equations is numerically very difficult. In P5 a new algorithm was developed
to deal with this problem. The algorithm makes use of an electrical equiv-
alent circuit of the hopping master equation, termed the “ACMA circuit”
(AC Miller-Abrahams), proposed by Pollak in 1974.%¢ In the DC limit the
circuit reduces to an ordinary resistance circuit, just as in the macroscopic
model. The algorithm of P5 was inspired by the Fogelholm algorithm for the
macroscopic model (P4). It turns out that, by circuit reductions of the same
type as used in P3 and P4 for simulating the macroscopic model (removing
“internal” nodes without changing the “external” properties of the circuit),
it is possible to evaluate a matrix from which the frequency-dependent con-
ductivity is easily and accurately calculated. The algorithm is numerically
stable even when hundreds of decades of jump frequencies are present. This
is because the algorithm involves no subtractions. However, the algorithm is
much more complex and slower than the Frank-Lobb algorithm used for the
macroscopic model in P3 and P4.

Only simulations of hopping in two dimensions were carried out in P5.

'D(?£1+
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The results show that the EMA works well at relatively high temperatures.
When the temperature is lowered, there is a tendency for the data to deviate
from the EMA (Fig. 4 of P5), shifting towards the low-frequency side of the
plot. The data clearly show the existence of universality (Fig.5 of P5), but
there is not a quantitative agreement with the EMA predictions: the data
indicate a smoother onset of AC conduction than predicted by the EMA.
This could be due to the fact that low enough temperatures were not reached
(only 100x 100 lattices were studied, in contrast to the 200x 200 lattices of the
macroscopic model, where thus lower temperatures are possible). However,
this is not the whole explanation; a comparison of Fig. 4 of P5 with Fig.
3 of P4 shows that the EMA for hopping is less reliable than it is for the
macroscopic model.

Outlook

According to the EMA both the macroscopic model and the hopping model
give identical predictions for the universal AC conductivity in the extreme
disorder limit. However, while the simulations of P4 and P5 prove the ex-
istence of universality for both models, it is not quite clear ‘whether the
universal AC conductivity is the same for both models. The question is: Are
the two models distinguishable as regards their frequency-dependent conduc-
tivity? If the answer is no, AC measurements are of little use for identifying
the conduction mechanism. To settle this question more simulations of hop-
ping are needed in two dimensions, and results for three dimensions are also
very much needed.

Another question that naturally arises is whether asymmetric hopping
models (involving hopping between energetically inequivalent sites) have the
same properties as symmetric models. Do these models exhibit universality
in the extreme disorder limit and, if yes, is the universal conductivity the
same as for symmetric hopping?

The first question is addressed below, the second is not. For asymmet-
ric hopping the simulations are even more demanding than for symmetric
hopping, and sofar nobody has studied asymmetric hopping in the extreme
disorder limit. We note in passing that there are several ways to choose the
transition rates for asymmetric hopping, possibly leading to different results
for o(w). A simple starting point would be to choose Metropolis jump rates,
i.e., real Monte Carlo dynamics (as in P9). These dynamics are physically
satisfactory because there is a maximum “down-hill” transition rate.
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1.6 Paper 7 Hopplng Model rev151ted
Problem

1) Are the AC propertzes of the macroscopic model and the hoppzng model
identical in the low-temperature limit? If no:

2) Can a simple approzimation be developed for hopping that is more accu-
rate than the EMA?

Solution

The background for P7 is the following. P5 indicated that the EMA does
not work as well for hopping as for the macroscopic model. Given that
the EMA is a mean-field theory derived from a weak disorder expansion, it
must be said to work rather well for hopping at extreme disorder. But there
are systematic deviations from the EMA: The universal low-temperature AC
hopping conductivity has a smoother onset than predicted by the EMA.
Also, as the temperature is lowered, the curves systematically shift to the
left compared to the EMA (Fig. 4 in P5).

In P7 the percolation path approximation (PPA), proposed in P4 for the
macroscopic model, is developed for hopping. For both models the basis for
the PPA is the long known fact that percolation is important for DC transport
in severely disordered solids. Both models are described by electrical circuits.
The PPA is based on assuming that not only for DC, but also for relatively
low-frequency AC conduction does the current choose the easiest way through
the circuit. On the lattice, links with high energy barriers (i.e., higher than
the percolation energy) are avoided. The percolation cluster is a fractal, but a
naive model for optimal paths on this cluster is to regard them as independent
and one-dimensional; this ignores the fractal nature of the percolation cluster
as well as the fact that paths may cross occasionally.

Based on this physical picture, the PPA models hopping in the extreme
disorder limit as equivalent to a one-dimensional hopping with sharp acti-
vation energy cut-off. In contrast to what is the case for the macroscopic
model, further approximations must be introduced to evaluate o(w) for the
one-dimensional hopping model. The simplest approach is to use the EMA
to arrive at an approximate analytical solution of the one-dimensional hop-
ping model with an activation energy cut-off. One might ask how the use of
the EMA is justified, when the purpose of the PPA is to arrive at a better
approximation than the EMA. However, most likely the problem with the
EMA in more than one dimension is that the one-dimensional nature of the
conduction process at extreme disorder is eliminated by the homogeneous
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effective medium; this problem does not arise when the EMA is used in one
dimension.

The EMA solution of one-dimensional hopping with a sharp activation
energy cut-off proceeds along the following lines. Whenever sG << 1 and
d =1, Eq. (1.40) (with o now instead of D) implies (Eq. (46) of P5)

1 1 a x \n
2o —= N = —sGo)" (D=1 1.45
ol < '+ 3G0> ,; (=sGo) < > (1.45)
As shown in P7, if the activation energy probability distribution, p(E), has
a sharp cut-off at E;, Eq. (1.45) implies as 8 — oo

Ve In[1+V35] = V5, (1.46)
where 8 = 8/p(E.) and
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Equation (1.46) gives the universal low-temperature EMA solution of .
hopping in one dimension with a sharp activation energy cut-off. This result
is referred to as PPA for hopping. Before comparing the PPA to results of
simulations in two and three dimensions, the reliability of Eq. (1.46) must be
checked by one-dimensional simulations of hopping with an activation energy
cut-off. This is done in Fig. 2a of P7, plotting the approximate exponent as
function of & (thereby avoiding empirical scalings of the frequency). Clearly,
the EMA works very well in one dimension. The algorithm of P5 is extremely
effective in one dimension, if one first removes every second point of the
lattice, then every fourth point, etc.. In contrast to in higher dimensions,
there is no significant memory requirement for this simulation.

Once the reliability of Eq. (1.46) has been established, the PPA is com-
pared to simulations in two and three dimensions in Figs. 1, 2b, and 2¢ of
P7. In the simulations an algorithm developed by Thomas Schrpder, based
on the circuit reduction method of P5, was used.®” In Fig. 1 an empirical
rescaling of the reduced Laplace frequency, §, was allowed to focus exclu-
sively on the shape of the conductivity curve. The PPA works better than
the EMA in two dimensions and much better than the EMA in three dimen-
sions. A further indication of the reliability of the PPA (not discussed in P7)
is given by studying the temperature-dependence of the reduced frequency:
For a given distribution, if one empirically scales the conductivity curves at
different temperatures to a master curve, the EMA predicts a factor of
between 35 and s/o(0) (Eq. (56) resp. Eq. (59) of P5) while the PPA predicts
a factor of #? (Eq. (1.47) above). The simulations give a scaling of 8% in

=

(1.47)
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two dimensions and %9 in three dimensions. The different scalings of the
EMA and the PPA explain the fact that the conductivity curves of Fig. 4
in P5 move to the left as the temperature is lowered, when compared to

~~the EMA predictions."On the 6ther hand, at higher temperatures the data

of this figure agree well with the EMA. Thus, the EMA works well at high
temperatures but not quite as well at low temperatures, where percolation
becomes important. This is precisely what has been conjectured by Hunt.5®

We are now in a position to answer the questions raised on page 38. P7
confirms that the AC properties of hopping models are different from those
of the macroscopic model, though the difference is not large. The two models
have in common that a universal frequency-dependence of the conductivity
appears in the extreme disorder limit. For both models the universal con-
ductivity exhibits an approximate power-law with an exponent less than but
close to one, which goes to one as the frequency goes to infinity. While the
approximate exponent for the real part of the universal conductivity of the
macroscopic model is equal to 1—2/ In(®) (Eq. (1.20)), Eq. (1.46) implies the
approximate exponent 1 —3/In(@). This means a somewhat slower approach
to the high frequency behavior & ~ 5 for hopping than for the macroscopic
model. There is also a smoother onset of AC conduction for hopping. Still,
Eq. (1.46) reproduces all 8 Points mentioned in the Introduction, with one
important exception (there has not been time to compare Eq. (1.46) to ex-
periment, but the onset of AC conduction for most ionic glasses is often
somewhat smoother than predicted by Eq. (1.17)): There is no BNN rela-
tion for Eq. (1.46). This is because Eq. (1.46) predicts that & = 1 + v/3/2
as § — 0, which implies that the real part of the dielectric constant diverges
as the frequency goes to zero and Ae = oco. This is not as serious as it may
sound, because the determination of Ae is in fact experimentally difficult.
Sometimes, the real part of the dielectric constant does not show signs of
leveling off, but many workers regard this is a spurious effect due to contact
problems. '

Question 2) raised above is answered by the PPA. The PPA is not
only a better approximation than the EMA for hopping in the extreme
disorder limit, but it also gives a hint as to why the EMA works better for
the macroscopic model than for hopping: The two models have in common
that conduction becomes effectively one-dimensional in the limit of extreme
disorder, and the PPA is a useful approximation for both models. However,
hopping in one dimension with a sharp activation energy cut-off has different
o(w) from the macroscopic model in one dimension with a cut-off. The PPA
therefore gives different predictions for the two models. For the macroscopic
model the EMA happens to give a prediction for the universal conductivity
in more than one dimension that is very close to the PPA; for hopping this
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1s not the case. This is why the EMA works better for the macroscopic
model than for hopping.

Outlook

P7 shows that hopping is different from the macroscopic model. This con-
clusion is not that given in P5, which was based on a conviction that the
two models are more or less indistinguishable. If so, little is to be learnt
from measuring the AC conductivity of a disordered solid. However, the
conclusion is now that it is actually possible to determine whether Coulomb
interactions are important or not, at least if the two simple models studied
in P3-P7 are realistic.

Open questions that till today remain unanswered are:
1) Is asymmetric hopping identical to symmetric hopping as regards AC
properties in the extreme disorder limit? Does asymmetric hopping exhibit
universality at all?
2) How does the introduction of Coulomb interactions into a hopping model
influence the AC conductivity in the extreme disorder limit?

1.7 Discussion of Paper 1-7

We finally give some overall comments to the 7 papers dealing with AC
conduction in disordered solids. The comments relate to the models that
have been discussed and to their relation to reality.

Models:

The publications P3-P7 give a systematic investigation of two models,
emphasizing the extreme disorder limit. This limit has not previously been
discussed in the literature, although the understanding of it must be impor-
tant for understanding the behavior of these models at finite temperatures.
The models were designed to be as simple as possible. They differ in a num-
ber of important respects, but also have common features. The differences
refer to the physical assumptions involved. The macroscopic model and the
hopping model are in many respects complementary, because the former is
1) macroscopic; 2) deterministic; 3) externally “controlled” by the overall
potential drop; the latter is 1) microscopic; 2) stochastic; 3) externally “con-
trolled” by the local homogeneous electric field. The similarities between the
two models are of a mathematical nature. Both models lead to large sparse
linear systems of equations with random coefficients that are thermally acti-
vated. A further and all important point is that the two models have quite
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similar extreme disorder behavior.

The main result of P3-P7 is the proof of the existence of universality
in the extreme disorder limit for both models. The physical background for
— —- -— -— —-—- --the-universality is-the-fact that, for both models; percolation is important for
conduction in extremely disordered systems, as suggested more than 20 years
ag0.8%%1 The DC consequences of this fact are immediate and obvious: The
activation energy of o(0) is equal to the percolation energy, E..5%%2 The AC
consequences of the importance of percolation have been the subject of the
present works. We find that, for both models, a simple pedestrian approach
- the “percolation path approximation” (PPA) - gives a good description of
the simulations and provides insight into the physics of AC conduction in ex-
tremely disordered solids. According to the PPA, conduction at extreme dis-
order is essentially a one-dimensional process, which involves only activation
energies lower than F,. In the PPA, universality arises at low temperatures
because the details of the activation energy distribution are blurred and the
distribution appears effectively as flat: For a given frequency range around
the frequency marking the onset of AC conduction, as the temperature is
lowered, a more and more narrow range of activation energies around E, is
involved.

The understanding provided by the PPA sheds light on the question
raised on page 23 in the discussion of the random free energy barrier model.
The question was: Why does Eq. (1.16) work so well, given that it is derived
by a quite crude approximation (CTRW) to a model based on a number
of rather restrictive assumptions (a sharp activation energy cut-off, a Box
distribution, no Coulomb interactions, motion on a lattice). The answer to
this question is the following: The Box distribution with its sharp cut-off is
the effective distribution that appears due to the dominance of percolation
at low temperatures. The inclusion of Coulomb interactions changes little;
in fact, Eq. (1.16) is the PPA for the macroscopic model (thus, it is now
clear that the CTRW solution of the random free energy barrier model is
not quite realistic, since the PPA for hopping leads to Eq. (1.46)). The
assumption of a regular lattice is not important at extreme disorder, since
the main parameter is the enormous variation of the jump rates (random
sites with nearest-neighbor hopping give only a factor of 2-3 variation in the
jump distances).

We finally wish to stress once again the importance of the BNN-relation.
The BNN-relation is Eq. (1.10), of course. However, in view of the non-
existence of the BNN-relation for the PPA for hopping, by the BNN-relation
we now just mean the rough proportionality of ¢(0) and the characteristic
frequency marking the onset of AC conduction (the loss peak frequency).
As discussed in P1, the BNN-relation - in conjunction with the existence
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of a dielectric loss peak - implies that AC conduction is due to the same
mechanism as DC conduction. For ionic glasses this was never questioned
but, e.g., for amorphous semiconductors, AC conduction was traditionally
thought to be due to jumping between isolated pairs of states®® (giving no
contribution to the DC conductivity). The BNN-relation tells us that the
characteristic frequency marking the onset of AC conduction has the same
activation energy as o(0). This fact points directly to the importance of
percolation (the following argument refers to hopping, but may equally well
be applied to the macroscopic model): For times longer than 1/w,, the solid
“looks” homogeneous, for shorter times it “looks” inhomogeneous, giving rise
to a frequency-dependence of the conductivity. This can be so only if w,, is
the lowest effective jump frequency on a typical DC conducting path. If the
lowest effective jump frequency is to be roughly the one determining the DC
conductivity activation energy, there must be a large spread in jump rates,
and in this case percolation is important.
Reality:

The hopping model and the macroscopic model are typical examples
- of models discussed in theoretical physics, above all emphasizing simplicity.
Only in P1 and P2 is the connection to experiment thoroughly discussed. In
the spirit of the discussion in P2, one might conclude that the problem of
describing AC conduction has been largely solved now. This is not the case.
First of all, there is no conclusive evidence proving that the symmetric hop-
ping model without interactions (or the macroscopic model), is the correct
framework for describing the conduction process. Secondly, at low tempera;
tures we know that other processes such as tunneling are important. Finally,
despite the similarities between quite different solids, it is not certain that
they should be described by the same type of models. The only thing that
can be said at the present is that the universal AC conductivity of the ex-
treme disorder limit gives a surprisingly good fit to many experiments (P1).
Rather than being the last word to be said, the publications P1-P7 should
be viewed as a first step towards a real understanding of AC conduction in
disordered solids; much remains to be done in this field.
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Chapter 2

VISCOUS LIQUIDS AND THE
GLASS TRANSITION

2.1 Introduction

Glass formation is a universal property of supercooled liquids.”#® For simple
liquids rapid cooling is required to avoid crystallization. For most complex
liquids supercooling causes no problems. The glass transition takes place
when the viscosity of the supercooled liquid becomes so large that molecular
motion is arrested on the time-scale of the experiment. For cooling rates of
order Kelvin per minute, the glass transition takes place when the viscosity,
n, is around 10 Poise (10*2Pa s).

The glass transition is still far from well-understood. At first sight, the
transition looks like a second order phase transition, i.e., with continuity of
free energy and its first derivatives and discontinuity of its second derivatives
like specific heat, expansion coefficient, etc. However, it has been known for
many years that the transition is of a kinetic nature. This is evidenced by
several facts universally observed: The transition is not sharp, the transition
temperature, T,, depends on cooling rate, and the transition is irreversible
and associated with various hysteresis phenomena (e.g., overshoot of the
specific heat upon reheating, crossover effect, prepeak upon melting of a
well-annealed glass). While the laboratory glass transition is a kinetic phe-
nomenon, many workers in the field believe that the dramatic slowing down
of molecular motion as the transition is approached is a manifestation of an
underlying second order phase transition to a state of zero configurational
entropy.81:82

The fascination of the glass transition lies in the fact that chemically
very different liquids - involving ionic interactions, van der Waals forces,
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hydrogen bonds, covalent bonds; or even metallic bonds - exhibit a number
of common properties when cooled to become very viscous. Theoretical
investigations of the glass transition should first attempt to understand
-the“equilibrium”™viscous liquid (“equilibrium” in quotation marks because
usually the crystal has the lowest free energy). There is no doubt that
the last 20 years have brought a much better understanding of all types
of viscous liquids. There has also been progress in theory, notably by the
introduction of mode-coupling theories.?33 The most important question
regarding viscous liquids has however, in the author’s opinion, not yet been
answered:

(x) What is the cause of the non-Arrhenius average relazation time?

The publications P8-P10 are motivated mainly by this question. In
formulating question (x) it is implicitly assumed that an answer does exist
which is common to all glass-forming liquids. This is far from certain, but
at least it is a reasonable working hypothesis.

The average relaxation time, 7, may be determined, e.g., as the inverse
dielectric, mechanical or specific heat loss peak frequency. Alternatively, it
may be calculated from the viscosity, 7, and the mﬁmte frequency shear
modulus, G, by means of Maxwell’s expression

7= = (2.1)

These definitions do not give exactly identical 7’s, but for our purpose the
difference is insignificant. The important point is that, as the glass transition
is approached, 7 becomes longer and longer; for typical cooling rates 7 is of
order 10° s at T,. This is to be compared to molecular vibration times of
order 1073 s

From a general physical/chemical point of view, the temperature-
dependence of 7 is anomalous in the following sense. In only very few liquids
is 7 Arrhenius (examples are SiO;, GeO,, BeF, or albite (NaAlSizOg)™).
For all other glass-forming liquids is 7 non-Arrhenius by exhibiting an ap-
parent activation energy, which increases as the temperature decreases (the
apparent activation energy is defined as dIn7/8(kpT)~!). A measure of the
departure from non-Arrhenius behavior is the fragility, m, defined as the ap-
parent activation energy at T = T in units of kgT, In(10). This quantity was
introduced by Angell in 1985.%8° For a simple Arrhenius liquid m is about 16;
for most viscous liquids, m is between 50 and 150.

The fact that 7 is non-Arrhenius is not itself surprising, given that a lig-
uid is a disordered structure. However, for any simple model of disorder one
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would expect the opposite non-Arrhenius temperature-dependence, namely
a decreasing apparent activation energy as the temperature decreases. This
is because one expects that the system at low temperatures searches thor-
oughly for the lowest energy barriers, while at higher temperatures the fact
that there are many paths across somewhat higher barriers makes the aver-
age barrier to be overcome higher. Even in a severely disordered structure
one expects at most simple Arrhenius behavior due to the importance of
percolation (Chapter 1).

In view of the above, it is clear that the non-Arrhenius 7’s must provide
an important clue to the understanding of viscous liquids, and answering
question (%) should have a very high priority. This was also the case histori-
cally, but more recently the focus seems to have diffused away from question
(%).

There are two important phenomenological models for the non-
Arrhenius average relaxation time. In the entropy model of Gibbs and cowork-
ers®h82 the decrease in configurational entropy S, (the entropy in excess of
that associated with harmonic vibrations) upon cooling is the cause of the
non-Arrhenius behavior. Since at least two states must be involved in a “flow
event”, the fact that the configurational entropy decreases as temperature
decreases implies that the average size of regions involved in a flow event in-
creases. Assuming that the activation energy is proportional to the size of the
region, Adam and Gibbs® arrived at the expression 7 o< exp[C/(T'S.)], where
C is a constant. S, is known to extrapolate to zero at a finite temperature,
the Kauzmann temperature. If the Kauzmann temperature is denoted by Tp,
one finds from-the Adam-Gibbs expression to lowest order in (T —Tg) /T, the
Vogel-Fulcher-Tammann (VFT) formula, which expresses the non-Arrhenius
temperature-dependence in the following way

T = Ty €Xp ItT—/—qTOjI . (22)

We will not here comment on the verification of this picture from experiment
but refer the reader to existing excellent reviews.0-80

The other “standard” answer to question (x) is the free volume model,¢
which is particularly popular in polymer physics and chemistry. According
to this model, the molecules take up most of the space in a viscous liquid;
however, there is also some “free” volume. Upon cooling, the free volume
decreases. In the simplest version, the free volume model results in the
expression 7  exp(C/Vy), where V; is the free volume. If V; extrapolates to
zero at a finite temperature Tg, one again arrives at the VF'T equation Eq.
(2.2). This time, however, T is not related to the Kauzmann temperature.

In the two above models the average relaxation time is controlled by en-
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tropy resp. volume. A phenomenological model may also assume that energy
is the variable controlling 7. In fact, the principle of detailed balance, which
must be obeyed by any master equation,% implies a necessary correlation
— —— —— — ~— “between energies and telaxation times. The relevance of potential energy
was emphasized by Goldstein in a classic paper from 1969.87 Later, Brawer
proposed other models based on energy as the relevant thermodynamic quan-
tity%88 where, incidently, the energy is correlated to the volume.
The first two papers to be discussed below (P8 and P9) discuss models of
“energy-controlled” type, the third paper (P10) discusses a model of “volume-
controlled” type.

2.2 Paper 8: Simple Master Equation for Vis-
cous Liquids

This paper discusses a very simple phenomenological model, focusing on
different types of glass transitions. Below, we do not follow the paper but
instead the line of reasoning that originally lead the author to the model.

Problem

1. What is the simplest possible model exhibiting non-Arrhenius behavior of
the type observed in viscous liquids?
2. What happens at the glass transition according to this model?

Solution

For simplicity we do not distinguish between activation energy and activation
free energy, and write for the temperature-dependence of 7

Note that AE(T) is different from the above defined “apparent activation
energy”; however, their temperature-dependencies are qualitatively the same
as is easy to show: AE(T) increases upon cooling if and only if the apparent
activation energy does so. The observed non-Arrhenius behavior of 7 implies
that AE(T) increases as the temperature decreases. From an abstract point
of view, the only thing we know a priori relating energies to temperatures
is that the average energy, E(T'), decreases with decreasing temperature. It
1s tempting to correlate this fact to the increase of the activation energy

= exp[ (2.3)
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upon cooling. If the barrier to be overcome, Eo, is assumed temperature-
independent, the simple expression

AE(T) = E, - E(T) (2.4)

would explain the non-Arrhenius behavior.
With this starting point, the problem is now to formulate an explicit
model for viscous liquids. Here and henceforth by the term “energy” is meant
the configurational part of the total energy. We assume a stochastic frame-
work, i.e., that the dynamics are described by a master equation.’®> Whenever
the focus is on the dynamics at long times compared to microscopic times,
this is believed to be a realistic assumption. To simplify things, it is fur-
thermore assumed that energy is the only relevant variable - a much more
restrictive assumption.
The thermally activated process whose relaxation time is given by Eq.
(2.3) is the “flow event”, a sudden local rearrangement of molecules (the “Aow -
event” mechanism of viscous flow is assumed by most authors’®7282,86-96)
In P8 it is assumed that the liquid is divided into non-interacting regions; the
regions are assumed to relax independently, and there are no region-region
interactions so the total energy is the sum of the region energies.
A region is characterized by its density of states, n(E). In the present
context a “state” is a potential energy minimum and the energy of a state is |
the potential energy at the minimum. . ‘
While Eq. (2.4) looks obvious, a little reflection shows that it doesn’t |
have to be obeyed. For Eq. (2.4) to be valid it is necessary that the average |
energy is close to the most likely energy. For a constant density of states
with a low-energy cut-off, the most likely energy is the ground state energy;
the average energy lies kgT above this. Depending on the temperature and
the value of Ey, Eq. (2.4) may or may not be valid in this case. To guar-
antee that Eq. (2.4) is obeyed, it is necessary to assume that a region has
many degrees of freedom. In this case, by general principles of statistical
mechanics, the energy probability distribution is an approximate Gaussian.
For the Gaussian, of course, the average energy is equal to the most likely
energy. In P8, as density of states was chosen n(E) oc E°~!, corresponding
to a temperature-independent specific heat equal to ckg. For this density
of states, whenever ¢ >> 1, the average energy is close to the most likely
energy.
The next problem is to formulate a master equation consistent with
Egs. (2.3) and (2.4). Inspired by Eq. (2.4) it is natural to assume that the
relaxation time for jumps away from a state with energy E, 7(F), is given
by (fOl‘ E < Eo)
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Ey-F ]
ksT 1~

(E) = 15 exp[ (2.5)

“To avoid-complications it is assumed that, once excited into the transition

state, the state has forgotten where it came from and drops into a randomly
chosen other state. These assumptions lead to the following master equation
for the energy probability distribution as function of time, P(FE,t) (assuming
henceforth that the density of states, n(F), is normalized):

!
OP(E,t) _ _P(E,t) N n(E)/P(E’t)dE’. (2.6)
ot 7(E) 7(E")
This equation is referred to as the energy master equation (EME).

The EME may be studied numerically for any arbitrarily varying tem-
perature as function of time, for instance going through the glass transition.
First, however, we briefly discuss how the EME is related to similar work.
Equation (2.6) was originally proposed as a model for thermalization of
photo-excited charge carriers in amorphous semiconductors.®”% Inspired by
this work, the EME was arrived at as a phenomenological model for viscous
liquids by the author along the lines sketched above. However, already three
years before P8 appeared, Brawer arrived at a very similar, but somewhat
more complicated equation.”>® P8 contains a reference to his very nice
works, but unfortunately it is stated in P8 that the EME is “equivalent to
Brawer’s kinetic equation”. This is inaccurate; rather, the EME is a partic-
ularly simple special case of Brawer’s equation, which contains an additional
entropy factor enumerating the number of paths across the barrier.

The EME may be regarded as a mathematical formulation of ideas dis-
cussed by Goldstein in a very nice, but seldom quoted paper from 1972.9! In

- this paper it was suggested that the transition state for viscous flow is the

“high-temperature, more-fluid, liquid usually studied by theorists”. Once the
region is excited into this transition state - being totally different from the
potential energy minimum the region was excited from - the only reasonable

~assumption is that any other state can be reached. In the EME these states

are all reached with equal probability.

The EME may be solved accurately utilizing a combination of analytical
and numerical techniques (Appendix of P9). This makes it possible to study
the EME at realistic laboratory times, despite the fact that the prefactor my
realistically is of order a phonon time (=~ 1073 5). In P8, however, the EME
was studied numerically using a “pedestrian” algorithm, making it possible to
step ahead only 75 in time. The EME was solved for different choices of the
specific heat, ¢, for coolings at constant rate to zero temperature, starting
from thermal equilibrium at high temperature. The calculations were carried
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out on an Amstrad home computer. The simulations correspond to extremely
rapid and therefore unrealistic cooling rates. However, a pattern appeared
which it is possible to understand analytically:

For slow coolings, the frozen energy probability distribution, Py(E), is a
Gaussian, corresponding to the equilibrium probability distribution at T' =
T,. This is what is expected from the conventional picture of the glass
transition, according to which the glass inherits the structure of the liquid at
T,. For fast coolings, however, the frozen energy probability distribution is
not identical to that of the equilibrium liquid at T,. What happens is that,
during the freezing there is still some relaxation, resulting in a “deformed”
Py(E) which is exponential rather than Gaussian on the low-energy side
of the maximum. Thus, P8 proposes that there are two different types of
glass transitions, “slow” and “fast” (in P9, for reasons to be detailed on page
55, new names are suggested: “simple freezing” contra “relaxational” glass
transitions).

To understand the difference between a slow and a fast glass transition
we consider the “demarcation energy” E; originally introduced by Arkhipov
and coworkers® for understanding relaxations at constant temperature of
photo-excited charge carriers in amorphous semiconductors. If the cooling
time is denoted by %y, E, is defined in P8 by

Ed = EO - k’BTln(to/To). (27)

As is clear from Eq. (2.5), the demarcation energy (which depends on time
via T = T'(t)) separates states that have been frozen (E < Ej) from states
which are not yet frozen (E > F;). As the temperature is lowered, E,
moves towards higher energy while the distribution P(E,t) moves towards
lower energies. When E,; meets the distribution, energies are frozen, and
when E,; has completely passed the distribution the glassy state has been
reached. There are two limiting cases: A dimensionless number is arrived at,
if one considers the ratio between the “velocity” with which E; moves on the
energy axis and the “velocity” with which E moves. If the former is much
larger than the latter, the energy probability distribution is simply frozen at
T,; this is a “slow” glass transition since it requires long cooling times (P8).
In the opposite limiting case, F4; almost does not move at all as the energy
probability distribution “collides” with it, coming in from higher energies.
To understand what happens in this case, it is convenient to consider the
individual energy fluctuations of one region. The region jumps and jumps
until it, at some point in time, jumps into a state with an energy below E;.
This last jump, like all others, ends up in a randomly chosen state, i.e., with
probability proportional to the density of states. According to statistical
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- mechanics, for energies close to E(T,) the density of states is approximately
exponential: n(E) o« exp(E/(kgT,)]. Therefore, for a fast glass transition
the frozen energy distribution Py(E) is approximately an exponential (with
a cut-off, of course), as shown by Fig. 1d of P8. Supplementing this picture
which is that given in P8, it should be noted that even in the case of a slow
glass transition may one focus on the fluctuations of a particular region’s
energy. In that case, however, most regions do not have their final jump
into a state with a frozen energy, but are instead frozen while being in some
particular state. ' ] -

P8 speculates briefly as to the experimental consequences of the possi-
ble existence of two different types of glass transitions. Around the time the
paper was written, it became increasingly clear that in amorphous semicon-
ductors exponential band tails of localized states - stretching into the band
gap of the corresponding crystalline semiconductor - occur almost ubiqui-
tously.®® 1% In P8 it was conjectured that these exponential band tails arise
because amorphous semiconductors are prepared by the equivalent of a fast
glass transition: If this is the case the exponential distribution of frozen ener-
gies translates into an exponential distribution of average transfer integrals,
implying the existence of exponential band tails of localized states.%

Outlook

The model studied in P8 is certainly oversimplified. The assumption that
the liquid may be divided into non-interacting regions is hard to justify. Why
shouldn’t a flow event be allowed involving molecules from more than one
region'®? Amnother serious problem!%%:1% s the fact that, if correct non-
Arrhenius 7’s are to be arrived at, large region specific heats are implied,
leading to too broad distributions of relaxation times for linear relaxations
like those monitored by dielectric, mechanical or specific heat spectroscopy.
On the other hand, the EME does exhibit a number of the interesting hys-
teresis phenomena observed close to the glass transition (unpublished), and
there have recently been attempts to extend the EME to solve the problem
with the prediction of too broad distributions of relaxation times.!%” Also,
the EME is used in contexts different from that of viscous liquids (e.g., as a
model for spin glasses or protein dynamics!®®). Thus, from a general point of
view it does make sense to ask: Is it possible to justify the EME from some
“natural” starting point? This question is addressed in P9.
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2.3 Paper 9: Approximation to Bassler’s Ran-
dom Walk Model

The same issue of Physical Review Letters in which P8 appeared (23 Febru-
ary 1987) contains a paper by Béssler discussing a phenomenological ran-
dom walk model for viscous liquids.!® This model is based on a Gaussian
distribution of energies and predicts the average relaxation time to have a
temperature-dependence of the form

T = Tp €Xp l%] . (2.8)
This expression fits experiment well.!% Equation (2.8), in fact, is partly a
rediscovery,!%1! and it has been known for some time” that a better fit
is provided by 7 o exp(C/T™). However, Béssler’s random walk model is
in some sense “natural” and has some very attractive properties, making it
worthwhile to study further.

Usually, in a random walk model one would let the energy maxima vary
randomly (as in the symmetric hopping model studied in P1 and P5-P7) or let
the energy minima vary randomly (as in the standard model for trap limited
charge carrier thermalization in amorphous semiconductors®”%). Bissler’s
model is elegant, because all states are equivalent and no states are maxima
or minima. His model considers the motion of a “particle” (representing the
state of a liquid region) on a cubic lattice in d dimensions. The model is
defined in the following way. Only nearest neighbor jumps are allowed and
the jumps take place with Metropolis jump rates: jumps to lower energy
states take place with a jump rate of order a phonon frequency. Each site
has an energy that is chosen randomly according to a Gaussian, and the
site energies are uncorrelated. The model is completely specified by the
dimension, d, the variance of the Gaussian, o2, and the “downhill” jump
rate, ['g. Two of these parameters have a dimension, and there is only one
dimensionless parameter in the model, namely d.

Problem

Is it possible to arrive at a simple picture of energy fluctuations at low tem-
peratures in Bdssler’s random walk model?

Solution

As mentioned above, Béissler’s random walk model is “natural” because no
states at the outset are specified as maxima or minima. Effectively, however,
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the low-energy states are minima, since all their surrounding states almost
certainly have higher energy. Some of these surrounding states, as well as oth-
ers further away, act as barriers: At low temperatures in thermal equilibrium
the most likely energy is low and therefore far into the negative Gaussian
tail. The low-energy states are extremely rare on the lattice; however, they
are the important ones at low temperatures. Thus, effectively the dynamics
may be viewed as consisting of transitions between these states. A transition
between two low-energy states involves a complex sequence of steps. At low
temperatures, the most likely sequences are those with the lowest maximum
energy. This lowest maximum energy on a long path is estimated as the
percolation energy, E., defined by (where 7n(E) is the normalized Gaussian
density of states)

E. '
/_ “n(B)E = p.. (2.9)

Here, p. is the site percolation threshold, not to be confused with the bond
percolation threshold appearing in Chapter 1. The effective transition rate
for jumps between two low-energy sites starting at energy F is expected to
be given by I' & exp[—(E, — E)/(kgT)]. Since this is independent of the
energy of the final state, the total rate for jumps away from a low-energy
state with energy E is given by the same expression (with a larger constant
of proportionality, of course). In high dimensions there are many likely final
states; it is reasonable to regard them all as equally likely, because the same
barrier height has to be overcome to reach each of them. We thus end up
with the EME as the effective equation describing energy fluctuations at low
temperatures in high dimensions at long times. Note that the parameters of
the EME are uniquely determined from the parameters of the random walk
model (a simple argument detailed in P9 shows that the EME jump rate
prefactor is equal to 2T7).

According to this picture, the average relaxation time is given by (com-
pare Eq. (2.5)) (where 15 = 1/(2T))

T (2.10)
Since E(T) = —0?/(kgT) for the Gaussian density of states with width o, to
leading order in 7! one thus arrives at Béssler’s expression Eq. (2.8) with
C =o?/k%.

It is interesting to note that each low-energy state is the center of a
complex “basin” including neighboring states with relatively low energy. The
minima are thus rather complex,’ 2 despite the fact that the energies are
uncorrelated from site to site.

= op[EZED).
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In P9 the predictions of the EME are compared to computer simulations
of Béssler’s random walk model in two dimensions. The agreement is rather
good. In particular, during a sudden heating from thermal equilibrium a two-
bump distribution appears in the simulations of the random walk model (Fig.
5 of P9), a phenomenon that is reproduced by the EME. When inspecting
Figs. 2-5 of P9 it should be remembered that all parameters of the EME
are fixed. Also, the simulations could only be carried out at moderately low
temperatures.

In P9 the glass transition was not studied by computer simulations.
However, once the EME has been established as a reliable effective low-
temperature description of Bassler’s random walk model, the EME can be
used as a guide for what to expect at the glass transition. In P8 it was
argued that the character of the glass transition is determined by the ratio
between the “velocities” on the energy axis of the demarcation energy and of
the average energy. In P9 this is rationalized by defining the parameter ¢ by

4E
dE,

[ =

(T,) . (2.11)

In the terminology of P8, + << 1 corresponds to a “slow” glass transition and
¢ >>1 to a “fast” glass transition. A “slow” glass transition is characterized
by a frozen energy probability distribution that is just the equilibrium distri-
bution at T = T,; a “fast” glass transition has a frozen distribution differing
from the equilibrium distribution due to additional relaxations taking place
right at the glass transition. The analysis of the effective EME for Béssler’s
random walk model, however, shows that these names are inconvenient: In
all dimensions one thus finds ¢ — 1 as the cooling time goes to infinity; this
signals a mixed situation at slow cooling rates. Furthermore, in two dimen-
sions one finds ¢ — 0 as the cooling time goes to zero, signalling a “slow”
glass transition in this case! (This is a consequence of the fact that in two
dimensions_the site percolation threshold is larger than 0.5.) To avoid the
confusing names of P8, it was suggested in P9 to refer to “simple freezing
glass transitions” (those with + << 1, previously “slow”) contra “relaxational
glass transitions” (those with + >> 1, previously “fast”).

Outlook

Bissler’s random walk model is beautifully simple, but still has quite inter-
esting properties. It has a non-Arrhenius average relaxation time of the right
type (with apparent activation energy that increases upon cooling). Thus,
if the cause of the non-Arrhenius average relaxation rate is the fact that the
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average energy decreases upon cooling (compare Eq. (2.4)), Bassler’s model
is quite “natural”. - '

Future work should focus on justifying how the fact that flow events are
localized - which seems absolutely reasonable - translates into the postulate
that the viscous liquid may be modelled as an ensemble of non-interacting
regions - which seems less reasonable. (It is not possible just to describe the
whole sample by the random walk model, because one elementary jump on
the lattice would then change the energy by an extensive amount and the
relaxation time would not be an intensive variable.) '

2.4 Paper 10: Local Elastic Expansion Model

The models of P8 and P9 both assume that cooperatively rearranging regions
relax independently. There are several problems with this assumption.1%
First, the very definition of a region involves assuming that it exists as a real
entity with a well-defined border to its surroundings; is the liquid really di-
vided into regions? Secondly, it is assumed that the border between a region
and its surroundings cannot move with time, i.e., that a given molecule for
all times - despite diffusion and possible flow - belongs to a certain region.
Finally, because the border between region and surroundings is large (small
spheres have a relatively large surface) it is not obvious that, even if regions
do exist permanently, they may be regarded as independently relaxing. One
would expect the surroundings to have at least some influence on the dynam-
ics of one region. To closer look into the influence of the surroundings one
may ask:

Problem

1. Is it possible to construct a realistic model for the temperature-dependence
of the average relazation time, where the surroundings of a relazing region
are the cause of the non-Arrhenius behavior?

2. How essential is the region assumption in such a model?

Solution

The model of P10 is restricted to molecular liquids, but possibly the model
may be applied to other glass-forming liquids. Before proceeding, the author
would like to acknowledge the contribution of Niels Boye Olsen. For several
years he insisted that there must be a link between the non-Arrhenius average
relaxation time and the temperature-dependence of the high frequency shear
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or bulk moduli. He was thus the driving force behind P10. Furthermore he, in
collaboration with Tage Christensen, through years of hard work developed
the “piezo-electric shear gauge transducer (PSG)”*® that made it possible
to check this hypothesis (P10). The present author’s contribution was to
construct a specific model consistent with Boye’s ideas.

The basic idea of the model of P10 is the same as the idea in the free
volume model®® or in Brawer’s model,”® namely that a flow event requires
a local volume increase. The picture is the following. ‘The molecules of a
viscous liquid are closely packed. Therefore, a rearrangement cannot take
place unless there is sufficient space available: In contrast to the free volume
theory, we do not assume that a certain fraction of the volume is “free” and
do not consider diffusion of free volume (the free volume model assumes
conservation of free volume, which seems hard to justify).

The common starting point for these models is the assumption of a
positive activation volume for flow events:

AV > 0. (2.12)

Why is it reasonable to assume that there is a positive activation volume?
Of course, one could refer to high-pressure experiments that point in this
direction (but as we will se later, according to the new model the activation
volume cannot be directly deduced from these experiments). To answer this
question we first note that, like any thermally activated process, a flow event
is very fast, taking place probably within picoseconds. Secondly, we remind
of the very basic characteristic of molecular forces, namely that the repul-
sive forces are harsh while the attractive forces are only weak. This fact is
responsible for thermal expansion and a number of other common phenom-
ena in liquids.'}* If a flow event were to take place at a constant volume,
a considerable amount of energy would be required to overcome the strong
repulsive forces. It is easier for the liquid to spend some energy on “shoving”
aside the surrounding liquid, leading to Eq. (2.12).

In the above picture, there are two contributions to the activation en-
ergy: One from the “shoving” work and one from the increase of the region
energy during the flow event. To consider the relative importance of these
contributions, we note that for highly viscous liquids it is reasonable to as-
sume that, on the rapid time scale where flow events take place, the liquid
behaves like a solid. To simplify things, it is assumed that during a flow event
the volume of the molecules involved is expanded from one sphere to a larger
sphere, the latter being the transition state. Consider first the case of a per-
fectly harmonic solid. In such a solid, as is easy to show, the elastic energy
of the “excited” sphere is comparable to the elastic energy of the surround-
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ings that have been “shoved” aside. However, while the molecule movements
in the surroundings are relatively small and thus within the harmonic ap-
proximation, the molecules of the region itself move much more than within
the harmonic approximation. Because of the weak attractions, the harmonic
approximation considerably overestimates the elastic energy of the “excited”
sphere. For simplicity this contribution is ignored, and the activation energy
is taken to be just the work doné on the surrounding liquid.

"On a fast time scale, the surrounding liquid behaves as an elastic
isotropic solid characterized by the bulk modulus, K, and the shear
modulus, G. Both these elastic constants are known to be much more
temperature-dependent in viscous liquids than in simple liquids or ordinary
solids (crystals or glasses). Both K., and G increase as the temperature
decreases. Since the work done on the surroundings during a flow event de-
pends linearly on these constants, it is clear without further computation
that according to the new model, the cause of non-Arrhenius behavior is
the strong temperature-dependence of the high frequency elastic constants
in supercooled liquids.

Actually, it is only the shear modulus that is important. To show this
we refer to the theory of elasticity of isotropic media,!'® assuming that the
activation volume is relatively small; if V' is the volume of the cooperatively
rearranging region it is assumed that AV << V. We identify the activation
energy with the elastic energy stored in the surroundings when the volume
of the region has expanded to V + AV (the additional kinetic energy of the
surroundings is ignored). Thus, on the one hand a flow event is assumed to be
rapid enough for the surrounding liquid to behave as a solid, but on the other
hand it is assumed to be slow enough for the kinetic energy associated with
the expansion to be insignificant. Proceeding now to calculate the activation
energy, we remind that elasticity theory!!® concerns the relation between the
stress tensor, o;;, and the strain tensor, u;;. The latter is defined by

1
Uiy = 5 (Bzu] —+ 8,u,) , (213)

where 8; = 0/0z; and wu; is the i'th component of the elastic displacement
vector u. The trace of the strain tensor uy = O;u; (using standard notation
with sum over repeated indices) gives the relative volume change. For any
isotropic solid, the bulk and shear moduli K and G are defined by'!®

1
Oy = KUu&'j + 2G (’U,ij — §6ij’u,u) . (2_]_4)

The equation for static equilibrium is



2.4 Paper 10: Local Elastic Expansion Model 59

8i0ij = 0. (215)

Substituting Eq. (2.13) into Eq. (2.14) and subsequently Eq. (2.14) into Eq.
(2.15) leads to

2
K8,(0u) + G(aia,-uﬁaj(aiu,-) - g5;-(alu,)) = 0. (2.16)
In vector notation Eq. (2.16) is

<K+%G) V(V-u) + GV = 0. (2.17)

For a purely radial displacement V x u = 0 and thus, via the weli—known
vector identity V x (V x u) = V(V -u) — V2u, we have V?u = V(V - u).
When this is substituted into Eq. (2.17) one finds simply

V(V-u)= 0. (2.18)

Equation (2.18) implies that V - u = C}, where C; is a constant. The dis-
placement (which is radial) is found by solving V -u = r=28,(r%u,) = C;,
leading to u, = Cor~=2 + C;7/3. The latter term diverges as 7 — oo and thus
C1 = 0. In conclusion V - u = 0 and there is no compression of the surround-
ings during a flow event: The surroundings are subjected to the pure shear
displacement u, = Cor~2 (note the analogy to the electric field from a point
charge, which by Gauss’ law has zero divergence).

If the radius of the region before the expansion is R and the change of
radius is AR, we have (remember that AR << R)

. 2

The energy density of an elastic solid is'*® ;Ku} + G (Ui]’ — %6,-juu)2. Since
uy = 0 the energy density is given by Guijuj; = G(u2, +u3,+udy) (all mixed
terms like, e.g., u,2.¢ are zero because the displacement is purely radial). When
Eq. (2.19) is used in the definition of the strain tensor in polar coordinates,
we get for the energy density 6G(AR)2R*r~5. Thus, the elastic energy is
given by

/R * 6G(AR)?2Rr~ (47r%)dr = $7G (AR)® R. (2.20)

Substituting V' = 47R*/3 and AV = 4rR?AR into Eq. (2.20) we find,
introducing the “characteristic volume”
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2(av)y?
3 v’
for the activation energy of the average relaxation time (with G = Go(T))

vV, = (2.21)

AE(T) = G (T) V.. (2.22)
Substituting Eq. (2.22) into Eq. (2.3) finally leads to
' Goo(T) V,
T = Ty exp [——];(}3%—} . (2.23)

The prediction of Eq. (2.23) was checked against experiment on a num-
ber of organic liquids in P10, using the following version of the “Angell plot™:
Instead of plotting the logarithm of the viscosity or any other average relax-
ation time (the temperature-dependence of G, in Eq. (2.1) is not important
in this context) as function of T~!, we plot it as function of G (T)/T nor-
malized to one at T. In Fig. 1a of P10 results are shown for measurements
covering the frequency range 1mHz-50kHz. All liquids studied follow the
time-temperature superposition principle (TTSP) - an extremely interesting
fact that we do not understand. Because of the TTSP, the value of the
imaginary part of the shear modulus at the loss peak is proportional to G
and there is no need to extrapolate the data to high frequencies (since the
x-coordinate is normalized to one at Ty). For this procedure to work, it
must be assumed that possible additional relaxations at higher frequencies
are insignificant compared to the alpha relaxation. Figure la in P10 shows
good agreement between theory and experiments, since the use of the new
x-coordinate results in a straight line with a physically acceptable prefac-
tor (10~*P). Figure 1b shows the data of Barlow and coworkers from 1967
obtained by an ultrasonic standing wave technique operating in a rather nar-
row frequency range in the MHz region. Analytical approximations to the
data were given in the original paper,''® so it was easy to replot the data.
Finally, Fig. 1c of P10 shows data for two liquids, where G, was derived
from transverse Brillouin scattering. Again we find good agreement with the
theory. When P10 was written, Brillouin data for two non-organic liquids,
B,03; and Cag4Ko6(NO3);4 (CKN), were also looked at. For the first liquid
G is much too temperature-dependent and for the second it is not quite
enough temperature-dependent to fit the theory.

P10 gives a lengthy discussion of related work in the literature. This will
not be repeated here; instead we would like to supplement with some new
comments. First, however, we take the opportunity to quote the last part
of the original version of P10, a part that was removed during the lengthy
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process of “negotiations” with the referee via the editor before the paper was
finally accepted for publication:

Many molecular liquids have additional relazations above the dominant
a-relazation. These additional relazations are Arrhenius and they are al-
ways less temperature-dependent than the a-relaxation. One may ask how
these relazations fit into the above model, which deals with the a-relazation.
At high temperature all relazations are indistinguishable, they only separate
upon cooling. According to our model, any relazation process with a non-zero
activation volume becomes non-Arrhenius in the highly viscous state. In view
of this, we would like to suggest that the relazations above the a-relazation
are those with a zero or very small activation volume. If this is correct, the
additional relazations should not be influenced by the glass transition (that
freezes G, ). Experimentally, this is the case for 3-relazation. Note also that
B-relazation is much less pressure-dependent than a-relazation, indicating a
much smaller activation volume for B-relazation than for a-relazation.

It 1s generally believed that the initial stages of glassy relaxation proceeds
with a temperature-independent activation energy, which is a characteristic
of the frozen structure. According to the present model, however, there is a
slight temperature-dependence of the activation energy for glassy relazation,
deriving from the fact that G, is not completely temperature-independent
wn the glassy phase. For long-time glassy relazation there is the additional
well-known effect that the activation energy increases due to the structural
relazation of the glass. The fact that G, is measurable means that, if our
model is valid, it is possible directly to monitor the activation energy for
glassy relazation. If one assumes Eq. (1) for the structural relazation rate,
the model gives definite predictions for the rate of relaxation of G itself.

In the new model the high frequency shear modulus determines the
activation energy for the average relaxation time. Thus, G is a direct
measure of the “fictive temperature”. In contrast to what is the case for
other phenomenological models, in the new model the fictive temperature is
not an abstract concept but a physical quantity that can be measured at any
time via a fast measurement. It may seem strange that a fast measurement
allows one to predict the value of the very long average relaxation time, but
this is not at all surprising: While the time between flow events may be
extremely long, a flow event itself is a fast process. It “monitors” the elastic
properties of the liquid on a short time scale, and this “monitoring” may of
course be done by fast experiments like, e.g., Brillouin scattering.

According to the new model, G, controls the temperature-dependence
of the average relaxation time. If this idea is correct, G, is central for under-
standing the dynamics of viscous liquids and glasses. A number of measure-
ments of the temperature-dependence of G have previously been made with
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-the sole purpose of converting viscosity to the shear relaxation time™ using
Maxwell’s Eq. (2.1). In view™ of the relatively weak temperature-dependence
of G and the fact that one may define several “relaxation times” that are
not quite identical, it may seem strange that so much effort was put into
measurements of G,. However, we now have a theory in which G is all
important because it enters into an ezponential, and it is fortunate that mea-
surements of this quantity exist. Unfortunately, at present the most direct
method of obtaining G, - transverse Brillouin scattering - gives somewhat
inaccurate data (because the peaks are broad and barely distinguishable from
the background).

We end this Section by a few remarks and speculations. First, however,
we reflect briefly on question 2 on page 56 concerning the region assumption.
In P8 and P9 it was assumed that the liquid may be divided into non-
interacting regions, a division that is not allowed to change with time. In
the new model the situation is different. Any flow event is assumed to take
place at a specific place in the liquid, a “region”. However, there is no need

“to assume a permanent division of the liquid into regions; a flow event may
very well involve some, but not all of the molecules of a previous flow event.
In this sense, no “region assumption” is needed.

Here are the final remarks, numbered from 1 to 6:

1. In P10 the model was proposed for molecular liquids only. We found
good agreement with experiment, but have only data for molecular liquids
with a rather narrow range of fragilities. It cannot be excluded that the
agreement between theory and experiment is a pure coincidence. On the
other hand, it is possible - and in our opinion likely - that the new mechanism
is valid also for glass-forming liquids with ionic, covalent, or metallic bonds.
One may ask whether the model possibly may have an even further validity. It
has often been discussed whether relaxation phenomena seen in orientational
glasses, where non-Arrhenius behaviors are also observed,!!” may be due to a
mechanism similar to that operative in ordinary viscous liquids. The present
model is easily extended to orientational glasses, and actually these glasses do
exhibit a large temperature-dependence of the high frequency shear modulus.
We have not made a quantitative comparison. For spin glasses, on the other
hand, the new model cannot apply. Thus, even in the “best of all worlds” for
the new model, the non-Arrhenius behaviors observed in disordered systems
have more than one origin. Clearly, further work is needed to test the model
and determine the limits of its validity.

2. A well-known empiricism is the so-called “2/3 rule” relating glass
transition temperature to melting temperature, T,,:
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T, = ng . (2.24)

We will not attempt to explain the factor 2/3, but ask the more basic ques-
tion: Why does T, scale with T,,,? In principle, a liquid could “glassify” long
before it crystallizes (T, >> T,;,) or this could happen close to zero temper-
ature: T, << T,,. The first possibility occurs in a few exotic liquids that
are believed to be amorphous in their ground state™ (implying T, = 0), but
in the overwhelming number of cases the scaling is obeyed. This is so, de-
spite the fact that T, may vary quite a lot for different liquids with different
chemical bonds. The new model gives a hint as to what is the answer to this
question: According to the Lindemann melting criterion,*!® melting takes
place when the average vibrational displacement of the atoms in the crys-
tal is about 10% of the lattice constant. We now “view the glass transition
from the solid”.” If the interatomic potential in the harmonic approxima-
tion is $mw?u?, where u is the displacement from equilibrium in the glass,
the equipartition principle implies mw? (u?) oc T. For simplicity we do not
distinguish between shear and bulk high-frequency moduli and denote both . |
by M. Since the sound velocity is proportional to w and to M2/? (implying
My o w?), one finds My, (u?) < T. This implies that, according to the
new model, if the characteristic volume does not vary much from liquid to
liquid, the glass transition takes place when (u?) has a definite value. This
is a “Lindemann” melting criterion for glasses. Since (u?) is roughly propor-
tional to the temperature, it follows that T, scales with T,,,. The argument
may be reversed: Given the fact that T, scales with and is relatively close
to T, one concludes that the glass transition takes place when M, /T has
a definite value. Since the glass transition takes place when the average re-
laxation time has a definite value, one is more or less lead to conjecture that
the average relaxation time is a function of My /T. Given this assumption,
it is clear that in order to explain the only weak cooling rate dependence
of Ty, My /T must enter into an exponential. This almost brings us to the
new model (where it is just furthermore specified, that the relevant elastic
constant is the high frequency shear modulus). A weakness in the above ar-
gument is that, in the new model the characteristic volume is not fixed, while
above V, must be more or less the same for all glass-forming liquids. On the
other hand, following a different line of reasoning, Nemilov has concluded
that the region volume is almost constant for 90 quite different glass-forming
liquids'!®:!120 and via Eq. (2.21) this leads to a constant characteristic volume
if the activation volume is relatively constant.

3. The activation volume is usually deduced from high pressure ex-
periments using the expression AV = (kgT)01ln7/8p. In the new model,
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however, 7 depends on pressure according to

Go(p,T) Ve +pAV |
kgT '

Since G depends on pressure, if our new model applies the activation volume
found by the conventional method is incorrect. This is rather unfortunate,
since it means that the activation volume is not directly measurable.

4. Based on the new model it is possible to argue that

T = Tp €xp

(2.25)

Gew = 2K, (2.26)

where K, is the isothermal zero-frequency bulk modulus. The argument
goes as follows. Standard statistical mechanics implies that (where V' is the
volume of the entire macroscopic sample and (V) its mean-square fluctuation
in thermal equilibrium)

_ VEgT
Ko = oy (2.27)

. The average relaxation time is via Eqgs. (2.21) and (2.23) given by

M] , (2.28)

3VreqknT

where V., is the region volume. Because the surroundings are only subjected
to pure shear displacements during volume fluctuations of a region, it is
consistent, to assume that the density fluctuations are uncorrelated in space
beyond the size of one region. Thus, if 62, is the mean-square fluctuation of
the region volume, it is reasonable to assume that

T = ToeXp[

of _ (V&) _ ksT
‘/reg |4 KO .

The probability of a volume fluctuation equal to AV is approximately given
by a Gaussian,

(2.29)

@ave?] _(AV)’K,
p x exp[ 207 | = exp WoakaT | - (2.30)

Since the average relaxation time is one over this probability (times a micro-
scopic time=inverse attempt frequency) comparing Egs. (2.28) with (2.30)
one arrives at Eq. (2.26). We have not checked this prediction against exper-
iment.
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5. An interesting point to note is that the experiments of Olsen
and Christensen show that the high-frequency bulk modulus is not suffi-
ciently temperature-dependent to explain the non-Arrhenius average relax-
ation time. This supports the new model and goes against a number of
related alternatives (briefly reviewed in P10) that focus on the temperature-
dependence of the mean-square displacement at short times as the cause of
the non-Arrhenius average relaxation time.

6. It has been conjectured by Niels Boye Olsen that G is a function
solely of volume:

Goo = Goo(V). | (2.31)

This is a rather natural guess, given that G, is a thermal average of a
quantity (essentially the shear stress squared) which depends on the atomic
positions at any given instant (thus, involving no time autocorrelation func-
tions). According to Boye’s conjecture, the temperature-dependence of G,
is caused by thermal expansion, and therefore basically due to the anhar-
_ monic parts of the intermolecular interactions: When temperature is lowered
the volume decreases and G, increases. Equation (2.31) implies that the
rate of structural relaxation for two different preparations of a glass is the
same if just their volume and temperature is the same. Thus, under these
conditions the annealing state does not matter at all! One might object that
this is contradicted by experiment, using the standard criticism against the
free volume theory. However, in the new model the activation energy for
flow is a function of volume; the viscosity itself is a function of volume and
temperature.

If Eq. (2.31) holds, the rate of structural relaxation of a glass can in
principle be determined by “easy” and “fast” measurements of temperature
and volume (the latter could perhaps be monitored via interference from
reflections of a laser). We have.not been able to formulate a more precise
model for structural relaxations, mainly because of the well-known problem
that a distribution of relaxation times is involved.

According to Eq. (2.31) the equation defining the glass transition tem-
perature as function of pressure is

d(gi?zf—v)) = 0. (2.32)

In terms of the thermal expansion coefficient, & = (1/V)(8V/0T),, the com-
pressibility Kk = —(1/V)(0V/0p)r (equal to the inverse of the isothermal
zero-frequency bulk modulus), and the following dimensionless measure of
the volume-dependence of G, A = —dInG./dInV > 0, one easily finds
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from Eq. (2.32)

dl, kAT

dp  aXT -1
Note that in contrast to the two “standard” expressions for this ratio (derived
from continuity of volume resp. entropy across the glass transition), Eq.

(2.33) does not involve differences between properties of glass and liquid;
only the properties of the “equilibrium” liquid are involved. '

(2.33)

Outlook

The mechanism for the non-Arrhenius average relaxation time of glass-
forming liquids suggested in P10 deserves further work to establish in which
cases it may apply. There are three problems that should be looked into.

1. At present the main problem with the model is the fact that no really
good data exist for Go. The measurements of Niels Boye Olsen and Tage
Christensen are quite accurate, but restricted to frequencies below 50 kHz.
Possible secondary relaxations at higher frequencies cannot be detected by
their method. The ultrasonic method may be promising, but the most direct
method for measuring G is transverse Brillouin scattering. For the latter,
unfortunately, it is hard to obtain accuracy. Attempts should be made to
improve this technique, if possible.

2. Independent of the experimental situation, computer simulations of
viscous liquids should be carried out; this is a good way to test any model.
The evaluation of G, causes no problem, but reaching thermal equilibrium
and evaluating the average relaxation time in highly viscous liquids is a chal-
lenge to the computer hardware. We do have access to fast computers and
plan to perform molecular dynamics simulations in the near future to test
the new model.

3. Finally, in particular in relation to Boye’s hypothesis Eq. (2.31), it is
increasingly clear that high pressure experiments are relevant.

2.5 Discussion of Paper 8-10

The models (A) of P8 and P9 and the model (B) of P10 are complementary
in several respects:

1. In (A) the average relaxation time is energy controlled, in (B) it is
volume controlled.

2. In (A) the inner of a region determines the temperature-dependence
of 7, in (B) it is the surroundings.
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3. In (A) there is a distribution of relaxation times which is related to
the non-Arrhenius 7, in (B) this is not the case.

4. In (A) one must assume the liquid is permanently divided into regions,
in (B) this does not have to be assumed.

5. In (A) there is no reason to expect that the glass transition temper-
ature scales with the melting temperature, in (B) this is the case.

There are indications that the more fragile liquids have broader spectra
of relaxation times®>!2-123 (although there are exceptions to this general
tendency'?t). This correlation is present in the P8-P9 models. For the 4 other
above points, it seems that the model of P10 is to be preferred compared to
those of P8 and P9.

Finally, we note that none of the discussed models can explain the ex-
perimental correlation between the Kauzmann temperature and Ty of the
VFT expression (Eq. (2.2)). Whether this is a serious problem or not is open
to discussion. : :
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Chapter 3

EXTENSIONS OF LINEAR
RESPONSE THEORY

3.1 Introduction

This Chapter deals with five papers (P11-P15) that one way or the other
extend or elaborate standard linear response theory and the fluctuation-
dissipation (FD) theorem. It has been known for many years'?® that no sim-
ple generalization of the fluctuation-dissipation theorem exists which makes
it possible to predict the nonlinear response from a knowledge of equilibrium
fluctuations. Some general results are available though, relating different cu-
mulant averages in an external field to each other. These results have been
derived most generally by Bochkov and Kuzovlev from statistical mechanics
and time-reversal invariance.!'?® In any further development one has to con-
sider approximations or special cases. Some examples of this are discussed
in this Chapter.

The first paper (P11) deals with electrical 1/f noise. This - in a sense
- is a linear phenomenon, but as shown in P11, the magnitude of the noise
is determined by fourth order cumulant averages of the equilibrium current
fluctuations. The FD-theorem only concerns time autocorrelation functions
(i.e., second order cumulant averages). The next three papers (P12-P14)
deal with genuine non-linear responses. P12 discusses a maximum entropy
“ansatz” for the non-linear response of a time-independent external field.
The formalism developed in P12 include the main result of P11 as a special
case. P13 and P14 deal with nonlinear viscoelasticity. This subject is rele-
vant for viscous liquids close to the glass transition, because one expects!?’
any liquid to exhibit nonlinear flow properties whenever the shear rate ex-
ceeds the inverse Maxwell relaxation time (which is large close to T,). P13
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- concerns a simple model for nonlinear shear viscoelasticity, where the linear
frequency-dependent viscosity is the inverse of the universal AC conductivity
for disordered solids (Chapter 1). P14 discusses how to couple a shear rate
“field” to a Langevin equation for the shear stress fluctuations. Finally P15
proposes an approximation for the calculation of time autocorrelation func-
tions. P15 is completely within standard linear response theory; however,
while P15 is not an eztension of linear response theory it presents an elabo-
ration. The scheme proposed in P15 reduces the problem of finding a time
autocorrelation function to calculating a “double” canonical average and the
mean-square displacement as function of time.

3.2 Paper 11: Resistance Fluctuations

We first review the fundamental theorem for stochastic processes, the Wiener-
Khinchin theorem connecting the time autocorrelation function with the
noise spectrum. Consider a stationary stochastic process, Y (t), with zero
mean. In studies of electrical noise, Y(¢) is either the current or the volt-
age minus their average. In this research field the noise spectrum, Sy (w), is

usually defined by
Sy(w) = Jim = <| / t)etdt > (3.1)

In this convention, Sy (w) is equal to Sy(f) in van Kampen’s book.%> Note
that in Eq. (3.1) an ensemble average is needed besides taking the limit
T — oo. The variance of Y (t) may be calculated from the noise via

(v?) = 51%'/000 Sy (w)dw . (3.2)

The Wiener-Khinchin theorem (which is a straightforward consequence of
the Fourier inversion theorem) states that the noise spectrum is the cosine
transform of the time autocorrelation function:

Sy(w) = 4 /0 Z (Y (0)Y(2)) cos(wt)dt . (3.3)

The study of electrical noise spectra goes back to the works of Johnson
and Nyquist.>'?® They showed that in thermal equilibrium there are always
current fluctuations (or voltage fluctuations, depending on the experimen-
tal setup). These fluctuations directly reflect the electrical resistance of the
sample: The DC resistance is proportional to the zero frequency noise spec-
trum of the equilibrium voltage fluctuations. More generally, the real part
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of the conductivity is proportional to the cosine transform of the equilibrium
current autocorrelation function.®*?° This result is simply the real part of
the Kubo formula for electrical conduction,* a special case of the general
FD-theorem. A simple proof of the FD-theorem has been given by Doi and
Edwards.?

As is clear from the above, the equilibrium current or voltage fluctuations
and their relation to the linear electrical properties have been fully under-
stood for many years. However, it has been known also for several years that
in non-zero electric fields there are additional current or voltage fluctuations
(“excess noise”). The origin of excess noise is not well-understood. The fas-
cination of the phenomenon comes from the fact that almost all solids have
excess noise which increases as the frequency decreases, without any sign of
leveling-off at low frequencies. The excess noise usually varies as an approx-
imate inverse power-law - S(w) x w™® - with « close to one (“1/f noise”).
Thus, there are some very slow processes going on in solids and this is the
surprising thing. It is also surprising that quite different solids have similar
excess noise characteristics.

The excess current noise for a sample of volume V' in an external electric
field E is given by the approximate expression (where J is the average current)

Syw) = K g e (3.4)

v

There are two things to be noted. First, the noise varies inversely with
volume; this is what is expected if the noise is due to uncorrelated localized
processes. Secondly, the noise varies as the average current squared. This is
what to expect if it is the resistance that fluctuates. However, given the fact
that the resistance itself is a measure of the Nyquist noise (a measure that by
definition cannot fluctuate in time), it is not quite clear what it means that
the resistance fluctuates. The purpose of P11 is to look into this question,
building on earlier work. .

Forgetting about the conceptual problem of “noise magnitude fluctua-
tions”, if the resistance somehow does fluctuate, one would expect fluctuations
in the magnitude of the Nyquist noise in thermal equilibrium. In 1976 Voss
and Clarke!3® showed that this is actually the case and that the equilibrium
resistance fluctuations are precisely large enough to explain the excess cur-
rent noise in external fields. Their experiment was a breakthrough, because
it showed that the 1/f noise is present in thermal equilibrium (and not gener-
ated by the rather large electric fields usually applied to measure the noise).
Still the theoretical dilemma remains: Precisely what does it mean that the
resistance fluctuates?
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Problem ' S :

How can resistance fluctuations be-understood in the simplest possible terms?

Solution

The FD-theorem for electrical conduction implies in particular that the
DC conductivity is proportional to the DC diffusion constant (the Nernst-
Einstein relation). A simple way to understand this is to study random walk
models. In random walk models the Nernst-Einstein relation basically comes
about in the following way: The diffusion constant is proportional to the
mean-square displacement per unit time, i.e., the average number of jumps
per unit time. In an electric field, jumps in the field direction become more
likely than opposite to it. The average current is proportional to the average
number of jumps per unit time and therefore to the diffusion constant.

Inspired by the FD-theorem, it is an obvious idea to discuss resistance or
conductivity fluctuations in terms of diffusion constant fluctuations. Before
P11 was written several papers had been published addressing the question
of what it means that the diffusion constant fluctuates.!3-13¢ The role of
P11 was only to provide a simplification and clarification of already obtained
results.

In 1983 Kuzovlev and Bochkov showed for “slowly fluctuating” D(t)
that!3® (where k is arbitrary and Az(t) is the displacement in time %)

(eaa0)) = <exp [—k2 /0 tD(t')dt'D. (3.5)

Unfortunately, they gave no precise definition of D(¢). From Eq. (3.5) it
is straightforward to prove that the fourth order cumulant average of the
stochastic quantity Az(t), <Ax(4) (t)>, is related to the diffusion constant
autocorrelation function, Cp(t)-= (D(0)D(t)) — D? (where D = (D(t)) is
the ordinary diffusion constant) by ‘

Co(t) = ;—4%5 (89 (1)) . (3.6)

This result may be rewritten in terms of fourth order cumulant averages of
the velocity (using the russian notation for cumulant averages)

Cp(t) = /Ot dr’ /OT’ dr" (v(t), v(r'), v(r"), v(0)) . (3.7)

Equation (3.7) was independently derived by Niewenhuizen and Ernst.!3¢
They define the “fluctuating diffusion coefficient”, D(¢, 7), by
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D(t,7) = 55 la(t) —z(n)]*, (3-8)

and showed for the Markovian model under study that Cp(t — ¢t') =
(D(t,7)D(t', 7)) — D? for “large values of ¢ and ¢” is in fact a function
of t — ¢’ only which obeys Eq. (3.7).

In P11 we consider the motion of one particle on a one-dimensional lat-
tice. It is assumed that the conductivity is frequency-independent. At certain
times, 7;, the particle jumps. We know from P2 that, since the conductivity
is frequency-independent, each jump occurs in a random direction. If one
were to associate with the particle a diffusion constant fluctuating in time, it
is natural to assume that D(t) = 0 if the particle does not jump right at time
t: then it does not move at all. Since the jumps are infinitely fast and the
average of D(t) must be the ordinary diffusion constant, this immediately
leads to our definition of D(t) (a is the lattice constant):

D) = %—Zd(t—n). (3.9)

From this definition it is shown in P11 that the current autocorrelation func-
tion in weak external field is given by (where ¢ is the charge)

9\ 2

G0 = (L2) @eooy, 6>0. @0
The average on the right hand side refers to equilibrium (zero field) fluctu-
ations. In deriving Eq. (3.10), the ensemble average is taken in two steps:
The first step averages over all possible jump histories with the same jump
times, 7;, (the “restricted ensemble average”) - the next step averages over all
possible jump times.

Equation (3.10) is the main result of P11, showing that excess current
noise probes equilibrium diffusion constant fluctuations. Combining Egs.
(3.7) (which is derived in P11 with the new exact definition of D(t)) with
(3.10) leads to (for ¢ > 0) ‘

2 At -
T@IO)s = N + (o) [ [ a3, 96,767, 70, -
: k BT 0 0
(3.11)
We end by three remarks.
1. It is straightforward to show that our definition of D(t) leads to the
inverse volume-dependence of the noise observed in experiment (Eq. (3.4)).
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2. Our definition of D(t) is related to that by Niewenhuizen and Ernst
(Eq. (3.8)) by '

D(t) = lg%D(t;e,t'+ €). (3.12)

Unfortunately, this simple fact was noted only after the publication of P11.

3. D(t) is proportional to the speed of the particle at time ¢, the nu-
merical value of the velocity. Thus, while the ordinary frequency-dependent
conductivity probes the equilibrium wvelocity autocorrelation function, the
excess current noise spectrum probes the equilibrium speed autocorrelation
function.

Outlook

An obvious question to look into is how to generalize the results of P11 to the
case of a frequency-dependent conductivity. This is done in P12. If possible,
the results obtained should also be generalized to other conduction mecha-
nisms than hopping. Those of the above formulas that explicitly contain the
lattice constant clearly cannot be generalized but, e.g., the final result Eq.
(3.11) is possibly generally valid.

3.3 Paper 12: Ansatz for Nonlinear Response
Theory

It was already in the 1950’s discussed how to generalize linear response the-
ory.®135 In linear response theory the response is uniquely determined from
equilibrium fluctuations. Unfortunately, this is not so in the nonlinear case,
where the formal expansion in the external field leads to a little useful ex-
pression.* The problem is that, in the expansion of the response in terms of
the external field, the coefficients cannot be expressed in terms of equilibrium
fluctuations of the degree of freedom that couples to the field.!?® The best
one can hope for is an approximate theory that estimates the nonlinear re-
sponse from equilibrium fluctuations. There is another problem which must
be faced. In a non-infinitesimal field, the dissipated heat cannot be ignored
and the response depends on the way this heat is removed, i.e., the size of the
sample, etc. A general formalism that estimates the response from equilib-
rium fluctuations cannot take this into account, and should be applied only
at fields small enough that the temperature is almost constant throughout
the sample. In many cases this condition is fulfilled for sufficiently small
samples.
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Some important nonlinear phenomena do take place at very small dissi-
pation rate. An example is flow of a highly viscous liquid: It is an empirical
fact!?” that this becomes nonlinear at shear rate of order 1/75, where 77 is
the Maxwell relaxation time (Eq. (2.1)). Thus, if G is the infinite frequency
shear modulus and 7 the (DC) viscosity, at the onset of nonlinearity the dis-
sipation rate per unit volume is of the order G2 /n. For large viscosities this
quantity is very small and the temperature is almost constant throughout
even a large sample.

Historically, due to the above mentioned problems, interest in the sub-
ject gradually diminished. When interest arouse again it was in connection
with the problem of how to computer simulate systems subject to large fields,
without having the temperature run away.'3® This problem is nowadays usu-
ally solved by introducing a thermostat modifying the equations of motion.'%”
In P12 and below, by retaining the true Hamiltonian we follow Bochkov and
Kuzovlev in their little known, but extremely interesting papers'?® . P12
extends one of their conjectures and relates it to other work, including P11.

Problem

What is the simplest “ansatz” for approximate calculation of the nonlinear
response from equilibrium fluctuations?

Solution

All complications of quantum mechanics are ignored and it is assumed that
the dynamics are described either by classical mechanics or by a master
equation. The degree of freedom of interest is denoted by @. It is assumed
that Q is time-reversal invariant; we define J = Q and refer to J as a
“current”. The external field coupling to Q is denoted by E, giving rise to
the extra term in the Hamiltonian, —EQ. Only the case of a constant time-
independent field is discussed in P12. Following Bochkov and Kuzovlev!%6
we focus on the path probability, Pg[J(t)], i.e., the probability of the entire
current “history”, J(t) (—oo < t < 00) in the external field. A knowledge of
Pg[J(t)] allows a calculation of not only the average current in the external
field, but also the current autocorrelation function and higher order cumulant
averages.

The maximum entropy formalism!31% is 3 general method for estimat-
ing probabilities based on insufficient information. If the stochastic variables
in question are denoted z; and if it is known that (f(z;)) = C, the maxi-
mum entropy estimate of the probability of z; is P; o« exp[—Af(z;)]. The
Lagrangian multiplier, A, is adjusted to give the correct mean of f(z). As
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an example, consider throwing a dice. After many throws, a proper dice
gives average 3.5 . Suppose a dice turns out to have average 4. Clearly,
this fact does not give us enough information to determine the probabili-
ties (i.e., frequencies) of having 1, 2, etc; there are many possible solution
to this problem. According to the maximum entropy formalism, the best
“unbiased” estimate of the probabilities is P, = N7t exp( Ai), where N is
a normalization constant and X is chosen so that 36, iP, = 4. A simple
way to understand how the maximum entropy estimate is arrived at is to
consider all possible outcomes of K throws, in the end letting K — oco. If
all possible sequences of K throws with average 4 are considered, one finds
by a simple calculation using the Stirling approximation for n! precisely the
maximum entropy estimates for the actual occurrences of 1, 2, etc. Thus, for

a “typical” sequence with average 4, the frequencies of 1, 2, etc are those of
the maximum entropy formalism.

Returning now to nonlinear response theory, we know that in an external
field the energy dissipation is equal to —F [0 J(t)dt. We don’t know a
priori the value of the dissipation, but may still apply the maximum entropy
formalism to estimate the path probabilities. In continuous problems like the
present a complication arises, since a reference measure is needed. This is a
. serious problem if there is no obvious candidate for the reference measure. In
the present case, however, to ensure a smooth transition to the zero field case,
the reference measure must be Py[J(t)], the equilibrium path probability.
Thus, the maximum entropy estimate of the external field path probability,
based solely on knowledge of the fact that there is energy dissipation in an
external field, is

PolJ(®)] = N7' By[J(0)] exp[ A\E / t)dt] (3.13)

The time-reversal invariance of the classical equations of motion (or the prin-
ciple of detailed balance if a master equation is assumed) implies'?® that the
ratio between the probability for one current “history” and the time-reversed
“history” is given (where 8 =1/(kgT)) by

PglJ(¢)]  _ ®
BT = o [ﬂE /_ i} J(t)dt} . (3.14)

Combining Egs. (3.13) and (3.14) lead immediately to

PelJ(@®)] = N7 Py[J(t)] exp [%’E /_ °:o J(t)dt] . (3.15)

This “ansatz” allows a calculation of all cumulant averages of J(t) in the
external field from a knowledge of the equilibrium cumulants, since these




3.3  Paper 12: Ansatz for Nonlinear Response Theory 77

uniquely determine PO['J (t)]. P12 gives a number of examples and remarks
relating to the consequences of Eq. (3.15), summarized below.
1. For the average current in an external field one finds

(DY = Zn,< ) / (JO), J(t1), () dtr.dtn,  (3.16)

n=0

where the subscript 0 denotes an equilibrium average. Clearly, the zero’th
and first-order terms are those predicted by linear response theory.

2. For a random walk on a lattice one finds from Eq. (3.16) for the
average velocity in an external field (where a is the lattice constant and T
the jump rate)

(v)g = Tasinh [ﬁ—;ﬁﬁ} . (3.17)

This is the correct result, if the random walk is realized as the low-
- temperature limit of a Langevin particle in a symmetric potential. Behind
the maximum entropy ansatz somehow lies a postulate that the maxima gen-
erally are placed symmetrically between minima. Thus, an equivalent of Eq.
(3.16) was first derived by Stratonovich!¥® for stochastic systems from the
assumption that the energy maximum to be overcome in the transition is
placed midway (in the “direction” of }) between the two minima.

3. For the current autocorrelation function in an external field, Eq.
(3.15) for a system with frequency-independent conductivity implies Eq.
(3.11) of the preceding Section on excess current noise. In contrast to what
is the case in P11, in P12 the excess current noise is calculated without
specific assumptions regarding the nature of the system, thus allowing for
frequency-dependence of the conductivity.

4. Equation (3.15) implies

d‘fE Jyy = L / J(0), J()) g dt . (3.18)

This is a special case of an exact theorem from 1967 due to Peterson.!*!

5. It is possible to justify the maximum entropy ansatz by referring to
a Langevin equation for ¢, for which an exact expression for the path prob-
ability exists.’¥? The maximum entropy ansatz corresponds to dropping one
term from the exponential expression for the exact path probability (compare
Eq. (14) of P12).

6. A further connection to previous works sheds light on the possible
range of validity of the maximum entropy ansatz. In 1975 Furukawa noted
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that for “slowly fluctuating” J (t), the exact equations of motion imply for
the path probability!4?

PelJ(t)] = N~ B[J(t)] exp {gE /_O:OJ(t)dt+O(E2) . (3.19)

The maximum entropy ansatz corresponds to ignoring the O(E?) terms.
Equation (3.19) suggests that there are two different ways a system may
become nonlinear: Either as an interplay between non-Gaussian equilibrium
fluctuations and the first order term of the exponential, or as a result of the
higher order terms becoming important. The first case may be referred to as
a “simple” nonlinearity, since it results from the same term in the exponential
of Eq. (3.19) that gives rise to the linear response. This is when the maxi-
mum entropy ansatz gives correct results. Upon increasing the field, a system
may pass from linear via “simple” nonlinear response to finally the “complex”
nonlinear response due to the higher order terms of the exponential of Eq.
(3.19). In this case the maximum entropy ansatz gives correct results at in-
termediate field strengths. Alternatively, the system may go directly to the .
“complex” nonlinear response, in which case the maximum entropy ansatz is
not valid beyond the linear regime.

Outlook

Nonlinear response theory is a subject that deserves further study. While
the presently popular approach of thermostating is certainly important,
there are cases with no need for thermostats because the nonlinearities
occur in systems that have a well-defined temperature. These “simple”
systems should be studied more. It is not clear whether a useful and general
approximate nonlinear response theory may be constructed, for instance by
somehow generalizing the above to time-dependent fields, or whether such a
general theory does not exist. In an unpublished paper'** five requirements
were formulated that a general approximate nonlinear response theory
should obey: 1. The theory should calculate the response from a knowledge
of the equilibrium fluctuations; 2. it should satisfy causality; 3. it should
reflect the time-reversal invariance of the microscopic equations of motion;
4. it should predict an exactly linear response whenever the equilibrium
fluctuations of the degree of freedom of interest are exactly Gaussian; 5.
if two degrees of freedom fluctuate independently in equilibrium, a field
coupling to one should not result in a response for the other. It is possible
to formulate a theory that satisfies all these requirements except, possibly,
time-reversal invariance.'** Unfortunately, this theory is inconsistent with
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the maximum entropy ansatz of P13. For instance, for a random walk,
the maximum entropy ansatz corresponds to having the barrier in middle
between two minima, while the theory of Ref. 144 instead corresponds
to Metropolis dynamics. There may not exist a general approximate
time-dependent nonlinear response theory.

3.4 Paper 13: Simple Model of Nonlinear Vis-
coelasticity

One of the most thoroughly studied nonlinearities is viscoelasticity.!27-145,146
Viscous liquids usually become nonlinear at shear rates of order the inverse
Maxwell relaxation time,'?” so nonlinearities at small shear rates are com-
mon to all glass-forming liquids close to the glass transition. Close to Tj,
however, the viscosity is enormous and flow experiments not easily carried
out. Therefore, nonlinear viscoelasticity is often studied in polymeric liquids
that usually become nonlinear considerably above T},.}45

The single most important characteristic of nonlinear viscoelastic liquids
is their shear rate dependent viscosity, usually decreasing with increasing
shear rate. This is referred to as “shear-thinning” (there are a few examples
of “shear-thickening” fluids, e.g., fairly concentrated suspensions of very small
particles’®). Another important characteristic of nonlinear viscoelasticity is
the so-called “normal stress effect”. This phenomenon, which disappears in
the linear limit, gives rise to spectacular effects like “rod-climbing”. When
a rotating rod is inserted into a viscoelastic liquid, the liquid climbs up the
rod.!4

One of the objectives of viscoelastic theory is to set up so-called “con-
stitutive relations” that predict the stress tensor based on the strain tensor
history. The simplest constitutive relations are scalar and involve only shear
strain and shear stress, ignoring the existence of normal stresses. The first
constitutive relations considered were differential equations,'*” but it was
soon realized that these are not able to reproduce linear frequency-dependent
viscosity involving broad ranges of relaxation times. More successful are the
so-called single integral constitutive relations,' that involve integration over
the strain history. Many constitutive relations have already been proposed,
so an obvious question to ask i1s:

Problem

What is the simplest possible realistic scalar constitutive relation?
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Solution

Henceforth, by the term “stress” is meant shear stress, by “strain ” is meant
shear strain, and by “shear rate” is meant the time derivative of the strain.
A constitutive relation involves at least two parameters with a dimension,
a characteristic time and a characteristic stress; all other parameters are
dimensionless. In the name of simplicity, in P13 we look for a constitutive
relation with no dimensionless parameters.

Following the common terminology in the field!4®> we denote the stress
by 7 and the strain by 4. Dimensionless units are used throughout P13. The
basic postulate of linear response theory is that the shear rate history, ¥(t),
determines the stress via a convolution integral:

() = [)ooG(t’)fy(t—t’)dt’. (3.20)

The function G(t') is the stress relaxation modulus, the stress decay as func-
tion of time ¢’ if a unit strain is suddenly applied to the equilibrium system
at time zero. In the standard way Eq. (3.20) implies that the complex linear
frequency-dependent viscosity, 1o(w), is given by '

nw) = /0 T o) . (3.21)

The problem is now to find a realistic stress relaxation modulus and
subsequently to extend Eq. (3.20) to cover nonlinear situations. For the
traditionally studied broad molecular weight polymeric liquids it turns out
(Fig. 6 in P13) that the following function gives a good fit to data for 7o (w):

In(1 + iw)

— (3.22)

m(w) =
As function of s = 4w, this is the Laplace transform of the so-called expo-
nential integral, E4(t), defined by

00 gt

E\(t) = [g —du. (3.23)

Consequently, we choose F;(t) as stress relaxation modulus, G(¢). It is
straightforward to show that, if the system is modelled as a number of
Maxwell elements in parallel with thermally activated relaxation times, the
stress relaxation modulus F) (¢) corresponds to the Box distribution of energy
barriers.

To generalize Eq. (3.20) to nonlinear situations we take as starting point
the empirical Cox-Merz rule'*® obeyed by most broad molecular weight poly-
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meric liquids. This rule states that the nonlinear steady state shear viscosity,
n(%), is related to the complex linear frequency-dependent viscosity by

(%) = Ino(w="%)|. (3.24)

Comparing the Cox-Merz rule to Eq. (3.21) suggests that the nonlinear steady
state viscosity is given by

1) = [T E@)e ¥t (7> 0). (3.25)

In turn, this suggests the following generalization of Eq. (3.20)

o] t
rt) = [ Bi)y(t - ) exp [— / Gl dt"] dt, (3.26)
since Eq. (3.26) in the steady state case implies Eq. (3.25).

Most of P13 is concerned with evaluating the consequences of Eq. (3.26).
On page 113 in the excellent book by Bird et al'*® seven typical shear flow
experiments used in rheology are listed: 1. Steady flow; 2. small amplitude
oscillatory flow; 3. stress growth upon inception of a steady flow; 4. stress
relaxation after cessation of a steady flow; 5. stress relaxation after a sudden
displacement; 6. creep after applying a constant stress; 7. constrained recoil
after suddenly removing the stress for a steady flow. Each of these situations
is solved analytically in P13 for the constitutive relation Eq. (3.26). It is
shown that the model reproduces all qualitative features of experimental
shear viscoelasticity, except the overshoot of the stress growth upon inception
of a steady flow.

We now give four remarks to P13.

1. The linear frequency-dependent viscosity that fits experiment (Eq.
(3.22)) is the inverse of the universal AC conductivity for extremely disor-
dered solids (Chapter 1). This may be understood as follows: Consider a
foreign microscopic particle introduced into the liquid. On a short time scale
the particle “feels” the liquid as a disordered solid. It is thus reasonable
to assume that the particle’s frequency-dependent mobility is the universal
function discussed in Chapter 1; assuming that a frequency-dependent gen-
eralization of Stoke’s law is valid for the particle, the mobility is the inverse
of the viscosity, leading to Eq. (3.22). On a longer time scale, the liquid
structure is broken down and on this time scale the diffusion of the particle
becomes linear in time. The characteristic time separating short and long
times is the longest relaxation time of the liquid, approximately equal to the
Maxwell relaxation time (Eq. (2.1)). If this time is identified with the longest
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relaxation time of the universal AC conductivity, it makes good sense to use
the universal expression at all frequencies.

2. The constitutive relation Eq. (3.26) allows an analytical calculation
of the nonlinear creep function (Eq. (30) in P13). Since the frequency-
dependent viscosity is the inverse of the universal AC mobility, the creep
function reduces to Eq. (17) in P6 in the linear limit.

3. For the nonlinear steady stateé viscosity Eq. (3.26) implies

In(1+%)
s

For large shear rates n() ~ In(¥)/#, which is the same asymptotic behavior
as that predicted by Eyring’s expression,'4®

n(y) = (3.27)

sinh~!(%)

n(y) = B

(3.28)

- This expression comes from 4 = sinh(7) which - incidently - is valid for the

nonlinear velocity in random walk models (compare Eq. (3.17)).

4. Although stated in P13 that the constitutive relation, as regards the
introduction of an exponential damping function, is “inspired by Wagner’s!5°
work” , the basic idea was in fact developed in ignorance about his closely
related papers. Wagner did not refer to the Cox-Merz rule in his paper,'®
but showed the usefulness of an exponential damping function by direct com-
parison to experiment. The advantage of rediscovery is that a new angle to
the subject is sometimes introduced. This is the case here, since Wagner
assumed the damping to be a function of strain history and not of shear rate
history: His damping term is exp [— I [ f'y”, while our is exp [— i Ifﬂ]
For any monotonously increasing or decreasing strain as function of time
there is no difference between the two damping functions. In general, how-
ever, there is a significant difference. Thus, in Wagner’s damping function,
if the strain displacement between time ¢ — ¢’ and time ¢ is zero, there is no
damping. Wagner noted that in this respect his damping function contra-
dicts experiment!®! and suggested a rather complicated remedy (summing
over all possible histories), whereby the simplicity is lost. The problem of
how to introduce “irreversibility” into constitutive relations is still actively
discussed.!®? By introducing an irreversibility closely related to the network
rupture hypothesis of Tanner,'®® the damping function of Eq. (3.26) gives
a possible solution to this problem. In fact, our damping function may be
regarded as a continuous version of Tanner’s idea, that entanglements are
lost irreversibly in the process of deformation as soon as a limiting strain is
exceeded.
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Outlook

One obvious problem to consider in the future is how to extend the consti-
tutive relation to deal with non-scalar viscoelasticity. Another problem that
would be interesting to study is whether a simple microscopic model exists
that follows the constitutive relation. One possibility is the one-dimensional
symmetric hopping model with a Box distribution of energy barriers. This
model may be coupled to an external stress in several ways. The two most
obvious choices are Metropolis dynamics or the coupling corresponding to
a barrier placed symmetrically between two minima (leading in the nonlin-
ear steady state to Eq. (3.17) or Eq. (3.28)). The one-dimensional random
walk model has been studied numerically by the author (unpublished). The
model does follow the constitutive relation reasonably well, but there are
some deviations, e.g., in the stress growth upon inception of a shear flow,
where the model by exhibiting an overshoot behaves more like experiment
than the constitutive relation does.

3.5 Paper 14: Shear Stress Fluctuations in a
Flow

P12 considers the problem of estimating the nonlinear response from a knowl-
edge of equilibrium fluctuations. P14 attacks this problem from a different
perspective, restricting attention to the subject of P13 which is nonlinear
shear viscoelasticity. In contrast to the approach of P12, in P14 we do not
assume a knowledge of the entire equilibrium current history path probabil-
ities. Only the equilibrium (static) probability distribution of the relevant
variable is assumed known. This is because the standard Langevin approach
is taken, the idea of which is briefly the following:

Consider a variable, s. In thermal equilibrium the free energy as function
of s, F(s), is defined by (where I' collectively denotes the complete set of
microscopic degrees of freedom and E(T') is the energy)

e=BF(s) — / 5[s — s(T)]e"PE@gr. (3.29)

Clearly, the equilibrium probability distribution of s is proportional to
exp[—FF(s)]. If £(t) is a Gaussian white noise term, the Langevin equa-
tion is

5= a0, (3.30)
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(E@EW)) = 2ukeTo(t-1). | (3.31)

The crucial fact about the Langevin equation is that the probability distri-
bution, which develops in time according to the Smolichowski equation,? %
after long time converges to the equilibrium distribution proportional to
exp[—BF(s)]. *

In P14 s is the shear stress and the question that now obv1ously arises
is:

Problem

How is the Langevin equation for s modified in a shear flow?

Solution

The liquid is assumed to be divided into regions whose stresses fluctuate
independently (“region assumption”, compare P9). We redefine viscosity, 7,
and stress, so that by the term “stress”, s, is henceforth meant the shear
stress times the region volume. Thus, s has dimension energy and is given®
by (where z; is the x-coordinate of the i’th atom, F;, is the y’th component
of the force on the i’th particle, and the sum is over all atoms of the region)

= — Z T Fiy . (3.32)

The FD-theorem states that in a small shear rate “field”, ¥(t), the average
stress is given? by

/ 5(0)s(7))o ¥(t — T)dT, (3.33)

where the autocorrelation function on the right hand side refers to equilib-
rium fluctuations.

To solve the problem of how Eq. (3.30) is modified in a shear flow,
we refer to the “principle of virtual work”.21%¢ If P(s) is the probability
distribution, one defines the “dynamical free energy”, A, by®%

o0
A = / P(s)(F(s) + ks T n[P(s)]) ds. (3.34)
Except for a constant, the dynamical free energy is minus the generalized en-
tropy defined for any master equation®® (here the Smoluchowski equation).
The generalized entropy increases monotonically in time until equilibrium is




3.5 Paper 14: Shear Stress Fluctuations in a Flow 85

reached. In the dynamical free energy, there is (as for the ordinary thermo-
dynamic free energy) an energy term, (F'), and an entropy term, (—ln P).
The principle of virtual work states that after a “virtual” (i.e., infinitely fast)
infinitesimal displacement, §v, A changes by

0A = (s)dv. (3.35)

This equation states that work is equal to force times displacement.

For a system of interacting particles it is straightforward to show that the
principle of virtual work leads to the correct expression for the stress tensor
(Eq. (3.32)). Since the actual physical system that lies behind the Langevin
equation for the stress fluctuations of one region (Eq. (3.30)) is a system of
interacting particles, the principle of virtual work must be obeyed for the
generalization of Eq. (3.30) that we are looking for. The main result of P14
is that the principle of virtual work uniquely determines the generalization:

First, it is noted that the shear rate “field” must enter linearly into .
the generalization of Eq. (3.30); otherwise, the expression for the change in
probability during a virtual displacement, § P, depends not only on s but also
on the shear rate. Thus, for a so far unknown function, J(s), in a non-zero
flow Eq. (3.30) is modified into

5 = —u-‘fg +4(0)J(s) + £(2). (3.36)

The main result of P14 is that the principle of virtual work implies that J(s)
must obey

= f—J - fs. (3.37)

This first order differential equation has a unique solution, if it is required
that s does not run off to infinity whenever the shear rate is different from
zero. The next step in P14 is a consistency check: In the linear limit Eq.
(3.36) should imply Eq. (3.33). This is shown to be the case (if this condition
were not fulfilled, the whole thing would be meaningless).

Four examples of the formalism are worked out in P14. The first exam-
ple is the “Gaussian” model, where F(s) o s2. It is shown that viscoelasticity
in this model is linear at all shear rates. The model has a simple exponen-
tial decay of the equilibrium stress autocorrelation function. This result is
satisfactory for two reasons: 1. In equilibrium statistical mechanics exact lin-
earity is always linked to an exactly Gaussian probability distribution (i.e.,
an exactly quadratic free energy); 2. for time-dependent nonlinear phenom-
ena there is a tendency that wider distributions of relaxation times lead to
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more severe nonlinearities. The Gaussian model corresponds to the opposite
extreme; in this model there is exact linearity and a single relaxation time.

The second example studied in P14 is the “Box” model, where the stress
in equilibrium is free to fluctuate without any free energy cost below a certain
limit. This model, of course, leads to nonlinearities, since there is a maximum
allowed stress independent of the shear rate. The model may be solved
analytically for the nonlinear steady state viscosity and for the frequency-
dependent viscosity. As shown in Fig. 1 of P14 the results show some
resemblance to the Cox-Merz rule.'4®

The third example is a model based on a free energy that is a Cosine
Hyperbolic function of the stress. This model was constructed to mimic the
Eyring viscosity equation, as well as its generalization to deal with non-steady
state stress relaxation?47:149:155

= Aé+ Bsinh (5—) . (3.38)
0

The Cosine Hyperbolic model is an attempt to incorporate these early ideas
into a framework consistent with statistical mechanics. It turns out that Eq.
(3.38) is not exactly reproduced in the zero noise limit. This is an illustration
~ of the fact® that, by adding a noise term to an equation of the form § = f(s),
if the equation is nonlinear, some of the properties of the equation are lost
and the mean-value of s does not have to obey the equation.

" The final model that was studied in P14 is that of a Power-law free
energy as function of the stress, F(s) o« s™. For n = 2 this is the Gaussian
model and for n — oo it becomes the Box model. It is shown in P14 that
the model makes sense only if n > 3/2. For 3/2 < n < 2 the model exhibits
shear-thickening, while for 2 < n the model exhibits shear-thinning. The
Power-law model leads to an interesting correlation, which may inspire to
new ideas about the origin of viscoelasticity. From Eq. (3.36) it is clear that
J(s) is nothing but the infinite frequency shear modulus as function of stress:

J(s) = Gool(s). (3.39)

Since J(s) « s*~" in the Power-law model (P14) whenever 3/2 < n < 2 one
has J(s) — oo as |s| = 00, and whenever 2 < n one has J(s) — 0 as |s| — co.
Thus, shear-thickening is linked to G, (s) increasing with increasing s, while
shear-thinning is linked to G (s) decreasing with increasing s.

To investigate whether this result is valid more generally, we note that
in the relaxational regime (i.e., when inertial forces are unimportant as is
usually the case) any viscoelastic liquid has a stress-dependent characteristic
relaxation time, 75(s), that obeys a generalized Maxwell relation: We define
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7o(s) from the initial stress decay following the cessation of a steady shear
flow with stress, s, according to the expression

ds R S
d_t(t:O ) = —To(s)'

Because the flow is in the relaxational regime, instead of having a constant
shear rate, 7, the flow may be regarded as generated by many sudden very
small infinitely fast displacements: -

(3.40)

o0
V() = 3 oot - jbt), (3.41)
J=—x

where /6t = 4. Immediately after one sudden displacement, the stress
decays an amount ¢s during the time that passes until the next sudden
displacement ¢ later, where the stress is increased the same amount; thus,
05 = Goo(5)dy. By combining these equations one finds that, since 7(s) =
5/%, To(s) is given by the generalized Maxwell expression,

s, n(s)
50t = eMOR

Experimentally, one always finds>1%3 that 74(s) — 0 as s — oo: In a
nonlinear flow, relaxation times larger than the inverse shear rate are removed
from the relaxation time spectrum (this is the idea behind Tanner’s network
rupture hypotheses, and is also essentially what the constitutive relation Eq.
(3.26) expresses). Thus, if Go(s) = 0 as s — oo, from Eq. (3.42) we expect
shear thinning, as found above for the power—law model whenever n>2. In
general, however, the oppdsite implication is not valid.

In passing we note that the above way of regarding a flow as composed
of sudden small fast displacements leads to the following expression for the
initial shear decay upon cessation of an arbitrary flow at t = ¢,'% (where §
is the time derivative of the stress of the uninterrupted flow),

T0(8) = (3.42)

(z(t“to) = 5(to) + Gools)¥(to) (3.43)

Finally, it should be noted that the formalism developed in P14 may
be generalized. The stress is the transverse momentum current, and the for-
malism may be generalized to other thermodynamic “currents”. In “extended
irreversible thermodynamics”'®*” one considers thermodynamic currents as
independent degrees of freedom. The formalism developed in P14 may be
regarded as a statistical mechanical counterpart of extended irreversible ther-
modynamics.
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-Outlook

P14 solves the theoretical problem of how to extend the Langevin equation
for stress fluctuations to non-zero flows. -The extension is unique and from
a theoretical point of view there is nothing more to say. Things are worse
when it comes to comparison to experiment: At least for the models studied
in P14 there is only a very narrow distribution of relaxation times. These
models are therefore unrealistic. - Either one should look for other choices
of F(s), for instance involving energy barriers to be overcome, or a more
general approach should be taken. One such approach could be to formulate
a field theory for viscous liquids, where the field is the stress tensor (in such
a model the region assumption is avoided). For instance, one could postulate
that the free energy density, F, is.given by an expression of the form (where
I, = Tr(o™) for n = 1,2,3 and h, is a possibly random function)

F = (8i0i)* + hi(I1) + ha(l2) + hs(l3) . . (3-44)

The first term, corresponding to the “kinetic energy” term of a field theory, en-
sures that states with mechanical equilibrium have minimum free energy. In
the standard way the free energy density of Eq. (3.44) gives rise to a Langevin
- dynamics of the stress tensor at each point in space which, incidently, allows
for a study of spatial stress correlations, reflected in the k-vector dependence
of the frequency-dependent viscosity.

3.6 Paper 15: Approximation for Autocorrela-
tion Functions

As discussed in Chapter 2, glass-forming liquids are characterized by a
strongly temperature-dependent average relaxation time. This quantity may
be deduced from measurements of a number of different physical quantities
that have roughly the same average relaxation time. But one may very well
ask:

Problem

1. Why do different physical quantities in viscous liguids have roughly equal
average relazation times?

2. Is it possible to develop an approximation for the calculation of time
autocorrelation functions that rationalizes the insight gained from answering
question 17
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Solution

The average relaxation time of a physical quantity, A4, is usually determined
from the linear response in the frequency domain, e.g., as the inverse of
the loss peak frequency. If the response function is referred to as x(w), the
- FD-theorem states that x(w) is the Laplace transform of the equilibrium
time autocorrelation function of A (below s = iw is the imaginary “Laplace”
frequency and it is assumed that (4) = 0):

(@) = ——= [7 (A@A@) et (3.45)
kBT 0
For instance, if the physical quantity A is the dipole moment, the average
relaxation time is measured via the frequency-dependent dielectric relaxation;
similarly, if A is the shear stress, x(w) is the frequency-dependent shear
viscosity. A final example: The average relaxation time of the energy is
measured via the frequency-dependent specific heat.
Assuming that A is independent of momenta and thus a function only
. of the microscopic configurational degrees of freedom, X = (X;,...X,), the
autocorrelation function (A(0)A(t)) is given by '

(A(0)A(t)) = / dXdX' A(X)A(X')P(X, X";1), (3.46)

where P(X, X';t) is the joint probability of having “initial” point X and
“final” point X’ a time ¢ later on the path in configuration space. If U(X) is
the potential energy, Z(f) is the partition function for the potential energy,
and G(X — X';t) is the Green’s function, P(X, X';t) is given by

-BU(X)

Z(B)

According to Eq. (3.46), the autocorrelation function becomes small when-
ever the initial point X and final point X’ most probably are so far apart that
A(X) and A(X') are almost uncorrelated. It is reasonable to assume, that
this is the case whenever the distance between X and X’ is larger than about
one Angstrom per molecular degree of freedom. This assumption immedi-
ately answers question 1 on the preceding page, since the average relaxation
time in this picture is the time it takes for the molecules to move a certain
distance away from each other which is, of course, independent of the physical
quantity, A.

We now turn to the problem of developing an approximation for the
evaluation of (A(0)A(t)) based on the above physical picture. In the course
of time, the two points X and X’ move further and further away from each

€

P(X,X';t) = G(X — X';1). (3.47)
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other. The correlation is gradually lost for any physical quantity and the time
autocorrelation function decays to zero. The idea is now simply to estimate
(A(0)A(t)) as the “spatial” correlation of A in configuration space, taken at

the typical distance between X and X', {/(AX2(t)), where the mean-square
displacement in time ¢, (A X?(t)), is defined by

(AX*(1)) = ((X - X")?) = <j21(Xi—X£)2>- (3.48)

For a given time, t, this distance scales proportionally to the number of
degrees of freedom, n (this is not a problem, however). The important point
is that the relative distance fluctuations are small when n is large.

The above physical picture indicates that non-Debye (i.e., non-
exponential) relaxation may have two causes. To see this, note first that
Debye relaxation corresponds to ordinary diffusion with a linear mean-square
time-dependence in configuration space in conjunction with a Gaussian dis-
tance decay of the “spatial” correlation function. Non-Debye relaxation may
be caused either by the “early” nonlinear time-dependence of the ' mean-square
displacement (compare Eq. (1.43)), or from a non-Gaussian distance decay
at long times corresponding to linear diffusion. Interestingly, a simple expo-
nential distance decay of the “spatial” correlation function in the long-time
linear diffusion regime gives rise to a stretched exponential time autocorre-
lation function with exponent 0.5. This function gives a good fit to many
data.!58

The conversion of the above idea into a practical calculational scheme is
described in P15. The naive approach would be to estimate (A(0)A(t)) by
taking an average over configurational space where the “beginning point”, X,
and the “end point”, X', are both weighted by their canonical probabilities,
o exp[—pU]. However, this does not work for the following reason. At short
times X and X' are close and weighting each point by a Boltzmann factor
gives the wrong limit: lim;o (A(0)A(t)) # (A?). The problem, of course,
is that the energies of X and X' are correlated when the points are close.
One might think that this problem is solved by using a exp[—(8/2)U] factor
for each of the points X and X'. Then, however, the long times behavior
is wrong, because in this limit each of the two points should be weighted by
a Boltzmann factor. This problem delayed further progress by two years,
before a solution was found. The solution is to utilize the general ideas of
statistical mechanics in the following way:

Switching from the microcanonical ensemble to the canonical ensemble,
it is shown in P15 that the time autocorrelation function may be estimated
from the multidimensional integral
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dXdX'

(40w = [ 5o

A(X)A(X’)e_a(X_X,)2—b[U(X)+U(XI)] , (349)

where D(a,b) is the “double” partition function defined as follows:

D(a,b) = / dX dX' e e X=XV -bUX)+TX) (3.50)

Short times correspond to large a and long times to small . The two La-
grangian multipliers ¢ and b are determined in the following way. First,
b = b(a) is found from the condition that the average potential energy of ini-
tial point plus that of the final point is equal to twice the canonical average
potential energy. With the boundary condition 5(0) = 8 (from requiring a
canonical weighting of X and X' in the long time limit) this leads (P15) to
the following ordinary differential equation for b(a),

d dlnD
da Ob
Once, b(a) has been determined, a = a(t) is determined from (AX?(%))

(which is assumed known) via the requirement that the double canonical
average distance between initial and final point is correct, leading (P15) to

= 0. (3.51)

In
_9 aaD = (ax*@®). (3.52)

Two different dynamics may reasonably be assumed. One is Newton’s
classical equations of motion. The other is Langevin dynamics for the con-
figurational degrees of freedom. As shown in P15, at short times both dy-
namics are explicitly consistent with the formalism proposed; however, they
give different predictions for the function a(t) (due to the importance/non-
importance of inertial effects at short times).

We end by giving 5 remarks. _

1. The use of Langevin dynamics for systems with relaxation times
many orders of magnitude longer than 1 ps is motivated by the expectation
that at these long times Langevin dynamics lead to more or less the same
predictions as Newtonian dynamics (thus, the use of Langevin equations is
standard in polymer physics?). The proposed approximation for (A(0)A(t))
implies that, if the two dynamics lead to the same prediction for (AX?2(t)),
all time autocorrelation function are identical for the two dynamics.

2. An interesting property of Langevin dynamics is that in this dynam-
ics, the calculation of (AX2(t)) (and thus of a(t)) is reduced to a double
canonical average (P15). This is because the second time derivative of the
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mean-square displacement is proportional to the force time autocorrelation
function, leading (P15) to the following equation for a(¢)

) |
(d2 +8u2a—> oD _ (3.53)

dt? b? Oa

3. In P15 the formalism was checked against computer simulations for
a Langevin particle in a one-dimensional double-well potential, where, if the
~ coordinate is denoted by X, the time autocorrelation function of X3 was
calculated by solving the Smoluchowski equation numerically, as well as ac-
cording to the above approximation. Figure 2 of P15 shows a good agreement
between approximation and exact calculation.

4. The validity of the time-temperature superposition principle (TTSP)
in glass-forming liquids - stating that at different temperatures the time
autocorrelation functions is just scaled by a temperature-dependent factor
- is a matter of debate. Traditionally, the TTSP was often assumed to be
valid without real justification, in order to be able to evaluate the response
over many decades in time or frequency from measurements covering only
few decades at each temperature. However, the TTSP cannot be assumed
without further justification. There are many examples of breakdown of the
TTSP and today the TTSP is not taken for granted; it is recognized that
the TTSP must be checked carefully in each case. On the other hand, if the
TTSP is indeed obeyed, this must provide an important clue to the dynamics.
Recently, Niels Boye Olsen and Tage Christensen in their measurements of
frequency-dependent shear modula observed that the TTSP is obeyed with
great accuracy for the alpha relaxation in a number of molecular liquids.
We do not understand why. However, the above proposed formalism gives
a natural framework for understanding why the TTSP may be valid. The
mean-square displacement acts as a “molecular clock”, determining the time-
scale. If, over a range of temperatures, the function b(a) is the same and the
mean-square displacement has the same time-dependence, just scaled, the
time autocorrelation function of A is the same. A simple example of this is if
the mean-square displacement is linear in time (this is probably unrealistic,
but a good illustration of the point); another more realistic example is the
case where the mean-square displacement as function of time is given by the
universal expression calculated in P6.

5. P15 was submitted to Phys. Rev. B in the spring 1994, but the paper
was not accepted for publication. The referee suggested that the approxi-
mation should be tested on more complex systems, because “the fluctuations
in the Langevin model are Gaussian”. While more extensive testing is def-
initely a good idea, there has not yet been time to do this and no second
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version of the paper has been written yet. However, it should be noted that
while the noise in any Langevin model is Gaussian, the fluctuations of X (t)
itself are not Gaussian in the model studied in Fig. 2. More usefully, the
referee pointed out that Haan in 1979'%° (working in real space) proposed
a related idea. Haan suggested that, by knowing the function defined by
C(lr — r'|) = (A(r)A(r')), one can approximate the time autocorrelation
function from (A(0)A(t)) = C((Arz(t))l/ ?). Haan’s work is based on the
same idea as above, but valid only if A is a function of one spatial coordi-

nate. The problem of weighting initial and final point was not discussed by
him.

Outlook

An approximate scheme is only useful if it has been shown to work reasonably
well. Most approximations used in physics are more or less uncontrolled
in the sense that one cannot estimate the usefulness of the approximation

~a priori; the approximations are justified a posteriori. Today, computer

simulations make testing possible in most cases. Further simulations should

'be undertaken to investigate whether the approximation proposed in P15 is

reliable.

3.7 Discussion of Paper 11-15

Chapter 3 deals with extensions and elaborations of linear response theory.
Due to the non-existence of a general nonlinear response theory, the work
summarized in Chapter 3 is more fragmented than that of Chapter 1 and 2.
Clearly, much remains to be done in this field, in particular in respect to test-
ing the approximations that have been proposed. It is hoped that eventually
the insights gained lead to, e.g., useful constitutive relations for viscoelas-
tic liquids or for the thermal history dependence of structural relaxations in
glass-forming liquids and glasses.
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The random free-energy barrier model for ac conductionin disordered solids
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A brief review of the history of ac ionic and electronic conduction in disordered solids is given,
followed by a detailed discussion of the simplest possible realistic model: the random free-
energy barrier model. This model assumes conduction takes place by hopping, where the
hopping charge carriers are subject to spatially randomly varying energy barriers. The model is
solved in the continuous time random walk and in the effective medium approximation, and it
is shown that the two solutions are almost indistinguishable. In the random free-energy barrier
model, the frequency-dependent conductivity is completely determined by the dc conductivity
and the dielectric loss strength. The model correctly predicts all qualitative features of ac
conduction in disordered solids, and a comparison to experiment on a large number of solids
shows that the model is also quantitatively satisfactory.

1. INTRODUCTION

One of the most characteristic properties of electrical
conduction in disordered solids is a strong dispersion of the
conductivity. At low frequencies one observes a constant
conductivity while at higher frequencies the conductivity be-
comes strongly frequency dependent, varying approximate-
ly as a power of the frequency. The increase in conductivity
usually continues up to phonon frequencies. This behavior is
seen in a wide variety of nonmetallic disordered solids and
has been studied extensively during the last 30 years. The
classes of disordered solids investigated include amorphous
semiconductors,'>" ionic conductive glasses,* ionic or
electronic conducting polymers,*'*!! organic semiconduc-
tors, ' nonstoichiometric or highly defective crystals,"” or
doped semiconductor single crystals at helium tempera-
tures.'* Even highly viscous liquids behave as typical disor-
dered solids as regards ac ionic conductivity.

Alldisordered solids show similar behavior with respect
to their ac properties. This is true not only for the frequency
dependence of the conductivity but also for the temperature
dependence. Here one observes a strongly temperature-de-
pendent (usually Arrhenius) dc conductivity, while the ac
conductivity depends much less on temperature and be-
comes almost temperature independent as T—0. This uni-
form behavior of g(w,T) for quite different solids has been
pointed out 2 number of years ago, ™" but is still not gener-
ally appreciated. And indeed, the fact that ionic and elec-
tronic conducting solids show similar behavior is quite sur-
prising. Apparently, it means that we cannot expect to learn
much about details of the conduction mechanism from mea-
suring the frequency or temperature dependence of the con-
ductivity.

As witnessed by the large number of publications and
the continued interest in the field, ac conduction in disor-
dered solids is a subject of interest on its own. More often,
however, the focus is on dc transport only. Even then, a
proper understanding of ac conduction is important in order
to arrive at a correct picture of the dc transport. This is be-
cause dc and ac conduction are both due to the same mecha-
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nism, as shown in Sec. I In particular; this implies that a
new interpretation of the dc conductivity activation energy
is necessary. The dc conductivity activation energy is, it
turns out, the maximum of a whole range of activation ener-
gies needed to account for the frequency dispersion (Sec.
1V). We believe this fact is important for a genuine under-
standing of dc transport in disordered solids. It implies that
most present models for dc conduction, thermopower, Hall
effect, etc., in disordered solids, are probably too simple to be
realistic.

The simplest and indeed the most common explanation
for a conductivity which increases with frequency is the exis-
tence of one or the other kind of inhomogeneities in the solid.
This assumption is consistent with the fact that a strong fre-
quency dispersion of the conductivity is observed only in
disordered solids. The inhomogeneities may be of a micro-
Scopic Or a more macroscopic nature, a question which is not
yet settled. In this paper, hopping models will be discussed.
In hopping models one makes the assumption of inhomoge-
neity on the atomic scale by assuming randomly varying
jump frequencies for the charge carriers. It is the purpose of
the paper to show that a simple hopping model is able to give
a qualitatively correct picture of ac conduction in disordered
solids. By taking some care in deriving the model, it is hoped
that the paper may contribute to make hopping models more
popular among experimentalists. The paper, which sum-
marnizes, clarifies, and extends recent work by the au-
thor,'®'? has the following outline: Sec. II briefly reviews
the history of ac conduction in disordered solids. In Sec. I1I a
general discussion of hopping models is given. It is argued
that in order to arrive at realistic hopping models, anv effect
of a cutoff at large jump frequencies should be eliminated. In
Sec. IV we discuss what is probably the simplest possible
model consistent with observations, a model based on the
assumption of randomly varying free-energy barriers for
jumps. The model is solved in the continuous time random
walk approximation and in the effective-medium approxi-
mation, and it is shown that the two solutions are almost
identical. Also, the model is compared to experiments on a
number of quite different disordered solids. Finaily, in Sec. V
a discussion is given.

© 1588 American Institute of Physics 2456
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l. ac CONDUCTION IN DISORDERED SOLIDS: A BRIEF
REVIEW

Frequency-dependent conduction in disordered solids is
a very broad field and probably nobody has a full general
view of it. Different schools have emerged within the field.
Though using different terminology, these schools discuss
quite similar experimental facts. In reviewing the field, how-
ever, it is convenient to ignore this and follow the terminol-
ogy of the different schools.

Historically one can distinguish two schools depending
on the preferred way of presenting data.’ The ‘“dielectric”
school uses the dielectric constant, e(w) = € (w) — i€” (@),
while the “semiconductor” school prefers to speak about the
conductivity, o(w) = o' (w) + io” (o). These two quanti-
ties are related by

&) = [o(@) —a(0) ) /iw, (1)

where ¢, is the vacuum permitt‘ivity. More recently it has
become popular, in particular in the field of ionic conduc-
tion, to present data in terms of the electric modulus,
M(w) = M'(w) + iM " (o), defined” by

M(w) = iw/o(w). (2)

The use of M () has the advantage that there is no contribu-
tion to M " (@) from electrode capacitances. Also, it is not
necessary as in Eq. (1) to subtract o(0) from o(w) in order
to get peaks in the imaginary part (*loss peaks™). Finally,
the impedance, Z(w) = Z'(w) — iZ"(w), is sometimes
used for presenting data, usually plotted in a so-called com-
pleximpedancediagramwherex = Z ‘(@) andy = Z " (@).”

The first systematic studies of ac conduction in disor-
dered solids were carried out by workers within the dielec-
tric school about 30 years ago. The systems considered were
ionic conductive oxide glasses.®?' These solids were studied
much because of technological interest; an understanding of
the dielectric loss in glass as a function of frequency and
temperature became important for the electrics industry in
the 1950s when one started to construct large transmitting
valves, x-ray tubes, and similar products.?? Since dielectric
loss in liquids had already been studied for many years, it
was natural to report observations in terms of the dielectric
loss. In glasses, however, it is necessary to subtract the non-
zero dec conductivity in order to get proper dielectric loss
peaks [Eq. (1)]. This was done without further justifica-
tion, although it was soon discovered that there is a close
correlation between dc conduction and dielectric loss.”®

The main features of dielectric loss in ionic conductive
glasses, as established by the end of the 1950s,%2'2*** are (1)
very broad dielectric loss peaks with a temperature-indepen-
dentshape and an almost frequency-independent loss at high
frequencies, and (2) an Arrhenius temperature-dependent
dielectric loss peak frequency w,, with the same activation
energy as the dc conductivity. Point (2) means that w,, and
o(0) are proportional. As pointed out by Isard, the constant
of proportionality is almost universal, varying only weakly
with temperature and glass composition.** A closer analysis
of the proportionality was carried out by Barton, Nakajima,
and Namikawa>*~*" who found the following equation to be
valid for most glasses:
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Here A€ is the dielectric loss strength, ie., Ae=
€(0) — €( ), and p is a temperature-independent numeri-
cal constant close to one. At ordinary temperatures A€ is
vsually not very much different from one, thereby explaining
the approximate universality of ¢(0)/w,,. Equation (3),
which applies also for electronic conducting disordered sol-
ids,2%2° will be referred to as the BNN relation.'® It carries
very important information, implying that ac and dc con-
duction are closely correlated and must be due to the same
mechanism. A number of models have been proposed to ex-
plain the BNN relation but none of these models can explain

at the same time the observed very broad dielectric loss.

peaks.!® The random free-energy barrier model, to be dis-
cussed below, is consistent with both these experimental
facts.

Perhaps the earliest model for ac conduction of ionic
glasses is Stevels’ and Taylor’s random potential energy
model.2!2% This model was only qualitative and did not
discuss the BNN relation. In the model, it is assumed the
ions feel a more or less randomly varying potential energy
deriving from the random network structure of the glass.
For dc conduction the largest energy barriers have to be
overcome, while lower barriers are involved for ac conduc-
tion since only a limited distance has to be traveled. Though
quite attractive, it was generally believed this model is incon-
sistent with the experiment. It was thought that, since w,, is
determined from ac properties, the model predicts a lower
activation energy for @,, than for ¢(0). Also, it was believed
that a distribution of activation energies implies a tempera-
ture-dependent shape of the loss peak.™*'* Both things are

~ wrong as becomes evident in Secs. IV and V where the ran-

dom free-energy barrier model is discussed; this model is
essentially nothing but Stevels’ and Taylor’s old random po-
tential energy model.

‘Work within the semiconductor school started in 1961
when Pollak and Geballe measured the ac properties of n-

- type doped crystalline silicon at very low temperatures.'*

They observed an approximate power law for the ac conduc-
tivity,
(@) =’ 4)

with an exponent s close to 0.8. Since then it has been cus-
tomary to speak about power-law frequency dependencies,
inferred from straight lines in log-log plots. However, even
almost perfectly straight lines does not mean that o’ (@) isan
exact power law; log-log plots may be deceptive. This is not
always remembered and equations like (4) have created
some confusion in the field by being taken literally. To avoid
this, one should preferably only speak about approximate
power laws.

During the 1960s, the study of amorphous semiconduc-
tors emerged as a new and exciting field within semiconduc-
tor physics. As regards ac properties it was soon found that
all amorphous semiconductors obey Eq. (4), and for most
systems studied, one found values of s close to 0.8.* A simple
model for this is the pair approximation which was advanced
by Austin and Mott in 1969,*" generalizing an idea of Pollak
and Geballe."* The pair approximation assumes that ac

Jeppe C. Dyre 2457




108

losses are due to tunneling between pairs of localized states.
For a random distribution of tunneling distances one finds
an approximate power-law ac conductivity with an exponent
given by’!

s=1 +4/In(@7y) (5)

where 7, is a typical phonon time. For ordinary laboratory
frequencies Eq. (5) gives s=0.8. Despite this success, it
turns out that the pair approximation has a number of prob-
lems, and this approach cannot be regarded as a serious can-
didate for explaining experiments: Eq. (5) predicts s is a
weakly decreasing function of frequency whereas experi-
mentally sis, if it varies at all, weakly increasing.” Also, the
pair approximation cannot explain the transition to frequen-
cy-independent conduction at low frequencies; an expres-
sion of the form ¢’ (@) = o(0) + Aw’® does not fit data at
low frequencies where a loss peak appears, showing that ac
and de conduction are due to the same mechanism.>?° Final-
ly, it has been found that s=0.8 is niot universally valid, for
instance, s always converges to one as the temperature goes
to zero.’233

More refined models were suggested in the 1970s and
early 1980s when hopping models, i.e., random walks in sys-
tems with spatially randomly varying jump frequencies, be-
came popular. This approach was developed by Scher and
Lax in 1973,> building on earlier ideas of Miller and Abra-
hams.?® Scher and Lax suggested calculating o(w) in a hop-
ping mode! by approximating the spatially inhomogeneous
markovian random walk by a homogeneous nonmarkovian
Montroll-Weiss-type continuous time random walk
(CTRW).* Today the CTRW approximation is recognized
as the simplest possible nontrivial mean-field approximation
for calculating o(®) in random media, although the original
derivation is inconsistent (Sec. II1). Around 1980 the coher-
ent potential approximation®™® was introduced into the
field independently by several workers, where it became
known as the effective-medium approximation (EMA).3%*?
Attempts were also made to improve the pair approxima-
tion. The correlated barrier hopping model is a version of the
pair approximation which predicts s— 1 as 7—0.>343 Alter-
natively, by returning to the original Miller-Abrahams
equivalent circuit, Summerfield and Butcher in the extended
pair approximation (EPA) succeeded in joining the pair ap-
proximation smoothly to the dc conduction.** In practical
applications the EPA is very similar to the EMA and both
approximations lead to self-consistency equations for o(w).

Hopping models are markovian, i.e., the charge carrier
jump probabilities are assumed to be time independent. This
leads to simple exponential decays of the probability for a
charge carrier to stay at a given site in the solid. The observed
pronounced frequency dispersion of the conductivity is then
attributed to spatial disorder in the solid, resulting in a broad
distribution of relaxation times (waiting times). A com-
pletely different approach to the problem is possible, how-
ever, namely to assume the fundamental hopping process is
itself nonexponential.*3** Models along these lines have not
yet come up with useful predictions about o(@). It is impor-
tant to note that the assumption of nonmarkovian jumps
does not in itseif imply the conductivity is frequency depen-
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dent. Correlations in the directions of subsequent jumps are
needed to ensure o(w)#c(0) (see Sec. 1I1). At present
there seems to be no reason to assume nonmarkovian pro-
cesses to lie behind the ac conduction, and only models based
on simple exponential decays will be considered in this pa-
per.

The dielectric and the semiconductor schools not only
present data in terms of different quantities but they also
have different emphasis.® Workers from the dielectric school
were always mainly interested in the loss peaks and did not
put much effort into an investigation of the region of fre-
quencies much larger than the loss peak frequency where the
dielectric loss is almost constant. In contrast, this region has
always been regarded as of main interest by the semiconduc-
tor school. This is because no frequency dependence analo-
gous to Eq. (4) is found in single-crystal semiconductors
where o(w) = (0) up to microwave frequencies. Also, ex-
perimentalists within the semiconductor school traditional-

ly assumned the ac conduction to take place by a mechanism

completely different from that behind the dc conduction,
thereby making irrelevant any detailed investigation of the
frequency region where the transition to dc conduction oc-
curs. .

As regards the question of the best way of presenting
data, we suggest g (@) is to be preferred compared to €(w) or
M(w). The use of M(w) may have serious problems (see
Sec. V). The conductivity is the more fundamental quantity,
being directly related to equilibrium current-current fluctu-
ations via the Kubo formula®’

1
3k, TV

ol(w) = J-m (J(0)-J(1))e~“ dt, (6)
(]

where J is the total current in volume V¥, and k and T have
their usual meaning. Reflecting also the fundamental nature
of the conductivity is the fact that the dissipation per unit
time and unit volume is o’ (w) /2 times the absolute square of
the current density. Finally, because of the nonzero dc con-
ductivity there is nosimple interpretation of e(w) in terms of
fluctuating dipole moments. A focus on the dielectric loss
does have some merit, though. The very fact that peaks in
€"(w) are seen at all is very important since this, in conjunc-
tion with the BNN relation, demonstrates that dc and ac
conduction are both due to the same mechanism. Thus, the
early discovery of the BNN relation for ionic glasses was due
to the dielectric school while the analog for amorphous semi-
conductors only much more recently has been firmly estab-
lished.”'z"""‘

We end this section by listing the general features of ac
conduction in disordered solids which are observed almost
without exception and which a satisfactory model should
explain'~%2*3273; (1) For ¢'(w) one observes at high fre-
quencies an approximate power law with an exponent s less
than or equal to one, and usually close to one. If any devi-
ation from a power law is seen, it corresponds to a weakly
increasing s(@) . (2) Atlower frequencies there is a gradual
transition to a frequency-independent conductivity. The
transition takes place around the loss peak frequency. (3)
Whenever the dc conductivity is measurable there is always
a dielectric loss peak. The loss peak frequency satisfies the
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BNN relation (Eq. (3)]. When there is no measurable dc
conductivity the exponent s is very close to one. (4) As re-
gards their temperature dependence, 0(0) and w,,, are usual-
ly Arrhenius with the same activation energy although more
complicated temperature dependencies are occasionally ob-
served, e.g., in group-1V amorphous semiconductors. (5)
The shape of the loss peak is temperature independent. (6)
The ac conductivity is much less temperature dependent
than the dc conductivity (when considered in the usual log-
log plot of Fig. 1). For s very close to one the ac conductivity
is practically independent of temperature. (7) The exponent
s increases as the temperature decreases, and for 7-0 one
finds s— 1. Thus, the ac conductivity becomes almost tem-
perature independent as T—0. (8) Even though ¢(0) may
vary by many orders of magnitude, the ac conductivity var-
ies only relatively little {one or two orders of magnitude) for
different solids and different temperatures. In Sec. IV a sim-
ple hopping model will be considered which can explain
these facts, but first a general discussion of hopping models is
given.

Il. HOPPING MODELS

Though a complete model for glass ionic conductivity
does not exist today, it is seldom questioned that the basic
transport mechanisi is thermally activated hopping across
an energy barrier, a process described by Eyring’s rate theo-
ry.*? Being a stochastic theory, rate theory leads to a simple
exponential decay for the probability for an ion to stay at an
energy minimum. Conductivity described by rate theory is
usually referred to as hopping conductivity. While tonic con-

ductivity is a classical thermally activated process. elec-

tronic conductivity is of quantum-mechanical nature. The
fact that the two kinds of conduction in disordered solids are
quite similar in their frequency and temperature depen-
dence, is surprising and must provide an important piece of

loglo'lw))

log(w)
FIG. 1. Sketch of the real part of the frequency-depzndent conductivityin a
disordered solid at three different temperatures T, < 7o < T At low fre-
quencics the conrductivity is constant and equal to the de conductivity, while
at higher frequencies the conductivity obeys an approximate power lasw.
The characteristic frequency marking the onset of ac conduction. the dielec-
tric foss peak frequency w,,, increases with increasing temperature. Note

that in this logarithmic ploi, the ac conductivity is less temperature depen-

dent than the dc conductivity.
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information. The simplest explanation is that even electronic
conduction in disordered solids is to be described by hopping
models. Actually, hopping between pairs of localized states
has always been assumed to account for ac conduction in
amorphous semiconductors, while dc transport, with the im-
portant exceptions of impurity conduction and Mott’s vari-
able range hopping model,” traditionally is assumed to take
place via extended state conduction. But since dc and ac
conduction are due to the same mechanism (Sec. II), it
seems that this approach must be abandoned and one has to
assume dc conduction is due to hopping as well. The trans-
port mechanism is probably quantum-mechanical tunneling
between localized states. To ensure energy conservation the
tunneling must be phonon assisted, thus destroying any
quantum coherence effects. Accordingly, electronic hopping
is of a stochastic nature just as ionic hopping.

Electrons are fermions, of course, but even ions behave
as fermions as regards their hopping properties. This is be-
cause the Coulomb repulsion between ions and the finite ion
size imply there is only room for one ion in each potential
energy minimum in the solid. In the equation describing
hopping fermions, it is usually assumed that transitions in-
volve only hops of a single fermion. Even then, the equation
is very complicated and further simplifications must be in-
troduced to arrive at a tractable mode!. By assuming the site
occupation numbers do not fluctuate in time it is possible to
“project” the equation into three dimensions, in effect get-
ting rid of all interactions between the particles, including
that induced by fermistatistics.”® The resulting equation, to
be discussed below [Eq. (7)}, describes hopping of nonin-
teracting ‘‘quasi-particles” and this is what is usually meant
by a hopping model. It is important to remember, however,
that hopping models are built on mean-field assumptions
which are far from obvious and cannot be justified in gen-
eral.’! Hopping models have recently been reviewed by Nik-
lasson in a paper emphasizing fractal aspects of conduction
in disordered solids.**

The very basic fact about ac conduction in disordered
solids is that o' (@) is an increasing function of frequency.
Any hopping model has this feature.** This is not surprising,
since by hopping backwards and forwards at places with
high jump probability a quasi-particle may sizably contrib-
ute to the ac conductivity, while the de conductivity is deter-
mined by overcoming of unfavorable places in the solid for
the formation of a continuous “percolation” path between
the electrodes. The higher the frequency of the electric field,
the larger is the ac conductivity because better use is made of
the places with very large jump probability. As illustrated in
Fig. 2, the increase in conductivity continues as long as the
frequency of the field is lower than the maximum quasi-par-
ticle jump frequency (jump probability per unit time) in the
solid. For larger ficld frequencies the conductivity stabilizes
and becomes constant.

. In order to arrive at a conductivity which increases tor
many decades of frequency, one must assume the jump fre-
quency distribution also covers many decades. In compari-
son, the jump distances vary only relatively little. For near-
est-neighbor topping, for instance, the jump distance
typically varies a factor of 2 or 3. It is commonly believed
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FIG. 2. Typical behavior of ¢ '(w) in a hopping model. In hopping models
o ‘() is always an increasing function of frequency (Ref. 53), just as in
experiment. The saturation of o ‘(@) at high frequencies takes place when »
is close to the maximum jump frequency I' ., . Only in this region, typically
close to 10** Hz, is the pair approximation valid. The onset of ac conduction
at low frequencies takes place around the loss peak frequency w,,, which is
the lowest effective jump frequency of the system, corresponding to the lon-
gest waiting time at a lattice site.

that this variation is insignificant. Following this, all jump
distances may be assumed to be equal by considering the
quasi-particle random walk to take place on a simple cubic
lattice. The stochastic “equation of motion” for a quasi-par-
ticle is now the following master equation:

i’%(;,;)= — ¥ P(s.) + ST (s'—~s)P(s',1), )]

&

where P(s.t) is the probability to find the particle at the
lattice site s at time ¢, I'(s'-s) is the jump frequency for
jumps from site s’ to s (T is usually assumed to be nonzero
only when s’ and s are nearest neighbors), and

Vs =ZF(s~s'). (8)

To mimic the disorder of the solid, the I'’s are assumed to
vary randomly according to some probability distribution
p(). The problem of calculating o(w) from p(T") is not
easy and suitable approximations have to be done. Below,
the derivation of the CTRW and the EMA approximations
is briefly sketched.

Adopting the bra and ket notation of quantum mechan-
ics, Eq. (7) can be rewritten as

9 1y =
EW’) =H|), 9

where |#) = Z,P(s)|s) is the state with probability P(s) of
finding the particle at site s, and the “Hamiltonian” H is
given by

H= —3% 7,s) (s +Z (s’ =s)|s)(s'|. 10)
The formal solution of Eq (9) is [d(0)) =

exp(HnN|¥(t = 0)). By two partial integrations, the Kubo
formula for (@) [Eq. (6)] reduces to

2 93 o
nqg o 2 — i
(@) = ——j (AR*(D))e~ " dt (1)
( 6kgT Jo
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where ¢ and n are charge respective density of the quasi-
particles and (AR?(¢)) is the mean-square displacement of a
particle in time . A convergence factor lim,_, exp( — 1) is
implicitly understood in the integral. If all sites are equally
populated in thérmal equilibrium, i.e., have the same free
energy, Eq. (9) in conjunction with Eq. (11) implies

olw) =

ng*e’® 1 "2 e
— — > (s —§)*(s]Gliw)|s’), (12)
ST Z Y2(siGlia)|s') . (
where Nis the number of lattice sites and G is the resolvent or
Green'’s function operator for H:

G=1/(iw— H). (13)

The Green’s function depends on the actual values of the I™'s.
Hopping systems in three dimensions are believed to be self-
averaging, implying that different samples with different H’s
have the same bulk o(@). This property simplifies matters
considerably since only the average of G over all possible
H'’s,(G),needstobeevaluatedin ordertofind o(w). (G ) is
translationally invariant and we now make the ansatz

{(G)=1/(iw — H,), (14)

where H. = H_ () is a “‘coherent” Hamiltonian deter-
mined by a coherent jump rate I, () in the following way:

H(0)=T, (a))( ~63 |s)s| + zls) <S'i),

where the double sum is over nearest neighbors only. Itis not
hard to show from Eqs. (12) and (14), and is indeed intu-
itively obvious, that o(w) is proportional to T", (@).%* For
simplicity from now on we adopt the unit system in which
the constant of proportionality is one, ie., where
o(w) =T (w).

To derive the CTRW approximation we write
H = H, + V where H, is the diagonal part and V the off-
diagonal part of H. If G, is the Green’s function for H,, the
standard perturbation expansion is*’

G =Gy + GoVGy+ GVGo VG + -~ . (15)

The CTRW approximation is now to assume that all aver-
ages of products in G are equal to products of averages, i.e.,
(G) =(G) + (Go){(V){(Gp) + -+, (16)

which implies (Gg){(G ) ™' + (G,) (V') = 1. Taking a diag-
onal element of this operator identity we get the CTRW ap-

proximation for o(w) in our rationalized unit sys-
tem3:42:54.55

L ( L ) an
60(w) + iw ¥+ iw
The original derivation of the CTRW approximation was
made for a nonmarkovian random walk in a homogeneous
medium characterized by a so-called waiting time distribu-
tion function.™ This derivation is inconsistent, however,
since the assumption of spatial homogeneity implies the cur-
rent autocorrelation function is a delta function, and thus
(@) = o(0) from Eq. (6).>%" Note that this criticism ap-
plies to any nonmarkovian hopping in a homogeneous medi-
um; a nontrivial frequency dependence of the conductivity
only comes about if there are correlations in the directions of
subsequent jumps. The derivation of Eq. (17) given above is
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due to Odagaki and Lax****; here the CTR W approximation
appears as the simplest possible nontrivial mean-field ap-
proximation which is also referred to as the Hartree approxi-
mation. )

The magnitude of the dc conductivity is usually quite
wrong in the CTRW approximation, throwing doubt on this
approach.’® A more reliable way of evaluating o(w) is the
EMA.**=*2 Here the idea is to focus on a particular link of the
lattice, say the link between site sand s’. Assuming, as above,
that all site free energies are equal, the principle of detailed
balanceimplies I'(s—~s') = I'(s'—s). The link is considered
to be embedded in an average medium described by the (G )
of Eq. (14) and one now requires self-consistency so that,
on the average, the system of link plus average medium
is described by (G ): Writing the effective Hamiltonian
forthe system, Hyg, as Hg=H +V where
V= [o(w) —T(s—s)] Ja){a] with |a) =]s) — |5}, the
standard perturbation expansion Eq. (15) yields for the
Green’s function for A ¢

G ={G) +(G)T{G), (18)
where .
T=V+V(GYV+ - =VU—-(G)V) (19)

The self-consistency requirement, (G.;) = (G ), now leads
to (T) =0. A straightforward calculation with 2 X 2 matri-
ces referring to site s and s” shows that (T") = Ois equivalent

1ot042

< I'—o(w) )___
1 —2((s|{G ) s} — (s|{G)|s))(a(w) — T)
- (20)

This is the EMA equation for o(w); it can be simplified -

somewhat by noting that

($1(G)Is) — (si(G) sy = L= 2lG)ls)
bo(w)

which follows from evaluating the diagonal element of Eq.
(14) written as (io — H,)(G) = 1.

As mentioned already, the real part of the conductivity
is always an increasing function of frequency. The increase
continues until one reaches the region of frequencies around
the maximum jump frequency of the model, where the con-
ductivity stabilizes (Fig. 2). In experiments the conductivity
usually increases until w=<10'? Hz. At these high frequen-
cies the stochastic assumption of hopping models cease to be
valid and one enters a region characterized by various reso-
nance effects. At even higher frequencies the conductivity
starts decreasing. The stabilization of Fig. 2 predicted by
hopping models is thus seldomly observed in experiment
which suggests that, for the construction of realistic hopping
models, one should try to eliminate completely all effects of
the maximum jump frequency. This philosophy is followed
below.

2zn

IV. THE RANDOM FREE-ENERGY BARRIER MODEL
Equipped with the tools of Sec. III we now address the
problem of formulating the simplest possible realistic model
for ac conduction in disordered solids. For most solids thedc
conductivity is thermally activated: o(0) x exp( — AE ./
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kg T). As illustrated in Fig. 1, the ac conductivity is less
temperature dependent than a(0), suggesting that ac con-
duction is dominated by processes with activation energies
smaller than AE,_. A closer analysis shows that the ac con-
ductivity activation energy depends on frequency and tem-
perature so it is natural to assume that, consistent with the
disorder of the solid, a whole range of activation energies is
involved. This idea goes back in time at least to 1946 (Refs.
30 and 59) and it is the basic ingredient in Stevels’ and Tay-
lor’s model from 1957.2% It should be emphasized that,
even without any microscopic picture of the transport mech-
anism, results like Fig. 1 strongly suggest that any model for
ac conduction should somehow be built on the assumption of
adistribution of energy barriers. Hopping models, of course,
fit nicely into this since it is realistic to assume the quasi-
particle jumps are thermally activated over an energy bar-
rier. More generally, one speaks about free-energy barriers*®

and writes .
=)
ksT/)

where Iy is the so-called attempt frequency, and the free-
energy barrier, AF = AE — TAS, is composed of an energy
barrier AE and an entropy barrier AS. Quantum-mechanical
tunneling may be thought of as providing a negative entropy
barrier proportional to the tunneling distance. In this ter-
minology it is possible to speak about ionic and electronic
conduction in a unified language which, incidently, also cov-
ers the possibility of thermally activated electron or polaron
jumps over energy barriers.

In modeling a disordered solid, the simplest possible as-
sumption is that all free-energy barriers are equally likely.
Since p(I') = p(AF) (dAF /dT) this implies

1"=l"oexp(— (22)

e Y sl (23)

The model defined by Eq. (23) will be referred to as the
random free-energy barrier model. To solve this mode! with-
in the CTRW approximation [Eq. (17) ], the distribution of
7’s needs to be calculated. Since yis a sum of I’s [Eq. (8)],
p(¥) is a convolution of p(I") with itself 2 number of times.
The result is a complicated function, equal to ™' times
some logarithmic terms. These terms are not very important
compared to the ¥~ term, so we approximate p(y) simply
by ¥~ .. Substituting this now into Eq. (17) leads to

1 . iwinA
olw)=- —iv+ - - ,
6\ In[ (1 4+ i/ Veoin )/ (1 + i/ Vnax ) ]
- (24)
where two. cutoff's have been introduced, and

A = Ymax/Vmin- According to the philosophy of Sec. III any
influence of the high-frequency cutoff should be eliminated.
For ¥,,,« — o the second term of Eq. (24) dominates, and
for frequencies @ € ¥, We thus have

o(w)=}liwlni/n(l +ior)), T=y7.. (25
From this we get
ag(0)=1InAd /67, (26)
which substituted into Eq. (25) finally gives's
o(w) = o(0) [iwr/In(1 + iwT)]. 7N
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By regarding this expression as a formula for o(@) with two
free parameters, o(0) and 7, any influence of y,,,,, has now
been formally eliminated.

The random free-energy barrier model predicts a umi-
versal shape of the conductivity curve plotted in the usual
log-log plot.'® In Fig. 3 the model is compared to experi-
ments on a number of different solids.®>-”' Though exact
universality is not observed, the model is in rough agreement
with experiment. The model implies a high-frequency be-
havior which is very close to a power law, reminding us of
the danger of deducing fundamental power laws from log-
log plots. For 10° < @7 < 10° one finds s=0.8, which offers a
possible explanation for the frequently observed exponents
around 0.8.* For wr® 1 the exponent s is given by the expres-
sion -

s=1-2/In(wr). (28)

- This can be easily proved from ¢’ (@) « w7/In*(w7), which
is valid whenever w7 1. In general, the model predicts ex-

. log(Restwyg,)

{a}

- {b)

Il 1 ] i i 1 1

-1 0 1 2 3 4 5 6
log{wT)

F1G. 3. CTRW solution of the random free-energy barrier model {Eq.
(27) } compared to experiment on a number of solids [ (a) is reproduced
from Ref. 16]. The data represent conduction in (a) n-doped crystalline
silicon (X ). sputtered films of arsenic (@), sodium silicate glasses ((9),
glow-discharge silicon {A), silicon monoxide { + ), amorphous germani-
um (C1), Mn, , Ni,,Co,, 0, (7), monolayer of stearic acid (O); and (b)
a — As.Se, at 370 K (x) (Ref. 65), viscous 0.4Ca(NO,),-0.6KNO, at
338.5 K (@) (Ref. 66), viscous HZnC!,4H,O at 154.5 K (©) (Ref. 67),
illuminated polycrystailine zinc oxide (A) (Ref. 63), vanadium phosphate
glass at 167 K { 4 ) (Ref. 68), AsF-doped polyphenyincetate at 271 K
(D) (Ref. 69), flux-grown single-crystal alumina in ¢ direction at 873 K
{7) (Ref. 70}, 81% tungsten phosphate glass at room temperature (O}
(Ref. 71). For all data the characteristic time 7 has been adjusted to fit the
theory as well as possible; 7 varies between 10~ and 10°s. )
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ponents between 0.7 and 1.0, which is exactly the interval in
which one finds the vast majority of reported exponents.™
Also in agreement with expériments is the fact that s(w) isa
weakly increasing function of w.

For.the dielectriciloss one finds by substituting Eq. (27)
into Eq. (1),

€ (w) = 2Ae( arctan{wr) _ L)
[InyT + (0r)?]? + [arctan(wr))?  ©F
(29)

where A€ is the dielectric loss strength given by
e = lo(0)T. (30)

Equation (29) implies a very broad loss peak with a tem-
perature independent shape. The loss peak is shown in Fig. 4
together with data for a typical sodium silicate glass. Thereis
a qualitative, but not exact, agreement between theory and
experiment. The BNN relation is satisfied by the model. A
numerical analysis of Eq. (29) shows that the loss peak fre-
quency is given by w,,7 = 4.71.'° Combining this with Eq.
(30) and the definition of the BNN p parameter in Eq. (3)
we get

Perrw = 0.42. (31

This number is not as close to one as required by experiment,

but in comparison to the many orders of magnitude varia-

tions in o(0) and w,, for the solids where the BNN relation

has been found,?” this is not a serious objection to the model.
Writing Eq. (30) in the form

7= 2¢,A6/0(0), (32)

implies an interesting scaling principle which has recently
been discussed by Summerfield*® and which was also used by
Scher and Lax in their 1973 papers.”* The scaling principle,
which is just the BNN relation in conjunction with the time-
temperature superposition principle (i.e., the existence of a
universal conductivity curve), allows one to plot different
experiments onto a master curve. To make use of the scaling
principle, one may use, e.8., experiments on one solid at dif-
ferent temperatures, as illustrated by Pollak and Geballe's
original experiments replotted in Fig. 5(a)" and a similar

logle/e. }

loglw/w,}

F1G. 4. Dielectric loss of the random free-energy barrier model according to
Eq. (27} and data for a typical sodium-silicate glass (reproduced from Ref.
19). The dashed curve is the Debye dielectric loss peak. There is a qualita-
tive, but not exact, agreement between theory and experiment.
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FIG. 5. Applications of the scaling principle, i.c., the BNN relation in con-
junction with the rime-temperature superposition principle. In the model,
the scaling principie is expressed by Eq. (32) and the fact that the conduc-
tivity relative to o(0) is a function only of wr. In (a) and (b) data for a
single sample at different frequencies and temperatures are plotted, making
use of Eq. (32) and the Curie law equation (33). The data are compared to
the CTRW solution of the random free-energy barrier mode! (Eqg. (27)].
(a) considers the original data by Pollak and Geballe on heavily a-doped
crystalline silicon at low temperatures, taken from Fig. 5 of Ref. 14. The
data were obtained at the following temperatures: 2, 2.5, 3, 3.5,4.5, 5.5 K at
0.1 kHz (A), 1 kHz (O), 10kHz ( + ), 100 kHz (X ). (b) considers data
on a vanadium phosphate glass taken from Fig. 2 of Ref. 72. The data was
obtained at 83, 100, 125, 167, and 250K at0.1kHz (O), 1 kHz (), 10kHz
(A), 100 kHz (O), 8 MHz ( + ), 3.6 GHz (X ). The gigahertz data devi-
ates from the master curve, signaling a breakdown of the theory at very high
frequencies. In both (a) and (b) the constant C is a fitting parameter,
C=19%x10"" for (a) and C=2.1x10"" for (b) in units of
(Q ecm) ™' K/Hz. In (c) data for different chalcogenide glasses at a fixed
frequency are compared to Eq. (27). It is assumed that the different sam-
ples have the same dielectric loss strength A¢ which becomes a fitting pa-
rameter (A€ = 0.6). The data were obtained at 300 K by several workers
[see the references in the paper by Davis and Mott who compiled tiie data
(Ref. 73)].
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figure for measurements by Mansingh and co-workers {Fig.
5(b)].” Alternatively, measurements at the same frequency
on different solids assumed to have the same Ae{Fig. 5(c))
may be used.”

In connection with the scaling principle we remind that
A€ experimentally varies with temperature according to the
Curie law

Aex T 33

a fact which is also predicted by the CTRW treatment
though here, it has been hidden by the rationalized unit sys-
tem. Figure 6 illustrates the use of the scaling principle in
conjunction with Eq. (33) for measurements by Long and
Balkan on amorphous germanium.™ Except for the weak
temperature dependence of A¢, Eq. (32) predicts the univer-
sal conductivity curve of Eq. (27) to be displaced in the
direction 45° to the log(w) axis when the temperature is
changed. As the temperature is lowered, o(0) -0, which
implies that measurements at a fixed frequency in effect
probes larger and larger w7 on the universal conductivity
curve. Since s— 1 as w7 — o0, the model thus predicts s— 1 as
T—0, which is in agreement with experiment. Substituting
0(0) xexp X ( — AF 4./kpT) via Eq. (32) into Eq. (28)
we find as T— 0 for the exponent s, measured in a fixed range
of frequencies,

s=1-T/T, kyT,=AAE, . (34)
According to the theory, the temperature dependence of the
ac conductivity is much weaker than that of the dc conduc-
tivity. Note that the temperature dependence almost vanish-
es whenever s approaches one. This is predicted and ob-
served for all systems at low temperatures, but ¢'(w) may
also become almost temperature independent at room tem-

a-Ge

log(Re o) (arb. units)
. 1 T T T

102K /

885K

77K
51K

42K

log (fo/anz)

FIG. 6. Comparison between the prediction of Eq. (27) and measurements
on amorphous germanium at various temperatures by Long and Balkan
(Ref. 74) (reproduced from Ref. 16). The data were fitted by Eq. (27) at 77
K and then displaced according to the scaling law [Eq. (32)] taking into
account Eq. (33). At the two lowest temperatures the dc conductivity is
unknown and was treated as a fitting parameter. :
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perature for solids with a very low, pérhaps unmeasurable,
dc conductivity.

In experiment one finds that, while o(0) may vary
many orders of magnitude between different solids, the ac
conductivity varies only relatively little (one or two orders
of magnitude).? This can be understood from the mode}: For
two different solids, (1) and (2), we find from Egs. (27) and
(30)

5 a./(l)(m) ”ll)(o)f(l) AE(I)
ﬁl,l_"l @) oP0)r®  Ae®
Since the dielectric loss strength varies only relatively little
between different solids, Eq. (35) explains the small spread
in ac conductivity.

Turning now to the problem of solving the random free-
energy barrier model by the effective-medium approxima-
tion, we first substitute Eq. (21) into Eq. (20) and get

(L =) /(T +ya)) =0 (36)
where
x=3/(1 —iw(s{{G)|s)) — 1. an

It is straightforward to calculate the average appearing in
Eq. (36) when the distribution of I'’s is given by Eq. (23);
the result is

max+XU l"mu)
I+ pn| =272 ) = (=),
( X)n(r‘mln+x ) n(rmin

which is a rather complicated equation for o(w). However,
according to the philosophy of Sec. I1I we are only interested
in the limit of very large [",,,,. In this limit an important
simplification occurs, as pointed out by Bryksin.*® In the
whole range of frequencies much smaller than T, we have
w<|o(@)]. In this region one may therefore expand y to
first order in w/o(@):

(38)

y=2+¢liw/ow)l + -, (39)
where £ is 2 numerical constant given by’*%
1 o4 4 T
= 63 J:; .[) J
dx dy dz =0.253,
1 — §{cos(x) + cos(p) + cos(2)]
(40)

The expansion in Eq. (39) is only possible in three or more
dimensions where the Green’s function for diffusion is well
behaved as w—0. By putting y = 2 in Eq. (38) it is easy to
see that in the frequency. region of interest
[ in €|0(®@)]| €T oy - Thus, the In term on the left-hand side
of Eq. (38) may be replaced by In(T,,,/yo). Equation
(38) now.becomes, by equating thew = @ and thew =0on
the left-hand side,

which expanded to first order in w/0(w) reduces to
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35y

3ln(0(0))r+§ iw (0(0))

() o(w) \o(w)
rmlx ) 3 iw
) e = (. 42
+¢ a(a)) n(ZU(O) 2 ¢ o) 42)

The second term is unimportant compared to the first term
and may be ignored, leading to

a(w) In (a(m)) = iwr, ) 4
a(0) o(0)
where
=8 [ln(&f——) - -3—] . (44)
30(0) 20(0) 2

Equation (43) was first derived by Bryksin for electrons
tunneling between nearest neighbors in a solid with electron
sites randomly located in space.>® The jump frequency prob-
ability distribution of this model is more complicated than
T'~!, but in the limit T, — o the frequency-dependent
conductivity is the same in the two models. It is quite un-
usual that the EMA leads to such a simple equation. This
equation will henceforth be referred to as Bryksin’s equa-
tion.

In Fig. 7 the solution to Bryksin’s equation is compared
to the CTRW solution of the random free-energy barrier
model [Eq. (27)]. The two are quite similar, lending some
credit to the simple CTRW expression for o(w). All features
of the CTRW solution are shared by the solution of Bryk-
sin’s equation. In particular, the BNN relation is satisfied by
the EMA solution, although Eq. (30) is now replaced by

A€ = a(0)T. (45)
The loss peak frequency is given by @, 7 = 1.709 and for the
BNN p parameter one finds

Pema =0.59. (46)

This value is in better agreement with the experimentally
found p=1 than the perrw = 0.42. But for other purposes
the two solutions are practically identical and one may use

loglow)/al0)
4

&

-1 0 1 2 3 4 5 6
loglwT)

F1G. 7. Comparison between the CTRW and the EMA solution of the ran-
dom free-energy barrier model. The full curve is the CTRW solution {Eqg.
(27)] and the dots mark the EMA solution {Eq. (43) ). The two solutions
are shown for the same value of 9(0) and Ae which, according to Egs. (30)
and (45), implies rgya = 27crpw. The CTRW and EMA solutions are
almost indistinguishable, lending credit to the simpler CTRW approach
from the more retiable but also more involved EMA.
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Eq. (27) just as well as Bryksin’s equation, which has to be
solved numerically before it can be compared to experiment.

V. DISCUSSION

Looking back on the history of ac conduction in disor-
dered solids, it strikes one that a handful of glass technolo-
gists established very early the general features of glass ionic
conductivity, while only much more recently the same fea-
tures have been established also for electronic conductive
disordered semiconductors. A likely explanation for this is
the fact that electronic conductivity was always thought to
be much more complicated than transport in ionic conduc-
tive solids, which obviously proceeds via thermally activated
charge carrier jumps over barriers. The pair approximation,
which seems to have delayed a proper understanding of elec-
tronic transport, was never really applied to ionic glasses,
where one also needs a mechanism for the dc conduction
which very early was known to be closely related to the ac
conduction. On the other hand, the traditional ion glass re-
searchers never managed to explain both the BNN relation

- and the broad dielectric loss peaks, '* and the more successful
random walk models were first solved by workers within the
semiconductor school. Despite extensive theoretical work,

- these models have not yet become popular among experi-
mentalists. This is perhaps because the models usually end
up with complex equations which have to be solved numeri-
cally and which are far from transparent in their interpreta-
tion. But this is not necessarily the case, and one purpose of
this paper has been to show that simpie random walk models
do exist and to encourage their use.

The justification of hopping models comes from the fact
that dc and ac conduction are both due to the same mecha-
nism. This is the message of the BNN relation which is cen-
tral to the whole subject. It is of crucial importance that
genuine loss peaks are observed. Otherwise, even when ac
and dc¢ conduction are totally unrelated, one may find a
BNN-like relation of the form o(0) x w,, where @,, is the
characteristic frequency for the onset of ac conduction; this
is the case, e.g., if o' (w) = 0(0) + Aw. In experiments one
does indeed find loss peaks in all disordered solids, though
this is not always as carefully checked as one might wish.

Given that conduction in disordered solids is to be de-
scribed by hopping models, the only possible explanation for
the ion-electron analogy is that the same jump frequency
distribution applies for both cases. The simplest guess for the
common distribution is that corresponding to randomly
varying free-energy barriers for jumps, Eq. (23). One may
argue for this distribution directly from experiments'®; Since
the shape of the o’ (@) curve is temperature independent and
s—1as T-.0, it can be concluded that s~ 1 as w — o on the
master curve; the simplest jump frequency distribution con-
sistent with this is p(I") < T~ ."* At low frequencies, when
the cutoff at w,, starts to play a role, one expects it to de-
crease the frequency dependence of the conductivity slight-
ly, i.e., to push s below one. This is exactly what happens in
the random free-energy barrier model [ Eq.(28) ]. While the
assumption of completely randomly varying free-energy
barriers is probably the simplest realistic choice, other bar-
rier distributions may also be useful. This has been discussed
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in detail by Macdonald in recent papers.®! He adopts a more
macroscopic point of view to ac conduction but the math-
ematics developed by him is quite similar to that of hopping
models.

In hopping models it is possible to distinguish different
characteristic regions of frequency.*®*® At low frequencies
the conductivity is constant. Here transport takes place on
infinite “percolation” paths. Then comes a region of fre-
quencies where the conductivity increases strongly with fre-
quency (compare Fig. 2); here transport is dominated by
contributions from hopping in finite clusters. Finally one
encounters the region where the high-frequency cutoff starts
to play a role and s(w) decreases to zero with increasing
frequency. This is where the pair approximation gradually
becomes valid, i.e., where the conductivity is made up of
contributions from independent pairs of sites connected by a
link with a particularly large jump rate. The division into
three regions of frequency is suggestive but not really based
on exact theory. The validity of the pair approximation at
high frequencies is an exact result, though.>® To estimate
where the pair approximation sets in, let us use the jump
frequency distribution of Sec. IV [Eq. (23)] which gives
equal weight to each decade of jump frequencies. In order for
a link to be “isolated” from its surroundings, its jump rate
must be larger than those of the 10 other links which it is
directly connected to on the cubic lattice. Since the random
free-energy barrier model weighs all decades of jump fre-
quency equally, on the logarithmic frequency axis the pair
approximation will be valid in the final 10% of the interval
between I' ;. and I,,,,. Equation (38) implies for the dc
conductivity ¢(0) « '3 %3 which via the BNN relation
implies w,, « )2 T2 . Thus the pair approximation is val-
id only in the final third of the (logarithmic) interval
between w,, and I',, . In order to fit experiment I',,,, must
be at least 10'* Hz, so the pair approximation is seldom of
relevance at typical laboratory frequencies (unless at very
low temperatures), and we may safely follow the philosophy
of Sec. 111 and eliminate any influence of I' . . In the result-
ing “‘renormalized” hopping models, the physics is a conse-
quence of the Jow-frequency cutoff at I' ;.. This is comple-
mentary to the pair approximation where the physics is a
consequence of the Aigh-frequency cutoff [Eq. (5)].'8

When applying the renormalization philosophy to the
random free-energy barrier model, one finds in the CTRW
approximation a simple formula for o(w) [Eq. (27)] and in
the EMA a simple transcendental equation for o(w) [Eq.
(43) ]. Asillustrated in Fig. 7, these two solutions are almost
identical. Since the dc conductivity in the CTRW approxi-
mation generally may be wrong by several orders of magni-
tude,*® while the EMA value is probably much more accu-
rate, the similarity between the two solutions is far from
obvious and must be regarded as an empirical fact. Appar-
ently, the CTRW is saved by our prescription of eliminating
T max » Which leaves o(0) as a free parameter in the model.

Recently, it has been shown by Summerfield that several
different models solved in the EPA have almost the same
frequency dependence in the region of frequencies where the
high-frequency cutoff is irrelevant.* He refers to this phe-
nomenon as “‘quasi-universality.” The solutions of the mod-
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els discussed by Summerfield are quité close to the solution
of the random free-energy barrier model. This supports a
hypothesis of ““quasi-universality” among all models and not
only among EPA models as originally suggested. Though
further investigation of this hypothesis is necessary, a pre-
liminary conclusion is that all realistic models in the
[ uas — oo limit gives more or less the same fréquency-depen-
dent conductivity. Equation (27) provides a simple-analyti-
cal representation of the quasi-universal conductivity.
Inthelimit T, — «, the CTRW approximation is rep-
resented by the electrical equivalent circuit shown in Fig.
8(a)."” In the circuit all capacitances are equal while the
resistances vary. The impedance Z(w) is given by

Z(o) = (I/(R™' +i00)), (47

where the average is over the distribution of resistances. Cor-
responding to randomly varying free-energy barriers, the re-
sistance probability distribution varies as R ~ ', the analog of
Eq. (23), and thus, the characteristic time ¢ = RCis distrib-
uted according to £ ~ . If the maximum value of ¢ is denoted
by 7 and the minimum value is zero, we now get

C C C
i 11 I
11 1 1
Rn-l Fzn Rho‘l
{a}.
C Ry
¢ Rnet

(b}

FIG. 8. Electrical equivalent circuits for (a) the CTRW approximation in
the [,,x = @ limit and (b) the pair approximation. Note that the pair ap-
proximation does not have any dc conduction. This figure shows that the
two approaches are, in a sense, complementary. This is also reflected by the
fact that the exponent 5 in the pair approximation is a function of the loga-
rithmic distance from w to the Aigh-frequency cutoff [Eq. (5)], whilesin
the CTRW case is a function of the logarithmic distance to the effective low-
frequency cutoff at w,, {Eq. (28)].
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T T

Zor =K [l _d_ K1
Cht'tviwt Cl 1+iwt
Since ¢ ~' is not normalizable, the constant K is unknown

and must be determined self-consistently. When this is done

after the'integration has been carried out, Eq. (48) reduces

to Eq. (27). Note that it is straightforward io actually build

the equivalent circuit in the laboratory, since the ordinary
résistance scale is logarithmic just as the distribution used in

Eq. (48).

The physical interpretation of the circuit is not quite
obvious. Intuitively, one may argue that the one-dimension-
al circuit gives a satisfactory representation of conduction in
three dimensions because the broad distribution of jump
rates implies that conduction is dominated by contributions
from certain optimal paths, the “percolation” paths.'®
Usually, the circuit of Fig. 8(a) is not related to hopping
models but applied to conduction in a solid with macroscop-
ic inhomogeneities with different dc resistances.’®26® In
such models the frequency dispersion of the conductivity is
described by a generalization of the Maxwell-Wagner theo-
ry of inhomogeneous dielectrics, as first suggested by
Isard.?® The reduction from three to one dimension has nev-
er really been justified.

The equivalent circuit of the renormalized CTRW ap-
proximation is complementary to the equivalent circuit of
the pair approximation shown in Fig. 8(b). In the pair ap-
proximation conduction takes place in parallel channels cor-
responding to additive admittances, while in the CTRW case
the impedances are additive, intuitively expressing the fact
that charge carriers on the percolation paths have to over-
come a sequence of barriers.

The random free-energy barrier model is essentially
identical to Stevels’ and Taylor’s 1957 “random potential
energy model” for glass ionic conductivity.*">* This model
was never generally accepted because it was thought to con-
tradict experiment on two important points™®'5: It was be-
lieved that a model based on a distribution of energy barriers
can never give temperature-independent loss peaks, and also
that the BNN relation implies the ac conducting ions to have
the same activation energy as those behind dc conduction.
These objections are incorrect, however.'® If all barriers are
equally likely, the jump frequency distribution is propor-
tional to I'™" at all temperatures, yielding a temperature-
independent loss peak, and there is certainly no problem in
having a whole range of activation energies involved in the
conduction process. Actually, from figures like Figs. 1 and 6
one can conclude that ac conduction must have a smaller
activation energy than dc conduction. Thus, the experimen-
tal facts seem to more or less force one to base the theory for
ac conduction on a distribution of energy barriers, where the
dc conductivity activation energy is the maximum activation
energy involved in the conduction process. Corresponding-
ly, the loss peak frequency, which marks the onset of ac con-
duction, must be essentially the minimum jump rate in the
solid: On a time scale larger than @' the conductivity is
frequency independent so the solid “looks™ homogeneous to
the quasi-particles. This can only come about if w,, is the
effective minimum jump frequency so that many jumps nec-
essarily are involved for times > w,; . Note that, since both

dr. (48)
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dc conduction and loss peak frequency are determined by
the maximum energy barriers, the proportionality between
o(0) and w,,, in the BNN relation becomes obvious from this
analysis of experimental facts, without any calculation.

The random free-energy barrier model predicts a fre-
quency dependence of o’ (w) that is very close to a power law
(Fig. 3). This may seem surprising since there is no power
law hidden in Eq. (27), but it is just another illustration of
the old truth that “anything is a straight line in a log-log
plot.” Because of this, care must be taken in deducing power
laws from apparently straight lines in log-log plots, though it
may still be convenient to discuss measurement and theory
in terms of the “exponent” s.

Atthe end of Sec. II was listed in eight points the univer-
sally found experimental facts on ac conduction in disor-
dered solids, and in Sec. IV it was shown that the random
free-energy barrier model explains all eight points. Here we
want to point out that these facts are not independent but
closely interrelated, as becomes evident when they are dis-
cussed in light of the model. The fact that o' () has a tem-
perature-independent shape implies that, at lowering the
temperature, one measures further and further out on the
master curve which is known to exist. Consequently, since
s(w) — | as wT— o0, the exponent s measured in a fixed range
of frequencies converges to one as 7--0. The BNN relation
implies that ¢(0) and w,, are proportional [apart from the
factor of 7~ ' in A€ (Eq. (33)]. Thus, if the temperature is
lowered, the conductivity curve is displaced in direction 45°
to the x axis in the log-log plot. It is now obvious that the ac
conductivity is less temperature dependent than the dc con-
ductivity and that, for exponents very close to one, the ac
conductivity must be practically temperature independent.
In particular, this is always the case at low temperatures.

The BNN relation implies a convenient scaling princi-
ple which allows one to construct a master curve from mea-
surements at different temperatures at a fixed frequency. In
the random free-energy barrier model, the scaling principle
is reflected by the fact that the whole of o(w) is determined
from a knowledge of the two numbers ¢(0) and A€. Note
that, experimentally, A€ is usually not very far from one so it
is possible to get a rough idea of the magnitude of o' (@) just
from a knowledge of the dc conductivity: Putting Ae=1 in
Eq. (30) we get T=¢€,/0(0) which, when substituted into
Eq. (27), determines ¢'(®). In particular, at large frequen-
cies Eq. (27) implies ¢’ (@) =0(0) [wr/In*(wT) ] so arough
estimate of ¢’ (w) here is

o' (w) = €/ In* (wey/0(0)) . (49)

To summarize the paper, an important point is the irrel-
evanceof I, for o(w) in realistic situations. Letting I ,,,
go to infinity, one arrives at “‘renormalized” hopping models
for which the pair approximation never becomes valid at
high frequencies. In a sense the pair approximation is com-
plementary to the renormalized CTRW approximation, as
illustrated in Fig. 8. The frequency-dependent conductivity
of the random free-energy barrier model is quite similar to
that of 2 number of models discussed by Summerfield.** This
supports the hypothesis of quasi-universality: All models
based on a broad jump frequency distribution yield almost
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identical o(w) in the Ty, — o limit. Thus, Eq. (27) is rep-
resentative for many models. This equation is in reasonably
good agreement with experiment. It seems, however, that
the spread among experiments is larger than among theories
and one cannot really say quasi-universality applies to ex-
periments. More work has to be done to explain this. Since
quasi-universality seems to apply among the hopping mod-
els described by Eq. (7), it is possible that these linearized
models are too simple and that interactions have to be taken
into account, including that due to Fermi statistics, to ex-
plain experimental deviations from quasi-universality.

The fact that all disordered solids have similar ac prop-
erties means that only little can be learned about a solid from
measuring its frequency-dependent conductivity.3248:¢4 Po-
lak and Pike have suggested that details of any particular
conduction mechanism should be contained in deviations
from linearity in the frequency dependence, i.e., from
5= 1.*" But as is clear from the model discussed in this pa-
per, there are significant deviations from linearity 10 or more
decades above the loss peak frequency, deviations that are
solely a consequence of the low-frequency cutoff and which
provide no important microscopic information. Tentatively,
we instead suggest that details of any particular conduction
mechanism in principle could be inferred from deviations
from Eq. (27), which may be regarded as a zero-order ap-
proximation to reality, but more theoretical work is needed
before microscopic details about the conduction mechanism
can be inferred from the measured o' (w).

As regards the question of the best way to present data
we recommend the use of ¢’ (). This quantity is fundamen-
tal, being directly related to the equilibrium current-current
fluctuations.®' The use of the frequency-dependent dielectric
constant has one virtue, though: namely, that it reveals loss
peaks, the existence of which is crucial to prove that dc and
ac conduction are indeed due to the same mechanism. The
electric modulus is not recommended because this quantity
mixes in effects of €, which, if the ideas advanced here are
correct, are independent of and unrelated to the ac conduc-
tivity. In the present approach, the total admittance is a sum
of a hopping contribution and a purely imaginary dielectric
contribution from the atomic polarizability (Fig. 9).

EN

Ohoplw!

FIG. 9. Total admittance Y for a semiconducting disordered solid accord-
ing to hopping models. The admittance is a sum of the hopping contribution
discussed in the present paper, and a totally unrelated purely imaginary
contribution from the atomic polarizability given by the high-frequency di-
electric constant € . If this pictureis correct, the use of the electric modulus
in representing data is inconvenient since it mixes in effects of €., that are
independent of, and unrelated to, the hopping admittance.
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Finally, it should be emphasized again that an under-
standing of ac conduction and its relation to dc conduction is
important, even if oneis only interested in steady-state trans-
port propertieslike dc conductivity, Hallresistance, thermos
power, etc. From the present paper it seems it can be con-
cluded that a whole distribution of energy barriers is
involved in dc transport in disordered solids. Theories which
do not take this into account are incomplete.
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Alternating current conduction in disordered solids is discussed. from a general point of view. As regards experiment, it is
argued that the vbserved power~luw behavior of the frequency-dependent conductivity, o(w). is probably not fundamental,
that the Ngai relation between dc and ac conductivity activation energies follows from independent experimental facts, that
the shape of the modulus peak has no fundamental significance, and that there are interesting mechanical analogies to the
observed ac electrical behavior. As regards hopping models for ac conduction. it is shown ‘that three commonly used
arguments against the existence of a distribution of activation energies are all incorrect. Also. it is shown that o{w) = o{0))
only if there are correlations in the directions of different charge carrier jumps: in particular this result implies ¢{(w) = o(0)
for all frequencies in the continuous time random walk (CTRW) model. In the final section a number of open problems are

listed. and suggestions are made for future work,

1. Introduction

This paper discusses ac conduction in non-
metallic disordered solids. A number of remarks
are made, most of which are not new but are still
not generally appreciated. The class of disor-
dered solids with interesting ac behavior is very
large, including amorphous semiconductors [1.2],
ionic conductive glasses [3,4], conducting poly-
mers [5,6], various defective or doped crystals
[7-9], and many polycrystals [10,11].

Several different representations of ac data
are used. One possibility is the complex fre-
quency-dependent conductivity, o(w)=0"(w)+
ir”(w). A common alternative is the compiex
electric modulus, M(w)=M"(w) +iM"(w), de-
fined [12] by

M(w) = v (1)

o(w)’

Data may also be presented in terms of the
complex impedance [13,14], or in terms of the

complex dielectric constant which is defined by
o(w)—o(0)

gpe(w) = o

(2)
Here, ¢, is the vacuum permittivity. The negative
imaginary part of e(w), €”{w), is referred to as
the dielectric loss.

AC conduction in quite different disordered
solids shows a number of common features, a
surprising fact which is often overlooked. For
each of the above listed classes of glassy solids
one observes, almost without exception [15-19],
that at high frequencies o '(w) follows a power-
law with an exponent s in the range 0.7-1.0; s
goes to 1 as the temperature goes to zero. Around
the dielectric loss peak frequency, w,, there is a
transition to a frequency-independent conductiv-
ity below . The Barton-Nakajima-Namikawa
(BNN) relation [20-22] is satisfied:

o (0) =p degywy,, 3

where Ae = €(0) — e(x) and p is a numerical con-
stant of order one. Finally, the time—temperature

H022-3093 /91 /503.50 © 1991 ~ Elsevier Science Publishers B.V. All rights reserved
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superposition principle is usually obeyed, i.e., the
fact that the shape of the o'(w) curve is tempera-
ture-independent when plotted in a log-log plot.

The BNN relation signals an important corre-
lation between dc and ac properties. It applies to
most disordered solids with a large charge carrier
concentration, the solids which are of interest
here. If the loss is not due to migrating charge
carriers but is ‘'dipolar in origin, one does not
expect the BNN relation to be obeyed; clearly in
such solids any dc conduction would have nothing
to do with the dielectric loss due to the dipoles.

The outline of the paper is the following. In
section 2, some points relating to experiment are
discussed. Section 3 is devoted to hopping models
for ac conduction. Section 4 deals with a number
of open problems and gives suggestions for future
work. Finally, section 3 is the conclusion.

2. Remarks relating to experiment

2.1. The observed power~law frequency depen-
dence of the conductitity is hardly fundamen-
tal

The commonly observed large-frequency
power—law

o'(w) aw’ (4)

is deduced from [log o'(w)] having a linear de-
pendence on log w. Since both frequency and
conductivity usually vary several decades, it is
reasonable to plot data in a log-log plot. How-
ever, log-log plots are dangerous; an old saying
(23] warns: “Almost anything is a straight line in a
log—log plot”. The term “anything” refers to any
function f(x) which changes several decades
when x changes several decades. To illustrate
this point, fig. 1 shows a log-log plot of o'(w)
where o(w) is given by
lwT

o(w) =0(O)m.

(5)
This function gives a reasonably good fit to many
data [19]). (There is, of course, always an addi-
tional purely imaginary contribution to the con-
ductivity from the infinite frequency dielectric

logl{o'(w)/a(0))

log{wyv
Fig. 1. Log~log plot of the real part of the function o(w)
given by eq. (5). Although there is no power-law in this
function, it follows closely a power—law at high frequencies.
The function gives a good fit to many data [19}; this illustrates
that one cannot conclude from experiment that a power-law
frequency dependence of the ac conductivity of disordered
solids is fundamental. The vertical line marks the dielectric

- loss peak frequency which is always found where the conduc-

tivity starts increasing.

constant.} At high frequencies, ¢'(w) follows
closely a straight line in-the log-log plot, al-
though there is no power-law hidden in eq. (5).
Most 'workers would report an exponent around
0.8 for data following fig. 1. There is no problem
with this as long as one speaks only about approx-
imate power-laws. However, there is no basis for
concluding from o'(w) measurements that
power—laws are fundamental, as is sometimes
done [24-26]. If one wants to look into the exis-
tence of exact power—laws in data, a much more
sensitive method is to study the inverse loss tan-
gent, as shown recently by Niklasson [27].

2.2. The Ngai relation is a consequence of the BNN
relation and the time—temperature superposi-
tion principle

The Ngai relation [28] correlates three quanti-
ties, the activation energy of the dielectric loss
peak frequency, AE , the ac conductivity activa-

tion energy, AE, ., and the exponent s of eq. (4),

as follows:

AE, =(1-5)AE,. (6)
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The quantity AE_. is defined as minus the slope
of the tangent in the plot of log(c'(w)) versus

T-!. In general, this quantity, as well as the-

exponent s, depend on temperature: Equation (6)
is confirmed by experiment (28] (AE,. is some-
times derived from NMR experiments which,
however, give the same activation energy as that
of ac conduction [4,29]). As illustrated in fig. 1,
the loss peak frequency, @, is the characteristic
frequency for the onset of ac conduction. Since
the dielectric loss strength,” Ae, is only weakly
temperature-dependent, the essence of the BNN
relation s an approximate proportionality be-
tween o(0) and w,. Remember that the time—
temperature superposition principle is the fact
that, at different temperatures, one obscrves in
the log—log plot parallel displacements of the
same o '(w) curve. Because of the proportionality
between o(0) and w,, as the temperature
changes, the o'(w) curve is displaced in a direc-
tion 45° to the x-and y-axis. Since activation
energies are given as derivatives of the logarithm,
it is now straightforward to show that eq. (6) is
automatically obeyed whenever o'(w) follows an
approximate power—law with exponent s.

2.3. The shape of the modulus peak has no funda-
mental significance

For all disordered solids the imaginary part of
the electric modulus, M"(w), has a peak at a
frequency which is usually of the same order of
magnitude as w_,. The shape of the modulus peak
is often attributed to a spectrum of relaxation
times [12,30]. This spectrum, however, has no
significance relative to the motion of the mobile
charge carriers. This is because there is always, in
parallel to the charge transport due to the mobile
charge carriers, the current due to the infinitely
fast dielectric displacement. The strength of the
latter current is given by the infinite frequency
dielectric constant, ¢,. If €, is changed, the shape
of M"(w) is affected [31]. This dependence is
illustrated in fig. 2 where the loss modulus is
plotted in a log-log plot for hypothetical solids
with charge carrier contribution to the conductiv-
ity given by eq. (3) but with different values of €.

Loglloss Modulus}

-4 -3 —? =1 [} 1 2 3 4

LogiFrequency)
Fig. 2. Log-log plot of M "(w) for hypothetical solids with the
same hopping contribution to the conductivity but with differ-
ent high frequency dielectric constant. The conductivity is
given as a sum of eq. (5) and the purely imaginary contribu-
tion iwege,. The figure shows the dimensionless quantity
M"(w)o(Q)r as function of @+ for three different values of
a=¢eye. /o{r.

2.4. There are close mechanical analogies to the
observed ac behatior

{a) Many ionic conductive glasses have an in-
ternal friction loss peak at the dielectric loss peak
frequency {4,32,33]. This mechanical loss must be
due to ionic motion and thus mechanical and
electrical properties of ionic glasses are strongly
correlated.

(b) The frequency-dependent viscosity, n{w),
of a typical highly viscous liquid, e.g., a polymeric
liquid, looks very much like 1/0(w) for a typical
disordered solid. Thus, at low frequencies | n{w)|
is constant whereas at higher frequencies | n{(w)|
decreases like an approximate power-law [34].
Now, suppose a foreign microscopic particle is
introduced into a viscous liquid. If the particle is
described by hydrodynamics. its frequency-depen-
dent mobility (velocity/ force) varies as 1/n(w).
Thus, the particle moves about in the liquid much
as a charge carrier moves about in a disordered
solid. Conductivity measurements on ions dis-
solved in viscous liquids, where the observed con-
ductivity is indeed like that of a disordered solid,
confirms this picture [35,36].
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3. Remarks relating to hopping models

" In hopping models, dc and ac conduction are
both due to hopping charge carriers [37]. The
solid disorder is usually incorporated by assuming
randomly - varying transition rates I'(s’ — s) for
transitions from site s’ to site s. If P(s, ¢) is the
probability for a particle to be at site s at time ¢,
a hopping model is described by the master equa-
tion {37,38]

95(—;7’:—) =~y P(s,t)+ Y.IT(s" >s)P(s', t),
(7N

where

'ys=Z;I“(s—->s’). (8)

Equation (7) applies to the most commonly stud-
ied case of a system of non-interacting charge
carriers. It refers to the zero external field situa-
tion. More generally, I’ depends on the external
field, but the fluctuation-dissipation theorem al-
lows one to calculate o(w) purely from a knowl-
edge of the zero field jump frequencies. It can be
shown that in hopping models o'(w) is always an
increasing function of w [39]. No exact analytical
methods are available for evaluating o(w), but
various approximate methods exist [37,38.40,41].

3.1. Three common arguments against hopping
models are all incorrect

In most hopping models the variation in hop-
ping rates is assumed to derive from a spread in
activation free energies, P(AF). The following
three arguments have traditionally been put for-
ward against the existence of any P(AF).

(a) “Any distribution of activation energies im-
plies the dc conductivity is non-Arrhenius.” This is
not necessarily true; in some models ¢(0) is in-
deed Arrhenius with an activation energy which
is simply the maximum barrier encountered on
any ‘percolation’ path between the electrodes. In
one dimension, exact results are available [42,43].
Here. p(AF) = constant, or more generally

P(AF) proportional to exp(—AF/AF,), give an

exactly Arrhenius o(0) if a sharp cut-off at a
maximum activation energy is assumed. Similar
results are obtained from the approximate analyt-
ical methods available in three dimensions
{37,38,40,41].

(b) “The BNN relation implies that ac conduc-
tion is due to processes with activation energy equal
to that of o(0).” The BNN relation implies that
the dielectric loss peak frequency has the same
activation energy as o(0). However, this does not
rule out the possibility of a distribution of activa-
tion energies being responsible for the frequency
dispersion. Thus, in most hopping models w,,
corresponds to the lowest effective jump fre-
quency and this quantity is determined by the
maximum energy barrier, just as o (0) is itself [44].

(c) “The time—temperature superposition princi-
ple contradicts the existence of a distribution of
energy barriers.” In some cases it can be clearly
excluded that a distribution of activation energies
is responsible for the observed frequency disper-
sion {45]. In gencral, however, this possibility
cannot be ruled out. In particular, it is incorrect
to claim, as is often done, that the existence of a
distribution of activation energies necessarily im-
plies a broadening of the distribution of relax-
ation times as the temperature is decreased,
thereby violating the time-temperature superpo-
sition principle. First, for experimental reasons,
the time-temperature superposition principle is
usually checked only over a relatively narrow
range of temperatures and frequencies; here any
sufficiently broad distribution of activation ener-
gies will obey the time-temperature superposi-
tion principle rather accurately. Second, for the
flat distribution of activation energies, p(AF) =
constant, the time-temperature superposition
principle is obeyed exactly. In this case, the distri-
bution of jump frequencies varies as I'~! at all
temperatures. Thus, as long as one assumes a
sufficiently broad distribution of activation ener-
gies, approaching the flat distribution, there is no
contradiction with experiment.

Traditionally, points (a), (b) and (c) have been
thought to imply at most a quite narrow p(AF),
which obviously cannot account for the observed
very broad loss peaks. This is why an early model
like Stevels’ and Taylor’s random potential en-
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ergy model from 1957 (46,47] was never consid-
ered a serious candidate for explaining experi-
ments.

3.2. The conductivity is frequency-dependent only
if there are correlations between the directions
of charge carrier jumps

Thus, if each jump occurs in a random direc-
tion one has o{w)=0(0) at all frequencies [38].
To prove this result, we first recall the fluctua-
tion—dissipation theorem which expresses o(w)
in terms of the zero-field auto-correlation func-
tion of the total current in volume V¥, J(¢), in the
following way [48]:

1
3kgTV

o(w) = /0 JO)J()e ™ dr. (9)
Here kg is the Boltzmann constant and T is the
temperature. In hopping models the jumps are
instantaneous and J(t) is a sum of delta func-

tions. If the ith jump occurs at time, 7, and

displaces a particle by Ar;, one has

J(1) =g Ard(t—7), (10)
S

where ¢ is the charge of the carrier. For
{J(0)J(£)) to be non-zero at any ¢ > 0, one must
have (Ar;Ar;> # 0 for at least one pair of i <j.
However, whenever the direction of the latter
jump, Ar;, is random, one has necessarily
(Ar;Ar;> = 0. Consequently, {J(0)J(t)) is pro-
portional to &(t) and the conductivity is fre-
quency-independent according to eq. (9). This
result has two important consequences.

(a) Any random walk in a spatially homoge-
neous medium has o(w) = a(0). This is true even
for non-Markovian random walks. An important
example is the continuous time random walk
model (CTRW) of Montroll and Weiss [49]. This
model is characterized by the so-called waiting-
time distribution function, (r), which is the
probability for a particle to jump at time, ¢, given

the particle last jumped at ¢t =0. In 1973, Scher .

and Lax erroneously calculated o(w) in terms of
Y(t) [50]; the error was pointed out by Tunaley
who proved by direct calculation that there is no
frequency dispersion of the conductivity in the

Free Energy

Space Coordinates

Fig. 3. Free energy surface of a hopping mode! which, because
the direction of each charge carrier jump is random. has no
frequency dependence of the conductivity. This example shows
that a distribution of waiting times is not enough to ensure
frequency dependence of the conductivity. Also, since the
model has non-trivial transient behavior {53}, the example
shows that there is no correlation between ac conduction and
transient behavior.

CTRW model [51,52). While the CTRW model is
itself of no use as a model for ac conduction, the
formalism developed by Scher and Lax gives rise
to a very useful approximation, usually referred
to as the CTRW approximation or the Hartree
approximation {40].

(b) The existence of a distribution of relaxation
times in a hopping model is not enough to ensure
frequency dependence of the conductivity. Consider
hopping in a potential where all maxima are
equal but the minima vary (fig. 3). Obviously, in
this model there is a distribution of waiting times.
However, the direction of each charge carrier
jump is random, so o{w)=c(0). This has also
been shown by explicit calculation [53,54]. In
passing, we note that the model of fig. 3 is a
useful model for the transient behavior of photo-
excited charge carriers in amorphous semicon-
ductors {55]. Here. a brief laser pulse excites the
electrons to random states at r =0, and the cur-
rent in an external field subsequently monitors
the thermalization of the charge carriers. This
example shows that, in general, transient currents
cannot be calculated from o(w), as has been
predicted from the study of specific models
[56.571.
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4. Open problems and suggestions for future work

4.1. Are reported data always reliable and not due
to contact effects?

Electrode effects may cause serious problems
for the interpretation of measurements. One
might think it could easily be checked, by simply
varying the sample size, whether or not the bulk
response is measured. This is sometimes possible
[58]; more often, however, it is quite difficult to
prepare two samples with identical physical prop-
erties. The contacts are usually modeled as sim-
ple RC elements, implying the bulk response is
measured at sufficiently high frequencies. It has
never been proved that this procedure is correct.
In fact, it has been suggested that contacts and
interfaces play a dominant role in the whole

range of frequencies measured [59]. While this is

probably too drastic a statement, even a quite
simple model of the electrode/sample interface
predicts a non-trivial frequency dependence of
the measured conductivity, varying like o!/*
[32,60]. In conclusion, it is not obvious that all
reported data are bulk, and more work is needed
to clarify the role of contacts. ‘

4.2, Are dc and ac conduction always due to the
same mechanism?

The BNN relation shows that dc. and ac con-
duction in disordered solids are strongly corre-
lated. The simplest possibility is that dc and ac
conduction are both due to the same mechanism,
as is the case in hopping models. The existence of
a loss peak supports this; loss peaks are very hard
to explain otherwise. It should be noted that,
when there is no dielectric loss peak, a BNN-like
relation may still exist between o{(0) and the
characteristic frequency w,, defined by

o'(w,) =20(0). (11)

(If a loss peak does exist, w/, is close to w,.)
Suppose ¢'(w)=0(0)+ Aw. Then clearly w, is
proportional to ¢(0) although this does not re-
flect any relation between dc and ac conduction.
Thus, the existence of a genuine loss peak is

necessary to ensure ac and dc conduction are due
to the same mechanism. The existence of loss
peaks should always be carefully checked in ex-
periments.

4.3. There are theoretical reasons to expect €"(w)
is proportional to w'/? on the low-frequency
side of the dielectric loss peak

In hopping models, one has always o(w)=
a(0) + C{iw)*’? as w — 0 [38,61], an example of
the celebrated ‘long time tails’. However, there
seems to be no experimental evidence for this
prediction. As one of the few general predictions
in the field, it should be tested carefully on a
number of disordered solids. Unfortunately elec-
trode effects cause very serious problems for
measuring accurately the low frequency side of
the loss peak, and the prediction may be very
difficult to verify.

4.4. Does any solid exist which has o'(w) < €,w?

A puzzling phenomenon is the fact that, ap-
parently, any solid has a conductivity o '(w) which
is at least of order e,w {16].. Thus, at 1 MHz the
conductivity is never much less than 107% (Q
cm)~'. This rule seems to apply without excep-
tion, even to single crystal insulators. It could be

- a spurious effect due to contact effects [59], or

due to experimental problems in distinguishing

properly between o'(w) and o”(w) (o"(w) has’

always a sizable contribution from the infinite
frequency dielectric constant). If the effect is real,
an explanation is very much needed. Is it possible
that even the most ‘perfect’ single crystal con-
tains enough defects to account for this observa-
tion? '

4.5. What kind of measurements could supplement
the measurenment of o(w)?

The ac conductivity is the k = 0 component of
the more general quantity o(k, w) (which, by the
fluctuation—dissipation theorem, is related to
equilibrium fluctuations of the kth Fourier com-
ponent of J(r, w)). It would be interesting to
have measurements of o(k, ). For electronic
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systems, it is not obvious how to do these mea-
surements but for ionic conductors neutron scat-
tering can be applied, at least in principle. Other
important measurements to supplement ¢{(w) are
transient current experiments (available only for
electronic conductors) [62], excess current noise
measurements [63], and large field experiments
{17,32,64,65].

4.6. Is the observed ac behavior due to microscopic
or macroscopic inhomogeneities?

The mathematical description of, and predic-
tions for, inhomogeneous conductors are quite
similar to that of hopping models (11,14]. There-
fore, ac measurements alone do not reveal
whether macroscopic or microscopic inhomo-
geneities are responsible for the observed fre-
quency dispersion. It is not unlikely that, in some
amorphous systems, there are inhomogeneities
with dimensions of several hundred &ngstroms.
One way to distinguish between macroscopic and
microscopic inhomogeneities is to measure the
large field response; for macroscopic inhomo-
geneities, one expects non-linearities to set in at
much lower fields than for microscopic inhomo-
geneities [17,32,66,67). Unfortunately, electrode
problems are a serious obstacle for reliable mea-
surements of the non-linear conductivity.

4.7. There are two important open problems relat-
ing to hopping models:

4.7.1. How accurate are the presently available ap-
proximate analytical solutions of hopping
models?

Perhaps the simplest hopping model is the
random free energy barrier model which, when
solved in the CTRW approximation, yields eq. (5)
[19]. Numerical solutions of this model should be
undertaken to assess the validity of eq. (5). Pre-
liminary work shows that, in one dimension, eq.
(5) works very well {68]. In general, the question
4.7.1. remains unanswered.

4.7.2. What is the cause of the quasi-universality
among different models?

As noticed by Summerfield in 1985 [69], differ-

ent models solved in the extended pair approxi-

mation (EPA) yield almost identical predictions
for ¢(w), apart from an overall scaling of o and
w. In fact, ‘quasi-universality’ applies not only to
EPA models, but to most models studied so far.
The cause of quasi-universality is not clear. The
agreement between different hopping models is
generally much better than the agreement be-
tween theory and experiment, where quasi-uni-
versality does not really apply. This indicates that
the hopping models described by eq. (7) are per-
haps too simple. It seems likely that interactions
between the charge carriers have to be taken into
account to arrive at a realistic model- [70,71].
(Contrary to what is sometimes claimed, eq. (7)
cannot describe interacting particles [72].)

The most important question relating to hop-
ping models, of course, is as follows.

4.8. Are hopping models the correct framework for
describing experiment?

Hopping models are simple and give” reason-
ably good fits to experiments. However, it is pos-
sible that other types of models are more appro-
priate. Thus, the w® behavior of the dielectric
loss in insulating dielectrics cannot be explained
by any hopping mode! that allows a dc conduc-
tion, and the correct model for this phenomenon
could be applicable also to describe loss in con-
ducting dielectrics [24,25].

5. Conclusion

There are a number of important unsolved
problems in the field of ac conduction. Because
of this, measurements of o(w) do not yet provide
unambiguous insight into the conduction process.
More work, for instance along the lines of section
4, is needed before this goal is reached. In this
sense, ac conduction is still a field in its infancy.
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It is shown that, in the low-temperature limit, the effective-medium approximation predicts a univer-
sal frequency dependence of the conductivity of nonmetallic disordered solids: The calculation is based
on 2 macroscopic approach to ac conduction and is valid in more than one dimension. The universality
prediction is confirmed by simulations in two dimensions.

For many years ac conduction has been studied in
disordered solids such as amorphous semiconductors,
glasses, polymers, nonstoichiometric solids, or metal-
cluster compounds.'™® All disordered solids show simi-
lar ac behavior, whether the conduction is electronic, po-
laronic, or ionic. The frequency-dependent conductivity
follows an approximate power law with an exponent be-
tween 0.7 and 1.0, At lower frequencies there is a gradu-
al transition to constant conductivity. The standard
models for this are hopping models which deal with the
random walk of noninteracting charge carriers in a ran-
dom environment.””!* While hopping models are rather
successful, the importance of Coulomb interactions has
recently come into focus.'*!* Unfortunately, hopping
models with interactions are not amenable to simple ana-
lytic treatment. One way to include the effect of
Coulomb interactions between charge carriers, instead of

using hopg)ing models, is to adopt a macroscopic point of

view.'®"% This is done here where conduction in inho-

mogeneous media is discussed by exploring Maxwell’s
equations.

Consider a disordered solid with spatially varying
thermally activated conductivity g(E(r))=gge ~5E'7.
Here B is the inverse temperature and the activation ener-
gy E(r) is assumed to vary randomly in space with a
finite correlation length. In some cases the activation en-
ergy probability distribution is quite narrow; however, we
are concerned here with the low-temperature case where
the distribution of conductivities becomes very broad. If
€ denotes the dielectric constant and » the angular fre-
quency, the continuity equation and Gauss’ law imply for
the electrostatic potential ¢

V-{(ive+g)Ve]=0 . m

This equation is discretized’"?> by regarding the poten-
tial ¢ as defined on the points of a simple cubic lattice
and the quantity iwe-+g as defined on nearest-neighbor
links. In this way Eq. (1) becomes the Kirchhoff current
conservation law for a lattice where each link is a resistor

47

in parallel with a capacitor. If a is the lattice constant
and D the dimension, the correct continuum limit is en-
sured if each link admittance y is given by

-2

y=a""Hive+g) . @
The electrical circuit is not to be interpreted literally as a
physical model of the solid because the free charge
currents run through the resistors only; the capacitor
currents are the well-known displacement currents.
However, the circuit is useful for calculating the macro-
scopic frequency-dependent free charge conductivity
o{w), i.e., the ratio between average free charge current
and average electrical field. If L is the linear circuit di-
mension and G(w) is the admittance between opposing
short-circuited faces, it is straightforward to show that,
whenever ¢ is space independent, o(w) is given® by

Glw)
LD—-Z

aglw)= —~iwe . (3)
If the discretization length a is chosen to be the correla-
tion length for E(r) and correlations beyond a are ig-
nored,2!*?* the effective-medium approximation (EMA)
may be applied to calculate G.'%?' The EMA
equation for the effective-link admittance, y,, is
(g =y /[y +(D—1)p,,1),=0 where the bracket
denotes an average over the admittance probability distri-
bution. Since G =NP?~%  where N=L /a, the EMA
equation and Egs. (2) and (3) imply (where s =iwe)

! =< ! ) (4)
Dioc+s) \g(E)Yr(D~Vo+Ds[g "’
This equation has a simple solution in the limit 8— .
The root E =E(s) of g(E)=(D —1)o +Ds is given by
1 (D —1)g+Ds
_ln _— TV
B £o

If p(E) is the activation-energy probability distribution,
Eq. (4) at low temperatures becomes

E (s)=— (5)
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1 _ 1 ©
Dlg+s) (D—1)o+Ds fs,m"(E)dE ©

or
D_—l_+_S__= ®
D D(o+s) Egls)

For large B subtracting the s=0 case of Eq. (7) from Eq.
(7) itself leads to

p{(EMIE . )

s _ [
D(a+s) fE'ls)

a D 5

= 1
=p(E,(0)<In ST

B o(0)

(8

Introducing the dimensionless variables

-_C = B
7750 T Dp(E, 0o @

Eq. (8) for B— co reduces to
FIn(g)=73 . (10)

Equation (10) was derived by Fishchuk for the uniform
energy barrier distribution with cutoffs where the average
in Eq. (4) can be calculated explicitly.?® Here it has been
shown that, in the low-temperature limit, the EMA pre-
dicts a universal frequency dependence of the conductivi-
ty (in any dimension D >1). There is, however, some
doubt whether the EMA is reliable for systems with ex-
tremely broad distributions of admittances.?>2% There-
fore, computer simulations were carried out to test Eq.
(10). At low temperatures large lattices are needed to ob-
tain reasonable statistics, and the simulations are quite
demanding. Only the two-dimensional case was studied
where the highly efficient Frank-Lobb algorithm is avail-
able.?” For simplicity the simulations were carried out
for real 3; by analytic continuation this is possible when
the purpose is to compare the simulation results to an an-
alytic function. Bonds were defined via Eq. (2) where g is
given by a randomly chosen activation energy. Several
different activation-energy distributions were used. The
conductivity was evaluated from Eq. (3). Averages of 20
simulations of a 100X 100 square lattice are shown in Fig.

1. The results confirm the EMA prediction of universali- °

ty as the temperature is lowered. The universality
represents a new type of regularity, appearing gradually
as the “relaxation time distribution” becomes extremely
broad. The universality is not a consequence of a diverg-
ing correlation length, as for a second-order phase transi-
tion, and there are no critical exponents. While Eq. (10)
and the simulations are concerned with the free charge
contribution to the conductivity only, it is easy to show?
that the dipolar.contribution to the total conductivity is
insignificant at low temperatures in the frequency range
of interest. Thus, both prediction and simulations may
be thought of as concerned with the total conductivity.
The observed universality reflects the fact that for
T —0 all energy distributions eftectively tend to the uni-
form distribution so the conductance distribution be-
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FIG. 1. Log-log plot (base 10) of the dimensionless conduc-
tivity & as function of the real dimensionless Laplace frequency
¥ (both guantities defined in Eq. (9)] at different temperatures.
The full curve is the EMA prediction for the low-temperature
limit of & (3) {Eq. (10)], while the symbols represent simulations
in two dimensions for different activation energy probability
distributions. B is the inverse dimensionless temperature. Each
point represents the average of 20 simulations of a 100 X 100 lat-
tice. The total admittance was determined by the Frank-Lobb
algorithm (Ref. 27) and & subsequently found from Eq. (3). Re-
sults are shown for the following activation energy probability
distributions: (&), p(E)=(1/VI7)e E? (—0 <E <w);
(@), p(E)=} (—1<E<I) (A), p(E)=Q2/mN1+E}
(0<E<w); (0), plEYy=e £ (0<E <o) (+), p(EY=2E
{0< £ <1). In each case the distribution should be thought of
as cEentered around an energy Ey; this gives an extra factor
e ° to both conductivity and frequency without changing &
or 3. The quantity E,{0} in Eq. (9) is the dc conductivity activa-
tion energy [Eq. (5)] which is easily determined from the fact
that the percolation threshold is 1 in two dimensions (Refs. 21,
23. 35, and 36).
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comes P(g)~1/g. However, it is noteworthy that even
at Jow temperatures there is a sharp cutoff in the “‘relaxa-
tion time distribution.” This is due to the existence of a
percolation threshold. .

" The asymptotic behavior 0~7 found for T~ is a
subtle effect which is not directly due to the capacitors
[since the capacitor currents do not contribute to the
conductivity in Eq. (3)]. Indirectly, however, the capaci-

tors do give rise to the observed frequency dispersion via -

their influence on the node potentials that in turn deter-
mine the resistor currents.

The EMA equation (10) was first derived by Bryksin
for a model of noninteracting electrons tunneling between
positionally disordered sites;?® it has also been shown to
apply for a hopping model with a box-type distribution of
energy barriers.’ Hopping models are neither physically
nor mathematically equivalent to the macroscopic ap-
proach taken here. But both types of models lead to
large sparse matrix equations expressing local current
conservation. In view of the present findings it seems
likely that, in the limit of severe disorder, the EMA for
any problem of this type leads to Eq. (10) for the
frequency-dependent conductivity {or diffusion constant).

An important and well-established experimental fact is
the Barton-Nakajima-Namikawa (BNN) relation, =3
i.e., the rule that the characteristic frequency for onset of
ac conduction has the same activation energy as o{0).%
This follows directly from Egs. (9) and (10) [a reduced
frequency definition similar to Eq. (9) was used for hop-
ping models by Scher and Lax®> and by Summerfield**].
It is easy to understand qualitatively why the BNN rela-
tion is valid here. In the dc limit the current follows the
“critical” percolation paths giving the easiest ways be-
tween the electrodes.’® As the frequency increases there
is little effect until, for s ~s,, s is of order the lowest con-
ductivity o, met on a critical path. On the other hand,
the dc conductivity is also determined by @, ¢ and
thus one expects o{(0)~s, which is the essence of the
BNN relation.

In three dimensions the EMA has the percolation
threshold somewhat wrong,?' so the predicted dc con-
ductivity activation energy is also wrong. However, Eq.
{10) may still be valid in three dimensions at low tempera-
tures. Summerfield has conjectured a “quasiuniversality”
for the frequency dependence of the conductivity.3* This
idea fits nicely into the present work that predicts true
universality only in the zero temperature limit. Compar-
ing to experiments, it has been shown elsewhere® that all
qualitative features of experiment follow the equation
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T=3/In(1+3) . (Y

Equation (11), which clearly is an approximate solution
of Eq. (10}, represents the admittance of a single critical
path.?? Both equations predict an approximate power-
law frequency dependence of the real part of the conduc-
tivity where the exponent at the real frequency &=—i73
is equal to 1—2/In(&).>*® A few decades above the on-
set of ac conduction, the exponent is predicted to be 0.8,
in agreement with most experiments. Thus, there are cer-
tainly no experimental reasons to reject Eq. (10 as a-low-
temperature limiting universal frequency dependence of
the conductivity in three dimensions.

Some time ago Pollak and Pike suggested that details
of the conduction mechanism should be contained in de-
viations from linear frequency dependence of the conduc-
tivity.>” While Eq. (10) approaches proportionality & < ¥
for ¥— oo, there is a significant nontrivial frequency
dependence in a very large frequency range. If the pre-
dicted universality is indeed valid also in three dimen-
sions, there is little information in a conductivity that fol-
lows Eq. (10). It seems therefore that experiments could
naturally be interpreted in terms of deviations from Eq.
(10), representing the low-temperature fix point, rather
than in terms of deviations from linear frequency depen-
dence.

The EMA assumes admittances that are uncorrelated
above the lattice spacing, the discretization length a. The
present results may be compared to recent simulations of
interacting charged particle hopping on a disordered lat-
tice, where it was found that the dispersive regime is due
to the blocking effect on very short distances.'> Possi-
bly, the length a may be identified with this range of
length scales.

In conclusion, it has been shown that the EMA pre-
dicts a universal frequency dependence of the conductivi-
ty for disordered nonmetals at low temperatures. Simula-
tions in two dimensions have confirmed not only the
qualitative universality prediction, but the quantitative
EMA prediction as well, Finally, we note that since hop-
ping models often follow Eq. (10), one cannot distinguish,
from ac measurements alone, between these two ap-
proaches to the modeling of ac conduction in disordered
solids. :

The author wishes to thank N. B. Olsen and P. V.
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This paper discusses a macroscopic model for ac conduction in electronically or ionically conducting
disordered solids. The model considers ac conduction in an inhomogeneous solid that is characterized
by a spatially randomly varying thermally activated (frequency-independent) conductivity. Discretizing
Maxwell’s equations leads to an equivalent electrical circuit that is a simple-cubic lattice where each pair
of nodes are linked by a resistor and a capacitor in parallel.. The values of the resistors are determined
by the local resistivity while the capacitors are all equal, given by the infinite-frequency dielectric con-
stant. It is shown that the capacitor currents are Maxwell’s displacement currents. Assuming uncorre-
lated resistances, the model is solved analyticaily at low temperatures in the effective-medium approxi-
mation (EMA) and in a naive percolation-path approximation. Both approximations predict similar
universal ac responses as T-—0, where the macroscopic frequency-dependent conductivity becomes in-
dependent of the activation-energy probability distribution. The universality represents an unusual type
of regularity appearing in the extreme disorder limit. The universality prediction is tested by computer
simulations of 200X 200 lattices in two dimensions and of 50X 50X 50 lattices in three dimensions. The
computer simulations show that the EMA works very well in two dimensions in the whole temperature
range studied; in particular, the low-temperature universality prediction is confirmed. In three dimen-
sions the universality prediction is confirmed as well.

1. INTRODUCTION

Alternating current conduction in disordered solids
has been studied during the last 40 years.'”? Numerous
papers have appeared, especially after 1970, reporting the
frequency and temperature dependence of the electrical
conductivity in electronically or ionically conducting
disordered solids like glasses or various forms of imper-
fect crystals. With modern frequency analyzers the mea-
surements are fast and fairly straightforward. A consid-
erable amount of work has gone into developing theories
of ac conduction, with the main focus on hopping mod-
els.®~ 1% Despite this, it is still not clear what the correct
model is for ac conduction (in particular, whether macro-
scopic or microscopic inhomogeneities are responsible for
the frequency dispersion), and it is unknown when and if
Coulomb interactions are important.'*'? Consequently,
the interpretation of data is highly subjective and few ex-
amples exist of ac measurements yielding unambiguous
information about charge carrier motion in a bulk disor-
dered solid.

Besides the lack of understanding of ac phenomena,
there is another problem with the application of im-
pedance spectroscopy to disordered solids: These solids
show remarkably similar behavior in regard to their
frequency-dependent conductivity and its temperature
dependence.'”*1> Thus, all disordered solids have an ac
conductivity which depends on frequency as an approxi-
mate power law where the exponent is less than but close
to one and goes to one as the temperature goes to zero.
.Furthermore, one observes in all cases a much less pro-
nounced temperature dependence of the ac conductivity
than that of the dc conductivity.

The present paper discusses a macroscopic model for
ac conduction. The model, which is conceptually simpler

0163-1829/93/48(17)/12511(16)/506.00 48
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than the popular hopping models, investigates the ac
consequences of a spatially varying electrical conductivi-
ty. The model is based on the well-known Maxwell-
Wagner effect, i.e., the fact that inhomogeneities give rise
to a frequency dependence of the conductivity because
charge carriers accumulate at the boundaries to less con-
ducting regions, thereby creating dipolar polarization.
While a number of papers have discussed the dc conduc-
tivity of disordered solids with macroscopic inhomo-
geneities, little work has gone into studying the ac as-
pects. In this paper, that extends and details a recent pa-
per,'* the model is derived from Maxwell’s equations, as-
suming the local conductivity is thermally activated. Itis
shown how to discretize the model and two approxima-
tions are applied, focusing on the low-temperature limit
of the model. Both approximations predict a universality
of the ac response as T goes to zero. This prediction is
confirmed by computer simulations in two and three di-
mensions.

The paper is organized as follows. In Sec. II, a brief re-
view is given of the experimental observations and of the
models hitherto studied. In Sec. III, the macroscopic
model is formulated and discretized, and in Sec. IV, two
analytical approximations are applied to the model, the
effective-medium approximation (EMA) as well as a naive
percolation path analysis. In Sec. V, the results from ex-
tensive computer simulations are reported, and finally
Sec. VI contains a discussion.

II. THE PHYSICS OF ac CONDUCTION
IN DISORDERED SOLIDS

The first systematic works on ac conduction in disor-
dered solids were the “dielectric” studies of ionic conduc-

©1993 The American Physical Society
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tive oxide glasses.’>~!7 Soon after, in 1961, Pollak and
Geballe'? reported ac measurements on n-type doped
crystalline silicon at helium temperatures (where the dis-
order due to the random substitution of the dopants be-
comes important). Only much later was the similarity be-

tween the ac response of ionic glasses and of electronical-_

ly conducting disordered solids noted.!™*!> During the
last 20 years a large number of publications have report-
ed ac measurements on disordered solids like amorphous
semiconductors,*1® fast ionic conductors,”’ non-
stoichiometric or polycrystals,2®2! jonic or electronically
conducting polymers,?2% metal-cluster compounds,?* po-
laronically conducting transition-metal oxides,*? organ-
ic semiconductors,’ or high-temperature superconduc-
tors above T,.”

Experimental data are usually reported in terms of the
real part o'(w) of the frequency-dependent conductivity,
o(w)=o'(w)+ic"(w). There are, however, alternatives
to this means of representation. Early publications on
ionic glasses presented data in terms of the negative
imaginary part €''(@) of the complex dielectric constant
elw)=¢€'{w)—ie"(w) defined by

_olow)—ald)
elw)=——"""—".

@

(1)

Presently, data for ionic systems are often given in terms
of the electric modulus M(w) defined® by M(w)
=iw/o(w) (though it has been argued that this is not a
good means of presenting data).?>® Finally, there is also
the possibility of using the complex resistivity
plo)=1/c(0).!

As mentioned above, all disordered solids exhibit the
same qualitative ac behavior: Around the dielectric loss
peak frequency marking the maximum of €"(w), w,,
o'(w) starts to increase, and for 0 >>w,, o'(w) follows
an approximate power law: ¢'(@)=o". This behavior
continues right up to phonon frequencies where the con-
ductivity around w=10'2 Hz is of order 1 (Qcm)™ 1.3
The signature of a power law is a straight line in a log-log
plot. There is some controversy as to whether the ob-
served power laws are truly fundamental®>** ™% or just an
approximate description.®*® In any case, the exponent n'
is always between 0.7 and 1.0 (the only exception seems
to be one-dimensional conductors),*®3’ and one always
finds that n’ goes to one as the temperature goes to zero.
The ac conductivity is always less temperature dependent
than the dc conductivity (when viewed in the usual log-
log plot), and for T—0 the ac conductivity becomes al-
most temperature independent. The dc conductivity usu-
ally follows an Arrhenius law. An important universal
observation is the Barton-Nakajima-Namikawa (BNN)
relation,¥ ™2

o(0)=phcw,, , (2)

where A€ is the dielectric loss strength, Ae=¢€'(0)
—¢€'( ), and p is a numerical constant of order 1. Since
A€ depends only weakly on temperature, the BNN rela-
tion implies that the activation energy of o(0) is equal to
that of @,,."7 In the majority of disordered solids o'(e)
obeys the time-temperature superposition principle, i.e.,
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the fact that at different temperatures one observes the
same function o'(w) just scaled (i.e., displaced in the log-
log plot). This, in conjunction with the BNN relation
and the Debye law Aex T, shows that the dimension-
less conductivity #=o(w)/0{0) is a -function of
©/[To(0)].**7% A convenient name for the fact that all
disordered solids show the same qualitative ac behavior is
to refer to it as “quasiuniversality.”**

The early experiments on ac properties of ionic glasses
were interpreted in terms of a distribution of relaxation
times for associated Debye processes, as is common for
dielectric relaxation in liquids.* Workers in semiconduc-
tor physics in the 1960s proposed the pair approximation
as a model for the ac loss.*”"** This model assumes the
loss is due to independent pairs of sites in the solid, where
each pair provides two possible positions for a localized
electron. Mathematically, this corresponds to the
description in terms of Debye processes in parallel that
was used in the early work on ionic glasses.

In the pair approximation there is no dc conduction.
This has to be assumed to be derived from a completely
different process, whereby the BNN relation becomes
very hard to understand. Furthermore, the pair approxi-
mation cannot explain the fact that the exponent n’ goes
to one as T—0. A version of the pair approximation, the
correlated barrier hopping model, has been proposed by
Elliott.%* This model explains the low-temperature
behavior of n’ as a consequence of Coulomb force con-
trolled variable range hopping and the model has a
nonzero dc¢ conductivity because the pairs are not isolat-
ed from each other.

A number of authors have considered phenomenologi-
cal and intuitive models based on networks composed of
resistors and capacitors,!'2:28:3450=55 [p, the present pa-
per, following Springett, Webmann er al., Sinkkonen,
and Fishchuk,”*~% a resistor-capacitor network is also
arrived at, but here it is derived directly from Maxwell’s
equations.

In the last 15 years a number of models have ap-
peared 337358062 emphagizing the power-law behavior
of o'{w) which is regarded as fundamental, much like the
power laws for second-order phase transitions found
close to T,. Thereby, fractal aspects of the conduction
process are emphasized.?>%* Power laws also result if it is
assumed that the phase difference between field and
current is frequency independent.5

The most thoroughly studied models for ac conduction
in disordered solids are probably the so-called hopping
models.3” ' A hopping mode! considers the random walk
of (usually) independent charge carriers in a disordered
structure. If the charge carrier sites are marked s and
I'(s—s’) denotes the rate for jumps from site s to site s’,
a hopping model is characterized by the following master
equation for the probability of finding a charge carrier at
site s, P(s,1),

aP(s,t) _

= 3 Tls—s)P(s,1)+ 3 T(s'—s)P(s",1) .
at < g

(3

The jump rates that are commonly taken to be an ex-
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ponential function of an activation energy and/or a tun-
neling distance, are usually assumed to vary randomly
and to be nonzero only for nearest-neighbor jumps. The
frequency-dependent conductivity is=calculated from the
Kubo formula®>% that in D dimensions is

. 1
olo)= lim T

[T QO 3e) e, @

where J is the total current in the volume V.

Hopping models are complex and cannot be solved
analytically. To evaluate oTw) either one has to comput-
er simulate, or to use some analytical approximation. An
early approximation was the. continuous time -random
walk (CTRW) approximation of Scher and Lax.** Today
the CTRW is regarded as the simplest available approxi-
mation, a mean-field Hartree-type approximation®’ (note
that the original derivation that converted the disordered
Markovian hopping model to.a non-Markovian random
walk in a homogeneous medium was inconsistent).’
The standard approximation for disordered systems,
which is often also used for hopping models, is the
effective-medium approximation (EMA).>6"6~71 A re-
lated approach is the extended pair approximation (EPA)
of Summerfield and Butcher.”

Hopping models usually assume noninteracting charge
carriers. Thus, the self-exclusion effect (allowing at most
one particle at each site’®) is ignored, as well as are
Coulomb interactions between the charge carriers. Re-
cent work includes these effects,'? but at the price that
the model becomes very complex and can only be studied
by means of computer simulations. The macroscopic
model considered in the next section includes Coulomb
interactions via Gauss’ law, without becoming extremely
complex.

II1. THE MACROSCOPIC MODEL
AND ITS DISCRETIZATION

This section deals with setting up the equations
governing ac conduction in a solid with a spatially vary-
ing (frequency-independent) conductivity.'#>~% Tt is as-
sumed that the solid has free charge carriers character-
ized by a local conductivity denoted by g(r), as well as
bound charges described by the spatially constant dielec-
tric constant €, equal to the w— o limit of e(w) in Eq.
(1). It is not entirely unproblematic to assume distin-
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further justification.

The quantity of interest is the macroscopic free charge
carrier conductivity, defined as the ratio between the spa-
tially averaged free' charge curfent density and the spa:

 tially averaged electric field. If D denotes the displace-

ment vector, J the free charge carrier current density,
and ¢ the electrostatic potential, the basic constitutive
equations are

D(r,t)=r—e,,V¢(r,t)
J(r,t)=—g(r)Ve(r,t) .

(5

These equations should be combined with Gauss’ law
V-D(r,t)=pl1,t)} (6)

(where p is the free charge carrier density) and the con-
tinuity equation

ALO+V-Ir,=0. o

In a periodically varying field all quantities are written
as a factor ¢ times a function of space. Thus, the con-
tinuity equation becomes iwp-+V-JF=0. Substituting
Egs. (5) and (6) into this expression and introducing the
“Laplace frequency”

s=iwe, , 8)

one arrives at the following equation for the electrostatic
potential:

V-{[{s+g(r)]Vs(r,s)}=0. 9)

In terms of ¢ the average current density is given by
=1 -
CXs)= nyg(r)[ -Vé(r,s))dr . (10)

We now turn to the discretization of Eq. (9).'%%° A
discretization is necessary for solving the equation nu-
mericaily, but it is also useful for developing an intuition
about the problem and arriving at approximate analytical
solutions. The discretization will be performed in D di-
mensions. It is assumed that the function é(r,s) is
known only at the points of a simple-cubic lattice with
lattice constant a. If Eq. (9) is considered at the lattice
point with coordinates (n,a,...,npa), the first of the D
terms on the left-hand side becomes upon discretization
(for simplicity only the first coordinate is written out ex-

guishability between free and bound charge carriersinac  plicitly, the remaining unchanged coordinates are
fields,” but the assumption will be made here without  n,4,...,npa)k:
_ 1
3 36 - ,
Fre (5+g)-a;— (nya,s)y=a " |{s+glln +1)al}{dé[(n;+a,s]—d(n,a,s5)} (in
1 1

—{s+gln,—Hal}{¢tna,s)—¢[tny—1a,s1} | .

There are D — 1 other similar terms, and Eq. (9) becomes
the condition that the sum of all D terms is zero.
Remembering the definition of s [Eq. (8)], this zero sum
requirement is rccognized as the Kirchhoff current con-
servation law for a lattice where each link is a resistor

f
and a capacitor in parallel (Fig. 1). Each link admittance

y is given by y=K(s+g), where K is a constant that is
determined from requiring the correct continuum limit of
the frez charge current density J: If the resistor current
is I, 1 is numerically given by J=Ig/a” 1. On the
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other hand, if the potential drop across a link is denoted
by A¢ one has I =KgAd and J=gA¢d/a. Combining
these equations we find K =a” ™2, so the link admittance
is given by

y=a®"Hs+g). 12)

The circuit of Fig. 1 is not a direct physical representa-
tion of the solid. This is because, while the resistor
currents are indeed the true free charge currents, the
capacitor currents are “ghost” currents that are not just
the currents due to the actual displacement of the bound
charge carriers. For instance, if €, =¢; (the vacuum per-
mittivity), there are no bound charges but the capacitors
are still important in the circuit. The correct interpreta-
tion of Fig. 1 is the following: In an external ac field the
circuit determines the electrostatic potential. This poten-
tial in turn determines the free charge currents as those
running through the resistors. Clearly, the capacitors
give rise to a frequency dependence of the overall circuit
admittance, but this is not the effect we are looking for.
The frequency dependence of the free charge currents
comes about only as an indirect effect of the capacitors
because of their influence on the node potentials.

In the real solid the free charges accumulate at certain
places. In'Fig. I, the role of the capacitors is to exactly

FIG. 1. Electrical equivalent circuit of Maxwell’s equations
discretized in 2D for an inhomogeneous conductor. Similar cir-
cuits exist in higher dimensions. All capacitors are equal while
the resistors vary, reflecting the spatially varying conductivity
of the solid. In the model studied here the resistors are assumed
to be thermaily activated and vary randomiy and uncorrelated
from link to link. In any external field the electrostatic poten-
tial is found from Kirchhoff’s equations. The currents through
the resistors are the free charge currents. The capacitor
currents are Maxwell’s displacement currents (parts of which
are due to the bound charges and parts of which are “ghost™
currents). The capacitor currents are nonzero in an ac field,
thus allowing bound and free charge accumulation (the
Maxwell-Wagner effect) without violating the Kirchhoff equa-
tion expressing the fact that there is no “total charge” (bound
charge +f{ree charge + “ghost™ charge) accumulation at a node.
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compensate the free charge accumulation, so that there is
no “total charge” accumulation at any node. It follows
from Eq. (12) that the continuous analogue of the capaci-
tor current is nothing but the well-known Maxwell dis-
placement current J, =D. At first sight this may seem
surprising since the displacement current is usually intro-
duced in connection with completing Maxwell’s equa-
tions to ensure that V-(VXH)=0. But this is done by
adding to the free charge current J the term J, =D so
constructed that the divergence of J+J, is zero. The
equation V-(J+J,)=0 follows from Egs. (6) and (7); in
an ac field this condition is nothing but Eq. (9).

The macroscopic frequency-dependent free charge con-
ductivity may be calculated from the overall circuit ad-
mittance Y(s). Here and henceforth the macroscopic
free charge conductivity will be denoted by o(s), despite
the risk of confusing it with the total conductivity ap-
pearing in Eq. (1). The latter quantity differs from the
former by the factor iw(€,—¢€;). In most experiments
one looks for the real part of the conductivity only, and
in any case it turns out that the iw(e,—¢,) term is
insignificant in the present model at low temperatures
and moderately low frequencies, which is the area of
focus below.

Working in D dimensions, the solid is discretized into
N? points of a cubic lattice with sidelength L =(N —1)a.
Two opposing faces of the cube are identified with the
electrodes and short circuited. If the electrodes are sub-
jected to a potential drop A¢(s), the resulting current be-
tween the electrodes is given by I(s)=Y(s)A¢(s). In or-
der to calculate the macroscopic free charge conductivity
from Y(s) one has to subtract from Y(s) the contribution
due to the capacitor currents. Between the electrodes
there are ¥ — 1 “layers” of parallel RC elements. The to-
tal current I{s) is the same in each layer. Therefore, the
sum of the resistor currents and the capacitor currents in
the direction perpendicular to the electrodes is given by
(with obvious notation)

S Ics)+3 Ip(s)=(N—1DI(s) . ' (13

The sum of the capacitor currents is rewritten as a sum of
NP=! terms where each term is the “one-dimensional”
sum in the field direction (with obvious notation)

SaP LA —i+1,5)=a® " LAd(s) .
Thus, Eq. (13) becomes

SI()=(N=1I{s)~N2~'a® "5 A4(s)

=[(N=1Y(s)—N?"1aP %5 Ad(s) . (14)

The macroscopic free charge conductivity is defined as
the ratio between average free charge current density and
average electric field. The former quantity is

S Ip(s)/[a®~ NP N —1)]
and the latter is Ad{s)/[(N—1)a]. Using Eq. (14) we
finally find

‘\7-—-
ols)= 1

SRR (15)
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For N— w, Eq. (15) reduces to where the percolation energy E, is defined by
EL'
o)1= s (16) | p(EE=p, . 20)

For a given continuously varying local conductivity,
glr), the discretization becomes exact for a —0. A few
further assumptions are now made. First, it is assumed
that the local conductivity is thermally activated and that
the spatial variation in conductivity is due to the activa-
tion energy varying in space:

glry=ggye ~FED an

Here B=1/(kzT). The activation energy is expected to
vary because the local structure of the solid varies, lead-
ing to a varying moblhty or tPerhaps to a varying internal
electrostatic potential.” In most cases one expects
the activation energy to vary relatively little; however,
our main focus here and below is the low-temperature
limit where the local conductivity eventually varies
several orders of magnitude.

It is realistic to assume a finite correlation length, £, for
E(r), where £ as usual is defined by

(E(ME())=E} e I jr—r]lma . (8

We now make an assumption which is very useful both
from an analytical point of view (Sec. IV) and a numerical
point of view (Sec. V): It is assumed that, by putting the
lattice constant a equal to £, correlations beyond a may
be ignored.’””” The values of g are thus assumed to be
uncorrelated from link to link. In this approximation the
problem is fully specified by the local activation energy
probability distribution, p(E), while details regarding
how the activation energy varies in space are ignored.

Let us consider the low- and high-frequency limits of
o(s) in the model. For s—0 the capacitors play no role
and all circuit currents are free charge currents.
Effectively, the circuit reduces to an ordinary resistor cir-
cuit. Such resistor circuits have been investigated exten-
sively in the low-temperature limit.”*~% In this limit the
current mainly follows the percolation paths giving the
‘‘easiest” ways between the electrodes. This picture is ar-
rived at as follows. Imagine the resistors being removed
from the lattice and then reintroduced in order of de-
creasing admittance. At a certain filling rate, the so-
called link percolation threshold, infinitely large connect-
ed clusters appear, creating a connection between the
electrodes. (In two dimensions the link percolation
threshold is given by p, =1 exactly®! while simulations in
three dimensions have shown that p. =0.2488.82) At low
temperatures, adding further admittances beyond the
percolation threshold does not change the overall circuit
admittance significantly since the added admittances are
much smaller than the admittances of the percolation
cluster. Therefore, the total circuit admittance is dom-
inated by the admittance of the percolation cluster that,
in turn, is dominated by the smallest admittance on the
cluster. This idea, which is now more than 20 years
old, ™% was later proved rigorously.?® At low tempera-
tures one thus finds

ol0yae P, (19)

The high-frequency limit of the conductivity - is
straightforward to evaluate. For s— o the capacitors
complétely dominate the circuit. As a result the potential
drop perpendicular to the electrodes is everywhere the
same, corresponding to a uniform electric field, so the
macroscopic conductivity is given by

ole)={g) . ) (21)

In one dimension the circuit becomes particularly sim-
ple. Since the total circuit impedance is a sum of the im-

pedances of RC elements, one finds if g(E)=gge ~5¢
=w-n [ —2E e (22)
Y(s) I, a-'[g(E)+s]

Substituted into Eq. (15} this implies for N — = the fol-
lowing equation for o(s):

1 _ = _plE)

= plg)
ols)+s —aug(E)+sdE ag - @3

o g+s

As a simple example consider the “box model,” i.e., the
case where p(E)})=1/E,; (0<E <E;). In that case the

distribution of local admittances is ({(compare
Appendix B)
= dE|_ 1 1 B,
plg)=plE) P BE, g (gge <g<gy). 24)
Equation (23) thus becomes
L _ 1 % 1
of{s)+s BE, 8¢ “’Eog(g+s)
—BE,
1+s/(gee = )
D S R LA L 25)
BEO s 1+S/go

For large B and low Laplace frequencies {5 <<g,) this
reduces to

S

ols)t+s=BEyj———7— .
{1+ /(gge 7o)

(26)

Letting s go to zero one finds that the dc conductivity is
given by

0(0)=BEygoe "0 . @n

Thus, the dc conductivity activation energy is equal to
the largest activation energy met on the one-dimensional
(1D) path between the electrodes. This is the 1D analo-
gue of Eq. (19).

According to Eq. (26) the conductivity becomes fre-

—BEy

quency dependent when s is of order sy=gge
=g(0)/(BE,). Thus, at low temperatures the frequency
dependence sets in already for s <<o(0). At these low
temperatures and moderate frequencies s may be ignored
in o(s)-+s, reflecting the fact that the capacitor currents
are very small. Equation (26) may thus be written
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s/s . . : P
o(s)=0(0) [} 28y na recent weak disorder perturbation calculation it was

In(1+s/59)

In terms of the real frequency o and the characteristic
time 7=¢_ /sy, Eq. (28) becomes
iwT

In(1+ioT) *
This equation was first derived for a hopping model.*
Note that, even though the capacitor currents for —
are very small for a range of low frequencies, the capaci-
tors may not be ignored from the circuit. If the capaci-
tors are removed, there is no frequency dependence left.
Thus, while the free charge currents run through the
resistors and the capacitor currents are extremely small,
the latter still have a very important effect on the magni-
tude of the average free charge currents, resulting in the
dramatic frequency dependence of Eq. (29). In the nu-
merical simulations reported below. in two and three di-
mensions the same effect was found at low temperatures.

o(w)=0(0) 29)

IV. TWO APPROXIMATE ANALYTICAL SOLUTIONS

This section develops two analytical approximations
for calculating a(s), focusing on the low-temperature re-
gion. In the T—0 limit a universality appears and {ex-
cept for a scaling) o(s) becomes independent of the ac-
tivation energy probability distribution p(E).

The standard approximation for treating disordered
systems analytically is the effective-medium approxima-

tion.””® In some contexts this approach is referred to as
" the coherent potential approximation (CPA).336 It hasa
number of desirable analyticity properties and seems to
offer the best available compromise between being simple
and being realistic. Here, the problem is to calculate the
overall admittance of a large network whose admittances
are independent random variables. The basic idea of the
EMA is to focus on one particular admittance of the net-
work, regarding it as placed in an “effective medium”
with equal admittances y,,. The effective medium is con-
structed to best possibly mimic the average surroundings
of the particular admittance. This is done by requiring
that the electric field around the particular admittance on
the average is equal to the distant homogeneous field of
the surrounding effective medium, leading to the follow-
ing equation for determining y,, in D dimensions’%
{where sub y implies an average over the admittance
probability distribution)

y—ym —
(y +(D —1)y,, >,‘°- 3o

The total network admittance Y is found from y, (for
N — o) via the obvious identity

Y=N2"Y, . (€3))]

The EMA is exact in one dimension and it becomes ex-
act for D — .3 In the high-frequency limit the EMA is
correct in all dimensions for the circuit of Fig. 1. In two
dimensions the EMA is believed to be quite reliable;®
here it gives the correct percolation threshold p, = and

shown that the EMA is correct up to and including the
fourth-order terms.’® These results in two dimensions are
both consequences of the EMA satisfying the duality
symmetry of the square lattice.”’ In three dimensions the
EMA is less reliable;***® thus the EMA predicts p, =1,
whereas simulations yield p,=0.2488.%2 Various im-
provements of the EMA exist’ but they are rather in-
volved and will not be used here.

Combining Egs. (12), (16), and (31) yields
Ym=a? "o +s). When this is substituted into Eq. (30)
the EMA equation for the conductivity becomes®® [using
Eq. (12)]

— _ '
<g+(D—1)a+Ds)x_°' 2)

For s— o, Eq. (32) correctly gives o ={g ) [Eq. (21)] be-
cause the denominator becomes almost constant and may
be ignored. Equation (32) may be solved numerically
(Appendix A). In the next section the predictions of Eq.
(32) at finite temperatures are compared to the results of
simulations in 2D. Here we proceed to investigate the
T—0 limit'* where Eq. {32) implies a universal frequency
dependence given as the solution of a simple transcenden-
tal equation.

Since g —o=g+(D—1)o+Ds—D(o+s), Eq. (32)
may be rewritten as

! 1
Dto+s) <8(E)+(D—1)6+Ds>£’ : 33

where the average is now over the activation energy dis-
tribution and g(E)=gyexp(—pBE). In the limit f— oo,
g(E) varies rapidly and for given o and s there are essen-
tially just two extreme possibilities, depending on E, ei-
ther g(E)<<(D—1)o+Ds or g(E)>>(D—1)o+Ds. In
the former case g(E) may be ignored while in the latter
case the denominator becomes very large and there is lit-

tle contribution to the right-hand side. The energy
separating the two cases, E,(s), is given by
Ex(s)=——l—1n D—-lo+Ds (34)
B 8o
For large B, Eq. (33) thus becomes
L - L = p(ENE (35)
Dic+s) (D—No+Ds gl
or
D -1 s L
——t = E)dE . 6
D +D(a+s) Egmp( JdE (36)

Subtracting from Eq. (36) the s =0 case of Eq. (36) itself
leads to

s Eg

(03]
—_ = EVE . 37
Dlo+s) pENGE )

E‘u)

For large B, E (s) is close to E,(0) and the integral may
be replaced by p[£,(0)] [E,(0)— E (s)]; thus,
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s =_P[Eg(0)] (D—1)o(0) =1 , n''=1— 1 (EMA, @>>1). (45)
Do +s) B 20 In(®) In(@)
The -conductivity- at real Laplace frequencies, as well as
—In D=1)o+Ds both. its real and imaginary parts taken at real frequeri-
8o cies, all become almost proportional to frequency as it
E(0 goes to infinity. Note that this is not just a trivial effect
_P (E,(0)] Ds 38y ~ reflecting conduction in the capacitors, since the capaci-
B a(0)  (D—1)a(0) tor currents do not contribute to the free charge conduc-
. . . . tivity. In fact, at any given temperature & stabilizes and
Introducing the dimensionless variables becomes frequency independent at sufficiently large fre-
_ T B (39) quencies [the frequency range where Eq. (40) is valid is
= y ST S,
T Dp[E,(0)]a(0)
Eq. (38) for B— oo reduces'® to
@ In(3)=% . (40)

Equation (40) was previously derived for specific hop-
ping models®®* and, in the context of macroscopically
inhomogeneous solids, it was derived by Fishchuk for the
box distribution of activation energies.” The importance
of Eq. (40), however, as appears from the above deriva-
tion, lies in the fact that the equation is universal, com-
pletely independent of the activation energy probability
distribution [an implicit assumption made above is that
p{E) is smooth around E,]. Note that Eq. (40) is only
valid for D > 1; for D=1 one has Eg(0)= = and the step
leading from Eq. (37) to Eq. (38) is invalid.

Figure 2(a} shows the dimensionless conductivity of
Eq. (40} (solid curve)} in a log-log plot for real dimension-
less Laplace frequencies [the solution of Eq. (40) is dis-
cussed in Appendix A that also gives an analytical ap-
proximation to &(5)]. For large and real § the conduc-
tivity follows an approximate power law & <3%, where u
is about 0.9 in a large region. For large Laplace frequen-
cies Eg. (40) roughly implies

~ 3 ki

T ppa = ———m S @41
A (T gpa)  In(3)

which, in turn, implies

=4 L pmasss). “2)
d In(3) In(3)

At real frequencies ¥ is imaginary. Writing ¥=i®, Fig.
2(b) shows the real part Fgya(@) (solid curve) and the
imaginary part Fpua(®) (dashed curve) of the conduc-
tivity. At large frequencies these functions both follow
approximate power laws. From the approximate expres-
sion

iz _ io

Feva= (@>>1) 43)
Inti®) Ind)+i(7/2)
one finds
f T _ @ i 7]
Frma™=— , & = (B>>1). (44)
AT @) TP )

This unphes for the approximate exponents defined by

F~p" andd" ~a",

Log,, (&)

Log, (8"

Resp.

Log,, (8"

-3 . X . . . . X .
-2 -1 0 1 2 3 4 5 6 7

Logy, (@)

FIG. 2. Comparison of the predictions of the effective-
medium approximation (EMA) and the percolation-path ap-
proximation (PPA) (see the next page) for the low-temperature
universal frequency-dependent conductivity which is indepen-
dent of the activation energy probability distribution. (a) shows
a log-log plot of the function Fgya(3) at real dimensionless La-
place frequencies ¥ {Eq. (40), solid curve] and the function
ppalT') [Eq. (47), dots], where 3'=23 scales the Laplace fre-
quency so that the Taylor expansion of the two functions agree
to first order at ¥==0 (Ref. 45). (b) compares the real and imagi-
nary parts of the two functions at real frequencies ®=3/i,
where asm(m) is the solid curve, agw(a) is the dashed curve,
appA(w } is given by the circles, and &ppa(@’) is given by crosses
(@ =2@). The two approximations vield very similar predic-
tions for the universal conductivity. In particular, one finds
that their asyraptotic behavior is identical as the frequency goes
to infinity {Eqgs. (42} vs (43) and (45) vs (50)].
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only finite but becomes very large at low temperatures}.

It is possible to throw light on the EMA solution by
adopting a phenomenological point of view that makes
sense in any dimension D > 1 at sufficiently low tempera-
tures. - In this regime, the admittances of the network
vary many orders of magnitude and the currents primari-
ly follow the paths of least resistance, the *“critical” or
“percolation” paths.”®”® This is the idea leading to Eq.
(19). We now propose an approximation referred to as
the “percolation-path approximation” (PPA) that as-
sumes that not only the dc currents but also the low-
frequency ac currents mainly follow the percolation
paths. The solid is regarded as having several indepen-
dently conducting *“‘channels,” each channel correspond-
ing to a percolation path. This approximation ignores
the complicated fractal nature of the percolation clus-
ter.”® The problem of calculating the conductivity now
becomes one-dimensional and one finds, as in Sec. III
{where K is an unknown numerical constant),

(E)
f_m—f’—g(EHS . (46)

For 2 fixed range of frequencies around the transition fre-
quency, the dominant contribution to Eq. (46} at low tem-
peratures comes from energies close to E.. Therefore,
p(E) may be replaced by p(E.) and the conductivity is
the same as that of the one-dimensional box model al-
ready solved in Sec. III. Defining the dimensionless La-
place frequency §=s/sg, the PPA thus predicts [compare
Eq. (28)]

a(s)+s

T
Fppals)=—"— . @7
Treat T )

This function is plotted in Fig. 2(a) for real 5. The two

solutions are very similar. As for the EMA solution one

finds from Eq. (47) at real Laplace frequencies & ~73,
where

1
In(3)

At real frequencies @=3/i one finds, since In(1-+i&)

=]—

(PPA, 3>>1). (48)

= In(1+&%)/2+i arctan(®),
Foonl®)= @ arctan{®)
PPA In*(1+&%)/4+arctan¥(®) ' 49)
5 (@)= & In(1+a%)
PrA X1+ /2+2arctan¥(d)

For &—cw one has G&ppa~(7/2)3/In¥ @) and
Tppa~ &/ In(®) leading to the exponents

, 2 i

=1— "=l —

In(a)’ In()

These exponents are identical to those of the EMA [Eq.
(45)}.

Both the EMA and the PPA predict a universal fre-
quency dependence of the low-temperature conductivity,
independent of ihe activation energy probability distribu-
tion [assuming plE) is smooth around E_j. Note that

(PPA, &3>>1) . (50)
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the two approximations yield similar predictions (Fig. 2),
despite being derived from completely different points of
view. The EMA, which is usually believed to be best for
systems with weak disorder,?®°%% has here been applied
in the limit of extreme disorder. The PPA, on the other
hand, only makes sense for the extreme disorder found at
low temperatures. The similarity between the two ap-
proximations indicates that the EMA may be reliable
even for systems of extreme disorder. On the other hand,
the quantitative EMA prediction for the dc conductivity
is known to be wrong in 3D because the percolation
threshold is wrongly predicted, and thus one can, at

- most, expect the shape of the conductivity curve to be

correct in the EMA. Only computer simulations can give
reliable information as to whether universality really ex-
ists and, if it exists, whether it is well described by the
two approximate theories.

V. COMPUTER SIMULATIONS

This section reports the results of computer simula-
tions of the model in two and three dimensions. A lattice
of admittances like in Fig. | is generated where each im-
pedance is determined by an activation energy randomly
chosen according to a probability distribution p(E).
Several different probability distributions were used; in
Appendix B is explained how the activation energies were
generated. At low temperatures large lattices are needed
to obtain reasonable statistics. Even for relatively large
lattices the system is not self-averaging at low tempera-
tures and it is necessary to average over several lattices to
obtain reproducible results. As a rule of thumb this pro-
cedure works well for B <V whereas for larger 3 the fluc-
tuations become too large to be averaged out in a reason-
able number of simulations. For simplicity all simula-
tions are carried out at real Laplace frequencies only; by
analytic continuation this is enough when one wants to
compare the simulations to an analytical expression for
the conductivity.

The calculation of the frequency-dependent conductivi-
ty may be performed by several methods. One possibili-
ty, the “brute force method,” is to solve Kirchhoff’s
equations for the potential via some sparse matrix algo-
rithm. Another possibility is to use Eq. (15) and calculate
the overall circuit admittance between short-circuited
electrodes by ‘“‘climination methods.” These methods
eliminate nodes of the lattice one by one by introducing
new admittances without changing the overall circuit ad-
mittance, a process that is continued until one is left with
only one admittance. The most general elimination
method was introduced into the field by Fogelholm in
1980:%% it works as follows. Whenever a node is eliminat-
ed that has n neighbors and the admittances Y,,...,Y,
to its neighbors, all possible connections between the
neighbors are introduced such that the ith and the jth
neighbors are given the [additional] admittance
Y, Y;/(Y,+ - +Y,). For a full lattice the algorithm

becomes very inefficient, but it works very well for calcu-
lations close to the percolation threshold where many ad-
mittances are zero.”> In two dimensions Frank and Lobb
have developed a useful algorithm that eliminates nodes
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by working each of them towards the lower right via con-  tice in 3D the time varies as N>, The Frank-Lobb algo-
secutive star-triangle transformations.”® By means of this  rithm in 2D has a computing time varying as N?; howev-
algorithm it -is possible to calculate the admittance of a  er, in practical applications it is still superior to the
200X 200 lattice in a few minutes on a modern PC. AMG because it avoids overflow problems and because
Unfortunately no similarly efficient. algorithm is avail-  the prefactors-are clearly in its favor. It should be men-
able in 3D. Here it was found most efficient to use brute  tioned that other methods are also available. The
force methods. It is a rather complex numerical problemi  transfer matrix method'”' is an elimination method that
to solve large sparse systems of linear equations when the ~ works in all dimensions, and the Fourier acceleration
coefficients vary several decades. The standard Gauss-  brute force method'® is an alternative to the AMG for
Seidel, as well as overrelaxation methods,” converge too  ‘speeding up the Gauss-Seidel relaxation scheme.
slowly. Fortunately, an algorithm has been developed, Results of simulations in 2D of 100X 100 lattices have
the algebraic multigrid (AMG),”*% that was made pre-  been reported elsewhere'* for five activation energy prob-
cisely for problems of this type. The algorithm is an alge-  ability distributions at the dimensionless inverse tempera-
braic generalization of the standard geometric multigrid  tures 8=4,16,64. In Fig. 3, these results are supplement-
method used for solving elliptic differential equations. ed by simulations of 200X200 Ilattices at
An excellent introduction to the muiltigrid idea, in gen-  8=35,10,20,40,80,160 for the following activation energy
eral, has been given by Goodman and Sokal'® The  distributions (see Appendix B): (a) asymmetric Gaussian,
AMG solves a problem in a time only proportional to the  (b) symmetric exponential, (c) power law with exponent
number of equations. For an N XN lattice in 2D the  —4, (d) triangle. For each temperature and activation
computing time thus varies as N2, for an NXNXN lat-  energy distribution the figure shows the average of 10

) o
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FIG. 3. Log-log plots of results of cosnputer simulations in 2D for the dimensionless conductivity & (points) compared to the EMA
predictions (solid curves) at real dimensionless Laplace frequencies ¥ [Tand & are defined in Eqs. (8) and (39)]. Each figure shows the
results of averaging 10 simulations of a 200X 200 lattice solved by the Frank-Lobb algorithm (Ref. 96} and Eq. (15). Results for the
following dimensionless inverse temperatures are shown: =5 (A), B=10 (0), B=20 (V), =40 (0), B=80 (), B=160 (+), for
the following activation energy probability distributions (Appendix B): (a) Asymmetric Gaussian, (b} symmetric exponential, (c)
power law with exponent —4, (d) triangle. In each case the distribution should be thought of as centered around an energy E; this
gives an extra factor e € to the conductivity and scales the frequencies by the same amount, leaving both & and 3 unchanged. The
EMA predictions were found by solving Eq. (32) numerically (Appendix A). Given the fact that the EMA has no fitting parameters
and that ¥ is defined by scaling s by a factor which is in some cases larger than 10, the EMA prevides a very good fit to the simula-
tions. In particular, at low temperatures the frequency-dependent conductivity becomes universal both in the EMA ard in the simu-
lations.
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simulations. The solid curves are the EMA predictions
found by solving Eq. (32) numerically (Appendix A). The
EMA works well in 2D at all temperatures. In particu-
lar, one finds that universality is approached as T—0.
Some of the low-temperature results deviate from the
EMA prediction. However, given the fact that the fre-
quency in some cases (at low temperatures) has been
shifted more than 50 decades according in Eq. (39), the fit
must be said to be satisfactory. The shape of the simulat-
ed frequency dependent conductivity at low temperatures
is studied in Fig. 4 where the =80, 160 results from Fig.
3 have been replotted and supplemented by simulations
of the Cauchy and the Box distribution. In Fig. 4, an
empirical scaling of the Laplace frequency was allowed to
fit the EMA universality prediction {Eq. (40)] in the best
pr=sible way.

In three dimensions results for averages of five
50X 50X 50 lattices are shown in Fig. 5 for the values
B=10,30,60 for the Cauchy and box activation energy

Log,, (&)

Log,, (3)

Log,, (8)

Logy, (3)

FIG. 4. Test of the EMA prediction at real dimensionless La-
place frequencies ¥ for the low-temperature universal conduc-
tivity {solid curve, Eq. (40)] in log-log plots. An empirical re-
scaling of ¥ has been allowed here to facilitate a comparison to
the EMA prediction focusing only on the shape of #(¥). The
figure shows results for 8=80 (a) and 8= 160 (b} for asymmetric
Gaussian (A ), Cauchy (0), symmetric exponential (), power
law with exponent —4 (Q), box ( +), triangle (V). Asin Fig. 3
the results were obtained by averaging over 10 simulations of a
200X 200 lattice in 2D solved by means of the Frank-Lobb algo-
rithm 1Ref. 96) and Eq. (15).

distributions. The conductivity was found by solving
Kirchhoff’s equations to determine the potential at each
node and subsequently averaging all resistor currents. A
potential ¢ =0 was imposed at one electrode and ¢=1 at
the other electrode; the remaining four faces of the cube
were joined by imposing periodic boundary conditions.
The 120 000 equations for the node potentials were solved
by means of the AMGIRS FORTRAN algebraic multigrid
subroutine available from the Yale multigrid library.'%
This subroutine was found to be efficient, well document-
ed, and providing useful error statements and warnings.
The subroutine was previously successfully used for large

Log,,(8)

Log,,(8)

Log,, (8)

Logy, (8)

FIG. 5. Approach towards universality at low temperatures
in three dimensions plotted in log-log plots. The figures show
results for 7 at real dimensionless Laplace frequencies 3 [both
quantities are defined in Egs. (8) and (39)] at =10 (A}, 8=130
(0), and B=60 (@), for (a) the Cauchy and (b) the box distribu-
tions. Similar results were found for other distributions. Each
point represents the average of five simulations of a 50X 50X 50
lattice where Kirchhoff’s equations were solved by the algebraic
multigrid algorithm using the AMGIRS Fortran subroutine
(Ref. 103). The solid curve is the EMA prediction for the low-
temperature universal conductivity [Eq. (40)]. As in Fig. 4, an
empirical rescaling of 3 was allowed, to focus on the shape of the
conductivity curve only. Universality is approached at low tem-
peratures, but unfortunately it was not possible to go to low
enough temperatures to allow a detailed study of the exact
shape of the universal conductivity in 3D.
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resistor network calculations by Edwards, Goodman, and
Sokal.'!®* Still, the present problem is very complex be-
cause at low temperatures the coefficients of the linear
equations vary several orders of magnitude. To avoid
overflow and “division by zero” problems, the equations
must be- “massaged” somewhat. This was done by in-
creasing the lowest g’s to a standard low value, a pro-
cedure that is easily justified since these weak links carry
little current anyway. The highest g’s were also changed
to a standard value by lowering them; this is allowed be-
cause they more or less short circuit their nodes anyway:
they are not ‘“‘bottlenecks” for the conduction process. In
both cases, it was carefully checked that the calculated
conductivity is independent of the cutoff’s introduced,
proving that the procedure it permissible. The calcula-
tions are rather demanding; the present work was carried
out on a modern workstation with 128 MB of memory
(the AMGIRS is quite memory consuming). The resuits
are shown in Fig. 5 where they are compared to the EMA
prediction (solid curve) as regards the predicted shape of
the conductivity curve allowing an empirical frequency
rescaling as in Fig. 4. Again one finds at low tempera-
tures that the universal conductivity curve is approached.
Similar results were found for four other activation ener-
gy probability distributions.* Unfortunately, it was not
possible to go to lower temperatures without serious
overflow problems. At present it is therefore not possible
to determine whether the universal conductivity curve in
3D is slightly less steep than in 2D.

Finally, it should be mentioned that in both the 2D and
the 3D simulations it was found that the capacitor
currents at low temperatures are very small compared to
the resistor currents in a wide range of frequencies
around the transition frequency, thus confirming the
analytical result for the 1D box model reported at the
end of Sec. IIL

VI. DISCUSSION

This paper has investigated the ac consequences of
having a spatially varying electrical conductivity, focus-
ing on the low-temperature limit in the case when the lo-
cal conductivity is thermally activated. The fact that
spatial inhomogeneities give rise to polarization phenom-
ena and therefore to a frequency dependence of the mac-
roscopic conductivity has been known for many years.
Despite this, little work has gone into studying ac aspects
of the “macroscopic” model involving a range of local
conductivities. For instance, no papers were given deal-
ing with ac properties in this model of inhomogeneous
media at the two *“‘Conferences on Electrical Transport
and Optical Properties of Inhomogeneous Media” held in
1978 and 1988.!% Alternating current properties are in-
stead usually modeled by means of hopping models where
the disorder is assumed to be on the atomic
scale 87103543745 Kopning models usunally do not include
Coulomb interactions, a problem of recent concern,?
whereas the macroscopic model does include the effect of
Coulomb interactions via Gauss’ law.

The idea of a spatially randomly varying activation en-
ergy for the conductivity has been discussed for some
time in connection with particular systems like heavily
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doped or compensated semiconductors®®” or granular

materials.”® For any disordéred system one expects the
various forms of inhomogeneities to influence the exact
value of the activation energy of the local.conductivity.
The question is not whether or not this effect is present,
but whether it is so pronounced that the concept of a lo-
cal conductivity stops making sense, in which case the
relevant model to use is a hopping model. At present it is
not clear which disordered solids are best described by
the macroscopic model and for which hopping models
are best.

For a solid with a spatially varying conductivity, the
relevant Maxwell’s equations in a periodic external field
boils down to the single equation (9) for the electrostatic
potential. This equation is discretized by putting it on a
cubic lattice. If the lattice constant g is taken to zero, the
discretization becomes exact. In Sec. III, however, the
model was simplified further by choosing a equal to the
activation energy correlation length and by ignoring
correlations beyond a. Thereby one ignores details of
how the conductivity varies in space and the model be-
comes uniquely defined by the local activation energy
probability distribution.

The discretization of Eq. (9) corresponds to the electric
network of Fig. 1. Similar networks have been used
many times before as models for the ac properties of
disordered solids!!"22%330=35 a54 the one-dimensional
version of the network lies behind the electric modulus
formalism.?® However, the network is traditionally used
just as a suggestive picture of the solid and not justified
from basic principles. When this is done (Sec. III) it
turns out that the interpretation of the circuit is rather
subtle. The network is not to be thought of as a straight-
forward representation of the solid. This is because the
capacitor currents are Maxwell’s displacement currents,
parts of which do not involve real charge transport. In
the model the free charge contribution to the conductivi-
ty depends on frequency only as an indirect effect of the
capacitors: They influence the electrostatic potential that
determines the resistor currents.

A simple model which may be solved exactly is the
one-dimensional box model. In this model, as f— <,
there is a strongly frequency-dependent conductivity. It
follows from Eq. (29) [compare Eq. (44)] that well above
the transition frequency, the phase difference between the
average field and the average resistor current is close to
/2 [for any nonzero temperature Eq. (29) is only valid in
a finite range of frequencies, but this range becomes very
large at low temperatures]. This happens while at the
same time the capacitor currents are very small com-
pared to the resistor currents. The same peculiar effect of
a strong frequency dependence of the average resistor
currents simultaneously with very small capacitor
currents was also observed in the computer simulations
in 2D and 3D.

The mode!l was studied by computer simulations in 2D
and 3D. In 2D, the results were fitted to the EMA pre-
diction of Eq. {32). In 3D it is necessary to regard the
scaling involved in the definition of the dimensionless La-
place frequency as a fitting parameter to obtain a reason-
able fit. This is because the EMA has the percolation
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threshold wrong in 3D.

There are two conclusions to be drawn from the simu-
lations. First, the simulations show that the frequency
dependence of the conductivity indeed is universal at low
temperatures. As far as is known to the author, the
present work is the first time universality has been de-
rived analytically and the first time universality has been
seen in computer simulations of any model for ac conduc-
tion. The universality represents a new type of regularity
valid for systems with extreme disorder. It should be
noted, however, that, by letting the temperature go to
zero, one actually moves into an unphysical domain since
at temperatures of the order 10-30 K other processes
such as tunneling would usually be expected to dominate
the conduction. This has been ignored here.

In 1985, Summerfield** reported that several hopping
models involving tunneling electrons solved in the ex-
tended pair approximation yield almost identical predic-
tions for the frequency dependence of the conductivity.
This phenomenon was referred to as *“quasiuniversality.”
Since no simulations were reported it was not clear
whether the effect is real or due to the approximation
used, and there was no study of the temperature depen-
dence of the conductivity for activated jump rates indi-
cating an approach to true universality as T—0. Still,
Ref. 44 gives the first hint to the existence of universality.

The second conclusion to be drawn from the simula-
tions is that the EMA works very well in 2D at all tem-
peratures. In 3D as T—0 the EMA also works well if a
phenomenological rescaling is allowed to compensate for
the fact that the EMA has the percolation threshold
wrong. These results are highly nontrivial since doubt
has often been expressed as to how reliable the EMA is
for systems with a broad distribution of admit-
tances.?%% In one dimension the EMA universality
prediction is not valid. But otherwise, since the EMA be-
comes exact for D — 0, there is reason to believe in Eq.
(40) for all D > 1 as a good approximation to the univer-
sal conductivity.

The percolation-path approximation is based on the
fact that the percolation paths are preferred at low tem-
peratures. These paths contain activation energies rang-
ing up to a sharp cutoff at E, given by Eq. (20). Further-
more, in a fixed frequency range around the transition
frequency it is clear that, at sufficiently low temperatures,
only a narrow interval of activation energies are impor-
tant (namely, those around the percolation energy deter-
mining the smallest admittances on the percolation
paths). Therefore, the circuit admittance is expected to
correspond to that of a one-dimensional solid with a
sharp activation energy cutoff; this is why the PPA pre-
dicts the same frequency response as the one-dimensional
box model. The fact that the PPA solution is very similar
to the EMA solution shows that at sufficiently low tem-
peratures a disordered solid, as a consequence of the un-
derlying percolation, looks like a one-dimensional solid
with a sharp cutoff in the activation energy distribution.

The PPA is not quite as straightforward as it seems at
first sight. For very small s the currents do follow the
percolation paths, and as long as s <<g,_, where g_ is the
smallest admuttance on a percolation path, the conduc-
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tivity is clearly frequency independent. The conductivity
starts to increase only for s =54, where s3~g.. But this
is exactly the regime where the percolation picture starts
to break down because all surrounding admittances also
become of order g.. In this range of frequencies the
currents still mainly follow the percolation paths; howev-
er, when the current meets one of the poorest admit-
tances on a percolation path, it may as well pass through
the surrounding admittances. But since this happens sel-
domly, one expects the percolation-path calculation to be
roughly valid, as confirmed by the simulations.

Since the dc conductivity is determined by the poorest
admittances on a percolation path (of order g, ), the La-
place frequency for onset of ac conduction, s, is of order

‘e(0). In particular, one expects 0(0) and s, to have the

same temperature dependence. This is consistent with
the BNN relation [Eq. (2)]. The EMA and the PPA both
predict that s, scales with To(0) rather than with just
o(0). This is sometimes referred to as “Summerfield scal-
ing”* though it was first discussed by Scher and Lax in
their papers on the continuous time random walk approx-
imation.*® It is interesting to note that the extra factor T
in the Summerfield scaling of Aopping models*~* is de-
rived from the 1/(kpT) factor of the fluctuation-
dissipation theorem Eq. (4) that is not applied in the mac-
roscopic model. . ’

What are the consequences of the presently reported
results for the interpretation of experiments? First, it is
to be noted that the EMA (or the PPA) T — 0 universali-
ty prediction gives a rather good fit to many experiments.

-This has been shown in detail elsewhere*® where a box-

type hopping model yielding the same frequency-

" dependent conductivity [Egs. (40) and (47)] was discussed

in detail. Thus, as in experiments*> Eq. (40) or (47) imply,
(1) o’{w) follows an approximate power law with an ex-
ponent n’ less that but close to one, where n'(w) is weak-
ly increasing and n’—»1 as T—0 (the latter is because, in
a fixed frequency range, as the temperature goes to zero,
one in effect measures further and further out on the
universal conductivity curve); (2) when there is no detect-
able dc conductivity, the exponent is very close to one; (3)
the BNN relation [Eq. (2)] is satisfied with p =0.59 in the
EMA and p=0.42 in the PPA; (4) the time-temperature
superposition principle is satisfied; (5) the ac conductivity
is less temperature dependent than the dc conductivity
and for n' very close to one the ac conductivity becomes
almost temperature independent, in particular, this al-
ways happens as T—0; (6) while ¢(0) may vary several
orders of magnitude for different solids at different tem-
peratures, the ac conductivity varies only relatively little
[points (5) and (6) follow from the fact that Ae is usually
of order €,]. While the universal conductivity of Egs.
(40) or (47) reproduce many observations surprisingly
well, the use of log-log plot comparisons alone has rightly
been warned against by Macdonald.'®

Whenever the universal conductivity gives a good fit to
experiments it seems that little can be learned from ac
measurements, For instance, observing a power-law

dependence for the real part of the conductivity with an
exponent of 0.8 a few decades above the transition fre-
quency provides no useful information about the solid un-
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der study. This is contrary to ones intuition. In 1972,
Pollak and Pike'”” suggested that the microscopic details
of a solid are reflected in deviations from n'=1. But it
now appears-that the situationis moré complex: Details
about the microscopic conduction mechanism are to be
deduced from deviations from the universal conductivity
curve, that itself has a nontrivial structure.

The universality seen in the macroscopic model at low
temperatures is also present at low temperatures in hop-
ping models, with an identical predicted universal fre-
quency dependence.’® At first sight this is surprising,
since hopping models are in many respects complementa-
ry to the macroscopic model: (1) hopping models are mi-
croscopic, not macroscopic; (2) they usually involve
noninteracting charge carriers and ignore Coulomb in-
teractions; (3) in hopping models one controls the local
electric field while in the macroscopic model the overall
potential difference is controlled; and finally (4) hopping
models are stochastic while the macroscopic model is
deterministic. Still, both types of models lead to large
systems of sparse linear equations with coefficients that at
low temperatures vary several orders of magnitude. Ap-
parently this is enough to produce the same universality
for the conductivity. Several mathematical connections
exist between hopping models and resistor networks,'® %
but it is not possible to transform a hopping model into
the network of Fig. 1. The Miller-Abrahams equivalent
circuit for a hopping model has capacitors from each
node to a voltage generator that is connected to the
ground.*™ In conclusion, ac measurements alone cannot
determine what the relevant model is for conduction in a
given disordered solid. To.this end other measurements
have to be performed™ like, e.g., transient current experi-
ments monitoring the current after a brief laser pulse ex-
citation,’® %! “nonjinear conductivity measurements
(the macroscopic model becomes nonlinear much earlier
than hopping models), 1/f noise measurements,' or
possibly Hall effect measurements.!!?

Some open questions remain. Is the universality seen
in computer simulations as T—0 a mathematically exact
fact (as believed by the author) or is there just “quasi-
universality”? It is clear that the universality is closely
linked to the percolation phenomenon, but around the
percolation threshold it has recently been shown!!!?
(albeit in a different context than the present) that there
are nonuniversal critical exponents when a broad distri-
bution of admittances is involved. If the universality is
confirmed, what is the exact form of the universal fre-
quency dependence? Is it truly independent of the di-
mension? From the existence of long-time tails one ex-
pects the universal conductivity curve to be nonanalytic
at $=0. However, since the universal conductivity exists
as a limit only, it is actually possible that the function is
analytic and that one of Egs. (40) or (47) is exact.
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APPENDIX A: SOLVING THE EMA EQUATIOI‘}

Equation (32) may easily be solved at any temperature
and real Laplace frequency. The solid curves of Fig. 3
were obtained by discretizing the equation into 3000
terms using regularly spaced energies; the conductivity
was then determined at fixed s and B by the bisection
method.”” Before this is done, it is convenient to rewrite
Eq. (32} in terms of the variables & and ¥ defined in Eq.
(39).

The universal conductivity given by Eq. (40) may be
determined by means of the Newton-Raphson method.
Consider first the case of real dimensionless Laplace fre-
quencies 3. Introducing A=1In(#&), Eq. (40) is rewritten by
taking In on both sides:

A+in(A)=In(3) . (A1)
The Newton-Raphson method®’ for solving the equation
F(A)=0 consists of iterating after the recipe

(A,)
)"n+1=)"n—-ff:(k )" (A2)

In the case f(A)=A+In(X)—In(3), Eq. (A2) becomes

1=In(A, )+In(s)

A (A3)

A=A,
Equation (A3) is iterated until convergence by starting
with, e.g., A,=% if 0<3¥<1 [utilizing the fact that
A=In(&) =75 for small frequencies] and starting with, e.g.,
A=1if5> 1

An analytic fit to &(3) is the following expression:

S
LBV HbLyF)+eLyT)—(b+e)L(3)

o(5)= (Ad)

where .£,(T)=In(1+3) and one recursively defines
L, (F)y=In[1+.L,;(3)]. The case b =¢ =0 corresponds
to the PPA solution Eg. (47). For b=—2.2 and ¢=3.5,
Eq. (A4) provides a fit whose logarithm (base 10) for all ¥
is within 0.01 of the logarithm of the true solution.

At real frequencies &==3/i, the EMA equation be-
comes complex, but it can still be solved by the Newton-
Raphson method. Writing A=x +iy, Eq. (A2) becomes

A\(n)B(n})— A,(n)B,(n)

Xn1=Xn ™~ Din) ,
(AS)

~ A{n)Byn)+ A,(n)B(n)

Yna1=¥n— Din) ’
where, if Li(m)=hnixi+y})/2  and  L,(n)

=arctanly, /x, ), the following abbreviations have been
introduced:
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’ ” x one finds from Eqs. (B1) and (B2)
S (5 T_
A\m)y=x7—y;+x,[L{n)—In(@d)]+y, > Ly(n) |, E.=E(x=p,). (B3)
T . The following activation energy distributions were
A4,(n)=2x,y, +x, |Ly(n )_7 +y.(Li(n)—n(@)], used in the simulations of Ref. 14 and this paper.
(1) Gaussian. From 12 random numbers x; (between 0
(A6) and 1), E=3 % x,—6 gives a nice Gaussian distribution
Byim)=14x, , of E with variance 1.7 .
Bym)=y, , _E

D(n)=B,Yn)+B,Xn).

Equation (A5) is iterated until convergence starting with,
e.g., x;=0.01 and y,=d if 0<&<I
A=In(7)=i® at low frequencies] and with, e.g., x, =1
and y,=0if®> 1.

Substituting ¥=i® into Eq. (A4) provides an analytic
approximation of both (@) and &(®). For the real
part the fit (again with b= —2.2 and ¢=3.5) has a loga-
rithm (base 10) within 0.03 of the exact solution; for the
imaginary part the logarithm of the fit is within 0.05 of
the exact value for &> 1072 (for smaller frequencies the
fit becomes poor).

APPENDIX B: ACTIVATION ENERGY
PROBABILITY DISTRIBUTIONS

In the computer simulations of Ref, 14 and the present
paper dimensionless activation energies were used. With
the exceptions of the two Gaussian distributions the ac-
tivation energies for a given probability distribution p(E)
were generated by utilizing the following well-known
fact. If x is a uniformly distributed random number be-
tween O and | and E(x ) is some function of x, E is distri-
buted according to the p(E) given by
dp=p(E)|dE|=p(x)ldx|. Since p(x)=1 one thus finds

pE)= (B1)

1
|dE /dx]| * )

To avoid spurious effects due to subtle correlations in
system-supplied random numbers, the random numbers
were generated using the function RANO.”” This func-
tion starts by setting up an array RAN([/] of 97 system-
supplied random numbers. Reliable random numbers x
are supplied by RANO by using the given random pointer
to an index i, between 1 and 97: RANO then returns
x =RAN[},] and a new system-supplied random number
is filled into the RAN array to replace x. Finally, x is
used to generate the new pointer index f, which is used to
point out the next random number, etc.

The percolation threshold p, is given by p.=0.5000
{exactly) in 2D and p, =0.2488 in 3D.2"® The percola-
tion energy E_ that determines the dc conductivity ac-
tivation energy [Eq. (19)] is found from Eq. (20):

E
[ p(EME=p, . (B2)

A knowledge of E, helps one to locate the frequency
range of interest in the simulations; in 2D one also has
E,(0)=E, [Eq. (34)]. If E(x)is an increasing function of

s,

[refiecting .

plE)= (—o<E<w), (B4

2

1
o exp

The percolation energies are determined from Eq. (B2)
that implies erf( —E,/V2)=1—2p,. Denoting the pes-
colation energy in 2D by Ec‘z’ and in 3D by E,_f” one finds

E¥=0, E¥=-0.618. (B5)
(2) Asymmetric Gaussian. For 12 random numbers

one calculates E=|3 % x; —6l; this generates the distri-
bution

P(E)=V2/mexp

2
—EZ-) (0<E<w). (B6)

Equation (B2) implies erf(E, /V'2)=p_; thus,

E}=0.674, EX'=0.317. (B7)
(3) Cauchy. Writing E=tan[(m/2)x ], where x is ran-
dom, produces, according to Eq. (B1),

pEr=2—L_ (0<E<w). (B8)
T 1+E

Equation (B3) implies E, =tan[(s/2)p, ]; thus,

EP=1, EP¥=0.412. (B9
(4) Exponential. If E==In(1—x) one finds
plE)=e % (0<E<w). (B10)
Equation (B3) implies E, = —In(1—p,); thus,
E¥=0.693, E!*=0.286. (BL1)

(5) Symmetric exponential. If E==%In(1—x) with a
random sign one finds

p(E)=te V) (mw<E<w). (B12)
Equation (B2) implies £, =In(2p, ); thus,
EM=0, E=-0.698 . (B13)

(6) Power law with exponent —4. If E=x"'3—1 one
finds
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PEV=3(1+E)™* (0<E<w). (B14) E!¥=0.500, E!>=0.249 . (B17)
Equation (B2) implies E, =(1—p,)~'*—1; thus, (8) Triangle.- If E=x'/? one finds

E¥=0.260, E®'=0.100. (B15)

plEY=2E (0<E<1). (B18)
(7) Box. If E=x one finds
Equation (B3) implies E, =p}/?; thus,

p(E}Y=1 (0<E 1) (B16) - -

and E®=0.707, E¥=0.499 . (B19)
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A method is presented that makes computer simulations of hopping conduction in symmetric hopping
models with thermally activated jump rates possible at arbitrarily low temperatures. The method uti-
lizes the ac Miller-Abrahams electrical equivalent circuit which is systematically reduced by the general
star-mesh transformation until one ends up with an admittance matrix referring to the voltage genera-
tors. From this matrix the conductivity is easily calculated. Results from simulations of hopping in two
dimensions are presented and compared to the predictions of the effective-medium approximation
(EMA). Generally there is good agreement, with some deviation at the lowest temperatures. It is shown
that, as the temperature goes to zero, the frequency-dependent conductivity in the EMA becomes
universal, i.e., independent of the activation energy probability distribution. The computer simulations
confirm the existence of universality, although there is no exact agreement between the simulations and

the EMA universality prediction.

I. INTRODUCTION

ac conduction in disordered solids like amorphous
semiconductors, ionic conductive glasses, polymers, or
metal-cluster compounds show a number of common
features.'~® Above a characteristic frequency w,,, the
conductivity becomes strongly frequency dependent,
varying as an approximate power law with an exponent
between 0.7 and 1.0. The ac conductivity is always less
temperature dependent than the dc conductivity, and at
low temperatures the ac conductivity becomes almost
temperature independent. A final ubiquitous observation
is the Barton, Nakajima, and Namikawa (BNN) rela-
tion’~1* which essentially expresses the fact that the
characteristic frequency w,, is proportional to the dc
conductivity o(0). In particular, these two quantities al-
ways have the same activation energy.

The most thoroughly studied models for ac conduction
in disordered solids are the so-called hopping mod-
els.'*~ 1 A hopping model describes jumps of charge car-
riers in a stochastic framework. The disorder is usually
mimicked by assuming that the transition rates vary ran-
domly according to some probability distribution.
Linearized hopping models are amenable to simple ana-
lytic treatment. Linearized hopping models, henceforth
just referred to as hopping models, describe the motion of
noninteracting charge carriers. Thus, one ignores self-
exclusion as well as Coulomb interactions.

Recently, the role of Coulomb interactions has come
into focus.'”!® To include the effects of Coulomb repul-
sion, a “macroscopic” model was studied by the present
author,!*% following previous work by Springett,”' Web-
man et al.,*? Sinkkonen,” and Fishchuk.”* When
Maxwell’s equations for an inhomogeneous semiconduc-
tor are discretized, one arrives at an electrical equivalent
circuit with nodes placed on a cubic lattice and links be-
tween neighboring nodes consisting of a resistor and a
capacitor in parallel.’**3* The capacitor currents are
Maxwell's displacement currents while the resistor

0163-1829/94/49(17)/11709(12)/306.00 49

currents are the free charge currents.”’ Computer simu-
lations of this model have shown®® that the effective
medium approximation (EMA) for random admittance
networks® works very well, even at low temperatures
where the spread in conductances is very large. In partic-
ular, the simulations confirmed the EMA prediction'%%
of a universal frequency dependence of the conductivity
at low temperatures, independent of the probability dis-
tribution of the local conductivity activation energy. If
one defines & =o(w)/0(0) and =im where & is a suit-
able dimensionless frequency, the EMA equation for the
universal frequency-dependent conductivity in the mac-
roscopic model is

¢ In(e)=7 . (1)

Reference 19 gave the first general derivation of Eq. (1)
and presented the first computer simulations confirming
it. Equation (1), however, appeared in the literature al-
ready in 1980 in a study of the hopping model with elec-
trons tunneling between positionally disordered sites.2é
The recent results for the macroscopic model therefore
raise a number of questions. Is the EMA for hopping
models as reliable as it is for the macroscopic modei? In
particular, as the temperature goes to zero, does the
EMA predict Eq. (1) as the universal low-temperature
frequency dependence of the conductivity even for hop-
ping models with thermally activated jump rates? If this
is the case, is the universality confirmed by computer
simulations? To answer the last question, a new numeri-
cal method must be developed since neither the standard
Monte Carlo type method nor, e.g., the Gauss-Seidel re-
laxation method makes it possible to go to low tempera-
tures where the jump rates vary over several decades
(often more than 50 decades).

The present paper introduces a new method for com-
puter simulation of hopping models. The method allows
one to go to arbitrarily low temperatures without any
computational “slowing down.” The method utilizes the
Miller-Abrahams equivalent circuit which is systemati-

11709 © 1994 The American Physical Society
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cally reduced by eliminating nodes according to a trans-
formation well known from electrical engineering. Be-
fore this method is presented in Sec. III, Sec. II briefly re-
views the basic equations of symmetric hopping models
and the EMA equation for the frequency-dependent con-
ductivity in hopping models. Section IV reports the re-
sults of computer simulations in 2D and compares the
simulations to the EMA predictions. In Sec. V,.the low-
temperature limit of the EMA is studied. It is shown
that Eq. (1) is predicted to be the universal low-
temperature conductivity even for hopping models. Also,
Eq. (1) is compared to the results of computer simula-
tions. Finally, Sec. VI contains a discussion.

H. SYMMETRIC LINEAR HOPPING MODELS

This section briefly reviews symmetric linear hopping
models and their approximate solution in the EMA.
Since several reviews have been written on this sub-
ject,'#71627=30 onjy the most necessary background is
given here.

For simplicity we consider first hopping in one dimen-
sion in thermal equilibrium, i.e., with no external electric
field. A model solid is regarded in which the charge car-
riers can be only at regularly spaced discrete sites. Let ;
denote the average number of charge carriers at site 7

This number changes in time because some charge car- -

riers leave site / and others arrive from the neighboring
sites i—1 and i+1 (only nearest-neighbor jumps are al-
lowed). If T'(i —j) denotes the probability per unit time
of a jump from site i to site j=ix1, the basic equation
for the average N;’s is

dN;

7:-[r‘(i——>i+l)+1‘(i—>i—l)]Ni

ATl 1—iN, + T+ 1= N,y . @)

This equation is a simple example of a master equa-
tion 332

In symmetric hopping models one has symmetric equi-
librium jump probabilities,

[li—j)=D(j—)=Ti,j) (j=itl). 3)

Introducing the probability of finding a charge carrier at
site i, P;=N;/N where N is the total number of charge
carriers, and, when Eq. (3) is taken into account, Eq. (2)
becomes

dp; N .
-—dt—=l"o(1—1,1)(P,~_,—P,-)'—ro(1,t+l)(P,—P,~+,) .

4)

The stationary solution of Eq. (4) corresponds to all sites
being equally probable. Any initial nonhomogeneous dis-
tribution of charge carriers will eventually equilibrate
through *diffusion” of charge carriers away from densely
populated sites.

Equation (4) is linear. This is the mathematical expres-
sion of the fact that the equation deals with noninteract-
ing charge carriers. The charge carriers cannot feel each
other: neither is Coulomb repulsion taken into account

JEPPE C. DYRE 49

nor is “self-exclusion” (i.e., that there is room for only
one charge carrier at each site). In some papers dealing
with hopping models, more general nonlinear hopping
models are formulated, attempting to take these effects
into account. Equation (4) is then arrived at by lineariz-
ing the general hopping equation. However, as pointed
out by Shklovskii and Efros, this linearization is not ex-
act, but involves uncontrolled approximations.*?

For systems of tunneling electrons, the transition rates
depend exponentially on the tunneling distance (as well as
on the difference of the site energies). In the present pa-
per we are concerned with the “classical’’ case where the
jump rates are thermally activated, i.e., where one has

BE,

Coli,j)=Tge " (j=ixl). (5

Here B=1/(kyT), while E;; is the so-called activation
energy—the barrier to be overcome. The prefactor T’y is
the “attack frequency” which is usually of order 10'2 Hz
{a typical phonon frequency). Equation (5) is relevant for
ionic conduction and for certain cases of polaronic con-
duction. .

In symmetric hopping models one usually assumes that
the jump rates vary randomly, so the model is completely
characterized by the activation energy probability distri-
bution p(E). Figure 1 shows an example of the potential
for a symmetric hopping model in 1D with thermally ac-
tivated jumps. At low temperatures the jump rates vary
several orders of magnitude, and a charge carrier makes
many jumps between pairs of sites separated by low bar-
riers. Via the fluctuation-dissipation theorem this implies

- that the conductivity depends strongly on frequency.

Before considering the effect of an electric field, we
briefly discuss the boundary conditions. The bulk
behavior of the model is calculated by letting the volume
g0 to infinity. In any computer simuiation, however, only
a finite sample is present and one has to specify the
boundary conditions. The case of periodic boundary con-
ditions is characterized by requiring Py=Py if the sites
are numbered from O to N. An alternative is the case of
blocking electrodes, i.e., to modify Eg. (4) at the end
points so that no charge carriers may pass beyond these.

3
i
2
3}
~
T
.-
|
[}
S
4
Space Coordinates
FIG. 1. Potential felt by a charge carrier in a one-

dimensional symmetric hopping model with thermally activated
jump rates. If B denotes 1/(kpT) and E is the energy barrier
height, the rate for jumps between two sites is oe ~#E.
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A third possible boundary condition is the case of perfect-
ly conducting electrodes. This is arrived at by imposing a
fixed probability at the end points:

Po=Py=const . (6)

Equation (6) corresponds to having no accumulation at
the electrodes, allowing completely free passage for the
charge carriers. This boundary condition is used below
in the computer simuiations.

In an external electric field the symmetry of the jump
rates is broken, since it becomes more favorable to jump
in the direction of the field than opposite to it (assuming
the charge g > 0). If the energy barrier is placed symme-
trically between the two charge-carrier sites and a
denotes the distance between neighboring sites, the jump
rates are modified'* according to [note that E in Eqs.
(7)-(9) below is the electric field and not an energy bar-
rier]

T(i—i+1,E)=Tgli,i+1)efeE?

)]
Tli+1—i,EY=Tyli,i+1)e PwOE

In the linear limit (which defines the ordinary conductivi-
ty) Eq. (7) is expanded to first order in the electric field:

Tli—si+1,E)=Tylii +1) 1+E£§5 ,
®)
Tli+1—i, E)=Tyi,i+1) 1-5%1‘1 :

Consequently, Eq. {2) in terms of the P;'s becomes

dp; o -
_z-i-t_=r°(‘_ LiXPoy=P)—Toli,i +1){P;—P; )

+Eﬁgﬂ[ro<i—1,n<p,._,+z>,.)

—ro(i,i+1)(P,+P,+‘)] . (9)

In this equation the electric field may depend on-time in
any arbitrary way.

The complex frequency-dependent conductivity o(w)
is defined as the ratio between the spatially averaged
current density and the electric field in a steady state,
where the electric field varies periodically as ¢/, The
Kubo formula® expresses the frequency-dependent con-
ductivity in terms of the current-current time autocorre-
lation function. For hopping models it is convenient to
rewrite the Kubo formula by performing two partial in-
tegrations. This leads® to the following expression

22 .
u(w)=—%‘£—%fo (Ax™(t))ge ~ide . (10)
B

Here, n is the average charge carrier density, {(Ax(1)),
denotes the equilibrium mean-square displacement of a
charge carrier in time ¢, and a convergence factor
lim,_ qe ~ is implicitly understood in the integral.

For a homogeneous system (i.e., with all jump rates
equal) the mean-square displacement is determined from
the diffusion constant D, via Einstein’s equation
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(Ax2(2))g=2Dyt. As is easy to see, Eq. {10) then gives
the frequency-independent conductivity o =nq’u where
4 is the mobility which is given by the Nernst-Einstein
relation u=Dy/(kyT). In the time f a charge carrier in
a homogeneous system with equilibrium jump rate T per-
forms on the average N =2I't jumps. Therefore, one has

(Ax¥1))g=Na?=2Ta’t,

which implies Dy=Ia% Combining these equations, one
finds for the frequency-independent conductivity of a

homogeneous system

2.2
=nhqa
o koT r. an

For any inhomogeneous system, the high-frequency
limit of the conductivity is given by a similar expression.
It can be shown®® that o« ) is given simply by the aver-
age jump frequency: .

2.2 :
=hga_
o(w) ko T (r). (12)

It is convenient to redefine the conductivity and absorb
the prefactor nga®/(k,T). In this “rationalized” unit
system, which will be used henceforth, Eq. (12) simply be-
comes g( o )={(T).

It is also possible to calculate the dc conductivity ex-
actly in one dimension.® Thus, in 1D the high and low
frequency limits are in the “rationalized” unit system
given by

o,-pl0)={T"1)",
=2 13
UI_D(W)=<F> .

The inequality 1 <{T'){T"!) may be derived from the
Cauchy-Schwartz  inequality; it  implies that
0,-p(0)So,_ple). In fact, it can be shown®” for any
hopping model in any number of dimensions that the real
part of the conductivity is an increasing function of the
frequency.

Hopping models in D dimensions for D>1 are
straightforward generalizations of the one-dimensional
case. If P, denotes the probability of finding a charge
carrier at site s, Eq. (4) is replaced by (for symmetric hop-
ping models)

%PS——- S Tols,s )P, —P,) . (14)

§ .

In the present paper the sites s are assumed to lie on a
simple cubic lattice and the sum is restricted to nearest
neighbors. The Kubo formula Eq. (10) is also valid for
D > 1 where the mean-square displacement { Ax*(r))g is
in any of the D axis directions. The three above-
mentioned boundary conditions may also be applied for
D>1. In an external field, the concepts of blocking or
perfectly conducting electrodes make sense only for the
sample faces perpendicular to the field; it is natural to ap-
ply periodic boundary conditions to all remaining faces.

Even for D>1 it is convenient to use the “‘rational-
ized” unit system representing the conductivity in terms
of an equivalent jump frequency. In this unit system the
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hxgh frequency limit of the conductmty is for any D
given?®37 by

o(w)=(T). (15)

For the dc conductivity, on the other hand, there is no
general analytical expression similar to Eq. (13) in one di-
mension. However, the temperamre dependence of o(0)
is known; it is glvcn by

—BE

g@)=e " ° (D>1), (16)

where the so-called percolation energy E, in terms of the
activation energy probability distribution p(E) and the
link percolation threshold p, is given by

Ec .
[ pEVE=p, . an

For D=2 one has p, =1 exactly*' while for D =3 simula-
tions have shown that p, =0.2488.9
The calculation of the frequency-dependent conductivi-
ty in hopping models is a complicated problem. The
~ standard approximation for disordered systems is the
coherent potential approximation (CPA).** The CPA
is a mean-field approximation that gives an estimate of
the relevant Green’s function that has a number of at-
tractive analyticity properties. For hopping models, the
CPA is known as the effective medium approximation
(EMA) because it is derived by considering one “link”
(i.e., jump frequency) of the lattice as embedded in an
“effective medium” mimicking the average surroundings.
Several papers'>263%93574% gerive the EMA equation. If
the complex frequency s =i is introduced —referred to
below: as the “Laplace frequency”—the conductivity
o=o(s) in the “rationalized” unit system introduced
above is in the EMA given!® as the solution of the equa-
tion ) .
< L4 ) =0. (18)
Do+[{1—sGT'—o)
In Eq. (18) the average is over the jump frequency proba-
bility distribution and 5G is defined by
= d°k 5
G 1~8Z (2m)P s+2Do[1—p(k)] ’ {19

where the integral is over the first Brillouin zone
(—w<k;,<7)and

D
p(k)=% S costk;) . (20)

i=1

For s— @ one has sG —1. Thus, Eq. (18) implies the
correct high-frequency limit Eq. (15). In the limit s—0
one has sG —0. Thus, the EMA equation for the dc con-
ductivity is

r—g(0) _
<r+w—1)o(0))r"°‘ @n

For D=1 Eq. (21) gives the correct result Eq. {13).

To solve Eq. (18} numerically one needs to calculate
the quantity sG of Eq. (19). This is a standard exercise in
calculating the diagonal element of the Green’s function
for a random walk on a cubic lattice or, equivalently, for
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the quantum-mechanical tight-binding model®” In 1D
one finds*»0

e
Gp= 1+% (x=s/0). @2
In two dimensions one finds***®
g2 X _4 =
sGsp el 8 broram (x=s/c), (23)

where X is the complete elliptic integral of the first kind.
In three dimensions one finds*

;’—‘v;fo"rw)x[z(ww

SG3D=

4 —~, x=s/0 24)

[t(¢)= x+6—2cos(¢)

Note that Eqgs. (22)-(24) all imply sG — 1 as s — o, as re-
quired by Eq. (19). A rough analytical approximation to
Eq. (24) is Hubbard’s Green’s function®

s
1+6/x+V1i+12/x

sGyp= (x=s/a). (25)

II1. AMETHOD FOR THE NUMERICAL
EVALUATION OF THE FREQUENCY-DEPENDENT
CONDUCTIVITY IN HOPPING MODELS

The frequency-dependent conductivity may be evalu-
ated numerically in several ways. In principle, the prob-
lem is the straightforward one to solve a large system of
linear equations with complex coefficients; from the solu-
tion, the conductivity is easily calculated. The Gauss-
Seidel or the Jacobi relaxation methods®' are usually ap-
plied to such a problem. Unfortunately, they converge
much too slowly if the coefficients vary over several or-
ders of magnitude, as is the case when one wants to study
hopping at low temperatures. Overrelaxation methods®!
may be faster, but are still too slow.

An obvious way of evaluating the frequency-dependent
conductivity in hopping models is to use an equivalent of -
a Monte Carlo simulation, simulating the charge-carrier
jumps in “real” time. This method works fine at high
temperatures, but for 8 larger than about 10 the charge
carriers get caught and tend to jump backwards and for-
wards between two sites without moving away until after
thousands or millions of Monte Carlo steps. While this
behavior reflects the real physics of low-temperature hop-
ping, the method is clearly very inefficient. :

We now proceed to describe an alternative method for
evaluating o(s), where a systematic reduction is applied
to the ac Miller-Abrahams (ACMA) equivalent circuit.
The reduction ends up with a frequency-dependent ad-
mittance matrix from which the conductivity is easily
calculated. To describe the method we first review the
one-dimensional ACMA equivalent circuit, and then
show how to reduce the circuit. Finally, the generaliza-
tion of the method to higher dimensions is discussed.
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To solve Eq. (9) one notes that for small electrical fields

the probabilities P; are only slightly different from the
average probability (P): P,={P)+8P;. When substi-
tuted into Eq. (9) this gives to first order in € and §P;
where ¢=Bga{P)E is a dimensioniess measure of the
electric field
%8P,~=I‘°(i—

1,i (8P, _,—5P,)

_ro(i,i+ l)(SP,—ﬁP,.H)

+e[Toli— 1,i)—Tgli,i +1)] . 26)

Consider now the ACMA electrical circuit shown in
Fig. 2(a). The capacitors all have capacity equal to one
while the (real) conductance between site i and i-+1 is
Coli,i+1). The voltage generators impose the potential
drop —ie from the capacitors to the ground. If the volt-
age at site { is denoted by U;, the Kirchhoff law express-
ing charge conservation is
Loli—

Z(Ui+'€)= LiXU, ;= U;)

_Fo(i’i+l)(Ui—Ui+l) . (27)

-(i-l)e ~ie -{i+l)e

=

FIG. 2. (a) ac Miller-Abrahams (ACMA) electrical
equivalent circuit of a symmetric hopping model in one dimen-
sion. All capacitors have unit capacitance while the conduc-
tance of the resistor between site i and site i +1 is equal to the
equilibrdium jump frequency [g(i,i+1). The electric field in
the sample, for which ¢ is a dimensionless measure, is reflected
in the voltage generators. The currents in the resistors are equal
to the currents in the hopping model [Eq. (30)]. Similar electri-
cal equivalent circuits exist in higher dimensions. Here, the
voltage depends only on the coordinate in the direction of the
clectric field, and thus the capacitors in a plane perpendicular to
the field are all connected to the same voltage generator. This
fact is crucial for the numerical method for calculating the
frequency-dependent conductivity derived in Sec. III. (b)
Boundary conditions to the ACMA circuit in one dimension.
These boundary conditions correspond to perfectly conducting
electrodes {Eq. (6)].
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This equation transforms into Eq. (26) if one makes the
identification ’

U;=6P;—ic . (28)

Solvmg Eg. (26) therefore becomes equivalent to solving
the ACMA circuit.?*2™%* To completely specify the
problem the boundaries must be considered.!* We use
perfectly conducting electrodes for which the boundary
conditions are 5Py =58Py =0 [Eq. (6)]. For i=0 this im-
plies U, =0 while for i =N the condition is Uy=—Ne.
These two boundary conditions correspond to the circuit
endings without capacitors shown in Fig. 2(b).

Before the ACMA circuit is “‘solved,” let us consider
the calculation of the frequency-dependent conductivity
from the solution. By definition, o(s) is the ratio be-
tween the spatially averaged current and the electric field
in a steady periodic situation. If (J), denotes the spa-
tially averaged current in the field e, we have (where K is
a proportionality constant depending on the unit system)

N-~1i
(N)e=K 3 [Tli—i+ VP, —Tli+1=i)P;,,].
i=0

29

To first order in é=pqga{ P)E this expression via Eqs. (8)
and (28) reduces to

N—-1
(J)e=K 3 Tyli,i+1)

3 Tuli 2(P> ————(P)+8P,—8P,,,

N1
=K T Toli,i+INU;—U;4,). (30)
At very high frequencies the capacitors may be ignored
and the potential drop across each resistor simply be-
comes €. In order to reproduce Eq. (13) for the high-
frequency conductivity, the general expression for the
conductivity in the *“rationalized” unit system must
therefore be
N—1
N 3 Doli,i+INU, —U;yy) (e=1).

i=0

(31)

If Ig{i—i+1) denotes the current in the resistor from
site i to site i + 1 when €=1, one has
1 N
o=— 3 Ipli—i+1) (e=1). (32)
N S

In the dc limit the capacitors are completely blocking
and only the voltage generator at the site i =N matters
[since here there is no capacitor, compare Fig. 2(b)]. The
ACMA circuit then effectively reduces to resistances in
series and the current is the same in each resistor. This
current is determined by the total resistance from i =0 to
i=N. Each resistor has the value 1/Ty(i,i+1) and the
total resistance is the sum of all resistors. When the
current thus determined is substituted into Eq. (32), one
finds the expression given in Eq. {13) for the dc conduc-
tivity of a 1D hopping model.

Returning now to the case of an arbitrary frequency
(but still in 1D}, it is convenient to rewrite Eq. (32) in
terms of the current through each voltage generator. If
I,{i) denotes the current “upwards” through the ith
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voltage generator towards site i, charge conservation im-
plies

I (0—1)=1,(0),

(33)
I (1-2)=1g(0=1)+I,(1)=I,(0)+1,(1);
in general,
Iplimi+1)=T,(0)+ -+ +I,0i) . (34)
When substituted into Eq. (32) this gives
N
a=# S (V=) (e=1). (39)

i=0

Equation (35) suggests regarding the ACMA circuit as
an N port consisting of all the capacitors and the resistors
as “internal” elements with “external” nodes that are to
be subjected to the potentials —¢, ..., —Ne relative to
the ground defined by site 0. Such a circuit is character-
ized by a (frequency-dependent) symmetric matrix of ad-
mittances. This matrix is here defined by

~
Lyiy= 3 Y[i,jlU;—U;), (36)
j=o
where Y{i,i] may be any number. In particular, it is pos-
sible from Y[i,j] to calculate the generator currents for
€=1,

N :
Iyi=3 (j=DY[i,j]. 37
j=0
Substituting this into Eq. (35) one finally arrives at
LA :
o=— 3 S(N-ij—=DY[ij]. (38)
NS j=0

The problem is now reduced to calculating the admit-
tance matrix. This is done by utilizing the general star-
mesh transformation well known from electrical engineer-
ing.** This transformation, which was first used for ran-
dom resistor networks by Fogelholm,**” is a prescrip-
tion of how to remove nodes from a circuit without
changing the *“‘external” properties of the circuit. Con-
sider any node in an electrical circuit connected to m oth-
er nodes by the admittances Y,,..., Y, . This is illus-
trated in Fig. 3 for the case m =5. The central node may
be removed by introducing new admittances between all
possible pairs of the m neighbor nodes. The new admit-
tance between the neighbor nodes i and j, Y;;, is given®
b

Y _ Y,Y, 39
Y Y+ +Y, 39

If some of the m neighbor nodes were already connected
by an admittance before the transformation, this admit-
tance is increased by the amount given by Eq. (39). What
does it actually mean physically that the new circuit is
‘““equivalent” to the old? This means that, for all possible
choices of potentials applied to the m neighbor nodes, the
same currents run from each of these nodes into the cir-
cuit. In this sense, the m neighbor nodes cannot detect
any difference before and after the transformation. Once
this condition has been specified, it is straightforward to

FIG. 3. General star-mesh transformation of an electrical
circuit (Ref. 55). In this example the central node is removed.
This node is connected to five neighboring nodes by the admit-
tances Y,,...,Y;. After the transformation, all possible con-
nections between the five “‘external” nodes are created by, be-
tween the jth and the jth node, introducing the admittance
Y.Y;/(Y,+ -+ +Y;). Physically, the fact that the new circuit
is equivalent to the old means that, for any “external” potentials
applied to the five nodes, the same currents run into the circuit
before and after the transformation. The general star-mesh
transformation may be applied to the ACMA circuit of Fig. 2
and its higher-dimensional analogs. When all nodes have been
removed one is left with an admittance matrix Y{i,;j] which
directly determines the frequency-dependent conductivity (Eq.
(38) in 1D or Eq. (40) in 2D].

derive Eq. (39).

When this transformation is applied to the ACMA cir-
cuit each of the “internal” nodes indexed i=0,1,...,N
is removed. Eventually, one is left with all possible con-
nections between the “‘external” nodes. Each connection
has an admittance which specifies the corresponding ma-
trix element in the admittance matrix Y[i,j]. With this
method for evaluating o(s) for a hopping model, the
number of calculations that are to be performed is in-
dependent of the temperature. A further advantage is
that the present method, by proceeding through a num-
ber of simple algebraic operations on the circuit admit-
tances without any subtractions, introduces virtually no
numerical inaccuracies. Thus, the conductivity is evalu-
ated with a very high precision.

The method is easily generalized to higher dimensions.
Considering the case D =2, the ACMA circuit is a square
lattice here whose nodes are indexed by (i,k) where
i=0,...,Nand k=1,...,N. Asin Fig. 2(a) each node
on the lattice is connected to the ground via a capacitor
and a voltage generator.'** Neighboring nodes are con-
nected by a resistor whose conductance is the equilibrium
jump frequency. The external electric field is assumed to
be in the direction of the x axis (indexed by {). This
means that the voltage generators have a voltage equal to
—ie, independent of k. In effect, there is thus just one
voltage generator for each i. In the y direction we use
periodic boundary conditions so that the point (i, N+1)}is
identified with the point ({,1). In the x direction the per-
fect electrode boundary condition is used. For calculating
the conductivity, all nodes (i,k) with i=1,... ,N~1are
removed according to the recipe of Eq. (39). After the
reduction has been performed one ends up with an
(N+1)X(N+1) symmetric admittance matrix Y[i,j],
where both indexes refer to the x coordinates. The calcu-
lation of the conductivity from the matrix proceeds as in
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Eq. (38), except that a further division by N is necessary
to compensate for the fact that each “layer” perpendicu-
lar to the x axis has N parallel channels. Introducing an s
to remind of the fact that the conductivity is frequency
dependent, we thus get ’

i 1 X N
o(s)=— > (N=iNj—DY([i,j;s] . 40)

- i=0 j=0
It is not clear in which order the nodes should be re-
moved to have the fastest algorithm. This point is impor-
tant because the removal of one node introduces several
new connections. And the more connections there are to
a given node, the more calculations are required for re-

moving it. The nodes should therefore be removed so .

that as few new connections as possible are created. In
the original Fogelholm algorithm in each step one re-
moves the node with fewest connections to its surround-
ings.’” This works well for a system where most neigh-
boring nodes are not connected, as is the case close to the
link percolation threshold. In the present case, however,
where all neighbors are connected, this procedure be-
comes very inefficient, because the last nodes to be re-
moved become excessively costly. We found it better to

Log,, (d)

-2 -1 o 1 2 3 a S & 7
Log,,{s"

6

sk (e

ab

Log,, (8)

Log, (s’
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“contain the damage” by removing one column at time
(i.e., the nodes with the same index i). After the first p
columns have been removed, one has a situation where
the p+1 “electrodes” connected to the voltages
0,—1, ..., —p are all connected to each other. Further-
more, all possible connections exist from these-p+1
“electrodes” to the N nodes of the (p +1)th column, and
all nodes in the (p+1)th column are connected to each
other. A further optimization of the algorithm is ob-
tained by, after removing the first N /2 columns, starting
from the other end of the circuit by removing columns in
decreasing order of the i index.

IV. COMPUTER SIMULATIONS

The algorithm derived in Sec. III was applied to a
study of hopping in two dimensions. At low tempera-
tures large lattices are needed to obtain reasonable statis-
tics. We chose to simulate hopping on a 100X 100 lat-
tice. For this system a standard workstation calculates
the conductivity accurately (at one particular frequency)
in about 1 min. However, even 2 100X 100 lattice is not
self-averaging at low temperatures, and it was necessary

Log;,18)

Log,, (s
6
5
4
0
= 3
2
Q2
2
1
o
- — R N
-2 -1 o 1 2 3 4 5 & 7
Log,, (s’

FIG. 4. Log-log plots of the results of computer simulations in two dimensions (points) compared to the EMA predictions (fuil
curves) for symmetric hopping on a 100X 100 lattice. The figures show the conductivity as function of the real Laplace frequency
(i.e., at imaginary frequencies). The computer simulations were carried out using the algorithm developed in Sec. III. The points
represent averages over 20 different 100X 100 lattices, where the jump frequency activation energy varies according to the following
distributions (compare Appendix B of Ref. 20): (a) asymmetric Gaussian; (b} Cauchy; {c) power law with exponent —4; and (d) box.
Each figure shows the following dimensionless inverse temperatures: 8=5 (D), 8=10 (0), B=20 (V), and B=40 ({). The “re-
duced” Laplace frequency s’ as well as & are defined in Eq. (42). The EMA predictions were found by solving Eq. (18) where sG is

given by Eq. (23).
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to average over several simulations to obtain reproducible
results.

In each simulation a 100X 100 lattice was generated
by, for each link, choosing a random activation energy
according to the probability distribution under study.
Four different probability distributions were used: The
asymmetric Gaussian, the Cauchy, the power law with
exponent —4, and the box. The details of how the ener-
gies were generated are described in Appendix B of Ref.
20; to avoid spurious correlations the random numbers
were generated according to the RANO algorithm of
Ref. 51.

For each lattice the frequency-dependent conductivity
was evaluated from Eq. (40) at a number of frequencies,
where the admittance matrix Y[i,j;s] results from the
reduction of the ACMA circuit. For simplicity, the
simulations were carried out at real Laplace frequencies,
corresponding to purely imaginary frequencies. This
" trick simplifies the computations and, since o(s) is real

for real s, makes it possible to present the frequency-
. dependent conductivity in one single curve.

Figure 4 shows a log-log plot of the averages of 20
simulations for the four activation energy distributions at
the dimensionless inverse temperatures =5, 10, 20, and
40. If p(E) is the normalized energy probability dlsmbu-
tion and one introduces (compare Sec. V)

=B __ 41
B 8ap(E,) ’ “n
the quantities s’ and @ in Fig. 4 are defined by
—_B e O
= = . : 4
TG T “2)

In Fig. 4 the full curves are the EMA predictions found
by solving Eq. (18) numerically. In two dimensions the
quantity sG is given by Eq. (23). A numerical approxima-
tion to the elliptic function was used.*® Equation (18) was

_discretized into 10.000 terms and then solved by the
bisection method.”!

The EMA is usually derived from a perturbation ex-
pansion around the homogeneous state. As such, there is
no a priori reason to believe in the EMA predictions in
severely disordered cases like low-temperature hopping,
which is really quite extreme: It involves jump frequen-
cies that for =40 vary 2060 decades. This enormous
variation implies that the scaling of the frequency intro-
duced in Eq. (42) shifts the frequency by in some cases
more than 15 decades. In this light it must be said that
the EMA works rather well in Fig. 4.

V. THE LOW-TEMPERATURE LIMIT OF THE EMA:
THE APPEARANCE OF UNIVERSALITY

This section studies the EMA prediction for the T—0
limit of the frequency-dependent conductivity in sym-
metric hopping models in more than one dimension. The
derivation starts by noting that, as S—» o0,

x=s/o <1 . (43)

for all frequencies in an increasingly large range around
the frequency marking the onset of ac conduction. This
observation was first made by Bryksin in a paper from

1980 (Ref. 26) dealing with electrons tunneling between
random positions. In the derivation given below, Eq. (43)
will be assumed first and subsequently shown to be con-
sistent with the result derived.

Equation (18) is rewritten

o=< L—o -) . (44)
TC—o+Do/(1—-sG})Ir

When x is small, sG is small. Expanding to first order in
sG leads to (where the numerator is rewritten for con-
venience below)

0=( I'+((P—1)+DsGloe—D(1+sG)o )
C+[(D—1)+DsG )o r

If we introduce the notation I'(E)=TI"ge ~#E to emphasize
the activation energy dependence of the jump frequency
and if the average is converted into an average over the
activation energy probability distribution, Eq. (45) be-
comes

(45)

1 _ 1
— —( ) . (46)
D(1+sG \T(E)+{(D—1)+DsGlo /

For large 8 the jump frequency I'( E') varies extremely
rapidly and, for given ¢ and s, there are essentially just
two extreme possibilities: Either one has

TE)<<[(D—1)+DsG Jo

or the opposite extreme. In the former case I'(E ) may be
ignored altogether from the denominator in Eq. (46),
while in the latter case the denominator becomes very
large and there is little contribution to the right-hand
side. The energy separating the two cases, E,(s), is given
as the solution of

NE)=[(D—1)+DsG o ;

thus

_ =1 [(D—1)+DsG Jo
Ey(s)=——In T

B
Accordingly, the right-hand side of Eq. (46) becomes

47

: )
(F(E)+[(D—l)+DsG]a E

. 1

 [(D-D+DsGlo [euptEriE w9
and Eq. (46) reduces to

D—1 sG
—t = (E)E . (49)
D D(1+sG) & (”‘D

Evaluating Eq. (49) at s=0 gives an expression for
(D=1)}/D. When this expression is subtracted from Eg.
(49), one gets

sG
D(1+5G) 7
For large B, E,(0) is close to E,(s) and therefore the in-

tegral on the nght -hand side can easily be evaluated. If
P{E,(0)] is denoted by p,, the integral is simply

v (EVE . (50)
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PolEg(0)—E,(5)]. Introducing the symbol &=0/c(0)
into Eq. (50) and using Eq. (47) one gets
_s6___po
D(1+sG) B

D ~
+ gl . 51
In| |1 D"—ISG F (51)

To leading order in the small quantity sG, Eq. (51)
reduces to
B = ~
—sG =In{7] .
Dpy
Since for D=1 one has E (0)= o, the derivation as-
sumes D>1. As f—» o, Eg(O) approaches the dc con-
ductivity activation energy which is equal to the percola-
tion energy defined by Eq. (17); thus

po=p(E.) . (53)

(52)

In further development one has to distinguish between
the cases D=2 and D >2. In the latter case, which is the
simplest, the quantity sG as a function of x =5/0 con-
tains a regular first-order term. Writing

D>2: sG=apx (x—0), (54)
Eq. (19) implies
d®k 1

=1 . 55
R (2m)? D—(cosk,+ - - - +coskp) 55)

For D=3 one has a;=0.253.% Substituting the expan-
sion Eq. (54) into Eq. (52) leads to Eq. (1), & In(&)=3,
where

Bap

D>2: §=——5 .
Dpoa(O)s

(56)
Finally, the consistency of the derivation is checked: The
assumption Eq. (43) is indeed satisfied, since for §— e
one has x =s /o 3 /(¢B)—0 for fixed & and 5.

Turning now to the two-dimensional case {where the
integral in Eq. (55) diverges] we use the asymptotic ex-
pansion of the complete elliptic integral of the first
kind:®® For k—1 one has K(k)=In(4/k’) where
k*+k*=1. This implies that

K(k)=_Tlln(1-k)

for k—1. Thus,

4

==
yyra 2 In(x)

for x —0. When this is substituted into Eq. (23) one finds
asymptotically

$Ga_ D=:—”‘x In(x) (x—0) . (57)

In terms of the B defined in Eq. (41), Eq. (52) thus be-
comes

In(3)=8~In [1] . (58)
o s

49 STUDIES OF ac HOPPING CONDUCTION AT LOW TEMPERATURES

PUBLICATIONS

11717

Defining now
(59)

Eq. (58) becomes

=1 K4
In(&)=p— —
N T

{In{7 ) —In(3)+1In(B)+In[In(B)]] .

(60)

For fixed & and ¥ as f— «, Eq. (60) reduces to Eq. (1),
@ In(#)=3 Note that the assumption x =s/0 <<1 is
also satisfied for D=2 for fixed & and ¥ when B is
sufficiently large.

The numerical solution of Eq. (1) was discussed in Ap-
pendix A in Ref. 20 where an analytical approximation to
the function &(5) was also given.

Figure 5 tests the EMA universality prediction against
computer simulations. The four different activation ener-
gy distributions of Fig. 4 were used, supplemented by re-
sults for the exponential distribution.?’ For each distribu-
tion the temperature was chosen so that §=4. Each
point in the figure represents the average of 50 simula-
tions of a 100X 100 lattice. The figure clearly shows that
there is universality at low temperatures, but there is not
a quantitative agreement with the EMA universality pre-
diction. A further discussion of this result is given in the
next section. -

VI. DISCUSSION

In this paper a method for the numerical solution of
symmetric hopping models has been derived. The
method, which makes use of the ac Miller Abrahams

6

Log,, ()

Log,,(§)

FIG. 5. Log-lot plot comparing the EMA universality pre-
diction {full curve; Eq. {(1)] to computer simulations (points) of a
100X 100 lattice for five different activation energy probability
distributions. Each point represents the average of 50 simula-
tions taken at the “‘reduced” inverse dimensionless temperature
B=4 where B is defined in Eq. (41); this corresponds to (the
relevant E.’s are given in Appendix B of Ref. 20) 8=63.91 for
the asymmetric Gaussian, $=32.00 for the Cauchy, §=50.27
for the exponential, #=119.66 for the power law with exponent
—4, and B=100.53 for the box distribution. The *“reduced” La-
place frequency ¥ is defined in Eq. (59) and #=¢/0(0). The
figure shows resuits for the following distributions: asymmetric
Gaussian { A); Cauchy (Q); exponential {{J}; power law with
exponent —4 (A); and box (V),
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electrical equivalent circuit, may be gereralized immedi-
ately to deal with nonsymmetric hopping models; the
only change is that in the ACMA circuit the capacitors
then vary from site to site.!** The method allows a fas-
ter and more accurate calculation of o(s) in hopping
models for larger lattices and at lower temperatures than
previous methods. Thus, the standard Monte Carlo type
method is useless if one wants to study low temperatures
as in Fig. 4. The standard relaxation methods for solving
linear equations are also too slow in this regime where
the coefficients vary many orders of magnitude.

There exists a clever algorithm for solving linear equa-
tions with coefficients that vary many orders of magni-
tude. This is the algebraic multigrid algorithm
(AMG)®1%? which is available from the Yale muitigrid li-

brary in a well-documented and carefully debugged-

FORTRAN version.” The AMG is an aigebraic generali-
zation of the muitigrid method for solving elliptic partial
differential equations. The AMG has been tested success-

fully for large random admittance networks with admit- -

tances varying many orders of magnitude.?®>%* It solves
the Kirchhoff equations in a time proportional to the

number of equations. For the present problem, the AMG -

solves the problem in D dimensions in a time < N2. At
first sight, this is much better than the method presented
in Sec. III, which, as is easy to show for D > 1, calculates
the conductivity in a time <N32~2 However, in the
practical use of the AMG it is not presently superior to
the method of Sec. III. Thus, when applied to a hopping
problem at low temperatures, the AMG easily runs into
overflow problems, whereas the method of Sec. III avoids
such problems. At low temperatures, if one wants to cal-
culate the conductivity by solving Eq. (26) or the higher-
dimensional analogs, the solution must be extremely ac-
curate. The standard double precision real number repre-
sentation is not enough, since the equations should be
solved with an accuracy of 50-100 digits (depending on
how low the temperature is). Unfortunately, higher pre-
cisions are not hardware implemented today and are

therefore quite slow. The method presented in Sec. III -

seems to be the best available at present. On a longer
time span it is likely that the AMG will eventually be-
come the best choice.

The results of extensive computer simulations of a
100X 100 lattice in 2D was reported in Sec. IV. In order
to obtain reproducible results at low temperatures, it was
necessary to average over several simulations of different
Jattices generated for the same activation energy proba-
bility distribution. The main problem in the reproduci-
bility lies at low frequencies; thus, at frequencies where
log (&) > 1 the results (i.e., & as function of s°) are gen-
erally quite reproducible.

The results of the computer simulations were com-
pared to the predictions of the EMA at real Laplace fre-
quencies at a number of temperatures in Fig. 4. The use
of real Laplace frequencies not only simplifies the calcula-
tions, but also makes it possible to represent the results in
one curve (instead of two, one for the real part and one
for the imaginary part of the conductivity). This curve
contains all information about the frequency dependence
of the conductivity. This is because the function g(s) is
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analytic in the upper half s plane so, by analytic continua-
tion, the behavior on the real s axis determines the func-
tion uniquely. A further virtue of this representation is
that deviations from the EMA are somewhat magnified
here compared to the use of real frequencies. The “re-
duced” frequency used in Fig. 4 is not the ¥ of Eq. (59)
simply because, for some of the highest temperatures
studied, B becomes less than one, so that Eq. (59) does not
make sense. Instead, the related *‘reduced” frequency
s'=fs /0(0) [Eq. (42)] was used in Fig. 4.

As far as is known to the author, these results are the
first simulations of a hopping model at low temperatures
where the jump frequencies I' vary over several decades
(here up to about 50-60 decades). In general, there isa
rather good agreement between the simulations and the
EMA, with some deviations in the transition region
where the EMA at low temperatures consistently un-
derestimates the conductivity.

At low temperatures the EMA predicts a universal fre-
quency dependence of the conductivity, independent of
the activation energy probability distribution (Sec. V). A
particular case of the equation governing the universal
conductivity, Eq. (1) was derived by Bryksin in 1980 (Ref.
26) for a system of tunneling electrons. The equation was
later derived by Fishchuk?® for the box distribution of ac-
tivation energies in the macroscopic model, and by the
present author for a hopping model with the box distribu-
tion.’® Recently, it was shown by means of the EMA for
random admittance networks that Eq. (1) is universal in
the low-temperature limit of the macroscopic modet.!®?
In Sec. V it was shown that the equation is also the

universal EMA prediction for symmetric hopping mod-

els. Physically what happens is that, at low temperatures,
the conduction mainly follows the percolation paths, and
the only “signature” of the activation energy distribution
left is the number p(E,).

The universality prediction was tested in Fig. 5, which
studies five different activation energy probability distri-
butions at the same “reduced” temperature =4, There
is clearly a universality in the sense that the function &(3)
is independent of the activation energy distribution.
However, the results deviate from the EMA prediction
Eq. (1). One reason for the discrepancy may be that the
temperature is simply not low enough in Fig. 5. Unfor-
tunately, it is not possible to go to lower temperatures for
a 100X 100 lattice without loosing reproducibility.

There are interesting differences between the macro-
scopic model®® and hopping models. Figures 4 and § in-
dicate a systematic deviation of the simulations from the
EMA predictions at low temperatures in the transition
region. Here the data give a less sharp transition to fre-
quency dependence than the EMA predicts. In the mac-
roscopic model, on the other hand, there is a very good
agreement between the EMA predictions and the simula-
tions at all temperatures and frequencies. It is not clear
what the origin of these differences is. Apparently, the
hopping model is more complex than the macroscopic
model. Thus, in the derivation of universality for hop-
ping models, one has to distinguish between the cases
D =2 and D > 2, which is not necessary for the derivation
of Eq. (1) for the macroscopic model.2




In the simplest realistic approximation to hopping
models, the continuous time random walk (CTRW) ap-
proximation,” the conductivity for the box distribution
of energy barriers® is

_r
In(1+73)

As has been shown elsewhere,? this expression is close to
that given by Eq. (1); in particular, the two functions &(3)
have the same asymptotic expressions for the exponents
of the real and imaginary parts of the conductivity.
These exponents converge slowly to one as the frequency
goes to infinity.?® (A convincing experimental demonstra-
tion of this phenomenon has recently been given for
metal-cluster compounds.®)

There has been relatively little discussion of universali-
ty for ac conduction in the literature.!™>?® In experi-
ments, a number of authors pointed out early that quite
different systems like ionic conductive glasses and amor-
phous semiconductors have surprisingly similar ac
responses.'™* In a theoretical paper, Summerfield® in
1985 termed the phrase “quasi-universality” for the fact
that a number of different models, when solved in the
EPA,* give almost the same frequency dependence of the
conductivity.

The macroscopic model based on Maxwell’s equations
for an inhomogeneous solid leads to an electrical
equivalent circuit, where the nodes on a cubic lattice are
joined by a capacitor and a resistor in paralle].m'z" The
resistors carry the free charge currents while the capaci-
tor currents are Maxwell's displacement currents. In
contrast to the circuit of Fig. 2, there are no connections
to the ground and no voltage generators; the “‘solid” is
simply subjected to a macroscopic potential drop at the
electrodes (equal to two opposing end faces). In the dc
limit the macroscopic model and hopping models both
give simple resistance circuits. Thus, the dc limit of the
EMA hopping equation, Eq. (21), is identical to the EMA
equation for a random resistance circuit.

An interesting connection between the symmetric hop-
ping model and the macroscopic model is that the
CTRW approximation?* to hopping models corre-

(61)

o=
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sponds to the one-dimensional version of the macroscopic
model. As has been discussed in detail elsewhere,2® this
version becomes realistic at low temperatures where con-
duction mainly follows the percolation paths. Along
these lines, an’approximation to the macroscopic model
referred to as the “percolation path approximation”
(PPA) was proposed in Ref. 20, leading to Eq. (61).

Throughout this paper the limit of extreme disorder
(where the jump frequencies I" vary several decades) was
arrived at by going to low temperatures for a system with
thermally activated hopping. The same limit is also ar-
rived at in a system of localized electrons tunneling be-
tween nearest-neighbor sites, when the density of elec-
trons becomes very small. The system of tunneling elec-
trons has been studied extensively in the past.?%%56
Though it was not spelled out in detail in Sec. V, in the
extreme disorder limit, the EMA universality prediction
[Eq. (1)] applies to this system as well, ¢

There are a number of open problems and work that
remains to be done. The symmetric hopping model
should be studied numerically at low temperatures also in
three dimensions. Regarding the numerical method, it is
not clear what the optimal strategy for removing nodes
is. From the theoretical point of view the main question
is: Is there true universality in the extreme disorder lim-
it, or is there only “quasi-universality?”’ If true universal-
ity does exist, as believed by the author, is the universal
function &(%) the same in all dimensions? If this is not
the case, analytical methods more accurate than the
EMA should be developed to calculate the universal con-
ductivity. A further question is: What is the cause of the
difference between the hopping model and the macro-
scopic model, where the EMA works better than for hop-
ping?
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This paper presents a calculation of the time dependence of the mean-square displacement for
symmetric random energy barrier hopping models at low temperatures, where the frequency de-
pendence of the normalized diffusion constant D becomes universal, i.e., independent of the energy
barrier probability distribution [J. C. Dyre, Phys. Rev. B 49, 11709 (1994)]. The universal time
dependence of the mean-square displacement is calculated from the effective medium approximation
(EMA) universality equation, Din D = §, where § is the dimensionless imaginary frequency, as well
as for the approximation to the EMA universality equation D 2 5/In(1 + §). At long times the
universal mean-square displacement is linear in time, corresponding to ordinary diffusion, whereas
the mean-square displacement at short times ¢ in dimensionless units varies as 2/ In(t™*).

PACS number(s): 05.40.+j, 05.60.+w -

I. INTRODUCTION

The study of stochastic motion in a rugged energy
landscape is relevant in a number of contexts [1]. Exam-
ples include models for ac conduction in disordered solids
[2-5], protein dynamics [6], viscous flow in liquids close
to the glass transition [7,8], diffusion in random flows [9],
or plasma heat conduction in stochastic magnetic fields
[9]. To be specific, consider the Langevin equation of mo-
tion {10] for a system with d degrees of freedom subject

to the potential U(X,,..., X4),
5 aUu
X; = ﬁ'— + &), (1)

where p is a constant and £;{t) is a Gaussian white
noise term with variance given by (&(t)§;(t)) =
2 u kgT §&; ; 6(t —t') (ks is Boltzmann’s constant and T
is the temperature). In the study of motion in a complex
energy landscape the potential is usually assumed to be
random in some specific sense. For instance, the poten-
tial could be chosen according to a Gaussian functional
probability distribution with a specified spatial correla-
tion.

For the dynamics defined by Eq. (1) it is possible to
monitor the average energy as a function of time, as well
as the average displacement as a function of time. As
an example relating to energy relaxation, the tempera-
ture may be an arbitrarily varying function of time and
one may calculate how the average energy varies in time.
Thus, energy relaxations in viscous liquids close to the
glass transition may be modeled {7,8]. Also, the equilib-
rium energy time autocorrelation function may be calcu-
lated, giving the frequency-dependent linear specific heat
[11,12]. In both cases, it is convenient in numerical simu-
lations to use the Smoluchowski equation {10,13] for the
probability instead of the noisy Langevin equations.

When the quantity of interest is the displacement as
a function of time, the focus is usually on the average

1063-651X/95/52(3)/2429(5)/306.00 52

mean-square displacement in some fixed axis direction ¢,
(AX3(t)). In terms of the canonical equilibrium proba-
bility, Po(X) e exp{—BU(X)], and the Green’s function,
G(X — X';t), the mean-square displacement is given by
the 2d-dimensional integral (assuming isotropy)

@axie) =g [ PolX) 61X > X530
x(X - X')?dX dX'. 2)

The mean-square displacement increases linearly with
time asymptotically as t = co. In disordered systems at
shorter times the mean-square displacement varies more
rapidly, leading to a negative curvature of {AXZ(t)),

2
& axi) <o ®)
The fast average displacement at short times is easy to
understand. The particle spends most of its time in a po-
tential energy minimum. The most likely displacement is
to overcome a low energy barrier to another energy min-
imum, which is a relatively fast process. From this new
position the most likely jump is often to go back to the
starting point. Thus, at longer times the displacement is
smaller than expected from an extrapolation of the short
time displacement.

If s denotes the imaginary (Laplace) frequency, s =
iw, the frequency-dependent diffusion constant, D(s), is
defined (2] by

52 bt
D(s) = 5 /0 (AX2(t)) e dt. (4)

It is understood that there is a convergence factor
lim, ,ge™ (¢ > 0) in the integral. For ordinary dif-
fusion, where (AX?(t)) = 2Dt, one has D(s) = D. It
is convenient to regard D(s) as an analytic function of s
that may be studied also for nonimaginary Laplace fre-
quencies. For real s it is straightforward to show that

2429 ©1995 The American Physical Society
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Eq. (3) implies that D(s) is an increasing function of s .
Writing for real frequencies w, D(iw) = D'(w) +1D"(w),
it can also be shown [14] that D’(w) is always an increas-
ing function of w.

If the particle moves in three dimensions and
carries a charge, the system is characterized by
a frequency-dependent conductivity, o(w). By the
fluctuation-dissipation theorem o(w) is proportional to
the frequency-dependent diffusion constant. In fact, Eq.
(4) may be derived from the Kubo formula for o(w) by
two partial integrations [2], utilizing the fact that the sec-
ond time derivative of the mean-square displacement is
twice the velocity time autocorrelation function.

One way to simplify Eq. (1) is to put it on a lattice.
In this way one arrives at a hopping model [3,8,15-18].
» A particularly simple case is when all energy minima
are equal. If the minima correspond to the sites of the
lattice, the problem is reduced to the study of a hop-
ping model with symmetric transition rates for nearest-
neighbor jumps. Each transition rate is proportional to
exp(—BE) where E is the energy barrier. A further sim-
plification is to assume that the transition rates are un-
correlated from link to link; the model is then completely
specified by the energy barrier probability distribution.

Symmretric hopping models have been studied ex-
tensively, particularly with respect to evaluating their
frequency-dependent conductivity. These models are
quite complex and cannot be solved analytically, even in

one dimension. However, a useful approximation exists .

for evaluating D(s) [or equivalently o(s)]: the effective
medium approximation (EMA) [3,15,18,19]. The EMA
is based on an approximation similar to that used in the
derivation of the Clausius-Mossotti formula for the dielec-
tric constant of a mixture (20]; in the solid state physics
of disordered media the same idea is used in the coherent
potential approximation (CPA) [21]. The EMA equation
is simplest in the unit system where the diffusion con-
stant on a homogeneous lattice with link jump rate I is

given by D =T'. If the dimension is d, and if one defines °
d

p(k) = % Z cos(k;) and the following integral over the

i=1
first Brillouin zone (-7 < k; < )

5 _ s dk
& = [ rmrmnsmenE ©

the EMA equation for D(s) is expressed as an average
over the jump rate probability distribution,

T-D
<dD+[1—sG'(l"—D)]>r =0 (6)

The EMA is a mean-field theory. As recently shown
[17), the EMA equation becomes rather simple in the ex-
treme disorder limit, i.e., where the temperature goes to
zero and the jump frequencies consequently cover more
and more decades. In this limit, the EMA equation for
D(s) becomes universal in more than one dimension, i.e.,
independent of the energy barrier probability distribu-
tion. Introducing the normalized dimensionless diffusion
constant D = D(s)/D(0) and the dimensionless Laplace
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frequency § = s7, where 7 is a characteristic time mark-
ing the onset of frequency dispersion (the precise value
of which is of little interest here), the EMA universality
equation {17] is

DmD = ;. (7

At any nonzero temperature this expression is valid only
for a finite range of Laplace frequencies, since D(3) be-
comes independent of 5 for sufficiently large 5. However,
as the temperature goes to zero, the range of validity of
the EMA universality equation extends to infinity, and
therefore the existence of the high frequency plateau for
D(3) at nonzero temperatures is ignored below.

The numerical solution of Eq. (7) was discussed in Ref.

' [22] that also gave an accurate analytical approximation

to D(3). Equation (7) implies that

D= — = (13| = o0). (8)
An approximate solution of the EMA universality equa-
tion is provided by the following expression [first derived
[4.23] as the continuous time random walk (CTRW) so-
lution of the symmetric hopping model with a box dis-
tribution of energy barriers}:

- 5

D= gavy: ®)

Equations (7) and (9) both imply that D(5) follows an
approximate power law as |3| — oo. For real Laplace
frequencies as 5 — oo one has D 7%, where u = 1 —
1/1n 3. For real frequencies @ = 5/%, one finds for @ — oo
[22] D’ « &°, where v =1—2/1lna.

II. CALCULATION OF THE UNIVERSAL TIME
DEPENDENCE OF THE MEAN-SQUARE
DISPLACEMENT

The mean-square displacement is given by the inverse
Laplace transform of Eq. (4), where the integration con-
tour as usual stretches from —ico to ioco to the right of
all poles and branch cuts,

axe) = ¢ 220

et ds. (10)

It is convenient to adopt the “rationalized” unit system
where D(0) = 1 and the time unit is chosen so that &=
s; this is done by writing D = D and § = s. In the
“rationalized” unit system the quantities D, s, and ¢ are
all dimensionless and the EMA universality equation (7)
becomes DInD = s. Note that the boundary condition

(AXF(0)) =0 (1)

is ensured by Eq. (10) for D(s) given by Eq. (7) as well as
by Eq. (9) because both equations imply that D/s — 0
for |s| = oc.

The calculation of the universal mean-square displace-
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ment is complicated by the fact that D(s) is given only in-
directly. We first evaluate the inverse Laplace transform
of the approximate expression Eq. (9), which is simpler

(using again the “rationalized” unit system). Substitu-
tion of Eq. (9) into Eq. (10) gives
XA = — f —2——etds.  (12)
2ri | sIn(1+9)

The integrand has a pole at s = 0 and a branch cut along
the negative real s axis from s = —1 to s = —oo. The
integration contour is displaced to run slightly below the
real axis from s = —oco to 0 and back to —co slightly
above the axis. The resuiue at the pole s = 0 is found by
expanding

2e*t 14st+---
=2 4
sln(1+s) 3(3—'7+...)
2 s
= Stst) (143 +-0)
=2 (1 t)er (13)
T os? 2 :

The contribution to the integral from this pole is 2t + 1.
If one defines f(z) = 2 e**/[zIn(1 + z)] the remaining
part of the integral equals (where € > 0 is infinitesimal)

21rz_/ [f(-u—ie)

Since f{—u + i€) is the complex conjugate of f(—u — ie)
expression (14) becomes

- f(—u +ie)jdu. (14)

2 /0‘7 Im e du
© Jy (—u){lnf{u ~ 1) - ix}

=2 /m e . (15)
B 1 lnz(u'-l)-i»-'lr2 u

Summarizing, the mean-square displacement is in the ap-
proximation Eq. (9) given by
e~ut du
ln®(u=1)+72 u
(16)

(AX2(t) = 2t +1 - 2

By means of Eq. (11) this may be rewritten [24] as

(AXRR) = 2t + 2/ #”I)W%". a7

Equation (17) makes it possible to estimate the asymp-
totic behavior of the mean-square displacement at short
times (t < 1): The term 2¢ is insignificant compared
to the integral, which is separated into two terms: one
integral from 1 to ¢~! and one from t~! to co. In the
first integral the term 1 —e~"t is smaller than ut and the
denominator may be replaced by In?(¢~1). Thus this in-
tegral is of order 2/1n*(¢™1), which is small compared to
the value of the second integral: Here the term 1 — e~
may be replaced by 1 and the denominator may be re-
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placed by In*(u). Thus, for ¢t < 1 one has

@xzey = [ lnf'(u)d-u’f = oy 9

This asymptotic behavior suggests the following analyt-
ical approximation to Eq. (17);

2

(19)
In fact, this expression has the correct short time behav-
ior given by Eq. (18) as well as the correct long time
behavior, (AX2(t)) & 2t + 1. Equation (19) gives an
approximation to Eq. (17) which for any ¢ deviates less
than 7%.

We now turn to the Laplace inversion of the EMA uni-
versality equation. It is possible to show that DInD = s
defines D(s) for all complex 3, except the negative real
numbers between- —co and —1/e [compare Egs. (24),
(25), and (34) below]. We again choose the integration
contour going from s = —oo slightly below the real s axis
returning to s = —oo slightly above the axis, encircling
all poles and branch cuts. Just as above, there is a pole
at s = 0, but the branch cut this time stretches from
g = —1/e to s = —c0. The residue at s = 0 for the
integrand of Eq. (10) is by standard rules equal to

d st —
o [2 D(s)e**] o

The normalization condition is D{0) 1 and the
EMA universality equation DIlnD = s implies that
D'(0)}la D(0) + 1] = 1 or D’(0) = 1. Thus, the residue is
equal to 2t + 2. For the remainder of Eq. (10) it is conve-
nient to change to D as integration variable; s = DInD
implies ds = (1 + In D)dD and thus

2D'(0) + DO)).  (20)

(AXE(L)) = 2t +2
+_1_f 9 D+DhD DinDt
27 (DlnD)?
where the integration contour in the D plane is deﬁned
by DInD being real and < —1/e. Writing D = re?,
the equation defining the integration contour is {25]

Im(DlnD) = 0 which, since InD = Inr + i6, implies
that #cosf + Inrsind =0, or

r= e—e cot @

dD, (21)

(~r<f<m). (22)

Equation (22) implies that the real number DIn D on the
integration contour is given by

DlnD = re®(lnr + i)
e~9°% g (—cosfcot§ ~ sind) (23)
or
DD =-E(9), (24)
where
E(e) - L e—acoto (25)
sin 8§ )
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The function E(6) varies monotonically from 1/e to oo 9 .

as || varies from 0 to w. Next, the integration variable dD = D|—cotb+ sin? 0 +1i)df. (26)

is changed to §. The differential of D is given by dD =
€®(dr +irdf). From Eq. (22) one finds dr = r(—cot § +
si2r5)d6, and thus

-

1 L4
2(4)) = —
(AXEt) = 2t +2 + 27",/_" 2

— E(6) e, [ _ 4
E"’(G) sin® @

Substituting Egs. (24) and (26) into Eq. (21) one obtains

+ i) do. (27)

Since r = 339 F(6) [Eqs. (22) and (25)] the factor E*(6) cancels. The integrand is the real number e~E®)t times the

quantity

2 (—-(cosﬂ+zsm0) - 1) 60 (cos® + isinf) (-—

This function of # has an antisymmetric real part and a
symmetric imaginary part equal to —2F(f) where

F(6) = (cosﬂ - -12—0) + sin®4. (29)

Since expression (28) is to be multiplied with the sym-
metric factor e~ Z(0) and integrated from —x to , only

the symmetric imaginary part of Eq. (28) gives a contri-
bution. We thus finally arrive at

(AX?L) = 2t + 2 —% / F(8) e~t5®) dg. (30)
0
Utilizing Eq. (11) we may rewrite Eq. (30) as
2 [ —tE(8)
2 +7—r£ F(6) .(l—e ) da.
(31)

(AXi) =

Figure 1 shows a log-log plot of the universal mean-
square displacement (full curve) as well as the mean-
square displacement according to the rough analytical
approximation given by Eq. (19) (dashed curve). At long
times one bas ordinary diffusion and a mean-square dis-

placement that grows linearly with time. At short times,

the mean-square displacement is much larger than ex-
pected by extrapolation from the long time behavior. A
detailed analysis of the asymptotic behavior of Eq. (31)
for t — 0 is somewhat involved. However, the short time
behavior of (AX?(t)) is determined by the behavior of
D(s) for large Laplace frequencies. A detailed analysis is
unnecessary since we can refer directly to Eq. (18) which,
because of the asymptotic behavior Eq. (8), must be valid
also for the mean-square displacement given by Eq. (31).
An analytic approximation to Eq. (31) that is consider-
ably more accurate than Eq. (19) is given by the following
expression (which for any t is more accurate that 3.3%):

2 2t
m(m(e+ 0]

(AXiz(t)) = ln(l-*-t-l) -

e—1"
(32)
Finally, we note that Eq. (30

), when substituted into

:, . ) : (28)

f

Eq. (4), gives rise to an explicit integral expression for

the EMA universal D(s). The term 2f + 2 in Eq. (30) is

transformed into 1 + s and thus ]
Ds) =1+ s — l/"F(o)——s—z—de (33)

o= A s+ E@0)
Since [ F(6)dd =  {which follows from Egs. (11) and
(30)], Eq. (33) may be rewritten

sE(B

D(s) =1+ / F(0) —~= ST ED) de. (34)
Equation (34) confirms that D(s) is defined for all com-
plex s except the negative real numbers from —~1/e to

—0oQ.

Logio[(AX}(t))]

Logio(t)

FIG. 1. The universal mean-square displacement in a fixed
axis direction in dimensionless units in a log-log plot accord-
ing to the EMA {Eq. (31), full curve] and to the rough ana-
lytical approximation given by (AX}(t)) 2 2/In(1 +¢})
[Eq. (19); dashed curve, deviating less than 33% from the full
curve]. At short times the mean-square displacement varies
as 2/1In(t~") which implies a considerably faster motion than
expected from an extrapolation of the long time diffusive be-
havior, (AX?(t)) o t. Physically, this effect arises because
at short times it is mainly small barriers that are overcome,
which is a fast process, while at longer times the largest bar-
rier on a “percolation path” will have to be overcome in order
to extend the diffusion to infinity.
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III. CONCLUSION

An analytic expression for the time dependence of the
mean-square displacement for low-temperature -hopping
has been derived from the EMA universality equation.
At short times the mean-square displacement varies as
2/1In(t~'), indicating a considerably faster motion than
expected from the long time diffusive behavior « t. The
expression derived for the mean-square displacement Eq.
(31) is valid asymptotically as the temperature goes to
zero. At any finite temperature the mean-square dis-
placement actually returns to diffusive behavior o ¢ at
very short times, corresponding to the fact that at very
high Laplace frequencies D(s) becomes constant. This
effect has been ignored here because the range of validity
of Eq. (31) becomes larger and larger as the temperature
is lowered.

The transition from “logarithmic” diffusion to ordinary

2433

diffusion defines a characteristic time, which in the above
used dimensiounless units is of order 1. In real units this
characteristic time is thermally activated with an acti-
vation energy equal to the-percolation energy, the low-
est energy barrier met on a long optimal path. It fol-
lows from the EMA {17}, that the dc diffusion-constant
in real units, D(0), is exponentially activated with the
same activation energy, a result which is probably rigor-
ously valid. This fact—the Barton-Namikawa-Nakajima
(BNN) relation [17,26] — has been known for many years
from experiments on ac conduction in ionically and elec-
tronically disordered solids and was recently confirmed
by computer simulations in two dimensions [17].
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A phenomenological picture of ac_hopping in'the symmetric hopping model (regular lattice, equal site
energies, random energy barriers) is proposed according to which conduction in the extreme disorder limit is
dominated by essentially one-dimensional ‘‘percolation paths.” Modeling a percolation path as strictly one
dimensional with a sharp jump rate cutoff leads to an expression for the universal ac conductivity that fits
computer simulations in two and three dimensions better than the effective medium approximation.

[S0163-1829(96)06745-8]

While ordered solids show no frequency dependence of
their conductivity at frequencies below phonon frequencies,
disordered solids are characterized by ac conductivity that
varies as an approximate power law of frequency.!® The
exponent is usually less than, but often close to, 1. As the
frequency goes to zero the conductivity becomes frequency
independent. These features are observed universally for
electronically conducting disordered solids like amorphous
semiconductors,"**7 polymers,*® doped-crystalline semi-
conductors at helium temperatures'® (where the random po-
sitions of the dopant atoms become important), or high-
temperature superconductors above T,,'' as well as for
ionically conducting disordered solids like glasses or
polymers.z""s‘G

This paper deais with ac hopping conduction in disor-
dered solids, but before proceeding we note that the study of
stochastic motion in disordered systems (‘‘rugged energy
landscapes’’) is relevant in a number of other contexts.!?"
Examples include model{ for protein dynamics,”*~*® flow of
viscous liquids close to the glass transition,'*?? diffusion in
random flows,*! or rate processes controtled by the anoma-
lous diffusion of reactants.?™2* Diffusion in a disordered
system is characterized by a mean-square displacement that
at short times varies more rapidly than expected from ex-
trapolating the long-time linear ‘‘Einsteinian’’ time depen-
dence. If the mean-square displacement in an axis direction
i as a function of time is denoted by (AX%(r)), the
frequency-dependent diffusion constant is defined™ by
[where s denotes the ‘‘Laplace’ (imaginary) frequency,
s=iw]

2 re
D(s)=5 fo (AX3(1))e™dt. 1)

For diffusion in an ordered structure, where
(AX3(r))=2Dt, one has D(s)=D. According to the
fluctuation-dissipation theorem, if the diffusing particle car-
ries a charge, D(s) is pr06ponional to the frequency-
dependent conductivity o(s).2° Consequently, all results de-
rived below for the normalized frequency-dependent
conductivity =o(s)/a(0) are valid for the normalized
frequency-dependent diffusion constant D=D(s)/D(0).
We consider hopping of charge carriers on a regular lat-
tice with equal site energies and random nearest-neighbor

0163-1829/96/54(21)/1-4384(4)/$10.00 54

jump rates (model A of Ref. 14). This model for ac conduc-
tion in disordered solids has been studied extensively during
the last 15 years.26-* If the jump rates are taken to be ther-
mally activated with randomly varying activation energies,
the limit of extreme disorder may be studied by letting the
temperature go to zero. It has recently been shown™ that in
this limit the ac conductivity in suitably scaled units becomes
universal in more than one dimension, i.e., independent of
temperature and of the activation energy probability distribu-
tion p(E). The existence of universality was predicted by the
effective medium approximation {EMA) and confirmed by
computer simulations in two dimensions. If 5" is the scaled
dimensionless Laplace frequency, the EMA universality
equation™ is

alng=75. 2)

This equation®® was originally derived by Bryksin for the

model of electrons tunneling between randomly localized
positions. 236

While the existence of universality was confirmed by
computer simulations in two dimensions, the onset of ac con-
duction wrmed out to be smoother than predicted by Eq.
(2).3 The EMA is thus gualitatively correct by predicting
universality in the extreme disorder limit, but quantitatively
inaccurate. This is perhaps not surprising. After all, the EMA
replaces the disordered solid by an ‘‘effective’’ homoge-
neous solid with characteristics determined by a self-
consistency condition. Such an ordered medium cannot a
priori be expected to accurately represent conduction in the
extreme disorder limit.”’

1t is well known that dc and low-frequency ac hopping at
extreme disorder is dominated by percolation effects, ie.,
mainly take place on the percolation cluster.8*-% The per-
colation cluster is a complicated object with fractal dimen-
sion equal to 1.9 and 2.5 in two and three dimensions,
respectively.?' Removing ‘‘dead ends”” (contributing little to
the low-frequency conductivity) from the percolation cluster
leaves us with the ‘*backbone,”’ which has fractal dimension
equal to 1.6 and 17 in two and three dimensions,
respectively.?! The backbone contains loops. but at low tem-

14 884 © 1996 The American Physical Sociery
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FIG. 1. log-log plot of computer simulations (symbols) of low-
temperature ac conductivity in three dimensions at real Laplace frequencies
s (s=iw) for four different activation energy probability disributions, com-
pared to the PPA [Eq. (11), solid curve] and to the zero-temperature fimit of
the EMA universality equation (2), dashed curve. The dimensionless
Laplace frequency 5 is defined by Eq. (10)~h , a further (minor)
empirical ling was applied to focus lusively on the shape of the
conductivity curve; & is defined by &=0(5)/o(0). The jump rates are
given by ['=Tgexp(—BE), where 8 is the inverse temperature and the ac-
tivation energy £ is chosen randomiy according to the following probability
distributions (Ref. 40): asymmetric Gaussian [p(E)xexp(—E*2),
0<E<wm] (X), Cauchy [p(E)«1/(1+ E?), 0<E<®] (+), exponential
[pP(EY=exp(—E), 0<E<®] (0), and box [p(E)=1, 0<E<1](O). To
speed up the calculations all jump rates with activation energy larger than
E .+ KIB were set 10 zero, where E, is defined from the bond percolation
threshold in Eq. (3). By varying the factor K the maximum errors introduced
by this approximation were estimated to be below 1% for both a(0) and
&(5) for the K=06.4 used for the data presented here. In terms of the dimen-

less inverse p e §= Bip(E,) the figure shows data for 100

averages of simulations of cubic lattices with linear dimension & where (a)
B=80 (N=29), (b) B=160 (N=54). and (c} B=320 (N=100) [by vary-
ing N, the maximum errors introduced by using finite lattices are estimated
10 be below 30% and 5% for o(0) and &(5), respectively]. This figure
shows that the ac conductivity becomes universal at low temperatures and
that the PPA gives a beter fit to data than the EMA universality equation.
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peratures one branch of a loop usually has a much higher
conductivity than others. The dimension of the actual con-
duction paths must thus be lower than the dimension of the
backbone. Given these arguments, we now make the sim-
plest possible assumption by regarding the conducting paths
as one dimensional. This approach, which works well for
impedance networks in the extreme disorder limit,* is re-
ferred to as the *‘percolation path approximation’ (PPA).

It should be stressed that the PPA is an approximation that
builds on a highly phenomenological picture of conduction
in the extreme disorder limit. In a sense, the PPA may be
viewed as being complementary to the EMA: In the EMA
the disordered medium is replaced by a homogeneous me-
dium of the same dimension (determined by a self-
consistency condition), while in the PPA the disordered me-
dium is replaced by one dimensional conduction paths
(determined by percolation arguments).

To summarize, in the PPA conduction takes place via
‘‘percolation’” paths that have two characteristics: They are
strictly one dimensional and they only involve activation en-
ergies up to the ‘‘percolation energy’’ E.. This quantity,
which is known to be the activation energy of the dc
conductivity,*'*? is defined from the bond percolation
threshold p. by

-
pe=| p(EVIE. @3
1]

The purpose of this paper is to show that the PPA approach
to ac conduction in the extreme disorder limit, reminiscent of
the *‘conducting path model,’***** gives a good representa-
tion of computer simulations. We thereby indirectly confirm
the recent findings of Brown and Esser,*® according to which
the actual paths of particles in disordered systems become
predominantly one dimensional when the disorder is strong.

Unfortunately, the one-dimensional hopping model be-
hind the PPA is not analytically solvable. Below we derive
an approximation to the PPA utilizing the one-dimensional
EMA, which is known to work very well* [this is confirmed
below in Fig. 2(a)]. We then show by computer simulations
that this one-dimensional EMA, henceforth identified with
the PPA, gives a better representation of the universal low-
temperature ac hopping conductivity in two and three dimen-
sions than Eq. (2) does.

To arrive at the PPA, hopping in one dimension with a
sharp activation energy cutoff is addressed [i.e., p(E)=0 for
E>E, and p(E;)>0]. In the ‘‘rationalized”’ unit system
where the conductivity for a homogeneous system is equal to
the jump rate,”® the EMA equation for the ac conductivity
o(s) in one dimension?$2>333446-50 i5 (where T is the jump
rate and the brackets denote an average over the jump rate
probability distribution)

((T=oM[o+(1-sGHT - )])=0. (4)
Here, G is the diagonal element of the Green’s function for a
random walk on a one-dimensional lattice with uniform

jump rate o (the *‘effective medium’"); sG is given® *0 by

sG=(1+4qg/5)~'2, 5)
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We are only concerned with relatively low frequencies where
sG<1. To lowest order in sG, Eq. (4) implies5I

o ={1/(T+sGa)). 6)

The right-hand side may be expanded as a power series in
sGo, leading to

M e

(-—s(:i-a')"(l"("“)). Y

1—
o S

n

Since I'=T"gexp(—BE), where 8 is the inverse temperature,
the average (I'""*!)) is easily evalvated in the low-
temperature limit: If 8= B/p(E_), one finds to leading order
in 1/8

I(E) Y

(n+1)8
®

When this is substituted into Eq. (7) the following is ob-

(r—(n+l)>= J‘ECFO_(;H»l)e(n+l)ﬁEp(E)dE=
0

T(E) D 1 [
——=—=——Inj 1+
(n+1)8  BsGo

sGo
TED)
©)

Letting s go to zero we find 0(0)=EI'(EC). Introducing the
dimensionless Laplace frequency

=2 (-sGo)

T=[B4a(M]s, (10)

one finds that, whenever sG<1, Eq. (5) implies
BsG =575 [where as in Eq. (2) &= ¢/0(0)]. Substituting
this and ['(E,) = ¢(0)/ 3 into Eq. (9) finaily leads to the PPA
expression :

Ja[1+V5a}= V5. 11)

Due to the factor 8 in BsG= V575, as the temperature is
lowered towards zero the condition sG<¢1 is obeyed in a
wider and wider range of dimensionless frequencies. Note
that Egs. (10) and (11) imply that the frequency marking the
onset of ac conduction in real units has roughly the same
activation energy as the dc conductivity.’! We also note that
Egq. (11) implies that the equilibrium mean-square dis?lace-
ment at short times varies proportionally to 1/n2(r™ ).

We have carried out computer simulations of low-
temperature ac hopping in one, two, and three dimensions
using the Fogelholm algorithm® to reduce the ac Miller-
Abrahams electrical equivalent circuit of hopping®~* ac-
cording to a recently proposed scheme.®* While standard
Monte Carlo techniques can hardly be used for simulations at
inverse temperatures above §= 20,47 the new scheme can
be used at much lower temperatures (in our simulations up to
inverse temperatures of B=1320). Figure 1 shows the resuits
of our simulations of low-temperature ac hopping in three
dimensions at real Laplace frequencies. Results are shown
for averages of 100 simulations of the ac conductivity for
four different activation energy probability distributions at
the following inverse temperatures: (a) §= 80. (b) B8=160,
and (c)-8=320. The solid curve is the PPA [Eq. (11)] and
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FIG. 2. The slope of the log-log plot of &(5) at real Laplace frequencies,
dlog,of #)/dlog,(5), as function of log;i(o) for simulations at the dimen-
inverse temp: E= 320 in (a) one dimension (100 averages of
8192 point lautices), (b) two dimensions (30 averages of 880 880 lattices),
and {c) three dimensions (100 averages of 100X 100X 100 lattices) for the
four activation energy probability distributions of Fig. 1. The simulations in
one dimension were carried out with a sharp activation energy cutoff at
E=1 in order to show the validity of the one-dimensional EMA used in
deriving Eq. (11). In two and three dimensions, as in Fig. 1, the smallest
jump rates were set to zero to speed up the simulations. The simulations are
compared to the predictions of the PPA [solid curve, Eq. (11)] and 1o the
EMA universality equation {dashed curve, Eq. (2)]. Both the EMA and the
PPA predict that the stope of the log-log plot goes to | as §—~oo, as seen in
experiment (Ref. 1). However, the PPA works better than the EMA in two
dimensions and much better than the EMA in three dimensions.

the dashed curve is the EMA universality equation (2). Em-
pirical rescalings of the frequency were allowed in order to
focus only on the shape of the conductivity curves. Figure 1
shows that universality is approached as the temperature
goes to zero and that the PPA gives a quite good fit to the
universal ac conductivity in three dimensions.

The universality may be studied without use of empirical
rescalings by plotting the slope of the log-log plot,
dlog () dlog,of 5). as a function of logo(F). This is done
in Fig. 2 for the same activation energy probability distribu-

tions as in Fig. | for 8=320 data from computer simulations
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in one, two, and three dimensions. The solid curve is the
PPA prediction and the dashed curve is the EMA universal-
ity equation. The simulations in one dimension were for sys-
tems with a sharp activation energy cutoff; these simulations
were carried out to ensure that Eq. (11) does indeed give an
accurate representation of this situation. The real subject of

interest is ac conduction in two and three dimensions without

any activation energy cutoff [Figs. 2(b) and 2(c)]. In both
dimensions the PPA works better than the EMA universality
equation.

Considering the simplicity of the phenomenological pic-
ture behind the PPA, the agreement with computer simula-
tions in three dimensions is striking. We take our results as
an indication that, at least in three dimensions, low-
frequency conduction at extreme disorder in fact is domi-
nated by essentially one-dimensional conduction paths. This
makes sense in light of the “‘nodes-links’” model*** for the
infinite network just above the percolation threshold (dc and
low-frectuency ac conduction are known to take place on this
network’s): According to this model, the backbone of the
percolation cluster comprises links {(quasi-one-dimensional
strings) and nodes (intersection of links). Possibly, the PPA

14 887

works well because it models the ac response of a single link.
Note that ‘‘blobs’’ on the percolation cluster, as in the more
realistic ‘‘nodes-links-blobs’> model, 3 are expected to be
unimportant in the extreme disorder limit, since usually one
branch of the blob has a much higher conductivity than oth-
ers.

The problem of ac hopping in the extreme disorder limit
is still far from fully understood. This is indicated by the
deviation between the PPA and computer simulations in two
dimensions, where the PPA according to the arguments in-
volving the fractal dimension of the backbone should work
slightly better than in three dimensions and not much
worse.® Clearly, more work is needed before a genuine un-
derstanding of universal ac hopping in the extreme disorder
limit is arrived at. Thus, ac hopping in more than three di-
mensions should be simulated. Also, the actual paths of the
particles should be traced out to see whether they are indeed
almost one dimensional. Finally, a closer investigation of the
analyticity properties of the universal ac conductivity is
needed to throw light on whether the prediction of the PPA
(that 7— 1 =52 for §—0) is really obeyed.
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From a simple master-equation description of viscous liquids it is shown that there exist two different
kinds of glass transitions, Slow glass traasitions lead to a Gaussian, while fast glass transitions lead to an
exponential, distribution of frozen-in energies in the glass. It is argued that amorphous semiconductors
prepared by a [ast glass transition have exponential band tails of localized states.

PACS numbers: 64.70.Pf

By sufficiently rapid cooling, glasses may be formed
from any liquid, whether bonded by covalent, ionic, me-
tallic, or molecular forces. The glass transition is thus a
universal .phenomenon.'"® [t continues to attract atten-
tion both from a purely scientific and from a practical
point of view. As a fundamental physical problem, the
glass transition is interesting because it somehow in-
volves u breukdown of ergodicity.” Technologically, an
understanding of the glass transition is important be-
cause glass properties depend on exactly how the liquid
structure is frozen at the glass transition.

Since glasses are formed from viscous liquids, a better
understanding of glasses and the glass transition must
derive from a better understanding of viscous liquids.
The properties of simple liquids can be calculated from
first principles today,*® but this is not the case for
viscous liquids. Though recently there have been in-
leresting attempts to extrapolate the theory of simple
liquids into the viscous and glassy regime,'%!! we here
take the different point of view in which viscous liquids
are regarded as qualitatively different from nonviscous
liquids. The idea is the following. A high viscosity im-
plies a small diffusion constant. This means that most
molecular motion goes into vibrations so that a viscous
liquid spends most time in potential-energy minima.'?
Occasionally, effective displacements of the molecules do
take place. however. Since one molecule cannot move
without having its neighbors move too, these “flow
events” must be highly cooperative. This is an old idea;
the small parts of the viscous liquid in which the flow
events take place have been referred to as “‘cooperatively
rearranging regions,”'’ “quasi-independent units,”"*
“thermokinetic structures,”"* or just “regions.”'® This
picture of viscous flow is simple and attractive. There is
evidence in favor of it from extensive computer simula-
tions.’ Also, from a comparison of dielectric relaxation
and Kerr-effect measurements it can be shown that dipo-
lur reorientation in viscous liquids occurs cooperatively
via large-angle jumps and does not take place by rota-
tional diffusion. '8

The cooperatively rearranging regions are believed to
be fairly small but large enough to be considered as mu-
tually noninteracting. The viscous liquid may therefore
be regarded as an ensemble of regions, each of which

spends ‘most time in a potential-energy minimum.
Henceforth, potential energy is referred to as energy and
energy minima as states. Now, to describe the dynamics
of the regions, it is natural to use transition-state
theory.'*!® Goldstein has suggested that the transition
state corresponds to the high-temperature, more-fluid,
liquid.'* If we denote the energy of this “fluid” state by
E g, the relaxation time, t(E), for transitions from a state
with energy E is given by

HE) =10e & BT (E < £q). §))

where 7 is a microscopic time and Boltzmann's constant
is put equal to unity. In a recent very interesting paper
Brawer has shown that Eq. (1) in the region picture is
able to explain all observed features of relaxation in
viscous liquids and glasses.'® These features include the
nonlinearity, the broad distributions of relaxation times,
and the fact that glassy relaxation proceeds with a smail-
er activation energy than relaxation in viscous liquids.

The *fluid” state must have a structure much different
from the lower-lying states. It is reasonable to assume
that, once excited into this state, a region has forgotten
which state it came from and may end up in any other
state. This is consistent with the observed large-angle di-
polar reorientations.'® Under this assumption, a simple
master equation describes the time evolution of the ener-
gy probability density, P(E ,1):

aP(E) _ _ P(E.I) EpE ..

L 124 +n(E) [, g, @
where 7 is given by Eq. (1), n(£) is the normalized den-
sity of states, and the lowest possible region energy is
zero. Equation (2) is equivalent to Brawer's kinetic
equation, '¢

Since each region consists of many molecules, thermo-
dynamic concepts may be applied.? In thermal equilibri-
um, P(E,r) is approximately a Gaussian, centered
around the mean energy E(T). If the temperature is
lowered, the Gaussian is displaced towards lower ener-
gies. For a finite cooling rate, however, the system will
fall out of equilibrium sooner or later for continued cool-
ing. This is, of course, the glass transition; it takes place

around the temperature where the time to relax to equi-
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librium is comparable to the cooling time. Suppose the constant specific heat ¢. The solution of Eq. (2) is plot-

system is cooled at a constant rute to zero temperature in ted in Fig. 1 for ¢ =3.9.27.81 at a cooling rate given by
time 7o, from a state of thermal equilibrium at high tem- In(rg/19) =9. The full curve is P(E .t), the dotted curve
perature where the liquid relaxation time is small com- is the equilibrium P(E), and the vertical line marks Eg4.
pared 10 fo. Al any temperature during the cooling the For each value of ¢ four snapshots are given, starting at
cquation t(E) =1q defines a characteristic energy, Eq. almost thermal equilibrium und ending showing the
given by frozen-in energy distribution which will be denoted by
. PolE). Figure | gives an idea of the physics of the glass
E4=Eo—TInltg/7o). . 3 transition according to Eq. (2). Thepﬁ);ure showsglhal
Regions with energy less than E4 are frozen. £y, the Po(E) is essentially a Gaussian for small ¢'s while it is

so-called demarcation energy, was originally introduced ~ 4symmetric for large ¢ values.
in the theory for excited charge-carrier thermalization in Itis not hard to understand what happens at the glass
amorphous semiconductors. 22" As the temperature is transition in two limiting cases. Consider first small
lowered, £ increases while at the same time the equilib-  ©00ling rates: In{ro/79)>c. In this case £y moves fast
rium Gaussian is displaced towards lower cnergies. towards higher energies while the equilibrium Gaussian
When the Gaussian meets E4 the glass transition takes ~ almost does not move at all. When £y sweeps past the
place. Gaussian it simply {reezes it, so that Pg(E) is just the
We have studied the glass transition for systems with | equilibrium Gaussian at the glass transition temperature,

PR
(E—E,)?
Po(E)=[2{(AE)D] " 2exp [ - le‘;i)_ (slow CO?ling), (4)
where Eg=cT,, {AE)D =cT} and T, is determined I

from £4(Ty) =cTy, ie., The relevant parameter characterizing the glass tran-
: ) sition is the ratio K =In(to/19)/cs. Here ¢, is the region
Ty =Eo/lc+Into/10)]. (5) specific heat at Ty, allowing for tghe more ggenerul case of
In the case of fast cooling rates. In{1o/7) <c. something 4 temperature-dependent specific heat. The region ener-
different happens. Then £, moves only very slowly com- gies are distributed according to a Gaussian or an ex-
pared to the Gaussian, so that Ey4 is almost constant dur-  ponentiul. depending on whether K>>I or K<« 1. This
ing the glass transition. Approaching the glass transi- has important consequences for the properties of glasses.
tion, the regions jump in energy according to Eq. (2) un- By expanding to first order, one finds that any physical
til they, with probability n(E), happen 10 hit an energy ~ Property which is a function of £ will be Gaussian or ex-
E below Eq4. There will be only a few states left above ponentially distributed depending on the value of X.
E;=cT, in the glassy state, where the gluss transition This may explain the ubiquitous appearance of Gaussian
temperature is again given by Eq. (5). Since n(E) is ap- and exponential energy-barrier distributions for linearly
proximately exponential around £, with a slope of 1/T,, and nonlinearly relaxing degrees of freedom in glassy
we find solids.*>"?*  For instance. amorphous semiconductors

prepared by a fast glass transition are likely to have ex-

Ty 'expl(E—EQ)IT,). E<E,, ponential band tails: It is reasonable to assume that the

PolE) = 0, E>E, (fastcooling). ©) region energy is a function of density, where low densi-
' ties correspond lo large energies.'® The transfer in-
An illustration of this result is provided by the inset of tegral, ¢, for electron jumps depends exponentially on the
the ¢ =81 cuse in Fig. I. There will, of course, always be distance between neighboring atoms, but for sufficiently
some states left above £, note also that 'E,— Eg as small distance fluctuations 1 may be expanded to first or-
c— o, der. Expanding also the region energy £ to first order in
We conclude that, insofar as Eq. (2) does describe F. the average atom-atom distance within a region, one
viscous liquids, there exist two different kinds of glass finds from Eq. (6} for the distribution of average transfer
transitions: slow and fast glass transitions. Since glasses integrals within a region p()xexp(—1/Ty), where
are thermally arrested liquids, it is generally believed To=T,(dF/dE) |di/dF|. This implies an exponentially
that the glass structure is nearly the same as the struc- decreasing distribution of band widths for the bands of
ture of the equilibrium liquid at temperatures just above electron states within each region. With allowance for
T,. According to the present theory, however. this is electron jumps between the regions. the midband states
true only if the glass is prepared by a slow glass transi- will delocalize but the tail states will probably remain lo-
tion. Curiously enough, a slow glass transition freezes calized within each region. It is not hard t0 show then
the equilibrium structure because £7 moves fast across . thut the bulk solid will have exponential band tails of lo-
the equilibrium Gaussian. calized states.
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FIG. 1. Solution of Eq. (2) showing the glass transition for various values of the specific heat of the cooperatively rearranging re-
gions in the viscous liquid. The cooling time, tq, is given by In(10/10) =9. The full curve is P(E 1), the dotted curve is the thermal
cquilibrium energy probability density which is approximately Gaussian, and the line shows the demarcation energy E4. All states
below E4 are frozen. The glass transition takes place when, upon cooling, £4 meets the equilibrium Gaussian. For cach value of ¢,
four snapshots of the cooling are shuwn, the lowest subfigure showing the frozen-in encrgy distribution, Po(£). Figure | is meant to
illustrate Egs. (4) and (6) according to which Po(E) is 2 Gaussian for slow cooling {c <1n(10/0)] and an exponential for fast cool-
g [c2>Inlte/70)). If T, denates the starting temperature for the cooling process, the parameters for the figure are, for c=3,
T,=0.111E0, 0<E<Eq for c¢=9, T, =0.097E0, 0 <E <Eq for c=27, T,=0.045E9, 0 <E < Eq; for c=~81, T, =0.020E,,

Eo/2<E<Ep
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The present approuach to the glass transition differs in
important respeets from that of Adam und Gibbs.™ In
their model. the size of the regions is temperature depen-
dent and this is ultimately the cause of the slow refuxa-
tion near the glass transition. Also. it is assumed that
each region only contains a few states, while here a re-
gion huas many available states.  Despite  these
differences, the present theory is not necessarily incon-
sistent with the beautiful idea of an underlying second-
order phase transition to a state of zero configurational
entropy at a finite temperature.®® As shown by Gold-
stein, even a finite region may have a rather sharp transi-
tion to u state of almost z¢ro entropy.'® There will be a
transition at T="Tg il n(E)aexp(E/To) as £ -+ 0.'4%7
The state of zero configurational entropy of the buik
equilibrium viscous liquid simply corresponds to having
each region in its ““ground state.”

Throughout this Letter, by a glass transition is meant
cooling from a temperature so high that the liquid relax-
ation time, ., is small compared to the cooling time.
But another scenario is also possible, namely the cooling
in a short time compared to ry, e.g., by sudden cooling of
a well rannealed very viscous liquid. This is & true
quench; obviously it leads to a Gaussian PolE). The
glassy state may thus be reached in three different ways:
by slow glass transitions, by fast glass transitions, and by
quenches. Slow glass transitions and quenches lead 10 a
Gaussian Po(E), while fast glass transitions lead to an
exponentially increasing, abruptly decaying Po(E).
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The first part of this paper deals with the justification of Bassler’s phenomenological random-waik
model for viscous liquids [Phys. Rev. Lett. 58, 767 (1987)), which considers the random walk of a “parti-
cle” representing the liquid state on a d-dimensional infinite cubic lattice with site energies chosen ran-
domly according to a Gaussian. The random-walk model is here derived from Newton’s laws by making
a number of simplifying assumptions. In the second part of the paper an approximate low-temperature
description of energy fluctuations in the random-walk model—the energy master equation (EME)—is ar-
rived at. The EME is one dimensional and involves only energy; it is derived by arguing that percolation
dominates the relaxational properties of the random-walk model at low temperatures. The approximate
EME description of the random-walk model is expected to be valid at low temperatures at long times in
high dimensions. However, computer simulations show that the EME works well already in two dimen-
sions and at only moderately low temperatures. The EME has no randomness and no fitting parameters.
The EME is completely specified from the density of states and the attempt frequency of the random-
walk model. The EME allows a calculation of the energy probability distribution at realistic laboratory
time scales for an arbitrarily varying temperature as function of time. The EME is probably the only
realistic equation available today with this property that is also explicitly consistent with statistical
mechanics. The final part of the paper gives a comprehensive discussion, comparing the EME to related
work and listing the EME's qualitatively correct predictions, its new predictions, and some *“wrong” pre-
dictions, most of which go against the common picture of viscous liquids and the glass transition without

violating experiments.

1. INTRODUCTION

The glass transition takes place when a liquid upon
cooling becomes more and more viscous and finally
solidifies to form a glassy solid.! ™' Most, or perhaps all,
liquids are able to form glasses when cooled sufficiently
fast to avoid crystallization. Examples of glasses include
the classical oxide glasses,' ijonic glasses,'® poly-
mers, %1718 metallic glasses,'” and glasses ‘made by cool-
ing organic liquids to low temperatures.??' Even simple
liquids form glasses in computer experiments, where ex-
tremely high cooling rates are possible. '>*>?* Spin glasses
are exam?les of noanliquid systems that exhibit glassy
features, 2%

The glass transition is still far from well understood,
but the kinetic nature of the transition is not in doubt.
The glass transition is not a phase transition, though it is
thermodynamically similar to a second-order phase tran-
sition. This is evidenced by several facts universally ob-
served: The transition is not sharp, the transition tem-
perature depends on the cooling rate, and the transition is
irreversible and exhibits various hysteresis phenomena.

Despite large chemical differences, viscous liquids close
to the glass transition have common features, notably a
broad distribution of relaxation times and a stronger than
Arrhenius temperature dependence of the viscosity.
Around the glass transition there are further common
characteristics like the overshoot of the specific heat
upon reheating,®'* the crossover effect,® or the prepeak
upon the melting of a well-annealed glass.!! The univer-
sal properties of viscous liquids and the glass transition

6163-!829/95/51(18)/12276(19)/506.00 st

motivates a search for a phenomenological model valid
for any viscous liquid.

While phenomenological models of viscous liguids and
the glass transition have been studied for many years, the
1980’s brought an interesting first-principles theory, the
mode-coupling theory.?%?” Extensive work has gone into
studying the mode-coupling theory and comparing it to
experiment. At present there seems to be a growing con-
sensus?® that mode-coupling theory gives an accurate
description of the onset of viscous behavior, the tempera-
ture region where the relaxation times are shorter than
about 1 ns. However, the theory does not seem to be able
to explain the highly viscous regime and the laboratory
glass transition. This is because the activated “hopping”
type processes that dominate this regime are not account-
ed for in the simplest version of mode-coupling
theory,26~3 but have to be postulated as an extra as-
sumption. Thus, the focus i3 now once again on attempts
to formulate a phenomenological model that captures the
essentials of viscous liquids and the glass transition. Nev-
ertheless, mode-coupling theory has served to emphasize
the different physical bases of the low- and high-
temperature regimes.

Since the glass transition is a kinetic “freezing” of the
viscous liquid, a phenomenological model should first of
all incorporate the basic physics of viscous liquids in
thermal equilibrium. An important characteristic here is
the average relaxation time of the viscous liquid 7, which
is a direct measure of the time needed for molecular rear-
rangements. The average relaxation time may be deter-
mined, e.g., as the inverse dielectric, mechanical or

12276 © 1995 The American Physical Society
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specific-heat loss-peak frequency. Alternatively, it may
be calculated from the viscosity 77 and the infinite fre-
quency shear modulus G, by means of the expression

=1
T 6. (1)

These definitions do not give exactly identical 's,'* but
the difference is insignificant for the present discussion.
Typical values of r for glass-forming liquids lie in the mil-
lisecond, second or even hour range. These times are to
be compared to a typical microscopic time, the average
vibration time, which is less than 1 psec.

The basic thing one would like to understand about the
average relaxation time is its non-Arrhenius temperature
dependence. For almost all viscous liquids 7 has an ap-
parent activation energy that increases as the tempera-
ture decreases. Naive models assuming some distribution
of energy barriers usually lead to the opposite behavior.
Therefore, explaining ~(T) is a real challenge, but also a
likely key to understanding viscous liquids.

The phenomenological models may be classified into
two types (an alternative to the below classification has
been given by Scherer in an excellent review of relaxation
in viscous liquids®®). One type of models, “type-I,” are
models that have a non-Arrhenius average relaxation
time, but otherwise do not attempt to model the liquid.

These models are so simple that they can be analyzed in -

detail.?! Examples of type-I models are Derrida’s ran-

dom energy model, *? the kinetic Ising model, > or the til-
ing model of Weber, Fredrickson, and Stillinger.* The
other type of models, “type-11,” do attempt to realistical-
ly model the physics of real viscous liquids. In all type-II
models the elementary flow process occurs within a
“cooperatively rearranging region.” The type-II models
can be further classified according to which thermo-
dynamical quantity controls , entropy, volume, or energy.

A well-known entropy-controlled model is the theory
of Gibbs and co-workers.* According to this model
the average relaxation time is expressed in terms of the
excess configurational entropy S, as r=exp[C/(TS,)].
The model correlates the non-Arrhenius behavior with
the Kauzmann paradox,®!! the fact that the
configurational entropy extrapolates to zero at a finite
temperature, Tx: Expanding S, to first order close to
Ty, the average relaxation time follows the Vogel-
Fulcher-Tammann (VFT) law!!"?® (where 4 is a constant
and the characteristic temperature T, is predicted to be
equal to Ty ):

LANT=To) @)

T="Ty
The VFT law gives a good fit to 7{T) for many viscous
liquids and in most experiments one also finds that T is
indeed close to Tx."!

Gibbs’ model predicts that underlying the laboratory
glass transition there is a genuine second-order phase
transition at T =Ty to a state of zero configurational en-
tropy. However, there are a number of problems with
this approach. The original Gibbs-DiMarzio model’’
was based on a mean-field theory for polymers that later
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was shown to be incorrect.’’ Also, the VFT law seidom
applies in the whole temperature range of interest; usual-
ly deviations occur close to the glass transition where the
average relaxation time is less temperature dependent
than predicted. %202 [If the physics of the high and low
viscosity regimes are different, as predicted by mode-
coupling theory, there is no motivation to choose a phe-

~ nomenological representation of { ) which can cross the

boundary between the two regimes.] Finally, it should be

- noted that the Kauzmann paradox does not have to be a

paradox. As shown by Angell and Rao in 1972, even a
system with only two energy levels has an entropy which,
if only known at high temperatures, extrapolates to zero
at a positive temperature. Though this model does not fit
experiment, the excess entropy data may be fitted with a
model with only a finite number of energy levels and thus
a positive entropy at any positive temperature.

The standard example of a volume-controlled model is
the “free volume model.”® In this model, the average re-
laxation time is determined by the volume freely available
for cooperative rearrangements of the molecules, ¥V, ac-
cording to the expression < exp(C/¥;). In the simplest
version of the model the free volume decreases linearly
with decreasing temperature, leading if V,=0at T=T,
to a non-Arrhenius {T) of the VFT type [Eq. (2)].

In energy-controlled models one formulates a master
equation*! governing the dynamics of the cooperatively
rearranging regions. The relevance of potential energy
was previously emphasized in 1969 in a classic paper by
Goldstein.*> More recently, Brawer proposed a model
where transitions between different states occur via exci-
tations to a common high-lying energy level.** This pic-
ture goes back to Goldstein.”* Brawer’s model was later
simplified. *

Bissler’s random-walk modei*™* is an energy-
controlled model, which is similar to those used in the
description of ac conduction in disordered solids*”*® and
of energetic relaxation and diffusion of electronic excita-
tions in random organic solids.”> The mode! considers
the random walk of a “particle” on a cubic lattice in d di-
mensions, where each site has an energy chosen randomly
according to a Gaussian. The particle represents the
state of a cooperatively rearranging region. For the
random-walk model (T} is predicted** to follow

T=ToeXp

C
—TT{] . (3)

This simple expression fits experiments well. 4465031 A
even better fit is obtained by using the following generali- -
zation of Eq. (3): r=rgexp(C/T"). 202152

In a recent paper by Arkhipov and Bissler® the
random-walk model was extended to a model that
reduces to the original model at high temperatures—the
“real liquid” regime—while at low temperatures—the
“supercooled melt” regime—the system is described by a
simple master equation. The idea® is that, at high tem-

peratures direct jumps between metastable states are pos-
sible because the energy landscape itself fluctuates; these
jumps correspond to an eclementary step on the d-
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dimensional lattice of the original random-walk model.

At low temperatures, on the other hand, the landscape
fluctuations are frozen on the relevant time scale and
each jump leads to a totally new configuration, the dy-
namxcs -here being described by a simple master equa-
tion. ¥

The purpose of the pr&ent paper is to show that the
master equation, assumed by Arkhipov and Bassler to de-
scribe the different physics going on at low temperatures,
in fact gives a good description of the low-temperature
behavior of the original random-walk model. Thus, in a
sense the Arkhipov-Bissler model is contained in
Bissler’s original and simpler random-walk model. The
low-temperature approximate master equation, the “ener-
gy master equation” is arrived at by arguing that percola-
tion in the random-walk model becomes important at low
temperatures. The transition state energy of the energy
master equation is identified with the highest energy met
on a percolation path. In effect, one arrives at a picture
which is similar to that recently proposed by Hunt, !>
according to which the low-temperature properties of
viscous liquids are dominated by percolation. However,
in his works effects of cooperativity are treated separately
in relaxation and in thermodynamics.

The paper has the following outline. In Sec. II a
justification of the random-waltk model is given where the
model is traced back to Newton’s laws for the molecules
of a cooperatively rearranging region. This section sup-
plements the original arguments for the model given by
Bissler and co-workers.** In Sec. III the approximate
energy master equation is derived. In Sec. IV computer
simulations are presented, comparing the random walk
model and the energy master equation. Section V
discusses what to expect at the glass transition according
to the energy master equation. Section VI gives a
comprehensive discussion which includes a qualitative
comparison to experiment. Finally, Sec. VII gives the
conclusions.

. THE RANDOM-WALK MODEL AND ITS
“DERIVATION” FROM NEWTON’S SECOND LAW

The purpose of this section is to *“derive” the random-
walk model*** from the equations of motion for the mol-
ecules of the viscous liquid. The “derivation,” which
proceeds in five steps, is not rigorous, but rather an at-
tempt to make explicit the assumptions that need to be
made in order to justify the model from basic principles.
The viewpoints presented below are similar to those of
Bissler, but there are also some differences as will be dis-
cussed at the end of this section.

Before presenting the “derivation” of the random-walk
model, we recall the exact definition of the model. The
model considers the random walk of a particle on an
infinite d-dimensional cubic lattice. The particle
represents the state of the region, which is thus complete-
ly specified by d integer coordinates. Each state has an
energy E, which is chosen randomly according to a
Gaussian with variance o

o _E
nE= e °"”[ 20? ] @
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The energies of adjaccnt states are uncorrelated. The dy—
pamics of the system is described by a master equation,*!
specifying the time development of the probability that
the particle is in state i, P,. If I'(i—j) is the transition
rate for jumps from state i to state j, the general master-
equation* is

dP;

'dT—'—Er(l—’])P’*'Er(J—H)P] (5)

The first term describes particles jumping away from
state i and the second term describes particles jumping
into state i. The jump rates must satisfy the principle of
detailed balance,*! which ensures consistency with sta-
tistical mechanics [f=1/(kz T},

Tli—j) _ _
T =D exp[B(E;~E;}] . (6)
In random-walk models the transition rates are usually
chosen to be zero except for nearest-neighbor jumps (i.e.,
where a single coordinate changes plus or minus one). If
Ty is the “attempt frequency,” the transition rate for a
nearest-neighbor jump is in Bassler’s random-walk model

given by Metropolis dynamics,
—_— Iy, E>E; -
1—J)= - -
J Tee RE; 5,)’ E,<E,.

It is realistic to take 'y to be of order 10" Hz, corre-
sponding to a typical phonon frequency. Note that Eq.
(7) satisfies the principle of detailed balance Eq. (6).

What kind of predictions can be made from the
random-walk model? The model predicts how the aver-
age energy changes in time for any externally controlled
time-dependent temperature. This includes monitoring
how the energy relaxes to equilibrium from a nonequili-
brium state, or how the dynamic specific heat changes
through the glass transition. In particular, the average
relaxation time for energy relaxations close to equilibri-
um can be calculated as a function of temperature, and
the equilibrium frequency-dependent specific heat may be
obtained.

We now proceed to justify the random-walk model
from basic principla in five steps, assuming that the mol-
ecules of the viscous liquid are descnbed by classical
mechanics.

Step 1: The Region Assumption. All type-1I models for
the dynamics of viscous liquids assume cooperative “flow
events” that are localized to small “regions” of the
liquid, %836.39,42-44,35-8 These regions have been called
“cooperatively rearranging subsystems” *¥ or “coopera-
tively rearranging regions, »3%  “quasi-independent
units,”®  “thermokinetic  structures,”*®  “molecular
domains,”*® or “dynamically correlated domains.”®
This picture of viscous flow, proceeding via strongly
cooperative motion of particles confined to small regions
of the liquid, has been confirmed by computer simula-
tions. 552 The “region assumption,” however, is not just
the quite reasonable idea that flow events are localized.
The assumption is the much stronger one that the liquid
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may be regarded as an ensemble of noninteracting re-
gions. There are two potential problems with this as-
sumption. It ignores region-region interactions that may
be important because the regions are expected to be rela-
tively small [some 10-20 A (Ref. 58)]. Also, the picture
is static and not easy to relate to an actual flow that will
deform the regions. Nevertheless, the region assumption
seems to be necessary to arrive at a simple phenomeno-
logical model. : i} A

Step 2: Replacing Newton's laws with Langevin dynam-
ics. From now on the attention is confined to a single re-
gion, the molecules of which move according to
Newton’s laws. The motion depends on the potential en-
ergy as function' of the molecular coordinates,
U(Q,,...,Qy) (for simplicity only rectangular coordi-
nates are considered). The importance of the potential
energy “surface” for understanding viscous liquids and
the glass transition has been emphasized in a number of
papers, !1:30.3%.42.63.6¢ Rollowing the tradition in polymer
physics,® we now replace Newton’s deterministic equa-
tions of motion by stochastic Langevin equations (similar
nondeterministic equations are used for the description of

Brownian particles suspended in liquids®®). The
Langevin equations of motion*"%* are

; 1Y .

Qi=—y.—a—QT+§,-(t) (i=1,...,d), (8)

where 4 is the “mobility” [velocity/force] and £,(t) is a
Gaussian white-noise term obeying

(EADE1")) =2ukp T8, ;8(1 —1") . ©

The crucial property of the Langevin equations of
motion*"® is that each state is visited with the correct
canonical probability Py, of statistical mechanics,

PolQyy...,Qg)=e

Physically, the assumption of Langevin dynamics is
reasonable for viscous liquids,67 because the molecules
collectively vibrate in potential energy minima for long
times before occasionally “jumping” to another potential
energy minimum. And the rate of jumps between two en-
ergy minima is, for both Newtonian and Langevin dy-
namics, dominated by a factor «exp(—BAU),% where
AU is the energy barrier to be overcome. -

Step 3: From Langevin dynamics to a hopping model.
We now proceed to discretize the spatial variables of the
Langevin equations. The resulting state space is a d-
dimensional cubic lattice. It is reasonable to assume that,
since the underlying Langevin dynamics has a continuous
trajectory, only nearest-neighbor jumps are allowed on
the lattice. For the jump rates those given by Eq. (7) are
an obvious choice: Unless infinitely steep potentials are
allowed, the Langevin equation implies that it takes some
definite (but very small} time to travel the discretization
length downhill; in the discrete version this means there
should be a maximum jump rate. If the discretization is
to be self-consistent, the jump rates must be uniquely
determined from the state energies. The simplest jump
rates satisfying these conditions are the Metropolis rates
{Eq. (D]. These jump rates ignore the possible existence

(10)
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of a barrier to be overcome between two nearest-neighbor
discrete states. The discretization does not allow con-
tinuous vibrational motion. The term “energy” E is
henceforth to be thought of as the potential energy U at a
minimum or a saddle point, the “configurational part” of
the potential energy. Similarly, the term “specific heat”
refers to the configurational part of the measured specific
heat, the so-called “excess specific heat” (in excess of the
phonon contribution to the specific heat).

Step 4: Replacing complexity with randomness. The po-
tential energy is a very complex function with numerous
minima.*%#%63 Therefore, it is reasonable to replace the
function E defined on the lattice with a function that is in
some sense random. The basic idea of replacing complex-
ity with randomness® is that some phenomena occurring
in a specific complex system are typical of those that
occur in most systems chosen randomly out of an ensem-
ble of possible systems. If this is so, the study of random
systems tells us what to expect for particular complex
systems. Motion in random potentials has been studied
extensively in various contexts,*’-*¢70.7! In discretizing
such a model one often chooses a discretization length a
equal to the correlation length of the random function
and assumes that correlations beyond a may be ignored. ”!
When this is done for the hopping model arrived at
above, the values of the potential are assumed to be un-
correlated from point to point on the d-dimensional cubic
lattice. In this approximation the model is completely
specified by the energy probability distribution, the “den-
sity of states” n(E).

Step 5: The assumption of cooperativity. A region con-
tains many molecules and thus d >>1. Any system with
many degrees of freedom has a density of states for which
the entropy as function of energy, S(E)=In(n(E)], at
relevant energies’? obeys

as . s
aE>o, <0. (11)

The Gaussian Eq. (4) obeys Eq. (11), but only for negative
energies. However, at any temperature negative energies
are most likely for the Gaussian, and therefore this densi-
ty of states is permissible as representing a system with
many degrees of freedom.

The assumption of a Gaussian density of states con-
cludes the “derivation” of Bassler’s random-walk model.’
The model is completely specified by the parameters Iy,
o, and d. The first two are scaling parameters, so from a
qualitative point of view only the dimension d is of in-
terest.

In thermal equilibrium the probability of visiting any
given site is given by the Boltzmann factor exp(—pgE).
Combining this with the Gaussian probability Eq. (4), one
finds for the equilibrium energy probability distribution
Py(E)Y<exp(—BE—E/(20%)]. By *“completing the
square” and normalizing, one finds

L | E—Ep
V2ro? pl 202

Clearly E is the average energy. Note that E is also the
most likely energy (in fact, for any system with many de-

Py(E)= ,, E==g8. (12




178

12280

grees of freedom the average energy is close to the most
likely energy). The equilibrinm specific heat ¢, is given

(13)

Equation (13) may be derived directly from Einstein’s ex-
pression, co={(AE))/(kyT?), since the Gaussian dis-
tribution Eq. (12) implies ((AE)?)=02. The equilibtium
specific heat increases towards infinity as the temperature
goes to zero. While this cannot be thé case down to zero
temperature in experiment, there is actually a tendency
for most supercooled liquids for the excess specific heat
to increase as the temperature decreases, >3

The random-walk model was originally proposed by
analogy to transport and relaxation of charge excitations
in random organic solids,*’ where the jump rates Eq. (7)
are the well-known Miller-Abrahams jump rates for elec-
tronic hopping.” There are some differences between
the above “derivation” of the random-walk model and
- Bissler’s justification of the model. In Bissler’s picture,
the experimental dependence of the glass transition tem-
perature on the sample history was understood as an
effect due to the density of states depending on the

preparation conditions.** In contrast, the above picture -

is static; the density of states arises from the discretiza-
tion of the potential energy and does not depend on the
_conditions of sample preparation. A further difference is
that here cooperativity is emphasized, implying d>>1,
while the original Bassler model considered elementary
jump processes on a “molecular or weakly cooperative
1,7*° implying that d is not much larger than one.

III. THE ENERGY MASTER EQUATION: AN
APPROXIMATION TO THE RANDOM-WALK MODEL

In order to monitor the average energy during a cool-
ing and subsequent glass transition in the random-walk
model, there is no other simple method than to solve the
master equation numerically by taking time steps of order
1/Ty<1 ps. Clearly, this procedure cannot be used for
simulating realistic laboratory time scales of order
minutes or hours. In this section an approximation to
the random-walk model is derived, which makes it possi-
ble to investigate the model on realistic time scales. The
approximate equation, termed the “energy master equa-
tion,” is an equation for the time evolution of the energy
probability distribution P(E,t), which ignores the spatial
d-dimensional structure of the random-walk model.

Consider the random-walk model in many dimensions
(d>>1) at low temperatures (kpT <<o) and long times
(£>>71y). Whenever kT <<o the most likely energies
are close to E=—0?B<<—o [Eq. {12)], i, deep into
the negative tail of the Gaussian. States with these low
energies are very rare; nevertheless, at low temperatures
the relaxation properties of the random-walk model are
dominated by transitions between them. The distance be-
tween two low-energy states is large, and a transition be-
tween two such states consists of a long and complex
path joining neighboring states. It is very hard to calcu-
late the actual transition rate, but it is obvious that the
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transition rate depends crucially on the maximum energy™
encountered on the path. Thus, of all possible paths be-
tween two low-energy states, the most likely paths are
those that havé the lowest maxifium energy. “The value
of this maximum energy-is identified by percolation

" theory:™%™~"6 ‘Imagine the sites of the lattice gradually

being filled in order of increasing energy. At a certain
filling rate, the site percolation threshold p,., the infinite
“percolation cluster” of marked sites appears. In two di-
mensions p.=0.593, while in three dimensions
p,=0.312. In high dimensions one finds™
p.==1/(2d —1). The highest energy on the percolation
cluster, the “percolation energy” E,, is given by

EC
[ n(EME=p, . (14)

The percolation energy E, gives a good estimate of the
largest energy met on an “optimal” path between two
low-energy sites. This is because just above p_ a large
fraction of the marked sites belongs to the percolation
cluster. We thus surmise that the effective transition rate
from a low-energy site with energy E; to another low en- -
ergy site with energy E; is given by the barrier
AE=E_—E;: T(i—~j)=<exp[—BAE]. This expression
satisfies the principle of detailed balance Eq. (6). There
are many possible final states, but since each jump rate is
given by the above expression, the total rate for jumps
away from a site with energy E, I'(E), is given by
[{E)=Tge 7578 13
To determine I'j we evaluate I'(E,) by viewing the per-
colation cluster as a one-dimensional path, where each
site on the average has two neighbors belonging to the
cluster. This naive point of view ignores the complicated
fractal nature of the cluster, but it does become realistic

. in high.dimensions where it ieads’® to the correct percola-

tion threshold. Since E_ is the largest energy on the per-
colation cluster, sites with energy E_ have on the average
two neighbors with lower energy. Thus, the total rate for
jumps away from such a site is on the average 2T, plus
some terms for jumps to the higher-energy neighbors.
These terms are unimportant at low temperatures, and
thus the prefactor of Eq. (15) is given by

Irg=2r,. (16)

To arrive at the simplest possible approximate descrip-
tion, the spatial structure of the lattice is now completely
ignored. Consequently, all final states are regarded as
equally likely, and one arrives at the picture of Fig. 1
which was proposed by Goldstein® in a different context
and later discussed in more detail by Brawer,**?

The approximate master equation considers only one
variable, the energy. Let P(E,t) denote the energy prob-
ability distribution as function of time. Since all final
states are regarded as equally likely, the probability of
jumping into an energy around E is proportional to the
density of states, n(E). The relaxation rate for jumps
from states with energy E is T'(E), so the equation for
P(E,?) is for some constant K ()
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FIG. 1. The Goldstein-Brawer picture of a “flow event” in a
viscous liquid (Refs. 8, 39, and 43). The figure illustrates the ex-
citation from one “state,” i.e., a potential energy minimum for
the molecules in a region of the liquid, to another state—the
vertical axis being the energy axis. In Goldstein’s model the
transition state (black) is identified with the high-temperature,
more-fluid, liquid (Ref. 39); Brawer identifies it with a low-
density state giving room for the molecules to rearrange (Refs. 8
and 43). In the approximate energy master equation (EME)
description of Bassler’s random-walk model leading to the same
picture of a transition, the energy of the transition state is
identified with the energy at the percolation threshold [Eq. (14)).
Conversely, the Goldstein-Brawer picture leads to the EME
{Eq. (20)] if it is assumed that, once excited into the transition
state, the region has forgotten which state it came from and
ends up in a randomly chosen state.

OP(E,1) _
ot

The constant is determined by requiring conservation of
probability:

—(E)P(E,)+K(t)n(E) . amn

—d (% g e (@ OPUELL)

o=—f" P dE'= [7 SomalaE ()
implies, since n (E) is normalized, that

K= [" T(EYP(E",NE" . (19)

In this reasoning all energies were counted, despite the
fact that the picture breaks down for E > E.. However,
including the energies above E, gives the simplest
description and causes little change because high-energy
states are very unlikely, anyway. Using Eq. (19), Eq. (17)
becomes an integrodifferential equation,*® the “energy
master equation” (EME),

oP(E,f) _

—T(E)P(E,)
©ot

+n(E) [ T(EP(E'1MdE’ . (20)

We remind the reader that in this equation the jump rate
T'(E) depends on the temperature, which may be an arbi-
trary function of time.

The EME was first discussed as a model for the
thermalization of photoexcited charge carriers in amor-
phous semiconductors.””” In this case n(E) is the den-
sity of trapping levels in the band gap and E, is the mo-
bility edge of the conduction band. For viscous liquids a
similar, but somewhat more complicated master equation
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was proposed by Brawer in 1984.% Brawer's equation-

contains an extra entropy factor enumerating the
different paths from a particular state to the transition
state. A related approach towards relaxation in viscous
liquids was advocated by Robertson, Simha, and Curro.™
Towards the end of the 1980's Eq. (20) was studied®®3! as
a model for the relaxation properties of Derrida’s random
energy model, * and Eq. (20) was proposed as a model for
the dynamics of viscous liquids and studied numerically
through the glass transition.* Recently, Eq. (20} was

: used by Arkhipov and Bassler to describe the low-

temperature regime of viscous liquids, assuming that the
high-temperature regime is described by the random-

~ walk model.

The static solution of the EME, P,(E), is given by
n(E)

T(E)

This is the canonical probability distribution required by
statistical mechanics. In the course of time, the canoni-
cal ensemble is realized in a very simple way: All states

Py(E)=const 21

are visited equally often, but the average time spent in a

state with energy E, 1/T(E), is proportional to the
Boltzmann factor exp(—pBE), thus giving the canonical
probabilities.

At any fixed temperature an initial nonequilibrium en-
ergy probability distribution will approach the equilibri-
um distribution. This is also the case if the temperature
changes in time: At any given time the distribution ap-
proaches the equilibrium distribution corresponding to

-the temperature at that time. Upon continued cooling

the system freezes* at the temperature where the time it
takes to reach equilibrium becomes larger than the cooi-
ing time.

The numerical solution of the EME (detailed in the
Appendix) is based on a calculation using the Laplace
transformation, *>*3 resulting in an analytical expression
for the relaxation of P(E,t) towards the equilibrium solu-
tion Py(E) at a fixed temperature. An arbitrary thermal
history is soived by taking small time steps changing the
temperature at each step.

IV. COMPUTER SIMULATIONS

This section reports computer simulations of the
random-walk model and compares them to the EME pre-
dictions. Results for a continuous cooling and reheating
are given, as well as a study of the time evolution of the
energy probability distribution for relaxation towards
equilibrium at a fixed temperature. Unfortunately, it is
impossible to check the validity of the EME description
where it is expected to apply best: at low temperatures
and long times in many dimensions. This would require
enormous computer capacity. All simulations were per-
formed in two dimensions utilizing periodic boundary
conditions, and in experiments monitoring relaxation to-
wards equilibrium the lowest temperature studied was
0.250 /kp.

A numerical solution of the random-walk model may
be obtained by following the motion of a single “particle’

. in time, the analog of a Monte Carlo simulation. Howev-

er, this introduces considerable noise and it is much more
efficient to solve the master equation Eq. (5) directly. At
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any given time the state of the system is represented by _dE/dt @3
the probabilities, P;. In two dimensions any site has four dT/dt *

neighbors so the maximum transition rate is 4T, [Eq. (7)].
In the simulations a time step of length 1/(4T;) was
chosen, For each pair of neighboring sites, 4 and B, the
new . probabilities were found as follows: If
AE =E ,—Epz >0, the probabilities are changed accord-
ing to -

AP, ==1P,+ie 5Py,
APB——‘_‘APA .

22)

For one time step each site is upgraded four times ac-

cording to Eq. (22) (each time, of course, the-nonupgrad-

ed probabilities from the previous time step are used as
P, and Py). This time-discretization of the master equa-
tion is quite crude, but at long times it is sufficiently accu-
rate. The important thing is to ensure exact probability
conservation in each time step.

Figure 2 shows the glass transition monitored via the
“*dynamic” specific heat during a cooling to zero temper-
ature at a constant rate and a subsequent reheating at the
same rate. The dynamic specific heat ¢ is defined by
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The full curves give the results of the simulations of the

random-walk model, the dashed curves the EME predic-
tions, and the dots indicate the thermal equilibrium
specific heat [Eq. (13)). Figure 2(a) and 2(b) show ¢(r)
for cooling and reheatiug from T =20 /kp to T =0 in the
time 100/T,, while 2(c) and 2(d) show the same but in the
time 10000/T. As expected, the EME predictions work
better in the latter case.

Figure 3 shows the frozen-in energy for the cooling,
i.e., the energy at zero temperature, as function of the
cooling rate. The full curve gives the resuits of the simu-
lations and the dashed curve the EME prediction.

Figures 4 and 5 show thermalization of the energy
probability distribution, starting in equilibrium at one
temperature and suddenly changing the temperature. In
Fig. 4 the temperature was suddenly lowered. Four
snapshots are shown giving the simulation results (full
curves) and the EME predictions (dashed curves). The
dots indicate the equilibrium energy probability distribu-
tion which is approached as t — co. There is a sliding ap-
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FIG. 2. The glass transition in the random-walk model in two dimensions monitored via the dynamic specific heat (full curves)
during a cooling at constant rate to zero temperature and subsequent reheating at the same rate. The dashed curves give the EME
predictions, and the dots mark the thermal cquilibrium specific heat {Eq. (13)]. (a) shows the specific heat [k, ] as function of temper-
ature T{o /k;] for cooling in the time ¢ =100 [1/T,] starting from equilibrium at T =2.0; () gives the reheating data, (c) and (d)
are similar but with cooling and reheating time ¢ =10000. The random-walk model data were obtained by averaging ten simulations
of a 50X 50 lattice. The EME was solved by the method detailed in the Appendix. Clearly, the EME works better for the slower

cooling rate.




Paper 9

181

-1

FROZEN-IN ENERGY

-3 L N "
200 250 3.00 350

400 °
LOGICOOLING TIME)

FIG. 3. The average frozen-in energy [o] at zero tempera-

ture as function of the logarithm (base 10) of the cooling time
[1/T4) for coolings starting from equilibrium at T=2.0
[ /ky). The full curve gives the results based on simulations
for each half decade of the random-walk model (each simulation
consists of ten averages of a 50X 50 lattice), and the dashed
curve gives the EME predictions which are best at long cooling
times. The approximate linear relation between the frozen-in
energy and the cooling time reflects what is sometimes called
“In(¢) kinetics™ (Refs. 107 and 108).
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proach towards the equilibrium distribution. This is not

the case for a sudden change from a low temperature to a
higher temperature (Fig. 5). Here a two-bump distribu-

tion occurs (see Sec. VI), a phenomenon that was predict-

ed within the EME. %

"In Figs. 4 and 5 what happens is that most states with
energy E below a characteristic energy E; are frozenm,
while above E; there is almost thermal equilibrium. The
energy E,;, which is marked by the vertical lines, is the
“demarcation energy” that was introduced by Arkhipov
et al. in the theory for excited charge-carrier thermaliza-
tion in amorphous semiconductors.” At any time ¢,
E, (1) is found by putting I'(E;) [Eq. (15)] equal to 1/¢

(where T is the temperature during the relaxation pro-
cess):

Ey(t)=E,—kpTIn(T31) . 24)

V. THE GLASS TRANSITION ACCORDING
TO THE ENERGY MASTER EQUATION

The previous section showed that the EME gives a
good fit to the random-walk model. The glass transition
was studied by the EME some time ago,“ and this sec-
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FIG. 4. Relaxation of the energy probability distribution in the random-walk model, P(E,?), towards thermal equilibrium upon a
sudden lowering of the temperature starting at equilibrium. The figure shows four snapshots of P(E,¢) (full curves) and the EME
predictions (dashed curves) starting at T=2.0 {0 /kj ] lowering the temperature at t =0 to 7 =0.357 at the following times [1/T}:
(a) =5, (b) £t =184, {c} t =5953, (d) 1 =80752. The vertical lines mark the demarcation energy E, defined at time ¢ by Eq. (24). In
the approximate EME description most states with E < E, have not jumped since ¢t =0. Ast— », E;— — ® and thermal equilibri-

um is reached. For (a)-(c) the full curves give results for averages of ten simulations of a 1000 X 1000 lattice, while for (d) only three
simulations were possible for this large lattice (thus, giving rise to more noisc).
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tion reviews the findings of Ref. 44 to discuss what to ex- .

pect at the glass transition in the random-walk model.

In the EME the system is completely characterized by
the energy probability distribution P(E,t). At the glass
transition temperature T, P(E,1) freezes and stops
changing upon further cooling. Only in some cases is the
frozen-in energy distribution equal to the equilibrium en-
ergy probability distribution at T,.** To understand this
phenomenon it is convenient again to refer to the demar-
cation energy E;, which however now acquires 2 mean-
ing slightly different from that of Sec. IV: Suppose the
liquid is cooled at a constant rate to zero temperature in
a time r,, starting at equilibrium at some high tempera-
ture where the average relaxation time is much smaller

(a)

PROBABILITY

(c)

PROBABILITY

ENERGY

JEPPE C. DYRE ) 31

than f.. At any time during the cooling, the demarcation -
energy is defined as the energy separating nonfrozen
states from the states that are frozen from that time on. If
t; is the time left before zero temperature is reached, E;
is given by E ;(1)=E ,—kgT{)In(I'g1;). In realistic
cases, the glass transition takes place at a ¢; which is of
the same order of magnitude as ¢, and much larger than
1/T3. Since I'§t; in the expression for E,(¢) enters only
in a logarithm, ¢; may to a good approximation be re-
placed by the cooling time ?,:

Ey()=E,—kyT(0)In(T3t,) . 25

Note that E,(t) increases with time during the cooling,

5
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FIG. 5. Relaxation of the energy probability distribution in the random-walk model, P(E,?), towards thermal equilibrium upon a
sudden raising of the temperature starting at equilibrium. The figure shows four snapshots of P{E,?) (full curves) and the EME pre-
dictions (dashed curves) starting at T=0,25 [0 /kp] at time r =0 and subscquently anncaling at the temperature T=1.0. The
snapshots are taken at the following times [1/T}: (a) £ =2, (b) £ =8, (c) t =25, (d) ¢t =126. The vertical lines mark the demarcation
energy E, defined at time ¢ by Eq. (24), In the approximate EME description most states with E < E; have not jumped since ¢ =0.
As t— 0, Ez—+— o and thermal equilibrium is reached. The full curves give results for averages of 20 simulations of a 1000X 1000
lattice. (In both Figs. 4 and 5 very large lattices are needed to minimize the statistical fluctuations and to be able to move decp into
the Gaussian tail.) The noisc scen at low energies is statistical noise due to the fact that there are very few states in the deep Gaussian
tail. The two-bump distribution appearing at intermediate times during the annealing reflects that, once a populated state has
jumped away from its low energy, it almost immediately thermalizes. This is because there are many high-energy states which are
easy to find. Since the region energy must correlate with the volume (because the liquid has a thermal-expansion coefficient which is
larger than that of the glass), the model predicts that there is an anomalously large x-ray scattering at intermediate times during the
annealing.
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whereas in Sec. IV it decreased with time. In thermal .

equilibrium the energy probability distribution is a
Gaussian centered around E(T) [Eq. (12)]. As the tem-
perature is lowered, the equilibrium Gaussian is displaced
towards lower energies while at the same time E,(t) in-
creases. When the Gaussian meets E,(?), _Ehe glass transi-
tion takes place.* This happens when E[T(¢)]1=E,(1).
For the system with constant specific heat cky studied in
Ref. 44, corresponding to n (E) < E€~!,0< E < E, (where
E_ now plays the additional role of a cutoff), one has at
low temperatures E(T)=ckyT. From E=E, one finds
that the glass transition temperature is given by
E.

kpT,= —————on 26)
Bie T o+ n(ree,)

A linear relatxonshxp between 1/T, and the loganthm of
the cooling time is often observed i m experiment. 3

For the freezing of the energy probability distribution
there are two different limiting scenarios, depending on
the rate of change with temperature of E,; and E, respec-
tively. In the model studied in Ref. 44, dE /dT =ck; and
dE,/dT=—kgIn(I'gt.). The case when E, changes
much faster with temperature than E was referred to as a
“slow” glass tranmsition, since it requires long cooling
times: In(T'g¢.)>>c. In this case the equilibrium Gauss-
ian almost does not move at all when the demarcation en-
ergy passes it and freezes in the encrgies Thus, the
frozen-in energy distribution, P(E), is close to that cor-
responding to thermal equilibrium at T = T,:

P/(E) : (£,
= ex -
4 Varaeh P 2(aER)

where E,=ckyT, and ((AEP)=c(kzT,)*. The other
limiting case is that of a “fast” glass transition:
In(T'51.) <<c. Here, the demarcation energy moves very
slowly compared to the Gaussian and is aimost constant
during the glass transition. To determine P,(E) consider
the energy fluctuations of a single region. As long as its
energy is above the demarcation energy, the region
“jumps” many times between the high-energy common
states. Sooner or later, however, the region ends up in a
state below E,, or just above E,, being subsequently
frozen when E, passes. As for all other jumps, this last
jump hits an energy with a probability proportional to
the density of states. Around E, the density of states is
proportional to exp[E /(kgT, )], so the normalized
P((E)is roughly given by (where again E, =ckpT,)

V)]

1 (E—E,)
PUE)s { ks Ty ks Ty
0, E>E, 28

, E<E

exp ;

In Ref. 44 the predicted exponential increase of PyE)
below E, was confirmed in the numerical solution of the
master equanon, above E;, however, P,(E) did not drop
discontinuously to zero, but followed a Gaussian decay.
The conclusion from the above is that, in general, one
cannot expect a glass merely to have the structure of the
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equilibium liquid at T=1T,. Certainly, the average
frozen-in energy is equal to the average energy of the -
equilibrium liquid at T, but the distribution of frozen-in
energies in the glass may be different from that corre-
sponding to the equilibrium liquid. This has conse-
quences for the glass properties. In the glass, any physi- )
cal property which is a function of the region energy (if it
depends linearly on E for the relevant energies) is, de-
pending on the cooling rate, distributed according to a
Gaussian or an exponential. Along these lines it has been
argued that amorphous semiconductors prepared by a
fast glass transition have exponential band tails. ¥

It is convenient to define a number that distinguishes
between the two types of glass transitions. This number,
denoted by ¢, is the absolute value of the ratio between
the change in the average energy and the change in the

: demarcation energy at the glass transition:

dE_

T . (29)

“Slow” glass transitions arise whenever ¢ <<1, while
“fast” glass transitions correspond to ¢ >> 1.

We now proceed to calculate the + parameter for the
random-walk model from the approximate EME descrip-

tion. The average energy is given by Eq. (12),
E——az/(kBT) Thus, the equation determining T,
Ed 1S
—0* kg T, )=E,~ky T, In(T3z,)
or
(L5t Xk Ty P —E, (ky T, )—0?=0 . (30)

The positive solution of this equation is

E.+V EX+4g*In(Td1, )

kyT,= 31
B7s 2In(I'gz,)
Since dE /dT=0%/(ksT?) and dE,/dT =—kgIn(T§t,)
the ¢ parameter is via Egs. (29) and (30) given by
(kg T, In(T§1,)
E.
(kg Ty)In(T3e,)

(32)

If the dimension d > 2, the percolation energy E. is nega-
tive and Eq. (31) implies
E, 2In(Tgt,)
d>2: =— . (33)
kT, V 1+ 40*/E) (T3, )—1

When Eq. (33) is substituted into Eq. (32) one gets
2

=14 . (34)
V1440 /EH In(Tgt, )~ 1

d>2:

In the case d =2, E, is positive and, as is easy to show,
the ¢ parameter is given by
i=1— 2 BT

d=2:
V1+4e2/EDIn(Tge, ) +1
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FIG. 6. The parameter ¢ {Eqs. (29), (34), and (35)] character-
izing the glass transition in the random-walk model for different
dimensions (d =2, 10, 100, 1000) as function of cooling time
[1/T8] according to the EME. The difference between d =2
and d > 2 arises from the fact that only in two dimensions is the
percolation energy positive. If ¢ <<1 the transition is a “simple
freezing™ glass transition, where the energy probability distribu-
tion of the glass is the equilibrium distribution at T}, frozen-in
almost unmodified. In the other limit, : >> 1, the transition is a
“relaxational” glass transition, where relaxations at the glass
transition considerably deform the equilibrium energy probabil-
ity. As a result, the glass does not acquire a structure corre-
sponding to the equilibrium liquid at T,. For very long cooling
times one ends up in the mixed case ¢ =1 where there is some re-
laxation at T, :

Figure 6 gives the . parameter as function of the cooling
time for d =2, 10, 100, 1000.

The terminology of Ref. 44 referring to “slow” and
“fast” glass transitions is not appropriate for the
random-walk model. For this model, as the cooling time
goes to infinity, one finds :— 1 in all dimensions (Fig. 6);
thus there are no “slow” glass transitions for slow cooling
rates. On the other hand, whenever d > 2 the glass tran-
sition is “fast” for sufficiently small cooling times; the
case d =2 is peculiar in that the glass transition is “slow”
for fast coolings. In view of this it is better to refer to
glass transitions with ¢ >>1 [previously: “fast”] as “relax-
ational” glass transitions: These are the interesting cases
where relaxation processes right at the glass transition re-
sult in a frozen-in energy distribution different from the
equilibrium distribution at T,. The cases when ¢ <<1
{previously: “slow”] may be referred to as “simple freez-
ing” glass transitions; here the equilibrium energy distri-
bution is simply frozen-in at T},.

V1. DISCUSSION

In this paper Bissler’s random-walk model for viscous
liquids and the glass transition was ““derived” in Sec. IL
In Secs. III and IV, it was argued physically and illustrat-
ed by computer simulations that the energy master equa-
tion (EME) gives a good fit to the random-walk model.
Thereby, two at first sight quite different approaches to
the glass transition problem*** are unified. The EME is
an equation for the energy probability distribution, which
even for an arbitrarily varying temperature and for very

long times makes it possible to calculate this quantity.
However, it should be remembered that the EME only
deals with energy; there a number of interesting proper-
ties of the random-walk-model that relate to the displace-
ment of the “particle,” which are not dealt with by the
EME. -

The below discussion is sectioned into eight parts, the
first four (A)-(D) discuss the random-walk model and its
connection to the EME, while the last four (E)-(H) deal
with the EME itself as a model for viscous liquids and the
glass transition.

A. The random-walk model in the present paper

The physical justification of the random energy model
was discussed in detail in Sec. II. The most drastic ap-
proximation® is the partitioning of the liquid into nonin-
teracting regions, an approximation that must be made to
arrive at a tractable model. Replacing the deterministic
equations of classical physics with stochastic equations
seems more acceptable, though not without pitfalis. 578
A further approximation is the replacing of “complexity”
by “randomness.”® This, in conjunction with the
discretization of state space lead to the model of a ran-
dom walk on a lattice with random energies. Models in-
volving random walks in random environments
{(“rugged” energy landscapes) have been used in many
contexts. 87075891 15 formulating a model of this type
one is led to ask whether the energy minima or the ener-
gy maxima should vary randomly, or both. The
random-walk model gives a simple and beautiful answer
to this question: No states are appointed “maxima” or
“minima.” All states are equal, but the higher-energy
states behave as maxima, being part of the paths between
the populated, but rare, low-energy states. The assump-
tion of Gaussianly random energies is the simplest
choice. Fortunately, it leads to an equilibrium specific
heat which increases with decreasing temperature, as
seen in experiment.

Following the ideas of Derrida’s “random energy mod-
el”® it is possible to discuss the Kauzmann paradox
within the model: Since there is only a finite “excess” en-
tropy of the supercooled liquid, a truncation of the
Gaussian at some low energy is forced on the model to
avoid the Kauzmann paradox.’>?® This truncation im-
plies that the thermodynamics of the model becomes al-
most indistinguishable from that of Derrida’s “random
energy model.” The truncation has not been discussed
here, because the truncated random-walk model does not
reproduce the experimental correlation between the
Kauzmann temperature and the T, of the VFT law Eq.
2).

The random-walk model contains three parameters.
There are two scaling parameters, the width of the
Gaussian o and the attempt frequency T, while the third
parameter is the dimensionless state space dimension d.
For a qualitative discussion of the model there is thus
only one relevant parameter d.
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B. A comparison to the original approach
of Biissier and co-workers

Bissler and co-workers** justified the Gaussian den-
sity of states by reference to the central-limit theorem, as-
suming that the region energy is a sum of a large number
of independent contributions. However, one might simi-
larly argue that any macroscopic system has a Gaussian
density of states, implying that any such system has a
specific heat varying with temperature as T2, which is
clearly incorrect. In the present paper the Gaussian is an
ad hoc assumption, only justified from the fact that it
gives a “thermodynamic” density of states [Eq. (11)]. A
further difference is that Béssler and co-workers assumed
that the density of states fluctuates in time. This justified
their use of Metropolis dynamics, since the *“particle”
awaits a favorable time for jumping where the barrier to
be overcome is negligible. Here, the density of states is
assumed constant and time independent. This difference
in the two approaches means that the present work can-
not maintain the original interpretation of the fact that
T, depends on sample history. This was explained*® as a
logical consequence of the fact that the density of states
depends on preparation conditions. However, even for a
constant density of states does the glass transition tem-
perature depend on sample history.

The most elaborate version of the Bassler model was
given in a recent paper by Arkhipov and Bassler.”® They
distinguish between a high-temperature regime described

by the random-walk model and a low-temperature regime’

described by the EME. The present work fully confirms
this picture. Here, however, the random-walk model is
assumed to be the underlying model at all temperatures,
and the parameters of the low-temperature approximate
EME are uniquely determined from the random-walk
model.

C. From the random-walk model to the EME

At low temperatures the populated states of the
random-walk model are rare low-energy states, and the
transitions between these far apart states follow the op-
timal paths, the ones that have the lowest maximum en-
ergy. The distance between two low-energy states is large
and the maximum energy of an optimal path is close to
the percolation energy defined from the site percolation
threshold by Eq. (14). A number of authors have previ-
ously emphasized the importance of percolation at the
glass transition, ***%~% but in contexts different from
the present.

The importance of percolation at low temperatures
means that the random-walk model here is regarded as
consisting of states (=the deep minima) separated by bar-
riers of the same height. Effectively, the model reduces
to a model of the “trapping” type used, e.g., for describ-
ing trapping of electrons in amorphous semiconductors.
Interestingly, it has previously been noted that the pre-
dictions of trapping models are almost indistinguishable
from the predictions of the EME. %"

The existence of the percolation energy makes it possi-
ble to distinguish two temperature regimes for the
random-walk model, a high-temperature regime opposed
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to the low-temperature regime where |E(T)|>>|E,]. In
the high-temperature regime, the most likely states usual-
ly have one or more neighbors with a lower energy and
these states consequently have a very short “lifetime.” In
the low-temperature regime, typical populated states are
surrounded by states all of which have a higher energy.
Only well into the low-temperature regime does the ap-
proximate EME description apply. This picture, which is
valid whenever d>2 (for d=2 there is no high-
temperature regime), is close to that recently advocated
in general terms by Hunt.'** He predicts that viscous
liquids have a high-temperature regime described by
effective-medium type theories and a low-temperature re-
gime where percolation effects dominate. A two regime
picture also results from the mode-coupling theory, * but
in a different context.

The low-energy states could be thought of as effectively
including a number of their relatively low-energy neigh-
boring states, thus forming rather complex low energy
“basins”, in agreement with the ideas of Stillinger and
Weber®% and Angell.'»*® The complexity of the basins
implies that considerable entropy resides inside each
basin.!® Note that this picture of complex minima
derives from a model where neighboring energies are

. completely uncorrelated.

A transition between two low-energy states is a com-
plex sequence of steps. Such a transition involves an ele-
ment of cooperativity®? in the sense that a long sequence
of jumps is undertaken in order to have a successful tran-
sition. Thus, at low temperatures the random-walk mod-
el contains both cooperativity and heterogeneity, the two
factors identified by Scherer™ as being important for any
realistic model of viscous liquids. The random-walk
model also conforms to the thoughts of Goldstein in
1969, expressing a firm belief that, “when all is said and
done, the existence of potential energy barriers large
compared to the thermal energy are intrinsic to the oc-
currence of the glassy state, and dominate flow, at least at
low temperatures.”*

The approximate EME description of the random-walk
model ignores the spatial structure of the state space (the
only trace left being the d dependence of the percolation
energy). In the limit of large d this is not unrealistic,
since there are many deep energy minima available not
too far from a given minimum. Consequently, transitions
to all states should be allowed with equal probability, as
in the EME.

D. Computer simulations: Comparing
the random-walk model to the EME predictions

The approximate EME description makes it possible to
study the random-walk model for realistic long times.
This involves a numerical implementation of the analytic
EME solution valid for the approach to thermal equilibri-
um at a fixed temperature (Appendix). In order to check
the validity of the EME approximation, computer simu-
lations were carried out (Sec. IV). The EME is expected
only to be valid in many dimensions at low temperatures
and long times, a regime that cannot be studied by even
the fastest computers available today because of two
problems: At low temperatures the most likely states are
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very rare so enormous lattices are needed; also, the relax-
ation times are extremely long. Instead, the simulations
were carried out in two dimensions and at moderate tem-
peratures. Despite _this, the computer simulations re-
vealed a rather good agreement with the EME predic-
tions. A numerical study of thermalization in the
random-walk model was previously performed by Béssler
and co-workers, starting in equilibrium at infinite temper-
ature.'® In Figs. 4 and 5 of the present paper, the
thermalization was studied going from one finite to
another finite temperature. A surprising thing happens
in the more exotic case going from a low to a high tem-
perature (Fig. 5) where a two-bump structure appears at
intermediate times, a phenomenon that is reproduced by
the EME. Thus, if the random-walk model is realistic,
one may induce a “dynamically generated phase separa-
tion” in a glass by the following procedure: Anneal the
glass for a very long time at a relatively low temperature,
then increase the temperature and finally quench the
glass at the right time in order to catch it in a state corre-
sponding to Fig. 5(c). The dynamically generated phase
separation results in a glass consisting of low-energy re-
gions and high-energy regions, but only few of intermedi-
ate energy. Such a glass has a well-defined correlation
length, equal to the region size.

The rest of Sec. VI deals with the EME independently
of its connection to the random-walk model.

~ E. The EME as the simplest possibie
truly cooperative master equation, “derived”
from the non-Arrbenius temperature dependence
of the average relaxation time

Since most naive phenomenological models involving a
distribution of energy barriers give an average relaxation
time 7{T) with an apparent activation energy that de-
creases with decreasing temperature, the observed non-
Arrhenius 7(7) must contain an important clue to the
construction of a phenomenological model. Assuming
that the activation entropy plays little role we write

HT)=rpe 5T 0T (36)

Experiments imply that AE (T) increases as the tempera-
ture decreases. The simplest way to explain this is as fol-
lows: AE(T) is the difference between the barrier to be
overcome and the most likely region energy. If a region
contains many molecules (“cooperativity”), the most like-
ly energy is by general thermodynamic principles close to
the average energy E(T). If furthermore the maximum
to be overcome is assumed to be constant, =E_, one has

AE(T)=E ~E(T). (37

Since E(T) decreases with decreasing temperature, the
barrier increases. This simple idea is the basis for the
EME as a model for viscous liquids (independent of the
random-walk model): Equation (37) motivates Eq. (15)
and to derive the EME one just needs the further
assumption—again the simplest possible—that, once ex-
cited into the transition state, a region ends up in a ran-
domly chosen other state. This assumption means that
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an excitation must be a complete reordering of the region
molecules. Thus, the EME is truly cooperative.

F. The EME as the simplest master equation
conforming to the Goldstein-Brawer picture (Fig. 1)

In an interesting paper from 1972, Goldstein® pro-
posed a picture of viscous flow where the transition state
is the “high-temperature, more-fluid, liquid usuvally stud-
ied by theorists.” Once excited into this common transi-
tion state—being totally different from the potential en-
ergy minimum which the region was excited from—the
only reasonable assumption is that any other (low energy)

~ state can be reached. In the EME these other states are

reached with equal probability. Thus, from Goldstein’s
ideas®®*? one is led almost automatically to the EME.
However, Goldstein did not discuss any master equation;
a master equation in the spirit of his ideas was set up by
Brawer in 1984.%%} Brawer’s model is more detailed than
Goldstein’s and his master equation is more complex
than the EME. In the 1985 version of Brawer’s modei® a
region has K volume elements, each of which has two
states: a low-density (high-energy) state and a high-
density (low-energy) state. If a certain fraction of the X
volume elements are excited into the low-density state, a
transition is allowed. The jump thus involves a number
of the volume elements forming a complex sequence of
density changes, somewhat like a transition between two
low-energy states in the random-walk model.

G. The EME interpretation versus the naive
interpretation of the activation energy

Figure 7 sketches typical experimental resuits for the
average relaxation time using an Arrhenius plot (full
curves): There is a non-Arrhenius high-temperature re-
gime for the equilibrium viscous liquid and an Arrhenius
low-temperature regime (the glass). The naive interpreta-
tion of this [Fig. 7(a)] is based on writing
T TY=74exp{AF(T)/(kgT)] and using the standard ther-
modynamic relations AF =AE —TAS and dAF/dT
= —AS; from this it is easy to show that the activation
energy AE is the slope of the tangent (dashed line). This
slope changes abruptly at the glass transition, which is
sometimes explained as being due to the fact that below
T, relaxation takes place in an essentially fixed structure,
while above T, the activation energy has an additional
contribution from structural changes. Figure 7(b) gives
the EME interpretation of data which follows from Eq.
(15) [or Egs. (36) and (37)]. Here, the activation energy
AE is the slope of the secant from ~(T) to 7, Thus, at
T =T, the activation energy simply stops changing, be-
cause glassy relaxation takes place in an essentially fixed
structure.

H. A qualitative comparison of the EME to experiments

The random-walk model has been quantitatively suc-
cessfully compared to experiments on a number of glass-
forming liquids.**33 We here proceed 10 argue that the
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FIG. 7. Naive interpretation of the activation energy (a)
compared to the interpretation underlying the EME (b). Both
figures show an Arrhenius plot of the same typical average re-
laxation time data for the supercooled liquid (non-Arrhenius
part, T >T,) and for the glass (Arrhenius part, T <T,). In (a)
the activation energy is interpreted as the slope of the tangent,
which changes discontinuously at T,. In (b) the activation ener-
gy is interpreted as the slope of the secant drawn to the micro-
scopic time. In both cases one finds that the activation energy
increases as the temperature decreases. In (b), at the glass tran-
sition the activation energy stops increasing and becomes con-
stant. In the naive interpretation (a), the activation energy
changes discontinuously at the glass transition.
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EME itself, despite being very simple, qualitatively repro-
duces a large number of experimental observations, yields
some new predictions, and also some “wrong” predic-
tions. Most of the properties of the EME listed below
will not be detailed here, but are strmghtforward to

derive. 2

1. Qualitatively correct predictions of the EME

(a) The EME gives a qualitatively correct temperature
dependence of the average relaxation time above and
below T, (Fig. 7);

(b) The preexponential of (T) for glassy relaxation is
predicted to be close to , i.e., a phonon time; %3

(c) A true Arrhenius behavior of { T) implies a zero re-
gion s?eciﬁc heat and thus no distribution of relaxation
times. 3419 If the region size is universal, as conjec-
tured by Nemilov, '%*!9 there is a correlation between
the magnitude of the “excess” specific heat (the
configurational specific heat), the degree of non-
Arrhenius behavior of 7{T), and the relaxation time dis-
tribution width; 7104103

(d) If the region specific heat is regarded as roughly

, constant close to T, the EME predicts a proportionality

between 1/T,, and the logarithm of the cooling time;* 1%

(e) In the glassy state, energy relaxation proceeds ac-
cording to the EME with a logarithmic time dependence
[compare Eq. (24)], “In(t) kinetics,”®>10%19% gith 3
slower than logarithmic time dependence at both the ini-
tial and final stages. The logarithmic relaxation law is
conventionally explained as being due to a “relaxation”
of the relaxation rate itself.*2%4381,82.109 The EME con-
forms to this picture in a particularly simple way;

() For relaxation upon a sudden change in tempera-
ture an asymmetry is predicted between the two possible
cases, a well-known phenomenon referred to as “non-
linearity”;%?°

(g) If one assumes a correlation between the region en-
ergy and its volume (which is necessary because the
viscous liquid has a larger thermal-expansion coefficient
than the glass or crystal), the EME also gives predictions
regarding the pressure dependence of the average relaxa-
tion time. Writing {(p) '-!cxp[pAV(p)], experiments im-
ply that the activation volume increases as the pressure
increases.''? If AV(p)= V.= V(p) just as for the activa-
tion energy this observatlon is explained, since the region
average volume decreases with increasing pressure. A
further possibility is to assume a linear relation between
region volume and energy. In that case the normalized
frequency-dependent isothermal compressibility is equal
to the normalized frequency-dependcnt specific heat, as
proposed by Zwanz:g there are some indications that
this is the case in experiment.'!? Also, for quantities un-
correlated with the region energy, it can be shown that
the EME predicts a slight “decoupling” of their average
relaxation time from that of the frequency-dependent
specific heat, where the average relaxation time for the
latter becomes somewhat larger (Fig. 8). This is also the
case experimentally. !!?
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5 ° glasses may be produced by a third kind of process, a
. § -5 quench to low temperatures in a time much shorter ~
¥ _of than the average relaxation time at the starting
t temperature—this process clearly results in_a frozen-in
é 1 region energy distribution that is equal to the equilibrium
5 -20 distribution at the starting temperature.)
x e 3. “Wrong” predictions of the EME
$ -30Ff .
§ _3s i R . - . : (a) The VFT law Eq. (2) is inconsistent with the EME
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FIG. 8. Decoupling of thermal relaxation times from other
relaxation times according to the EME for a Gaussian density
of states with E,=0. The maximum relaxation frequency is
given in units of I'y and the temperature in units of o /kp. The
full curve gives the loss peak frequency for a quantity that is un-
correlated to the energy (calculated from its time autocorrela-
- tion function). The dashed curve is the specific-heat loss peak
frequency (Ref. 117). The figure shows that there is a slight
slowing down of thermal relaxations compared to other relaxa-
tions, an effect that has been seen in experiments (Ref. 112).

2. New predictions of the EME

(a) At low temperatures the average relaxation time of
the equilibrium viscous liquid is predicted to become Ar-
rhenius with a pre-exponential equal to 7, Thus, a
change in sign of the curvature of the Arrhenius-plot,
din[H(T)]/d(T '), is predicted. Similarly, a change in
sign of d’In[(p)]/dp? at large pressure is predicted.
This follows from the fact that a region must have a
lowest energy state or a minimum volume;

(b} The EME gives detailed predictions regarding the
nature of the asymmetry of relaxation upon sudden
changes in temperature: For a sudden cooling from
thermal equilibrium relaxation is predicted to proceed
continuously (Fig. 4), while relaxation upon a sudden in-
crease in temperature is peculiar, resulting in a two-bump
energy probability distribution at intermediate times (Fig.
5). In the latter case, if the relaxation is interrupted by
quenching to low temperatures, one ends up with a
strange glass in which some regions have low energy and
some have high energy, a “dynamically generated phase

- separation.” The energy correlates with the volume
[compare H1gl. Therefore, a dynamically generated
phase separated glass will give an anomalous x-ray
scattering signal. Nemilov has predicted a similar
phenomenon on purely thermodynamic grounds;'"*

(c) The EME predicts that there are two different lim-
iting cases of the glass transition (Sec. V), “relaxational”
(previously called “fast”) glass transitions and “simple
freezing” (previously called “slow”) glass transitions.
The latter type freezes-in the region energy probability
distribution at T, and the glass simply inherits the struc-
ture of the equilibrium liquid at this temperature. At a
relaxational glass transition, relaxation processes right at
T, result in a frozen-in region energy distribution
different from the equilibrium distribution. (Of course,

which predicts a finite average relaxation time at all tem-
peratures. Experimentally, however, deviations from this
law seem to occur for large viscosities, where the data ex-
hibit a less dramatic temperature-dependence than pre-
dicted; 0251

(b) The Kauzmann paradox is also inconsistent with
the EME (without a low-energy cutoff in the density of
states), which at all temperatures predicts a positive
specific heat. However, a suitably chosen regipn density
of states (e.g., a truncated Gaussian®>"%) easily repro-
duces the experimental configurational entropy;

(c) The Kohlrausch-Williams-Watts law (stretched ex-
ponentials) for the time dependence of the energy relaxa-
tion is not reproduced by the model. However, the EME

. does predict broad distributions of relaxation times.

These three points are places where the EME on the
one hand does not reproduce the conventional picture of
viscous liquids and glassy relaxation, but on the other
hand is not inconsistent with experiment. The final point
to be mentioned here is a more serious objection to the
EME:

(d) If the correct non-Arrhenius behavior of 7(T) is to
be reproduced by choosing a suitable n{E) (possibly a
non-Gaussian), the model predicts a peak of the imagi-
nary Part of the frequency-dependent linear specific
heat!!* that is too broad. This conclusion seems to hold,
despite the fact that only few measurements of this quan-
tity have been published and that there is a considerable
discrepancy between the results of Christensen!'® and
those of Birge and Nagel. 'S This disagreement between
the EME and experiment means that the EME is too sim-
ple to be realistic. Preliminary work''? indicates that it is
possible to solve this problem and still retain the region
agsumption and the assumption that the only important
parameter is the region energy. This is done by the fol-
lowing extension of the EME. One introduces rwo densi-
ties of states, one numbering the minima and another
essentially giving the entropy of each minimum. Thus,
each minimum is a cluster of states that may be reached
from each other by not exciting all the way to the energy
E_.'" Besides giving greater flexibility to the EME mod-
el, making it able to fit the frequency-dependent specific-
heat experiments, this approach also allows for the ex-
istence of B relaxation as the process associated with in-
traminima transitions. '8

VII. CONCLUSIONS

A derivation of Bissler's random-walk model has been
sketched, which emphasizes the potential importance of
this model as a “canonical” or prototype phenomenologi-
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cal model for viscous liquids and the glass transition.
The random-walk model views relaxation as a conse-
quence of activated transport in a multidimensional
rugged energy landscape. It is probably the simplest
model of this type. The “derivation” of Sec. IT traces the
random-walk model back to Newton's equations for the
molecules of one region. However, the derivation is in no
way exact, which is clear just from the fact that the crys-
talline state of much lower energy than the supercooled
liquid state is absent from the model.

It has been shown that the EME gives a good approxi-
mate description of the emergy fluctuations of the

random-walk model.. The EME is solvable by a combina- -

tion of analytical and numerical techniques (Appendix).
This makes it possible to predict the behavior of the
random-walk model for an arbitrary temperature time
variation at very long times. Independently of its
Jjustification from the random-walk model, the EME may

. have a value of its own as a phenomenological model for
viscous liquids and the glass transition. It incorporates
true cooperativity and is consistent with statistical
mechanics, while still being simple and solvable for realis-
tic laboratory time scales. It is noteworthy that such a
simple model leads to new predictions, like that there are
two different types of glass transitions and that a well-
annealed glass upon heating gives an anomalously large
x-ray scattering at intermediate times before equilibrium
is reached.
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APPENDIX: SOLVING THE ENERGY
MASTER EQUATION

We first calculate how an initial nonequilibrium energy
probability distribution at a fixed temperature converges
to the canonical equilibrium distribution.**™~% To
solve the EME numerically, it must be discretized. The
energy axis is discretized into N evenly spaced energies,
E,< -+ <Ey. At low temperatures it is important to
include large negative energies into the set of discrete en-
ergies, despite these lying far into the Gaussian tail. If
one defines I',=INE;), P,=P(E,1)/Cp, and
n,=n(E;)/C,, where the normalization constants C, and
C, are determined so that

N N
3 =1 I =1, (AD)
i=1 j=1
the EME Eq. (20) becomes upon discretization
dP; N .
—(—;—=—I‘,~P,-+n,- X LP (i=1,...,N). (A2

i=1

The normalization condition for the n;'s [Eq. {A1)] en-
sures probability conservation at all times.
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At any temperature this et;uatlon may be solved by La-
place transformation.**%~% The Laplace transform of
the function P,(1) in Eq. (A2), Py(s), is as usua.l defined®
by

Bs)= f:Pi(t)e"‘dt . (A3)

Since the Laplace transform of the time derivative of a
function £ (z) is sf(s)— £ (0), Eq. (A2) becomes upon La-
place transforming

sP(s)—P,(0)=—TB(s)+nX(s) ,

where X(s)=3. T;P;(s). This equation determines
Bi(s) from a knowledge of the initial probabilities P;(0).
The probabilities P;(¢) are calculated by the inverse La-
place transformation, 8

(A4)

Pin)= f "'P,(s)e"ds (A5)
Isolating P,~(s) from Eq. (A4) leads to

Bl=—t0 L My (A6)

TS, s4L,

From this expression an equation for X (s) is found by
multiplying with T'; on each side and summing:

x T:pi(0)
Xis)= 3 ST, +X(s)}_‘,

i=1 i=1

+ F (A7)

or

N
3 [F;PA0) /(s +T;)]
i=1

¥ . (A8)
= 2 [T/ +T))

X(s)=

Using Eq. (A1) the denominator may be rewritten

N n(T;+s—s) N n

1- = — .
2 s+, 25T

(A9)

When this is substituted into Eq. (A8), Eq. (A6) becomes
{changing the summation index from i to j)

N
TP +T;
) w2 PO/ +T)]

s+I;  s(s+T;)

ﬁi(5)= N
S, [n, /s +T))]
je=1

(A10)

From Eq. (A10) P,(t) may be calculated via Eq. (AS),
where the integration contour in the complex plane lies
to the right of all poles of P;(s). The integral is evaluated
by including an infinitely large semicircle surrounding the
left half of the complex plane. This closes the integration
contour and the residue theorem may be applied. For
each i there are N poles which, due to the structure of the
energy master equation, are the same for all P;{s). There
is one pole at s=0. The apparent singularities at

=~Tr j» are all “removable”, i.e., not real singularities.
If j =i this follows from the fact that



This equation has N-1 solutions, each of which is a neg-
ative real number. The solutions are conveniently denot-
ed by 5 = — o, and numbered such that

Ly <@ <Tysy (k=1,...,N—1). (Al4)
“The &'s are thus defined by
N n; .
—t=0 (k=1,...,N—1). - (A15)
j=1 I"J-—a)k

We next proceed to find the residues. At the pole s =0
the residue is given by

N
P;(0)
N P n; j§ll _ n /T
}l_!R)SPi(S)—0+—fT v = (A16)

N
S (/T 3 (n/T))
j=1 j=1

Since the quantity n,/T'; < n,exp(—pBE,) is proportional
to the canonical equilibrium probability for the system
having energy E;, the residue at s =0 is simply the nor-
malized equilibrium probability Py ;:

lir%sf,-(s)=Po',- . (AT
5!
Using the rule that the residue of a function of the form

f(z)/g(2) at a simple zero for g(z) at z =z, is equal to
f{zg)/8'(z,), one finds for the residues at s = —a),

lim (s +a,)P(s)

S— =0
P{(o) n;
I",—m,‘ (—cok)(l‘,-—mk)
N
2 [T PHOMT —wy )]
x 21
N
2 [(—nj)/(F,—wk)z]
i=t
SN B— (A18)
o {Ti—ay,) 7%
where
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- n; I Pi(0) N )
lim (s +T;)P(s)=P,(0)+———=0, 3 (TR0 /AT ;—ay))
s——T; (=) n _j=1
. =% (k=1,...,N—1).
an) S [ /AT~ ] '
while for j5#i it follows from = .
(A19)
= T, P;{0)
im (s +T;)P(s)=0+0~L—=0. (A12) :
Pilogn . )
/ 1 Having determined the residues, the integral Eq. (AS) is .
Besides the s =0 pole there are poles whenever s obeys now easily calculated by the residue theorem:
s U (A13) Nzt n
=° . A = - i —pt
s+, Pi(t)=Py;+ ké‘ __—wk(ri_mk) Ae . (A20)

The equations (A15), (A19), and (A20) give the solution
of the energy master equation at a fixed temperature. As
expected, the solution converges to the equilibrium solu-
tion as t— . The w;'s play the role of characteristic re-
laxation rates. Note that conservation of probability is
ensured by virtue of Eq. (A15).

In the numerical implementation, the w,’s are deter-
mined from Eq. (A15) by the bisection method. Depend-
ing on the numerical precision large numerical errors
may arise from the term 1/(T', —®,) in Egs. (A19) and
(A20) at low energies where w, is extremely close to 'y;
in this case one may use Eq. (A15) to approximate as fol-
lows:

1 1 N n;

0% = ——
=

—_— (A21)
F,‘—mk ny j=1,j%k Fj—mk

Another problem that may arise is overflow. In the
present work both these numerical problems were avoid-
ed by using the 80 bit floating point “extended” data type
of Turbo Pascal. Alternatively, overflow problems may
be avoided by the following procedure: The numbers
P;,P(0),n;,',0, are each represented by their loga-

. rithm. Each sum appearing in Egs. (A15), (A19), and
~ (A20) is evaluated by first identifying the leading term

and then factorizing it. There remains a sum of terms
less than one, each term being a product which is evalu-
ated as, e.g., ab =exp[In(a)+1n(b)].

By means of Eq. (A20) the master equation may be
solved numerically at arbitrary long times at a fixed tem-
perature with great accuracy. If the temperature changes
in time, the above method is applied for time steps small
enough that the temperature may be regarded as con-
stant. In the solutions of the master equation plotted in
Figs. 2-5 the energy axis was discretized into energies
spaced Q.10 apart spanning an energy interval of 10 o,
suitably placed on the energy axis depending on the prob-
lem. The solutions plotted in Fig. 2 were obtained from
2X 100 time steps where the temperature is changed in
each step. In two dimensions the percolation energy [Eq.
(14)] is given by E,=0.235¢.
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Local elastic expansion model for viscous-flow activation energies
of glass-forming molecular liquids
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A model for the viscosity of glass-forming molecular liquids is proposed in which a “flow event” requires
a local volume increase. The activation energy for a flow event is identified with the work done in shoving
aside the surrounding liquid; this work is proportional to the high-frequency shear modulus, which increases as
the temperature decreases. The model is confirmed by experiments on a number of molecular liquids.

Glass formation is a universal property of supercooled
liquids.'~® For simple liquids rapid cooling is required to
avoid crystallization. For most complex liquids supercooling
causes no problems; in fact, many complex liquids are diffi-
cult to crystallize: The glass transition takes place when the
viscosity of the supercooled liquid becomes so large that
molecular motion is arrested. The laboratory glass transition
is dynamic and not a phase transition, although many work-
ers in the field believe it to be a manifestation of an under-
lying equilibrium second-order phase transition. For cooling
rates of order Kelvin per minute, the glass transition takes
place when the viscosity, 7, is around 10" poise (P). In the
following, the glass transition temperature, T, is defined as
the temperature at which =10" P.

The linear shear mechanical properties of a liquid are de-
termined by the shear modulus as function of frequency,
G(w)=G'(w)+iG"(w). At low frequencies G{w)=iw7.
At high frequencies liquid becomes solidlike and G(w) ap-
proaches a limiting value, lim,_oG(®w)=G. In terms of 7
and G-, the average shear relaxation time, 7, is given® by
Maxwell’s expression

2

7= G

m
For all viscous liquids r and 7 depend dramatically on tem-
perature, varying often more than ten decades over a tem-
perature range quite narrow compared to T,. G, depends
much less on temperature, usually increasing less than a fac-
tor of 4 upon cooling in the same temperature range. This
variation, on the other hand, is considerably larger than that
found in simple nonviscous liquids or in crystals and glasses.

Intimately linked to the problem of understanding the
glass transition is the problem of the temperature dependence
of viscosity: Upon cooling the viscosity increases more than
expected from a simple Arrhenius law (exceptions to this are
SiO~ and GeO,). There is still no consensus regarding what
causes the non-Arrhenius temperature dependence of viscos-
ity. The two most important phenomenologic:ﬂ models are
the free volume model of Grest and Cohen," and the entropy
model of Gibbs and co-workers.'"'? In the free volume
model, the viscosity is controlled by the volume available for
molecular rearrangements, which decreases with decreasing
temperature. In the entropy model, the increase in viscosity
upon cooling is caused by the decrease in the configurational

0163-1829/96/53(5)/2171(4)/$06.00 53

entropy.'® In the less viscous regime, the non-Arrhenius vis-
cosity is explained by mode-coupling theories.'*!*

It is generally believed that flow in viscous liquids pro-
ceeds via sudden flow events involving several
molecules.>1%1216-2! 1, terms of the free energy barrier to be
overcome, AF(T), the temperature dependence of the vis-
cosity is given by

AF( r)} @

n= 770“?[ kT

According to Eq. (2) the non-Arrhenius temperature depen-
dence of the viscosity arises because A F(7T) increases as the
temperature decreases. The problem is to explain why.

In molecular liquids van der Waals forces (and possibly
hydrogen bonding) are present between the molecules. The
starting point for the present model is the fact that the repul-
sions between the molecules are strong, while the attractions
are only weak. Many properties of simple liquids derive
from this fact. In a viscous liquid a flow event involves a
significant rearrangement of a number of densely packed
molecules. If the flow event takes place at a constant volume,
the molecules are forced into close contact. Because of the
strong repulsions between the molecules, this is energetically
very costy. Alternatively, the molecules may shove aside the
surrounding liquid to increase the volume available for rear-
ranging. This must be less costly than rearranging at a con-
stant volume; consequently, the new model is based on
“shoving” flow events.

The barrier height has two contributions, one from shov-
ing aside the surrounding liquid and one from separating the
flow event molecules. In a harmonic solid, as is easy to show,
the two contributions are of the same order of magnitude, but
the relative distance changes between the flow event mol-
ecules are too large for using the harmonic approximation.
Since the attractive forces are only weak, the energy cost for
separating the flow event molecules is considerably lower
than estimated from the harmonic approximation. We ignore
this contribution and identify AF(T) with the shoving work
done on the surrounding liquid.

Like any thermally activated transition, a flow event is a
rapid process. During the shoving the surrounding liquid be-
haves like a solid, and the shoving work depends linearly on
the infinite-frequency bulk and shear moduli, K, and G... To

2171 © 1996 The American Physical Society
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FIG. 1. Logarithm of the viscosity in Poise as function of T,/T and as function of the variable r*fG,g(T)/T normalized to one at T=T,:
x=[Go(NTJ[G(T,)T]. According to the model the loganthm of the viscosity depends linearly on x [Eqs. (2) and (3)]. In each subﬁgure
the diagonal lme joins (he point x=1 and log;o(7)=13 with the point x=0 and log;o(7)=—4. The former point defines the glass transition
and the latter corresponds to the viscosity prefactor of Eq. (2), 7, equal to 10™* P (a typical prefactor, corresponding to the shear relaxation -
time close to an average period of vibration) [Ref. 24]. The subfigures give data where G..(T) was obtained from extrapolations of
measurements in different frequency ranges (a) mHz-kHz; (b) MHz; (c) GHz. (a) shows our data for five molecular liquids. These liquids
all accurately obey the time-temperature superposition principle for the shear modulus (except for 2 8 component with a magnitude less than
10%). Consequently, the Kramers-Kronig sum rule G.,=(2/m)f Z.G"(w)d Inw implies that G, is proportional to the maximum loss,
Gh.., which makes it possible to evaluate the variable x directly from data without any analytical extrapolation: x
=[G DT MG ra(TPT)- In (a) the full symbols give the viscosity as function of T,/T and the open symbols give the viscosity as function
of x. The figure shows data for 4-methylpentan-2-ol (A), dioctyl phthalate (O3, phenyl salicylate (salol) (O), dibutyl phthalate (V), and the
silicone oil MS704 (0 ). (b) gives the data of Barlow et al. (Ref. 28), where G, was obtained from extrapolations of ultrasonic measure-
ments (Ref. 2). The full curves give the viscosities as function of T,/T and the dashed curves give the viscosities as function of x for the
following six molecular liquids: isopropyl benzene, n-propyl benzene, sec.-butyl benzene, di(isobutyl)phthalate, di(n-butyl)phthalate, di(2-
ethyl hexyl)phthaiate. (c) gives data where G, was obtained from depolarized Brillouin scattering. As in (a) the full symbols give the
viscosity as function of T,/T and the open symbols give the viscosity as function of x. The figure shows data for 5-phenyl-4-ether (O) (Ref.
42) and for a-phenyl-o-cresol (V) (Refs. 43 and 44).

be specific, we assume that shoving increases the volume of  vation volume it is easy to show that V, is given by (where
the flow event molecules from a sphere to a larger sphere.  V is the volume before the shoving)

According to elasticity theory® this induces a radlal dis-

placement in the surroundings, u,, varying as u,xr~ -, This

is a pure shear displacement (V-u=0 as for Lhe Coulomb V.=
field) and therefore the shoving work is independent of K
and proportional to G . The constant of proportionality will
be referred io as the characteristic volume, V... For simplic-
ity V, is assumed to be temperature independent, and thus

(AV)?
v

(@

m| 8]

Since G,(T) increases upon cooling, the model predicts a
non-Arrhenius viscosity with an activation energy that in-
creases as the glass transition is approached. This is what is
observed in experiments. On the other hand, the model is
AF(T)=GT)V,. (3)  inconsistent with the popular Vogel-Fulcher-Tammann

expression.®’” where the viscosity diverges at a finite tem-
The characteristic volume is not equal to the volume change  perature (unless one accepts that G, may become infinite
during shoving. the activation volume, AV. For small acti-  which seems unphysical).
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According to the new model the logarithm of thie viscosity
depends linearly on G.(T)/T. Figure 1 compares this pre-
diction to experiments in Angell’s fragility plots®* where the
logarithm of the viscosity (in poise) is plotted as function of
xx /T, and as function of xxG,(T)/T (both x coordinates
are normalized to one at T=T,). We have measured G(w)
for five molecular liquids using the piezoelectric shear
modulus gauge transducer (PSG) consisting of three piezo-

ceramic discs,? a device based on principles similar to those

of the bulk modulus transducer?® With recent
improvements®’ the PSG is now able to provide shear modu-
lus data in the frequency range 1 mHz-50 kHz. Figure 1(a)
shows our results for the viscosity as function of T/T (full
symbols) and as function of x (open symbols). The line con-
nects the point x=1 and log,p7=10" (defining the glass
transition) with the point x=0 and log,,7=10"" [a typical
viscosity prefactor, corresponding to the average shear relax-
ation time of Eq. (1) close to an average period of
vibration®*]. The results of Fig. 1(a), while favorable for the
model, ignore possible additional high-frequency relaxations
outside the frequency range covered by the PSG. To investi-
gate whether high-frequency methods for measuring G, con-
firm our findings, we plot data taken from the literature in
Figs. 1{b) and 1(c). Figure 1(b) presents the data of Barlow
et al.®® for G, obtained from ultrasonic measurements work-
ing in the MHz range. Figure 1{(c) presents data where G,
was obtained from depolarized Brillouin scattering, a tech-
nique that operates in the GHz range.

Given the uncertainties in evaluating G, and the crude-
ness of the new model, Fig. 1 shows a satisfactory agreement
between the model and experiment for molecular liquids. We
have also compared the model to Brillouin data for two non-
molecular liquids,”® B,0, and Cag4Kq¢(NO3), 4 (CKN). For
B,03, G is too dependent on temperature to account for the
rather weak non-Arrhenius viscosity. However, viscous flow
of B,0, involves the breaking of covalent bonds, which goes
beyond the present model. For CKN the model works well
for the temperature dependence of the conductivity relax-
ation time {which decouples from the viscosity close to T,
(Ref. 30)], but the mode! is not able to fully explain the
dramatic non-Arrhenius viscosity.

We now briefly discuss related work. The idea that vol-
ume is needed for a flow event to take place is old; this is the
basic idea behind the free volume model.'® Here, however,
the problematic concept of a “free” volume is extraneous.
The present picture is more closely related to that of Brawer,
who assumed that the transition state for a flow event is a
low-density state with room for the molecules to rean';mge.3
In his approach, the activation energy was taken to be a

function of the energy of the flow event molecules, and the
shoving work is ignored.*'® The model proposed here is very
similar to that used by Fourkas, Benigno, and Berg®'*? for
explaining the hole-burning spectra and the time-dependent
Stokes’ shift ‘of a nonpolar solute “molecule in a glass-
forming solvent. These authors argued that an electronic ex-
citation increases the effective size of the solute molecule,
and showed that the viscoelastic response of the surrounding
solvent changes the transition energy and causes a time-
dependent Stokes’ shift. Equation (3) appeared in 1968 in
two papers by Nemilov**** in a version where V.= V. Ne-
milov used Eq. (3) for calculating the rate of flow of optical
silicate glasses. He justified Eq. (3) by substituting Eyring's
expression for # (Ref. 35) and Dushman’s expression for 7
(Ref. 36) into Eq. (1). Buchenau and Zorn®"*® found empiri-
cally that the viscosity of selenium follows the expression
7= 7explu §/{u?)\oc], Where (u®,. is the atomic mean-
square displacement for the vibrational motions in the liquid
minus the same quantity for the crystal (at the same tempera-
ture). This result is related to, but not identical to, that of the
present model: If the high-frequency bulk and shear moduli
are identical (denoted by M) and the interatomic harmonic
potential is denoted by (12)mwu?, the equipartition theo-
rem implies that @*(u*)=T. The sound velocity is propor-
tional to w and to M 2. Combining these facts: M o(u*)<T
and thus Egs. (2) and (3) imply 7« exp[ C/{u®)]. If the dif-
ference between (1), and (% is ignored, this is the result
of Buchenau and Zom. As shown by Hall and Wolynes®® the
relation 7 = exp[C/{u?)] may be derived by assuming a
fixed distance between two minima for harmonic potentials:
The energy difference between one minimum and the inter-
section of the two harmonic potentials varies as w?’, which is
proportional to 7/(u2). A convincing example of this relation
between an activation energy and a phonon frequency was
given by Kohler and Herzig.“0 who were able to explain a
number of anomalies for self-diffusion in bcc metals. In their
model, the fact that the activation energy for self-diffusion in
bee metals decreases as the temperature decreases, is due to
softening of the 111 phonon. Finally, Miles, Le, and Kivel-
son in a study of the pressure dependence of the sound ve-
locity in triphenylphosphite found that the transverse sound
velocity is solely a function of the viscosity.’! While their
measurements were performed in the less viscous regime,
this result is what is expected from the present model (al-
though here viscosity is a function of the transverse sound
velocity instead of vice versa), ignoring an insignificant fac-
tor T.

This work was supported by the Danish Natural Science
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Excess current noise in random-walk models with a frequency-independent conductivity is stud-
ied from a general point of view. By introducing a “dynamical” diffusion constant, it is shown that
the current autocorrelation function in an external field probes the equilibrium dynamical
diffusion-constant autocorrelation function. From this a number of results, previously shown for
particular models, are derived. Also, it is shown that the external-ficld current autocorrelation
function is proportional to the equilibrium autocorrelation function for the absolute value of the
current. Thus, the excess-noise spectrum probes the equilibrium-speed autocorrelation function. In
the treatment advanced here, the study of excess current noisc in random-walk models reduces to a
study of the stochastic point process constituted by the particle-jump times. This point process con-
tains all information about the noise. As an illustration of the general theory, the continuous-time
random-walk model is briefly reviewed and a simple derivation of the excess noise in the model is
given. Finally, the role of Fermi statistics in models for 1/f noise is discussed. It is argued that
number-fluctuation models, i.e., models with long trapping times, are incompatible with Fermi
statistics. On the other hand, it is shown there is a peculiar “single-particle” 1/f noise which is due

15 JUNE 1988-1

to Fermi statistics but has nothing to do with the observed 1/f current noise.

I. INTRODUCTION

Electrical 1/f noise has been a major puzzle in solid-
state physics for many years and is still far from being un-
derstood.'~!!" This noise is found at low frequencies in
apparently any conducting solid in an external electric
field. 1/f noise is always observed together with white
noise, the origin of which is well understood, and there-
fore 1/f noise is often referred to as excess noise. One
may speak of excess current noise in a constant-voltage
circuit or excess voltage noise in a constant-current cir-
cuit. The spectra of the two are always identical and only
excess current noise will be discussed here.

Experimentally, the spectrum of excess current noise is
given by

(N
Sexc.l((‘))=K

0~ T, n

where (J ) is the average current in the electric field E,
V is the volume of the sample, X is a constant, and the
exponent a is close to 1. The case a=1 has given the
name to the subject: 1/f noise, where f is the frequency.
The fact that the noise is proportional to {J)% suggests
it is the resistance that fluctuates and consequently one
often speaks about 1/f resistance fluctuations. If the
resistance really fluctuates, however, there should be 1/f
fluctuations in the magnitude of the Nyquist noise in zero
external field. This was shown actually to be the case by
Voss and Clarke in 1976."2 Their work was a major

breakthrough because it showed that 1/f noise is an -

equilibrium phenomenon and is not created by the rather
strong clectric fields usually applied when measuring 1/f
excess noise. The Voss and Clarke experiment raised the
obvious question: How can noise fluctuate, being itseif

kY

due to fluctuations? It was soon shown that fluctuations
in the magnitude of the Nyquist noise are due to nontrivi-
al fourth-order correlations in the equilibrium current or
voltage fluctuations,'*' implying these fuctuations are
non-Gaussian.

During the 1980’s there has been considerable interest
in random-walk models for 1/ noise. These models are
probably the simplest one can think of as a2 means of get-
ting a better understanding of the purely statistical prop-
erties of the noise. In particular, the appearance of non-
Gaussian equilibrium current fluctuations can be studied
in detail. In Sec. IJ of the present paper we study general
features of the current noise in random-walk models.
The treatment is centered around the concept of a
“dynamical” diffusion constant. In Sec. III the
continuous-time random-walk (CTRW) model for 1/f
noise is briefly reviewed as an illustration of the general
theory. Finally, Sec. IV contains a discussion where the
role of Fermi statistics for the application of random-
walk models is emphasized. It is argued that any model
for 1/f noise based on long trapping times, including the
CTRW model in its multiple trapping realization, is in-
compatible with Fermi statistics and is therefore unrealis-
tic.

I1. EXCESS CURRENT NOISE
IN RANDOM-WALK MODELS

To simplify the discussion we consider just one particle
which performs a random walk in one dimension on a lat-
tice with lattice constant a. No assumption is made
about the underlying dynamics which does not have to be
Markovian. It is assumed that the direction of any single
jump is random; via the fluctuation-dissipation theorem
this ensures a frequency-independent conductivity. If the

10 143
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particle jumps at times 7; we assign to it a dynamical Da? '

diffusion constant D (1) defined by {D(0DI0N) ===p(2{0) (1>0), ®

ol
D(l)=~2—28(1—r,»). (2)
i

D(t) is characterized by
(o)) =2D (8t —1"), 3)
where v is the velocity, or

D(:):fo‘”(u(z‘)uu +7)),d7 . @)

Here, { ), denotes a “restricted ensemble average” by
which is meant an average over all trajectories with the
same D(t), i.e., with the same jump times. The time
average of D (t) is the ordinary diffusion constant D:

. N I 7o
D=(D(!))=T(l)|‘r51m ?o—fo D(n)dt . (5)

The relevance of D(1) to the excess current noise be-
comes clear when the current in an external electric field
is evajuated. In a weak field it is slightly more probable
for the particle to jump to one side than to the other. To

lowest order in E the total jump probability does not .

_change, however, and the particle still jumps at times 7;.
The restricted ensemble average current is thus propor-
tional to the equilibrium D (¢}

(J(t))E',,=%D(1) , ()

where g is the particle charge, and k and T have their
usual meaning. The constant of proportionality follows
from requiring the time average of Eq. (6) to obey the
Nernst-Einstein relation. The measured current noise is
the cosine transform of the current autocorrelation func-
tion. Since the currents at different times within the re-
stricted ensemble are uncorrelated, one has

(T (0)) o= (T () 5, AT1ON)

i ZzE
kT

2
DD (1>0). v}

When averaged over the whole ensemble of possible jump
times this leads to

1
2
ZE L (b)) us>0, ®

IO = | L=

where ( ) on the right-hand side denotes an equilibrium
average. To obtain the total current autocorrelation
function one should add to this expression a white-noise
term proportional to 8(r). This term is not of interest
here. According to Eq. (8) the excess noise measures the
spectrum of dynamical diffusion constant fluctuations in
equilibrium.

The autocorrelation function { D (+)D(0)) has a simpie
physical interpretation. From Eq. (2) it follows immedi-
ately that

where p(¢ | 0) denotes the probability density for a jump
at time ¢ given the particle jumped at 1 =0. Except for a
numerical constant, low-frequency excess noise is thus
the cosine transform of p(r ]0).'S 1/f noise implies
long-time correlations in this probability. The particle or
the medium in which it jumps somehow has a long-term
memory. For an ordinary random walk, on the other
hand, p (¢ | 0) is constant and there is no excess noise.
Generalizing the above results to more than one parti-
cle is straightforward. Assuming the particles are in-
dependent and noninteracting, one just lets 7; denote the
collection of jump times for all the particles. In general-
izing to d dimensions the factor 2 in Eq. (2), etc., should
be replaced by 2d. Equations like (6) and (8) apply un-
changed where J is now, of course, the component of the
current in the direction of the field. No new features ap-.
pear and in the rest of the paper only the one-dimensional
case will be considered. The important thing, which is
independent of the dimension and number of particles, is
that all information about the noise lies in the statistical

‘properties of the collection of jump times 7;. In statistics

a stochastic collection of times is referred to as a “point
process.” The study of point processes is a mature
branch of the theory of stochastic processes.'®™'® Point
processes have been applied in the study of photoelectron
statistics, cosmic-ray showers, kinetic theory, population
growth, telephone traffic, etc. An important class of
point processes is the class of so-called doubly stochastic
Poisson processes. An example is the jump times 7; for a
particle performing a random walk where the jump prob-
ability at time 1, y(¢), is itself a stochastic process. Here
one may define a second kind of time-dependent diffusion
constant D{¢) by

- a2

D(l)=—2-'y(t) . (10)
While D(t) is of course different from D (1), their statisti-
cal properties are identical: For the average over a par-
ticular realization of y{t)} it is easy to see that
(D(2y) -+ DUt,)) =Dt} --- Dl1,). Averaging this
expression over all possible ¥(1)'s leads to

{D(t))---Dl,)y={Dte))-- Diz,)) . an

Thus, our definition of D (1) in Eq. (2) is consistent in the
case where the ordinary diffusion constant really does
fluctuate in time via a time-dependent jump probability.

We now turn to the problem of expressing the current
autocorrelation function in an external field in terms of
equilibrium current fluctuations. Focusing attention on
diffusion-constant fluctuations according to Eq. (8), we
note that the integrated dynamical diffusion constant
counts the number of jumps N in time 1:

N=2 ['Durar . (12)
a-"vo

For the variance of N one has
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4 ' ' ”» ” ’ "
(N, =2 | [1 [ DD n)arar

- [f°'<D(t'))dx’r]

8 t
=-;;fo(:—r)co(r)df, (13)

where Cp(r) is the autocorrelation function for the
dynamical diffusion constant,

Cp(r)=(D(1)D(0))=D? . (14)
Equation (13) leads to

4 2
c,,m:i’;f'—z((uv)’), . 15

The next step is to relate the right-hand side to averages
of the displacement in time f, Ax(#). The quantity
(e 8%y is an average of a product of independent fac-
tors e ¥ and thus

(ek8xtt)y — ( cosMka)), . (16)

From this equation averages of all powers of Ax (?) can
be found. For the first two nonzero averages one finds

2 .
((Ax)zm).—.—}‘i—z( cos™ka)), | 4 co=aX(N), ,
(an

< cosMka)), {4 o

Ax)))=
{(axY(n) "

=a*3(N?),~2(N),).

In particular, the fourth-order cumulant of Ax(r),
(Ax™(0)) = ((Ax (1)) =3((Ax)X1))?, is given by
)
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(Ax'* () =a*[3{ANP),—2({N),]. {18)

Since {N'), is always proportional to ¢, Eq. (18) in con-

junction with Eq. (15) implies'®~%
o= (ax9n) 19
plt)= 24 ;2- 0. (19)

Equation (19) was first derived by Kuzoviev and
Bochkov as a consequence of

(eilt Ax“l)=(exp

—k2['punar ), 20

derived for “slowly fluctuating” D(1).2° Their definition”
of D(t) is not obvious, but Eq. (20) is not valid for any
reasonable definition of D(t) as long as a >0, since it
does not apply even in the case of an ordinary random
walk with a constant D{(1): For D(t)=D E(,. (20) reduces
to In(e* 81"y = _ k2Dt which implies { Ax¥(#))=0. In
reality { Ax'*(1)) « ¢ in this case since cumulants are ad-
ditive and Ax (1) is a sum of independent increments. In-
stead, Eq. (20) must be replaced by

2In costka)] C;’f”“” J/punar ]) 2D

(eik Ax(l))=(exp

which just combines Eqs. (12) and (16). For a —0 Eq.
(21) reduces to Eq. (20). This limit, however, is only per-
missible in certain models. From Eq. (21) it is possible to
derive Eq. (19) directly by expanding the logarithm of the
equation to fourth order in k, but we found it more in-
structive and also useful below to arrive at Eq. (19) via
averages of N and its fluctuations.

Defining as usual the fourth-order cumulant of the ve-

" locity by

Cole) ) oley)0(e3),008)) = ol wle o (a3 ule)) ~ Coley ley)) (oley le,))

—Cute ) (oledu(e)) = (ole ole ) Coley e leg)) 22

Eq. (19) can be rewritten as

o= dr [Tdr o, vir)u(r"),0(0) .

(23)

The right-hand side is the Burnett coefficient."-2 Equation (23) was derived by Kuzovlev and Bochkov? from Eg. (20),
and also by Nieuwenhuizen and Ernst from a different point of view.? The latter authors define a “fluctuating diffusion

coefficient,” D (1,71), by

=12 X ()1
Dit,7)= 3 a'[[x(l) =0} .

24)

They then proceed 10 show that for the Markovian random-walk model under study Cp, ={D(1,7)D(’,7)) =D s ac-

tually a function of t —¢* only which obeys Eq. (23).
Combining Egs. (8), (14), and (23) we finally arrive at

E
o) g={Ns+ i

2
JJa7 [Tar (s 1010 (1500 (25)
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Since cumulants are additive, this equation implies the
excess current noise is proportional to (J )% /V as in ex-
periment (Eq. (1)]. Actually, this follows also directly
from Eq. (8). It was first shown for a random-walk model
by Tunaley.? Equations like qu (25) have been derived
by a number of authors,'*420-222 ypereby greatly clari-
fying and simplifying the subject by reducing the current
noise in an external field to equilibrium current fluctua-
tions. We note here that it is actually possible to express
{J(£)J(0))¢ in terms of equilibrium fwo-point correla-
tion functions. Since :

190 =qa Z 8t ~r)=22p(0), (26)
i
Eq. (8) can be rewritten as

2
B8E 1) 100 >0,

2kT

(J((0)) g =

(27)

where the right-hand side is, as usual, an equilibrium
average. This result is simpler than Eq. (25) and,
perhaps, more aesthetically pleasing. But it is less gen-
eral than Eq. {25) since it explicitly involves the lattice
constant and thus depends on the existence of a lattice.

For the generation of 1/f noise one needs long-time
correlations in the fluctuations of D(z). Actually, noise
that varies approximately as 1/f is obtained only if Cp(t)
is almost constant, typically varying as log(t) to some
negative power. One may imagine two different ways of
generating 1/f noise. The one case is that of “genuine”
mobility fluctuations, i.e., when the random walk is a
doubly stochastic Poisson point process with 1/f noise in
the D(¢) fluctuations of Eq. (10). The other case is when
long-time correlations in D (t) arise because of occasional
long trapping times of the particles. Here one must as-
sume the existence of a broad spectrum of trapping times
exceeding the longest experimental times. This may be
regarded as the case of number fluctuations since a
charge carrier trapped for the whole period of observa-
tion for all practical purposes is nonexistent.

We close this section by showing that only 1/f noise
with strong fluctuations in the number of jumps is ob-
servable. By strong noise we mean noise obeying

((AN?), >>(N), (28

on the relevant time scale. This is the criterion for N
fluctuations much larger than for an ordinary random
walk, where there is equality in Eq. (28) on account of the
Poisson statistics. Both the mobility and the trapping
mechanism may satisfy Eq. (28) which rules out only the
case of very weak mobility fluctuations. To show Eq. (28)
we calculate first the white noise in equilibrium. From
J=ga ¥ ,+6(t —1;) we get immediately

(N),

Swhile..l({")=zqza2 t=0"" (29)

where the number of jumps per unit time, (N}, /¢, is of

course independent of . In a weak external field there is
a slight increase in the white noise which, however, is
insignificant for the present calculation.?*% Since Cp(r)
varies only very siowly one has Sp(w)S4Cp(1) and Eq.
(13)  implies Cp{t)=(a*/4)((AN?)),/t?), where
t=0~'. Combining these results we get for the excess
current noise )

(AN,
‘ i

qakE
kT

Zal

Suc..l(w)sq t=w"". (30}

In linear-response theory gaE /kT << 1 and the criterion
for measurable excess noise reduces to Eq. (28). This con-
dition is independent of the size of the system since both
sides of Eq. (28) are additive.

1. EXAMPLE: EXCESS NOISE IN THE
CONTINUOUS-TIME RANDOM-WALK MODEL

One way or the other 1/f noise arises from long-time
correlations in the diffusion constant fluctuations. This

may occur, for instance, via occasional very long trap-

ping times for the change carriers. The simplest example
of this is the CTRW model of Montroll and Weiss.2®
Here the jump probability at any time is a function only
of the time elapsed since the preceding jump. The
CTRW model was first applied to the 1/f noise problem
by Tunaley? and later by Nelkin and co-workers.?*%
The central quantity in this model is the waiting time dis-
tribution function, ¥(r), which is the probability density
for jumps the time ¢ after the latest jump. In the
language of stochastic point processes, the sequence of
waiting times is a so-called renewal process.'®?’ In this
section we calculate the excess noise from y(t). This was
done by Tunaley? but is repeated here as an illustration
of the general theory of Sec. II and also because the
below derivation is simpler than that of Tunaley.

If the particle jumps at t =0 we let ¢,(1) denote the
probability density for the nth jump hereafter occurring
at time t. Obviously one has

¢n+,(!)=f0'¢"(t—r)¢(r)dr. 31

For the function f (1) defined by

fi= 3 ¢,(0) 32)

LD

Eq. (31) implies
fm_.pm=fo‘fu —rlrdr . 33)

Taking_the Laplace transform of this equation one gets
Fisy=Pts)=Fs)ls), or

Ws)
(s)=—2 (34
Jts 1—3(s) )

The quantity p(z | 0) occurring in Eq. (9) is just /(1) and
thus
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Sexc.D(w) (12 ©
Secl@)= —r—= 2—D4f° f(t)coslt)dr ,

2
=%Rcf(iw)

1

22
=-— |Re———
1-yliw)

D

_11. (35)

This is Tunaley’s result for the excess noise.? It is con-
venient to write ¥(f) as a sum of exponential decays,
W )=(ye~""), where the average is over a distribution
of jumg( rates.?*2* From this $(s)=(y/(y+s)) and

D =1a*(y=")~" which substituted into Eq. (35) yields
- 2a? 1
S‘"(w)=7 Re7-7—>-—l
io -
Y+iw
2
_2a” m<—‘—_)"-m , (36)
Dw rY+iw
i.e.,
-1
Sm(m)=‘“7 >[Im< L )“—m )]
@ Y+iow

A simple example yielding 1/f noise is the case of all
y's equally likely:

1
2Y)=—, Ymin<¥<Yo (38)
Yo

where ¥, << 7o is assumed. One may think of v, as a
phonon frequency and y.;, as corresponding to long
waiting times, e.g., one day or one year. For the whole

range of intermediate frequencies ({y+iw)~')
=7¢ 'In(yo/iw) and .
4 1 2rink 1
~—InAI o~ N 9
Saelol G ok Img e (39)

where A=Y¢/Y min- We thus find S (0) 0™, where

2

T In(ygle) “o)

a=1

At ordinary laboratory frequencies one has @ ~0.9. This
model may be termed the “standard model of 1/f noise”
since it is probably the simplest exact soluble random-
walk model giving | /f excess noise. Of course 1/f noise
is built into the model via Eq. {(38). This is equivalent to a
waiting time distribution function ¥(f)ect=? (Ref. 28)

gaE

(=D JIO= (D= | T2
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above ¥, which implies a logarithmically divergent
average waiting time. The excess noise of the standard
model is identical in functional form to the expression de-
rived by Kuzovlev and Bochkov for a scale-invariant ran-
dom walk.'%® Their derivation is based on Eq. 20)
which has been criticized above. The derivation is not
quite transparent; also, the factor InA in Eq. (39) is absent
in their calculation of the excess noise.

1V. DISCUSSION

Random-walk models provide a simple framework for
understanding the fluctuation-dissipation theorem. It is
therefore an obvious idea also to use these models for get-
ting a better understanding of low-frequency resistance
fluctuations. Various random-walk models have been
studied with this purpose.'®~2628=30 1 this paper a
general framework for discussing excess noise in
random-walk models has been proposed. Following pre-
vious work, in Sec. IT we focused on the concept of a fluc-
tuating diffusion constant, the dynamical diffusion con-
stant D{r). While the exact definition of D{r) hitherto
has not been clear, we here use a definition of D(¢) which
is simpler than previous implicit definitions. For all prac-
tical purposes, however, it is identical to these since the
expressions for (D(1)D(0)) in Egs. (19) and (23) are
identical to those given by Kuzovlev and Bochkov,!®2
and Machta, Nelkin, Nieuwenhuizen, and Ernst."*?* The
relevance of D(t) to excess current noise is shown by Eq.
(8) according to which the current fluctuations in an
external field directly probes the equilibrium
(D(1)D(0)). An important general property of
random-walk models is the fact that the noise is propor-
tional to (/)% and inversely proportional to the volume
or any other extensive property like the number of charge
carriers. This follows immediately from Eq. (8) since
D (1) and autocorrelation functions are additive.

As an application of the general formalism, note that
Eq. (6) is valid also in a time-dependent external field.
From this it is straightforward to show that in a sinusodi-
al field one finds the so-called 1/Af noise’'~3* which is
directly proportional to the magnitude of the 1// noise
in a constant field. A weakness of the formalism of Sec.
11 should be mentioned, namely, that it does not easily al-
low for an exact calculation of the white noise in an
external field. Though insignificant in the linear regime,
there is an interesting small increase in the white noise
when the field is turned on.222

The dynamical diffusion constant is proportional to the
absolute value of the current. This leads to a simple ex-
pression for the current fluctuations in an external field in
terms of equilibrium fluctuations [Eq. (27)], a result
which can be rewritten in terms of autocorrelation func-
tions as

2
(] =T DT =) >0, (@1
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Analogous to the frequency-dependent conductivity
which probes the equilibrium velocity autocorrelation
function, the excess-noise spectrum thus probes the equi-
librium speed autocorrelation function. But it should be
remembered that a frequency-independent conductivity
must be assumed to derive Eq. {41), and also that the ran-
dom walk takes place on a lattice. Equation {41) cannot
be expected to apply more generally. For this to be the
case, one should be able to define a characteristic length
to play the role of the lattice constant a in Eq. (41). The
only possibility for this seems to be to let a be the length
- for which gaE ~kT at fields marking the onset of non-
linearities. "Since, however, nonlinearities involve new
physics which is in general uncorrclated to linear-
response phenomena, there is little hope that this ap-
proach can be generally valid. Thus, Eq. {(4]1) must be
limited to lattice models.
. The unified formalism for excess current noise in
random-walk models developed above provides a con-
venient starting point for a discussion of general proper-
ties of 1/f noise. In particular, the point process ap-
proach makes it possible to throw some light on the old
controversy as to whether 1/f noise is due to mobility or
to number fluctuations.*® We end this paper by giving a
general argument to the effect that Fermi statistics rules
out the number-fluctuation mechanism. Mobility fluctua-
tions correspond to noise in the effective charge-carrier
Hamiltonian, whereas number fluctuations due to oc-
casional deep trapping is noise generated by the Hamil-
tonian itself. In the language of point processes, the stan-
dard example of mobility fluctuations is the case when
the jump times 7; constitute a doubly stochastic Poisson
process, while the standard example of trapping noise is
the case when 7, is a renewal process, i.e., when we have
a continuous-time random-walk. This case is non-
Markovian and therefore in a sense unphysical, admitted-
ly, but the CTRW model is equivalent to a Markovian
multistate trapping model where the noise then is indeed
generated by the Hamiltonian.2®
In Sec. III the excess noise in the CTRW model was
calculated. A simple example termed the standard model
was worked out in detail. This model is one out of the
class of CTRW models discussed by Nelkin and Har-
rison.® In the multistate trapping realization of the
CTRW, the standard model corresponds to a density of
cnergies, €, given by

ple) = exple/kT) . (42)

Though this implies only very few deep trapping states,
in the course of time all energies are equally likely to be
occupied because of the Boltzmann factor to be multi-
plied with Eq. (42) to get the probability. Thus, the stan-
dard model is just another example of the old idea of 1/f
noise arising when all activation energies are equally like-
ly. At the same time the standard model satisfies the re-
quirement for 1/f noise given by Nieuwenhuizen and
Ernst, namely, an exponential density of states.?>2

A temperature-dependent density of states as in Eq.
(42) arises in a system of fermions. Here a single particle
senses, in a mean-field approximation, a density of avail-
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able states below the Fermi energy, p.q(¢), which is given
by

-t /KT

pgg(e):n(e)e‘ (e<ep), (43)

where n(g) is the ordinary density of states. For a con-
stant n(e) Eq. (42) is obtained. Equation (43) implies 1 /f
noise in the motion of the single particles, a point we will
return to below. While interesting on its own, this has
nothing to do with the observed 1/f resistance fluctua-
tions, however. This is because the mean-field approxi-
mation does not apply due to strong interparticle correla-
tions: Below the Fermi level the particle number fluctua-
tions (in one energy level) are exponentially small,
((an?)=(n){1-n) <<(n) (Ref. 34), while for in-
dependent particles one would have {(8n)?)={n) be-
cause of the Poisson statistics, i.e., much larger fluctua-
tions.

We now extend the above and argue that Fermi statis-
tics actually rules out any 1/ noise mode! based on the
trapping mechanism. Basically, one may imagine two
different ways of producing long trapping times. The first
case involves hopping between localized states of similar
energy separated by various long tunneling distances or
large energy barriers. In this case, inevitably, there is a
strong frequency dependence of the conductivity and
models of this kind cannot explain the usual case of 1/f
fluctuations of a frequency-independent conductivity.
(Note that McWhorter's model based on tunneling to sur-
face states® is not ruled out by this argument which is
only concerned with bulk and isotropic 1/f noise.) The
second way of having long trapping times is that of trap-
ping into deep energies. This only works for independent
particles with the peculiar density-of-states of Eq. (42).
For fermions, the density-of-states above the Fermi ener-
gy is not temperature dependent, and below the Fermi
level, where Eq. (43) does apply in a mean-field sense, the
particles are not independent as discussed already.

To summarize the effect of Fermi statistics, it has been
argued that for Fermi systems 1// resistance fluctuations
cannot be due to occasional deep trapping of the charge
carriers. The number-fluctuation mechanism thus can be
ruled out on general grounds, and, e.g., the CTRW model
in the multiple trapping realization is not realistic. Thus,
the noise must be caused by mobility fluctuations. The
central problem, which until today remains largely un-
solved, is to identify the origin of the mobility fluctua-
tions.

While Fermi statistics rules out number fluctuations, it
implies on the other hand a peculiar kind of *single-
particle” 1/f noise: The motion of a single localized fer-
mion exhibits 1/f noise as a consequence of Eq. (43). In
principle this is observable, since, for a system of fer-
mions described by a master equation (an implicit as-
sumption. in the argument), there are no quantum coher-
ence effects and, in effect, the particles are classical and
distinguishable. Similarly, atoms or ions diffusing in a
disordered medium with a distribution of available poten-
tial minima also exhibit single-particle 1/f noise, since
they behave as fermions because of their strong repulsion.
This should be observable by monitoring the motion of
tracer atoms or ions in time.
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Except for the above arguments ruling out number
fluctuations, the cause of 1/f noise has not been dis-
cussed in the present paper. We feel there is no simple
and generally valid mechanism explaining 1/f noise.
Rather, 1/f noise may arise from a number of different
mechanisms which probably, one way or the other, in-
volve lattice defects overcoming or tunneling through
barriers. Following this line of thought, 1 /f noise and its
dependence on temperature, etc., provide important in-
formation about the solid under study. Note that while
Sexcl@) probes only {(D(1)D(0)) there is an enormous
amount of information hidden in the higher-order corre-
lations of D{t). This is illustrated by the fact that the to-
tal amount of information in the noise is contained in a

function of two variables
Plu,ty=(e""), , (44)

while S, (@) is only a function of one variable. The fact
that there is more to the noise than just the spectrum was
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emphasized already ten years ago by Voss in a discussion
of linearity of the 1/f noise mechanism.’® The higher-
order correlations of J () and thereby D (¢) are accessible
today by digital techniques- and their determination-
should provide a means of distinguishing between various
models for 1/f noise. Other promising lines of research
is the measurement of 1/f noise anisotropy,'' and the
problem of stationarity of the noise and the dependence
of the noise on the annealing state (in any system with
long relaxation times the possibility of “glass transitions"
should not be forgotten); 1/f noise is still mainly an ex-
perimental field and it seems that a lot of work remains to
be done here before reliable theories can be proposed.
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An approximate nonlinear-response theory is derived by maximizing the information theoretic
entropy in the space of fluctuations J(t) of the degree of freedom of interest, subject to constant-
energy dissipation in the external field. The resulting formalism expresses all cumulant averages of
J (1) in an external field in terms of equilibrium cumulants.

Linear-response theory'™” is fundamental to much

present-day work in solid-state physics, chemical physics,
plasma physics, etc. Its usefulness rests in the fact that
the response to an external field to first order is deter-
mined by an equilibrium autocorrelation function. The
extension of linear-response theory to include higher-
order terms had been discussed already in the 1950s.%8
In contrast to the linear case, the higher-order terms can-
not be expressed in terms of equilibrium correlation func-
tions of the degree of freedom under consideration.” The
exact nonlinear-response theory is complex and has
found little application. There is also the question of the
convergence of the formal expansion in the external field.
Strong fields may induce, e.g., phase transitions or self-
organization, information about which one does not ex-
pect to be hidden in the equilibrium fluctuations. Despite
these reservations, one may ask whether a theory that
predicts the nonlinear response from equilibrium fluctua-
tions does exist, at least as a reasonable approximation
applicable not too far from equilibrium. In an attempt to
answer this question, this paper discusses an ansatz for
nonlinear-response theory which generalizes a little-
known theory due to Stratonovich." The ansatz is de-
rived from the maximum-entropy principle. Some simple
examples are given and the validity of the ansatz is dis-
cussed. Finally, it is argued that the ansatz represents
the simplest way a system may become nonlinear.

The degree of freedom of interest is denoted by (; it
may be microscopic or macroscopic. The underlying dy-
namics is assumed to be classical and Q is assumed to be
invariant under time reversal. Q couples to an external
field £ via a term —EQ in the Hamiltonian. Only the
case of a time-independent external field will be con-
sidered. It is convenient to discuss response and fluctua-
tions in terms of J(t)=Q(t). In general, one is interested
in not only the average (J ) but also in the autocorrela-
tion function and perhaps higher-order averages of J(t)
in the external field. To calculate these quantities one
needs to know the probability of any J(¢) fluctuation in
the external field Pc[J(1)]. As mentioned above, even a
complete knowledge of the equilibrium fluctuations
Py[J (1)) in general is not enough to determine P:{J(1)].
The task of finding Pz[J ()] may be viewed as a missing-
information problem. In an external field there is a cer-
tain rate of energy dissipation. Suppose no more than
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this and Py[J(#)] are known. The maximum-entropy for-
malism is a general method that, based on the insufficient
information available, gives a least-biased estimate of
probabilities.!!! In applications to a continuous problem
a reference measure is needed. In the present case, in or-
der to have a smooth transition to the zero-field case this
measure must be Py[J(¢t)]. The maximum-entropy re-
quirement leads to'!-!?

PE[J(t)]=N"P0[J(t)]exp(—AE [ dex] , W

where N is a normalization constant and A=A(E) is a La-
grangian multiplier. Normally, one would now proceed
to determine A from the constraint, i.e., the energy dissi-
pation rate. In this case, however, A is determined by
fundamental requirements of statistical mechanics. As
shown by Bochkov and Kuzovlev,'>!* the time-reversal
invariance of the microscopic equations of motion implies

Pe[J (1)}
Pe[—J(—0n]

=exp

BE [° Jwat|, @

where [ is the inverse temperature. Equation (2) is de-
rived by assuming thermal equilibrium at 1 = — e fol-
lowed by a decoupling of the heat bath and evolution ac-
cording to the canonical equations of motion for the sys-
tem interacting with the external field. This assumption
is identical to that used by Kubo in deriving linear-
response theory.® Equation (2) is also valid for any sys-
tem that is described by a master equation; in this case,
Eq. (2) expresses the principle of detailed balance. Since
Po[J(1)] is time-reversal invariant, Egs. (1) and (2) imply
A=—B/2forall E, ie.,

Pl (D]=N""Py[J(1)]exp EE I= swar 3)

Equation (3) allows one to calculate all higher-order
cumulant averages of J in the external field, in terms of
equilibrium cumulants. The cumulants are defined by the
generating functional

2207
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D[u(t);E]=ln(exp [f_“’ w( ()T

fuo
1
ln

T,

Xu(t)) - ulty) s @

and Eq. (3) implies
Dlu(t)E1=D[u(t)+(B/2)E;0]—D[(B/2)E;0}. (5)

From Egq. (5) the nonequilibrium cumulants may be found
as derivatives with respect to u (¢) at u =0.
For the average of J one finds from Eq. (5)

1 f" dt,---dt,

X(J(0)T(t)),. ..

{(J)g=

(6)

The first-order term is that predicted by linear-response
theory. Note that, for a macroscopic Q, Eq. (6) is con-
sistent also in the thermodynamic limit since cumulants
are additive for independently fluctuating quantities. An
identity for the (n+1)th cumulant average of
AQ(=0Q(n)—Q(0),

lim t—l(AQ("+I)(l)>o
{—

=7 dt o de, (0L, T (1),
allows one to rewrite Eq. (6) as
(I)g=lim 1~ FIn(euaetny, . )
{~ o du

u=(8/2)E

As a simple example of Eq. (7), consider a particle per-
forming a random walk in one dimension on a lattice
with lattice constant a. Q is the coordinate and J the ve-

J

(J(O),J(t))5=(J(O),J(t))°+%£f°°

AL

An example is the case when J is the electric current.
For a system with frequency-independent conductivity
the zeroth-order term is a 8 function, giving rise to white
noise. In most cases the next term is zero by symmetry
and the so-called excess current noise is given by the
second-order term. Excess current noise is ubiquitous
and usually has a 1/f spectrum.”~* A number of
random-walk models have been studied to gain a better
underosta’r;dmg of the phenomenon. In these models one
finds®

N ATIR) PO
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locity of the particle. If there are N jumps in time ¢, it is
easy to see that (e“22(") =cosh™ua). Since N is Pois-
son‘distributed around a mean N =T, one has

NN
(eudQny = =¥ 2 TCOShN(ua)

N=0
=exp{N{cosh(ua)—1}} , 8
which implies
{v)g=Tasinh[(B/2)Ea] . (9)

This is the correct result if the random walk is realized as
the low-temperature limit of a particle in a symmetric
periodic potential obeying a Langevin equation; the well-
known Eq. (9) follows from the fact that the field lowers
the barrier for jumps in the direction of E and increases
the barrier for jumps opposite E. As another example of
Eq. (7), consider the case when @ is the x coordinate of
an atom in a liquid. Then Eq. (7) expresses the velocity of
the atom in a field in the x direction acting only on the
atom, in terms of the equilibrium incoherent intermediate
scattering function F,(k,t):

(v)E=lim(it)_'-%lnF,(k,t) . (10)
t—= k=BENi

For simple Gaussian diffusion, F,(k,t)=exp(—Dk?."

In this case, the response is exactly linear and Eq. (10}

reduces to the Nernst-Einstein relation between mobility

and diffusion constant. A more realistic fit to experiment

is the prediction of the jump-diffusion model'>1®

F,(k,t)=exp[ —Dk% /(1+Dk’r,)] .

From this, Eq. (10) predicts the onset of nonlinearity at
fields for which E!f=1, where the length | =/ D1, in
fits to data is of order-1 interatomic spacing.

For the external field autocorrelation function, Eq. (5)

_ implies
dr, {J(0),J{1),J ()

2
BTE] _l'_'” dtdt, (J(0),J (D, J(£),J 1))+ -+ . (1

—

(J0),J (1)) g
P [ dn do)d
=(BE) jo dt, fo 1 (O, T (1), (15)) g+ -+ -
(t>0), (12

which is equivalent to Eq. {11) because in random-walk
models {J(£,),J(£;),J(1;),J(¢;}) is nonzero only if
ty=t, and {3=1, (or permutations thereof) where ¢, ~1,
means that ¢, —1, is a microscopic time.?0-3!
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The similarity between the right-hand sides of Eqgs. (6)
and (11) suggests that a relation exists between (J )z and
{J{0),J{1))z. Asa matter of fact, it is easy to show that
Eqgs. (6) and (11)imply

d =
E(J)E=%f_m(l(0),.l(t))£dt. (13)
This result is not approximate but a special case of an ex-
act theorem due to Peterson.?*

Since higher than second-order cumulants are zero for
a Gaussian system, the maximum-entropy ansatz implies
that the response is exactly linear whenever the equilibri-
um J fluctuations are Gaussian. This is analogous to
what happens in equilibrium statistical mechanics. A
magnetic system, for instance, has a field-independent
susceptibility if the free energy is quadratic in the magne-
tization. Note that non-Gaussian fluctuations survive in
the thermodynamic limit, the central limit theorem not-
withstanding. A simple example of this in statistical
mechanics is energy fluctuations in the canonical ensem-
ble. If the energy fluctuations are strictly Gaussian, the
average energy is linear in B so the specific heat varies as
T~ Whenever this is not the case, the energy fluctua-
tions are non-Gaussian.

The maximum-entropy formalism has a long history of
applications to the problem of estimating the density ma-
trix for a nonequilibrium system. This leads to a general-

BRIEF REPORTS
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ization of equilibrium statistical mechanics, which takes
into account the limited amount of information available
about the system.2~* Some applications of the formal-
ism characterize the nonequilibrium system by its energy
dissipation rate.’®>! As shown above, when applied to
the external-field-induced “nonequilibrium” in the J(t)
space, this idea leads to definite predictions of the non-
linear response in terms of equilibrium fluctuations. An
equivalent of Eq. (5) was discussed briefly by Bochkov
and Kuzovlev,!* building on earlier work by Stratono-
vich.'® Only the case u (t)=const was considered and
the discussion was limited to Markovian systems. The
Stratonovich theory is based on the assumption that, for
jumps between two minima, the barrier to overcome is
placed halfway between the two minima (in the direction
of Q).

The maximum-entropy property of the ansatz shows
that it is the most reasonable, given only a knowledge of
the equilibrium fluctuations. This does not guarantee
that the ansatz is correct, however. To look into this
question, we first discuss the consequences of a phenome-
nological Langevin equation for Q and then an exact re-
sult.

Suppose Q obeys a  Langevin  equation
Q=CF(Q)+£(t) where F(Q)=Fy(Q)+E is the general-
ized force and £(1) is a Gaussian white-noise term. Then
the path probability is given by*%3

P[Q()]=N""exp [—B/MC)I_":° [Q<r>—CF(Q<'>)lzd'] .

or

Pe{Q()]=N"'P,[Q (1) ]exp %E J7 Jwdt fexp

The transformation from Q(#) to (1) is linear. There-
fore, Eq. (14) implies that the maximum-entropy ansatz
leads to correct results whenever the last term is unim-
portant. As an example, consider again a particle in one
dimension in a symmetric periodic potential at low tem-
perature. Because of the Py[Q(t})] factor, the important
paths fluctuate for some time around a potential-energy
minimum before suddenly “jumping” to a new minimum.
For these paths, the last term of Eq. (14) is almost in-
dependent of the number of minima traversed and may
be ignored for the calculation of (AQ (1)) for large t.
Thus, the maximum-entropy ansatz leads to correct re-
sults in this case, as already shown in Eq. (9).

A result due to Furukawa sheds more light on the
maximum-entropy ansatz. He showed that, for slowly
fluctuating J{1), the exact microscopic equation of
motion implies**

PelI0]=N"'Pol 0exp | 2E [ = s(nae+0(EY)| .

{13

B o«
-SEC [T Flowd|.

(14)

Equation (15) suggests that there are two different ways a
system may become nonlinear: either (i) as an interplay
between non-Gaussian equilibrium J fluctuations and the
first-order term, or (ii) as a result of the higher-order
terms becoming important. The first case is when the
maximum-entropy ansatz gives correct results; this may
be referred to as a “simple” nonlinearity since it resuits
from the very same term in Eq. (15) that gives rise to the
linear response. Upon increasing the external field, a sys-
tem may pass from linear through simple nonlinear
response to finally the “complex” nonlinear response due
to the higher-order terms, or it may go directly from
linear to complex nonlinear response. The maximum-
entropy ansatz is never correct for the latter systems, and
in the former case it should only be trusted at not-too-
large external fields.

To summarize, it has been shown that the maximum-
entropy formalism -in conjunction with statistical
mechanics leads to unique predictions for the external-
field cumulant averages of J(1) in terms of equilibrium
averages. The ansatz Eq. (3) may be justified in other
ways. It corresponds to keeping only the first-order term

Il
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in Eq. (15) which is exact for slowly fluctuating J(1).
This term is responsible for the linear response, so the an-
satz is clearly the simplest way to extrapolate linear-
response theory into the nonlinear regime. The extrapo-
lation has the property that the response is exactly linear
if the equilibrium J fluctuations are Gaussian. If Q obeys
a Langevin equation, the ansatz is correct whenever the
last term of Eq. (14) is unimportant; for slowly fluctuating
J(t), the requirement of consistency between Eqs. (14)
and (15) implies that the extra terms of both equations
must be insignificant and the maximum-entropy ansatz
must be correct.

The maximum-entropy ansatz solves a conceptual
problem, but open questions remain regarding the validi-
ty and the practical value of the ansatz. One obvious
problem is that the ansatz predicts a universal form of
the nonlinear response while one expects the response to
depend on the way heat generated by the external field is
removed. However, because the temperature enters into
Eq. (5), the ansatz only makes sense in situations where
the temperature is almost constant throughout the sam-
ple. In many cases, this requirement may be satisfied for
a given external field by working with a sufficiently small
sample; in this limit the problem of heating often be-
comes insignificant.

Equation (15) implies that the ansatz may be applied
only at not-too-large external fields. Also, Eq. (15) im-
plies that a system may become nonlinear either by first

BRIEF REPORTS 40

exhibiting the simple nonlinearity predicted by the ansatz
before becoming complex nonlinear, or by going directly
from the linear to the complex nonlinear regime. In this
connection it should be noted that all formulas given
above may be generalized to several degrees of freedom.
One may speculate that, by including the ‘“mode-
coupling” terms to other relevant degrees of freedom
(e.g., the energy density), a complex nonlinearity may be
converted to a simple nonlinearity, thus extending the va-
lidity of the ansatz. Even when the maximum-entropy
ansatz is valid, the practical value of it is not clear at
present. It is possible that the calculation of the equilib-
rium higher-order cumulant averages requires at least as
much effort as a direct calculation of the nonlinear
response. Certainly, this is the case for the previously
discussed simple random walk in one dimension. On the
other hand, Eq. (12) has provided insight into the prob-
lem of 1/f noise in conductors. And, for instance, Eq.
(10} gives explicit predictions for the response of a single
atom to an external force, based on a knowledge of the
equilibrium intermediate incoherent scattering function,
a quantity which has been studied extensively.!®
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A “zero-parameter” constitutive relation for simple shear viscoelasticity

J.C. Dyre

IMFUFA, Roskilde Universitetscenter, Denmark

Abstract: Based on the Cox-Merz rule and Eyring’s expression for the nonlinear
shear viscosity, a Wagner-type constitutive relation with no nontrivial adjustable
parameters is proposed for simple shear viscoelasticity. The predictions for a
number of non-steady shear flows are worked out analytically. It is shown that
most features of shear viscoelasticity are reproduced by the model.

Key words: Shear flow; shear thinning; viscoelasticity; Cox-Merz rule

1. Introduction

After several years of research a number of useful
constitutive relations are now available [1]. In order
to reproduce experiments accurately these relations all
contain a number of fitting parameters. In this paper
the following question is asked: What is the simplest
possible constitutive relation which still reproduces
important features of viscoelasticity? To limit the
discussion, only simple shear viscoelasticity is con-
sidered, and normal stresses are ignored all together.
Starting from the Cox-Merz rule, a Wagner-type con-
stitutive relation with no nontrivial adjustable param-
eters is arrived at. The nonlinear steady state shear
viscosity is, by construction, close to that predicted by
Eyring’s phenomenological theory of liquid flow [2].
Various non-steady shear flows are then considered
and worked out analytically. It is shown that the con-
stitutive relation reproduces most qualitative features
of shear viscoelasticity, with the notable exception of
the overshoot usually observed in the shear stress
growth upon inception of a steady shear flow.

2. The model
The well-known Cox-Merz rule [3] states that
“y *
nw) = lng@l|,_, O

where #(y) is the nonlinear shear viscosity as function
of shear rate and 7§ (w) is the frequency-dependent

viscosity in the linear response regime. The Cox-Merz
rule is a useful empiricism obeyed by many polymeric
liquids. The quantity 73 (w) is obtained [1] from the
equation

n§(w)=§ d'G@e ", @
0

where G(t') is the shear relaxation modulus. By
definition, G(¢') determines the stress 7 in the linear
limit from the shear rate history by means of

()= § d'G@yy(e~1t') . 3)
0

From Eqgs. (1) and (2) one expects the Cox-Merz rule
to be satisfied if

n)=§ drG@e  (>0). @
0

A straightforward generalization of Eq. (3) to include
Eq. (4) for the stationary case is the following con-
stitutive relation

()= GSO darG(tyy(@—t')
0

-exp {— f, W(l")idt"} . %)

=1
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Equation (5) is similar to Wagner’s constitutive rela-
tion 1, 4]. The difference is that, in the “linear” part

of the relation, y in Wagner’s model is here replaced .

by . Also, the “damping function” is here
exp{—{i_,|7|} instead of Wagner’s exp(—{['_,7]}.
The present choice of damping function is suggested
because this damping function sums over all shear
displacement taking place between time 7—¢' and ¢,
independent of the direction of the displacement.

Next, a specific form of G(¢') is chosen, namely
G(t')=E;(t') where E (t') is the exponential in-
tegral [5]

Ey=§ &

¢ u

du . ) 6)

For convenience we here and henceforth work with
dimensionless time, stress, and viscosity, the latter
quantity normalized so that § (w = 0) = 1. The final
constitutive relation is

()= [ drE,(t")y-1)
0

{ .
“exp {— § |y'(r")|dr"} . 0]
2

-t

The use of E|(t') as the relaxation modulus is
motivated by the fact that this choice leads to a
nonlinear viscosity which is close to that predicted by
Eyring’s phenomenological theory of liquid flow [2]
which fits many experiments:

_ sinh~! ()

n() @®

To see this, note that the Laplace transform of E, is

(5]

Es)= '1‘—1:—” . ©

so the nonlinear viscosity is given by

=1n(l+}3)

n{») (10)

From the identity sinh™'(x) = In(x+ V1 +x?) it fol-
lows that Eyring’s nonlinear shear viscosity for large
y is close to that predicted in Eq. (10). This is il-
lustrated in Fig. 1. Note that the present model com-

_ OFew caveay
= * o dv
> &
£ e
s x +o 4
per} x?
x a
M
x * s
KIS v
x4
x + v
.
3
v
* A
2F %
L s . s
-1 0 1 2

Log(x}
Fig. 1. Log-log plot of various quantities characterizing the
model. In this figure, and throughout, dimensionless time,
stress, and viscosity are used, the latter quantity normalized
so that 5 (w = 0) = 1. The figure shows: (1) The predicted
nonlinear viscosity as function of x =y (@) [Eq. (10)], (2)
Eyring’s nonlinear viscosity as function of x =y (A) [Eq.
@1, () |78 =x)| (V) [Eq. (11)], and (4) the real (+)
and the imaginary (x) part of 5§ (w =x) [Eq. (12)]. A
comparison of the ® and A points shows that Eyring’s
viscosity, which is known to give a good fit to many ex-
periments, is reproduced reasonably well by the model.
Comparing the ® and the ¥V points shows that the Cox-
Merz rule is obeyed, though not quite accurately in the tran-
sition region. The real and imaginary parts of nJ () looks
much like in experiment

pared to Eyring’s has a less sharp transition to
nonlinear behavior. Figure 1 also shows that the Cox-
Merz rule, as expected, is obeyed approximately by
the constitutive relation. This observation is based on
the fact that the frequency-dependent linear viscosity
is given by

n§(@)=§ dr'E()e"" =
0

In(1+iw) n

which implies for the real part and for the negative
imaginary part

n' (w) = Arctan(w )/ w
n"w)=hml+o0)/w .

We now proceed to calculate the time-dependent
nonlinear response in various situations (following
Chapter 3.4 in [1]). Consider first the stress growth
upon inception of a steady shear flow, i.e., the case
when the shear rate is given by

. 0, <0
() = {
(Yo, t>0.

(12)

13)
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= of - Then Eq. (7) implies for the stress t7:
= ® H ol
Ed b TT() =7o | dt'E (t")e WD 18)
- 0] t
-1 ) Equations (10), (15), and (18) imply
. Yol o~ g In(l+y
n* (90 +e 1y (t,vo)=¥°—) , a9
Yo
-2
3 1 (‘, 7 where n ~ (1,75) =t (t)/7,. By means of Eq. (16) we
Log(h thus find

Fig. 2. Stress growth upon inception of a steady shear flow
with shear rate y,. The quantity n* (¢, 5,), given by Eq.
(16), is plotted as a function of time for: (a) y, = 0.1 (re-
flecting the linear limit), (b) ¥, =3, (¢) o= 10, and (d)
¥p = 30. Like in experiment, n*(¢,,) follows the linear
n* (¢) for short times while it stabilizes for large ¢ at the
nonlinear viscosity, a stabilization which takes place sooner
the larger is y,. The overshoot of 5 * {, %,) often seen in ex-
periment is not reproduced by the model

In this case Eq. (7) implies for the stress 7+

1

(@) =y | dr'E(t)e "

(14)
0
or, for the quantity ™ (¢,%,) =77 (¢)/7g
t
nt () =J di'E\(t)e " . (15)
)

After a partial integration Eq. (15) reduces to

7t (%) =
(B [(1+90) 1= Ey()e ™ +In (1 + 7)1/ ¥y , (16)

where use has been made of the fact that £, () varies
as —In(¢) fort—0. In Fig. 2 n* (¢,7,) is plotted in a
logarithmic plot for different values of y,. The figure
shows that n* is always monotonously increasing.
This is not quite like in experiment where there is
usually a characteristic “overshoot” of #* as func-
tion of time before the steady state value is reached
[11.

Consider now siress relaxation after cessation of a
steady shear flow, i.e., when

. - ?0 ’
y) = {0 ,

<0

7
>0 . 4(1)

17t v0) = E\ ()= Ey[(1 +Fo)t1e7V 3 . (20)

Figure 3 shows ™ for various values of p,. As in ex-
periment, one finds that 5~ (2, 7,) is 2 monotonously
decreasing function of time for all y,, and that n~
reaches zero faster the larger is y,.

We now turn to the calculation of stress relaxation
after a sudden shearing displacement y,. The shear
rate is given by y(z) = y,(¢). Substituted into Eq.
(7), this gives

) =(1-e"E() , @n

which is easily shown by rewriting Eq. (7) as

t(t)= | dt'E,(t") [—%} el punar 22)
[}

- 10
R
£
.:,:
=
o5 {a)
b)
{c}
we '
05 10 +

Fig. 3. Stress relaxation after cessation of a steady shear
flow with shear rate y,. The figure shows the quantity
1~ (t,99)/n{¥,) as a function of time, where 5~ is given by
Eq. (20), for: (a) 5= 0.1 (reflecting the linear limit), (b)
%=3, and (c) ¥,=30. As in experiment, 7~ (%)
decreases to zero as £ — oo faster the larger is ¥,
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which is valid whenever y=0. For the relaxation
modulus G(t,yp) = t(¢)/¥,, one thus finds

1—e” 7

G(t,v9) = E (1) 23

Yo

For y;,— 0, G(t,¥,) reduces to the linear shear relaxa-
tion modulus E,(¢). Equation (23) shows that
G(t, yo) factorizes into a function of time multiplied
by a function of y,, as expected for a Wagner type
model [1, 4].

Next we consider the calculation of the nonlinear
creep compliance J(z,1,), defined as y(t)/7,, where
y(t) is the total shear displacement in time ¢ when a
constant stress 7, is applied at 7 = 0. The calculation
of J from a constitutive relation is usually com-
plicated by the fact that y(¢) is only given indirectly.
For the present constitutive relation, however, y(¢)
may be found analytically in the following way. First,
Eq. (7) is rewritten for the case under consideration as

t
te’® = drE@)y-1)e =" (1>0) .
0 4)

Equation (24) is linear in the variable C(t)=
exp [y(1):

t

,C(t)y={ dr'E, (") Ct-1") . (25)
0
This equation is now Laplace transformed into
1,C(s) = E,() C(s) (26)
or
Cisy=—2 @7
) In(t+s5)~17, )

Here, use has been made of Eq. (9) and the identity
C(s) =sC(s)-C(0) =sC(s)-1. C(s) has a branch
cut on the negative real axis froms= -1 tos= — o
and a pole at s = y,, where

Yo = e 0—1 (28)

is the steady state shear rate [Eq. (10)]. The Laplace
inversion of Eq. (27) is performed by deforming the
integration contour to run from - oo slightly below
the negative real axis, rounding the pole at s = y,,
and returning to — o above the negative real axis.

After standard manipulations one thus finds
C(t) =1y (1 +pp)e™

1

+79 | due™ ————
°§ In(u=-1)—tP+7x°

29
or finally, by integration with respect to time,
/6% = g g H")"o ' =1)
Yo
o T 1
t1o | dulZ — . (0)
\ u In-1)=-1)°+n
In the linear limit Eq. (30) reduces to
- —p —Ht 1
J=t+] du i-e 3 s .
\ u In*(u-1)+n~
' (30

The creep complicance J{(¢,1,) of Eq. (30) is plotted
in Fig. 4 in a log-log plot for different values of ¥,.

As a final example of the use of Eq. (7) consider the
constrained recoil after a steady shear flow is inter-
rupted at ¢ = 0 by suddenly removing the shear stress.
We wish to calculate the so-called recoverable shear
Y- Writing

. }.'0 » t<0
()=
7o {—f(t),

32
>0, 62

Log(J)

{a)

b
()(:)

Yogih

Fig. 4. Creep compliance J = y(1)/1,, where J is given by
Eq. (30), plotted as function of time for: (a) ¥, = 1000, (b)
Yo = 100, (c) y9 = 10, and (d) y, = 1, where ¥, is related 10
7, by Eq. (28)

3 7 A
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where f(¢)>0, Eq. (7) impiies for t>0

t ¢ I
0=~ drE () f(t-r)e -l

0
+I dt'El(tl)};oe-Vo(l'-l)-j:,f(l")dl" 33)
!
or
4 -t " .
§ dr'E, @) fa—1)elo Junat
0
= Joe™ § dr'Ey(t'ye™ "o . (34)
, ,

t
Defining F(¢) = exp (S f(t)ydt ”), Eq. (34) becomes
0

f dt'E,\(t"YF(t—1")
0

= yoe?' | dt'E (t")e " | (35)
t
The Laplace transform of Eq. (35) is
E\(5)IsF(s)-1] = % [E\(s) - E, (o)) (36)
o—
or
F)=+ |i1+-—-—. Yo £:65)—Eq (o) (7°)] . 67
$ Yo—s  Ei(s)

The recoverable shear is determined from e’= =
lim F(¢). This limit is given by the residue of the

t= >
pole at s =0 of Eq. (37), and one finds
Yoo = In 2= E ()], or

Yo =10 2-n() . (38
In the two limits one has
T %, Vo<l
Vo =} 2 39
{ln 2 N }.'09 I. ( )

Y« (¥o) is monotonously increasing which is also the
case in experiment. Also like in experiment, Yo
stabilizes on a recoverable shear of order one at high

Yo-

3. Discussion

In this paper it has been argued that a simple con-
stitutive relation exists which has no adjustable pa-
rameters (except the overall scaling of time and

“viscosity) and which gives a qualitatively correct pic-

ture of shear viscoelasticity. The relation Eq. (7) was .
arrived at by requiring the Cox-Merz rule to be
satisfied and that Eyring’s nonlinear viscosity Eq. (8)
is to be reproduced approximately. This ensures a
nonlinear viscosity and a frequency-dependent linear
viscosity which are both close to those observed in
many experiments. Figure 5 shows the nonlinear
steady state viscosity of the model compared to ex-
periments on four polymeric liquids. In Fig. 6 the ab-
solute value of the complex frequency-dependent
viscosity of the model is compared to experiments on
three of the systems of Fig. 5. In both figures there is
a qualitative agreement between model and experi-
ment. From studies of the literature it is estimated
that 25-50% of the published rheological data on
polymeric systems may be fitted similarly by the
model. A quantitatively satisfactory fit is only possi-
ble for few systems, however. To obtain this, one or
more fitting parameters must be introduced into the
model, which will not be attempted here.

The choice of the linear relaxation modulus to be
E,(t") may be justified from the box model, i.e., the

Log (nt§))
[~
o

-2 .

L I L L

0 1 z 3

Logly!
Fig. 5. Nonlinear viscosity of the model [full curve, Eq.
(10)] compared to experiments on four different polymeric
liquids. As throughout this work, both the viscosity and the
shear rate are reported in dimensionless units, the scaling
parameters being, respectively, the linear shear viscosity and
1/T where T is a characteristic time. The figure shows daia
for (a) linear, monodisperse polystyrene in 1-CN (0, Fig.
15 of [6]), (b) Poly-1-olefins (@, Fig. 1 of [7] based on data
from [8]), {c) poly (methyl methacrylate) (X, Fig. 15a of
{9)), and (d) 0.75% polyacrylamide (¢, Fig. 3 of [10] based
on data from [11])
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S— 1 1 1
0 1 2 3 Log(w)

Fig. 6. Modulus of the complex linear frequency-dependent
viscosity in the model [full curve, based on Eq. (12)]. com-
pared to experiments on three different polymeric !1qu|ds
quoted in Fig. 5. For each set of data the dimensionless
viscosity is shown as a function of the dimensionless fre-
quency defined by the same characteristic time as used in
Fig. 5. The figure shows data for (a) linear, monodisperse
polystyrene in t-CN (0), (b) poly-t-olefins (@), and (c) po-
ly (methyl methacrylate) (x)

postulate of a uniform distribution of activation
energies for microscopic motion. Consider the motion
of a foreign microscopic particle in the liquid. Sup-
pose the particle feels a spatially randomly varying
potential energy, and that it moves by thermally ac-
tivated hopping between the various potential energy
minima. Then the linear mobility of the particle (the
velocity divided by an external force acting on the
particle), is to a good approximation given by [12]

fw

*w)=u(0) ———— .
u*(w) u()ln(1+iw)

(40)

Assuming the Stokes law is valid for the particle, one
has u* o 1/n* which shows that the linear shear relax-
ation modulus of the liquid is £, (¢’) in this approx-
imation.

Because the Cox-Merz rule is obeyed by the model

it is not surprising that the Gleissele mirror relation

[1} is also satisfied: The linear limit of #* from Eq.
(16) is

lim n*(t,y) =tE(t)—e '+1 .
70

@)

Gleissele’s mirror relation states that n(y) is equal to
this limit evaluated at ¢ = 1/, thus

n() = {‘ '

y<1
=1,

(42)
(1-C+Inp)y ,

where C=0.577...is Euler’s constant. A compari-
son of Eqs. (10) and (42) shows that the mirror rela-
tion is indeed satisfied to a good approximation.

The constitutive relation Eq. (7) reproduces most
qualitative features of shear viscoelasticity. (An ex-
ception is the overshoot usually observed in 7* as a
function of time, where the model predicts n* to in-
crease monotonously to the steady state value.) The
fact that qualitative features of experiment are
generally reproduced is not surprising, given the
similarity between the present model and the Wagner
model, which is well-known to give a satisfactory
description of experiment. However, it should be
noted that the present model, despite the similarity to
Wagner’s model in the use of an exponential damping
function, does not belong to the class of single in-
tegral constitutive relations of the Boltzmann-super-
position-type involving a nonlinear strain measure.
This is because, in Eq. (7), y appears instead of y. As
shown by Booij et al. {13}, for the former type of
models the Cox-Merz rule may be accurately repro-
duced only if one uses a specific non-monotonous
strain measure. This problem is avoided here because
the analysis of Booij et al. does not apply to this
model; however, it should be emphasized that the
Cox-Merz rule is after all obeyed only approximately
in the present model (Fig. 1).

The use of an exponential damping function in the
present model is inspired by Wagner’s work [4]. This
damping function, in effect, cuts-off relaxation pro-
cesses with rates less than the shearing rate, an idea
discussed by several authors {14— {8]. An important
difference from Wagner’s model is that his damping
function is exp [~ |ﬁ_r}7|], whereas we here use
exp [—{_,}9|]. For a monotonously increasing or
decreasing y (¢) this does not make any difference. In
more general flows there may be considerable dif-
ferences between the two approaches. For instance, if
the net shear displacement between time —¢‘ and ¢ is
zero there is no damping at all in Wagner’s approach.
In contrast, all shear displacement taking place be-
tween time ¢— ¢’ and ¢ contributes to the damping in
the model of Eq. (7). Thereby an irreversibility related
to the network rupture hypothesis of Tanner [14, 18]
is incorporated into the model. The model may be
regarded as expressing a continuous version of Tan-
ner’s idea that entanglements are lost irreversibly in
the process of deformation as soon as a limiting strain
is exceeded; here entanglements are lost continuously
during any deformation. In passing we note that
Wagner’s model has been extended to incorporate ir-
reversibility using a rather complicated functional of
the strain history in the memory function [19]. This
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gives better agreement with experiment than the
original Wagner model.

A possible objection to the kind of damping term
used here is that, for a periodic shear y = y,sin (w?),
one might expect that the nonlinearity sets in at high
frequencies, even at very small amplitudes (because
the damping apparently is a function of yow, and not
of y,), in contradiction to experiment. This, however,
is not correct: Suppose the worst possible case of the
non-linearity, i.e., put the damping function equal to
exp (-~ wyet’) in Eq. (7). Then the response is

T(t) = yow T dt'E,(t') cos [w(t—t")je =M’
0
= yow[cos (wt) Reg—sin(wt)Img] , (43)

where

g= S dtlE’(tl)e-(iw"'yow)[‘
Q

(44)
- In(l+x)
x

, X=iw+ypw .

At a fixed w the onset of nonlinearity may be estimat-
ed from

g(x)
8'(x)
which is the criterion for the first order term being

equal 1o the zero-th order term in the Taylor expan-
sion of g as function of y,. Equation (45) leads to

Yow= “3)

x=iw »

(46)

Vo= l In(1+iw)
(1) =

iw/(1 +iw)-In(1+iw)|

It is now easy to see that whenever w1 the onset of
nonlinearity takes place for y; of order one. For
w<1, however, the onset of nonlinearity is at
Yo=w ™ !, corresponding to a maximum shear rate of
order one in the periodic variation.
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From the principle of virtual work it is shown that, if equilibrium stress fluctuations are described by a
Langevin equation, there is only one possible extension of this equation to describe stress fluctuations in
a shear flow. It is shown that the resulting equation is consistent with linear-response theory. The for-
malism developed may be looked upon as a method for extending differential constitutive relations to in-
corporate thermal fluctuations. A few simple models are discussed as illustrations. These include a
model where the stress fluctuates freely below a certain limit, and a model constructed to mimic the
Tobolsky-Eyring phenomenological theory [J. Chem. Phys. 11, 125 (1942)] of viscoelastic liquids. It is
concluded that these and similar models, however, do not realistically describe real polymeric liquids.
To reach this goal, models involving several stress degrees of freedom will have to be considered.

PACS number(s): 82.70.—y, 05.40.+j, 03.40.Gc

I. INTRODUCTION

Presently, the most popular models of the viscoelastici-
ty of polymeric liquids are based on a microscopic
description, where the bead coordinates are the basic de-
grees of freedom [1,2). These models are rather success-
ful but, unfortunately, also quite complicated to solve.
The present paper investigates the more phenomenologi-
cal approach to take as a basic degree of freedom the
quantity of main interest, the shear stress. In part, this
represents a return to ideas proposed by Eyring, Tobol-
sky, Andrews, and Hofman-Bang many years ago [3-5].
Here, however, a formalism is developed which is con-
sistent with statistical mechanics. This is done by assum-
ing a Langevin equation for the shear-stress dynamics in
equilibrium. From this the stress fluctuations may be cal-
culated and thereby, via the fluctuation-dissipation
theorem, the linear frequency-dependent viscosity may be
calculated. The main result of the paper is a proof that
the nonlinear response to any shear displacement is
uniquely determined by the requirement that the princi-
ple of virtual work is obeyed. It is shown that this princi-
ple ensures that linear-response theory is obeyed, a sine
qua non requirement (Sec. II). In Sec. IIl a few simple
models are worked out. Finally, in Sec. IV a discussion is
given. It is concluded that, in order to model realistically
reality, the proposed formalism must be generalized to in-
clude spatially varying stresses.

II. UNIQUE COUPLING OF DEFORMATION
TO STRESS FLUCTUATIONS

Here and henceforth the term “stress” refers to the
shear stress o ,,, while the corresponding x-y shear rate is
denoted by y(t). The fluctuation-dissipation theorem {2]
allows a calculation of the frequency-dependent viscosity
7lw) in terms of equilibrium stress fluctuations. The
theorem states that the stress relaxation modulus G{1),
which is characterized by

1063-651X/93/48(1)/400(8)/$06.00 48

nw)= [ “G(ne~idr , )
is given by
{s(0)s(8) )

Vv

Here, a sample of volume V is considered, s is the “total”
stress (e, 0,,=s/V), and B=1/k;T. The subscript
zero on the right-hand side of Eq. (2) is introduced to re-
mind one that the autocorrelation function refers to fluc-
tuations in thermal equilibrium. If R; is the coordinate

vector of the ith bead and F; is the force on the ith bead,
the quantity s is given [2] by

s=—3R,.F,, . (3)
i

Git=8 . 2)

[Note that the relaxation modulus of Eq. (2) has a well-
defined limit for ¥'— co: this is the usual macroscopic
shear-stress relaxation modulus.]

From now on the following simple model is adopted.
The liquid is regarded as divided into regions whose.
stresses fluctuate independently. A discussion of this
rather severe approximation is postponed to Sec. IV:
There is just one relevant degree of freedom in the model,
the quantity s of Eq. (3), where the sum is now restricted
to one region. The quantity s has dimension energy, but
will still be referred to as the “stress.” It is convenient
also to redefine “viscosity” by absorbing the region
volume, so that viscosity is from now on simply {(s) /7.
With these definitions Egs. (1) and (2) become

@1=B [ 7 (s(0)s(0))oe "dr . )

We remind the reader that Eq. (4) is equivalent to saying
that the average stress for small shear rate () is given
by

(s(:))y,=3f°°°<s(0)s(7))oy(r-f)d,- . (5)

According to statistical mechanics, the probability of an s

400 ©1993 The American Physical Society
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fluctuation in equilibrium is given by the free energy as a  free energy A is defined [2] by

function of 5, F(s). If T denotes the complete set of mi- _r

croscopic coordinates referring to one region, and s(I') 4= f_wds Ps)F(s)+kpT In[P(s)]} . (14)

and E(T") denote, respectively, the value of s and of ener-
gy in state T, F(s) is given by

e PF9= [ ¢ =BEIDg(s—s(T'))dT . 6)

It is assumed that F(s)—« as |s|—o, and that

F(s)=F(—s). Note that the free energy of one region is

given by ,
e BF= f_w e “BFsigg | 7

Now the further assumption is made that the s fluctua-
tions in equilibrium are described by a Langevin equa-
tion,

s'=—#i:€+§m . : ®)

Here, 1 is the “mobility” (“velocity”/“force”) which
determines the time scale, and £(¢) is a Gaussian white-
noise term:

(EDE")) =2uk, TSt —1") . (9)

While Eq. (8) is a completely phenomenological postu-
late, it has the crucial property [2,6,7] that the stationary
s-probability distribution Py(s) is that required by statisti-
cal mechanics:

Pyls)=N"lg 78R (10)

Any initial probability distribution converges to Py(s) as
t— w; the equation governing this is the well-known
Smoluchowski equation {2,6,7] (sometimes referred to as
the Fokker-Planck equation or just the diffusion equa-
tion) '

oP __ 23

B as

yil—:-P-i-/,tk,,T%f‘—> .

p (11)

A substitution of Eq. (10} into Eq. (11) ‘confirms that
Py(s) is the stationary solution.

How is the s dynamics changed when the liquid flows?
The simplest way to modify Eq. (8) is to add an extra
term coupling to y(t), writing

.§=-—p—d£+‘}7(t)f(s)+§(t) . (12)

In Eq. (12) the shear rate plays the role of an external
field. Obviously, J(s) is a kind of stress-dependent
infinite frequency shear modulus. The Smoluchowski
equation corresponding to Eq. (12) is

9P _ 39
dt  ds

dF

Hds d

2
—p(] +uk5T'2—€. (13)
S

We now proceed to show first that J(s) is uniquely deter-
mined by the principle of virtual work. Then it is shown
that, with this choice of J(s), linear-response theory [Eqgs.
(1) and (2}] is reproduced in the small shear rate limit, as
is necessary to have a consistent theory.

For any probability distribution P(s) the dynamical

The principle of virtual work (2,8] says that after the vir-
tual displacement

y(t)=8yb(¢) , 15

Adis changed by

84=(s)8y . _ (16)

From Eq. (14) the variation in 4 is given by

§4=[" ds8P(s){Fls)+kyTIn[P(s)]] . a7
Substituting Eq. (15) into Eg. (13) and integrating over a
small interval around 0 gives, to lowest order in 8y,

9
Os

By combining Egs. (17} and (18) one finds by partial in-
tegrations

8p=—58y—(JP). (18)

8A=-—8'yfj ds

3 a
FX P+ 9
3 (JP)+kpT In(P) as(JP)

LI

=8y f_mds ds ds

f
oo [° 4o |4y
—5'Yf_mdsl s kBTds P. (19)

If this is to be consistent with Eq. (16) for all P(s), J{(s)
must obey .
dl _pdF
s P 2 J—Bs . (20)
The solution of this equation is
J(s)=e”"’fwds’Bs’e'BF“" . e
3

All other solutions lead to an exponentially increasing
J(s) and thereby an inconsistent model where s runs off
to infinity in any shear flow. For B— « Eq. (21) implies
J(s)=s/(dF /ds).

Next it is shown that the J(s) of Eq. (21) ensures that
linear-response theory is reproduced. First Eg. (12) is
rewritten as

5=—y5%[ﬁ—r'<z>a>]+§m , 22)
where
a _J 2
il (23)

Equation (22) shows that the coupling to the shear dis-
placement “field” appears as an extra term —y(1)d(s) in
the Hamiltonian. In the small-shear-rate limit, linear-
response theory applied to Eq. (22) leads [2] to

(s(l))i=ﬁfom}}(l—T);—f<¢(7=0)s(f))(,d7 L e
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Equation (24) is consistent with Eq. (5) if
—Fd;(‘b(f=0)s(-r))o=(s(O)s(¢))°. (25)

To prove Eq. (25} note that the & —s correlation function

is given by

{D(r=0)s(7))g ] .
=["dss' [ ds Po(s)0(s)Gyls,s5m),  (26)

where Gy(s,s’;7) is the equilibrium Green’s function, i.e.,
the probability of finding stress s at time ¢ if the stress

)

d i
= @r=0)s(r))o=— [~ ds's'Po(s") [ 7 ds &(s)

=f_:ds's’Po(s')f_:ds [J(s)—-s-————

Because J (s) satisfies Eq. (20) it is now clear that Eqg. (25)
is obeyed.

III. SOME SIMPLE MODELS
A. Gaussian model

In this model the free energy is assumed to be quadra-
tic in 5:

F(s)=1las?. (29)
The equilibrium s-probability distribution is a Gaussian
12
Pys)= | 2B | o-ti/mas® (30)
27
which implies
1
De=— . (31)
(S )0 B
The “equation of motion” for s is
${t)=—pas(t)+£(1) . (32)

If Eq. (32) is multiplied by s (0) and averaged, one finds
%(S(O)S“no: —uals(0)(t)) (:>0). (33)
The solution of Eq. (33) which satisfies Eq. (31) is
N
{5(0)s(2) )¢ el (t>0). (34)

The calculation of J(s) is straightforward; from Eq. (21}
one finds

Jis)=e1/o8s [ Zporg—umapstyan L a5
s a
The Smoluchowski equation (13) thus is
3P _ 3 7(1) 3P
L== - Pl +pky T2
ar ds l"“‘ a S FYE G6)

were s at ¢t =0. By substituting into this expression -
the time-integrated version. of detailed balance
Py(5)Gy(s5,5";7) =Py(s')Gyls',5;7), one finds

d =
o {(D(r=0)s(1))q

- - 3G,
== [ ds'sPy(s) [T ds D) ssm) . @D

The Green’s function considered as a function of the
second variable satisfies Eq. (11), of course, and therefore
one gets

2 |4F 136G
”as[dsGO +B Os?
1dJ . -
B ds Gols',s37) . (28)

r
From Eq. (36) a simple equation for the average <S(t))’;
may be derived by application of the obvious identity

d = 3P

- = — . 37

s = [T sSotsnds 67
Substituting Eq. (36) into Eq. (37), one finds after partial
integrations

d _ (2)
TIT(S(”)?_ pals() -+ ol (38)

As usual it is assumed that the shear rate “field” y(1) is
introduced gradually in the distant past. The solution of
Eq. (38) which vanishes as 1 — — o is

(s, = ' B mpote=rigy (39)
- Qa
By means of Eq. (34) this may be rewritten as
(st} =B [ “{s(O)s(r))gp(c —r)dr . (40)

Equation (40) is nothing but the prediction of linear-
response theory [Eq. (5)]. Thus, the Gaussian model is -
linear for all displacements.

B. Box model
This model is defined by
0, Isl<s,
F(s)= w, lsI>sp° 41

The model is named after the box model in elementary
quantum mechanics; it should not be confused with the
box-model distribution of relaxation times sometimes
used in rheology [9). Since there is a maximum value of
the stress, the box model must exhibit shear thinning at
large shear rates. To find the nonlinear viscosity 7(y) we
need to determine J(s) first. In the present case Eg. (20)
reduces to dJ/ds= —pfs. The solution of this equation,
which satisfies the boundary = conditions
J{ —So)=J(30)=O, is
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J(s)=—§-(sg—sz) ) “2) theorem [Eq. (4)}, one finds
_ 32853 i
The ¢ function of Eq. (23) thu:s becomes MHw)= T SanYiote,) (53)
¢(s)=2—i(sé¥—-}s3 ). 43)  In the zero-frequency limit Eq. (53) reduces to Eq. {47)

For a given shear rate y, the stationary solution of Eq.
(13)is .
P(s)=N"1ePr® (5] <s,), (44)

where N is a normalization constant, and P(s)=0 for
Is}>sq. If the dimensionless shear rate

_#4
7
is introduced, one finds from Eq. (44)

14 (45)

llte*'[“/z’"“’/“]d(

(s);,=s0 (46)

f'ley‘[um—u’/s))dt )

From this the nonlinear viscosity 7=(s)/y is readily
evaluated. The result is shown in Fig. 1(a) and is not un-
like that seen in polymeric liquids. In the linear limit one
finds, by expanding Eq. (46) to first order in y*, the shear
rate independent viscosity 7, given by

_ ZBZSS
7o 151

Thé equilibrium dynamics is governed by the simple
diffusion equation [Eq. (11)]

@7

3P _pu P
ot B asl’ (48)
subject to the boundary conditions
ap ar
Es—(s=——so)=a—s(5=so)=0 . (49)

The  eigenfunctions of  this problem  are
cos[nm(sg—s)/(2s5y)] (n=0,1,2,...). From this one
finds by standard methods [10] that the equilibrium
Green’s function is given by

Gols,s"s1)= ——+ i Lo
. ’ 2:

@t
*cos[A,(sq—s)]
0 a=t%0

Xcos[A,(sq—s')], (50)

where

=T —H,2

A, 25, n, w, B/\n

it is now easy to derive an analytical expression for the

frequency-dependent viscosity 7(w). Since the equilibri-

um probability distribution is Py(s)=1/(2s,), the auto-
correlation function becomes

(n=1,2,...}. (51)

3, d 3,
(s(0s())o= [ _iozfo- i _tods'ss’Go(s,s';t). (52)

From Egs. (50) and (52) and the fluctuation-dissipation l

via the identity {11]

1,1 1 bl
8 + 36 + pr3 + 360 °
Figure 1(b) shows the real part of n(w). The spectrum
contains infinitely many relaxation times but these are
hardly visible, being completely dominated by the funda-
mental frequency w,. In effect, n{w) is almost indistin-
guishable from the prediction of a simple Maxwell model
where Ren(w) is proportional to @ "2 for 0— .
Only in the relaxation towards equilibrium from a

(54)

1
(a)
o
E
2 2}
>
2
-3 F
. N . N
-1 o] 1 2 3 4
Iog'o(Shearrate)
1
(b)
o
@
Q
g -2
2
¢ -3f
_D
o 4T
2
-5 F
-6 N “ . N
-2 -1 o} 1 2 3

Iogm (Frequency)

FIG. 1. Box-model predictions for the viscosity. (a) shows 2
log-log plot of the steady-state viscosity relative to the linear
viscosity, as a function of the dimensionless shear rate given by
Eq. (45). At large shear rates the viscosity varies as the inverse
of the shear rate; this is a consequence of there being a max-
imum possible stress in the model. (b) shows a log-log plot of
the real part of the frequency-dependent viscosity relative to the
zero-frequency viscosity, as a function of the dimensionless fre-
quency w/w,. Despite the fact that the model has infinitely
many relaxation times, the longest relaxation time dominates
the frequency dependence completely. In effect, the frequency
dependence is almost indistinguishable from that of a standard
Maxwell model where the real part of the viscosity varies as w >
at large frequencies. '
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strongly nonequilibrium state do the higher harmonics
give significant contributions. If (s(1)); denotes the
average stress, given the value s at ¢t =0, one has obvious-
ly

(s(n)),= f_° $'Gols,s'st)ds" . (55)
[

Relaxation from a state with probability distribution P(s)

‘at t =0 is thus given by

o
(s(n)p= [ (s(1)),Pls"ds" . (56)
—5
Two well-known examples are stress relaxation after ces-
sation of a steady flow, and stress relaxation after a sud-
den shear displacement starting from equilibrium [1]. In
the first case, the probability distribution P (s) is given by
Eq. (44) at t =0. In the latter case, after the sudden shear
displacement given by y(£)=1y,6(t), it is possible to show
that P(s) is given by
P(s)= 2o , =¢ PTo%0
[(1+A)sp—(1=A)s]?

(57)

In both cases P(s) is strongly peaked around s=s,.
From Eq. (50) we find
(s(t)),=i > L~ (58)

@
—e “cos{A -s)].
5o oddn)\-i OS[ n(SO S]

This implies
s—(s(t)),=—%' S

50 cad n A'rl
The interpretation of Eq. (59) is as follows. Whenever ¢ is
so large that A, (sq—s)<<1 for all n with @,t <1, the
cosine factor may be ignored altogether, and below a lim-
iting n=p given by w,t=1, the exponential may be ex-
panded to first order. Writing p=at~'/%, one has
— ~ ? wdn an

s={stn),=¢, [ tdn+C2fp =, (60
where C, and C, are constants. At very short times the
quantity 5 — (s(¢)), is exponentially close to zero. Then
according to Eq. (60} comes a range of times where this
quantity increases like ¢!/2, and finally it converges to s.
A similar result applies to relaxation from a state with
probability distribution P(s,z =0), since

(3(0)>p—(s(z)),,=f:° [s—(s(2)),]P(s,t=0)ds .

S0
(61)
If the width of P(s,z =0), As, is defined by the integral of
P from sq—As to sp+As being 4, it is not hard to show
that

=0, t<«t,
(s(0)) p— (s piext}? ¢t <<t <<ty , (62)
=(5(0)}, 1,<<t¢
where
n=Lasy, =851 (63)
p p
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-IT( 1 —e—w"‘)cos[?\,,(so-s ). (59
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In the case of relaxation aftex; a sudden cessation of a
steady shear flow, As is given by [compare Eq.(44)]

(Asp=—t-L

(64)
soB* ¥

" In the case of a sudden large shear displacement, y,, As is

given by [compare Eq. (57)]

—Breso

As=2s4e (65)

Note that, in both cases, the non-Debye character of the
relaxation is apparent only because we have considered
the quantity (s(0))p—(s(z))p. If one looks at just

- {s(1))p, this quantity would be hard to distinguish from

a simple exponential decay in time.

C. Cosine hyperbolic model

A phenomenological model for stress relaxation was
proposed by Tobolsky and co-workers in the 1940s [3-5].
The model is a Maxwell element consisting of a Hooke’s
law spring and a non-Newtonian dashpot in series, the
viscosity of the dashpot obeying the Eyring viscosity
equation. The model leads to

s

so b
where A4, B, and s, are constants. Equation {66) repro-
duces Eyring’s viscosity equation and predicts a logarith-
mic stress relaxation at constant extension: At large

s(t=0) one has approximately §= —constXexp(s/5y),
which implies at intermediate times [4]

7= As+B sinh (66)

s(ty=a—BIn(1) . (67)

Both predictions of Eq. (66) mimic experiment on typical
polymeric liquids. The model, however, does not take
into account thermal fluctuations. The formalism
developed in Sec. II allows one to construct a model
based on Eq. (66) which is consistent with statistical
mechanics. Since relaxation towards equilibrium is
governed by § = —const. Xsinh(s /s,), the obvious choice
for F(s)is

s

so |

The Langevin equation corresponding to Eq. (68) is then

F(s)=f,cosh (68)

§= —p-fisinh 69)

[ So

= I+§m .

We now proceed to investigate this model, being particu-
larly interested in to which extent it reproduces the pre-
dictions of Eq. (66).

First the nonlinear steady-state viscosity is considered.
At low temperatures it is possible to derive an analytical
expression for the viscosity. The derivation is given here
for a general F(s). If (s} denotes the average of s during
a steady shear flow, one has from Eq. (12) at low tempera-
tures where fluctuations are small
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}?J((s))=u%§((s)) . (70)

The quantity (s) is a function of y. If the derivative of
this function is denoted by (s)’, Eq. (70) implies by
differentiation

LAl dF,

Ty (s)= e (s). )
Combining this with Eq. (20) leads to

RV S I

Jf(s) #dsz B7 dsJ (s)] . (72)

For B— ¢ the term in the inner parentheses must vanish.
In conjunction with Eq. (70) one finds

2
(s)=ﬁ_{£(<s)) , (73)
Y ds
or for the viscosity
2 .
=L\t (74)

B | dF
ds((s))

For the cosh model we thus have

_ (s)/sg | 75
1770 | Sinh({s ) /s4)
where
4
1 So
=—— (76)
TNl

is the linear viscosity. Perhaps surprisingly, one does not
recover the Eyring viscosity expression

{s) /54

T Gnh((s ) /sq) ’ an

mn
but, as is clear from Fig. 2, the cosh model viscosity may
be fitted reasonably well by Eq. (77).
Consider now relaxation towards equilibrium from a
nonequilibrium state with stress 5. At low temperatures

J(s) may be found explicitly from Eq. (21), which for
B— o reduces to

s2 s/s
J(s)=— g

fo sinh(s /sg) ~ 78)

When substituted into Eq. (12) this leads to, in the zero

noise limit,

fo sinh(s /sq) 2 sinh*(s /sq)

y=—%—_—ls+yf—;’—° ) (79)
s§ 5/sq sp  $/%

This looks nothing like Eq. (66). But again we find the

nonlinear viscosity given by Eq. (75). Furthermore, for
constant elongation, s relaxes according to

s

§= ——p.-flsinh

, (80)
S 5o

1

-2 F

Ioglo(Viscosily)

-3}

-4 L
-1 Lo} 1 2 3 4

loglo(Shearrate)

FIG. 2. Log-log plot of the steady-state nonlinear viscosity of
the cosh model. The nonlinear viscosity is shown relative to the
linear viscosity as a function of the dimensionless shear rate
v /(so/7g). The nonlinear viscosity of the cosh model is not
identical to the Eyring viscosity of Eq. (77) (marked by dots).

as expected from Eq. (69).

A final correspondence of the cosh model to Tobolsky’s
phenomenological model is the frequency-dependent
viscosity. As is the case for any differential constitutive
relation [1], Eq. (66) reduces to the Maxwell model in the
linear limit. In the cosh model one might expect a more
interesting frequency dependence, at least at high temper-
atures where the sinh factor of Eq. (69) cannot be re-
placed by a s? factor. But it turns out that even at high
temperatures the autocorrelation function (s(0)s(#)), is
actually very close to an exponential (which corresponds
to the Maxwell model). What happens is that the loga-
rithmic s relaxation of Eq. (80), even at quite short times,
is killed by the s diffusion due to the noise term.

D. Power-law model

As a final example we briefly discuss the power-law
model where
n

Fls)=f, (n>0). 81)

3
So
The fact that F(s) is nonanalytical at s =0 is insignificant.
The case n =2 is the Gaussian model and the n — o lim-
it is the box model.

The power-law model makes sense only for n > 3. To
prove this, the low-temperature limit is considered. For
B— o, J(s) may be evaluated asymptotically from Eq.
(21). Writing s""—s"=ns"~!(s'—~5), one gets

=B fo/sgins" ™ st =s)

J(s)=Bfmds's'e
3
xg(s1T )y i=g2mn : (82)

Thus, whenever ¥ is positive there is a “force” propor-

tional to 527" working to increase s. The “restoring

force” from the potential varies as s” ~'. This force must
dominate at large s in order to avoid s running off to
infinity, thus n—1>2—n or n>4$. Mathematically,
there is no normalizable stationary state whenever n < 1.
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The border case n=3 leads to a model which is well
defined up to a certain shear rate, above which s runs off
to infinity. This corresponds to there being a phase tran-
sition at a definite shear rate to a state of infinitely high
viscosity. 7
To estimate the viscosity we use Eq. (73), which implies

2
'c:% % wg2n=d - (83)
This implies
n=s/y< _};(4—2n)/(2n—3) . (84)

For 3<n<2 the model exhibits shear thickening,
whereas for 2 <n there is shear thinning. The case n =2
gives. a shear-rate-independent viscosity, as shown al-
ready.

IV. DISCUSSION

The model of stress fluctuations considered in the
present paper involves several nontrivial assumptions.
The liquid is regarded as divided into “regions,” and
correlations between stress fluctuations of different re-
gions are ignored completely. These assumptions are
made for simplicity, but may be unrealistic since elastic
forces are long ranged. The region picture becomes even
harder to justify when a shear flow is considered. Such a.
flow deforms the regions and the picture can only be
maintained whenever the longest correiation time is
smaller than the inverse shear rate.

The main result of the paper is the proof that, if equi-
librium stress fluctuations follow a Langevin equation,
there is only one possible stress dynamics in nonequilibri-
um which is consistent with the principle of virtual work.
Not only is the nonlinear response uniquely determined,
but this is true also for the stress fluctuations in none-
quilibrium. Crucial to this theorem is the assumption of
a Langevin dynamics for the stress. This is a phenome-
nological postulate, but it should be emphasized that
Langevin dynamics is the “canonical” guess if one is to
discuss dynamics purely from a knowledge of equilibrium
statistical mechanics. There is no other way of estimat-
ing the dynamics from a knowledge of only the equilibri-
um free energy F(s). But, of course, this does not
guarantee that the Langevin equation leads to correct re-
sults, ’

The assumption of linear coupling of the shear rate
“field” in Eq. (12) is not essential. In fact, it is easy to
show that the principle of virtual work implies the cou-
pling must be linear. This is because the shear rate does
not occur in Eq. (16).

The formalism developed may be generalized by re-
placing the term “stress” (which is the transverse
momentum current) by any other current. One thus has
a method for predicting the nonlinear response from a
knowledge of equilibrium current fluctuations. The con-
sidering of currents as independent degrees of freedom
has become popular in recent years, being the basis of ex-
tended irreversible thermodynamics [12,13]. The ap-
proach of Sec. Il may be regarded as a statistical-

mechanical counterpart to extended irreversible thermo- _
dynamics.
To illustrate the formalism a few simple models were

studied in Sec. IIl. The-Gaussian model leads to an ex-

actly linear response even at large shear rates, reducing
simply to the standard Maxwell model. The-fact that the
Gaussian model is linear is quite satisfactory, since a
similar result is valid in ordinary statistical mechanics.
Here, strictly Gaussian equilibrium fluctuations of, e.g.,
the magnetization, implies a field-independent magnetic
susceptibility.

A more interesting model is the box model. It predicts
a nonlinear viscosity (because there is a maximum possi-

‘ble stress), and a spectrum of relaxation times. In equilib-

rium this spectrum is not really visible, however; the au-
tocorrelation function (s(0)s()), is approximately an
exponential, leading to almost a Maxwell-type frequency
dependence of the viscosity. Only in the relaxation from
a strongly nonequilibrium state does the spectrum play
any significant role, and even here the lowest eigenfre-
quency dominates the overall picture.

The cosh model was constructed to mimic Tobolsky’s
phenomenological model for stress relaxation. But al-
though the zero noise relaxation equation is equal to
Tobolsky’s {Eq. (66)], the predictions of the model are not
identical to those of Eq. (66). This is an illustration of a
point made by van Kampen (7] that, by adding a noise
term to a phenomenological model of the form §=f(s),
some of the properties of the equation are lost because of
the noise. In the case of the cosh model, the properties
are retained in a qualitative sense, though. Thus, there is
an Eyring-like viscosity in the model (Fig. 2), and the fre-
quency dependence of the phenomenological model and
the model of Eq. (69) are almost equal. The latter point
may seem surprising, given the fact that the cosh model
leads to a logarithmic relaxation towards zero in the zero
noise limit (which, as is well known, corresponds to a
spectrum of relaxation times varying like 7~!). However,
just as in the box model, the spectrum is not significant in
equilibrium where the noise term completely dominates
the autocorrelation function, resulting in an almeost ex-
ponential decay.

The cosh model corresponds to an exponentially in-
creasing free energy F(s). The case of F(s) increasing fol- ~
lowing a power law was also considered in Sec. III. [The
case of a logarithmically increasing F(s) leads to an in-
consistent model where s runs off to infinity whenever
y#0.] The power-law model is consistent only for n > 1,
n =2 being a border case where the model makes sense
for not too large shear rates. Whenever 3<n<2 the
model exhibits shear thickening, whereas 2<n corre-
sponds to the experimentally more common case of shear
thinning. The case n =2 is the Gaussian model, and the
limit n—»c0 is the box model. A closer analysis than
given in Sec. III reveals that the shear thickening in the
case 2 <n <2 is a consequence of one not having J(s)—0
as |s|— oo [while for 2<n J(5)—0 as |s]—]. Since
J{s) may be interpreted as an s-dependent infinite fre-
quency shear moduius, the study of the power-law model
leads to a novel view on the origin of nonlinearity: Non-
linearity may be viewed as a consequence of a stress-
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dependent infinite frequency shear modulus G . The
case when G, increases with increasing stress corre-
sponds to shear thickening while a decreasing G (i.e.,
softening) corresponds to shear thinning. The Gaussian
linear case n =2 corresponds to a stress independent G, .
A final thing to be noted about the power-law model is
that in the zero noise limit this model has a power-law
time dependence of the stress relaxation, as is easy to
show.

The predictions of the models are approximately on
the level of differential constitutive relations: these have
realistic nonlinear steady-state viscosities but only a sim-
ple Maxwell frequency dependence of the viscosity [1].
Compared to differential constitutive relations, the
presently considered models have the advantage of being
consistent with statistical mechanics. Thus, the method
presented may be regarded as a means of modifying
differential constitutive relations to include thermal fluc-
tuations. The modification, however, is nontrivial in the
sense that the differential constitutive relation is nor
recovered exactly in the low-temperature limit, as shown
in detail for the cosh model.

Several important features of polymeric liquids are not
mimicked by the models of Sec. III. The predicted al-
most single relaxation-time frequency dependence of the

viscosity is very far from that observed in polymeric

liquids. Another important point which is not captured
by the models is the fact that experimentally, nonlinearity
sets in at a shear rate about equal to the frequency mark-
ing the onset of frequency dependence of the viscosity

[1,14]. Finally, the temperature dependence of the
viscosity is weak and there is a well-defined viscosity in
the zero-temperature limit: While this last point could be
handled by assuming the mobility u is temperature
dependent, the two other points are quite serious, indeed.
A further objection is the fact that in the present model
there is time reversibility in a steady shear flow: The
steady-flow Langevin equation obeys detailed balance for
a suitably chosen energy function [compare Eq. (26)]. In
a real flow one expects a genuine violation of time reversi-
bility.

In conclusion, the types of models studied in Sec. IIT
are not satisfactory as models of reality. To arrive at
more realistic models one has to consider several stress
coordinates interacting with each other, for instance by
taking into account the spatial variation of the stress.
This leads to a field theory in which the free energy is a
functional of the stress field. If this function has several
minima, the Langevin dynamics gives thermally activated
relaxation times (just as in the description of chemical re-
actions), and thereby more realistic temperature and fre-
quency dependences. Also, it may be shown that in a
model with more than one degree of freedom there is
genuine time irreversibility in any shear flow.
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ABSTRACT

This paper considers the problem of estimating the time auto-
correlation function for a quantity that is defined in
configuration space, given a knowledge of the mean-square
displacement as function .of time 'in this part of phase space. An
approximate formﬁla is derived which reduces the calculation of

the time auto-correlation function to a "double canonical®

average. In this approximation, the mean-square displacement

itself may be evaluated from the "double partition function® in
the case of Langevin dynamics. The scheme 'developed is
illustrated by computer simulations of a simple one-dimensional
systems, showing a good agreement between the exact time auto-

correlation functions and those found by the approximation.
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The calculation of a time auto-correlatioﬁ function [1,2] .
is a straightforward matter in any computer simulation tracing
the time evolution of a system [3-5]. However, computer
simulations are not feasible today on time scales longer than
microséconds. These time scales are relevant for viscous liquids
approaching the glass transition. Therefore, one cannot by
simulations calculate a number of experimentally accessible
quantities in viscous liquids. Examples are the frequency-
dependent viscosity [7], bulk modulus [8], dielectric constant
[9], or specific heat [10,11], that all wvia the fluctuation-
dissipation theorem [1,2,6] are given as Laplace trangforms of a
time auto-correlation function. In this situation one would like

to have an approximate theory at hand. Focussing only on time

auto-correlation functions of quantities A(X) that are defined
in configuration space, X=(X,,..,X,), an approximation is

proposed below, based on an ansatz for the joint probability of

initial point X at t=0 and final point X’/ after time ¢,

P(X,X';t). 1In terms of the joint probability the time auto-

correlation function is given by

CA(0)A(E)> = f dxdx’' A(x)A(X") P(X,x;t) . (1)

If Z is the configur_at_ional partition function, given in terms

of B=i/'(kBT) and the potential energy U(X) as

Z(B) =de e—BU(X) , (2)

and G'(X-'X’; t) is the Green’s function, the exact expression for
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the joint probability is

-8U(X)
efvn , (3)

p(x,xl;t) = = G(X-X'; t)

However, Eg. (3) is not very useful unless the Green’s function

is known. The principle of detailed balance implies that
P(X,X';t)=P(X',X;t), a requirement any approximation should
also satisfy to ensure time-reversal invariance.

The exact method for calculating <A(Q)A{(t)> is shown in
Fig. 1 illustrating the path in configurational space. At a

number of times | PP one computes the quantity

A(X(tj))A(X(tj+t)) , and <A(0)A(E)> is the average of this
product as n—+e. Assuming here and henceforth that the Xi's are

simple rectangular coordinates and that <A>=0, one always finds
CA(0)A(t)>=0 as t—«. This loss of correlation after long time
comes about because the final point X' is far away from the
initial point X. A measure of the distance travelled in timet
is provided by the mean-square displacement, <AX2(t)>: If

EX(t:j) , X’EX(CJH‘:) . and <> denotes an average over Jj, the

mean-square displac-ement is defined by

n
Y <(x;-xD) 2> . (4)

i=1

1]

<AX2%2(t)> = g(x—x’) 2y

Assuming that the mean-square displacement itself is a known

function of time, the idea is now to estimate <A(Q)A(t)> via
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the “spatial’,_ auto-correlation of A in ‘configurational space

evaluated at distances equal to <AX?(t)>. Before proceeding,

we briefly discuss the physics of this way of thinking about the
time auto-correlation function. A simple case is when the mean-
square displacement is proportional to time (for CL—o this is, of
course, always the case). In this case, if the ‘spatial®
, correlation of A has a Gaussian distance decay, the time auto-
correlation function is a simple exponential, corresponding to
Debye relaxation. If, however, the spatial correlation of A has
an exponential distance decay, the time auto-correlation function
is a stretched exponential with exponent %. The latter case
gives a reasonable fit to many experiments on viscous liquids
[12]. The above picture of decomposing the time auto-correlation
function :_'.nt:o a) a "geometric" correlation and b) the distance
travelled in.a given time, is in harmony with another well-known
property of viscous 1liquids. In these systems all linear
relaxation functions have roughly the same average relaxation
rate, a rate which slows down dramatically upon cooling. In the
“geometric" picture, this is simply a consequence of the motion
slowing down in configuration space, whereas the ‘'spatial*
correlation probably only change little upon cooling in a narrow
range of temperatures. ) The mean-sguare displacement acts as a
*molecular’ clo&k; -

We now turn to .the problem of estimating the joint
probability P(X,X’;t). 1In the thermodynamic limit n-e the

relative fluctuations in the mean-square displacement go to zero,
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and therefore~the distanée between X=X(tj) and.X’=X(tj+t) is

precisely yAX2(t). Similarly, the relative fluctuations in

potential energy go to zero, so the potential energy of both

_0lnZz

ap

points X and X’/ is equal to <= The ansatz for

P(X,X'; £) assumes equal probability for all pair of points with
the correct distance and.the correct potential energy. Thus,

P(x,x';t) =

' (5)
3[(x-X1)2-<AX2(t) >] B[U(X) -<T>] 8[U(X!) -< ]

In the thermodynamic limit there is "equipartition® betweenU(X)

and U(X’), and the last two delta functions may be replaced by

a single delta function,

P(X, X'; £) = 8[(X-X")2-<AX?(t)>] 8[U(X) +U(X) -2<>] 9

The next step is to convert Eg. (6) to a “canonical" form, which
is computationally more convenient than the "microcanonical®

form. This is done by replacing tﬁe first delta function by
exp[-a(X-X')2] where a is a Lagrangian multiplier adjusted to
give the correct mean-square displacement. Similarly, the second
delta functi'on" is r_eplacled by exp(-b[U(X) +U(X')]) where b is
adjusted to ensure that the average of U(X) +U(X') is 2<I>. If

the *“double partition function®
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" Dla,b) = f axdx’' e-atx-x2-biu(x) +u(x)) (7 -

is introduced, the final ansatz for the calculation of the time

auto-correlation function is

7 - dxdx’ / —a(X-x)2-blU(X) +U(x)) ]
<A(0)A(t)> ——D(a,b) A(X)A(X) e
(8)

In the thermodynamic limit Eg. (8) is equivalent to the average

Eg. (1) over the distribution Eg. (5).

The two parameters @ and b are determined in the following
way. First, b=b(a) is found from the condition thét: the average
joint potential energy of initial and final point is 2<I»>.
Thus, b(a) is determined from the condition tilat this average

is independent of a:

d dlnD
_ =0 . (9)
da b

Since %=aa+-g—§ab {with the standard abbreviated notation for

partial derivatives], the expansion of Eg. (9) leads to the
following first order differential equation for b{a)

db 9,0 3D - D FaD i (10)

'da”  pap - (8,D)2

Once the function b{a) has been determined, a=a(t) is found
from requiring the mean-square displacement calculated from

D(a,b(a)) to be correct:
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_d1lnD
da

The short and long time limits are determined as follows. For

= <AX2(t)> . ' {11)

a(t) one clearly has

a(t=0)

o0

(12)

a(t=ow) 0

In the limit of large times X and X' are far apart and U(X) is

uncorrelated with U(X’/) . 1In this limit b=p:

b(a=0) =B . - (13)

In the short time limit the points X and X! are forced together.

Thus, P(X,X/;t)« 8 (X-X/)exp[-2bU(X)] for t-=0 and Eq. (1)

vields

[ax a2(x) e260w0

lim,., <A(0)A(E)>
de e ~2bU(X)

(14)

In order for this to give the correct canonical average one must

have b=f/2, i. e.,

b(a=w) =% . (15)

The short time behavior of a(t) may be derived directly
ffom the equations of 'métion, as briefly sketched below. In the
case of Newtonian dynamics, the Green'’s function at short times
is easily found from the.integfaéed equations of motion where the

momentum is Gaussianly distributed (for simplicity it is assumed

that all particles have the same mass m),
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o n | 2| (16
G(X~X';t) « exp [——E— (’—" (Xi-X;) + -%- o,U t:)
=1

2m 4 t

To first order in ¢ this yields

G(X-X'; ) = exp[—a(t) (x-x/)2 - -g[U(X’)—U(X)]] , 47

where

a(t) = zpénz (Newtonian dynamics, t-o) . (18)

Note that via Eg. (3) this Green’s functions confirms the form of

the ansatz Eq. (8) for t—0, as well as the boundary condition

Eg. (15). Next we consider the case of Langevin dynamics,
) ou
X, = -up=— +E.(t ’ 13
i B ox; £:(t) (19)

with the . standard Gaussian white noise term [14]
B (E)E;(tN)>=2 p kgT 8; ; 8(t-t’) . From the equations of

motion one finds that, because the integrated noise term is

Gaussianly distributed,

n
Glx-x;t) = exp|-—b- Y (xi-x; + pou e . (200
dpt &=

At short times- this -az'ga—in leads to Eg. (17), where however now

alt) = ZitLt " (Langevin dynamics, t-0) . (21)
In the case of Langevin dynamics Eq. (8) may be applied to

the calculation o0f the force-force time auto-correlation

w
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function. ~This leads to an equation that in principle allows a

calculation of <AX?(t)> directly from the double partition

function. The mean-square displacement in time ¢ is given by
(sum over 1)
t t . .
<Ax2(£)> = [“de! [Tdel < (eh X (eM> . (22)
o 0

Since the noise terms are uncorrelated at different times, Eqs.

(19) and (22) imply

2 . .
% <AX2(£)> = 2 <X, (0) %, (£)> = 2 p? <3,U(0)3,U(t)>
(23)
From léq. (8) the force-force time auto-correlation function is
rewritten as
<31U(0)6iU(t)> =
1 dxdx’ 9. -bU0 [a/ e-bU(x’)] e -alx-x)? (24)
o7 | Dra, by P20
By partial integrations one finds
<aiU(0)aiU(t)> =
a?  dxdx’ N2 g-a(x-xh2-box) +uix)]
—_— | =—— (X-X e
b2 J D(a, b) ( ) (25)
_, a® 3laD |
b2 Oda

Thus, the équa”tic-)n for a{t) is from Egs. (11), (23) and (25)

(d2+gp2“a_2)§1_n2=o_ (26)
dt? b2) oa

The expansion of Eqg. (26) is straightforward, though tedious.

10
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In order to check the validity of Eq. (8) a simple systems
was studied numerically obeying Langevin dynaxﬁics. The system
was chosen to be so simple that the integral in Eg. (8) may be
evaluated “exéctly“, thus avoiding the noise of Monte Carlo

simulations. No attempts were made to verify that Eg. (26) gives

the correct a{t) . Instead the following procedure was followed.
At a number of fixed a-values b(a) was found from the
requirement that the average joint potential energy is 2<I>.

Then the mean-square displacement was evaluated for each a from

Eg. (11) and also as function of time from the dynamical
simulations, allowing an identification of the times
corresponding to the fixed a&-values. Finally, the time auto-

correlation function was calculated from Eg. (8) at the fixed a-

values. Figure 2 shows the results for <X3(0)X3(t)> for the

Langevin motion of a particle in a double-well potential [14].
The full curve is the exact time auto-correlation function found
by solving the Smoluchowski equation [13] and the dots give the
prediction of Eg. (8). Results are shown for P=2 and forfB=8
in dimensionless units.

In this paper a statistical mechanical approximation for
the calculation of time auto-correlation functions was derived.
The formalism gss_u.més -a knowledge of the mean-square displacement
in confiéurational space as function of time; the mean-square
displacement acts as the "molecular clock®. The remaining
*spatial® auto-correlation calculation is a “"double canonical®

average (Eg. {(8)). Note that the corresponding double partition

11
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function, D{a,b), contains the oxdinary ~configurational

partition function as a special case, Z2(P)=D(0,B).

The approximation is only useful if <AX2(t)> is known.

Experimentally, this quantity is accessgible via the intermediate
incoherent scattering function. In some cases a phenomenological
estimate of the mean-square displacement may be given. Thus, for
hopping in a rugged energy landscape where all minima are equal,
the mean-square displacement is universal at low temperatures
(éxcept for trivial scalings), i.e., it is independent of the
.barrier height probability distribution. This has been shown
recently [15] by effective medium calculations and by computer
simulations of the frequency-dependent conductivity, which is
simply related to the mean-square displacement [16]. Finally,
there is the possibility that the mean-square displacement may be
found approximately from Eg. (26) if Langevin dynamics is
assumed, as J:.s common, €. g., in polymer dynamics [17].
.Equation (26) signals that Langevin dynamics plays a
special role in the proposea scheme for calculation of time
autocorrelation functions. A question of considerable interest
igs if and when Langevin dynamics can be expected to give the same
time auto-correlation functions as Newtonian dynamics [18). If
the ansatz is correct, two different dynamics give the same time
;ﬁto-cor.relation- furictions for any gquantity defined in
configuration space, if just the two dynamics give the same mean-
square displacement. In. this way the ansatz provides a mechanism

for the consistency of any two types of dynamics.

12
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FIGURE -CAPTIONS

Path in configuration space with coordinatesX=(X,,..,X})

illustrating the exact definition of the time auto-correélation

function. At a number of times tl,..,tn one computes the

quantity A(X(tj))A(X(tj-l't)) , and the time auto-correlation

function is obtained as the average of this product as n-e~. In

the thermodynamic limit the distance between the pointsX (tj)

and X(ty+t) is the same for all j, because the relative

distance fluctuations go to zero as the number of degrees of
freedom go to infinity. This distance is the square root of the
mean-square displacement in time t. In the approximation for
evaluating the time auto-correlation function proposed here,
equal probability is given to all pairs of initial (t=0) and
final points after time t, that have the correct distance and

where each point has the correct potential energy.

Fig. 2:

Log-log plot of <X3(0)X3(t)> as function of time for a Langevin

particle in a double-well potential given in dimensionless units

as U(X)=(1/4)X*-(1/2)X?%. The full curve is the exact time

auto-correlation function evaluated by solving the Smoluchowski
equation. The symbols give the predictions of Eqg. (8); the

system is so simple that no Monte Carlo simulation is necessary

to evaluate Eqg. (8). Results are shown for B=2 and for B=8.
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