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First, we discuss the topology of the Fredholm Lagrangian Grassmannian in a symplectic
Hilbert space and show under which conditions the Hérmander index of four Lagrangian
subspaces is well defined. As an example, we consider a general spectral flow formula in the
symplectic Hilbert space of abstract boundary data for self-adjoint Fredholm extensions of a
given l-parameter family of symmetric operators. We show that the error term, appearing
when one replaces one admissible domain by another, equals the Hérmander index.

Then we discuss families of linear elliptic differential operators of first order on a compact
manifold M with boundary . Our framework covers also related questions arising from closed
manifolds with fixed hypersurface. We describe the embedding of the symplectic space of
abstract boundary data into the distribution space H?(X) on the hypersurface and obtain
various generalizations of the Yoshida-Nicolaescu spectral flow formula without the
assumptions of product structure near the boundary, differentiability of the path, invertibility
at the endpoints, and simplicity of the 0-eigenvalues,
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ABSTRACT. First, we discuss the topology of the Fredholm La-
grangian Grassmannian in a symplectic Hilbert space and show
under which conditions the Hérmander index of four Lagrangian
subspaces is well defined. As an example, we consider a general
spectral flow formula in the symplectic Hilbert space of abstract
boundary data for self-adjoint Fredholm extensions of a given 1-
parameter family of symmetric operators. We show that the error
term, appearing when one replaces one admissible domain by an-
other, equals the Hérmander index.

Then we discuss families of linear elliptic differential operators
of first order on a compact manifold M with boundary £. Our
framework covers also related questions arising from closed mani-
folds with fixed hypersurface. We describe the embedding of the
symplectic space of abstract boundary data into the distribution
space H~% () on the hypersurface and obtain various generaliza-
tions of the Yoshida—Nicolaescu spectral flow formula without the
assumptions of product structure near the boundary, differentia-
bility of the path, invertibility at the endpoints, and simplicity of
the O-eigenvalues.
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INTRODUCTION

Our first purpose is to explain the topology of the Fredholm La-
grangian Grassmannian (Theorem 4.2). There have been various other
treatments of this subject before (see, in chronological order, Swanson
[18], Bojarski [1], Booss and Wojciechowski [3], Douglas and Wojcie-
chowski [8], and Nicolaescu [12]). We want to unify the approaches
and to clarify the underlying conditions from the very beginning. To
us, the basic underlying topological fact is that the space of bounded
self-adjoint Fredholm operators appears for the sums of the orthog-
onal projections of Fredholm pairs (our Appendix, Proposition A.2).
Our approach is not based on delicate topological considerations like
the Palais Theorem, [13]. Instead of that we discuss the topology more
concretely by establishing in Section 4 a fibre bundle structure of a suit-
able subspace of the Fredholm Lagrangian Grassmannian with ezplicit
local trivialization. _

A second purpose is to clarify the notion of the Hérmander index. In
Section 5 (inspired by Proposition 2.1), we have chosen to characterize
the Hérmander index from the homotopy point of view, based on the
notion of the Maslov index for paths. That interpretation yields also the
slight generalization necessary for establishing the Hérmander index in
infinite dimensions. To give an example, in Section 6, we recall from [2]
an abstract, purely functional analytical spectral flow formula which
identifies the spectral flow with the Maslov index in a quite general
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frame. In Theorem 6.4, we obtain a formula, similar to the Agranovi¢-
Dynin type formulas in index theory, which describes the change of the
spectral flow when replacing one domain by another one in terms of a
Hormander index.

Our third purpose is to apply our abstract functional analytical con-
structions and theorems to the concrete situation of a continuous family
{A + C;} of symmetric elliptic differential operators of first order with
fixed principal symbol over a compact connected smooth Riemannian
manifold M with boundary ¥. In Section 7, we embed the space of
abstract boundary data into the distribution space H~%(X) and study
the Lo—extensions of the operator family which are defined by ‘general
elliptic boundary conditions’ (i.e. extensions with compact resolvent).
Some special features are explained for the case that the operator can
be written in product form near the boundary.

In Section 8, we apply our abstract spectral flow formula and obtain
a very general Yoshida-Nicolaescu type spectral flow formula over a
manifold with boundary and, as special cases, related formulas over
closed manifolds with fixed hypersurface. As compared to the famous
papers by Yoshida [19] (dimension 3) and Nicolaescu [12] (general odd
dimension, see also Cappell, Lee, and Miller [7]), the application of our
strictly functional analytical approach yields not only a more direct and
transparent proof of the formulas but also a series of generalizations.
We need only the (weak) unique continuation property and not that the
operators are of Dirac type. The hypersurface must have an orientable
normal bundle, but need not separate the manifold. Neither do we
assume the product form of the operators close to the hypersurface, and
we can drop a variety of technical assumptions like the differentiability
of the perturbation curve {C,}; the invertibility of the operators at the
endpoints 0, 1; and the multiplicity one of all 0—eigenvalues.

We shall emphasize that our formula is written in the distribution
space H ‘%(2), where the Cauchy data spaces and the traces of the
maximal domain naturally belong. By finite-dimensional symplectic
reduction we obtain, however, a version of the spectral flow formula
which solely involves function spaces on the hypersurface.

Acknowledgments. We would like to thank M. de Gosson (Karls-
krona), N. Otsuki (Tokyo) and K.P. Wojciechowski (Indianapolis) for
stimulating questions and critical remarks.
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1. THE HORMANDER INDEX UNDER TRANSVERSALITY CONDITION

We recall the definition of the intersection index of four Lagrangian
subspaces in finite dimensions given in [11] by L. Hérmander. For nat-
ural n, we consider the Euclidean space R*" with the standard sym-
plectic form w((z,y), (¢',¥')) := (,¥’) — (y,2’) and the corresponding
almost complex structure J : R*» — R?" with J? = —Id and ¥J = —J.
Clearly, J yields an identification of R?® with C*. Let Lag(n) denote
the set of Lagrangian subspaces of R?*. It can be identified in a natural
way with U(n)/O(n) with fundamental group m;(U(n)/O(n)) & Z.

We choose Ay, Ao, 1, p2 € Lag(n) such that

(1.1) MNNpj={0}  foré,j=1,2.

Since the symplectic group acts transitively on the space of transversal
pairs of Lagrangian subspaces, we can assume that \; and p, are or-
thogonal. So, JA; = A{" = pup. We represent )\, as the graph of a linear
map A : p2 — A and p; as the graph of a linear map B : A, — uo
with Ao J and J o B symmetric on );. Then the Hérmander index is
defined by

1., —AoJ Id
(1.2) orer (A1, Ag; i, o) = g sien ( Idc> —-Jo B) )

As it stands, the definition does not generalize to infinite dimensions
without regularization. Fortunately, already in Hérmander [11] an al-
ternative description of the Hérmander index was provided by using
the Maslov cycle and the Maslov index. The Maslov cycle M, defined
by A € Lag(n) is the set of Lagrangian subspaces given by

M, = {6 € Lag(n) | 0 X # {0} }.

In general, different A will yield different Maslov cycles as sets. How-
ever, if we consider the Maslov cycle as homology class in the integer
homology in codimension 1, it gives the same class, namely the gener-
ator of

Hﬂ%ﬂ_l(Lag(n); Z)=2Z.
Note that the set
Lag(n) \ My = {u € Lag(n) | u and ) transversal}

is open, pathwise connected and, in fact, contractible because it can be
identified with the space {A: A — A | A = 4}. Finally, we recall that
the Maslov indexr mas ({C(t)}+c;s) for loops in Lag(n) is well defined as
the intersection number with the Maslov cycle. It is independent of the
specific choice of the Maslov cycle and depends solely on the homology
class [C] of the loop.
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Then, let C; : I = [0,1] — Lag(n) \ M,, be a continuous curve
connecting C;(0) = A; with C1(1) = Xy and Cy : I — Lag(n) \ M, a
corresponding curve connecting A; with A; . Then

Proposition 1.1. (Hérmander [11), Section 3.3) Under the transvers-

ality condition (1.1) and with the preceding construction of the curves
C1,Cs we have

onsr (A1, A2; 41, p2) = mas ([C1] + [C2)).

Note. In [11], the transversality condition (1.1) arises naturally when
describing the transition functions of the Maslov line bundle of a La-
grangian submanifold in the cotangent bundle. Another reason for that .
restriction may have been that at that time there did not exist a defi-
nition of the Maslov index for paths. In the next section we shall show
how to get rid of the transversality condition. Le., we establish the
Hormander index for arbitrary quadruples of Lagrangian subspaces in
finite dimensions and prepare the infinite—dimensional case. To this
end we recall the definition of the Maslov index for paths following our
presentation in [2]. :

2. THE MASLOV INDEX FOR PATHS

"The Maslov (intersection) index for paths was introduced in [17] by
J. Robbin and D. Salamon (see also the earlier definition of the Leray
intersection index in the universal covering of Lag(n) given by M. de
Gosson in [9] and the comprehensive study [6] by S. Cappell, R. Lee,
and E. Miller). In [17], the Maslov index for paths was defined un-
der somewhat restrictive conditions, namely only for smooth curves
which have regular crossings with the Maslov cycle. The definition
was re-written and generalized in [2] by the present authors. The new
approach was inspired by J. Phillips, [14]. We shall summarize that
functional analytical definition.

Let H be a real symplectic separable Hilbert space. We denote the
inner product by (-,-), the symplectic form by w(:,), and the corre-
sponding almost complex structure by J, so that w(z,y) = (Jz,y),
J?=-1,and tJ = —J.

Let Lag(H) denote the space of all Lagrangian subspaces with the
topology defined by the operator norm of the projections. If dim ¥ =
+00, it is contractible by Kuiper’s Theorem. For fixed A € Lag(¥)
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we notice that JA = A%, So, any u € Lag(#) can be obtained as the
image of A+ under a suitable unitary transformation

p=U().

Here we consider the real symplectic Hilbert space H as a complex
Hilbert space by the almost complex structure. Note that U is not
uniquely determined by u. Actually, from H = A ® C we obtain a
complex conjugation so that we can define the complex transpose

= T*

and a unitary operator W := U U which can be defined invariantly
as the complez generator of the Lagrangian space u relative to A. We
have

(2.1)
Id + W is a Fredholm operator <= (u, ) is a Fredholm pair.

In particular, we have
(2.2) ker(Id+ W) = (uNA)@C = (uNA) +J(uN A).

For the definition of the space of Fredholm pairs and the characteriza-
tion of Lagrangian Fredholm pairs we refer to the Appendix.

We define the Maslov (intersection) index mas ({4}, A) of the fixed
Lagrangian subspace ) with a curve {u:} of Lagrangian subspaces: Be-
cause of (2.1) we shall assume that the curve {4} stays in the Fredholm
Lagrangian Grassmannian defined by

FLx:={p € Lag(#) | (A, p) Fredholm pair in H}.

Then, in an analoguous way to [14], we count the change of the eigen-
values near —1 little by little. For example, between t = 0 and ¢t = ¢
we plot the spectrum of the complex generator W, close to ei". In gen-
eral, there will be no parametrization available of the spectrum near
—1. For sufficiently small ¢/, however, we can find barriers ™+ and
€™ such that no eigenvalues get lost through the barriers on the
interval [0,#]. Then we count the number of eigenvalues (with mul-
tiplicity) of W; between e and €™ at the right and the left end
of the interval [0,¢] and subtract. Repeating that procedure over the
length of the whole ¢-interval [0, 1] gives the Maslov intersection index
mas ({4}, A) without any assumptions about smoothness of the curve
or ‘normal crossings’ in the sense of [17].

By (2.2), the Maslov index can be considered as the intersection
number between the given curve {u;} and the Maslov cycle

My:={0eFLy|6NX+#{0}}.
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Note that the Maslov index for paths depends essentially on the
choice of the reference Maslov cycle. This dependence is expressed by
the Hormander index. We rewrite Proposition 1.1 in the following way:

Let C : I — Lag(n) be an arbitrary continuous curve connecting A;
with A, and let the curve C; connect A; with A, in Lag(n) \ M,,, and
the curve C, connect A, with A in Lag(n)\ M, as in Proposition 1.1.
By construction, we have mas (Cj, ;) = 0 for j = 1,2. Let us denote
the catenation of two paths by *. Then

mas (Cy x Cy, u1) = mas (Cy * C x (=C) * C1, 1)
= mas ((—C) * C1, 1) + mas (Cp * C, 1)
= mas ((—C) * C1, 1) + mas (Cz * C, ua)
= —mas (Ca /J'l) + mas (07 #2)’
where the last two integers are the Maslov indices of paths. Here, we
exploited the additivity of the Maslov index for paths under catenation
of the paths and the invariance of the Maslov index for. cycles under
change of the Maslov cycle.
The preceding argument gives us the following generahzatlon of the

Hormander index for arbitrary quadruples of Lagrangian subspaces in
finite dimensions:

Proposition 2.1. Let C: I — Lag(n) be an arbitrary continuous
curve connecting Ay with ;. Then the integer

onsr (A1, A2; i, pio) == mas ({C(t)}, p2) — mas ({C(8)}, p1)
is well defined and does not depend on the choice of the curve {C(t)}
joining A to Ag.

Proposition 2.1 suggests a similar definition of the Hérmander index
in infinite dimensions (see below Definition 5.2).

3. THE FREDHOLM LAGRANGIAN GRASSMANNIAN

We shall investigate how the Fredholm Lagrangian Grassmannian
depends on the reference space A. If dimH = 2n < +o00, we have
FL, = Lag(n). In infinite dimensions, FL, is a true subset of Lag(#).
For instance, it does not contain A, but A can be approzimated by a

sequence in FL,. For instance, let A : A — AL = J()) such that
Jo A: X — )issymmetric. Then for all £ > 0,

e = graph(eA) = {z + €Az | z € A}
is a Lagrangian subspace of 7, and we have
pe N A= {0} and p. + A =H.
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Clearly, the convergence y, — A is understood in the sense that the
orthogonal projections m,, of H onto u. converge to the projection my.
Consequently we have

(3.1) X € FLy \ FL.

A partial answer to the problem of A-dependence of FL, is provided
by the following proposition.

Proposition 3.1. (a) On the space Lag(#) an eguivalence relation is
defined by

Arop <= dimA/(ANp) < oo for A\, u € Lag(H).
(b) If X ~ p, we have FLy\ = FL,.

The proof of the preceding proposition is an easy consequence of the
following more general observation:

Lemma 3.2. Let A € Lag(H) and let W C X be a closed subspace of
finite codimension in A\. Then we have

(A, 1) € Fred*(H) <= (W, p) € Fred®(¥)
for any u € Lag(H).

Remark 3.3. Clearly, from the assumptions about W we have that
W is contained in its annihilator W9, that the factor space W%/W is
naturally a symplectic vector space and dim W°/W < +oc.

Proof. The lemma, asserts that
FLyw = {u € Lag(H) | (W, n) € Fred*(H)} = FL,.

Let p € FLyx. We have dimANy < dmW Ny + dimA/W < +oo.
Moreover, W + u C A+ C H. So, A+ p is an intermediate space
between the closed subspace W + i of finite codimension and the whole
space H. So, A + p is closed and dim H /() + p) < +o0.

We prove the opposite inclusion. Clearly,

dmWnu <dimANyp < +oo.

To prove that W + pu is closed in H, we consider the short exact
sequence

0—->An,u—’;->/\@ui>)\+u-——>0,
where j(a) :==a® —a € H x H and 7(a ® b) := a + b. We have
T W4+p)=Weep+iAnpu).

Here W @ p is closed in A & u and j(A N u) is finite-dimensional. It
follows that W + p is closed and of finite codimension. O
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Now the proof of Proposition 3.1 follows at once.

Proof of Proposition 8.1. (a) We prove only the symmetry. Consider
the following diagram

ANp < A = WO

where W := AN p. Then dim(W°/W) = 2k < +o0 if dim A/(A N p) =
k < +oo. Then also dim /W = k. Similarly we prove the transitivity.

(b) We take W := AN p. O

4. THE TOPOLOGY OF THE FREDHOLM LAGRANGIAN
GRASSMANNIAN

Our next goal is to give an elementary proof of the well-known fact
that the fundamental group of FL, is infinite cyclic. This result has
been obtained first by R. Swanson in [18], Theorem 2.1 and Corollary,
for the smaller Grassmannian which is obtained by inductive limit from
the Lagrangians in finite dimension. His proof exploits Palais’ Theorem
on the topology of infinite—-dimensional spaces (see [13]). A different
approach was chosen in Douglas and Wojciechowski [8] (see also Booss
and Wojciechowski [3] and [4] for the non-Lagrangian case) for a Grass-
mannian which consists of all u € FL, such that «, + m differ from
identity by a compact operator. This Grassmannian arises naturally
when one considers self-adjoint boundary conditions for first order el-
liptic differential operators which are defined by pseudo—differential
projections with the same principal symbol as the Atiyah—Patodi-
Singer spectral projection. The proof there exploits the homogeneous
properties of the corresponding reduced groups and quotients.

It follows from Palais’ Theorem, that all the mentioned spaces are
homotopy equivalent. Nevertheless, we find it worthwhile to provide
an explicit and elementary proof for the full Lagrangian Grassmannian
FL,.

We shall rely on a couple of elementary properties of Fredholm pairs
of Lagrangian subspaces in symplectic Hilbert space established below
in Appendix A.

Definition 4.1. Let A be a Lagrangian subspace of a symplectic Hilbert
space H. (a) We shall use the notation C85 for the set of closed sub-
spaces of A of finite codimension.
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(b) Let W € Cf3. We shall use the notation L,y for the set of La-
grangian subspaces of ‘H which contain W.

We shall prove

Theorem 4.2. Let A be a Lagrangian subspace of a symplectic Hilbert
space H.
(a) The inclusions

FLO ={0 e FLy|6NW ={0}} > FL, forWeCH
define an isomorphism
ia;l_—)}%nm(fﬁ@) = m(FLy).
(b) There is a natural isomorphism
T (FLR) = m(Lag(W®/W)) = Z
for each W € C83.
By combining (a) and (b) we obtain

Corollary 4.3. The Fredholm Lagrangian Grassmannian FL) has the
fundamental group
1 (.7: ‘CA) =/

for any Lagrangian subspace A of H.

The proof of Theorem 4.2 will follow from two propositions which
are of independent interest. First we shall show that any path in FL,
is transversal for a suitable choice of a closed subspace W C A of finite
codimension. More generally, we have

Proposition 4.4. Let K C FLy be compact. Then there ezists a
W € C55 such that uN'W = {0} for allp € K.

Proof. Let po € K. Then the sum of the orthogonal projections 7+,
is a Fredholm operator by Proposition A.2 of the Appendix and we have

ker(my + muy) = J(AN o)
by (A.2). Let

b= (J(A n /J,o))-L =X+ (,\l NN uo))*).

Then the operator 7y + m,, is injective on h and its range A + o is
closed. Hence there exists an open neighbourhood U of pg in F Ly such
that m + m, is injective on A for all 4 € K NU. Since K compact,
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a finite set Uy,...,Uy of such neighbourhoods covers the whole of K.
Then

N
W= ((A—n u)tn A)
j=1
satisfies our requirement for suitable choices of u; € U; N K. O

The main technical result of this section is the following one.

Proposition 4.5. Let W be a closed subspace of finite codimension of
a Lagrangian subspace A in a symplectic Hilbert space H. Then the
well-known mapping

pw: FLO o Lag(W/W)
g (W) +w)/w
defines a fibre bundle.

We shall prepare the proof of the proposition by introducing systems
of open neighbourhoods in the total space and the basis.

Lemma 4.6. (a) Let H,\,W as before and let € L.w (see Defini-
tion 4.1). Then

Up = {u€ FLy | pn6 = {0} }
is an open subset of ihe total space .FC%?,) and we have
s 160 € Low) = 7L
(b) Let 8 := /W € Lag(W°/W). Then the set
Us :={L € Lag(W°/W) | LN§ = {0} }

is an open subset of the basis Lag(W°/W) and the union of all such
subsets covers the basis.

Proof. To see that Uy is open, we apply Proposition A.2 of the Ap-
pendix A. So, mg + m, is an isomorphism. Then we have an open
neighbourhood of 4 so that each element in the neighbourhood is in-
vertible.

For given u € F Eg,’,) one finds easily a 6 € Lag(H) with § > W and
6N pu = {0}. That gives the claimed open covering.
In the same way, (b) follows. O

Lemma 4.7. The mapping
pw : Ug — U
18 surjective.
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Proof. First we prove that pw (Up) C Uj. Take p € Up. Then puno =
{0} and p N W = {0}. We shall show that each

(4.1) z€ ((u AWO) + W) /W A 8/W
vanishes. By (4.1), the class z can be written as
o=l +u] =l
where z € pN WO w € W,y € 0, and [-] denotes the class modulo W.
Then
pdz=y+w €0 for suitable w’' € W C 0.
So, z = 0. That implies y € W, so z = 0 as class modulo W.

Next we prove pw(Us) = Up, that is the surjectivity of pw : Ups —
U;. We decompose H into two, respectively four mutually orthogonal
subspaces

H 0 + Jé

(4.2) Wine + W + JWEne) + J(W)

It follows
W= (W)t =WLno+Ww +JWno).

From (4.2) we see that # is the product of two symplectic subspaces,
namely the (infinite-dimensional, if # is infinite-dimensional) symplec-
tic subspace W + JW with, e.g., the Lagrangian subspaces W and JW
and the finite-dimensional symplectic subspace W+ N @+ J(W+ N 6)
with, e.g., the Lagrangian subspaces W+ N@ and J(W+N#). Note that
the smaller symplectic subspace of # is naturally isomorphic with the
factor space WO/W.

Then, let L € Lag(W°/W). It can be identified with a subspace
Lcwtne + JWLng). Then pg := L+ JW is a Lagrangian
subspace of H and we have pw(uz) = L. O

We shall exploit the decomposition (4.2) of H into four mutually
orthogonal subspaces a little further. We prove the following lemma.

Lemma 4.8. Let \,W,0 as above. Let u € Uy. Then there exist linear
mappings

a:JWEne) — wne
y: JWHne) —w
such that each z € uNW?° can be written in the form
z=z+az+yz withz e JWing).
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Proof. Since p intersects @ transversally, there is a map A : J§ — 0
such that A o J self-adjoint on 6 and p = {u+ Au | v € JO}. We
decompose u = z + y with z € J(WL N6) and y € J(W) according to
the decomposition of J@ in (4.2). With regard to this decomposition,

the mapping A can be written as a two—by-two matrix (: 'g) . More

explicitly, we have
Au = az + fy + vz + by,
where
a: JWHNe) — wWtne
B:JW)—W+n4
v: JWENo) — W
§: JW) —W.

We notice that _

(4.3) a0 J, 5o J seli-adjoint, and (B o J) = v o J.

Now, let z € u N WO, It can be written as
z=u+Au=z+y+ar+ fy+yz + dy.

From the decomposition (4.2) it follows that the component y in J(W)
must vanish. So,

z2=z+ar+ vyz.
O

Corollary 4.9. Let \,W, 6 as above. Let p={u+ Au|u € J8} € Uy
with A = (: g) relative to the decompositions J§ = J(WL N 6) +

J(W) and § = WL n@ + W. As before, we identify W°/W with
WLno+ JWLn6). Then

(4.4) pw(p) = {z+az |z € JWLnH)}.

In particular, two u, ' € Uy belong to the same fibre, i.e., pw(u) =
pw (') if and only if a = o'.

We are ready to prove Proposition 4.5.
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Proof. We define a local trivialization by the following diagram:

Us x F - Us
(4.5) P\ 4 pw
Us

Here, p denotes the projection onto the first component. We take
F = B(JW,W* N 6) + B, (JW, W)

where B(JW, W+ N 8) denotes the vector space of bounded operators
from JW to W+n#@ and Bs,(JW, W) the vector space of bounded oper-
ators from JW to W which become self-adjoint on W by combination
with J. For a footpoint L € Uy and a point in the fibre (3,6) € F, we
define

7(L; 8,0) = {u+Au| A= (3: g) , u € J6},

with the decomposition J§ = J(WL N @) + JW}. The operator o :
J(W+Nn6@) = Wineo with ar, o J self-adjoint is uniquely determined
by the condition

L={z+or(z) |z € JWLna)}

(see Corollary 4.9). As a consequence, we get 7 surjective and injective.
By definition of oy from L we get the commutativity of the diagram
(4.5). O

Now we put the various pieces together.

Proof of Theorem 4.2. To get the inductive limit right, we consider two
spaces W, W € C% with W c W. So

.F;CW = f[,w = f[.,\
and
FLY ¢ FLY € FL,.

Recall that £, denotes the set of Lagrangian subspaces of { which
contain W. Clearly we have an isomorphism

L,w — Lag(W°/W)
0 - 6/wW
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and a corresponding isomorphism for W. Nowlet C: I — F Ly be a
curve which is transversal to W. So, it induces a curve ' : I — F )Cg‘],)
Then we have the following commutative diagram

I —C—-) fﬁ,\

c’ Tu

0 0
FLy  —  FLY

(4.6) pv;v | e
Lag(W°/W) —— Lag(W°/W)

~ .
9 [=

E*W —_ £>"W" .

By (4.6), the mapping‘
ind-limm, (FLY) — m(FLy)

is well defined and 1n3ect1ve By Proposition 4.4, it is surjective. That
proves (a).

To prove (b), we consider the exact homotopy sequence for the fibre
bundle py : FLY — Lag(W°/W)

m(F) —— m(FLY) — m(Lag(W°/W)) —— mo(F)

and notice that F is a vector space, hence contractible. O

5. THE HORMANDER INDEX IN INFINITE DIMENSIONS

Let H be a symplectic Hilbert space and )\, u € Lég(’H). We assume
that A ~ y, ie., dimA/(ANpu) < 400. So FLy=FL,. Let C: I —
F L)y be a continuous curve. Then the difference

(6.1) mas (C, p) — mas (C, )

depends solely on the endpoints of the curve C. Indeed, let C : I —
F Ly be a second curve connecting C(0) and C(1). We consider the
closed path —C % C. Recall that * denotes catenation under suitable
re-parametrization of the paths. For loops, the Maslov index does
not depend on the choice of the Maslov cycle. That is an immediate
consequence of Theorem 4.2,
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More precisely, the central part
" @ ©

.| I
Lag(W°/W) —— Lag(W°/W)

of the commutative diagram (4.6) yields a finite—dimensional symplec-
tic reduction: it permits to express the Maslov index for loops in the
Fredholm Lagrangian Grassmannian by the Maslov index of the corre-
sponding loop of Lagrangian subspaces of a suitable symplectic vector
space of finite dimension. But for finite dimension, it is well estab-
lished that the Maslov index for loops is independent of the choice of
the Maslov cycle.

Remark 5.1. The finite-dimensional symplectic reduction works also

for paths. Let C : I — FL, and W € C83 such that rangeC' C fﬁg’,) .
So,

I
i1C

LagWo/w) &~ 79 & Fr,
Then we have the following commutative diagram
[, 7. = [I,FL)
ow- | |mascw

[I,Lag(W°/W)] ——— Z

Here [,-] denotes the homotopy classes of mappings with fixed end-
points.

We return to our argument about the Maslov index of cycles. So
mas (—C *C, \) = mas (—C *C, ). By additivity under catenation it
follows that (5.1) is, as claimed, invariant under any change of C which
keeps the endpoints fixed. So:

Definition 5.2. The Hormander index
(52) OHér (C(O)) C(l); )‘1 /“‘) =mas (C’ lL) — mas (Ca ’\)
is well defined.

The following elementary properties of the Hormander index follow
immediately from the definition.




SYMPLECTIC FUNCTIONAL ANALYSIS 17

Proposition 5.3. The Hérmander indez is skew-symmetric in its first
two arguments and also in its last two arguments.

6. AN EXAMPLE

To give an example, we relate the spectral flow and the Hormander
index in the following way. We recall Krein’s construction of the space
of abstract boundary values for closed symmetric operators. That space
carries a natural symplectic structure as pointed out in [2].

More precisely, let H be a real separable Hilbert space and A a
(unbounded) closed symmetric operator defined on the domain Dp;n
which is supposed to be dense in H. Let A* denote its adjoint operator
with domain Dy,,. Clearly, we have A*|p_,, = A and A* is the maximal
closed extension of A in H. For a better understanding one may think
of A as an elliptic symmetric differential operator of first order on a
- compact smooth Riemannian manifold X with boundary. (See also the
following sections where a variety of concrete settings will be discussed).

For a given symmetric A we want to discuss all self-adjoint exten-
“sions according to the von Neumann approach. To this end, we form
the space B of abstract boundary values with the abstract trace map v
in the following way: ' '

Dmax 5 _Dmax/Dmin =: B
T ~  v(z) =[z] ==+ Dmin

The space B becomes a symplectic Hilbert space with the scalar prod-
uct induced by the graph norm '

(.’L’, y)g = (IL‘, y) + (A*EaA*y)
and the symplectic form given by Green’s form
w([z], [y]) := (A"z,y) — (z,A"y)  for [z],[y] € B.
For Dy C D C Dyyay We set
Ap = A%p

and get , ’

Ap closed <= (D) closed

Ap self-adjoint <= (D) Lagrangian

Ap has compact resolvent <= D — H compact in graph norm.

Definition 6.1. We deﬁné the abstract Cauchy data space as subspace
of B by
v(S) with S :=ker A*.
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We make two assumptions.

Assumption 6.2. First, we assume that A admits at least one self-
adjoint Fredholm extension Ap. Actually, we shall assume a little more,
namely that A has a self-adjoint extension Ap with compact resolvent.

Then it follows (see [2], Proposition 3.5) that v(S) is a (closed) La-
grangian subspace of B and (y(S),v(D)) is a Fredholm pair of sub-
spaces of 3. In particular we have v(S) € FL,(p). ’

Assumption 6.3. Second and additionally, we assume that we are
given a continuous curve {C;} in the space of bounded self-adjoint
operators on # and that the operators A* + C; — s for small s have no
‘inner solutions’, i.e. satisfy the abstract unique continuation property

ker(A* + C; — s) N Dy = {0}.

Clearly, the domains Dy, and Dy, are unchanged by the perturba-
tion C; for any . So, B does not depend on the parameter ¢. Moreover,
the symplectic form w is invariantly defined on @ and so also indepen-
dent of t. It follows (see [2], Theorem 3.9) that {v(S:)} is continuous
in FLyp).

With that, the family {Ap + C:} can be considered at the same
time in the symmetric category, defining a spectral flow, and in the
symplectic category, defining a Maslov index. Under the preceding
assumptions the main result obtainable at that abstract level is the
following abstract spectral flow formula (proved in [2], Theorem 5.1):

Theorem 6.4. Let Ap be a self-adjoint extension of A with compact
resolvent (according to Assumption 6.2) and let {Ap + C;} be a family
satisfying Assumption 6.3. Then

sf{Ap + C;} = mas (7(S:),v(D))-

The famous Agranovié-Dynin Theorem of index theory expresses
the difference between two indices of the same elliptic operator over
a manifold with boundary but with different boundary value condi-
tions by the index of an induced operator living on the boundary (see
e.g. Booss-Bavnbek and Wojciechowski [4]). For families we obtain a
similar formula which involves the Hérmander index.

Let Dy € D, D' C Dgay be two domains such that both {Ap +
C:} and {Ap + C;} become families of closed self-adjoint Fredholm

operators. Then, in particular, the two spectral flows sf ({A p+ C’t})
and sf ({ADr + Ct}) are well-defined integers. We are interested in
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the error when replacing one domain D by another one D’. From
Definition 5.2, the following theorem follows. It expresses this error by
a corresponding Hérmander index.

Theorem 6.5. If
dim y(D)/v(D) N vy(D') = dimy(D')/v(D) N y(D') < +o0,
then

sf ({AD + Ct}) —sf ({AD' + Ct}) = amsr (7(S0), Y(S1); Y(D), ¥(D")).

Remark 6.6. (a) If there exists a domain D’ such that sf ({AD/ +
C’t}) vanishes, the preceding formula gives without any calculation

the qualitative information that sf ({AD + C’t}) only depends on the

Cauchy data at the endpoints of the curve.

(b) If the family {C.} is a loop, then the Hérmander index vanishes and
we obtain under the assumptions of Theorem 6.5, not very surprisingly,
that the spectral flow does not depend of the choice of the domain.
Actually, it must vanish by topological considerations. -

7. GENERAL BOUNDARY DATA AND CAUCHY DATA SPACES
IN DISTRIBUTION SPACE

We shall apply the abstract spectral low formula of Theorem 6.4 to
the concrete situation of elliptic differential operators of first order over
Riemannian manifolds. We begin by describing the embedding of the
space B of abstract boundary data in a distribution space.

Throughout this section, M denotes a fixed smooth compact con-
nected Riemannian manifold of dimension m with boundary M = X.
We shall work in the real category. So, let E — M be a smooth real
vector bundle over M of fibre dimension n. We fix the volume element
on the manifold and the inner product in the bundle. We consider a
symmetric linear elliptic differential operator of first order,

A:C®(M;E) — C*(M;E).

To be precise, the space C*®(M; E) consists of sections of the bundle
E which are smooth in the interior M® = M \ T and can be extended
smoothly in a neighbourhood of M, when M is embedded in an open
manifold M' O M and E the restriction of a smooth vector bundle
E' — M'. Let

CP(M;E) := {u € C*°(M;E) | suppu C M°}
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and let H*(M; E) denote the Sobolev space of order s € R.
Recall that A symmetric means that the operator

Ay = Ang"(M;E) : CSO(M,E) — L2(M; E)
is densely defined and symmetric in Ly(M; E).

Example 7.1. Let E — M be a bundle of Clifford modules with Clif-
ford ‘multiplication ¢ and compatible connection V. Then the corre-
sponding Dirac operator (considered as a real operator) satisfies our
assumption.

Definition 7.2. We define

Apin 1= A4, the minimal closed extension of Ay,
Amax = (Ag)* the adjoint of A,.

Clearly, Amax is the maximal closed extension. We have
AO - Amin C Amax
with

Dain = dom(Aniz) = (M3 B). = CR (M E) )

and

Doy := dom(Apax) = {u € Ly(M; E) | Au € Lo(M; E)
in the sense of distributions}.

Here the superscript G means the closure in the graph norm which
coincides with the 1st Sobolev norm on C§°(M; E). In the same way,
the superscript H!(M; E) means the closure in the first Sobolev norm.

Remark 7.3. We shall emphasize that on a closed manifold X any
symmetric differential operator A is essentially self-adjoint. So, there
is only one self-adjoint L,(X; E') extension Ap of A. For an operator of
first order, this extension is given by the domain D := Dpy = Dyax =
HY(X;E). In this case, the graph norm and the 1st Sobolev norm
coincide on H'(X; E) by the a priori estimate

(7.1) lully < € (1 4ullo + llulls) ~ for all u € D.

We return to our compact manifold with boundary. We describe
the space B of abstract boundary data (introduced in Section 6) as a

subspace of the distribution space "%(Z‘; E|s). We recall
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Proposition 7.4. Let u € Ly(M; E) and Au € Ly(M; E) (where Au
is defined in the distributional sense) Then the trace v(u) on T is

well defined as an element in H~3(%; E|sg). Moreover there exists a
constant C independent of u such that

(7.2) Ilv@)li—g < C(llAullo + lulo)-
In particular we have a bounded operator
(7.3) Y : Doy — H™3(S; Elg).

Proofs can be found e.g. in Booss—Bavnbek and Wojciechowski [4],
Theorems 13.1 and 13.8 for our situation (A is of order 1) and in
Hormander [10] in greater generality (Theorem 2.2.1 and the Estimate
(2.2.8), p. 194).

Remarks 7.5. (a) According to Proposition 7.4, there is a natural
bounded embedding

i:8— H™(S;Els)

with i(3) dense i in H~%(Z; Elg) since i(8) D C®(T; Els). Note that
the whole space Hz (Z; E|z) belongs to z(,B) because H(M; E) C Dpax
and the restriction vy : H'(M; E) — H%(Z; Ely) is surjective. Hence
H#(S; Els) < i(8) = H™(S; Ely).
Also the left inclusion is dense. To see that, we recall from Ralston
[16], Remark 2.1 and Remark 2.2 that there always exists a self-adjoint
extension Ap with domain D c H'(M; E). Now, v(D) is a Lagrangian
subspace of @ (see the reference given in Section 6 after Assumption
6.2) and (D) C y(H'(M;E)) C B. So, the space v(H'(M;E)) is
coisotropic in 8. By Green’s formula we can show that the annihilator
v(H'(M; E))® = {0}, so v(H'(M; E)) is dense in @. This implies that
H%(Z; Els) = i o y(H(M; E)) is dense in i(8).
(b) The embedding 7 is not surjective, and the topology of B is stronger
than the topology of H~%(Z; Els).
(c) On the function subspace i(8)N L, (Z; E|5) of the distribution space
i(B), we can describe B8’s symplectic form w explicitly by

w(y(u), 7(v)) = (A%, v) — (u, A*v)
= fz (01(A) (z, dr) o i 0 y(u)(z), i 0 ¥(v)(x)) dxz

for i 0y(u),307(v) € i(B) N Ly(Z; E|g), where o;(A) denotes the prin-
cipal symbol of A and 7 the inward normal variable. So, o1(4)(z, dr)
with € ¥ defines the almost complex structure on 8.
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(d) Clearly, Dy is something between H!(M; E) and Ly(M; E). For
dim M > 1, the Hilbert space H'(M; E) is a proper subspace of Dpay.
(See also our cylinder calculations below in Example 7.16). Also, see
this Remark (a), it is dense in Dpay in the graph norm. Consequently,
the 1st Sobolev norm and the graph norm do not coincide on H'(M; E).
In that respect, the case of a manifold with boundary differs radically
from the case of a closed manifold discussed above (where the two
norms are equivalent).

Example 7.6. There are interesting subspaces of H!(M; E) where the
graph norm and the 1st Sobolev norm do coincide. Consider, e.g. the
self-adjoint Fredholm extensions which are provided by the following
setting. Let R be a pseudo—differential operator over ¥ of order 0
satisfying suitable conditions (see, e.g., [4], Chapter 18). Then we have
an estimate of the form

(7.4)

lulls < € (Il 4wllo + llullo + 1R 0 50 1(w)ly ) for u € H'(M; B),
and defining a domain by
(7.5) D:={u€e HY(M;E)| Roio~y(u) =0},
we obtain a self-adjoint operator Ap = A*|p. On the domain we have
an a priori estimate

(7.6) llulls < € (ll4ullo + llullo) for u € D,

and so the equivalence of the graph norm and the first Sobolev norm
follows on the space D.

More generally, we have

Proposition 7.7. Let D C HY(M;E) and let Ap denote the corre-
sponding Lo—extension A*|p. If

it D is closed in H*(M; E), and

ii: Ap is self-adjoint in Ly(M; E)
then the graph norm and the 1st Sobolev norm coincide on D and Ap :
D — Ly(M; E) is a Fredholm operator with compact resolvent.

The proposition is proved by making use of the Open Mapping The-
orem.

Note. Assertion (i) does not follow from assertion (ii). Neither does it
follow from (i) alone that Ap is a closed operator in H := Ly(M; E).
The reason is that Ap is closed, if and only if D is closed in Dp,y in
the graph norm.
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We have to be careful: On one side, not any arbitrary closed subspace
of HY(M; E) is closed in Dpax in the graph norm. On the other side,
there exist many closed subspaces of H!(M; E) which are also closed
in Dpay in the graph norm, but dense in Ly(M;E). Take, e.g., the
domain D of (7.5) in Example 7.6 which is defined by a certain type
of pseudo—differential projections over the boundary. Then it is well
known that Ap is a closed extension of A (see e.g. Booss—Bavnbek and
Wojciechowski [4], Lemma 20.1).

The following lemma is well known (though in different and in the
view of the present authors not always completely correct formulation)
and can be proved in different ways (e.g. [4], see also [2]).

Lemma 7.8. Let v : Dyax — B denote the canonical projection of
Doy onto the factor space B. Let v(S) denote the Cauchy data space
defined by S := ker Amax. Let D C Dpax be chosen as in Proposi-
tion 7.7. Then the pair (v(S),¥(D)) is a Fredholm pair of Lagrangian
subspaces of the symplectic Hilbert space 8.

Clearly, Dyax and Dy, are C®(M)-modules, and hence we have
Lemma 7.9. The space B is a C*°(Z)-module.

‘Remark 7.10. The preceding lemma shows that 3 is in the following
sense local: If ¥ decomposes into r connected components & = ¥, U
---U %, , then B decomposes into

A= @ B;
where

B; = 7({u € Dpax | suppu C .NJ}),

with a suitable collar neighbourhood A of £;. Note that 3, is also a
symplectic subspace of 3.

Let OM = X consist of more than one connected component and
let £o Uy = X be a disjoint closed partition of £. Let B8 = 8, x
B, denote the corresponding decomposition of the symplectic Hilbert
space 3. Assuming a slightly sharpened unique continuation property,
namely that we have unique continuation of any solution from any
single connected component of the boundary (and not only from the
boundary as a whole as required else in this article), we obtain an
interesting description of the Cauchy data space v(S) in the product
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space B, X B,: it is transversal to the factors B, x {0} and {0} x
By; its images m;(7v(S)) C B; under projection are dense; and it can
be represented as the graph of a densely defined closed operator T :
m(¥(S)) = By. |

More precisely and more generally, we consider two symplectic Hilbert
spaces {H;, wi, Ji, (+,")i}i=01 and construct the product space H =
H, x H; with the symplectic form

Q(z,y), (=, ¢)) = wo(@,2") + w1y, ¥).
Let A C H be a Lagrangian subspace and
mo()) := {z € Hy | 3y € H; such that (z,y) € A}.
We make two assumptions,
1. A N Hp x {0} {0};
2. A n {0} x H, {0}.

From (2) we have an operator T) : mo(A) — H; such that A becomes
the graph of T} .

Lemma 7.11. The space mo()) is dense in Hy and so Ty is a densely
defined closed operator.

Proof. Let a L mo(A). Then
Q((Ja,0), {z,9)) = wo(Ja,z) = —(a,z)o =0 for all (z,y) € A.

Hence (Ja,0) € ), and by assumption (1) this implies a = 0. It follows
that 7o()\) is at least dense. |

We can give a more precise description of the embedding of B in the
distribution space H~2(X : E|s) under the following assumption.

Assumption 7.12. We assume that the operator A can be written in
the form

(7.7) Al =o(5 +B)

in a collar neighbourhood NV in M of the boundary £. Here 7 denotes
the inward normal variable, the collar N is identified with [0, ) X Z, the
bundle E|,«s is identified with E|z. Moreover, ¢ is a unitary bundle
endomorphism of F|x and B a self-adjoint elliptic differential operator
of first order acting on sections of E|x over X.

This assumption shall be made in the rest of this section. It is
satisfied for operators of Dirac type if all structures are product near
the boundary.
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‘Let {¢k, Ax} be a spectral resolution of L»(X) by eigensections of B.
(Here and in the following we suppress mentioning the bundle E).

Assumption 7.13. For simplicity we assume ker B = {0}.

Then

(7.8)

{Bwk = \es forall k € Z\ {0},
Ak=—X, 0(pr) = -k, and o(p—k) =—pr fork>0.

Example 7.14. A prominent self-adjoint Fredholm extension of A is
given by posing the so—called Atiyah—Patodi-Singer boundary condition

(7.9) Dyps = {u € H'(M) | I (ulg) = 0}.

Here ITI., denotes the pseudo—differential operator of order 0 which acts
like the orthogonal projection of L2(X) onto the subspace spanned by
the eigensections corresponding to the positive eigenvalues. Clearly

R
(7-10) 'Y(Daps) = [{on}k<0] . _
(For easier presentation we do not write the symbol i for the embedding
of B into H-3(X)).

We shall describe the space of abstract boundafy data as a ‘graded’
subspace of the distribution space H~2(E). '

Proposition 7.15. We have

NU—Y SE—"
B= [{‘Pk}k<0]H " e [{<Pk}k>o]H @ v
Note that the decomposition of @ into a H3 (E)-part and a H~2(Z)-
part is not unique. Here we have chosen a partitioning of the eigenval-
ues at zero. But any other partitioning with one accumulation point
at —oo and one at +o0o would do. The difference between the various
representations, however, is only finite-dimensional.

S— L
Proof. Let u € [{(pk}k>o]H (E), ie.
u= Zakcpk with Z|ak|2//\k < 0.
k>0 k>0

On the neck N we consider the section

U(r,y) =) ake™ @ px(y).
k>0
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Then
—-ZAkE

@0 < Ylasl? [ e ar= Yl i " < Ly~ leef

k>0 0 £>0 k>0 Ak

So, u € Ly(N) and Au = 0. We choose a smooth cut—off function x
with support in the neck A'. Then xu € Ly(M) and v(xu) = u. So we
have that

T H (D) _1
Kocdod . cBCH(E).

As noticed before in Remark 7.5.a, we know that the whole space
H3(X) is contained in 8. It remains to show that the spaces

7 (x) 2 (%)

A = [{x }r<o] and  p:= [{@r}r>0)
span the whole 3. By Lemma 7.8, A is a Lagrangian subspace of 8. By
definition, y is closed in H~3 (X). Btg— H -3 (¥) is continuous, so u
is closed in B. By (7.8) that implies o(1) = y()). As noticed in Remark
7.5.c, our o yields the almost complex structure on B. So, u = o(}))
and p must be Lagrangian subspace of 3. Hence, 8 = A @ u. O

Example 7.16. Based on the preceding embedding of @ in the distri-
bution space 'l(Z) we shall explain the embedding of the Cauchy
data spaces. An instructive example is provided by the cylinder M =
IXZ‘WlthI—[Ol]andaM—-—ELIE ELetE—)Ebea.real
vector bundle and define E := 7n*E where 7 : I x £ — £ is the natural
projection. Let A = o( gr + B). Here 7 denotes the variable running
in I, B is a self-adjoint elliptic differential operator acting on sections
of E over &, and o is a skew—symmetric bundle endomorphism which
is an anti-involution and anti-commutes with B.

For simplicity, we assume that B is invertible. Let {¢x} denote the
system of eigensections with corresponding eigenvalues {\;} . We have
the same relations as listed in (7.8) (be aware, though, that our present
B is only defined over one component of the boundary, namely S and
not over the whole boundary —$ U £).

As explained in Remark 7.10.a, the space of boundary data splits
B = B, x B, and we have by Proposition 7.15 (notice the reversed
orientation at the ends)

—_— g5
By = @etecl | )

e 165)

Br = [{¥x}r<o]

%)

® [{wr}r>ol
® [{x}r>0]

and
H%(z)
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We shall characterize the Cauchy data space v(S%!) with SV :=
ker A*. Let u € SY, so u € Ly(M) and Au = 0 in the distributional
sense. Then u must take the form

u(r,9) = ) are ™ ® pi(y),
k#0

and u € Ly(M) implies
1 1— e 2
(7.11) S Jasf? / e dr = Y a1 ¢ 1o
k£0" 0 k£0 2Mk

We consider the distribution v := y(u) = (v, v;) € 8,88, ¢ H ‘%(f)) X
~2(£). We have

V=) akpr+ Y apr = vy + 5,

k<0 k>0
with coefficients satisfying conditions equivalent to (7.11). So
112 Yl d Y lal?/A
. ag < +4+00 an aj <+
| Ak

k<0 k>0 :

It follows from the estimates that v; € C°(%) and v§ € H -3(5).
One notices that the preceding estimate for the coeflicients of v, is
stronger than the assertion. that >, _,|ak|*|\¢]Y < +oo for all natural
N. So, our estimates conﬁg\m that not each smooth section can appear
as initial value over {0} x ¥ of a solution of A*u = 0 over the cylinder.
Similarly, we see that v, is written as ' :

=) ae o= ae o+ Y ae ™ o = o7 +of
E#£0 k<0 k>0
with v7 € H~3(Z) and vf € C=(5).

It follows that the Cauchy data space y(S%!) can be written as the
graph of an unbounded, densely defined, closed operator 7" ; dom T —
Bi, mapping vo — v; with domT C B,. (See also Lemma 7.11).

Without proof we mention that, moreover,

(7.13) (S N v(Dg) = {0},
where Dg{,‘s denotes the corresponding Atiyah—Patodi-Singer domain.

Note that the Hz(X)-part of v(S) is not closed in Ly(T) because of
the condition (7.12), left side, on the coefficients. Hence, v(S) N Ly(Z)
is not closed in Ly(Z) (recall T = - U ).
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Remark 7.17. (a) We can easily drop the Assumption 7.13: For sin-
gular B, we notice that ker B is finite-dimensional and has a symplectic
structure. So any decomposition of ker B into two complementary La-
grangian subspaces u_, 44 permits to carry through all the preceding
arguments about the splitting of 3 when we add . to the linear closure
[{@x}rsals and p_ to [{@r}rco]-

(b) For a related investigation of 3 in the cylinder case see also Briining,
Lesch [5].

8. GENERALIZED YOSHIDA-NICOLAESCU FORMULA IN H -3(2)

In the preceding section, we have seen how to embed the space 3
of abstract boundary data into the distribution space H~%(E) in the
concrete situation of a symmetric elliptic differential operator A over
a compact connected smooth Riemannian manifold M with boundary
.

Now we must discuss the Assumptions 6.2 and 6.3 for establishing
concrete versions of our abstract spectral flow formula.

Assumption 6.2 demands that A admits a self~adjoint ‘elliptic’ bound-
ary condition in the sense that a domain D C Dy, exists with (D) La-
grangian subspace of the symplectic Hilbert space 3 of abstract bound-
ary data and that Ap := A*|p has a compact resolvent. Hence the
operators Ap + C; are self-adjoint (unbounded) Fredholm operators,
where {Ci}icr is a continuous family of symmetric bundle homomor-
phisms.

Additionally, we shall assume D C H}(M),.

Definition 8.1. In the following, domains which satisfy Assumption
6.2 and belong to H'(M) will be called general self-adjoint elliptic
boundary conditions.

Many examples of such domains are given in Booss-Bavnbek and
Wojciechowski {4] with emphasis on domains defined by pseudo—differen-
tial projections P over the boundary which have the same principal
symbol as the Atiyah-Patodi—Singer projection and satisfy the sym-
metry relation o(Id — P)o* = P (see the Examples 7.6 and 7.14).
Below we will meet, however, also general elliptic boundary conditions
which are of different type, namely relating data from different con-

nected components of the boundary pointwise and hence they are truly
global.

Assumption 6.3 requires that all operators A + C; — s (for small |s|)
satisfy the unique continuation property ker(A* +C;— s) N Dy, = {0}.
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As discussed in the preceding section, we have

ST oA (M)
Dia = C(MN\ D) " = H)(M\Z).

So, Assumption 6.3 requires that any solution which vanishes on the
whole boundary vanishes on the whole manifold. For first order elliptic
operators on connected manifolds this follows from the weak unique
continuation property (if satisfied), namely that any solution, which
vanishes on an open subset, must vanish on the whole connected com-
ponent of the manifold. As shown in Pli$ [15], that property is not al-
ways satisfied. However, if A is an operator of Dirac type, also A+C;—s
is such an operator. For all such operators the weak unique continua-
tion property is proven in [4]. More generally, it is shown there that any
elliptic operator of first order with self~adjoint ‘tangential’ operator up
to a perturbation of order 0, satisfies the weak unique continuation

property.

Assumption 8.2. In the following we shall restrict ourselves to elliptic
differential operators of the form A + C; which satisfy the weak unique
continuation property.

Let 7(S;) denote the abstract Cauchy data space of the operator
A + Cy, where S; := ker(A* + C;). Theorem 6.4 (for details see [2])
yields at once

Theorem 8.3. Under the preceding assumptions the spectral flow of
the family {Ap + C;} is well defined. Moreover, the family {v(S;)} is
a continuous curve in the Fredholm Lagrangian Grassmannian FL.p)
and we have

(8.1) sf{Ap + C;} = mas ({7(St)}) ’Y(D))-

We have two corollaries for the spectral flow on closed manifolds with
fixed hypersurface. The first corollary treats the case of a separating
hypersurface, the second the case of a non-separating hypersurface.
Both cases shall be reduced to the situation of the preceding theorem
by cutting the manifold along . Then we receive a manifold with two
isometric boundary components in both cases.

First, let M be a connected partitioned manifold M = M_ Us M,
with ¥ = M_NM, = OM_ = 0M,. Let A be a symmetric ellip-
tic differential operator of first order over M acting on sections of a
bundle E and let C; be a continuous family of symmetric bundle en-
domorphisms. Let A, denote the restrictions of the operator A to
the part manifolds M, with the minimal domains D, , the maximal

min?
domains D, , and corresponding abstract boundary data spaces B
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and projections 74 : Dpmax — B . We assume that the (weak) unique
“continuation property ker(A3 + C;) N DZ, = {0} is satisfied on each
part manifold.

Let My denote the compact manifold M_LUM, = M\ T U (—ZUZ)
with boundary My = OM_ UOM, = -Z U T and let A; denote
the induced operator over My with minimal and maximal domains
D!, D! and abstract boundary data space 8. Fixing the sepa-
rating hypersurface ¥ induces a decomposition Ly(M) & Ly(M_) &
Lo(M). Correspondingly we obtain

D gnin

= D;ﬁn ® D:n and Dfnax = D;m.x ® D:max
for the minimal and maximal domains of 4y and

B' =D} /Dhy % D, /Dy ® D, /DY & B @ B

mi

Similarly we have a decomposition of the Cauchy data space
v(ker(Af + Ct)) = v-(ker(A~L + Cy)) ® 74 (ker(4% + Cy)) .

Over the manifold M; there is a natural self-adjoint general elliptic
boundary condition (in the sense of Definition 8.1) for A; defined by
the pasting domain

(8.2) D' :={u € Dl | i ov-(u) =iy 0 v, (u)},
where iy : 8% < ‘%(2) denote the inclusions.

Lemma 8.4. The pasting domain D' C D! __ over the cut manifold

My can be naturally identified with the 1st Sobolev space H'(M) over
the underlying closed manifold.

Proof. We sketch only the proof. So, let u, Ayu € Ly(My). By localizing
in a bicollar neck /' = [-1,1] x £ of £ in M and explicit calculation
of the Green formula we find for each v € C°(N)

(Au,v) = 21_1)1(1){//\//_15 ((Au)(r, 7), v(7, z))d7 dsz

[ (407, 2), (7, ) s}
= ... = (u, Av).

Since there are no other terms we conclude uly € HL_(N), hence
u € HY(M). O
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Since A is elliptic of first order, we can identify D! with the 1st
Sobolev space H!(M). Because the Sobolev restriction map

v: H{(M) - H3(Z)
is surjective we obtain '

V(DY) = {(7-(u), 7+ (w)) | uw € H'(M)}
= A(H(Z) x Hi(D)) = H (D),

where A denotes the diagonal in the product space. Of course, the H -
diagonal A := A(H%(Z‘) x H? (£)) is not closed in H-3(Z) x H™%(%)
but it is closed in the symplectic Hilbert space B* which is a subspace
of H-2(X) x H-%(X) (as discussed in the preceding section).

With all these notations we can rewrite the preceding theorem for
the particular manifold My with boundary and obtain

Corollary 8.5. (Spectral Flow Formula of Yoshida—Nicolaescu Type
for Partitioned Manifolds) Let A be a symmetric elliptic differential
operator of first order acting on sections of an Euclidean bundle over
a closed connected Riemannian partitioned manifold M = M_ Us M,
with ¥ = M_ N My = OM_ = 0M,; . Let {Ci} be a continuous .
curve of symmetric bundle endomorphisms such that the weak unique
continuation property is satisfied for each A + C; — s with small |s|.
Then we have

(8.3) sf{A+ C;} = mas ({1-(S]) ® 1+(SH)}, 4) ,-

where S := ker(A} + C;), v+ denotes the projections from DZ,,
onto B* C H-%(%), and A denotes the diagonal in the product space
Hi(Z) x Hi ().

A second corollary of Theorem 8.3 is obtained when the hypersurface
¥ does not separate M. We assume that the normal bundle of I is
oriented. We cut the manifold at ¥ and attach a copy of £ at each
side. So, we obtain a new manifold

My=M\ZU(-Z)uU X

with boundary (—X) U X. For the induced operator Ay + C; over M
we find that the minimal and maximal domains do not split in product
form. However, the space of boundary data, being a C*°(9My)-module
splits into 8" = B~ @ B with the projections 7. : Dmax — 8% and the
inclusions iy : B* < H~%(X%).
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Over M; we specify the domain

D" := {t € Dimax | i- 07-(u) =14 0 74 (u)},

which can be identified with H*(M) (c.f. Lemma 8.4) and defines a
general elliptic boundary condition in the sense of Definition 8.1.

Notice that the Cauchy data spaces -y (ker(Ag + C’t)) do not split

(see Remark 7.10 and Example 7.16).
With all these notations we can rewrite the preceding theorem for
the particular manifold My with boundary and obtain

Corollary 8.6. (Spectral Flow Formula of Yoshida-Nicolaescu Type
for Non-Partitioned Manifolds) Let A be a symmetric elliptic differen-
tial operator of first order acting on sections of a bundle over a closed
connected Riemannian manifold M. Let ¥ be a hypersurface with ori-
entable normal bundle. Let {C;} be a continuous curve of symmetric
bundle endomorphisms of E over M such that the weak unique contin-
uation property is satisfied for each A + C; — s for small |s|. Then we
have

(8.4) sf{A + C;} = mas ({%(S)}, ),

where S} = ker(Ay + Ci), w = (7-,7+) denotes the projection from
DL, onto B' = B~ @B Cc H-3(Z) x H-3(X), and A denotes the
diagonal in the product space H3 (L) x Hi(Z).

The Maslov indices in our formulas (8.1), (8.3), and (8.4) are defined
in the distribution space H~%(Z) because the boundary data and in
particular the Cauchy data spaces naturally belong there. We shall now
give a general existence theorem for a finite-dimensional symplectic
reduction of the key formula (8.1) of Theorem 8.3. The reduction
permits the calculation of the spectral flow via the Maslov index in
function spaces over the hypersurface.

As in Theorem 8.3, we consider a symmetric elliptic differential op-
erator A of first order acting on sections of a bundle E over a compact
connected Riemannian manifold M with boundary ¥ and a continuous
curve {C;} of symmetric bundle endomorphisms of E over M. More-
over, we fix a domain D C H'(M) which defines a general self-adjoint
elliptic boundary condition (i.e., Ap := A*|p has a compact resolvent,
or, equivalently, the a priori estimate (7.6) is satisfied on D). Finally,
we assume that the weak unique continuation property is satisfied for
each A + C; — s for small |s|.
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Theorem 8.7. (a) Under the preceding assumptions, .there ezists a
subspace W C D such that v(W) is a closed subspace of y(D) of finite
codimension which intersects all Cauchy data spaces y(S;) transversally
and with annihilator y(W)? belonging to the function space Hz (2) (un-
der the embedding i : B — H~%(E)).

(b) Moreover, we have

(8.5) sf{Ap + C,} = mas ({x(5,)},7(D))5.

_ Here S; := ker(A4* + Ct), 7 : Dmax — B denotes the projection, and
B denotes the finite-dimensional symplectic vector space v(W)° /(W)
with A := pyw)(A) for A € B where

pyw) : A — (ANY(W)°) + 4(W)) [v(W)

denotes the finite—dimensional reduction F sz)w) — Lag(ﬁ), discussed
in Proposition 4.5.

Proof. 'To begin with, we fix a parameter ¢t € I and write for a moment
shorthanded A instead of A + C; and S instead of S;. Then

1. A* is surjective, i.e. A*(Dyax) = Lo(M) because of the unique
continuation property and A* = Apy, . '

2. The range A(D) is closed in L,(M) and its orthogonal complement
Ap(D)* in Ly(M) is finite-dimensional because of the Fredholm
property. , '

3. The restriction A*|g1(as) of A* to the 1st Sobolev space is also
surjective, i.e. A*(Dpay) = Lo(M) because of

dense

A*(D) C A*(H'(M)) " Ly(M)

and the finite codimension of A*(D) in Ly(M).

4. Consequently, there exists a finite—-dimensional extension W of the
domain D in the 1st Sobolev space with Ay := A*|3 surjective;
more precisely we have (i) D ¢ W c H'(M) with dimW/D <
+00, and (ii) A*(W) = Ly(M).

5. Finally, we see that A is a closed operator because, being only a

finite—dimensional extension of Ap, it inherits the a priori estimate
(7.6) from D.

We define
(8.6) W :={u € D | (Agv,u) = (v,Apu) forall v € W},

i.e. Aw = (Ap)*. Since AW(W) = Lo(M), we have SN W = {0}.
By taking the boundary values, we obtain y(W) N +(S) = {0} by the
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assumed unique continuation property. Moreover, it follows v(W)° =
~(W), hence v(W)° C H3(Z). '

Until now, we have fixed the operator A; = A+ C;. Now we consider
the whole family. First we carry out the preceding construction for
t = 0 and obtain a space W with the wanted properties at ¢t = 0. By
the same argument as in the proof of Proposition 4.4 we obtain also an
€ > 0 such that y(W) N ~v(S;) = {0} for 0 < ¢t <&. So, we repeat our
construction and obtain a finite list W,,..., Wy C H(M) of finite-
dimensional extensions of D and corresponding spaces W1,..., Wy as
in (8.6). Then, in particular, we have for each t € I at least one W,
such that S; N W; = {0}. _

We define W := N¥,W; C D. Then, still, y(W)° = S v(W;) C
H3(%) and S, N W = {0} for all ¢t € I. That proves (a).

From (a) we obtain
87  Bi=yW)° /(W) 2 y(W)* ny(W)° C HE(Z).

Now, the assertion (b) follows from (a) and Theorem 8.3 by Theorem
4.2.b and Remark 5.1. a

Remarks 8.8. (a) According to Proposition 4.4, there exists always a
domain W C D such that (W) is isotropic and of finite codimension
and transversal with all y(S;). The point in the preceding proof is,
however, that we need y(W)° C H%(Z).

(b) In (8.7) we have realized the factor space B3 in a function space on
3. Correspondingly, the symplectic form @ on [~3 can also be written
as

3(,9) = [ (1)@, an)(F(2)), o)) ds

with true integration over a scalar product.

(c) If the operator is of product form near the boundary, there exists a
more explicit and computable finite dimensional symplectic reduction,
namely by taking adiabatic limits (see Yoshida [19] and Nicolaescu

[12]).
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APPENDIX A. A CHARACTERIZATION OF LAGRANGIAN
- FREDHOLM PAIRS

Recall that the space of Fredholm pairs of closed infinite-dimensional
subspaces of H is defined by

Fred®(#) := {(\, 1) | dim AN g < 0o and A + u C H closed
and dimH /() + p) < oo}.

Remark A.1. (a) The property that A + u is closed in A in the pre-
ceding definition of a Fredholm pair (), ) is very important for appli-
cations and often indispensable for establishing the finite codimension
of the sum A + p. On the other hand, it follows from the finite codi-
mension in the following way: since /(A + 1) has finite dimension, we
can find v1,...,v, € H whose classes in # /() + u) form a basis. The
linear span h of vy, ..., v, is then an algebraic complement of A + y in
H. Consider the map ¥ : A\@ u®h — H with ¥(u,v’,v) :=u+u' +v.
Since ¥ is linear, surjective, and (by definition) continuous, we have
that U is open (again, according to the open mapping principle). It
follows that H\ A+ p) = ¥(ADpu @ h\ A& 1 {0}) is open.

(b) Be aware that in spite of the strength of the open—mapping ar-
gument, it can not be applied to show that any subspace W of finite
codimension dimH /W < oo is closed. Of course, one could once again
construct a bounded surjective operator ® : H & W — H, say by
®(u,v) := u + v. But, in general, # \ W can not be obtained as,
the image of an open subset of H & W by applying ®. Certamly
H\W # ®&(H & W\ Ho {0}). Actually, the kernel ker(f) of any
unbounded linear functional provides a counter example. It is a space
of codimension 1, but it is not closed since closed ker(f) would imply
continuity of f in 0 and hence everywhere.

(c) However, given a closed subspace W C H of finite codimension,
clearly we have that any subspace V with

WcCcVCH

is closed and of finite codimension.

We are going to prove the following characterization of Lagrangian
Fredholm pairs.

Proposition A.2. Let A, u € Lag(H) and let 7y, 7, denote the orthog-
onal projections of H onto A respectively u. Then wy+7, is a Fredholm
operator, if and only if (A, u) is a Fredholm pair.
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Remark A.3. Our proposition is inspired by [3], Lemma 2.6 which
states the following: Let A, u be a pair of closed infinite-dimensional
subspaces with infinite-dimensional orthogonal complements. Let m,,
7, denote the orthogonal projections. Then

(A, 1) € Fred*(H) <= ) ~ 7, € Fred(H).

Note that there is a minor gap in the original proof of Lemma 2.6 which
easily can be filled. We shall indicate below the necessary changes in
the proof of our present proposition for establishing Lemma 2.6 for
pairs of Lagrangian subspaces.

On this occasion we should like to point to a flaw in Corollary 2.7 of
the quoted paper where it was, erroneously, claimed that a pair of two
closed infinite-dimensional subspaces (), x) € Fred?(#), if and only
if the sum 7 + 7, of the orthogonal projections is of the form Id +
compact. For a Fredholm pair (A, 1), however, the sum 7 + 7, is not
always of the form Id + compact operator. Actually, we have many
examples where the operator norm ||7) + 7,|| of the sum can be made
arbitrarily small. But if 7y + 7, is of the form Id + compact operator,
then the norm is always > 1.

Of course, in some cases it is of such form. In particular, the sum of
the orthogonal projections is always of the form Id + compact when
A denotes the Cauchy data space of a Dirac operator on a compact
smooth Riemannian manifold with boundary (i.e. the range of the
Calderén projector) and u denotes its orthogonal complement or, more
generally, the kernel of any other pseudodifferential projection with the
same principal symbol as the Calderén projection. Such pairs appear
typically in the treatment of elliptic boundary value problems belonging
to the Grassmannian of generalized Atiyah—Patodi-Singer projections,
whereas more general elliptic boundary value problems lead to arbitrary
Fredholm pairs (A, u), though still with A fixed as the Cauchy data
space (see [4] for both types of global elliptic boundary problems).

To prove our proposition we shall use the following lemma.

Lemma A.4. Let A, u € Lag(#) and (), i) € Fred*(H). Assume that
A, b are transversal (i.e., AN u = {0}). Then the operator ) + 7, :
H — H is surjective. (Hence, my + T, is an isomorphism).

Proof. Given a w € H, we have to find z € H such that (7 +7,)z = w.
Then, since A N p = {0}, there exists an operator

A: Ao )
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with J o A self-adjoint, such that
p={z+ Az |z € I}
Now any w € H = A+ pu(= p+ A) can be written as
w=a+ A(a) + J(b) with a,b € AL,
Putting
(A.1)
=(a+Aa)+Jv+AV) EH=pdu" withv:=b+ JAaec
we obtain 7,(2) = a + A(a). Moreover,
- z=a+ Aa+ J(b+ JAa + Ab+ AJ Aa)
=a++Jb+ JAb+ JAJ Aa
=a+ (J o A)*(a) + (J o A)(b) + J(b).

We notice that the first three summands all belong to A+ and the fourth
to A. That yields 7,(z) = J(b). Hence 7 + 7, is surjective. O

Remark A.5. (a) Clearly, for a Fredholm pair (), u) of transversal
Lagrangian subspaces we have

A+t =Mnpt=JN)NJ(W=JANy) = {0},
hence A + = H by closedness of A + pu.

(b) The Lemma remains valid, if we replace the sum m + m, by the
difference ) — m,. In the proof we just replace z by

Z:=—-a—(Jo A)*(a) + Jo A(b) + J(b).

Then (m) — m,)(2') = w for w = a + A(a) + J(b) € A+ p = H. Cor-
respondingly, the proof of Proposition A.2 can be suitably modified
to give the same result for 7\ — 7, instead of m) + m,, i.e. an alter-
native and more geometrical proof of [3], Lemma 2. 6 for Lagrangian
subspaces.

(c) The Lemma can be reformulated for general Fredholm pairs, i.e.
not necessarily Lagrangian subspaces. Of course, we will not have
P+ 7, : H — H surjective even if ),y transversal. But we can
establish P & 7, : H — A + p surjective by a similar argument.

Proof of Proposition A.2. Let Ty + 7, be a Fredholm operator. Then
7ma(z) + 7u(z) = 0 implies

(€, 7(z)) = (@, ~7u(2)) = ~[lmu(@)I* = [Ima(2)I*.
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Hence 7 (z) = m,(z) = 0, which shows that
(A.2) ker(my +m,) = A nut = JANp).

Since (my +m,)(H) C A+ p, and range(m + m,) is closed and of finite
codimension, so A+ y must be closed and also of finite codimension (as
argued before). Hence (A, p) is a Fredholm pair.

Now we prove the opposite direction: if (), x) is a Fredholm pair,
then 7 + 7, is a Fredholm operator. Let w € A+ p and w L (AN ).
Then from Lemma A.4, we have z € A + u such that

zL(Anp) and  m(2) +mu(2) = w.

This follows by replacing the total Hilbert space # by H' := (Anu)+tnN
(A + p), the first subspace A by (AN u)t N ), and the second subspace
pby AN )t np.

Note that in the new Hilbert space #' the two orthogonal projections
onto AN (ANy)* and pN (AN p)t coincide with the projections 7 and
Ty, respectively.

Now let w € A + u be decomposed as

w = wp + ws, wo € ANy, wy € AN p)t,
and put z = zg + 3w;, where z, satisfies

ma(20) + mu(20) = wo.
Such 2z, exists according to Lemma A.4 and the preceding argument.
Then we have

1 1
mA(2) + mu(z) = ma(z0 + §w1) + 7, (20 + SW = )=wy+w =w

which shows
(M +m)A+p)=A+p=(m\+ 7’#)(%)-

Hence we proved that the image of 7, + m, is closed and of finite
codimension. In fact, it coincides with A + u. Clearly, the kernel
ker(my, + m,) = J(A N p) is finite-dimensional. O
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